1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // basic correctness checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/BinaryFormat/Dwarf.h" 62 #include "llvm/IR/Argument.h" 63 #include "llvm/IR/Attributes.h" 64 #include "llvm/IR/BasicBlock.h" 65 #include "llvm/IR/CFG.h" 66 #include "llvm/IR/CallingConv.h" 67 #include "llvm/IR/Comdat.h" 68 #include "llvm/IR/Constant.h" 69 #include "llvm/IR/ConstantRange.h" 70 #include "llvm/IR/Constants.h" 71 #include "llvm/IR/DataLayout.h" 72 #include "llvm/IR/DebugInfoMetadata.h" 73 #include "llvm/IR/DebugLoc.h" 74 #include "llvm/IR/DerivedTypes.h" 75 #include "llvm/IR/Dominators.h" 76 #include "llvm/IR/Function.h" 77 #include "llvm/IR/GlobalAlias.h" 78 #include "llvm/IR/GlobalValue.h" 79 #include "llvm/IR/GlobalVariable.h" 80 #include "llvm/IR/InlineAsm.h" 81 #include "llvm/IR/InstVisitor.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/IntrinsicsWebAssembly.h" 88 #include "llvm/IR/LLVMContext.h" 89 #include "llvm/IR/Metadata.h" 90 #include "llvm/IR/Module.h" 91 #include "llvm/IR/ModuleSlotTracker.h" 92 #include "llvm/IR/PassManager.h" 93 #include "llvm/IR/Statepoint.h" 94 #include "llvm/IR/Type.h" 95 #include "llvm/IR/Use.h" 96 #include "llvm/IR/User.h" 97 #include "llvm/IR/Value.h" 98 #include "llvm/InitializePasses.h" 99 #include "llvm/Pass.h" 100 #include "llvm/Support/AtomicOrdering.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MathExtras.h" 106 #include "llvm/Support/raw_ostream.h" 107 #include <algorithm> 108 #include <cassert> 109 #include <cstdint> 110 #include <memory> 111 #include <string> 112 #include <utility> 113 114 using namespace llvm; 115 116 static cl::opt<bool> VerifyNoAliasScopeDomination( 117 "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false), 118 cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical " 119 "scopes are not dominating")); 120 121 namespace llvm { 122 123 struct VerifierSupport { 124 raw_ostream *OS; 125 const Module &M; 126 ModuleSlotTracker MST; 127 Triple TT; 128 const DataLayout &DL; 129 LLVMContext &Context; 130 131 /// Track the brokenness of the module while recursively visiting. 132 bool Broken = false; 133 /// Broken debug info can be "recovered" from by stripping the debug info. 134 bool BrokenDebugInfo = false; 135 /// Whether to treat broken debug info as an error. 136 bool TreatBrokenDebugInfoAsError = true; 137 138 explicit VerifierSupport(raw_ostream *OS, const Module &M) 139 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 140 Context(M.getContext()) {} 141 142 private: 143 void Write(const Module *M) { 144 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 145 } 146 147 void Write(const Value *V) { 148 if (V) 149 Write(*V); 150 } 151 152 void Write(const Value &V) { 153 if (isa<Instruction>(V)) { 154 V.print(*OS, MST); 155 *OS << '\n'; 156 } else { 157 V.printAsOperand(*OS, true, MST); 158 *OS << '\n'; 159 } 160 } 161 162 void Write(const Metadata *MD) { 163 if (!MD) 164 return; 165 MD->print(*OS, MST, &M); 166 *OS << '\n'; 167 } 168 169 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 170 Write(MD.get()); 171 } 172 173 void Write(const NamedMDNode *NMD) { 174 if (!NMD) 175 return; 176 NMD->print(*OS, MST); 177 *OS << '\n'; 178 } 179 180 void Write(Type *T) { 181 if (!T) 182 return; 183 *OS << ' ' << *T; 184 } 185 186 void Write(const Comdat *C) { 187 if (!C) 188 return; 189 *OS << *C; 190 } 191 192 void Write(const APInt *AI) { 193 if (!AI) 194 return; 195 *OS << *AI << '\n'; 196 } 197 198 void Write(const unsigned i) { *OS << i << '\n'; } 199 200 // NOLINTNEXTLINE(readability-identifier-naming) 201 void Write(const Attribute *A) { 202 if (!A) 203 return; 204 *OS << A->getAsString() << '\n'; 205 } 206 207 // NOLINTNEXTLINE(readability-identifier-naming) 208 void Write(const AttributeSet *AS) { 209 if (!AS) 210 return; 211 *OS << AS->getAsString() << '\n'; 212 } 213 214 // NOLINTNEXTLINE(readability-identifier-naming) 215 void Write(const AttributeList *AL) { 216 if (!AL) 217 return; 218 AL->print(*OS); 219 } 220 221 template <typename T> void Write(ArrayRef<T> Vs) { 222 for (const T &V : Vs) 223 Write(V); 224 } 225 226 template <typename T1, typename... Ts> 227 void WriteTs(const T1 &V1, const Ts &... Vs) { 228 Write(V1); 229 WriteTs(Vs...); 230 } 231 232 template <typename... Ts> void WriteTs() {} 233 234 public: 235 /// A check failed, so printout out the condition and the message. 236 /// 237 /// This provides a nice place to put a breakpoint if you want to see why 238 /// something is not correct. 239 void CheckFailed(const Twine &Message) { 240 if (OS) 241 *OS << Message << '\n'; 242 Broken = true; 243 } 244 245 /// A check failed (with values to print). 246 /// 247 /// This calls the Message-only version so that the above is easier to set a 248 /// breakpoint on. 249 template <typename T1, typename... Ts> 250 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 251 CheckFailed(Message); 252 if (OS) 253 WriteTs(V1, Vs...); 254 } 255 256 /// A debug info check failed. 257 void DebugInfoCheckFailed(const Twine &Message) { 258 if (OS) 259 *OS << Message << '\n'; 260 Broken |= TreatBrokenDebugInfoAsError; 261 BrokenDebugInfo = true; 262 } 263 264 /// A debug info check failed (with values to print). 265 template <typename T1, typename... Ts> 266 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 267 const Ts &... Vs) { 268 DebugInfoCheckFailed(Message); 269 if (OS) 270 WriteTs(V1, Vs...); 271 } 272 }; 273 274 } // namespace llvm 275 276 namespace { 277 278 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 279 friend class InstVisitor<Verifier>; 280 281 DominatorTree DT; 282 283 /// When verifying a basic block, keep track of all of the 284 /// instructions we have seen so far. 285 /// 286 /// This allows us to do efficient dominance checks for the case when an 287 /// instruction has an operand that is an instruction in the same block. 288 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 289 290 /// Keep track of the metadata nodes that have been checked already. 291 SmallPtrSet<const Metadata *, 32> MDNodes; 292 293 /// Keep track which DISubprogram is attached to which function. 294 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 295 296 /// Track all DICompileUnits visited. 297 SmallPtrSet<const Metadata *, 2> CUVisited; 298 299 /// The result type for a landingpad. 300 Type *LandingPadResultTy; 301 302 /// Whether we've seen a call to @llvm.localescape in this function 303 /// already. 304 bool SawFrameEscape; 305 306 /// Whether the current function has a DISubprogram attached to it. 307 bool HasDebugInfo = false; 308 309 /// The current source language. 310 dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user; 311 312 /// Whether source was present on the first DIFile encountered in each CU. 313 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 314 315 /// Stores the count of how many objects were passed to llvm.localescape for a 316 /// given function and the largest index passed to llvm.localrecover. 317 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 318 319 // Maps catchswitches and cleanuppads that unwind to siblings to the 320 // terminators that indicate the unwind, used to detect cycles therein. 321 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 322 323 /// Cache of constants visited in search of ConstantExprs. 324 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 325 326 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 327 SmallVector<const Function *, 4> DeoptimizeDeclarations; 328 329 /// Cache of attribute lists verified. 330 SmallPtrSet<const void *, 32> AttributeListsVisited; 331 332 // Verify that this GlobalValue is only used in this module. 333 // This map is used to avoid visiting uses twice. We can arrive at a user 334 // twice, if they have multiple operands. In particular for very large 335 // constant expressions, we can arrive at a particular user many times. 336 SmallPtrSet<const Value *, 32> GlobalValueVisited; 337 338 // Keeps track of duplicate function argument debug info. 339 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 340 341 TBAAVerifier TBAAVerifyHelper; 342 343 SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls; 344 345 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 346 347 public: 348 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 349 const Module &M) 350 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 351 SawFrameEscape(false), TBAAVerifyHelper(this) { 352 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 353 } 354 355 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 356 357 bool verify(const Function &F) { 358 assert(F.getParent() == &M && 359 "An instance of this class only works with a specific module!"); 360 361 // First ensure the function is well-enough formed to compute dominance 362 // information, and directly compute a dominance tree. We don't rely on the 363 // pass manager to provide this as it isolates us from a potentially 364 // out-of-date dominator tree and makes it significantly more complex to run 365 // this code outside of a pass manager. 366 // FIXME: It's really gross that we have to cast away constness here. 367 if (!F.empty()) 368 DT.recalculate(const_cast<Function &>(F)); 369 370 for (const BasicBlock &BB : F) { 371 if (!BB.empty() && BB.back().isTerminator()) 372 continue; 373 374 if (OS) { 375 *OS << "Basic Block in function '" << F.getName() 376 << "' does not have terminator!\n"; 377 BB.printAsOperand(*OS, true, MST); 378 *OS << "\n"; 379 } 380 return false; 381 } 382 383 Broken = false; 384 // FIXME: We strip const here because the inst visitor strips const. 385 visit(const_cast<Function &>(F)); 386 verifySiblingFuncletUnwinds(); 387 InstsInThisBlock.clear(); 388 DebugFnArgs.clear(); 389 LandingPadResultTy = nullptr; 390 SawFrameEscape = false; 391 SiblingFuncletInfo.clear(); 392 verifyNoAliasScopeDecl(); 393 NoAliasScopeDecls.clear(); 394 395 return !Broken; 396 } 397 398 /// Verify the module that this instance of \c Verifier was initialized with. 399 bool verify() { 400 Broken = false; 401 402 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 403 for (const Function &F : M) 404 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 405 DeoptimizeDeclarations.push_back(&F); 406 407 // Now that we've visited every function, verify that we never asked to 408 // recover a frame index that wasn't escaped. 409 verifyFrameRecoverIndices(); 410 for (const GlobalVariable &GV : M.globals()) 411 visitGlobalVariable(GV); 412 413 for (const GlobalAlias &GA : M.aliases()) 414 visitGlobalAlias(GA); 415 416 for (const GlobalIFunc &GI : M.ifuncs()) 417 visitGlobalIFunc(GI); 418 419 for (const NamedMDNode &NMD : M.named_metadata()) 420 visitNamedMDNode(NMD); 421 422 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 423 visitComdat(SMEC.getValue()); 424 425 visitModuleFlags(); 426 visitModuleIdents(); 427 visitModuleCommandLines(); 428 429 verifyCompileUnits(); 430 431 verifyDeoptimizeCallingConvs(); 432 DISubprogramAttachments.clear(); 433 return !Broken; 434 } 435 436 private: 437 /// Whether a metadata node is allowed to be, or contain, a DILocation. 438 enum class AreDebugLocsAllowed { No, Yes }; 439 440 // Verification methods... 441 void visitGlobalValue(const GlobalValue &GV); 442 void visitGlobalVariable(const GlobalVariable &GV); 443 void visitGlobalAlias(const GlobalAlias &GA); 444 void visitGlobalIFunc(const GlobalIFunc &GI); 445 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 446 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 447 const GlobalAlias &A, const Constant &C); 448 void visitNamedMDNode(const NamedMDNode &NMD); 449 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); 450 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 451 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 452 void visitComdat(const Comdat &C); 453 void visitModuleIdents(); 454 void visitModuleCommandLines(); 455 void visitModuleFlags(); 456 void visitModuleFlag(const MDNode *Op, 457 DenseMap<const MDString *, const MDNode *> &SeenIDs, 458 SmallVectorImpl<const MDNode *> &Requirements); 459 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 460 void visitFunction(const Function &F); 461 void visitBasicBlock(BasicBlock &BB); 462 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 463 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 464 void visitProfMetadata(Instruction &I, MDNode *MD); 465 void visitAnnotationMetadata(MDNode *Annotation); 466 void visitAliasScopeMetadata(const MDNode *MD); 467 void visitAliasScopeListMetadata(const MDNode *MD); 468 469 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 470 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 471 #include "llvm/IR/Metadata.def" 472 void visitDIScope(const DIScope &N); 473 void visitDIVariable(const DIVariable &N); 474 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 475 void visitDITemplateParameter(const DITemplateParameter &N); 476 477 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 478 479 // InstVisitor overrides... 480 using InstVisitor<Verifier>::visit; 481 void visit(Instruction &I); 482 483 void visitTruncInst(TruncInst &I); 484 void visitZExtInst(ZExtInst &I); 485 void visitSExtInst(SExtInst &I); 486 void visitFPTruncInst(FPTruncInst &I); 487 void visitFPExtInst(FPExtInst &I); 488 void visitFPToUIInst(FPToUIInst &I); 489 void visitFPToSIInst(FPToSIInst &I); 490 void visitUIToFPInst(UIToFPInst &I); 491 void visitSIToFPInst(SIToFPInst &I); 492 void visitIntToPtrInst(IntToPtrInst &I); 493 void visitPtrToIntInst(PtrToIntInst &I); 494 void visitBitCastInst(BitCastInst &I); 495 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 496 void visitPHINode(PHINode &PN); 497 void visitCallBase(CallBase &Call); 498 void visitUnaryOperator(UnaryOperator &U); 499 void visitBinaryOperator(BinaryOperator &B); 500 void visitICmpInst(ICmpInst &IC); 501 void visitFCmpInst(FCmpInst &FC); 502 void visitExtractElementInst(ExtractElementInst &EI); 503 void visitInsertElementInst(InsertElementInst &EI); 504 void visitShuffleVectorInst(ShuffleVectorInst &EI); 505 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 506 void visitCallInst(CallInst &CI); 507 void visitInvokeInst(InvokeInst &II); 508 void visitGetElementPtrInst(GetElementPtrInst &GEP); 509 void visitLoadInst(LoadInst &LI); 510 void visitStoreInst(StoreInst &SI); 511 void verifyDominatesUse(Instruction &I, unsigned i); 512 void visitInstruction(Instruction &I); 513 void visitTerminator(Instruction &I); 514 void visitBranchInst(BranchInst &BI); 515 void visitReturnInst(ReturnInst &RI); 516 void visitSwitchInst(SwitchInst &SI); 517 void visitIndirectBrInst(IndirectBrInst &BI); 518 void visitCallBrInst(CallBrInst &CBI); 519 void visitSelectInst(SelectInst &SI); 520 void visitUserOp1(Instruction &I); 521 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 522 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 523 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 524 void visitVPIntrinsic(VPIntrinsic &VPI); 525 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 526 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 527 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 528 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 529 void visitFenceInst(FenceInst &FI); 530 void visitAllocaInst(AllocaInst &AI); 531 void visitExtractValueInst(ExtractValueInst &EVI); 532 void visitInsertValueInst(InsertValueInst &IVI); 533 void visitEHPadPredecessors(Instruction &I); 534 void visitLandingPadInst(LandingPadInst &LPI); 535 void visitResumeInst(ResumeInst &RI); 536 void visitCatchPadInst(CatchPadInst &CPI); 537 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 538 void visitCleanupPadInst(CleanupPadInst &CPI); 539 void visitFuncletPadInst(FuncletPadInst &FPI); 540 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 541 void visitCleanupReturnInst(CleanupReturnInst &CRI); 542 543 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 544 void verifySwiftErrorValue(const Value *SwiftErrorVal); 545 void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context); 546 void verifyMustTailCall(CallInst &CI); 547 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 548 void verifyAttributeTypes(AttributeSet Attrs, const Value *V); 549 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 550 void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 551 const Value *V); 552 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 553 const Value *V, bool IsIntrinsic, bool IsInlineAsm); 554 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 555 556 void visitConstantExprsRecursively(const Constant *EntryC); 557 void visitConstantExpr(const ConstantExpr *CE); 558 void verifyInlineAsmCall(const CallBase &Call); 559 void verifyStatepoint(const CallBase &Call); 560 void verifyFrameRecoverIndices(); 561 void verifySiblingFuncletUnwinds(); 562 563 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 564 template <typename ValueOrMetadata> 565 void verifyFragmentExpression(const DIVariable &V, 566 DIExpression::FragmentInfo Fragment, 567 ValueOrMetadata *Desc); 568 void verifyFnArgs(const DbgVariableIntrinsic &I); 569 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 570 571 /// Module-level debug info verification... 572 void verifyCompileUnits(); 573 574 /// Module-level verification that all @llvm.experimental.deoptimize 575 /// declarations share the same calling convention. 576 void verifyDeoptimizeCallingConvs(); 577 578 void verifyAttachedCallBundle(const CallBase &Call, 579 const OperandBundleUse &BU); 580 581 /// Verify all-or-nothing property of DIFile source attribute within a CU. 582 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 583 584 /// Verify the llvm.experimental.noalias.scope.decl declarations 585 void verifyNoAliasScopeDecl(); 586 }; 587 588 } // end anonymous namespace 589 590 /// We know that cond should be true, if not print an error message. 591 #define Assert(C, ...) \ 592 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 593 594 /// We know that a debug info condition should be true, if not print 595 /// an error message. 596 #define AssertDI(C, ...) \ 597 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 598 599 void Verifier::visit(Instruction &I) { 600 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 601 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 602 InstVisitor<Verifier>::visit(I); 603 } 604 605 // Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further. 606 static void forEachUser(const Value *User, 607 SmallPtrSet<const Value *, 32> &Visited, 608 llvm::function_ref<bool(const Value *)> Callback) { 609 if (!Visited.insert(User).second) 610 return; 611 612 SmallVector<const Value *> WorkList; 613 append_range(WorkList, User->materialized_users()); 614 while (!WorkList.empty()) { 615 const Value *Cur = WorkList.pop_back_val(); 616 if (!Visited.insert(Cur).second) 617 continue; 618 if (Callback(Cur)) 619 append_range(WorkList, Cur->materialized_users()); 620 } 621 } 622 623 void Verifier::visitGlobalValue(const GlobalValue &GV) { 624 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 625 "Global is external, but doesn't have external or weak linkage!", &GV); 626 627 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) { 628 629 if (MaybeAlign A = GO->getAlign()) { 630 Assert(A->value() <= Value::MaximumAlignment, 631 "huge alignment values are unsupported", GO); 632 } 633 } 634 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 635 "Only global variables can have appending linkage!", &GV); 636 637 if (GV.hasAppendingLinkage()) { 638 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 639 Assert(GVar && GVar->getValueType()->isArrayTy(), 640 "Only global arrays can have appending linkage!", GVar); 641 } 642 643 if (GV.isDeclarationForLinker()) 644 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 645 646 if (GV.hasDLLImportStorageClass()) { 647 Assert(!GV.isDSOLocal(), 648 "GlobalValue with DLLImport Storage is dso_local!", &GV); 649 650 Assert((GV.isDeclaration() && 651 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) || 652 GV.hasAvailableExternallyLinkage(), 653 "Global is marked as dllimport, but not external", &GV); 654 } 655 656 if (GV.isImplicitDSOLocal()) 657 Assert(GV.isDSOLocal(), 658 "GlobalValue with local linkage or non-default " 659 "visibility must be dso_local!", 660 &GV); 661 662 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 663 if (const Instruction *I = dyn_cast<Instruction>(V)) { 664 if (!I->getParent() || !I->getParent()->getParent()) 665 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 666 I); 667 else if (I->getParent()->getParent()->getParent() != &M) 668 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 669 I->getParent()->getParent(), 670 I->getParent()->getParent()->getParent()); 671 return false; 672 } else if (const Function *F = dyn_cast<Function>(V)) { 673 if (F->getParent() != &M) 674 CheckFailed("Global is used by function in a different module", &GV, &M, 675 F, F->getParent()); 676 return false; 677 } 678 return true; 679 }); 680 } 681 682 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 683 if (GV.hasInitializer()) { 684 Assert(GV.getInitializer()->getType() == GV.getValueType(), 685 "Global variable initializer type does not match global " 686 "variable type!", 687 &GV); 688 // If the global has common linkage, it must have a zero initializer and 689 // cannot be constant. 690 if (GV.hasCommonLinkage()) { 691 Assert(GV.getInitializer()->isNullValue(), 692 "'common' global must have a zero initializer!", &GV); 693 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 694 &GV); 695 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 696 } 697 } 698 699 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 700 GV.getName() == "llvm.global_dtors")) { 701 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 702 "invalid linkage for intrinsic global variable", &GV); 703 // Don't worry about emitting an error for it not being an array, 704 // visitGlobalValue will complain on appending non-array. 705 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 706 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 707 PointerType *FuncPtrTy = 708 FunctionType::get(Type::getVoidTy(Context), false)-> 709 getPointerTo(DL.getProgramAddressSpace()); 710 Assert(STy && 711 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 712 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 713 STy->getTypeAtIndex(1) == FuncPtrTy, 714 "wrong type for intrinsic global variable", &GV); 715 Assert(STy->getNumElements() == 3, 716 "the third field of the element type is mandatory, " 717 "specify i8* null to migrate from the obsoleted 2-field form"); 718 Type *ETy = STy->getTypeAtIndex(2); 719 Type *Int8Ty = Type::getInt8Ty(ETy->getContext()); 720 Assert(ETy->isPointerTy() && 721 cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty), 722 "wrong type for intrinsic global variable", &GV); 723 } 724 } 725 726 if (GV.hasName() && (GV.getName() == "llvm.used" || 727 GV.getName() == "llvm.compiler.used")) { 728 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 729 "invalid linkage for intrinsic global variable", &GV); 730 Type *GVType = GV.getValueType(); 731 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 732 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 733 Assert(PTy, "wrong type for intrinsic global variable", &GV); 734 if (GV.hasInitializer()) { 735 const Constant *Init = GV.getInitializer(); 736 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 737 Assert(InitArray, "wrong initalizer for intrinsic global variable", 738 Init); 739 for (Value *Op : InitArray->operands()) { 740 Value *V = Op->stripPointerCasts(); 741 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 742 isa<GlobalAlias>(V), 743 Twine("invalid ") + GV.getName() + " member", V); 744 Assert(V->hasName(), 745 Twine("members of ") + GV.getName() + " must be named", V); 746 } 747 } 748 } 749 } 750 751 // Visit any debug info attachments. 752 SmallVector<MDNode *, 1> MDs; 753 GV.getMetadata(LLVMContext::MD_dbg, MDs); 754 for (auto *MD : MDs) { 755 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 756 visitDIGlobalVariableExpression(*GVE); 757 else 758 AssertDI(false, "!dbg attachment of global variable must be a " 759 "DIGlobalVariableExpression"); 760 } 761 762 // Scalable vectors cannot be global variables, since we don't know 763 // the runtime size. If the global is an array containing scalable vectors, 764 // that will be caught by the isValidElementType methods in StructType or 765 // ArrayType instead. 766 Assert(!isa<ScalableVectorType>(GV.getValueType()), 767 "Globals cannot contain scalable vectors", &GV); 768 769 if (auto *STy = dyn_cast<StructType>(GV.getValueType())) 770 Assert(!STy->containsScalableVectorType(), 771 "Globals cannot contain scalable vectors", &GV); 772 773 if (!GV.hasInitializer()) { 774 visitGlobalValue(GV); 775 return; 776 } 777 778 // Walk any aggregate initializers looking for bitcasts between address spaces 779 visitConstantExprsRecursively(GV.getInitializer()); 780 781 visitGlobalValue(GV); 782 } 783 784 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 785 SmallPtrSet<const GlobalAlias*, 4> Visited; 786 Visited.insert(&GA); 787 visitAliaseeSubExpr(Visited, GA, C); 788 } 789 790 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 791 const GlobalAlias &GA, const Constant &C) { 792 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 793 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 794 &GA); 795 796 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 797 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 798 799 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 800 &GA); 801 } else { 802 // Only continue verifying subexpressions of GlobalAliases. 803 // Do not recurse into global initializers. 804 return; 805 } 806 } 807 808 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 809 visitConstantExprsRecursively(CE); 810 811 for (const Use &U : C.operands()) { 812 Value *V = &*U; 813 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 814 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 815 else if (const auto *C2 = dyn_cast<Constant>(V)) 816 visitAliaseeSubExpr(Visited, GA, *C2); 817 } 818 } 819 820 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 821 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 822 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 823 "weak_odr, or external linkage!", 824 &GA); 825 const Constant *Aliasee = GA.getAliasee(); 826 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 827 Assert(GA.getType() == Aliasee->getType(), 828 "Alias and aliasee types should match!", &GA); 829 830 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 831 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 832 833 visitAliaseeSubExpr(GA, *Aliasee); 834 835 visitGlobalValue(GA); 836 } 837 838 void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) { 839 // Pierce through ConstantExprs and GlobalAliases and check that the resolver 840 // has a Function 841 const Function *Resolver = GI.getResolverFunction(); 842 Assert(Resolver, "IFunc must have a Function resolver", &GI); 843 844 // Check that the immediate resolver operand (prior to any bitcasts) has the 845 // correct type 846 const Type *ResolverTy = GI.getResolver()->getType(); 847 const Type *ResolverFuncTy = 848 GlobalIFunc::getResolverFunctionType(GI.getValueType()); 849 Assert(ResolverTy == ResolverFuncTy->getPointerTo(), 850 "IFunc resolver has incorrect type", &GI); 851 } 852 853 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 854 // There used to be various other llvm.dbg.* nodes, but we don't support 855 // upgrading them and we want to reserve the namespace for future uses. 856 if (NMD.getName().startswith("llvm.dbg.")) 857 AssertDI(NMD.getName() == "llvm.dbg.cu", 858 "unrecognized named metadata node in the llvm.dbg namespace", 859 &NMD); 860 for (const MDNode *MD : NMD.operands()) { 861 if (NMD.getName() == "llvm.dbg.cu") 862 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 863 864 if (!MD) 865 continue; 866 867 visitMDNode(*MD, AreDebugLocsAllowed::Yes); 868 } 869 } 870 871 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { 872 // Only visit each node once. Metadata can be mutually recursive, so this 873 // avoids infinite recursion here, as well as being an optimization. 874 if (!MDNodes.insert(&MD).second) 875 return; 876 877 Assert(&MD.getContext() == &Context, 878 "MDNode context does not match Module context!", &MD); 879 880 switch (MD.getMetadataID()) { 881 default: 882 llvm_unreachable("Invalid MDNode subclass"); 883 case Metadata::MDTupleKind: 884 break; 885 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 886 case Metadata::CLASS##Kind: \ 887 visit##CLASS(cast<CLASS>(MD)); \ 888 break; 889 #include "llvm/IR/Metadata.def" 890 } 891 892 for (const Metadata *Op : MD.operands()) { 893 if (!Op) 894 continue; 895 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 896 &MD, Op); 897 AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes, 898 "DILocation not allowed within this metadata node", &MD, Op); 899 if (auto *N = dyn_cast<MDNode>(Op)) { 900 visitMDNode(*N, AllowLocs); 901 continue; 902 } 903 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 904 visitValueAsMetadata(*V, nullptr); 905 continue; 906 } 907 } 908 909 // Check these last, so we diagnose problems in operands first. 910 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 911 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 912 } 913 914 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 915 Assert(MD.getValue(), "Expected valid value", &MD); 916 Assert(!MD.getValue()->getType()->isMetadataTy(), 917 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 918 919 auto *L = dyn_cast<LocalAsMetadata>(&MD); 920 if (!L) 921 return; 922 923 Assert(F, "function-local metadata used outside a function", L); 924 925 // If this was an instruction, bb, or argument, verify that it is in the 926 // function that we expect. 927 Function *ActualF = nullptr; 928 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 929 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 930 ActualF = I->getParent()->getParent(); 931 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 932 ActualF = BB->getParent(); 933 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 934 ActualF = A->getParent(); 935 assert(ActualF && "Unimplemented function local metadata case!"); 936 937 Assert(ActualF == F, "function-local metadata used in wrong function", L); 938 } 939 940 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 941 Metadata *MD = MDV.getMetadata(); 942 if (auto *N = dyn_cast<MDNode>(MD)) { 943 visitMDNode(*N, AreDebugLocsAllowed::No); 944 return; 945 } 946 947 // Only visit each node once. Metadata can be mutually recursive, so this 948 // avoids infinite recursion here, as well as being an optimization. 949 if (!MDNodes.insert(MD).second) 950 return; 951 952 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 953 visitValueAsMetadata(*V, F); 954 } 955 956 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 957 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 958 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 959 960 void Verifier::visitDILocation(const DILocation &N) { 961 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 962 "location requires a valid scope", &N, N.getRawScope()); 963 if (auto *IA = N.getRawInlinedAt()) 964 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 965 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 966 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 967 } 968 969 void Verifier::visitGenericDINode(const GenericDINode &N) { 970 AssertDI(N.getTag(), "invalid tag", &N); 971 } 972 973 void Verifier::visitDIScope(const DIScope &N) { 974 if (auto *F = N.getRawFile()) 975 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 976 } 977 978 void Verifier::visitDISubrange(const DISubrange &N) { 979 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 980 bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang); 981 AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() || 982 N.getRawUpperBound(), 983 "Subrange must contain count or upperBound", &N); 984 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 985 "Subrange can have any one of count or upperBound", &N); 986 auto *CBound = N.getRawCountNode(); 987 AssertDI(!CBound || isa<ConstantAsMetadata>(CBound) || 988 isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 989 "Count must be signed constant or DIVariable or DIExpression", &N); 990 auto Count = N.getCount(); 991 AssertDI(!Count || !Count.is<ConstantInt *>() || 992 Count.get<ConstantInt *>()->getSExtValue() >= -1, 993 "invalid subrange count", &N); 994 auto *LBound = N.getRawLowerBound(); 995 AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) || 996 isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 997 "LowerBound must be signed constant or DIVariable or DIExpression", 998 &N); 999 auto *UBound = N.getRawUpperBound(); 1000 AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) || 1001 isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 1002 "UpperBound must be signed constant or DIVariable or DIExpression", 1003 &N); 1004 auto *Stride = N.getRawStride(); 1005 AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) || 1006 isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 1007 "Stride must be signed constant or DIVariable or DIExpression", &N); 1008 } 1009 1010 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) { 1011 AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N); 1012 AssertDI(N.getRawCountNode() || N.getRawUpperBound(), 1013 "GenericSubrange must contain count or upperBound", &N); 1014 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 1015 "GenericSubrange can have any one of count or upperBound", &N); 1016 auto *CBound = N.getRawCountNode(); 1017 AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 1018 "Count must be signed constant or DIVariable or DIExpression", &N); 1019 auto *LBound = N.getRawLowerBound(); 1020 AssertDI(LBound, "GenericSubrange must contain lowerBound", &N); 1021 AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 1022 "LowerBound must be signed constant or DIVariable or DIExpression", 1023 &N); 1024 auto *UBound = N.getRawUpperBound(); 1025 AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 1026 "UpperBound must be signed constant or DIVariable or DIExpression", 1027 &N); 1028 auto *Stride = N.getRawStride(); 1029 AssertDI(Stride, "GenericSubrange must contain stride", &N); 1030 AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 1031 "Stride must be signed constant or DIVariable or DIExpression", &N); 1032 } 1033 1034 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 1035 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 1036 } 1037 1038 void Verifier::visitDIBasicType(const DIBasicType &N) { 1039 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 1040 N.getTag() == dwarf::DW_TAG_unspecified_type || 1041 N.getTag() == dwarf::DW_TAG_string_type, 1042 "invalid tag", &N); 1043 } 1044 1045 void Verifier::visitDIStringType(const DIStringType &N) { 1046 AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N); 1047 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 1048 "has conflicting flags", &N); 1049 } 1050 1051 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 1052 // Common scope checks. 1053 visitDIScope(N); 1054 1055 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 1056 N.getTag() == dwarf::DW_TAG_pointer_type || 1057 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 1058 N.getTag() == dwarf::DW_TAG_reference_type || 1059 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 1060 N.getTag() == dwarf::DW_TAG_const_type || 1061 N.getTag() == dwarf::DW_TAG_immutable_type || 1062 N.getTag() == dwarf::DW_TAG_volatile_type || 1063 N.getTag() == dwarf::DW_TAG_restrict_type || 1064 N.getTag() == dwarf::DW_TAG_atomic_type || 1065 N.getTag() == dwarf::DW_TAG_member || 1066 N.getTag() == dwarf::DW_TAG_inheritance || 1067 N.getTag() == dwarf::DW_TAG_friend || 1068 N.getTag() == dwarf::DW_TAG_set_type, 1069 "invalid tag", &N); 1070 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 1071 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 1072 N.getRawExtraData()); 1073 } 1074 1075 if (N.getTag() == dwarf::DW_TAG_set_type) { 1076 if (auto *T = N.getRawBaseType()) { 1077 auto *Enum = dyn_cast_or_null<DICompositeType>(T); 1078 auto *Basic = dyn_cast_or_null<DIBasicType>(T); 1079 AssertDI( 1080 (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) || 1081 (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned || 1082 Basic->getEncoding() == dwarf::DW_ATE_signed || 1083 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char || 1084 Basic->getEncoding() == dwarf::DW_ATE_signed_char || 1085 Basic->getEncoding() == dwarf::DW_ATE_boolean)), 1086 "invalid set base type", &N, T); 1087 } 1088 } 1089 1090 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1091 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1092 N.getRawBaseType()); 1093 1094 if (N.getDWARFAddressSpace()) { 1095 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 1096 N.getTag() == dwarf::DW_TAG_reference_type || 1097 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 1098 "DWARF address space only applies to pointer or reference types", 1099 &N); 1100 } 1101 } 1102 1103 /// Detect mutually exclusive flags. 1104 static bool hasConflictingReferenceFlags(unsigned Flags) { 1105 return ((Flags & DINode::FlagLValueReference) && 1106 (Flags & DINode::FlagRValueReference)) || 1107 ((Flags & DINode::FlagTypePassByValue) && 1108 (Flags & DINode::FlagTypePassByReference)); 1109 } 1110 1111 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 1112 auto *Params = dyn_cast<MDTuple>(&RawParams); 1113 AssertDI(Params, "invalid template params", &N, &RawParams); 1114 for (Metadata *Op : Params->operands()) { 1115 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 1116 &N, Params, Op); 1117 } 1118 } 1119 1120 void Verifier::visitDICompositeType(const DICompositeType &N) { 1121 // Common scope checks. 1122 visitDIScope(N); 1123 1124 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 1125 N.getTag() == dwarf::DW_TAG_structure_type || 1126 N.getTag() == dwarf::DW_TAG_union_type || 1127 N.getTag() == dwarf::DW_TAG_enumeration_type || 1128 N.getTag() == dwarf::DW_TAG_class_type || 1129 N.getTag() == dwarf::DW_TAG_variant_part || 1130 N.getTag() == dwarf::DW_TAG_namelist, 1131 "invalid tag", &N); 1132 1133 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1134 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1135 N.getRawBaseType()); 1136 1137 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 1138 "invalid composite elements", &N, N.getRawElements()); 1139 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 1140 N.getRawVTableHolder()); 1141 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1142 "invalid reference flags", &N); 1143 unsigned DIBlockByRefStruct = 1 << 4; 1144 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, 1145 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 1146 1147 if (N.isVector()) { 1148 const DINodeArray Elements = N.getElements(); 1149 AssertDI(Elements.size() == 1 && 1150 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 1151 "invalid vector, expected one element of type subrange", &N); 1152 } 1153 1154 if (auto *Params = N.getRawTemplateParams()) 1155 visitTemplateParams(N, *Params); 1156 1157 if (auto *D = N.getRawDiscriminator()) { 1158 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1159 "discriminator can only appear on variant part"); 1160 } 1161 1162 if (N.getRawDataLocation()) { 1163 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1164 "dataLocation can only appear in array type"); 1165 } 1166 1167 if (N.getRawAssociated()) { 1168 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1169 "associated can only appear in array type"); 1170 } 1171 1172 if (N.getRawAllocated()) { 1173 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1174 "allocated can only appear in array type"); 1175 } 1176 1177 if (N.getRawRank()) { 1178 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1179 "rank can only appear in array type"); 1180 } 1181 } 1182 1183 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1184 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1185 if (auto *Types = N.getRawTypeArray()) { 1186 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1187 for (Metadata *Ty : N.getTypeArray()->operands()) { 1188 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1189 } 1190 } 1191 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1192 "invalid reference flags", &N); 1193 } 1194 1195 void Verifier::visitDIFile(const DIFile &N) { 1196 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1197 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1198 if (Checksum) { 1199 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1200 "invalid checksum kind", &N); 1201 size_t Size; 1202 switch (Checksum->Kind) { 1203 case DIFile::CSK_MD5: 1204 Size = 32; 1205 break; 1206 case DIFile::CSK_SHA1: 1207 Size = 40; 1208 break; 1209 case DIFile::CSK_SHA256: 1210 Size = 64; 1211 break; 1212 } 1213 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1214 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1215 "invalid checksum", &N); 1216 } 1217 } 1218 1219 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1220 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1221 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1222 1223 // Don't bother verifying the compilation directory or producer string 1224 // as those could be empty. 1225 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1226 N.getRawFile()); 1227 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1228 N.getFile()); 1229 1230 CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage(); 1231 1232 verifySourceDebugInfo(N, *N.getFile()); 1233 1234 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1235 "invalid emission kind", &N); 1236 1237 if (auto *Array = N.getRawEnumTypes()) { 1238 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1239 for (Metadata *Op : N.getEnumTypes()->operands()) { 1240 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1241 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1242 "invalid enum type", &N, N.getEnumTypes(), Op); 1243 } 1244 } 1245 if (auto *Array = N.getRawRetainedTypes()) { 1246 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1247 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1248 AssertDI(Op && (isa<DIType>(Op) || 1249 (isa<DISubprogram>(Op) && 1250 !cast<DISubprogram>(Op)->isDefinition())), 1251 "invalid retained type", &N, Op); 1252 } 1253 } 1254 if (auto *Array = N.getRawGlobalVariables()) { 1255 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1256 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1257 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1258 "invalid global variable ref", &N, Op); 1259 } 1260 } 1261 if (auto *Array = N.getRawImportedEntities()) { 1262 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1263 for (Metadata *Op : N.getImportedEntities()->operands()) { 1264 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1265 &N, Op); 1266 } 1267 } 1268 if (auto *Array = N.getRawMacros()) { 1269 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1270 for (Metadata *Op : N.getMacros()->operands()) { 1271 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1272 } 1273 } 1274 CUVisited.insert(&N); 1275 } 1276 1277 void Verifier::visitDISubprogram(const DISubprogram &N) { 1278 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1279 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1280 if (auto *F = N.getRawFile()) 1281 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1282 else 1283 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1284 if (auto *T = N.getRawType()) 1285 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1286 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1287 N.getRawContainingType()); 1288 if (auto *Params = N.getRawTemplateParams()) 1289 visitTemplateParams(N, *Params); 1290 if (auto *S = N.getRawDeclaration()) 1291 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1292 "invalid subprogram declaration", &N, S); 1293 if (auto *RawNode = N.getRawRetainedNodes()) { 1294 auto *Node = dyn_cast<MDTuple>(RawNode); 1295 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1296 for (Metadata *Op : Node->operands()) { 1297 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1298 "invalid retained nodes, expected DILocalVariable or DILabel", 1299 &N, Node, Op); 1300 } 1301 } 1302 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1303 "invalid reference flags", &N); 1304 1305 auto *Unit = N.getRawUnit(); 1306 if (N.isDefinition()) { 1307 // Subprogram definitions (not part of the type hierarchy). 1308 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1309 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1310 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1311 if (N.getFile()) 1312 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1313 } else { 1314 // Subprogram declarations (part of the type hierarchy). 1315 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1316 } 1317 1318 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1319 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1320 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1321 for (Metadata *Op : ThrownTypes->operands()) 1322 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1323 Op); 1324 } 1325 1326 if (N.areAllCallsDescribed()) 1327 AssertDI(N.isDefinition(), 1328 "DIFlagAllCallsDescribed must be attached to a definition"); 1329 } 1330 1331 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1332 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1333 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1334 "invalid local scope", &N, N.getRawScope()); 1335 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1336 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1337 } 1338 1339 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1340 visitDILexicalBlockBase(N); 1341 1342 AssertDI(N.getLine() || !N.getColumn(), 1343 "cannot have column info without line info", &N); 1344 } 1345 1346 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1347 visitDILexicalBlockBase(N); 1348 } 1349 1350 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1351 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1352 if (auto *S = N.getRawScope()) 1353 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1354 if (auto *S = N.getRawDecl()) 1355 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1356 } 1357 1358 void Verifier::visitDINamespace(const DINamespace &N) { 1359 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1360 if (auto *S = N.getRawScope()) 1361 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1362 } 1363 1364 void Verifier::visitDIMacro(const DIMacro &N) { 1365 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1366 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1367 "invalid macinfo type", &N); 1368 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1369 if (!N.getValue().empty()) { 1370 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1371 } 1372 } 1373 1374 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1375 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1376 "invalid macinfo type", &N); 1377 if (auto *F = N.getRawFile()) 1378 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1379 1380 if (auto *Array = N.getRawElements()) { 1381 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1382 for (Metadata *Op : N.getElements()->operands()) { 1383 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1384 } 1385 } 1386 } 1387 1388 void Verifier::visitDIArgList(const DIArgList &N) { 1389 AssertDI(!N.getNumOperands(), 1390 "DIArgList should have no operands other than a list of " 1391 "ValueAsMetadata", 1392 &N); 1393 } 1394 1395 void Verifier::visitDIModule(const DIModule &N) { 1396 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1397 AssertDI(!N.getName().empty(), "anonymous module", &N); 1398 } 1399 1400 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1401 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1402 } 1403 1404 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1405 visitDITemplateParameter(N); 1406 1407 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1408 &N); 1409 } 1410 1411 void Verifier::visitDITemplateValueParameter( 1412 const DITemplateValueParameter &N) { 1413 visitDITemplateParameter(N); 1414 1415 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1416 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1417 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1418 "invalid tag", &N); 1419 } 1420 1421 void Verifier::visitDIVariable(const DIVariable &N) { 1422 if (auto *S = N.getRawScope()) 1423 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1424 if (auto *F = N.getRawFile()) 1425 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1426 } 1427 1428 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1429 // Checks common to all variables. 1430 visitDIVariable(N); 1431 1432 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1433 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1434 // Assert only if the global variable is not an extern 1435 if (N.isDefinition()) 1436 AssertDI(N.getType(), "missing global variable type", &N); 1437 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1438 AssertDI(isa<DIDerivedType>(Member), 1439 "invalid static data member declaration", &N, Member); 1440 } 1441 } 1442 1443 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1444 // Checks common to all variables. 1445 visitDIVariable(N); 1446 1447 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1448 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1449 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1450 "local variable requires a valid scope", &N, N.getRawScope()); 1451 if (auto Ty = N.getType()) 1452 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1453 } 1454 1455 void Verifier::visitDILabel(const DILabel &N) { 1456 if (auto *S = N.getRawScope()) 1457 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1458 if (auto *F = N.getRawFile()) 1459 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1460 1461 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1462 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1463 "label requires a valid scope", &N, N.getRawScope()); 1464 } 1465 1466 void Verifier::visitDIExpression(const DIExpression &N) { 1467 AssertDI(N.isValid(), "invalid expression", &N); 1468 } 1469 1470 void Verifier::visitDIGlobalVariableExpression( 1471 const DIGlobalVariableExpression &GVE) { 1472 AssertDI(GVE.getVariable(), "missing variable"); 1473 if (auto *Var = GVE.getVariable()) 1474 visitDIGlobalVariable(*Var); 1475 if (auto *Expr = GVE.getExpression()) { 1476 visitDIExpression(*Expr); 1477 if (auto Fragment = Expr->getFragmentInfo()) 1478 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1479 } 1480 } 1481 1482 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1483 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1484 if (auto *T = N.getRawType()) 1485 AssertDI(isType(T), "invalid type ref", &N, T); 1486 if (auto *F = N.getRawFile()) 1487 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1488 } 1489 1490 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1491 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1492 N.getTag() == dwarf::DW_TAG_imported_declaration, 1493 "invalid tag", &N); 1494 if (auto *S = N.getRawScope()) 1495 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1496 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1497 N.getRawEntity()); 1498 } 1499 1500 void Verifier::visitComdat(const Comdat &C) { 1501 // In COFF the Module is invalid if the GlobalValue has private linkage. 1502 // Entities with private linkage don't have entries in the symbol table. 1503 if (TT.isOSBinFormatCOFF()) 1504 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1505 Assert(!GV->hasPrivateLinkage(), 1506 "comdat global value has private linkage", GV); 1507 } 1508 1509 void Verifier::visitModuleIdents() { 1510 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1511 if (!Idents) 1512 return; 1513 1514 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1515 // Scan each llvm.ident entry and make sure that this requirement is met. 1516 for (const MDNode *N : Idents->operands()) { 1517 Assert(N->getNumOperands() == 1, 1518 "incorrect number of operands in llvm.ident metadata", N); 1519 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1520 ("invalid value for llvm.ident metadata entry operand" 1521 "(the operand should be a string)"), 1522 N->getOperand(0)); 1523 } 1524 } 1525 1526 void Verifier::visitModuleCommandLines() { 1527 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1528 if (!CommandLines) 1529 return; 1530 1531 // llvm.commandline takes a list of metadata entry. Each entry has only one 1532 // string. Scan each llvm.commandline entry and make sure that this 1533 // requirement is met. 1534 for (const MDNode *N : CommandLines->operands()) { 1535 Assert(N->getNumOperands() == 1, 1536 "incorrect number of operands in llvm.commandline metadata", N); 1537 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1538 ("invalid value for llvm.commandline metadata entry operand" 1539 "(the operand should be a string)"), 1540 N->getOperand(0)); 1541 } 1542 } 1543 1544 void Verifier::visitModuleFlags() { 1545 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1546 if (!Flags) return; 1547 1548 // Scan each flag, and track the flags and requirements. 1549 DenseMap<const MDString*, const MDNode*> SeenIDs; 1550 SmallVector<const MDNode*, 16> Requirements; 1551 for (const MDNode *MDN : Flags->operands()) 1552 visitModuleFlag(MDN, SeenIDs, Requirements); 1553 1554 // Validate that the requirements in the module are valid. 1555 for (const MDNode *Requirement : Requirements) { 1556 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1557 const Metadata *ReqValue = Requirement->getOperand(1); 1558 1559 const MDNode *Op = SeenIDs.lookup(Flag); 1560 if (!Op) { 1561 CheckFailed("invalid requirement on flag, flag is not present in module", 1562 Flag); 1563 continue; 1564 } 1565 1566 if (Op->getOperand(2) != ReqValue) { 1567 CheckFailed(("invalid requirement on flag, " 1568 "flag does not have the required value"), 1569 Flag); 1570 continue; 1571 } 1572 } 1573 } 1574 1575 void 1576 Verifier::visitModuleFlag(const MDNode *Op, 1577 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1578 SmallVectorImpl<const MDNode *> &Requirements) { 1579 // Each module flag should have three arguments, the merge behavior (a 1580 // constant int), the flag ID (an MDString), and the value. 1581 Assert(Op->getNumOperands() == 3, 1582 "incorrect number of operands in module flag", Op); 1583 Module::ModFlagBehavior MFB; 1584 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1585 Assert( 1586 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1587 "invalid behavior operand in module flag (expected constant integer)", 1588 Op->getOperand(0)); 1589 Assert(false, 1590 "invalid behavior operand in module flag (unexpected constant)", 1591 Op->getOperand(0)); 1592 } 1593 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1594 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1595 Op->getOperand(1)); 1596 1597 // Check the values for behaviors with additional requirements. 1598 switch (MFB) { 1599 case Module::Error: 1600 case Module::Warning: 1601 case Module::Override: 1602 // These behavior types accept any value. 1603 break; 1604 1605 case Module::Max: { 1606 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1607 "invalid value for 'max' module flag (expected constant integer)", 1608 Op->getOperand(2)); 1609 break; 1610 } 1611 1612 case Module::Require: { 1613 // The value should itself be an MDNode with two operands, a flag ID (an 1614 // MDString), and a value. 1615 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1616 Assert(Value && Value->getNumOperands() == 2, 1617 "invalid value for 'require' module flag (expected metadata pair)", 1618 Op->getOperand(2)); 1619 Assert(isa<MDString>(Value->getOperand(0)), 1620 ("invalid value for 'require' module flag " 1621 "(first value operand should be a string)"), 1622 Value->getOperand(0)); 1623 1624 // Append it to the list of requirements, to check once all module flags are 1625 // scanned. 1626 Requirements.push_back(Value); 1627 break; 1628 } 1629 1630 case Module::Append: 1631 case Module::AppendUnique: { 1632 // These behavior types require the operand be an MDNode. 1633 Assert(isa<MDNode>(Op->getOperand(2)), 1634 "invalid value for 'append'-type module flag " 1635 "(expected a metadata node)", 1636 Op->getOperand(2)); 1637 break; 1638 } 1639 } 1640 1641 // Unless this is a "requires" flag, check the ID is unique. 1642 if (MFB != Module::Require) { 1643 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1644 Assert(Inserted, 1645 "module flag identifiers must be unique (or of 'require' type)", ID); 1646 } 1647 1648 if (ID->getString() == "wchar_size") { 1649 ConstantInt *Value 1650 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1651 Assert(Value, "wchar_size metadata requires constant integer argument"); 1652 } 1653 1654 if (ID->getString() == "Linker Options") { 1655 // If the llvm.linker.options named metadata exists, we assume that the 1656 // bitcode reader has upgraded the module flag. Otherwise the flag might 1657 // have been created by a client directly. 1658 Assert(M.getNamedMetadata("llvm.linker.options"), 1659 "'Linker Options' named metadata no longer supported"); 1660 } 1661 1662 if (ID->getString() == "SemanticInterposition") { 1663 ConstantInt *Value = 1664 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1665 Assert(Value, 1666 "SemanticInterposition metadata requires constant integer argument"); 1667 } 1668 1669 if (ID->getString() == "CG Profile") { 1670 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1671 visitModuleFlagCGProfileEntry(MDO); 1672 } 1673 } 1674 1675 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1676 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1677 if (!FuncMDO) 1678 return; 1679 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1680 Assert(F && isa<Function>(F->getValue()->stripPointerCasts()), 1681 "expected a Function or null", FuncMDO); 1682 }; 1683 auto Node = dyn_cast_or_null<MDNode>(MDO); 1684 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1685 CheckFunction(Node->getOperand(0)); 1686 CheckFunction(Node->getOperand(1)); 1687 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1688 Assert(Count && Count->getType()->isIntegerTy(), 1689 "expected an integer constant", Node->getOperand(2)); 1690 } 1691 1692 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) { 1693 for (Attribute A : Attrs) { 1694 1695 if (A.isStringAttribute()) { 1696 #define GET_ATTR_NAMES 1697 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) 1698 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \ 1699 if (A.getKindAsString() == #DISPLAY_NAME) { \ 1700 auto V = A.getValueAsString(); \ 1701 if (!(V.empty() || V == "true" || V == "false")) \ 1702 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \ 1703 ""); \ 1704 } 1705 1706 #include "llvm/IR/Attributes.inc" 1707 continue; 1708 } 1709 1710 if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) { 1711 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", 1712 V); 1713 return; 1714 } 1715 } 1716 } 1717 1718 // VerifyParameterAttrs - Check the given attributes for an argument or return 1719 // value of the specified type. The value V is printed in error messages. 1720 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1721 const Value *V) { 1722 if (!Attrs.hasAttributes()) 1723 return; 1724 1725 verifyAttributeTypes(Attrs, V); 1726 1727 for (Attribute Attr : Attrs) 1728 Assert(Attr.isStringAttribute() || 1729 Attribute::canUseAsParamAttr(Attr.getKindAsEnum()), 1730 "Attribute '" + Attr.getAsString() + 1731 "' does not apply to parameters", 1732 V); 1733 1734 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1735 Assert(Attrs.getNumAttributes() == 1, 1736 "Attribute 'immarg' is incompatible with other attributes", V); 1737 } 1738 1739 // Check for mutually incompatible attributes. Only inreg is compatible with 1740 // sret. 1741 unsigned AttrCount = 0; 1742 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1743 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1744 AttrCount += Attrs.hasAttribute(Attribute::Preallocated); 1745 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1746 Attrs.hasAttribute(Attribute::InReg); 1747 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1748 AttrCount += Attrs.hasAttribute(Attribute::ByRef); 1749 Assert(AttrCount <= 1, 1750 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " 1751 "'byref', and 'sret' are incompatible!", 1752 V); 1753 1754 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1755 Attrs.hasAttribute(Attribute::ReadOnly)), 1756 "Attributes " 1757 "'inalloca and readonly' are incompatible!", 1758 V); 1759 1760 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1761 Attrs.hasAttribute(Attribute::Returned)), 1762 "Attributes " 1763 "'sret and returned' are incompatible!", 1764 V); 1765 1766 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1767 Attrs.hasAttribute(Attribute::SExt)), 1768 "Attributes " 1769 "'zeroext and signext' are incompatible!", 1770 V); 1771 1772 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1773 Attrs.hasAttribute(Attribute::ReadOnly)), 1774 "Attributes " 1775 "'readnone and readonly' are incompatible!", 1776 V); 1777 1778 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1779 Attrs.hasAttribute(Attribute::WriteOnly)), 1780 "Attributes " 1781 "'readnone and writeonly' are incompatible!", 1782 V); 1783 1784 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1785 Attrs.hasAttribute(Attribute::WriteOnly)), 1786 "Attributes " 1787 "'readonly and writeonly' are incompatible!", 1788 V); 1789 1790 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1791 Attrs.hasAttribute(Attribute::AlwaysInline)), 1792 "Attributes " 1793 "'noinline and alwaysinline' are incompatible!", 1794 V); 1795 1796 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1797 for (Attribute Attr : Attrs) { 1798 if (!Attr.isStringAttribute() && 1799 IncompatibleAttrs.contains(Attr.getKindAsEnum())) { 1800 CheckFailed("Attribute '" + Attr.getAsString() + 1801 "' applied to incompatible type!", V); 1802 return; 1803 } 1804 } 1805 1806 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1807 if (Attrs.hasAttribute(Attribute::ByVal)) { 1808 SmallPtrSet<Type *, 4> Visited; 1809 Assert(Attrs.getByValType()->isSized(&Visited), 1810 "Attribute 'byval' does not support unsized types!", V); 1811 } 1812 if (Attrs.hasAttribute(Attribute::ByRef)) { 1813 SmallPtrSet<Type *, 4> Visited; 1814 Assert(Attrs.getByRefType()->isSized(&Visited), 1815 "Attribute 'byref' does not support unsized types!", V); 1816 } 1817 if (Attrs.hasAttribute(Attribute::InAlloca)) { 1818 SmallPtrSet<Type *, 4> Visited; 1819 Assert(Attrs.getInAllocaType()->isSized(&Visited), 1820 "Attribute 'inalloca' does not support unsized types!", V); 1821 } 1822 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1823 SmallPtrSet<Type *, 4> Visited; 1824 Assert(Attrs.getPreallocatedType()->isSized(&Visited), 1825 "Attribute 'preallocated' does not support unsized types!", V); 1826 } 1827 if (!PTy->isOpaque()) { 1828 if (!isa<PointerType>(PTy->getNonOpaquePointerElementType())) 1829 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1830 "Attribute 'swifterror' only applies to parameters " 1831 "with pointer to pointer type!", 1832 V); 1833 if (Attrs.hasAttribute(Attribute::ByRef)) { 1834 Assert(Attrs.getByRefType() == PTy->getNonOpaquePointerElementType(), 1835 "Attribute 'byref' type does not match parameter!", V); 1836 } 1837 1838 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1839 Assert(Attrs.getByValType() == PTy->getNonOpaquePointerElementType(), 1840 "Attribute 'byval' type does not match parameter!", V); 1841 } 1842 1843 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1844 Assert(Attrs.getPreallocatedType() == 1845 PTy->getNonOpaquePointerElementType(), 1846 "Attribute 'preallocated' type does not match parameter!", V); 1847 } 1848 1849 if (Attrs.hasAttribute(Attribute::InAlloca)) { 1850 Assert(Attrs.getInAllocaType() == PTy->getNonOpaquePointerElementType(), 1851 "Attribute 'inalloca' type does not match parameter!", V); 1852 } 1853 1854 if (Attrs.hasAttribute(Attribute::ElementType)) { 1855 Assert(Attrs.getElementType() == PTy->getNonOpaquePointerElementType(), 1856 "Attribute 'elementtype' type does not match parameter!", V); 1857 } 1858 } 1859 } 1860 } 1861 1862 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 1863 const Value *V) { 1864 if (Attrs.hasFnAttr(Attr)) { 1865 StringRef S = Attrs.getFnAttr(Attr).getValueAsString(); 1866 unsigned N; 1867 if (S.getAsInteger(10, N)) 1868 CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V); 1869 } 1870 } 1871 1872 // Check parameter attributes against a function type. 1873 // The value V is printed in error messages. 1874 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1875 const Value *V, bool IsIntrinsic, 1876 bool IsInlineAsm) { 1877 if (Attrs.isEmpty()) 1878 return; 1879 1880 if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) { 1881 Assert(Attrs.hasParentContext(Context), 1882 "Attribute list does not match Module context!", &Attrs, V); 1883 for (const auto &AttrSet : Attrs) { 1884 Assert(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context), 1885 "Attribute set does not match Module context!", &AttrSet, V); 1886 for (const auto &A : AttrSet) { 1887 Assert(A.hasParentContext(Context), 1888 "Attribute does not match Module context!", &A, V); 1889 } 1890 } 1891 } 1892 1893 bool SawNest = false; 1894 bool SawReturned = false; 1895 bool SawSRet = false; 1896 bool SawSwiftSelf = false; 1897 bool SawSwiftAsync = false; 1898 bool SawSwiftError = false; 1899 1900 // Verify return value attributes. 1901 AttributeSet RetAttrs = Attrs.getRetAttrs(); 1902 for (Attribute RetAttr : RetAttrs) 1903 Assert(RetAttr.isStringAttribute() || 1904 Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()), 1905 "Attribute '" + RetAttr.getAsString() + 1906 "' does not apply to function return values", 1907 V); 1908 1909 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1910 1911 // Verify parameter attributes. 1912 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1913 Type *Ty = FT->getParamType(i); 1914 AttributeSet ArgAttrs = Attrs.getParamAttrs(i); 1915 1916 if (!IsIntrinsic) { 1917 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1918 "immarg attribute only applies to intrinsics",V); 1919 if (!IsInlineAsm) 1920 Assert(!ArgAttrs.hasAttribute(Attribute::ElementType), 1921 "Attribute 'elementtype' can only be applied to intrinsics" 1922 " and inline asm.", V); 1923 } 1924 1925 verifyParameterAttrs(ArgAttrs, Ty, V); 1926 1927 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1928 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1929 SawNest = true; 1930 } 1931 1932 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1933 Assert(!SawReturned, "More than one parameter has attribute returned!", 1934 V); 1935 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1936 "Incompatible argument and return types for 'returned' attribute", 1937 V); 1938 SawReturned = true; 1939 } 1940 1941 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1942 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1943 Assert(i == 0 || i == 1, 1944 "Attribute 'sret' is not on first or second parameter!", V); 1945 SawSRet = true; 1946 } 1947 1948 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1949 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1950 SawSwiftSelf = true; 1951 } 1952 1953 if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) { 1954 Assert(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V); 1955 SawSwiftAsync = true; 1956 } 1957 1958 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1959 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1960 V); 1961 SawSwiftError = true; 1962 } 1963 1964 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1965 Assert(i == FT->getNumParams() - 1, 1966 "inalloca isn't on the last parameter!", V); 1967 } 1968 } 1969 1970 if (!Attrs.hasFnAttrs()) 1971 return; 1972 1973 verifyAttributeTypes(Attrs.getFnAttrs(), V); 1974 for (Attribute FnAttr : Attrs.getFnAttrs()) 1975 Assert(FnAttr.isStringAttribute() || 1976 Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()), 1977 "Attribute '" + FnAttr.getAsString() + 1978 "' does not apply to functions!", 1979 V); 1980 1981 Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 1982 Attrs.hasFnAttr(Attribute::ReadOnly)), 1983 "Attributes 'readnone and readonly' are incompatible!", V); 1984 1985 Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 1986 Attrs.hasFnAttr(Attribute::WriteOnly)), 1987 "Attributes 'readnone and writeonly' are incompatible!", V); 1988 1989 Assert(!(Attrs.hasFnAttr(Attribute::ReadOnly) && 1990 Attrs.hasFnAttr(Attribute::WriteOnly)), 1991 "Attributes 'readonly and writeonly' are incompatible!", V); 1992 1993 Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 1994 Attrs.hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly)), 1995 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1996 "incompatible!", 1997 V); 1998 1999 Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 2000 Attrs.hasFnAttr(Attribute::InaccessibleMemOnly)), 2001 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 2002 2003 Assert(!(Attrs.hasFnAttr(Attribute::NoInline) && 2004 Attrs.hasFnAttr(Attribute::AlwaysInline)), 2005 "Attributes 'noinline and alwaysinline' are incompatible!", V); 2006 2007 if (Attrs.hasFnAttr(Attribute::OptimizeNone)) { 2008 Assert(Attrs.hasFnAttr(Attribute::NoInline), 2009 "Attribute 'optnone' requires 'noinline'!", V); 2010 2011 Assert(!Attrs.hasFnAttr(Attribute::OptimizeForSize), 2012 "Attributes 'optsize and optnone' are incompatible!", V); 2013 2014 Assert(!Attrs.hasFnAttr(Attribute::MinSize), 2015 "Attributes 'minsize and optnone' are incompatible!", V); 2016 } 2017 2018 if (Attrs.hasFnAttr(Attribute::JumpTable)) { 2019 const GlobalValue *GV = cast<GlobalValue>(V); 2020 Assert(GV->hasGlobalUnnamedAddr(), 2021 "Attribute 'jumptable' requires 'unnamed_addr'", V); 2022 } 2023 2024 if (Attrs.hasFnAttr(Attribute::AllocSize)) { 2025 std::pair<unsigned, Optional<unsigned>> Args = 2026 Attrs.getFnAttrs().getAllocSizeArgs(); 2027 2028 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 2029 if (ParamNo >= FT->getNumParams()) { 2030 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 2031 return false; 2032 } 2033 2034 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 2035 CheckFailed("'allocsize' " + Name + 2036 " argument must refer to an integer parameter", 2037 V); 2038 return false; 2039 } 2040 2041 return true; 2042 }; 2043 2044 if (!CheckParam("element size", Args.first)) 2045 return; 2046 2047 if (Args.second && !CheckParam("number of elements", *Args.second)) 2048 return; 2049 } 2050 2051 if (Attrs.hasFnAttr(Attribute::VScaleRange)) { 2052 unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin(); 2053 if (VScaleMin == 0) 2054 CheckFailed("'vscale_range' minimum must be greater than 0", V); 2055 2056 Optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax(); 2057 if (VScaleMax && VScaleMin > VScaleMax) 2058 CheckFailed("'vscale_range' minimum cannot be greater than maximum", V); 2059 } 2060 2061 if (Attrs.hasFnAttr("frame-pointer")) { 2062 StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString(); 2063 if (FP != "all" && FP != "non-leaf" && FP != "none") 2064 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 2065 } 2066 2067 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V); 2068 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V); 2069 checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V); 2070 } 2071 2072 void Verifier::verifyFunctionMetadata( 2073 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 2074 for (const auto &Pair : MDs) { 2075 if (Pair.first == LLVMContext::MD_prof) { 2076 MDNode *MD = Pair.second; 2077 Assert(MD->getNumOperands() >= 2, 2078 "!prof annotations should have no less than 2 operands", MD); 2079 2080 // Check first operand. 2081 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 2082 MD); 2083 Assert(isa<MDString>(MD->getOperand(0)), 2084 "expected string with name of the !prof annotation", MD); 2085 MDString *MDS = cast<MDString>(MD->getOperand(0)); 2086 StringRef ProfName = MDS->getString(); 2087 Assert(ProfName.equals("function_entry_count") || 2088 ProfName.equals("synthetic_function_entry_count"), 2089 "first operand should be 'function_entry_count'" 2090 " or 'synthetic_function_entry_count'", 2091 MD); 2092 2093 // Check second operand. 2094 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 2095 MD); 2096 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 2097 "expected integer argument to function_entry_count", MD); 2098 } 2099 } 2100 } 2101 2102 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 2103 if (!ConstantExprVisited.insert(EntryC).second) 2104 return; 2105 2106 SmallVector<const Constant *, 16> Stack; 2107 Stack.push_back(EntryC); 2108 2109 while (!Stack.empty()) { 2110 const Constant *C = Stack.pop_back_val(); 2111 2112 // Check this constant expression. 2113 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 2114 visitConstantExpr(CE); 2115 2116 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 2117 // Global Values get visited separately, but we do need to make sure 2118 // that the global value is in the correct module 2119 Assert(GV->getParent() == &M, "Referencing global in another module!", 2120 EntryC, &M, GV, GV->getParent()); 2121 continue; 2122 } 2123 2124 // Visit all sub-expressions. 2125 for (const Use &U : C->operands()) { 2126 const auto *OpC = dyn_cast<Constant>(U); 2127 if (!OpC) 2128 continue; 2129 if (!ConstantExprVisited.insert(OpC).second) 2130 continue; 2131 Stack.push_back(OpC); 2132 } 2133 } 2134 } 2135 2136 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 2137 if (CE->getOpcode() == Instruction::BitCast) 2138 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 2139 CE->getType()), 2140 "Invalid bitcast", CE); 2141 } 2142 2143 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 2144 // There shouldn't be more attribute sets than there are parameters plus the 2145 // function and return value. 2146 return Attrs.getNumAttrSets() <= Params + 2; 2147 } 2148 2149 void Verifier::verifyInlineAsmCall(const CallBase &Call) { 2150 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 2151 unsigned ArgNo = 0; 2152 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2153 // Only deal with constraints that correspond to call arguments. 2154 if (!CI.hasArg()) 2155 continue; 2156 2157 if (CI.isIndirect) { 2158 const Value *Arg = Call.getArgOperand(ArgNo); 2159 Assert(Arg->getType()->isPointerTy(), 2160 "Operand for indirect constraint must have pointer type", 2161 &Call); 2162 2163 Assert(Call.getAttributes().getParamElementType(ArgNo), 2164 "Operand for indirect constraint must have elementtype attribute", 2165 &Call); 2166 } else { 2167 Assert(!Call.paramHasAttr(ArgNo, Attribute::ElementType), 2168 "Elementtype attribute can only be applied for indirect " 2169 "constraints", &Call); 2170 } 2171 2172 ArgNo++; 2173 } 2174 } 2175 2176 /// Verify that statepoint intrinsic is well formed. 2177 void Verifier::verifyStatepoint(const CallBase &Call) { 2178 assert(Call.getCalledFunction() && 2179 Call.getCalledFunction()->getIntrinsicID() == 2180 Intrinsic::experimental_gc_statepoint); 2181 2182 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 2183 !Call.onlyAccessesArgMemory(), 2184 "gc.statepoint must read and write all memory to preserve " 2185 "reordering restrictions required by safepoint semantics", 2186 Call); 2187 2188 const int64_t NumPatchBytes = 2189 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 2190 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 2191 Assert(NumPatchBytes >= 0, 2192 "gc.statepoint number of patchable bytes must be " 2193 "positive", 2194 Call); 2195 2196 Type *TargetElemType = Call.getAttributes().getParamElementType(2); 2197 Assert(TargetElemType, 2198 "gc.statepoint callee argument must have elementtype attribute", Call); 2199 FunctionType *TargetFuncType = dyn_cast<FunctionType>(TargetElemType); 2200 Assert(TargetFuncType, 2201 "gc.statepoint callee elementtype must be function type", Call); 2202 2203 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 2204 Assert(NumCallArgs >= 0, 2205 "gc.statepoint number of arguments to underlying call " 2206 "must be positive", 2207 Call); 2208 const int NumParams = (int)TargetFuncType->getNumParams(); 2209 if (TargetFuncType->isVarArg()) { 2210 Assert(NumCallArgs >= NumParams, 2211 "gc.statepoint mismatch in number of vararg call args", Call); 2212 2213 // TODO: Remove this limitation 2214 Assert(TargetFuncType->getReturnType()->isVoidTy(), 2215 "gc.statepoint doesn't support wrapping non-void " 2216 "vararg functions yet", 2217 Call); 2218 } else 2219 Assert(NumCallArgs == NumParams, 2220 "gc.statepoint mismatch in number of call args", Call); 2221 2222 const uint64_t Flags 2223 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 2224 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 2225 "unknown flag used in gc.statepoint flags argument", Call); 2226 2227 // Verify that the types of the call parameter arguments match 2228 // the type of the wrapped callee. 2229 AttributeList Attrs = Call.getAttributes(); 2230 for (int i = 0; i < NumParams; i++) { 2231 Type *ParamType = TargetFuncType->getParamType(i); 2232 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 2233 Assert(ArgType == ParamType, 2234 "gc.statepoint call argument does not match wrapped " 2235 "function type", 2236 Call); 2237 2238 if (TargetFuncType->isVarArg()) { 2239 AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i); 2240 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2241 "Attribute 'sret' cannot be used for vararg call arguments!", 2242 Call); 2243 } 2244 } 2245 2246 const int EndCallArgsInx = 4 + NumCallArgs; 2247 2248 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2249 Assert(isa<ConstantInt>(NumTransitionArgsV), 2250 "gc.statepoint number of transition arguments " 2251 "must be constant integer", 2252 Call); 2253 const int NumTransitionArgs = 2254 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2255 Assert(NumTransitionArgs == 0, 2256 "gc.statepoint w/inline transition bundle is deprecated", Call); 2257 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2258 2259 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2260 Assert(isa<ConstantInt>(NumDeoptArgsV), 2261 "gc.statepoint number of deoptimization arguments " 2262 "must be constant integer", 2263 Call); 2264 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2265 Assert(NumDeoptArgs == 0, 2266 "gc.statepoint w/inline deopt operands is deprecated", Call); 2267 2268 const int ExpectedNumArgs = 7 + NumCallArgs; 2269 Assert(ExpectedNumArgs == (int)Call.arg_size(), 2270 "gc.statepoint too many arguments", Call); 2271 2272 // Check that the only uses of this gc.statepoint are gc.result or 2273 // gc.relocate calls which are tied to this statepoint and thus part 2274 // of the same statepoint sequence 2275 for (const User *U : Call.users()) { 2276 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2277 Assert(UserCall, "illegal use of statepoint token", Call, U); 2278 if (!UserCall) 2279 continue; 2280 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2281 "gc.result or gc.relocate are the only value uses " 2282 "of a gc.statepoint", 2283 Call, U); 2284 if (isa<GCResultInst>(UserCall)) { 2285 Assert(UserCall->getArgOperand(0) == &Call, 2286 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2287 } else if (isa<GCRelocateInst>(Call)) { 2288 Assert(UserCall->getArgOperand(0) == &Call, 2289 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2290 } 2291 } 2292 2293 // Note: It is legal for a single derived pointer to be listed multiple 2294 // times. It's non-optimal, but it is legal. It can also happen after 2295 // insertion if we strip a bitcast away. 2296 // Note: It is really tempting to check that each base is relocated and 2297 // that a derived pointer is never reused as a base pointer. This turns 2298 // out to be problematic since optimizations run after safepoint insertion 2299 // can recognize equality properties that the insertion logic doesn't know 2300 // about. See example statepoint.ll in the verifier subdirectory 2301 } 2302 2303 void Verifier::verifyFrameRecoverIndices() { 2304 for (auto &Counts : FrameEscapeInfo) { 2305 Function *F = Counts.first; 2306 unsigned EscapedObjectCount = Counts.second.first; 2307 unsigned MaxRecoveredIndex = Counts.second.second; 2308 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2309 "all indices passed to llvm.localrecover must be less than the " 2310 "number of arguments passed to llvm.localescape in the parent " 2311 "function", 2312 F); 2313 } 2314 } 2315 2316 static Instruction *getSuccPad(Instruction *Terminator) { 2317 BasicBlock *UnwindDest; 2318 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2319 UnwindDest = II->getUnwindDest(); 2320 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2321 UnwindDest = CSI->getUnwindDest(); 2322 else 2323 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2324 return UnwindDest->getFirstNonPHI(); 2325 } 2326 2327 void Verifier::verifySiblingFuncletUnwinds() { 2328 SmallPtrSet<Instruction *, 8> Visited; 2329 SmallPtrSet<Instruction *, 8> Active; 2330 for (const auto &Pair : SiblingFuncletInfo) { 2331 Instruction *PredPad = Pair.first; 2332 if (Visited.count(PredPad)) 2333 continue; 2334 Active.insert(PredPad); 2335 Instruction *Terminator = Pair.second; 2336 do { 2337 Instruction *SuccPad = getSuccPad(Terminator); 2338 if (Active.count(SuccPad)) { 2339 // Found a cycle; report error 2340 Instruction *CyclePad = SuccPad; 2341 SmallVector<Instruction *, 8> CycleNodes; 2342 do { 2343 CycleNodes.push_back(CyclePad); 2344 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2345 if (CycleTerminator != CyclePad) 2346 CycleNodes.push_back(CycleTerminator); 2347 CyclePad = getSuccPad(CycleTerminator); 2348 } while (CyclePad != SuccPad); 2349 Assert(false, "EH pads can't handle each other's exceptions", 2350 ArrayRef<Instruction *>(CycleNodes)); 2351 } 2352 // Don't re-walk a node we've already checked 2353 if (!Visited.insert(SuccPad).second) 2354 break; 2355 // Walk to this successor if it has a map entry. 2356 PredPad = SuccPad; 2357 auto TermI = SiblingFuncletInfo.find(PredPad); 2358 if (TermI == SiblingFuncletInfo.end()) 2359 break; 2360 Terminator = TermI->second; 2361 Active.insert(PredPad); 2362 } while (true); 2363 // Each node only has one successor, so we've walked all the active 2364 // nodes' successors. 2365 Active.clear(); 2366 } 2367 } 2368 2369 // visitFunction - Verify that a function is ok. 2370 // 2371 void Verifier::visitFunction(const Function &F) { 2372 visitGlobalValue(F); 2373 2374 // Check function arguments. 2375 FunctionType *FT = F.getFunctionType(); 2376 unsigned NumArgs = F.arg_size(); 2377 2378 Assert(&Context == &F.getContext(), 2379 "Function context does not match Module context!", &F); 2380 2381 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2382 Assert(FT->getNumParams() == NumArgs, 2383 "# formal arguments must match # of arguments for function type!", &F, 2384 FT); 2385 Assert(F.getReturnType()->isFirstClassType() || 2386 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2387 "Functions cannot return aggregate values!", &F); 2388 2389 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2390 "Invalid struct return type!", &F); 2391 2392 AttributeList Attrs = F.getAttributes(); 2393 2394 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2395 "Attribute after last parameter!", &F); 2396 2397 bool IsIntrinsic = F.isIntrinsic(); 2398 2399 // Check function attributes. 2400 verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic, /* IsInlineAsm */ false); 2401 2402 // On function declarations/definitions, we do not support the builtin 2403 // attribute. We do not check this in VerifyFunctionAttrs since that is 2404 // checking for Attributes that can/can not ever be on functions. 2405 Assert(!Attrs.hasFnAttr(Attribute::Builtin), 2406 "Attribute 'builtin' can only be applied to a callsite.", &F); 2407 2408 Assert(!Attrs.hasAttrSomewhere(Attribute::ElementType), 2409 "Attribute 'elementtype' can only be applied to a callsite.", &F); 2410 2411 // Check that this function meets the restrictions on this calling convention. 2412 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2413 // restrictions can be lifted. 2414 switch (F.getCallingConv()) { 2415 default: 2416 case CallingConv::C: 2417 break; 2418 case CallingConv::X86_INTR: { 2419 Assert(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal), 2420 "Calling convention parameter requires byval", &F); 2421 break; 2422 } 2423 case CallingConv::AMDGPU_KERNEL: 2424 case CallingConv::SPIR_KERNEL: 2425 Assert(F.getReturnType()->isVoidTy(), 2426 "Calling convention requires void return type", &F); 2427 LLVM_FALLTHROUGH; 2428 case CallingConv::AMDGPU_VS: 2429 case CallingConv::AMDGPU_HS: 2430 case CallingConv::AMDGPU_GS: 2431 case CallingConv::AMDGPU_PS: 2432 case CallingConv::AMDGPU_CS: 2433 Assert(!F.hasStructRetAttr(), 2434 "Calling convention does not allow sret", &F); 2435 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) { 2436 const unsigned StackAS = DL.getAllocaAddrSpace(); 2437 unsigned i = 0; 2438 for (const Argument &Arg : F.args()) { 2439 Assert(!Attrs.hasParamAttr(i, Attribute::ByVal), 2440 "Calling convention disallows byval", &F); 2441 Assert(!Attrs.hasParamAttr(i, Attribute::Preallocated), 2442 "Calling convention disallows preallocated", &F); 2443 Assert(!Attrs.hasParamAttr(i, Attribute::InAlloca), 2444 "Calling convention disallows inalloca", &F); 2445 2446 if (Attrs.hasParamAttr(i, Attribute::ByRef)) { 2447 // FIXME: Should also disallow LDS and GDS, but we don't have the enum 2448 // value here. 2449 Assert(Arg.getType()->getPointerAddressSpace() != StackAS, 2450 "Calling convention disallows stack byref", &F); 2451 } 2452 2453 ++i; 2454 } 2455 } 2456 2457 LLVM_FALLTHROUGH; 2458 case CallingConv::Fast: 2459 case CallingConv::Cold: 2460 case CallingConv::Intel_OCL_BI: 2461 case CallingConv::PTX_Kernel: 2462 case CallingConv::PTX_Device: 2463 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2464 "perfect forwarding!", 2465 &F); 2466 break; 2467 } 2468 2469 // Check that the argument values match the function type for this function... 2470 unsigned i = 0; 2471 for (const Argument &Arg : F.args()) { 2472 Assert(Arg.getType() == FT->getParamType(i), 2473 "Argument value does not match function argument type!", &Arg, 2474 FT->getParamType(i)); 2475 Assert(Arg.getType()->isFirstClassType(), 2476 "Function arguments must have first-class types!", &Arg); 2477 if (!IsIntrinsic) { 2478 Assert(!Arg.getType()->isMetadataTy(), 2479 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2480 Assert(!Arg.getType()->isTokenTy(), 2481 "Function takes token but isn't an intrinsic", &Arg, &F); 2482 Assert(!Arg.getType()->isX86_AMXTy(), 2483 "Function takes x86_amx but isn't an intrinsic", &Arg, &F); 2484 } 2485 2486 // Check that swifterror argument is only used by loads and stores. 2487 if (Attrs.hasParamAttr(i, Attribute::SwiftError)) { 2488 verifySwiftErrorValue(&Arg); 2489 } 2490 ++i; 2491 } 2492 2493 if (!IsIntrinsic) { 2494 Assert(!F.getReturnType()->isTokenTy(), 2495 "Function returns a token but isn't an intrinsic", &F); 2496 Assert(!F.getReturnType()->isX86_AMXTy(), 2497 "Function returns a x86_amx but isn't an intrinsic", &F); 2498 } 2499 2500 // Get the function metadata attachments. 2501 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2502 F.getAllMetadata(MDs); 2503 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2504 verifyFunctionMetadata(MDs); 2505 2506 // Check validity of the personality function 2507 if (F.hasPersonalityFn()) { 2508 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2509 if (Per) 2510 Assert(Per->getParent() == F.getParent(), 2511 "Referencing personality function in another module!", 2512 &F, F.getParent(), Per, Per->getParent()); 2513 } 2514 2515 if (F.isMaterializable()) { 2516 // Function has a body somewhere we can't see. 2517 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2518 MDs.empty() ? nullptr : MDs.front().second); 2519 } else if (F.isDeclaration()) { 2520 for (const auto &I : MDs) { 2521 // This is used for call site debug information. 2522 AssertDI(I.first != LLVMContext::MD_dbg || 2523 !cast<DISubprogram>(I.second)->isDistinct(), 2524 "function declaration may only have a unique !dbg attachment", 2525 &F); 2526 Assert(I.first != LLVMContext::MD_prof, 2527 "function declaration may not have a !prof attachment", &F); 2528 2529 // Verify the metadata itself. 2530 visitMDNode(*I.second, AreDebugLocsAllowed::Yes); 2531 } 2532 Assert(!F.hasPersonalityFn(), 2533 "Function declaration shouldn't have a personality routine", &F); 2534 } else { 2535 // Verify that this function (which has a body) is not named "llvm.*". It 2536 // is not legal to define intrinsics. 2537 Assert(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F); 2538 2539 // Check the entry node 2540 const BasicBlock *Entry = &F.getEntryBlock(); 2541 Assert(pred_empty(Entry), 2542 "Entry block to function must not have predecessors!", Entry); 2543 2544 // The address of the entry block cannot be taken, unless it is dead. 2545 if (Entry->hasAddressTaken()) { 2546 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2547 "blockaddress may not be used with the entry block!", Entry); 2548 } 2549 2550 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2551 // Visit metadata attachments. 2552 for (const auto &I : MDs) { 2553 // Verify that the attachment is legal. 2554 auto AllowLocs = AreDebugLocsAllowed::No; 2555 switch (I.first) { 2556 default: 2557 break; 2558 case LLVMContext::MD_dbg: { 2559 ++NumDebugAttachments; 2560 AssertDI(NumDebugAttachments == 1, 2561 "function must have a single !dbg attachment", &F, I.second); 2562 AssertDI(isa<DISubprogram>(I.second), 2563 "function !dbg attachment must be a subprogram", &F, I.second); 2564 AssertDI(cast<DISubprogram>(I.second)->isDistinct(), 2565 "function definition may only have a distinct !dbg attachment", 2566 &F); 2567 2568 auto *SP = cast<DISubprogram>(I.second); 2569 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2570 AssertDI(!AttachedTo || AttachedTo == &F, 2571 "DISubprogram attached to more than one function", SP, &F); 2572 AttachedTo = &F; 2573 AllowLocs = AreDebugLocsAllowed::Yes; 2574 break; 2575 } 2576 case LLVMContext::MD_prof: 2577 ++NumProfAttachments; 2578 Assert(NumProfAttachments == 1, 2579 "function must have a single !prof attachment", &F, I.second); 2580 break; 2581 } 2582 2583 // Verify the metadata itself. 2584 visitMDNode(*I.second, AllowLocs); 2585 } 2586 } 2587 2588 // If this function is actually an intrinsic, verify that it is only used in 2589 // direct call/invokes, never having its "address taken". 2590 // Only do this if the module is materialized, otherwise we don't have all the 2591 // uses. 2592 if (F.isIntrinsic() && F.getParent()->isMaterialized()) { 2593 const User *U; 2594 if (F.hasAddressTaken(&U, false, true, false, 2595 /*IgnoreARCAttachedCall=*/true)) 2596 Assert(false, "Invalid user of intrinsic instruction!", U); 2597 } 2598 2599 // Check intrinsics' signatures. 2600 switch (F.getIntrinsicID()) { 2601 case Intrinsic::experimental_gc_get_pointer_base: { 2602 FunctionType *FT = F.getFunctionType(); 2603 Assert(FT->getNumParams() == 1, "wrong number of parameters", F); 2604 Assert(isa<PointerType>(F.getReturnType()), 2605 "gc.get.pointer.base must return a pointer", F); 2606 Assert(FT->getParamType(0) == F.getReturnType(), 2607 "gc.get.pointer.base operand and result must be of the same type", 2608 F); 2609 break; 2610 } 2611 case Intrinsic::experimental_gc_get_pointer_offset: { 2612 FunctionType *FT = F.getFunctionType(); 2613 Assert(FT->getNumParams() == 1, "wrong number of parameters", F); 2614 Assert(isa<PointerType>(FT->getParamType(0)), 2615 "gc.get.pointer.offset operand must be a pointer", F); 2616 Assert(F.getReturnType()->isIntegerTy(), 2617 "gc.get.pointer.offset must return integer", F); 2618 break; 2619 } 2620 } 2621 2622 auto *N = F.getSubprogram(); 2623 HasDebugInfo = (N != nullptr); 2624 if (!HasDebugInfo) 2625 return; 2626 2627 // Check that all !dbg attachments lead to back to N. 2628 // 2629 // FIXME: Check this incrementally while visiting !dbg attachments. 2630 // FIXME: Only check when N is the canonical subprogram for F. 2631 SmallPtrSet<const MDNode *, 32> Seen; 2632 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2633 // Be careful about using DILocation here since we might be dealing with 2634 // broken code (this is the Verifier after all). 2635 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2636 if (!DL) 2637 return; 2638 if (!Seen.insert(DL).second) 2639 return; 2640 2641 Metadata *Parent = DL->getRawScope(); 2642 AssertDI(Parent && isa<DILocalScope>(Parent), 2643 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2644 Parent); 2645 2646 DILocalScope *Scope = DL->getInlinedAtScope(); 2647 Assert(Scope, "Failed to find DILocalScope", DL); 2648 2649 if (!Seen.insert(Scope).second) 2650 return; 2651 2652 DISubprogram *SP = Scope->getSubprogram(); 2653 2654 // Scope and SP could be the same MDNode and we don't want to skip 2655 // validation in that case 2656 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2657 return; 2658 2659 AssertDI(SP->describes(&F), 2660 "!dbg attachment points at wrong subprogram for function", N, &F, 2661 &I, DL, Scope, SP); 2662 }; 2663 for (auto &BB : F) 2664 for (auto &I : BB) { 2665 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2666 // The llvm.loop annotations also contain two DILocations. 2667 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2668 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2669 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2670 if (BrokenDebugInfo) 2671 return; 2672 } 2673 } 2674 2675 // verifyBasicBlock - Verify that a basic block is well formed... 2676 // 2677 void Verifier::visitBasicBlock(BasicBlock &BB) { 2678 InstsInThisBlock.clear(); 2679 2680 // Ensure that basic blocks have terminators! 2681 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2682 2683 // Check constraints that this basic block imposes on all of the PHI nodes in 2684 // it. 2685 if (isa<PHINode>(BB.front())) { 2686 SmallVector<BasicBlock *, 8> Preds(predecessors(&BB)); 2687 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2688 llvm::sort(Preds); 2689 for (const PHINode &PN : BB.phis()) { 2690 Assert(PN.getNumIncomingValues() == Preds.size(), 2691 "PHINode should have one entry for each predecessor of its " 2692 "parent basic block!", 2693 &PN); 2694 2695 // Get and sort all incoming values in the PHI node... 2696 Values.clear(); 2697 Values.reserve(PN.getNumIncomingValues()); 2698 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2699 Values.push_back( 2700 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2701 llvm::sort(Values); 2702 2703 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2704 // Check to make sure that if there is more than one entry for a 2705 // particular basic block in this PHI node, that the incoming values are 2706 // all identical. 2707 // 2708 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2709 Values[i].second == Values[i - 1].second, 2710 "PHI node has multiple entries for the same basic block with " 2711 "different incoming values!", 2712 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2713 2714 // Check to make sure that the predecessors and PHI node entries are 2715 // matched up. 2716 Assert(Values[i].first == Preds[i], 2717 "PHI node entries do not match predecessors!", &PN, 2718 Values[i].first, Preds[i]); 2719 } 2720 } 2721 } 2722 2723 // Check that all instructions have their parent pointers set up correctly. 2724 for (auto &I : BB) 2725 { 2726 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2727 } 2728 } 2729 2730 void Verifier::visitTerminator(Instruction &I) { 2731 // Ensure that terminators only exist at the end of the basic block. 2732 Assert(&I == I.getParent()->getTerminator(), 2733 "Terminator found in the middle of a basic block!", I.getParent()); 2734 visitInstruction(I); 2735 } 2736 2737 void Verifier::visitBranchInst(BranchInst &BI) { 2738 if (BI.isConditional()) { 2739 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2740 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2741 } 2742 visitTerminator(BI); 2743 } 2744 2745 void Verifier::visitReturnInst(ReturnInst &RI) { 2746 Function *F = RI.getParent()->getParent(); 2747 unsigned N = RI.getNumOperands(); 2748 if (F->getReturnType()->isVoidTy()) 2749 Assert(N == 0, 2750 "Found return instr that returns non-void in Function of void " 2751 "return type!", 2752 &RI, F->getReturnType()); 2753 else 2754 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2755 "Function return type does not match operand " 2756 "type of return inst!", 2757 &RI, F->getReturnType()); 2758 2759 // Check to make sure that the return value has necessary properties for 2760 // terminators... 2761 visitTerminator(RI); 2762 } 2763 2764 void Verifier::visitSwitchInst(SwitchInst &SI) { 2765 Assert(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI); 2766 // Check to make sure that all of the constants in the switch instruction 2767 // have the same type as the switched-on value. 2768 Type *SwitchTy = SI.getCondition()->getType(); 2769 SmallPtrSet<ConstantInt*, 32> Constants; 2770 for (auto &Case : SI.cases()) { 2771 Assert(Case.getCaseValue()->getType() == SwitchTy, 2772 "Switch constants must all be same type as switch value!", &SI); 2773 Assert(Constants.insert(Case.getCaseValue()).second, 2774 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2775 } 2776 2777 visitTerminator(SI); 2778 } 2779 2780 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2781 Assert(BI.getAddress()->getType()->isPointerTy(), 2782 "Indirectbr operand must have pointer type!", &BI); 2783 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2784 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2785 "Indirectbr destinations must all have pointer type!", &BI); 2786 2787 visitTerminator(BI); 2788 } 2789 2790 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2791 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2792 &CBI); 2793 const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand()); 2794 Assert(!IA->canThrow(), "Unwinding from Callbr is not allowed"); 2795 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2796 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2797 "Callbr successors must all have pointer type!", &CBI); 2798 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2799 Assert(i >= CBI.arg_size() || !isa<BasicBlock>(CBI.getOperand(i)), 2800 "Using an unescaped label as a callbr argument!", &CBI); 2801 if (isa<BasicBlock>(CBI.getOperand(i))) 2802 for (unsigned j = i + 1; j != e; ++j) 2803 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2804 "Duplicate callbr destination!", &CBI); 2805 } 2806 { 2807 SmallPtrSet<BasicBlock *, 4> ArgBBs; 2808 for (Value *V : CBI.args()) 2809 if (auto *BA = dyn_cast<BlockAddress>(V)) 2810 ArgBBs.insert(BA->getBasicBlock()); 2811 for (BasicBlock *BB : CBI.getIndirectDests()) 2812 Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI); 2813 } 2814 2815 verifyInlineAsmCall(CBI); 2816 visitTerminator(CBI); 2817 } 2818 2819 void Verifier::visitSelectInst(SelectInst &SI) { 2820 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2821 SI.getOperand(2)), 2822 "Invalid operands for select instruction!", &SI); 2823 2824 Assert(SI.getTrueValue()->getType() == SI.getType(), 2825 "Select values must have same type as select instruction!", &SI); 2826 visitInstruction(SI); 2827 } 2828 2829 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2830 /// a pass, if any exist, it's an error. 2831 /// 2832 void Verifier::visitUserOp1(Instruction &I) { 2833 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2834 } 2835 2836 void Verifier::visitTruncInst(TruncInst &I) { 2837 // Get the source and destination types 2838 Type *SrcTy = I.getOperand(0)->getType(); 2839 Type *DestTy = I.getType(); 2840 2841 // Get the size of the types in bits, we'll need this later 2842 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2843 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2844 2845 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2846 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2847 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2848 "trunc source and destination must both be a vector or neither", &I); 2849 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2850 2851 visitInstruction(I); 2852 } 2853 2854 void Verifier::visitZExtInst(ZExtInst &I) { 2855 // Get the source and destination types 2856 Type *SrcTy = I.getOperand(0)->getType(); 2857 Type *DestTy = I.getType(); 2858 2859 // Get the size of the types in bits, we'll need this later 2860 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2861 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2862 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2863 "zext source and destination must both be a vector or neither", &I); 2864 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2865 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2866 2867 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2868 2869 visitInstruction(I); 2870 } 2871 2872 void Verifier::visitSExtInst(SExtInst &I) { 2873 // Get the source and destination types 2874 Type *SrcTy = I.getOperand(0)->getType(); 2875 Type *DestTy = I.getType(); 2876 2877 // Get the size of the types in bits, we'll need this later 2878 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2879 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2880 2881 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2882 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2883 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2884 "sext source and destination must both be a vector or neither", &I); 2885 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2886 2887 visitInstruction(I); 2888 } 2889 2890 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2891 // Get the source and destination types 2892 Type *SrcTy = I.getOperand(0)->getType(); 2893 Type *DestTy = I.getType(); 2894 // Get the size of the types in bits, we'll need this later 2895 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2896 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2897 2898 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2899 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2900 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2901 "fptrunc source and destination must both be a vector or neither", &I); 2902 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2903 2904 visitInstruction(I); 2905 } 2906 2907 void Verifier::visitFPExtInst(FPExtInst &I) { 2908 // Get the source and destination types 2909 Type *SrcTy = I.getOperand(0)->getType(); 2910 Type *DestTy = I.getType(); 2911 2912 // Get the size of the types in bits, we'll need this later 2913 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2914 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2915 2916 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2917 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2918 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2919 "fpext source and destination must both be a vector or neither", &I); 2920 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2921 2922 visitInstruction(I); 2923 } 2924 2925 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2926 // Get the source and destination types 2927 Type *SrcTy = I.getOperand(0)->getType(); 2928 Type *DestTy = I.getType(); 2929 2930 bool SrcVec = SrcTy->isVectorTy(); 2931 bool DstVec = DestTy->isVectorTy(); 2932 2933 Assert(SrcVec == DstVec, 2934 "UIToFP source and dest must both be vector or scalar", &I); 2935 Assert(SrcTy->isIntOrIntVectorTy(), 2936 "UIToFP source must be integer or integer vector", &I); 2937 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2938 &I); 2939 2940 if (SrcVec && DstVec) 2941 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2942 cast<VectorType>(DestTy)->getElementCount(), 2943 "UIToFP source and dest vector length mismatch", &I); 2944 2945 visitInstruction(I); 2946 } 2947 2948 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2949 // Get the source and destination types 2950 Type *SrcTy = I.getOperand(0)->getType(); 2951 Type *DestTy = I.getType(); 2952 2953 bool SrcVec = SrcTy->isVectorTy(); 2954 bool DstVec = DestTy->isVectorTy(); 2955 2956 Assert(SrcVec == DstVec, 2957 "SIToFP source and dest must both be vector or scalar", &I); 2958 Assert(SrcTy->isIntOrIntVectorTy(), 2959 "SIToFP source must be integer or integer vector", &I); 2960 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2961 &I); 2962 2963 if (SrcVec && DstVec) 2964 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2965 cast<VectorType>(DestTy)->getElementCount(), 2966 "SIToFP source and dest vector length mismatch", &I); 2967 2968 visitInstruction(I); 2969 } 2970 2971 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2972 // Get the source and destination types 2973 Type *SrcTy = I.getOperand(0)->getType(); 2974 Type *DestTy = I.getType(); 2975 2976 bool SrcVec = SrcTy->isVectorTy(); 2977 bool DstVec = DestTy->isVectorTy(); 2978 2979 Assert(SrcVec == DstVec, 2980 "FPToUI source and dest must both be vector or scalar", &I); 2981 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2982 &I); 2983 Assert(DestTy->isIntOrIntVectorTy(), 2984 "FPToUI result must be integer or integer vector", &I); 2985 2986 if (SrcVec && DstVec) 2987 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2988 cast<VectorType>(DestTy)->getElementCount(), 2989 "FPToUI source and dest vector length mismatch", &I); 2990 2991 visitInstruction(I); 2992 } 2993 2994 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2995 // Get the source and destination types 2996 Type *SrcTy = I.getOperand(0)->getType(); 2997 Type *DestTy = I.getType(); 2998 2999 bool SrcVec = SrcTy->isVectorTy(); 3000 bool DstVec = DestTy->isVectorTy(); 3001 3002 Assert(SrcVec == DstVec, 3003 "FPToSI source and dest must both be vector or scalar", &I); 3004 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 3005 &I); 3006 Assert(DestTy->isIntOrIntVectorTy(), 3007 "FPToSI result must be integer or integer vector", &I); 3008 3009 if (SrcVec && DstVec) 3010 Assert(cast<VectorType>(SrcTy)->getElementCount() == 3011 cast<VectorType>(DestTy)->getElementCount(), 3012 "FPToSI source and dest vector length mismatch", &I); 3013 3014 visitInstruction(I); 3015 } 3016 3017 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 3018 // Get the source and destination types 3019 Type *SrcTy = I.getOperand(0)->getType(); 3020 Type *DestTy = I.getType(); 3021 3022 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 3023 3024 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 3025 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 3026 &I); 3027 3028 if (SrcTy->isVectorTy()) { 3029 auto *VSrc = cast<VectorType>(SrcTy); 3030 auto *VDest = cast<VectorType>(DestTy); 3031 Assert(VSrc->getElementCount() == VDest->getElementCount(), 3032 "PtrToInt Vector width mismatch", &I); 3033 } 3034 3035 visitInstruction(I); 3036 } 3037 3038 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 3039 // Get the source and destination types 3040 Type *SrcTy = I.getOperand(0)->getType(); 3041 Type *DestTy = I.getType(); 3042 3043 Assert(SrcTy->isIntOrIntVectorTy(), 3044 "IntToPtr source must be an integral", &I); 3045 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 3046 3047 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 3048 &I); 3049 if (SrcTy->isVectorTy()) { 3050 auto *VSrc = cast<VectorType>(SrcTy); 3051 auto *VDest = cast<VectorType>(DestTy); 3052 Assert(VSrc->getElementCount() == VDest->getElementCount(), 3053 "IntToPtr Vector width mismatch", &I); 3054 } 3055 visitInstruction(I); 3056 } 3057 3058 void Verifier::visitBitCastInst(BitCastInst &I) { 3059 Assert( 3060 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 3061 "Invalid bitcast", &I); 3062 visitInstruction(I); 3063 } 3064 3065 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 3066 Type *SrcTy = I.getOperand(0)->getType(); 3067 Type *DestTy = I.getType(); 3068 3069 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 3070 &I); 3071 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 3072 &I); 3073 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 3074 "AddrSpaceCast must be between different address spaces", &I); 3075 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) 3076 Assert(SrcVTy->getElementCount() == 3077 cast<VectorType>(DestTy)->getElementCount(), 3078 "AddrSpaceCast vector pointer number of elements mismatch", &I); 3079 visitInstruction(I); 3080 } 3081 3082 /// visitPHINode - Ensure that a PHI node is well formed. 3083 /// 3084 void Verifier::visitPHINode(PHINode &PN) { 3085 // Ensure that the PHI nodes are all grouped together at the top of the block. 3086 // This can be tested by checking whether the instruction before this is 3087 // either nonexistent (because this is begin()) or is a PHI node. If not, 3088 // then there is some other instruction before a PHI. 3089 Assert(&PN == &PN.getParent()->front() || 3090 isa<PHINode>(--BasicBlock::iterator(&PN)), 3091 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 3092 3093 // Check that a PHI doesn't yield a Token. 3094 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 3095 3096 // Check that all of the values of the PHI node have the same type as the 3097 // result, and that the incoming blocks are really basic blocks. 3098 for (Value *IncValue : PN.incoming_values()) { 3099 Assert(PN.getType() == IncValue->getType(), 3100 "PHI node operands are not the same type as the result!", &PN); 3101 } 3102 3103 // All other PHI node constraints are checked in the visitBasicBlock method. 3104 3105 visitInstruction(PN); 3106 } 3107 3108 void Verifier::visitCallBase(CallBase &Call) { 3109 Assert(Call.getCalledOperand()->getType()->isPointerTy(), 3110 "Called function must be a pointer!", Call); 3111 PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType()); 3112 3113 Assert(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()), 3114 "Called function is not the same type as the call!", Call); 3115 3116 FunctionType *FTy = Call.getFunctionType(); 3117 3118 // Verify that the correct number of arguments are being passed 3119 if (FTy->isVarArg()) 3120 Assert(Call.arg_size() >= FTy->getNumParams(), 3121 "Called function requires more parameters than were provided!", 3122 Call); 3123 else 3124 Assert(Call.arg_size() == FTy->getNumParams(), 3125 "Incorrect number of arguments passed to called function!", Call); 3126 3127 // Verify that all arguments to the call match the function type. 3128 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3129 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 3130 "Call parameter type does not match function signature!", 3131 Call.getArgOperand(i), FTy->getParamType(i), Call); 3132 3133 AttributeList Attrs = Call.getAttributes(); 3134 3135 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 3136 "Attribute after last parameter!", Call); 3137 3138 Function *Callee = 3139 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 3140 bool IsIntrinsic = Callee && Callee->isIntrinsic(); 3141 if (IsIntrinsic) 3142 Assert(Callee->getValueType() == FTy, 3143 "Intrinsic called with incompatible signature", Call); 3144 3145 if (Attrs.hasFnAttr(Attribute::Speculatable)) { 3146 // Don't allow speculatable on call sites, unless the underlying function 3147 // declaration is also speculatable. 3148 Assert(Callee && Callee->isSpeculatable(), 3149 "speculatable attribute may not apply to call sites", Call); 3150 } 3151 3152 if (Attrs.hasFnAttr(Attribute::Preallocated)) { 3153 Assert(Call.getCalledFunction()->getIntrinsicID() == 3154 Intrinsic::call_preallocated_arg, 3155 "preallocated as a call site attribute can only be on " 3156 "llvm.call.preallocated.arg"); 3157 } 3158 3159 // Verify call attributes. 3160 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic, Call.isInlineAsm()); 3161 3162 // Conservatively check the inalloca argument. 3163 // We have a bug if we can find that there is an underlying alloca without 3164 // inalloca. 3165 if (Call.hasInAllocaArgument()) { 3166 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 3167 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 3168 Assert(AI->isUsedWithInAlloca(), 3169 "inalloca argument for call has mismatched alloca", AI, Call); 3170 } 3171 3172 // For each argument of the callsite, if it has the swifterror argument, 3173 // make sure the underlying alloca/parameter it comes from has a swifterror as 3174 // well. 3175 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3176 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 3177 Value *SwiftErrorArg = Call.getArgOperand(i); 3178 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 3179 Assert(AI->isSwiftError(), 3180 "swifterror argument for call has mismatched alloca", AI, Call); 3181 continue; 3182 } 3183 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 3184 Assert(ArgI, 3185 "swifterror argument should come from an alloca or parameter", 3186 SwiftErrorArg, Call); 3187 Assert(ArgI->hasSwiftErrorAttr(), 3188 "swifterror argument for call has mismatched parameter", ArgI, 3189 Call); 3190 } 3191 3192 if (Attrs.hasParamAttr(i, Attribute::ImmArg)) { 3193 // Don't allow immarg on call sites, unless the underlying declaration 3194 // also has the matching immarg. 3195 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 3196 "immarg may not apply only to call sites", 3197 Call.getArgOperand(i), Call); 3198 } 3199 3200 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 3201 Value *ArgVal = Call.getArgOperand(i); 3202 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 3203 "immarg operand has non-immediate parameter", ArgVal, Call); 3204 } 3205 3206 if (Call.paramHasAttr(i, Attribute::Preallocated)) { 3207 Value *ArgVal = Call.getArgOperand(i); 3208 bool hasOB = 3209 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0; 3210 bool isMustTail = Call.isMustTailCall(); 3211 Assert(hasOB != isMustTail, 3212 "preallocated operand either requires a preallocated bundle or " 3213 "the call to be musttail (but not both)", 3214 ArgVal, Call); 3215 } 3216 } 3217 3218 if (FTy->isVarArg()) { 3219 // FIXME? is 'nest' even legal here? 3220 bool SawNest = false; 3221 bool SawReturned = false; 3222 3223 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 3224 if (Attrs.hasParamAttr(Idx, Attribute::Nest)) 3225 SawNest = true; 3226 if (Attrs.hasParamAttr(Idx, Attribute::Returned)) 3227 SawReturned = true; 3228 } 3229 3230 // Check attributes on the varargs part. 3231 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 3232 Type *Ty = Call.getArgOperand(Idx)->getType(); 3233 AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx); 3234 verifyParameterAttrs(ArgAttrs, Ty, &Call); 3235 3236 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 3237 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 3238 SawNest = true; 3239 } 3240 3241 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 3242 Assert(!SawReturned, "More than one parameter has attribute returned!", 3243 Call); 3244 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 3245 "Incompatible argument and return types for 'returned' " 3246 "attribute", 3247 Call); 3248 SawReturned = true; 3249 } 3250 3251 // Statepoint intrinsic is vararg but the wrapped function may be not. 3252 // Allow sret here and check the wrapped function in verifyStatepoint. 3253 if (!Call.getCalledFunction() || 3254 Call.getCalledFunction()->getIntrinsicID() != 3255 Intrinsic::experimental_gc_statepoint) 3256 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 3257 "Attribute 'sret' cannot be used for vararg call arguments!", 3258 Call); 3259 3260 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 3261 Assert(Idx == Call.arg_size() - 1, 3262 "inalloca isn't on the last argument!", Call); 3263 } 3264 } 3265 3266 // Verify that there's no metadata unless it's a direct call to an intrinsic. 3267 if (!IsIntrinsic) { 3268 for (Type *ParamTy : FTy->params()) { 3269 Assert(!ParamTy->isMetadataTy(), 3270 "Function has metadata parameter but isn't an intrinsic", Call); 3271 Assert(!ParamTy->isTokenTy(), 3272 "Function has token parameter but isn't an intrinsic", Call); 3273 } 3274 } 3275 3276 // Verify that indirect calls don't return tokens. 3277 if (!Call.getCalledFunction()) { 3278 Assert(!FTy->getReturnType()->isTokenTy(), 3279 "Return type cannot be token for indirect call!"); 3280 Assert(!FTy->getReturnType()->isX86_AMXTy(), 3281 "Return type cannot be x86_amx for indirect call!"); 3282 } 3283 3284 if (Function *F = Call.getCalledFunction()) 3285 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 3286 visitIntrinsicCall(ID, Call); 3287 3288 // Verify that a callsite has at most one "deopt", at most one "funclet", at 3289 // most one "gc-transition", at most one "cfguardtarget", at most one 3290 // "preallocated" operand bundle, and at most one "ptrauth" operand bundle. 3291 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3292 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, 3293 FoundPreallocatedBundle = false, FoundGCLiveBundle = false, 3294 FoundPtrauthBundle = false, 3295 FoundAttachedCallBundle = false; 3296 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 3297 OperandBundleUse BU = Call.getOperandBundleAt(i); 3298 uint32_t Tag = BU.getTagID(); 3299 if (Tag == LLVMContext::OB_deopt) { 3300 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 3301 FoundDeoptBundle = true; 3302 } else if (Tag == LLVMContext::OB_gc_transition) { 3303 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 3304 Call); 3305 FoundGCTransitionBundle = true; 3306 } else if (Tag == LLVMContext::OB_funclet) { 3307 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 3308 FoundFuncletBundle = true; 3309 Assert(BU.Inputs.size() == 1, 3310 "Expected exactly one funclet bundle operand", Call); 3311 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 3312 "Funclet bundle operands should correspond to a FuncletPadInst", 3313 Call); 3314 } else if (Tag == LLVMContext::OB_cfguardtarget) { 3315 Assert(!FoundCFGuardTargetBundle, 3316 "Multiple CFGuardTarget operand bundles", Call); 3317 FoundCFGuardTargetBundle = true; 3318 Assert(BU.Inputs.size() == 1, 3319 "Expected exactly one cfguardtarget bundle operand", Call); 3320 } else if (Tag == LLVMContext::OB_ptrauth) { 3321 Assert(!FoundPtrauthBundle, "Multiple ptrauth operand bundles", Call); 3322 FoundPtrauthBundle = true; 3323 Assert(BU.Inputs.size() == 2, 3324 "Expected exactly two ptrauth bundle operands", Call); 3325 Assert(isa<ConstantInt>(BU.Inputs[0]) && 3326 BU.Inputs[0]->getType()->isIntegerTy(32), 3327 "Ptrauth bundle key operand must be an i32 constant", Call); 3328 Assert(BU.Inputs[1]->getType()->isIntegerTy(64), 3329 "Ptrauth bundle discriminator operand must be an i64", Call); 3330 } else if (Tag == LLVMContext::OB_preallocated) { 3331 Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles", 3332 Call); 3333 FoundPreallocatedBundle = true; 3334 Assert(BU.Inputs.size() == 1, 3335 "Expected exactly one preallocated bundle operand", Call); 3336 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); 3337 Assert(Input && 3338 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup, 3339 "\"preallocated\" argument must be a token from " 3340 "llvm.call.preallocated.setup", 3341 Call); 3342 } else if (Tag == LLVMContext::OB_gc_live) { 3343 Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles", 3344 Call); 3345 FoundGCLiveBundle = true; 3346 } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) { 3347 Assert(!FoundAttachedCallBundle, 3348 "Multiple \"clang.arc.attachedcall\" operand bundles", Call); 3349 FoundAttachedCallBundle = true; 3350 verifyAttachedCallBundle(Call, BU); 3351 } 3352 } 3353 3354 // Verify that callee and callsite agree on whether to use pointer auth. 3355 Assert(!(Call.getCalledFunction() && FoundPtrauthBundle), 3356 "Direct call cannot have a ptrauth bundle", Call); 3357 3358 // Verify that each inlinable callsite of a debug-info-bearing function in a 3359 // debug-info-bearing function has a debug location attached to it. Failure to 3360 // do so causes assertion failures when the inliner sets up inline scope info. 3361 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3362 Call.getCalledFunction()->getSubprogram()) 3363 AssertDI(Call.getDebugLoc(), 3364 "inlinable function call in a function with " 3365 "debug info must have a !dbg location", 3366 Call); 3367 3368 if (Call.isInlineAsm()) 3369 verifyInlineAsmCall(Call); 3370 3371 visitInstruction(Call); 3372 } 3373 3374 void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, 3375 StringRef Context) { 3376 Assert(!Attrs.contains(Attribute::InAlloca), 3377 Twine("inalloca attribute not allowed in ") + Context); 3378 Assert(!Attrs.contains(Attribute::InReg), 3379 Twine("inreg attribute not allowed in ") + Context); 3380 Assert(!Attrs.contains(Attribute::SwiftError), 3381 Twine("swifterror attribute not allowed in ") + Context); 3382 Assert(!Attrs.contains(Attribute::Preallocated), 3383 Twine("preallocated attribute not allowed in ") + Context); 3384 Assert(!Attrs.contains(Attribute::ByRef), 3385 Twine("byref attribute not allowed in ") + Context); 3386 } 3387 3388 /// Two types are "congruent" if they are identical, or if they are both pointer 3389 /// types with different pointee types and the same address space. 3390 static bool isTypeCongruent(Type *L, Type *R) { 3391 if (L == R) 3392 return true; 3393 PointerType *PL = dyn_cast<PointerType>(L); 3394 PointerType *PR = dyn_cast<PointerType>(R); 3395 if (!PL || !PR) 3396 return false; 3397 return PL->getAddressSpace() == PR->getAddressSpace(); 3398 } 3399 3400 static AttrBuilder getParameterABIAttributes(LLVMContext& C, unsigned I, AttributeList Attrs) { 3401 static const Attribute::AttrKind ABIAttrs[] = { 3402 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3403 Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf, 3404 Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated, 3405 Attribute::ByRef}; 3406 AttrBuilder Copy(C); 3407 for (auto AK : ABIAttrs) { 3408 Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK); 3409 if (Attr.isValid()) 3410 Copy.addAttribute(Attr); 3411 } 3412 3413 // `align` is ABI-affecting only in combination with `byval` or `byref`. 3414 if (Attrs.hasParamAttr(I, Attribute::Alignment) && 3415 (Attrs.hasParamAttr(I, Attribute::ByVal) || 3416 Attrs.hasParamAttr(I, Attribute::ByRef))) 3417 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3418 return Copy; 3419 } 3420 3421 void Verifier::verifyMustTailCall(CallInst &CI) { 3422 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3423 3424 Function *F = CI.getParent()->getParent(); 3425 FunctionType *CallerTy = F->getFunctionType(); 3426 FunctionType *CalleeTy = CI.getFunctionType(); 3427 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3428 "cannot guarantee tail call due to mismatched varargs", &CI); 3429 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3430 "cannot guarantee tail call due to mismatched return types", &CI); 3431 3432 // - The calling conventions of the caller and callee must match. 3433 Assert(F->getCallingConv() == CI.getCallingConv(), 3434 "cannot guarantee tail call due to mismatched calling conv", &CI); 3435 3436 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3437 // or a pointer bitcast followed by a ret instruction. 3438 // - The ret instruction must return the (possibly bitcasted) value 3439 // produced by the call or void. 3440 Value *RetVal = &CI; 3441 Instruction *Next = CI.getNextNode(); 3442 3443 // Handle the optional bitcast. 3444 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3445 Assert(BI->getOperand(0) == RetVal, 3446 "bitcast following musttail call must use the call", BI); 3447 RetVal = BI; 3448 Next = BI->getNextNode(); 3449 } 3450 3451 // Check the return. 3452 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3453 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3454 &CI); 3455 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal || 3456 isa<UndefValue>(Ret->getReturnValue()), 3457 "musttail call result must be returned", Ret); 3458 3459 AttributeList CallerAttrs = F->getAttributes(); 3460 AttributeList CalleeAttrs = CI.getAttributes(); 3461 if (CI.getCallingConv() == CallingConv::SwiftTail || 3462 CI.getCallingConv() == CallingConv::Tail) { 3463 StringRef CCName = 3464 CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc"; 3465 3466 // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes 3467 // are allowed in swifttailcc call 3468 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3469 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs); 3470 SmallString<32> Context{CCName, StringRef(" musttail caller")}; 3471 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3472 } 3473 for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) { 3474 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs); 3475 SmallString<32> Context{CCName, StringRef(" musttail callee")}; 3476 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3477 } 3478 // - Varargs functions are not allowed 3479 Assert(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName + 3480 " tail call for varargs function"); 3481 return; 3482 } 3483 3484 // - The caller and callee prototypes must match. Pointer types of 3485 // parameters or return types may differ in pointee type, but not 3486 // address space. 3487 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3488 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3489 "cannot guarantee tail call due to mismatched parameter counts", 3490 &CI); 3491 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3492 Assert( 3493 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3494 "cannot guarantee tail call due to mismatched parameter types", &CI); 3495 } 3496 } 3497 3498 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3499 // returned, preallocated, and inalloca, must match. 3500 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3501 AttrBuilder CallerABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs); 3502 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs); 3503 Assert(CallerABIAttrs == CalleeABIAttrs, 3504 "cannot guarantee tail call due to mismatched ABI impacting " 3505 "function attributes", 3506 &CI, CI.getOperand(I)); 3507 } 3508 } 3509 3510 void Verifier::visitCallInst(CallInst &CI) { 3511 visitCallBase(CI); 3512 3513 if (CI.isMustTailCall()) 3514 verifyMustTailCall(CI); 3515 } 3516 3517 void Verifier::visitInvokeInst(InvokeInst &II) { 3518 visitCallBase(II); 3519 3520 // Verify that the first non-PHI instruction of the unwind destination is an 3521 // exception handling instruction. 3522 Assert( 3523 II.getUnwindDest()->isEHPad(), 3524 "The unwind destination does not have an exception handling instruction!", 3525 &II); 3526 3527 visitTerminator(II); 3528 } 3529 3530 /// visitUnaryOperator - Check the argument to the unary operator. 3531 /// 3532 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3533 Assert(U.getType() == U.getOperand(0)->getType(), 3534 "Unary operators must have same type for" 3535 "operands and result!", 3536 &U); 3537 3538 switch (U.getOpcode()) { 3539 // Check that floating-point arithmetic operators are only used with 3540 // floating-point operands. 3541 case Instruction::FNeg: 3542 Assert(U.getType()->isFPOrFPVectorTy(), 3543 "FNeg operator only works with float types!", &U); 3544 break; 3545 default: 3546 llvm_unreachable("Unknown UnaryOperator opcode!"); 3547 } 3548 3549 visitInstruction(U); 3550 } 3551 3552 /// visitBinaryOperator - Check that both arguments to the binary operator are 3553 /// of the same type! 3554 /// 3555 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3556 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3557 "Both operands to a binary operator are not of the same type!", &B); 3558 3559 switch (B.getOpcode()) { 3560 // Check that integer arithmetic operators are only used with 3561 // integral operands. 3562 case Instruction::Add: 3563 case Instruction::Sub: 3564 case Instruction::Mul: 3565 case Instruction::SDiv: 3566 case Instruction::UDiv: 3567 case Instruction::SRem: 3568 case Instruction::URem: 3569 Assert(B.getType()->isIntOrIntVectorTy(), 3570 "Integer arithmetic operators only work with integral types!", &B); 3571 Assert(B.getType() == B.getOperand(0)->getType(), 3572 "Integer arithmetic operators must have same type " 3573 "for operands and result!", 3574 &B); 3575 break; 3576 // Check that floating-point arithmetic operators are only used with 3577 // floating-point operands. 3578 case Instruction::FAdd: 3579 case Instruction::FSub: 3580 case Instruction::FMul: 3581 case Instruction::FDiv: 3582 case Instruction::FRem: 3583 Assert(B.getType()->isFPOrFPVectorTy(), 3584 "Floating-point arithmetic operators only work with " 3585 "floating-point types!", 3586 &B); 3587 Assert(B.getType() == B.getOperand(0)->getType(), 3588 "Floating-point arithmetic operators must have same type " 3589 "for operands and result!", 3590 &B); 3591 break; 3592 // Check that logical operators are only used with integral operands. 3593 case Instruction::And: 3594 case Instruction::Or: 3595 case Instruction::Xor: 3596 Assert(B.getType()->isIntOrIntVectorTy(), 3597 "Logical operators only work with integral types!", &B); 3598 Assert(B.getType() == B.getOperand(0)->getType(), 3599 "Logical operators must have same type for operands and result!", 3600 &B); 3601 break; 3602 case Instruction::Shl: 3603 case Instruction::LShr: 3604 case Instruction::AShr: 3605 Assert(B.getType()->isIntOrIntVectorTy(), 3606 "Shifts only work with integral types!", &B); 3607 Assert(B.getType() == B.getOperand(0)->getType(), 3608 "Shift return type must be same as operands!", &B); 3609 break; 3610 default: 3611 llvm_unreachable("Unknown BinaryOperator opcode!"); 3612 } 3613 3614 visitInstruction(B); 3615 } 3616 3617 void Verifier::visitICmpInst(ICmpInst &IC) { 3618 // Check that the operands are the same type 3619 Type *Op0Ty = IC.getOperand(0)->getType(); 3620 Type *Op1Ty = IC.getOperand(1)->getType(); 3621 Assert(Op0Ty == Op1Ty, 3622 "Both operands to ICmp instruction are not of the same type!", &IC); 3623 // Check that the operands are the right type 3624 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3625 "Invalid operand types for ICmp instruction", &IC); 3626 // Check that the predicate is valid. 3627 Assert(IC.isIntPredicate(), 3628 "Invalid predicate in ICmp instruction!", &IC); 3629 3630 visitInstruction(IC); 3631 } 3632 3633 void Verifier::visitFCmpInst(FCmpInst &FC) { 3634 // Check that the operands are the same type 3635 Type *Op0Ty = FC.getOperand(0)->getType(); 3636 Type *Op1Ty = FC.getOperand(1)->getType(); 3637 Assert(Op0Ty == Op1Ty, 3638 "Both operands to FCmp instruction are not of the same type!", &FC); 3639 // Check that the operands are the right type 3640 Assert(Op0Ty->isFPOrFPVectorTy(), 3641 "Invalid operand types for FCmp instruction", &FC); 3642 // Check that the predicate is valid. 3643 Assert(FC.isFPPredicate(), 3644 "Invalid predicate in FCmp instruction!", &FC); 3645 3646 visitInstruction(FC); 3647 } 3648 3649 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3650 Assert( 3651 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3652 "Invalid extractelement operands!", &EI); 3653 visitInstruction(EI); 3654 } 3655 3656 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3657 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3658 IE.getOperand(2)), 3659 "Invalid insertelement operands!", &IE); 3660 visitInstruction(IE); 3661 } 3662 3663 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3664 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3665 SV.getShuffleMask()), 3666 "Invalid shufflevector operands!", &SV); 3667 visitInstruction(SV); 3668 } 3669 3670 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3671 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3672 3673 Assert(isa<PointerType>(TargetTy), 3674 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3675 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3676 3677 SmallVector<Value *, 16> Idxs(GEP.indices()); 3678 Assert(all_of( 3679 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3680 "GEP indexes must be integers", &GEP); 3681 Type *ElTy = 3682 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3683 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3684 3685 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3686 GEP.getResultElementType() == ElTy, 3687 "GEP is not of right type for indices!", &GEP, ElTy); 3688 3689 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { 3690 // Additional checks for vector GEPs. 3691 ElementCount GEPWidth = GEPVTy->getElementCount(); 3692 if (GEP.getPointerOperandType()->isVectorTy()) 3693 Assert( 3694 GEPWidth == 3695 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(), 3696 "Vector GEP result width doesn't match operand's", &GEP); 3697 for (Value *Idx : Idxs) { 3698 Type *IndexTy = Idx->getType(); 3699 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { 3700 ElementCount IndexWidth = IndexVTy->getElementCount(); 3701 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3702 } 3703 Assert(IndexTy->isIntOrIntVectorTy(), 3704 "All GEP indices should be of integer type"); 3705 } 3706 } 3707 3708 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3709 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3710 "GEP address space doesn't match type", &GEP); 3711 } 3712 3713 visitInstruction(GEP); 3714 } 3715 3716 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3717 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3718 } 3719 3720 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3721 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3722 "precondition violation"); 3723 3724 unsigned NumOperands = Range->getNumOperands(); 3725 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3726 unsigned NumRanges = NumOperands / 2; 3727 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3728 3729 ConstantRange LastRange(1, true); // Dummy initial value 3730 for (unsigned i = 0; i < NumRanges; ++i) { 3731 ConstantInt *Low = 3732 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3733 Assert(Low, "The lower limit must be an integer!", Low); 3734 ConstantInt *High = 3735 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3736 Assert(High, "The upper limit must be an integer!", High); 3737 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3738 "Range types must match instruction type!", &I); 3739 3740 APInt HighV = High->getValue(); 3741 APInt LowV = Low->getValue(); 3742 ConstantRange CurRange(LowV, HighV); 3743 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3744 "Range must not be empty!", Range); 3745 if (i != 0) { 3746 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3747 "Intervals are overlapping", Range); 3748 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3749 Range); 3750 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3751 Range); 3752 } 3753 LastRange = ConstantRange(LowV, HighV); 3754 } 3755 if (NumRanges > 2) { 3756 APInt FirstLow = 3757 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3758 APInt FirstHigh = 3759 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3760 ConstantRange FirstRange(FirstLow, FirstHigh); 3761 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3762 "Intervals are overlapping", Range); 3763 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3764 Range); 3765 } 3766 } 3767 3768 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3769 unsigned Size = DL.getTypeSizeInBits(Ty); 3770 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3771 Assert(!(Size & (Size - 1)), 3772 "atomic memory access' operand must have a power-of-two size", Ty, I); 3773 } 3774 3775 void Verifier::visitLoadInst(LoadInst &LI) { 3776 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3777 Assert(PTy, "Load operand must be a pointer.", &LI); 3778 Type *ElTy = LI.getType(); 3779 if (MaybeAlign A = LI.getAlign()) { 3780 Assert(A->value() <= Value::MaximumAlignment, 3781 "huge alignment values are unsupported", &LI); 3782 } 3783 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3784 if (LI.isAtomic()) { 3785 Assert(LI.getOrdering() != AtomicOrdering::Release && 3786 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3787 "Load cannot have Release ordering", &LI); 3788 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3789 "atomic load operand must have integer, pointer, or floating point " 3790 "type!", 3791 ElTy, &LI); 3792 checkAtomicMemAccessSize(ElTy, &LI); 3793 } else { 3794 Assert(LI.getSyncScopeID() == SyncScope::System, 3795 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3796 } 3797 3798 visitInstruction(LI); 3799 } 3800 3801 void Verifier::visitStoreInst(StoreInst &SI) { 3802 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3803 Assert(PTy, "Store operand must be a pointer.", &SI); 3804 Type *ElTy = SI.getOperand(0)->getType(); 3805 Assert(PTy->isOpaqueOrPointeeTypeMatches(ElTy), 3806 "Stored value type does not match pointer operand type!", &SI, ElTy); 3807 if (MaybeAlign A = SI.getAlign()) { 3808 Assert(A->value() <= Value::MaximumAlignment, 3809 "huge alignment values are unsupported", &SI); 3810 } 3811 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3812 if (SI.isAtomic()) { 3813 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3814 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3815 "Store cannot have Acquire ordering", &SI); 3816 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3817 "atomic store operand must have integer, pointer, or floating point " 3818 "type!", 3819 ElTy, &SI); 3820 checkAtomicMemAccessSize(ElTy, &SI); 3821 } else { 3822 Assert(SI.getSyncScopeID() == SyncScope::System, 3823 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3824 } 3825 visitInstruction(SI); 3826 } 3827 3828 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3829 void Verifier::verifySwiftErrorCall(CallBase &Call, 3830 const Value *SwiftErrorVal) { 3831 for (const auto &I : llvm::enumerate(Call.args())) { 3832 if (I.value() == SwiftErrorVal) { 3833 Assert(Call.paramHasAttr(I.index(), Attribute::SwiftError), 3834 "swifterror value when used in a callsite should be marked " 3835 "with swifterror attribute", 3836 SwiftErrorVal, Call); 3837 } 3838 } 3839 } 3840 3841 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3842 // Check that swifterror value is only used by loads, stores, or as 3843 // a swifterror argument. 3844 for (const User *U : SwiftErrorVal->users()) { 3845 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3846 isa<InvokeInst>(U), 3847 "swifterror value can only be loaded and stored from, or " 3848 "as a swifterror argument!", 3849 SwiftErrorVal, U); 3850 // If it is used by a store, check it is the second operand. 3851 if (auto StoreI = dyn_cast<StoreInst>(U)) 3852 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3853 "swifterror value should be the second operand when used " 3854 "by stores", SwiftErrorVal, U); 3855 if (auto *Call = dyn_cast<CallBase>(U)) 3856 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3857 } 3858 } 3859 3860 void Verifier::visitAllocaInst(AllocaInst &AI) { 3861 SmallPtrSet<Type*, 4> Visited; 3862 Assert(AI.getAllocatedType()->isSized(&Visited), 3863 "Cannot allocate unsized type", &AI); 3864 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3865 "Alloca array size must have integer type", &AI); 3866 if (MaybeAlign A = AI.getAlign()) { 3867 Assert(A->value() <= Value::MaximumAlignment, 3868 "huge alignment values are unsupported", &AI); 3869 } 3870 3871 if (AI.isSwiftError()) { 3872 verifySwiftErrorValue(&AI); 3873 } 3874 3875 visitInstruction(AI); 3876 } 3877 3878 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3879 Type *ElTy = CXI.getOperand(1)->getType(); 3880 Assert(ElTy->isIntOrPtrTy(), 3881 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3882 checkAtomicMemAccessSize(ElTy, &CXI); 3883 visitInstruction(CXI); 3884 } 3885 3886 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3887 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3888 "atomicrmw instructions cannot be unordered.", &RMWI); 3889 auto Op = RMWI.getOperation(); 3890 Type *ElTy = RMWI.getOperand(1)->getType(); 3891 if (Op == AtomicRMWInst::Xchg) { 3892 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3893 AtomicRMWInst::getOperationName(Op) + 3894 " operand must have integer or floating point type!", 3895 &RMWI, ElTy); 3896 } else if (AtomicRMWInst::isFPOperation(Op)) { 3897 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3898 AtomicRMWInst::getOperationName(Op) + 3899 " operand must have floating point type!", 3900 &RMWI, ElTy); 3901 } else { 3902 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3903 AtomicRMWInst::getOperationName(Op) + 3904 " operand must have integer type!", 3905 &RMWI, ElTy); 3906 } 3907 checkAtomicMemAccessSize(ElTy, &RMWI); 3908 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3909 "Invalid binary operation!", &RMWI); 3910 visitInstruction(RMWI); 3911 } 3912 3913 void Verifier::visitFenceInst(FenceInst &FI) { 3914 const AtomicOrdering Ordering = FI.getOrdering(); 3915 Assert(Ordering == AtomicOrdering::Acquire || 3916 Ordering == AtomicOrdering::Release || 3917 Ordering == AtomicOrdering::AcquireRelease || 3918 Ordering == AtomicOrdering::SequentiallyConsistent, 3919 "fence instructions may only have acquire, release, acq_rel, or " 3920 "seq_cst ordering.", 3921 &FI); 3922 visitInstruction(FI); 3923 } 3924 3925 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3926 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3927 EVI.getIndices()) == EVI.getType(), 3928 "Invalid ExtractValueInst operands!", &EVI); 3929 3930 visitInstruction(EVI); 3931 } 3932 3933 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3934 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3935 IVI.getIndices()) == 3936 IVI.getOperand(1)->getType(), 3937 "Invalid InsertValueInst operands!", &IVI); 3938 3939 visitInstruction(IVI); 3940 } 3941 3942 static Value *getParentPad(Value *EHPad) { 3943 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3944 return FPI->getParentPad(); 3945 3946 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3947 } 3948 3949 void Verifier::visitEHPadPredecessors(Instruction &I) { 3950 assert(I.isEHPad()); 3951 3952 BasicBlock *BB = I.getParent(); 3953 Function *F = BB->getParent(); 3954 3955 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3956 3957 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3958 // The landingpad instruction defines its parent as a landing pad block. The 3959 // landing pad block may be branched to only by the unwind edge of an 3960 // invoke. 3961 for (BasicBlock *PredBB : predecessors(BB)) { 3962 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3963 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3964 "Block containing LandingPadInst must be jumped to " 3965 "only by the unwind edge of an invoke.", 3966 LPI); 3967 } 3968 return; 3969 } 3970 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3971 if (!pred_empty(BB)) 3972 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3973 "Block containg CatchPadInst must be jumped to " 3974 "only by its catchswitch.", 3975 CPI); 3976 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3977 "Catchswitch cannot unwind to one of its catchpads", 3978 CPI->getCatchSwitch(), CPI); 3979 return; 3980 } 3981 3982 // Verify that each pred has a legal terminator with a legal to/from EH 3983 // pad relationship. 3984 Instruction *ToPad = &I; 3985 Value *ToPadParent = getParentPad(ToPad); 3986 for (BasicBlock *PredBB : predecessors(BB)) { 3987 Instruction *TI = PredBB->getTerminator(); 3988 Value *FromPad; 3989 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3990 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3991 "EH pad must be jumped to via an unwind edge", ToPad, II); 3992 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3993 FromPad = Bundle->Inputs[0]; 3994 else 3995 FromPad = ConstantTokenNone::get(II->getContext()); 3996 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3997 FromPad = CRI->getOperand(0); 3998 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3999 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4000 FromPad = CSI; 4001 } else { 4002 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 4003 } 4004 4005 // The edge may exit from zero or more nested pads. 4006 SmallSet<Value *, 8> Seen; 4007 for (;; FromPad = getParentPad(FromPad)) { 4008 Assert(FromPad != ToPad, 4009 "EH pad cannot handle exceptions raised within it", FromPad, TI); 4010 if (FromPad == ToPadParent) { 4011 // This is a legal unwind edge. 4012 break; 4013 } 4014 Assert(!isa<ConstantTokenNone>(FromPad), 4015 "A single unwind edge may only enter one EH pad", TI); 4016 Assert(Seen.insert(FromPad).second, 4017 "EH pad jumps through a cycle of pads", FromPad); 4018 4019 // This will be diagnosed on the corresponding instruction already. We 4020 // need the extra check here to make sure getParentPad() works. 4021 Assert(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad), 4022 "Parent pad must be catchpad/cleanuppad/catchswitch", TI); 4023 } 4024 } 4025 } 4026 4027 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 4028 // The landingpad instruction is ill-formed if it doesn't have any clauses and 4029 // isn't a cleanup. 4030 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 4031 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 4032 4033 visitEHPadPredecessors(LPI); 4034 4035 if (!LandingPadResultTy) 4036 LandingPadResultTy = LPI.getType(); 4037 else 4038 Assert(LandingPadResultTy == LPI.getType(), 4039 "The landingpad instruction should have a consistent result type " 4040 "inside a function.", 4041 &LPI); 4042 4043 Function *F = LPI.getParent()->getParent(); 4044 Assert(F->hasPersonalityFn(), 4045 "LandingPadInst needs to be in a function with a personality.", &LPI); 4046 4047 // The landingpad instruction must be the first non-PHI instruction in the 4048 // block. 4049 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 4050 "LandingPadInst not the first non-PHI instruction in the block.", 4051 &LPI); 4052 4053 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 4054 Constant *Clause = LPI.getClause(i); 4055 if (LPI.isCatch(i)) { 4056 Assert(isa<PointerType>(Clause->getType()), 4057 "Catch operand does not have pointer type!", &LPI); 4058 } else { 4059 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 4060 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 4061 "Filter operand is not an array of constants!", &LPI); 4062 } 4063 } 4064 4065 visitInstruction(LPI); 4066 } 4067 4068 void Verifier::visitResumeInst(ResumeInst &RI) { 4069 Assert(RI.getFunction()->hasPersonalityFn(), 4070 "ResumeInst needs to be in a function with a personality.", &RI); 4071 4072 if (!LandingPadResultTy) 4073 LandingPadResultTy = RI.getValue()->getType(); 4074 else 4075 Assert(LandingPadResultTy == RI.getValue()->getType(), 4076 "The resume instruction should have a consistent result type " 4077 "inside a function.", 4078 &RI); 4079 4080 visitTerminator(RI); 4081 } 4082 4083 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 4084 BasicBlock *BB = CPI.getParent(); 4085 4086 Function *F = BB->getParent(); 4087 Assert(F->hasPersonalityFn(), 4088 "CatchPadInst needs to be in a function with a personality.", &CPI); 4089 4090 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 4091 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 4092 CPI.getParentPad()); 4093 4094 // The catchpad instruction must be the first non-PHI instruction in the 4095 // block. 4096 Assert(BB->getFirstNonPHI() == &CPI, 4097 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 4098 4099 visitEHPadPredecessors(CPI); 4100 visitFuncletPadInst(CPI); 4101 } 4102 4103 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 4104 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 4105 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 4106 CatchReturn.getOperand(0)); 4107 4108 visitTerminator(CatchReturn); 4109 } 4110 4111 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 4112 BasicBlock *BB = CPI.getParent(); 4113 4114 Function *F = BB->getParent(); 4115 Assert(F->hasPersonalityFn(), 4116 "CleanupPadInst needs to be in a function with a personality.", &CPI); 4117 4118 // The cleanuppad instruction must be the first non-PHI instruction in the 4119 // block. 4120 Assert(BB->getFirstNonPHI() == &CPI, 4121 "CleanupPadInst not the first non-PHI instruction in the block.", 4122 &CPI); 4123 4124 auto *ParentPad = CPI.getParentPad(); 4125 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4126 "CleanupPadInst has an invalid parent.", &CPI); 4127 4128 visitEHPadPredecessors(CPI); 4129 visitFuncletPadInst(CPI); 4130 } 4131 4132 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 4133 User *FirstUser = nullptr; 4134 Value *FirstUnwindPad = nullptr; 4135 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 4136 SmallSet<FuncletPadInst *, 8> Seen; 4137 4138 while (!Worklist.empty()) { 4139 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 4140 Assert(Seen.insert(CurrentPad).second, 4141 "FuncletPadInst must not be nested within itself", CurrentPad); 4142 Value *UnresolvedAncestorPad = nullptr; 4143 for (User *U : CurrentPad->users()) { 4144 BasicBlock *UnwindDest; 4145 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 4146 UnwindDest = CRI->getUnwindDest(); 4147 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 4148 // We allow catchswitch unwind to caller to nest 4149 // within an outer pad that unwinds somewhere else, 4150 // because catchswitch doesn't have a nounwind variant. 4151 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 4152 if (CSI->unwindsToCaller()) 4153 continue; 4154 UnwindDest = CSI->getUnwindDest(); 4155 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 4156 UnwindDest = II->getUnwindDest(); 4157 } else if (isa<CallInst>(U)) { 4158 // Calls which don't unwind may be found inside funclet 4159 // pads that unwind somewhere else. We don't *require* 4160 // such calls to be annotated nounwind. 4161 continue; 4162 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 4163 // The unwind dest for a cleanup can only be found by 4164 // recursive search. Add it to the worklist, and we'll 4165 // search for its first use that determines where it unwinds. 4166 Worklist.push_back(CPI); 4167 continue; 4168 } else { 4169 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 4170 continue; 4171 } 4172 4173 Value *UnwindPad; 4174 bool ExitsFPI; 4175 if (UnwindDest) { 4176 UnwindPad = UnwindDest->getFirstNonPHI(); 4177 if (!cast<Instruction>(UnwindPad)->isEHPad()) 4178 continue; 4179 Value *UnwindParent = getParentPad(UnwindPad); 4180 // Ignore unwind edges that don't exit CurrentPad. 4181 if (UnwindParent == CurrentPad) 4182 continue; 4183 // Determine whether the original funclet pad is exited, 4184 // and if we are scanning nested pads determine how many 4185 // of them are exited so we can stop searching their 4186 // children. 4187 Value *ExitedPad = CurrentPad; 4188 ExitsFPI = false; 4189 do { 4190 if (ExitedPad == &FPI) { 4191 ExitsFPI = true; 4192 // Now we can resolve any ancestors of CurrentPad up to 4193 // FPI, but not including FPI since we need to make sure 4194 // to check all direct users of FPI for consistency. 4195 UnresolvedAncestorPad = &FPI; 4196 break; 4197 } 4198 Value *ExitedParent = getParentPad(ExitedPad); 4199 if (ExitedParent == UnwindParent) { 4200 // ExitedPad is the ancestor-most pad which this unwind 4201 // edge exits, so we can resolve up to it, meaning that 4202 // ExitedParent is the first ancestor still unresolved. 4203 UnresolvedAncestorPad = ExitedParent; 4204 break; 4205 } 4206 ExitedPad = ExitedParent; 4207 } while (!isa<ConstantTokenNone>(ExitedPad)); 4208 } else { 4209 // Unwinding to caller exits all pads. 4210 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 4211 ExitsFPI = true; 4212 UnresolvedAncestorPad = &FPI; 4213 } 4214 4215 if (ExitsFPI) { 4216 // This unwind edge exits FPI. Make sure it agrees with other 4217 // such edges. 4218 if (FirstUser) { 4219 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 4220 "pad must have the same unwind " 4221 "dest", 4222 &FPI, U, FirstUser); 4223 } else { 4224 FirstUser = U; 4225 FirstUnwindPad = UnwindPad; 4226 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 4227 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 4228 getParentPad(UnwindPad) == getParentPad(&FPI)) 4229 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 4230 } 4231 } 4232 // Make sure we visit all uses of FPI, but for nested pads stop as 4233 // soon as we know where they unwind to. 4234 if (CurrentPad != &FPI) 4235 break; 4236 } 4237 if (UnresolvedAncestorPad) { 4238 if (CurrentPad == UnresolvedAncestorPad) { 4239 // When CurrentPad is FPI itself, we don't mark it as resolved even if 4240 // we've found an unwind edge that exits it, because we need to verify 4241 // all direct uses of FPI. 4242 assert(CurrentPad == &FPI); 4243 continue; 4244 } 4245 // Pop off the worklist any nested pads that we've found an unwind 4246 // destination for. The pads on the worklist are the uncles, 4247 // great-uncles, etc. of CurrentPad. We've found an unwind destination 4248 // for all ancestors of CurrentPad up to but not including 4249 // UnresolvedAncestorPad. 4250 Value *ResolvedPad = CurrentPad; 4251 while (!Worklist.empty()) { 4252 Value *UnclePad = Worklist.back(); 4253 Value *AncestorPad = getParentPad(UnclePad); 4254 // Walk ResolvedPad up the ancestor list until we either find the 4255 // uncle's parent or the last resolved ancestor. 4256 while (ResolvedPad != AncestorPad) { 4257 Value *ResolvedParent = getParentPad(ResolvedPad); 4258 if (ResolvedParent == UnresolvedAncestorPad) { 4259 break; 4260 } 4261 ResolvedPad = ResolvedParent; 4262 } 4263 // If the resolved ancestor search didn't find the uncle's parent, 4264 // then the uncle is not yet resolved. 4265 if (ResolvedPad != AncestorPad) 4266 break; 4267 // This uncle is resolved, so pop it from the worklist. 4268 Worklist.pop_back(); 4269 } 4270 } 4271 } 4272 4273 if (FirstUnwindPad) { 4274 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 4275 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 4276 Value *SwitchUnwindPad; 4277 if (SwitchUnwindDest) 4278 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 4279 else 4280 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 4281 Assert(SwitchUnwindPad == FirstUnwindPad, 4282 "Unwind edges out of a catch must have the same unwind dest as " 4283 "the parent catchswitch", 4284 &FPI, FirstUser, CatchSwitch); 4285 } 4286 } 4287 4288 visitInstruction(FPI); 4289 } 4290 4291 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 4292 BasicBlock *BB = CatchSwitch.getParent(); 4293 4294 Function *F = BB->getParent(); 4295 Assert(F->hasPersonalityFn(), 4296 "CatchSwitchInst needs to be in a function with a personality.", 4297 &CatchSwitch); 4298 4299 // The catchswitch instruction must be the first non-PHI instruction in the 4300 // block. 4301 Assert(BB->getFirstNonPHI() == &CatchSwitch, 4302 "CatchSwitchInst not the first non-PHI instruction in the block.", 4303 &CatchSwitch); 4304 4305 auto *ParentPad = CatchSwitch.getParentPad(); 4306 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4307 "CatchSwitchInst has an invalid parent.", ParentPad); 4308 4309 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 4310 Instruction *I = UnwindDest->getFirstNonPHI(); 4311 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4312 "CatchSwitchInst must unwind to an EH block which is not a " 4313 "landingpad.", 4314 &CatchSwitch); 4315 4316 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 4317 if (getParentPad(I) == ParentPad) 4318 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 4319 } 4320 4321 Assert(CatchSwitch.getNumHandlers() != 0, 4322 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 4323 4324 for (BasicBlock *Handler : CatchSwitch.handlers()) { 4325 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 4326 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 4327 } 4328 4329 visitEHPadPredecessors(CatchSwitch); 4330 visitTerminator(CatchSwitch); 4331 } 4332 4333 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 4334 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 4335 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 4336 CRI.getOperand(0)); 4337 4338 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 4339 Instruction *I = UnwindDest->getFirstNonPHI(); 4340 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4341 "CleanupReturnInst must unwind to an EH block which is not a " 4342 "landingpad.", 4343 &CRI); 4344 } 4345 4346 visitTerminator(CRI); 4347 } 4348 4349 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 4350 Instruction *Op = cast<Instruction>(I.getOperand(i)); 4351 // If the we have an invalid invoke, don't try to compute the dominance. 4352 // We already reject it in the invoke specific checks and the dominance 4353 // computation doesn't handle multiple edges. 4354 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 4355 if (II->getNormalDest() == II->getUnwindDest()) 4356 return; 4357 } 4358 4359 // Quick check whether the def has already been encountered in the same block. 4360 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 4361 // uses are defined to happen on the incoming edge, not at the instruction. 4362 // 4363 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 4364 // wrapping an SSA value, assert that we've already encountered it. See 4365 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 4366 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 4367 return; 4368 4369 const Use &U = I.getOperandUse(i); 4370 Assert(DT.dominates(Op, U), 4371 "Instruction does not dominate all uses!", Op, &I); 4372 } 4373 4374 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4375 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 4376 "apply only to pointer types", &I); 4377 Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4378 "dereferenceable, dereferenceable_or_null apply only to load" 4379 " and inttoptr instructions, use attributes for calls or invokes", &I); 4380 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 4381 "take one operand!", &I); 4382 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4383 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 4384 "dereferenceable_or_null metadata value must be an i64!", &I); 4385 } 4386 4387 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4388 Assert(MD->getNumOperands() >= 2, 4389 "!prof annotations should have no less than 2 operands", MD); 4390 4391 // Check first operand. 4392 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4393 Assert(isa<MDString>(MD->getOperand(0)), 4394 "expected string with name of the !prof annotation", MD); 4395 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4396 StringRef ProfName = MDS->getString(); 4397 4398 // Check consistency of !prof branch_weights metadata. 4399 if (ProfName.equals("branch_weights")) { 4400 if (isa<InvokeInst>(&I)) { 4401 Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3, 4402 "Wrong number of InvokeInst branch_weights operands", MD); 4403 } else { 4404 unsigned ExpectedNumOperands = 0; 4405 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4406 ExpectedNumOperands = BI->getNumSuccessors(); 4407 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4408 ExpectedNumOperands = SI->getNumSuccessors(); 4409 else if (isa<CallInst>(&I)) 4410 ExpectedNumOperands = 1; 4411 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4412 ExpectedNumOperands = IBI->getNumDestinations(); 4413 else if (isa<SelectInst>(&I)) 4414 ExpectedNumOperands = 2; 4415 else 4416 CheckFailed("!prof branch_weights are not allowed for this instruction", 4417 MD); 4418 4419 Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, 4420 "Wrong number of operands", MD); 4421 } 4422 for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 4423 auto &MDO = MD->getOperand(i); 4424 Assert(MDO, "second operand should not be null", MD); 4425 Assert(mdconst::dyn_extract<ConstantInt>(MDO), 4426 "!prof brunch_weights operand is not a const int"); 4427 } 4428 } 4429 } 4430 4431 void Verifier::visitAnnotationMetadata(MDNode *Annotation) { 4432 Assert(isa<MDTuple>(Annotation), "annotation must be a tuple"); 4433 Assert(Annotation->getNumOperands() >= 1, 4434 "annotation must have at least one operand"); 4435 for (const MDOperand &Op : Annotation->operands()) 4436 Assert(isa<MDString>(Op.get()), "operands must be strings"); 4437 } 4438 4439 void Verifier::visitAliasScopeMetadata(const MDNode *MD) { 4440 unsigned NumOps = MD->getNumOperands(); 4441 Assert(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands", 4442 MD); 4443 Assert(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)), 4444 "first scope operand must be self-referential or string", MD); 4445 if (NumOps == 3) 4446 Assert(isa<MDString>(MD->getOperand(2)), 4447 "third scope operand must be string (if used)", MD); 4448 4449 MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1)); 4450 Assert(Domain != nullptr, "second scope operand must be MDNode", MD); 4451 4452 unsigned NumDomainOps = Domain->getNumOperands(); 4453 Assert(NumDomainOps >= 1 && NumDomainOps <= 2, 4454 "domain must have one or two operands", Domain); 4455 Assert(Domain->getOperand(0).get() == Domain || 4456 isa<MDString>(Domain->getOperand(0)), 4457 "first domain operand must be self-referential or string", Domain); 4458 if (NumDomainOps == 2) 4459 Assert(isa<MDString>(Domain->getOperand(1)), 4460 "second domain operand must be string (if used)", Domain); 4461 } 4462 4463 void Verifier::visitAliasScopeListMetadata(const MDNode *MD) { 4464 for (const MDOperand &Op : MD->operands()) { 4465 const MDNode *OpMD = dyn_cast<MDNode>(Op); 4466 Assert(OpMD != nullptr, "scope list must consist of MDNodes", MD); 4467 visitAliasScopeMetadata(OpMD); 4468 } 4469 } 4470 4471 /// verifyInstruction - Verify that an instruction is well formed. 4472 /// 4473 void Verifier::visitInstruction(Instruction &I) { 4474 BasicBlock *BB = I.getParent(); 4475 Assert(BB, "Instruction not embedded in basic block!", &I); 4476 4477 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4478 for (User *U : I.users()) { 4479 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 4480 "Only PHI nodes may reference their own value!", &I); 4481 } 4482 } 4483 4484 // Check that void typed values don't have names 4485 Assert(!I.getType()->isVoidTy() || !I.hasName(), 4486 "Instruction has a name, but provides a void value!", &I); 4487 4488 // Check that the return value of the instruction is either void or a legal 4489 // value type. 4490 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4491 "Instruction returns a non-scalar type!", &I); 4492 4493 // Check that the instruction doesn't produce metadata. Calls are already 4494 // checked against the callee type. 4495 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4496 "Invalid use of metadata!", &I); 4497 4498 // Check that all uses of the instruction, if they are instructions 4499 // themselves, actually have parent basic blocks. If the use is not an 4500 // instruction, it is an error! 4501 for (Use &U : I.uses()) { 4502 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4503 Assert(Used->getParent() != nullptr, 4504 "Instruction referencing" 4505 " instruction not embedded in a basic block!", 4506 &I, Used); 4507 else { 4508 CheckFailed("Use of instruction is not an instruction!", U); 4509 return; 4510 } 4511 } 4512 4513 // Get a pointer to the call base of the instruction if it is some form of 4514 // call. 4515 const CallBase *CBI = dyn_cast<CallBase>(&I); 4516 4517 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4518 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4519 4520 // Check to make sure that only first-class-values are operands to 4521 // instructions. 4522 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4523 Assert(false, "Instruction operands must be first-class values!", &I); 4524 } 4525 4526 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4527 // This code checks whether the function is used as the operand of a 4528 // clang_arc_attachedcall operand bundle. 4529 auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI, 4530 int Idx) { 4531 return CBI && CBI->isOperandBundleOfType( 4532 LLVMContext::OB_clang_arc_attachedcall, Idx); 4533 }; 4534 4535 // Check to make sure that the "address of" an intrinsic function is never 4536 // taken. Ignore cases where the address of the intrinsic function is used 4537 // as the argument of operand bundle "clang.arc.attachedcall" as those 4538 // cases are handled in verifyAttachedCallBundle. 4539 Assert((!F->isIntrinsic() || 4540 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) || 4541 IsAttachedCallOperand(F, CBI, i)), 4542 "Cannot take the address of an intrinsic!", &I); 4543 Assert( 4544 !F->isIntrinsic() || isa<CallInst>(I) || 4545 F->getIntrinsicID() == Intrinsic::donothing || 4546 F->getIntrinsicID() == Intrinsic::seh_try_begin || 4547 F->getIntrinsicID() == Intrinsic::seh_try_end || 4548 F->getIntrinsicID() == Intrinsic::seh_scope_begin || 4549 F->getIntrinsicID() == Intrinsic::seh_scope_end || 4550 F->getIntrinsicID() == Intrinsic::coro_resume || 4551 F->getIntrinsicID() == Intrinsic::coro_destroy || 4552 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4553 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4554 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4555 F->getIntrinsicID() == Intrinsic::wasm_rethrow || 4556 IsAttachedCallOperand(F, CBI, i), 4557 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4558 "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall", 4559 &I); 4560 Assert(F->getParent() == &M, "Referencing function in another module!", 4561 &I, &M, F, F->getParent()); 4562 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4563 Assert(OpBB->getParent() == BB->getParent(), 4564 "Referring to a basic block in another function!", &I); 4565 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4566 Assert(OpArg->getParent() == BB->getParent(), 4567 "Referring to an argument in another function!", &I); 4568 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4569 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4570 &M, GV, GV->getParent()); 4571 } else if (isa<Instruction>(I.getOperand(i))) { 4572 verifyDominatesUse(I, i); 4573 } else if (isa<InlineAsm>(I.getOperand(i))) { 4574 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4575 "Cannot take the address of an inline asm!", &I); 4576 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4577 if (CE->getType()->isPtrOrPtrVectorTy()) { 4578 // If we have a ConstantExpr pointer, we need to see if it came from an 4579 // illegal bitcast. 4580 visitConstantExprsRecursively(CE); 4581 } 4582 } 4583 } 4584 4585 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4586 Assert(I.getType()->isFPOrFPVectorTy(), 4587 "fpmath requires a floating point result!", &I); 4588 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4589 if (ConstantFP *CFP0 = 4590 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4591 const APFloat &Accuracy = CFP0->getValueAPF(); 4592 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4593 "fpmath accuracy must have float type", &I); 4594 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4595 "fpmath accuracy not a positive number!", &I); 4596 } else { 4597 Assert(false, "invalid fpmath accuracy!", &I); 4598 } 4599 } 4600 4601 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4602 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4603 "Ranges are only for loads, calls and invokes!", &I); 4604 visitRangeMetadata(I, Range, I.getType()); 4605 } 4606 4607 if (I.hasMetadata(LLVMContext::MD_invariant_group)) { 4608 Assert(isa<LoadInst>(I) || isa<StoreInst>(I), 4609 "invariant.group metadata is only for loads and stores", &I); 4610 } 4611 4612 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4613 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4614 &I); 4615 Assert(isa<LoadInst>(I), 4616 "nonnull applies only to load instructions, use attributes" 4617 " for calls or invokes", 4618 &I); 4619 } 4620 4621 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4622 visitDereferenceableMetadata(I, MD); 4623 4624 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4625 visitDereferenceableMetadata(I, MD); 4626 4627 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4628 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4629 4630 if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias)) 4631 visitAliasScopeListMetadata(MD); 4632 if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope)) 4633 visitAliasScopeListMetadata(MD); 4634 4635 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4636 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4637 &I); 4638 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4639 "use attributes for calls or invokes", &I); 4640 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4641 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4642 Assert(CI && CI->getType()->isIntegerTy(64), 4643 "align metadata value must be an i64!", &I); 4644 uint64_t Align = CI->getZExtValue(); 4645 Assert(isPowerOf2_64(Align), 4646 "align metadata value must be a power of 2!", &I); 4647 Assert(Align <= Value::MaximumAlignment, 4648 "alignment is larger that implementation defined limit", &I); 4649 } 4650 4651 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 4652 visitProfMetadata(I, MD); 4653 4654 if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation)) 4655 visitAnnotationMetadata(Annotation); 4656 4657 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4658 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4659 visitMDNode(*N, AreDebugLocsAllowed::Yes); 4660 } 4661 4662 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 4663 verifyFragmentExpression(*DII); 4664 verifyNotEntryValue(*DII); 4665 } 4666 4667 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 4668 I.getAllMetadata(MDs); 4669 for (auto Attachment : MDs) { 4670 unsigned Kind = Attachment.first; 4671 auto AllowLocs = 4672 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) 4673 ? AreDebugLocsAllowed::Yes 4674 : AreDebugLocsAllowed::No; 4675 visitMDNode(*Attachment.second, AllowLocs); 4676 } 4677 4678 InstsInThisBlock.insert(&I); 4679 } 4680 4681 /// Allow intrinsics to be verified in different ways. 4682 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4683 Function *IF = Call.getCalledFunction(); 4684 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4685 IF); 4686 4687 // Verify that the intrinsic prototype lines up with what the .td files 4688 // describe. 4689 FunctionType *IFTy = IF->getFunctionType(); 4690 bool IsVarArg = IFTy->isVarArg(); 4691 4692 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4693 getIntrinsicInfoTableEntries(ID, Table); 4694 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4695 4696 // Walk the descriptors to extract overloaded types. 4697 SmallVector<Type *, 4> ArgTys; 4698 Intrinsic::MatchIntrinsicTypesResult Res = 4699 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4700 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4701 "Intrinsic has incorrect return type!", IF); 4702 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4703 "Intrinsic has incorrect argument type!", IF); 4704 4705 // Verify if the intrinsic call matches the vararg property. 4706 if (IsVarArg) 4707 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4708 "Intrinsic was not defined with variable arguments!", IF); 4709 else 4710 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4711 "Callsite was not defined with variable arguments!", IF); 4712 4713 // All descriptors should be absorbed by now. 4714 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4715 4716 // Now that we have the intrinsic ID and the actual argument types (and we 4717 // know they are legal for the intrinsic!) get the intrinsic name through the 4718 // usual means. This allows us to verify the mangling of argument types into 4719 // the name. 4720 const std::string ExpectedName = 4721 Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy); 4722 Assert(ExpectedName == IF->getName(), 4723 "Intrinsic name not mangled correctly for type arguments! " 4724 "Should be: " + 4725 ExpectedName, 4726 IF); 4727 4728 // If the intrinsic takes MDNode arguments, verify that they are either global 4729 // or are local to *this* function. 4730 for (Value *V : Call.args()) { 4731 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4732 visitMetadataAsValue(*MD, Call.getCaller()); 4733 if (auto *Const = dyn_cast<Constant>(V)) 4734 Assert(!Const->getType()->isX86_AMXTy(), 4735 "const x86_amx is not allowed in argument!"); 4736 } 4737 4738 switch (ID) { 4739 default: 4740 break; 4741 case Intrinsic::assume: { 4742 for (auto &Elem : Call.bundle_op_infos()) { 4743 Assert(Elem.Tag->getKey() == "ignore" || 4744 Attribute::isExistingAttribute(Elem.Tag->getKey()), 4745 "tags must be valid attribute names", Call); 4746 Attribute::AttrKind Kind = 4747 Attribute::getAttrKindFromName(Elem.Tag->getKey()); 4748 unsigned ArgCount = Elem.End - Elem.Begin; 4749 if (Kind == Attribute::Alignment) { 4750 Assert(ArgCount <= 3 && ArgCount >= 2, 4751 "alignment assumptions should have 2 or 3 arguments", Call); 4752 Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(), 4753 "first argument should be a pointer", Call); 4754 Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(), 4755 "second argument should be an integer", Call); 4756 if (ArgCount == 3) 4757 Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(), 4758 "third argument should be an integer if present", Call); 4759 return; 4760 } 4761 Assert(ArgCount <= 2, "too many arguments", Call); 4762 if (Kind == Attribute::None) 4763 break; 4764 if (Attribute::isIntAttrKind(Kind)) { 4765 Assert(ArgCount == 2, "this attribute should have 2 arguments", Call); 4766 Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), 4767 "the second argument should be a constant integral value", Call); 4768 } else if (Attribute::canUseAsParamAttr(Kind)) { 4769 Assert((ArgCount) == 1, "this attribute should have one argument", 4770 Call); 4771 } else if (Attribute::canUseAsFnAttr(Kind)) { 4772 Assert((ArgCount) == 0, "this attribute has no argument", Call); 4773 } 4774 } 4775 break; 4776 } 4777 case Intrinsic::coro_id: { 4778 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4779 if (isa<ConstantPointerNull>(InfoArg)) 4780 break; 4781 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4782 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4783 "info argument of llvm.coro.id must refer to an initialized " 4784 "constant"); 4785 Constant *Init = GV->getInitializer(); 4786 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4787 "info argument of llvm.coro.id must refer to either a struct or " 4788 "an array"); 4789 break; 4790 } 4791 case Intrinsic::fptrunc_round: { 4792 // Check the rounding mode 4793 Metadata *MD = nullptr; 4794 auto *MAV = dyn_cast<MetadataAsValue>(Call.getOperand(1)); 4795 if (MAV) 4796 MD = MAV->getMetadata(); 4797 4798 Assert(MD != nullptr, "missing rounding mode argument", Call); 4799 4800 Assert(isa<MDString>(MD), 4801 ("invalid value for llvm.fptrunc.round metadata operand" 4802 " (the operand should be a string)"), 4803 MD); 4804 4805 Optional<RoundingMode> RoundMode = 4806 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 4807 Assert(RoundMode.hasValue() && 4808 RoundMode.getValue() != RoundingMode::Dynamic, 4809 "unsupported rounding mode argument", Call); 4810 break; 4811 } 4812 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 4813 #include "llvm/IR/VPIntrinsics.def" 4814 visitVPIntrinsic(cast<VPIntrinsic>(Call)); 4815 break; 4816 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ 4817 case Intrinsic::INTRINSIC: 4818 #include "llvm/IR/ConstrainedOps.def" 4819 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4820 break; 4821 case Intrinsic::dbg_declare: // llvm.dbg.declare 4822 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4823 "invalid llvm.dbg.declare intrinsic call 1", Call); 4824 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4825 break; 4826 case Intrinsic::dbg_addr: // llvm.dbg.addr 4827 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4828 break; 4829 case Intrinsic::dbg_value: // llvm.dbg.value 4830 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4831 break; 4832 case Intrinsic::dbg_label: // llvm.dbg.label 4833 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4834 break; 4835 case Intrinsic::memcpy: 4836 case Intrinsic::memcpy_inline: 4837 case Intrinsic::memmove: 4838 case Intrinsic::memset: { 4839 const auto *MI = cast<MemIntrinsic>(&Call); 4840 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4841 return Alignment == 0 || isPowerOf2_32(Alignment); 4842 }; 4843 Assert(IsValidAlignment(MI->getDestAlignment()), 4844 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4845 Call); 4846 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4847 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4848 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4849 Call); 4850 } 4851 4852 break; 4853 } 4854 case Intrinsic::memcpy_element_unordered_atomic: 4855 case Intrinsic::memmove_element_unordered_atomic: 4856 case Intrinsic::memset_element_unordered_atomic: { 4857 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4858 4859 ConstantInt *ElementSizeCI = 4860 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4861 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4862 Assert(ElementSizeVal.isPowerOf2(), 4863 "element size of the element-wise atomic memory intrinsic " 4864 "must be a power of 2", 4865 Call); 4866 4867 auto IsValidAlignment = [&](uint64_t Alignment) { 4868 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4869 }; 4870 uint64_t DstAlignment = AMI->getDestAlignment(); 4871 Assert(IsValidAlignment(DstAlignment), 4872 "incorrect alignment of the destination argument", Call); 4873 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4874 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4875 Assert(IsValidAlignment(SrcAlignment), 4876 "incorrect alignment of the source argument", Call); 4877 } 4878 break; 4879 } 4880 case Intrinsic::call_preallocated_setup: { 4881 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 4882 Assert(NumArgs != nullptr, 4883 "llvm.call.preallocated.setup argument must be a constant"); 4884 bool FoundCall = false; 4885 for (User *U : Call.users()) { 4886 auto *UseCall = dyn_cast<CallBase>(U); 4887 Assert(UseCall != nullptr, 4888 "Uses of llvm.call.preallocated.setup must be calls"); 4889 const Function *Fn = UseCall->getCalledFunction(); 4890 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { 4891 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); 4892 Assert(AllocArgIndex != nullptr, 4893 "llvm.call.preallocated.alloc arg index must be a constant"); 4894 auto AllocArgIndexInt = AllocArgIndex->getValue(); 4895 Assert(AllocArgIndexInt.sge(0) && 4896 AllocArgIndexInt.slt(NumArgs->getValue()), 4897 "llvm.call.preallocated.alloc arg index must be between 0 and " 4898 "corresponding " 4899 "llvm.call.preallocated.setup's argument count"); 4900 } else if (Fn && Fn->getIntrinsicID() == 4901 Intrinsic::call_preallocated_teardown) { 4902 // nothing to do 4903 } else { 4904 Assert(!FoundCall, "Can have at most one call corresponding to a " 4905 "llvm.call.preallocated.setup"); 4906 FoundCall = true; 4907 size_t NumPreallocatedArgs = 0; 4908 for (unsigned i = 0; i < UseCall->arg_size(); i++) { 4909 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { 4910 ++NumPreallocatedArgs; 4911 } 4912 } 4913 Assert(NumPreallocatedArgs != 0, 4914 "cannot use preallocated intrinsics on a call without " 4915 "preallocated arguments"); 4916 Assert(NumArgs->equalsInt(NumPreallocatedArgs), 4917 "llvm.call.preallocated.setup arg size must be equal to number " 4918 "of preallocated arguments " 4919 "at call site", 4920 Call, *UseCall); 4921 // getOperandBundle() cannot be called if more than one of the operand 4922 // bundle exists. There is already a check elsewhere for this, so skip 4923 // here if we see more than one. 4924 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > 4925 1) { 4926 return; 4927 } 4928 auto PreallocatedBundle = 4929 UseCall->getOperandBundle(LLVMContext::OB_preallocated); 4930 Assert(PreallocatedBundle, 4931 "Use of llvm.call.preallocated.setup outside intrinsics " 4932 "must be in \"preallocated\" operand bundle"); 4933 Assert(PreallocatedBundle->Inputs.front().get() == &Call, 4934 "preallocated bundle must have token from corresponding " 4935 "llvm.call.preallocated.setup"); 4936 } 4937 } 4938 break; 4939 } 4940 case Intrinsic::call_preallocated_arg: { 4941 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4942 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4943 Intrinsic::call_preallocated_setup, 4944 "llvm.call.preallocated.arg token argument must be a " 4945 "llvm.call.preallocated.setup"); 4946 Assert(Call.hasFnAttr(Attribute::Preallocated), 4947 "llvm.call.preallocated.arg must be called with a \"preallocated\" " 4948 "call site attribute"); 4949 break; 4950 } 4951 case Intrinsic::call_preallocated_teardown: { 4952 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4953 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4954 Intrinsic::call_preallocated_setup, 4955 "llvm.call.preallocated.teardown token argument must be a " 4956 "llvm.call.preallocated.setup"); 4957 break; 4958 } 4959 case Intrinsic::gcroot: 4960 case Intrinsic::gcwrite: 4961 case Intrinsic::gcread: 4962 if (ID == Intrinsic::gcroot) { 4963 AllocaInst *AI = 4964 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4965 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4966 Assert(isa<Constant>(Call.getArgOperand(1)), 4967 "llvm.gcroot parameter #2 must be a constant.", Call); 4968 if (!AI->getAllocatedType()->isPointerTy()) { 4969 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4970 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4971 "or argument #2 must be a non-null constant.", 4972 Call); 4973 } 4974 } 4975 4976 Assert(Call.getParent()->getParent()->hasGC(), 4977 "Enclosing function does not use GC.", Call); 4978 break; 4979 case Intrinsic::init_trampoline: 4980 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4981 "llvm.init_trampoline parameter #2 must resolve to a function.", 4982 Call); 4983 break; 4984 case Intrinsic::prefetch: 4985 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4986 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4987 "invalid arguments to llvm.prefetch", Call); 4988 break; 4989 case Intrinsic::stackprotector: 4990 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4991 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4992 break; 4993 case Intrinsic::localescape: { 4994 BasicBlock *BB = Call.getParent(); 4995 Assert(BB == &BB->getParent()->front(), 4996 "llvm.localescape used outside of entry block", Call); 4997 Assert(!SawFrameEscape, 4998 "multiple calls to llvm.localescape in one function", Call); 4999 for (Value *Arg : Call.args()) { 5000 if (isa<ConstantPointerNull>(Arg)) 5001 continue; // Null values are allowed as placeholders. 5002 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 5003 Assert(AI && AI->isStaticAlloca(), 5004 "llvm.localescape only accepts static allocas", Call); 5005 } 5006 FrameEscapeInfo[BB->getParent()].first = Call.arg_size(); 5007 SawFrameEscape = true; 5008 break; 5009 } 5010 case Intrinsic::localrecover: { 5011 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 5012 Function *Fn = dyn_cast<Function>(FnArg); 5013 Assert(Fn && !Fn->isDeclaration(), 5014 "llvm.localrecover first " 5015 "argument must be function defined in this module", 5016 Call); 5017 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 5018 auto &Entry = FrameEscapeInfo[Fn]; 5019 Entry.second = unsigned( 5020 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 5021 break; 5022 } 5023 5024 case Intrinsic::experimental_gc_statepoint: 5025 if (auto *CI = dyn_cast<CallInst>(&Call)) 5026 Assert(!CI->isInlineAsm(), 5027 "gc.statepoint support for inline assembly unimplemented", CI); 5028 Assert(Call.getParent()->getParent()->hasGC(), 5029 "Enclosing function does not use GC.", Call); 5030 5031 verifyStatepoint(Call); 5032 break; 5033 case Intrinsic::experimental_gc_result: { 5034 Assert(Call.getParent()->getParent()->hasGC(), 5035 "Enclosing function does not use GC.", Call); 5036 // Are we tied to a statepoint properly? 5037 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 5038 const Function *StatepointFn = 5039 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 5040 Assert(StatepointFn && StatepointFn->isDeclaration() && 5041 StatepointFn->getIntrinsicID() == 5042 Intrinsic::experimental_gc_statepoint, 5043 "gc.result operand #1 must be from a statepoint", Call, 5044 Call.getArgOperand(0)); 5045 5046 // Assert that result type matches wrapped callee. 5047 auto *TargetFuncType = cast<FunctionType>( 5048 StatepointCall->getAttributes().getParamElementType(2)); 5049 Assert(Call.getType() == TargetFuncType->getReturnType(), 5050 "gc.result result type does not match wrapped callee", Call); 5051 break; 5052 } 5053 case Intrinsic::experimental_gc_relocate: { 5054 Assert(Call.arg_size() == 3, "wrong number of arguments", Call); 5055 5056 Assert(isa<PointerType>(Call.getType()->getScalarType()), 5057 "gc.relocate must return a pointer or a vector of pointers", Call); 5058 5059 // Check that this relocate is correctly tied to the statepoint 5060 5061 // This is case for relocate on the unwinding path of an invoke statepoint 5062 if (LandingPadInst *LandingPad = 5063 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 5064 5065 const BasicBlock *InvokeBB = 5066 LandingPad->getParent()->getUniquePredecessor(); 5067 5068 // Landingpad relocates should have only one predecessor with invoke 5069 // statepoint terminator 5070 Assert(InvokeBB, "safepoints should have unique landingpads", 5071 LandingPad->getParent()); 5072 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 5073 InvokeBB); 5074 Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()), 5075 "gc relocate should be linked to a statepoint", InvokeBB); 5076 } else { 5077 // In all other cases relocate should be tied to the statepoint directly. 5078 // This covers relocates on a normal return path of invoke statepoint and 5079 // relocates of a call statepoint. 5080 auto Token = Call.getArgOperand(0); 5081 Assert(isa<GCStatepointInst>(Token), 5082 "gc relocate is incorrectly tied to the statepoint", Call, Token); 5083 } 5084 5085 // Verify rest of the relocate arguments. 5086 const CallBase &StatepointCall = 5087 *cast<GCRelocateInst>(Call).getStatepoint(); 5088 5089 // Both the base and derived must be piped through the safepoint. 5090 Value *Base = Call.getArgOperand(1); 5091 Assert(isa<ConstantInt>(Base), 5092 "gc.relocate operand #2 must be integer offset", Call); 5093 5094 Value *Derived = Call.getArgOperand(2); 5095 Assert(isa<ConstantInt>(Derived), 5096 "gc.relocate operand #3 must be integer offset", Call); 5097 5098 const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 5099 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 5100 5101 // Check the bounds 5102 if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) { 5103 Assert(BaseIndex < Opt->Inputs.size(), 5104 "gc.relocate: statepoint base index out of bounds", Call); 5105 Assert(DerivedIndex < Opt->Inputs.size(), 5106 "gc.relocate: statepoint derived index out of bounds", Call); 5107 } 5108 5109 // Relocated value must be either a pointer type or vector-of-pointer type, 5110 // but gc_relocate does not need to return the same pointer type as the 5111 // relocated pointer. It can be casted to the correct type later if it's 5112 // desired. However, they must have the same address space and 'vectorness' 5113 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 5114 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 5115 "gc.relocate: relocated value must be a gc pointer", Call); 5116 5117 auto ResultType = Call.getType(); 5118 auto DerivedType = Relocate.getDerivedPtr()->getType(); 5119 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 5120 "gc.relocate: vector relocates to vector and pointer to pointer", 5121 Call); 5122 Assert( 5123 ResultType->getPointerAddressSpace() == 5124 DerivedType->getPointerAddressSpace(), 5125 "gc.relocate: relocating a pointer shouldn't change its address space", 5126 Call); 5127 break; 5128 } 5129 case Intrinsic::eh_exceptioncode: 5130 case Intrinsic::eh_exceptionpointer: { 5131 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 5132 "eh.exceptionpointer argument must be a catchpad", Call); 5133 break; 5134 } 5135 case Intrinsic::get_active_lane_mask: { 5136 Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a " 5137 "vector", Call); 5138 auto *ElemTy = Call.getType()->getScalarType(); 5139 Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not " 5140 "i1", Call); 5141 break; 5142 } 5143 case Intrinsic::masked_load: { 5144 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 5145 Call); 5146 5147 Value *Ptr = Call.getArgOperand(0); 5148 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 5149 Value *Mask = Call.getArgOperand(2); 5150 Value *PassThru = Call.getArgOperand(3); 5151 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 5152 Call); 5153 Assert(Alignment->getValue().isPowerOf2(), 5154 "masked_load: alignment must be a power of 2", Call); 5155 5156 PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 5157 Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType()), 5158 "masked_load: return must match pointer type", Call); 5159 Assert(PassThru->getType() == Call.getType(), 5160 "masked_load: pass through and return type must match", Call); 5161 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 5162 cast<VectorType>(Call.getType())->getElementCount(), 5163 "masked_load: vector mask must be same length as return", Call); 5164 break; 5165 } 5166 case Intrinsic::masked_store: { 5167 Value *Val = Call.getArgOperand(0); 5168 Value *Ptr = Call.getArgOperand(1); 5169 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 5170 Value *Mask = Call.getArgOperand(3); 5171 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 5172 Call); 5173 Assert(Alignment->getValue().isPowerOf2(), 5174 "masked_store: alignment must be a power of 2", Call); 5175 5176 PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 5177 Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType()), 5178 "masked_store: storee must match pointer type", Call); 5179 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 5180 cast<VectorType>(Val->getType())->getElementCount(), 5181 "masked_store: vector mask must be same length as value", Call); 5182 break; 5183 } 5184 5185 case Intrinsic::masked_gather: { 5186 const APInt &Alignment = 5187 cast<ConstantInt>(Call.getArgOperand(1))->getValue(); 5188 Assert(Alignment.isZero() || Alignment.isPowerOf2(), 5189 "masked_gather: alignment must be 0 or a power of 2", Call); 5190 break; 5191 } 5192 case Intrinsic::masked_scatter: { 5193 const APInt &Alignment = 5194 cast<ConstantInt>(Call.getArgOperand(2))->getValue(); 5195 Assert(Alignment.isZero() || Alignment.isPowerOf2(), 5196 "masked_scatter: alignment must be 0 or a power of 2", Call); 5197 break; 5198 } 5199 5200 case Intrinsic::experimental_guard: { 5201 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 5202 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5203 "experimental_guard must have exactly one " 5204 "\"deopt\" operand bundle"); 5205 break; 5206 } 5207 5208 case Intrinsic::experimental_deoptimize: { 5209 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 5210 Call); 5211 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5212 "experimental_deoptimize must have exactly one " 5213 "\"deopt\" operand bundle"); 5214 Assert(Call.getType() == Call.getFunction()->getReturnType(), 5215 "experimental_deoptimize return type must match caller return type"); 5216 5217 if (isa<CallInst>(Call)) { 5218 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 5219 Assert(RI, 5220 "calls to experimental_deoptimize must be followed by a return"); 5221 5222 if (!Call.getType()->isVoidTy() && RI) 5223 Assert(RI->getReturnValue() == &Call, 5224 "calls to experimental_deoptimize must be followed by a return " 5225 "of the value computed by experimental_deoptimize"); 5226 } 5227 5228 break; 5229 } 5230 case Intrinsic::vector_reduce_and: 5231 case Intrinsic::vector_reduce_or: 5232 case Intrinsic::vector_reduce_xor: 5233 case Intrinsic::vector_reduce_add: 5234 case Intrinsic::vector_reduce_mul: 5235 case Intrinsic::vector_reduce_smax: 5236 case Intrinsic::vector_reduce_smin: 5237 case Intrinsic::vector_reduce_umax: 5238 case Intrinsic::vector_reduce_umin: { 5239 Type *ArgTy = Call.getArgOperand(0)->getType(); 5240 Assert(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(), 5241 "Intrinsic has incorrect argument type!"); 5242 break; 5243 } 5244 case Intrinsic::vector_reduce_fmax: 5245 case Intrinsic::vector_reduce_fmin: { 5246 Type *ArgTy = Call.getArgOperand(0)->getType(); 5247 Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5248 "Intrinsic has incorrect argument type!"); 5249 break; 5250 } 5251 case Intrinsic::vector_reduce_fadd: 5252 case Intrinsic::vector_reduce_fmul: { 5253 // Unlike the other reductions, the first argument is a start value. The 5254 // second argument is the vector to be reduced. 5255 Type *ArgTy = Call.getArgOperand(1)->getType(); 5256 Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5257 "Intrinsic has incorrect argument type!"); 5258 break; 5259 } 5260 case Intrinsic::smul_fix: 5261 case Intrinsic::smul_fix_sat: 5262 case Intrinsic::umul_fix: 5263 case Intrinsic::umul_fix_sat: 5264 case Intrinsic::sdiv_fix: 5265 case Intrinsic::sdiv_fix_sat: 5266 case Intrinsic::udiv_fix: 5267 case Intrinsic::udiv_fix_sat: { 5268 Value *Op1 = Call.getArgOperand(0); 5269 Value *Op2 = Call.getArgOperand(1); 5270 Assert(Op1->getType()->isIntOrIntVectorTy(), 5271 "first operand of [us][mul|div]_fix[_sat] must be an int type or " 5272 "vector of ints"); 5273 Assert(Op2->getType()->isIntOrIntVectorTy(), 5274 "second operand of [us][mul|div]_fix[_sat] must be an int type or " 5275 "vector of ints"); 5276 5277 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 5278 Assert(Op3->getType()->getBitWidth() <= 32, 5279 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); 5280 5281 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 5282 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { 5283 Assert( 5284 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 5285 "the scale of s[mul|div]_fix[_sat] must be less than the width of " 5286 "the operands"); 5287 } else { 5288 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 5289 "the scale of u[mul|div]_fix[_sat] must be less than or equal " 5290 "to the width of the operands"); 5291 } 5292 break; 5293 } 5294 case Intrinsic::lround: 5295 case Intrinsic::llround: 5296 case Intrinsic::lrint: 5297 case Intrinsic::llrint: { 5298 Type *ValTy = Call.getArgOperand(0)->getType(); 5299 Type *ResultTy = Call.getType(); 5300 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5301 "Intrinsic does not support vectors", &Call); 5302 break; 5303 } 5304 case Intrinsic::bswap: { 5305 Type *Ty = Call.getType(); 5306 unsigned Size = Ty->getScalarSizeInBits(); 5307 Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call); 5308 break; 5309 } 5310 case Intrinsic::invariant_start: { 5311 ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 5312 Assert(InvariantSize && 5313 (!InvariantSize->isNegative() || InvariantSize->isMinusOne()), 5314 "invariant_start parameter must be -1, 0 or a positive number", 5315 &Call); 5316 break; 5317 } 5318 case Intrinsic::matrix_multiply: 5319 case Intrinsic::matrix_transpose: 5320 case Intrinsic::matrix_column_major_load: 5321 case Intrinsic::matrix_column_major_store: { 5322 Function *IF = Call.getCalledFunction(); 5323 ConstantInt *Stride = nullptr; 5324 ConstantInt *NumRows; 5325 ConstantInt *NumColumns; 5326 VectorType *ResultTy; 5327 Type *Op0ElemTy = nullptr; 5328 Type *Op1ElemTy = nullptr; 5329 switch (ID) { 5330 case Intrinsic::matrix_multiply: 5331 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 5332 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5333 ResultTy = cast<VectorType>(Call.getType()); 5334 Op0ElemTy = 5335 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5336 Op1ElemTy = 5337 cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType(); 5338 break; 5339 case Intrinsic::matrix_transpose: 5340 NumRows = cast<ConstantInt>(Call.getArgOperand(1)); 5341 NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); 5342 ResultTy = cast<VectorType>(Call.getType()); 5343 Op0ElemTy = 5344 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5345 break; 5346 case Intrinsic::matrix_column_major_load: { 5347 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1)); 5348 NumRows = cast<ConstantInt>(Call.getArgOperand(3)); 5349 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5350 ResultTy = cast<VectorType>(Call.getType()); 5351 5352 PointerType *Op0PtrTy = 5353 cast<PointerType>(Call.getArgOperand(0)->getType()); 5354 if (!Op0PtrTy->isOpaque()) 5355 Op0ElemTy = Op0PtrTy->getNonOpaquePointerElementType(); 5356 break; 5357 } 5358 case Intrinsic::matrix_column_major_store: { 5359 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2)); 5360 NumRows = cast<ConstantInt>(Call.getArgOperand(4)); 5361 NumColumns = cast<ConstantInt>(Call.getArgOperand(5)); 5362 ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 5363 Op0ElemTy = 5364 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5365 5366 PointerType *Op1PtrTy = 5367 cast<PointerType>(Call.getArgOperand(1)->getType()); 5368 if (!Op1PtrTy->isOpaque()) 5369 Op1ElemTy = Op1PtrTy->getNonOpaquePointerElementType(); 5370 break; 5371 } 5372 default: 5373 llvm_unreachable("unexpected intrinsic"); 5374 } 5375 5376 Assert(ResultTy->getElementType()->isIntegerTy() || 5377 ResultTy->getElementType()->isFloatingPointTy(), 5378 "Result type must be an integer or floating-point type!", IF); 5379 5380 if (Op0ElemTy) 5381 Assert(ResultTy->getElementType() == Op0ElemTy, 5382 "Vector element type mismatch of the result and first operand " 5383 "vector!", IF); 5384 5385 if (Op1ElemTy) 5386 Assert(ResultTy->getElementType() == Op1ElemTy, 5387 "Vector element type mismatch of the result and second operand " 5388 "vector!", IF); 5389 5390 Assert(cast<FixedVectorType>(ResultTy)->getNumElements() == 5391 NumRows->getZExtValue() * NumColumns->getZExtValue(), 5392 "Result of a matrix operation does not fit in the returned vector!"); 5393 5394 if (Stride) 5395 Assert(Stride->getZExtValue() >= NumRows->getZExtValue(), 5396 "Stride must be greater or equal than the number of rows!", IF); 5397 5398 break; 5399 } 5400 case Intrinsic::experimental_vector_splice: { 5401 VectorType *VecTy = cast<VectorType>(Call.getType()); 5402 int64_t Idx = cast<ConstantInt>(Call.getArgOperand(2))->getSExtValue(); 5403 int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue(); 5404 if (Call.getParent() && Call.getParent()->getParent()) { 5405 AttributeList Attrs = Call.getParent()->getParent()->getAttributes(); 5406 if (Attrs.hasFnAttr(Attribute::VScaleRange)) 5407 KnownMinNumElements *= Attrs.getFnAttrs().getVScaleRangeMin(); 5408 } 5409 Assert((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) || 5410 (Idx >= 0 && Idx < KnownMinNumElements), 5411 "The splice index exceeds the range [-VL, VL-1] where VL is the " 5412 "known minimum number of elements in the vector. For scalable " 5413 "vectors the minimum number of elements is determined from " 5414 "vscale_range.", 5415 &Call); 5416 break; 5417 } 5418 case Intrinsic::experimental_stepvector: { 5419 VectorType *VecTy = dyn_cast<VectorType>(Call.getType()); 5420 Assert(VecTy && VecTy->getScalarType()->isIntegerTy() && 5421 VecTy->getScalarSizeInBits() >= 8, 5422 "experimental_stepvector only supported for vectors of integers " 5423 "with a bitwidth of at least 8.", 5424 &Call); 5425 break; 5426 } 5427 case Intrinsic::experimental_vector_insert: { 5428 Value *Vec = Call.getArgOperand(0); 5429 Value *SubVec = Call.getArgOperand(1); 5430 Value *Idx = Call.getArgOperand(2); 5431 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5432 5433 VectorType *VecTy = cast<VectorType>(Vec->getType()); 5434 VectorType *SubVecTy = cast<VectorType>(SubVec->getType()); 5435 5436 ElementCount VecEC = VecTy->getElementCount(); 5437 ElementCount SubVecEC = SubVecTy->getElementCount(); 5438 Assert(VecTy->getElementType() == SubVecTy->getElementType(), 5439 "experimental_vector_insert parameters must have the same element " 5440 "type.", 5441 &Call); 5442 Assert(IdxN % SubVecEC.getKnownMinValue() == 0, 5443 "experimental_vector_insert index must be a constant multiple of " 5444 "the subvector's known minimum vector length."); 5445 5446 // If this insertion is not the 'mixed' case where a fixed vector is 5447 // inserted into a scalable vector, ensure that the insertion of the 5448 // subvector does not overrun the parent vector. 5449 if (VecEC.isScalable() == SubVecEC.isScalable()) { 5450 Assert( 5451 IdxN < VecEC.getKnownMinValue() && 5452 IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 5453 "subvector operand of experimental_vector_insert would overrun the " 5454 "vector being inserted into."); 5455 } 5456 break; 5457 } 5458 case Intrinsic::experimental_vector_extract: { 5459 Value *Vec = Call.getArgOperand(0); 5460 Value *Idx = Call.getArgOperand(1); 5461 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5462 5463 VectorType *ResultTy = cast<VectorType>(Call.getType()); 5464 VectorType *VecTy = cast<VectorType>(Vec->getType()); 5465 5466 ElementCount VecEC = VecTy->getElementCount(); 5467 ElementCount ResultEC = ResultTy->getElementCount(); 5468 5469 Assert(ResultTy->getElementType() == VecTy->getElementType(), 5470 "experimental_vector_extract result must have the same element " 5471 "type as the input vector.", 5472 &Call); 5473 Assert(IdxN % ResultEC.getKnownMinValue() == 0, 5474 "experimental_vector_extract index must be a constant multiple of " 5475 "the result type's known minimum vector length."); 5476 5477 // If this extraction is not the 'mixed' case where a fixed vector is is 5478 // extracted from a scalable vector, ensure that the extraction does not 5479 // overrun the parent vector. 5480 if (VecEC.isScalable() == ResultEC.isScalable()) { 5481 Assert(IdxN < VecEC.getKnownMinValue() && 5482 IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 5483 "experimental_vector_extract would overrun."); 5484 } 5485 break; 5486 } 5487 case Intrinsic::experimental_noalias_scope_decl: { 5488 NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call)); 5489 break; 5490 } 5491 case Intrinsic::preserve_array_access_index: 5492 case Intrinsic::preserve_struct_access_index: { 5493 Type *ElemTy = Call.getAttributes().getParamElementType(0); 5494 Assert(ElemTy, 5495 "Intrinsic requires elementtype attribute on first argument.", 5496 &Call); 5497 break; 5498 } 5499 }; 5500 } 5501 5502 /// Carefully grab the subprogram from a local scope. 5503 /// 5504 /// This carefully grabs the subprogram from a local scope, avoiding the 5505 /// built-in assertions that would typically fire. 5506 static DISubprogram *getSubprogram(Metadata *LocalScope) { 5507 if (!LocalScope) 5508 return nullptr; 5509 5510 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 5511 return SP; 5512 5513 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 5514 return getSubprogram(LB->getRawScope()); 5515 5516 // Just return null; broken scope chains are checked elsewhere. 5517 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 5518 return nullptr; 5519 } 5520 5521 void Verifier::visitVPIntrinsic(VPIntrinsic &VPI) { 5522 if (auto *VPCast = dyn_cast<VPCastIntrinsic>(&VPI)) { 5523 auto *RetTy = cast<VectorType>(VPCast->getType()); 5524 auto *ValTy = cast<VectorType>(VPCast->getOperand(0)->getType()); 5525 Assert(RetTy->getElementCount() == ValTy->getElementCount(), 5526 "VP cast intrinsic first argument and result vector lengths must be " 5527 "equal", 5528 *VPCast); 5529 } 5530 } 5531 5532 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 5533 unsigned NumOperands; 5534 bool HasRoundingMD; 5535 switch (FPI.getIntrinsicID()) { 5536 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 5537 case Intrinsic::INTRINSIC: \ 5538 NumOperands = NARG; \ 5539 HasRoundingMD = ROUND_MODE; \ 5540 break; 5541 #include "llvm/IR/ConstrainedOps.def" 5542 default: 5543 llvm_unreachable("Invalid constrained FP intrinsic!"); 5544 } 5545 NumOperands += (1 + HasRoundingMD); 5546 // Compare intrinsics carry an extra predicate metadata operand. 5547 if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 5548 NumOperands += 1; 5549 Assert((FPI.arg_size() == NumOperands), 5550 "invalid arguments for constrained FP intrinsic", &FPI); 5551 5552 switch (FPI.getIntrinsicID()) { 5553 case Intrinsic::experimental_constrained_lrint: 5554 case Intrinsic::experimental_constrained_llrint: { 5555 Type *ValTy = FPI.getArgOperand(0)->getType(); 5556 Type *ResultTy = FPI.getType(); 5557 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5558 "Intrinsic does not support vectors", &FPI); 5559 } 5560 break; 5561 5562 case Intrinsic::experimental_constrained_lround: 5563 case Intrinsic::experimental_constrained_llround: { 5564 Type *ValTy = FPI.getArgOperand(0)->getType(); 5565 Type *ResultTy = FPI.getType(); 5566 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5567 "Intrinsic does not support vectors", &FPI); 5568 break; 5569 } 5570 5571 case Intrinsic::experimental_constrained_fcmp: 5572 case Intrinsic::experimental_constrained_fcmps: { 5573 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 5574 Assert(CmpInst::isFPPredicate(Pred), 5575 "invalid predicate for constrained FP comparison intrinsic", &FPI); 5576 break; 5577 } 5578 5579 case Intrinsic::experimental_constrained_fptosi: 5580 case Intrinsic::experimental_constrained_fptoui: { 5581 Value *Operand = FPI.getArgOperand(0); 5582 uint64_t NumSrcElem = 0; 5583 Assert(Operand->getType()->isFPOrFPVectorTy(), 5584 "Intrinsic first argument must be floating point", &FPI); 5585 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5586 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5587 } 5588 5589 Operand = &FPI; 5590 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5591 "Intrinsic first argument and result disagree on vector use", &FPI); 5592 Assert(Operand->getType()->isIntOrIntVectorTy(), 5593 "Intrinsic result must be an integer", &FPI); 5594 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5595 Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5596 "Intrinsic first argument and result vector lengths must be equal", 5597 &FPI); 5598 } 5599 } 5600 break; 5601 5602 case Intrinsic::experimental_constrained_sitofp: 5603 case Intrinsic::experimental_constrained_uitofp: { 5604 Value *Operand = FPI.getArgOperand(0); 5605 uint64_t NumSrcElem = 0; 5606 Assert(Operand->getType()->isIntOrIntVectorTy(), 5607 "Intrinsic first argument must be integer", &FPI); 5608 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5609 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5610 } 5611 5612 Operand = &FPI; 5613 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5614 "Intrinsic first argument and result disagree on vector use", &FPI); 5615 Assert(Operand->getType()->isFPOrFPVectorTy(), 5616 "Intrinsic result must be a floating point", &FPI); 5617 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5618 Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5619 "Intrinsic first argument and result vector lengths must be equal", 5620 &FPI); 5621 } 5622 } break; 5623 5624 case Intrinsic::experimental_constrained_fptrunc: 5625 case Intrinsic::experimental_constrained_fpext: { 5626 Value *Operand = FPI.getArgOperand(0); 5627 Type *OperandTy = Operand->getType(); 5628 Value *Result = &FPI; 5629 Type *ResultTy = Result->getType(); 5630 Assert(OperandTy->isFPOrFPVectorTy(), 5631 "Intrinsic first argument must be FP or FP vector", &FPI); 5632 Assert(ResultTy->isFPOrFPVectorTy(), 5633 "Intrinsic result must be FP or FP vector", &FPI); 5634 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 5635 "Intrinsic first argument and result disagree on vector use", &FPI); 5636 if (OperandTy->isVectorTy()) { 5637 Assert(cast<FixedVectorType>(OperandTy)->getNumElements() == 5638 cast<FixedVectorType>(ResultTy)->getNumElements(), 5639 "Intrinsic first argument and result vector lengths must be equal", 5640 &FPI); 5641 } 5642 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 5643 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 5644 "Intrinsic first argument's type must be larger than result type", 5645 &FPI); 5646 } else { 5647 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 5648 "Intrinsic first argument's type must be smaller than result type", 5649 &FPI); 5650 } 5651 } 5652 break; 5653 5654 default: 5655 break; 5656 } 5657 5658 // If a non-metadata argument is passed in a metadata slot then the 5659 // error will be caught earlier when the incorrect argument doesn't 5660 // match the specification in the intrinsic call table. Thus, no 5661 // argument type check is needed here. 5662 5663 Assert(FPI.getExceptionBehavior().hasValue(), 5664 "invalid exception behavior argument", &FPI); 5665 if (HasRoundingMD) { 5666 Assert(FPI.getRoundingMode().hasValue(), 5667 "invalid rounding mode argument", &FPI); 5668 } 5669 } 5670 5671 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 5672 auto *MD = DII.getRawLocation(); 5673 AssertDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) || 5674 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 5675 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 5676 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 5677 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 5678 DII.getRawVariable()); 5679 AssertDI(isa<DIExpression>(DII.getRawExpression()), 5680 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 5681 DII.getRawExpression()); 5682 5683 // Ignore broken !dbg attachments; they're checked elsewhere. 5684 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 5685 if (!isa<DILocation>(N)) 5686 return; 5687 5688 BasicBlock *BB = DII.getParent(); 5689 Function *F = BB ? BB->getParent() : nullptr; 5690 5691 // The scopes for variables and !dbg attachments must agree. 5692 DILocalVariable *Var = DII.getVariable(); 5693 DILocation *Loc = DII.getDebugLoc(); 5694 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5695 &DII, BB, F); 5696 5697 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 5698 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5699 if (!VarSP || !LocSP) 5700 return; // Broken scope chains are checked elsewhere. 5701 5702 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5703 " variable and !dbg attachment", 5704 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 5705 Loc->getScope()->getSubprogram()); 5706 5707 // This check is redundant with one in visitLocalVariable(). 5708 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 5709 Var->getRawType()); 5710 verifyFnArgs(DII); 5711 } 5712 5713 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 5714 AssertDI(isa<DILabel>(DLI.getRawLabel()), 5715 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 5716 DLI.getRawLabel()); 5717 5718 // Ignore broken !dbg attachments; they're checked elsewhere. 5719 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 5720 if (!isa<DILocation>(N)) 5721 return; 5722 5723 BasicBlock *BB = DLI.getParent(); 5724 Function *F = BB ? BB->getParent() : nullptr; 5725 5726 // The scopes for variables and !dbg attachments must agree. 5727 DILabel *Label = DLI.getLabel(); 5728 DILocation *Loc = DLI.getDebugLoc(); 5729 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5730 &DLI, BB, F); 5731 5732 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 5733 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5734 if (!LabelSP || !LocSP) 5735 return; 5736 5737 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5738 " label and !dbg attachment", 5739 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 5740 Loc->getScope()->getSubprogram()); 5741 } 5742 5743 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 5744 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 5745 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5746 5747 // We don't know whether this intrinsic verified correctly. 5748 if (!V || !E || !E->isValid()) 5749 return; 5750 5751 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 5752 auto Fragment = E->getFragmentInfo(); 5753 if (!Fragment) 5754 return; 5755 5756 // The frontend helps out GDB by emitting the members of local anonymous 5757 // unions as artificial local variables with shared storage. When SROA splits 5758 // the storage for artificial local variables that are smaller than the entire 5759 // union, the overhang piece will be outside of the allotted space for the 5760 // variable and this check fails. 5761 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 5762 if (V->isArtificial()) 5763 return; 5764 5765 verifyFragmentExpression(*V, *Fragment, &I); 5766 } 5767 5768 template <typename ValueOrMetadata> 5769 void Verifier::verifyFragmentExpression(const DIVariable &V, 5770 DIExpression::FragmentInfo Fragment, 5771 ValueOrMetadata *Desc) { 5772 // If there's no size, the type is broken, but that should be checked 5773 // elsewhere. 5774 auto VarSize = V.getSizeInBits(); 5775 if (!VarSize) 5776 return; 5777 5778 unsigned FragSize = Fragment.SizeInBits; 5779 unsigned FragOffset = Fragment.OffsetInBits; 5780 AssertDI(FragSize + FragOffset <= *VarSize, 5781 "fragment is larger than or outside of variable", Desc, &V); 5782 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 5783 } 5784 5785 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 5786 // This function does not take the scope of noninlined function arguments into 5787 // account. Don't run it if current function is nodebug, because it may 5788 // contain inlined debug intrinsics. 5789 if (!HasDebugInfo) 5790 return; 5791 5792 // For performance reasons only check non-inlined ones. 5793 if (I.getDebugLoc()->getInlinedAt()) 5794 return; 5795 5796 DILocalVariable *Var = I.getVariable(); 5797 AssertDI(Var, "dbg intrinsic without variable"); 5798 5799 unsigned ArgNo = Var->getArg(); 5800 if (!ArgNo) 5801 return; 5802 5803 // Verify there are no duplicate function argument debug info entries. 5804 // These will cause hard-to-debug assertions in the DWARF backend. 5805 if (DebugFnArgs.size() < ArgNo) 5806 DebugFnArgs.resize(ArgNo, nullptr); 5807 5808 auto *Prev = DebugFnArgs[ArgNo - 1]; 5809 DebugFnArgs[ArgNo - 1] = Var; 5810 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 5811 Prev, Var); 5812 } 5813 5814 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 5815 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5816 5817 // We don't know whether this intrinsic verified correctly. 5818 if (!E || !E->isValid()) 5819 return; 5820 5821 AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); 5822 } 5823 5824 void Verifier::verifyCompileUnits() { 5825 // When more than one Module is imported into the same context, such as during 5826 // an LTO build before linking the modules, ODR type uniquing may cause types 5827 // to point to a different CU. This check does not make sense in this case. 5828 if (M.getContext().isODRUniquingDebugTypes()) 5829 return; 5830 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 5831 SmallPtrSet<const Metadata *, 2> Listed; 5832 if (CUs) 5833 Listed.insert(CUs->op_begin(), CUs->op_end()); 5834 for (auto *CU : CUVisited) 5835 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 5836 CUVisited.clear(); 5837 } 5838 5839 void Verifier::verifyDeoptimizeCallingConvs() { 5840 if (DeoptimizeDeclarations.empty()) 5841 return; 5842 5843 const Function *First = DeoptimizeDeclarations[0]; 5844 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 5845 Assert(First->getCallingConv() == F->getCallingConv(), 5846 "All llvm.experimental.deoptimize declarations must have the same " 5847 "calling convention", 5848 First, F); 5849 } 5850 } 5851 5852 void Verifier::verifyAttachedCallBundle(const CallBase &Call, 5853 const OperandBundleUse &BU) { 5854 FunctionType *FTy = Call.getFunctionType(); 5855 5856 Assert((FTy->getReturnType()->isPointerTy() || 5857 (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())), 5858 "a call with operand bundle \"clang.arc.attachedcall\" must call a " 5859 "function returning a pointer or a non-returning function that has a " 5860 "void return type", 5861 Call); 5862 5863 Assert(BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()), 5864 "operand bundle \"clang.arc.attachedcall\" requires one function as " 5865 "an argument", 5866 Call); 5867 5868 auto *Fn = cast<Function>(BU.Inputs.front()); 5869 Intrinsic::ID IID = Fn->getIntrinsicID(); 5870 5871 if (IID) { 5872 Assert((IID == Intrinsic::objc_retainAutoreleasedReturnValue || 5873 IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue), 5874 "invalid function argument", Call); 5875 } else { 5876 StringRef FnName = Fn->getName(); 5877 Assert((FnName == "objc_retainAutoreleasedReturnValue" || 5878 FnName == "objc_unsafeClaimAutoreleasedReturnValue"), 5879 "invalid function argument", Call); 5880 } 5881 } 5882 5883 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 5884 bool HasSource = F.getSource().hasValue(); 5885 if (!HasSourceDebugInfo.count(&U)) 5886 HasSourceDebugInfo[&U] = HasSource; 5887 AssertDI(HasSource == HasSourceDebugInfo[&U], 5888 "inconsistent use of embedded source"); 5889 } 5890 5891 void Verifier::verifyNoAliasScopeDecl() { 5892 if (NoAliasScopeDecls.empty()) 5893 return; 5894 5895 // only a single scope must be declared at a time. 5896 for (auto *II : NoAliasScopeDecls) { 5897 assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl && 5898 "Not a llvm.experimental.noalias.scope.decl ?"); 5899 const auto *ScopeListMV = dyn_cast<MetadataAsValue>( 5900 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 5901 Assert(ScopeListMV != nullptr, 5902 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue " 5903 "argument", 5904 II); 5905 5906 const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata()); 5907 Assert(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", 5908 II); 5909 Assert(ScopeListMD->getNumOperands() == 1, 5910 "!id.scope.list must point to a list with a single scope", II); 5911 visitAliasScopeListMetadata(ScopeListMD); 5912 } 5913 5914 // Only check the domination rule when requested. Once all passes have been 5915 // adapted this option can go away. 5916 if (!VerifyNoAliasScopeDomination) 5917 return; 5918 5919 // Now sort the intrinsics based on the scope MDNode so that declarations of 5920 // the same scopes are next to each other. 5921 auto GetScope = [](IntrinsicInst *II) { 5922 const auto *ScopeListMV = cast<MetadataAsValue>( 5923 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 5924 return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0); 5925 }; 5926 5927 // We are sorting on MDNode pointers here. For valid input IR this is ok. 5928 // TODO: Sort on Metadata ID to avoid non-deterministic error messages. 5929 auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) { 5930 return GetScope(Lhs) < GetScope(Rhs); 5931 }; 5932 5933 llvm::sort(NoAliasScopeDecls, Compare); 5934 5935 // Go over the intrinsics and check that for the same scope, they are not 5936 // dominating each other. 5937 auto ItCurrent = NoAliasScopeDecls.begin(); 5938 while (ItCurrent != NoAliasScopeDecls.end()) { 5939 auto CurScope = GetScope(*ItCurrent); 5940 auto ItNext = ItCurrent; 5941 do { 5942 ++ItNext; 5943 } while (ItNext != NoAliasScopeDecls.end() && 5944 GetScope(*ItNext) == CurScope); 5945 5946 // [ItCurrent, ItNext) represents the declarations for the same scope. 5947 // Ensure they are not dominating each other.. but only if it is not too 5948 // expensive. 5949 if (ItNext - ItCurrent < 32) 5950 for (auto *I : llvm::make_range(ItCurrent, ItNext)) 5951 for (auto *J : llvm::make_range(ItCurrent, ItNext)) 5952 if (I != J) 5953 Assert(!DT.dominates(I, J), 5954 "llvm.experimental.noalias.scope.decl dominates another one " 5955 "with the same scope", 5956 I); 5957 ItCurrent = ItNext; 5958 } 5959 } 5960 5961 //===----------------------------------------------------------------------===// 5962 // Implement the public interfaces to this file... 5963 //===----------------------------------------------------------------------===// 5964 5965 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 5966 Function &F = const_cast<Function &>(f); 5967 5968 // Don't use a raw_null_ostream. Printing IR is expensive. 5969 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 5970 5971 // Note that this function's return value is inverted from what you would 5972 // expect of a function called "verify". 5973 return !V.verify(F); 5974 } 5975 5976 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 5977 bool *BrokenDebugInfo) { 5978 // Don't use a raw_null_ostream. Printing IR is expensive. 5979 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 5980 5981 bool Broken = false; 5982 for (const Function &F : M) 5983 Broken |= !V.verify(F); 5984 5985 Broken |= !V.verify(); 5986 if (BrokenDebugInfo) 5987 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 5988 // Note that this function's return value is inverted from what you would 5989 // expect of a function called "verify". 5990 return Broken; 5991 } 5992 5993 namespace { 5994 5995 struct VerifierLegacyPass : public FunctionPass { 5996 static char ID; 5997 5998 std::unique_ptr<Verifier> V; 5999 bool FatalErrors = true; 6000 6001 VerifierLegacyPass() : FunctionPass(ID) { 6002 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 6003 } 6004 explicit VerifierLegacyPass(bool FatalErrors) 6005 : FunctionPass(ID), 6006 FatalErrors(FatalErrors) { 6007 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 6008 } 6009 6010 bool doInitialization(Module &M) override { 6011 V = std::make_unique<Verifier>( 6012 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 6013 return false; 6014 } 6015 6016 bool runOnFunction(Function &F) override { 6017 if (!V->verify(F) && FatalErrors) { 6018 errs() << "in function " << F.getName() << '\n'; 6019 report_fatal_error("Broken function found, compilation aborted!"); 6020 } 6021 return false; 6022 } 6023 6024 bool doFinalization(Module &M) override { 6025 bool HasErrors = false; 6026 for (Function &F : M) 6027 if (F.isDeclaration()) 6028 HasErrors |= !V->verify(F); 6029 6030 HasErrors |= !V->verify(); 6031 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 6032 report_fatal_error("Broken module found, compilation aborted!"); 6033 return false; 6034 } 6035 6036 void getAnalysisUsage(AnalysisUsage &AU) const override { 6037 AU.setPreservesAll(); 6038 } 6039 }; 6040 6041 } // end anonymous namespace 6042 6043 /// Helper to issue failure from the TBAA verification 6044 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 6045 if (Diagnostic) 6046 return Diagnostic->CheckFailed(Args...); 6047 } 6048 6049 #define AssertTBAA(C, ...) \ 6050 do { \ 6051 if (!(C)) { \ 6052 CheckFailed(__VA_ARGS__); \ 6053 return false; \ 6054 } \ 6055 } while (false) 6056 6057 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 6058 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 6059 /// struct-type node describing an aggregate data structure (like a struct). 6060 TBAAVerifier::TBAABaseNodeSummary 6061 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 6062 bool IsNewFormat) { 6063 if (BaseNode->getNumOperands() < 2) { 6064 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 6065 return {true, ~0u}; 6066 } 6067 6068 auto Itr = TBAABaseNodes.find(BaseNode); 6069 if (Itr != TBAABaseNodes.end()) 6070 return Itr->second; 6071 6072 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 6073 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 6074 (void)InsertResult; 6075 assert(InsertResult.second && "We just checked!"); 6076 return Result; 6077 } 6078 6079 TBAAVerifier::TBAABaseNodeSummary 6080 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 6081 bool IsNewFormat) { 6082 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 6083 6084 if (BaseNode->getNumOperands() == 2) { 6085 // Scalar nodes can only be accessed at offset 0. 6086 return isValidScalarTBAANode(BaseNode) 6087 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 6088 : InvalidNode; 6089 } 6090 6091 if (IsNewFormat) { 6092 if (BaseNode->getNumOperands() % 3 != 0) { 6093 CheckFailed("Access tag nodes must have the number of operands that is a " 6094 "multiple of 3!", BaseNode); 6095 return InvalidNode; 6096 } 6097 } else { 6098 if (BaseNode->getNumOperands() % 2 != 1) { 6099 CheckFailed("Struct tag nodes must have an odd number of operands!", 6100 BaseNode); 6101 return InvalidNode; 6102 } 6103 } 6104 6105 // Check the type size field. 6106 if (IsNewFormat) { 6107 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6108 BaseNode->getOperand(1)); 6109 if (!TypeSizeNode) { 6110 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 6111 return InvalidNode; 6112 } 6113 } 6114 6115 // Check the type name field. In the new format it can be anything. 6116 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 6117 CheckFailed("Struct tag nodes have a string as their first operand", 6118 BaseNode); 6119 return InvalidNode; 6120 } 6121 6122 bool Failed = false; 6123 6124 Optional<APInt> PrevOffset; 6125 unsigned BitWidth = ~0u; 6126 6127 // We've already checked that BaseNode is not a degenerate root node with one 6128 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 6129 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 6130 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 6131 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 6132 Idx += NumOpsPerField) { 6133 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 6134 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 6135 if (!isa<MDNode>(FieldTy)) { 6136 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 6137 Failed = true; 6138 continue; 6139 } 6140 6141 auto *OffsetEntryCI = 6142 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 6143 if (!OffsetEntryCI) { 6144 CheckFailed("Offset entries must be constants!", &I, BaseNode); 6145 Failed = true; 6146 continue; 6147 } 6148 6149 if (BitWidth == ~0u) 6150 BitWidth = OffsetEntryCI->getBitWidth(); 6151 6152 if (OffsetEntryCI->getBitWidth() != BitWidth) { 6153 CheckFailed( 6154 "Bitwidth between the offsets and struct type entries must match", &I, 6155 BaseNode); 6156 Failed = true; 6157 continue; 6158 } 6159 6160 // NB! As far as I can tell, we generate a non-strictly increasing offset 6161 // sequence only from structs that have zero size bit fields. When 6162 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 6163 // pick the field lexically the latest in struct type metadata node. This 6164 // mirrors the actual behavior of the alias analysis implementation. 6165 bool IsAscending = 6166 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 6167 6168 if (!IsAscending) { 6169 CheckFailed("Offsets must be increasing!", &I, BaseNode); 6170 Failed = true; 6171 } 6172 6173 PrevOffset = OffsetEntryCI->getValue(); 6174 6175 if (IsNewFormat) { 6176 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6177 BaseNode->getOperand(Idx + 2)); 6178 if (!MemberSizeNode) { 6179 CheckFailed("Member size entries must be constants!", &I, BaseNode); 6180 Failed = true; 6181 continue; 6182 } 6183 } 6184 } 6185 6186 return Failed ? InvalidNode 6187 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 6188 } 6189 6190 static bool IsRootTBAANode(const MDNode *MD) { 6191 return MD->getNumOperands() < 2; 6192 } 6193 6194 static bool IsScalarTBAANodeImpl(const MDNode *MD, 6195 SmallPtrSetImpl<const MDNode *> &Visited) { 6196 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 6197 return false; 6198 6199 if (!isa<MDString>(MD->getOperand(0))) 6200 return false; 6201 6202 if (MD->getNumOperands() == 3) { 6203 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 6204 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 6205 return false; 6206 } 6207 6208 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 6209 return Parent && Visited.insert(Parent).second && 6210 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 6211 } 6212 6213 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 6214 auto ResultIt = TBAAScalarNodes.find(MD); 6215 if (ResultIt != TBAAScalarNodes.end()) 6216 return ResultIt->second; 6217 6218 SmallPtrSet<const MDNode *, 4> Visited; 6219 bool Result = IsScalarTBAANodeImpl(MD, Visited); 6220 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 6221 (void)InsertResult; 6222 assert(InsertResult.second && "Just checked!"); 6223 6224 return Result; 6225 } 6226 6227 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 6228 /// Offset in place to be the offset within the field node returned. 6229 /// 6230 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 6231 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 6232 const MDNode *BaseNode, 6233 APInt &Offset, 6234 bool IsNewFormat) { 6235 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 6236 6237 // Scalar nodes have only one possible "field" -- their parent in the access 6238 // hierarchy. Offset must be zero at this point, but our caller is supposed 6239 // to Assert that. 6240 if (BaseNode->getNumOperands() == 2) 6241 return cast<MDNode>(BaseNode->getOperand(1)); 6242 6243 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 6244 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 6245 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 6246 Idx += NumOpsPerField) { 6247 auto *OffsetEntryCI = 6248 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 6249 if (OffsetEntryCI->getValue().ugt(Offset)) { 6250 if (Idx == FirstFieldOpNo) { 6251 CheckFailed("Could not find TBAA parent in struct type node", &I, 6252 BaseNode, &Offset); 6253 return nullptr; 6254 } 6255 6256 unsigned PrevIdx = Idx - NumOpsPerField; 6257 auto *PrevOffsetEntryCI = 6258 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 6259 Offset -= PrevOffsetEntryCI->getValue(); 6260 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 6261 } 6262 } 6263 6264 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 6265 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 6266 BaseNode->getOperand(LastIdx + 1)); 6267 Offset -= LastOffsetEntryCI->getValue(); 6268 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 6269 } 6270 6271 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 6272 if (!Type || Type->getNumOperands() < 3) 6273 return false; 6274 6275 // In the new format type nodes shall have a reference to the parent type as 6276 // its first operand. 6277 return isa_and_nonnull<MDNode>(Type->getOperand(0)); 6278 } 6279 6280 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 6281 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 6282 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 6283 isa<AtomicCmpXchgInst>(I), 6284 "This instruction shall not have a TBAA access tag!", &I); 6285 6286 bool IsStructPathTBAA = 6287 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 6288 6289 AssertTBAA( 6290 IsStructPathTBAA, 6291 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 6292 6293 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 6294 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 6295 6296 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 6297 6298 if (IsNewFormat) { 6299 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 6300 "Access tag metadata must have either 4 or 5 operands", &I, MD); 6301 } else { 6302 AssertTBAA(MD->getNumOperands() < 5, 6303 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 6304 } 6305 6306 // Check the access size field. 6307 if (IsNewFormat) { 6308 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6309 MD->getOperand(3)); 6310 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 6311 } 6312 6313 // Check the immutability flag. 6314 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 6315 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 6316 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 6317 MD->getOperand(ImmutabilityFlagOpNo)); 6318 AssertTBAA(IsImmutableCI, 6319 "Immutability tag on struct tag metadata must be a constant", 6320 &I, MD); 6321 AssertTBAA( 6322 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 6323 "Immutability part of the struct tag metadata must be either 0 or 1", 6324 &I, MD); 6325 } 6326 6327 AssertTBAA(BaseNode && AccessType, 6328 "Malformed struct tag metadata: base and access-type " 6329 "should be non-null and point to Metadata nodes", 6330 &I, MD, BaseNode, AccessType); 6331 6332 if (!IsNewFormat) { 6333 AssertTBAA(isValidScalarTBAANode(AccessType), 6334 "Access type node must be a valid scalar type", &I, MD, 6335 AccessType); 6336 } 6337 6338 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 6339 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 6340 6341 APInt Offset = OffsetCI->getValue(); 6342 bool SeenAccessTypeInPath = false; 6343 6344 SmallPtrSet<MDNode *, 4> StructPath; 6345 6346 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 6347 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 6348 IsNewFormat)) { 6349 if (!StructPath.insert(BaseNode).second) { 6350 CheckFailed("Cycle detected in struct path", &I, MD); 6351 return false; 6352 } 6353 6354 bool Invalid; 6355 unsigned BaseNodeBitWidth; 6356 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 6357 IsNewFormat); 6358 6359 // If the base node is invalid in itself, then we've already printed all the 6360 // errors we wanted to print. 6361 if (Invalid) 6362 return false; 6363 6364 SeenAccessTypeInPath |= BaseNode == AccessType; 6365 6366 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 6367 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 6368 &I, MD, &Offset); 6369 6370 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 6371 (BaseNodeBitWidth == 0 && Offset == 0) || 6372 (IsNewFormat && BaseNodeBitWidth == ~0u), 6373 "Access bit-width not the same as description bit-width", &I, MD, 6374 BaseNodeBitWidth, Offset.getBitWidth()); 6375 6376 if (IsNewFormat && SeenAccessTypeInPath) 6377 break; 6378 } 6379 6380 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 6381 &I, MD); 6382 return true; 6383 } 6384 6385 char VerifierLegacyPass::ID = 0; 6386 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 6387 6388 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 6389 return new VerifierLegacyPass(FatalErrors); 6390 } 6391 6392 AnalysisKey VerifierAnalysis::Key; 6393 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 6394 ModuleAnalysisManager &) { 6395 Result Res; 6396 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 6397 return Res; 6398 } 6399 6400 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 6401 FunctionAnalysisManager &) { 6402 return { llvm::verifyFunction(F, &dbgs()), false }; 6403 } 6404 6405 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 6406 auto Res = AM.getResult<VerifierAnalysis>(M); 6407 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 6408 report_fatal_error("Broken module found, compilation aborted!"); 6409 6410 return PreservedAnalyses::all(); 6411 } 6412 6413 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 6414 auto res = AM.getResult<VerifierAnalysis>(F); 6415 if (res.IRBroken && FatalErrors) 6416 report_fatal_error("Broken function found, compilation aborted!"); 6417 6418 return PreservedAnalyses::all(); 6419 } 6420