1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // sanity checking of input to the system.
11 //
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
14 //
15 //  * Both of a binary operator's parameters are of the same type
16 //  * Verify that the indices of mem access instructions match other operands
17 //  * Verify that arithmetic and other things are only performed on first-class
18 //    types.  Verify that shifts & logicals only happen on integrals f.e.
19 //  * All of the constants in a switch statement are of the correct type
20 //  * The code is in valid SSA form
21 //  * It should be illegal to put a label into any other type (like a structure)
22 //    or to return one. [except constant arrays!]
23 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 //  * PHI nodes must have an entry for each predecessor, with no extras.
25 //  * PHI nodes must be the first thing in a basic block, all grouped together
26 //  * PHI nodes must have at least one entry
27 //  * All basic blocks should only end with terminator insts, not contain them
28 //  * The entry node to a function must not have predecessors
29 //  * All Instructions must be embedded into a basic block
30 //  * Functions cannot take a void-typed parameter
31 //  * Verify that a function's argument list agrees with it's declared type.
32 //  * It is illegal to specify a name for a void value.
33 //  * It is illegal to have a internal global value with no initializer
34 //  * It is illegal to have a ret instruction that returns a value that does not
35 //    agree with the function return value type.
36 //  * Function call argument types match the function prototype
37 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
38 //    only by the unwind edge of an invoke instruction.
39 //  * A landingpad instruction must be the first non-PHI instruction in the
40 //    block.
41 //  * Landingpad instructions must be in a function with a personality function.
42 //  * All other things that are tested by asserts spread about the code...
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/ilist.h"
62 #include "llvm/BinaryFormat/Dwarf.h"
63 #include "llvm/IR/Argument.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Comdat.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DebugInfo.h"
74 #include "llvm/IR/DebugInfoMetadata.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstVisitor.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/IntrinsicsWebAssembly.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/Metadata.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/ModuleSlotTracker.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Statepoint.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/Use.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/InitializePasses.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Debug.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include <algorithm>
110 #include <cassert>
111 #include <cstdint>
112 #include <memory>
113 #include <string>
114 #include <utility>
115 
116 using namespace llvm;
117 
118 namespace llvm {
119 
120 struct VerifierSupport {
121   raw_ostream *OS;
122   const Module &M;
123   ModuleSlotTracker MST;
124   Triple TT;
125   const DataLayout &DL;
126   LLVMContext &Context;
127 
128   /// Track the brokenness of the module while recursively visiting.
129   bool Broken = false;
130   /// Broken debug info can be "recovered" from by stripping the debug info.
131   bool BrokenDebugInfo = false;
132   /// Whether to treat broken debug info as an error.
133   bool TreatBrokenDebugInfoAsError = true;
134 
135   explicit VerifierSupport(raw_ostream *OS, const Module &M)
136       : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
137         Context(M.getContext()) {}
138 
139 private:
140   void Write(const Module *M) {
141     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
142   }
143 
144   void Write(const Value *V) {
145     if (V)
146       Write(*V);
147   }
148 
149   void Write(const Value &V) {
150     if (isa<Instruction>(V)) {
151       V.print(*OS, MST);
152       *OS << '\n';
153     } else {
154       V.printAsOperand(*OS, true, MST);
155       *OS << '\n';
156     }
157   }
158 
159   void Write(const Metadata *MD) {
160     if (!MD)
161       return;
162     MD->print(*OS, MST, &M);
163     *OS << '\n';
164   }
165 
166   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
167     Write(MD.get());
168   }
169 
170   void Write(const NamedMDNode *NMD) {
171     if (!NMD)
172       return;
173     NMD->print(*OS, MST);
174     *OS << '\n';
175   }
176 
177   void Write(Type *T) {
178     if (!T)
179       return;
180     *OS << ' ' << *T;
181   }
182 
183   void Write(const Comdat *C) {
184     if (!C)
185       return;
186     *OS << *C;
187   }
188 
189   void Write(const APInt *AI) {
190     if (!AI)
191       return;
192     *OS << *AI << '\n';
193   }
194 
195   void Write(const unsigned i) { *OS << i << '\n'; }
196 
197   template <typename T> void Write(ArrayRef<T> Vs) {
198     for (const T &V : Vs)
199       Write(V);
200   }
201 
202   template <typename T1, typename... Ts>
203   void WriteTs(const T1 &V1, const Ts &... Vs) {
204     Write(V1);
205     WriteTs(Vs...);
206   }
207 
208   template <typename... Ts> void WriteTs() {}
209 
210 public:
211   /// A check failed, so printout out the condition and the message.
212   ///
213   /// This provides a nice place to put a breakpoint if you want to see why
214   /// something is not correct.
215   void CheckFailed(const Twine &Message) {
216     if (OS)
217       *OS << Message << '\n';
218     Broken = true;
219   }
220 
221   /// A check failed (with values to print).
222   ///
223   /// This calls the Message-only version so that the above is easier to set a
224   /// breakpoint on.
225   template <typename T1, typename... Ts>
226   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
227     CheckFailed(Message);
228     if (OS)
229       WriteTs(V1, Vs...);
230   }
231 
232   /// A debug info check failed.
233   void DebugInfoCheckFailed(const Twine &Message) {
234     if (OS)
235       *OS << Message << '\n';
236     Broken |= TreatBrokenDebugInfoAsError;
237     BrokenDebugInfo = true;
238   }
239 
240   /// A debug info check failed (with values to print).
241   template <typename T1, typename... Ts>
242   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
243                             const Ts &... Vs) {
244     DebugInfoCheckFailed(Message);
245     if (OS)
246       WriteTs(V1, Vs...);
247   }
248 };
249 
250 } // namespace llvm
251 
252 namespace {
253 
254 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
255   friend class InstVisitor<Verifier>;
256 
257   DominatorTree DT;
258 
259   /// When verifying a basic block, keep track of all of the
260   /// instructions we have seen so far.
261   ///
262   /// This allows us to do efficient dominance checks for the case when an
263   /// instruction has an operand that is an instruction in the same block.
264   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
265 
266   /// Keep track of the metadata nodes that have been checked already.
267   SmallPtrSet<const Metadata *, 32> MDNodes;
268 
269   /// Keep track which DISubprogram is attached to which function.
270   DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
271 
272   /// Track all DICompileUnits visited.
273   SmallPtrSet<const Metadata *, 2> CUVisited;
274 
275   /// The result type for a landingpad.
276   Type *LandingPadResultTy;
277 
278   /// Whether we've seen a call to @llvm.localescape in this function
279   /// already.
280   bool SawFrameEscape;
281 
282   /// Whether the current function has a DISubprogram attached to it.
283   bool HasDebugInfo = false;
284 
285   /// The current source language.
286   dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;
287 
288   /// Whether source was present on the first DIFile encountered in each CU.
289   DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
290 
291   /// Stores the count of how many objects were passed to llvm.localescape for a
292   /// given function and the largest index passed to llvm.localrecover.
293   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
294 
295   // Maps catchswitches and cleanuppads that unwind to siblings to the
296   // terminators that indicate the unwind, used to detect cycles therein.
297   MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
298 
299   /// Cache of constants visited in search of ConstantExprs.
300   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
301 
302   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
303   SmallVector<const Function *, 4> DeoptimizeDeclarations;
304 
305   // Verify that this GlobalValue is only used in this module.
306   // This map is used to avoid visiting uses twice. We can arrive at a user
307   // twice, if they have multiple operands. In particular for very large
308   // constant expressions, we can arrive at a particular user many times.
309   SmallPtrSet<const Value *, 32> GlobalValueVisited;
310 
311   // Keeps track of duplicate function argument debug info.
312   SmallVector<const DILocalVariable *, 16> DebugFnArgs;
313 
314   TBAAVerifier TBAAVerifyHelper;
315 
316   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
317 
318 public:
319   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
320                     const Module &M)
321       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
322         SawFrameEscape(false), TBAAVerifyHelper(this) {
323     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
324   }
325 
326   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
327 
328   bool verify(const Function &F) {
329     assert(F.getParent() == &M &&
330            "An instance of this class only works with a specific module!");
331 
332     // First ensure the function is well-enough formed to compute dominance
333     // information, and directly compute a dominance tree. We don't rely on the
334     // pass manager to provide this as it isolates us from a potentially
335     // out-of-date dominator tree and makes it significantly more complex to run
336     // this code outside of a pass manager.
337     // FIXME: It's really gross that we have to cast away constness here.
338     if (!F.empty())
339       DT.recalculate(const_cast<Function &>(F));
340 
341     for (const BasicBlock &BB : F) {
342       if (!BB.empty() && BB.back().isTerminator())
343         continue;
344 
345       if (OS) {
346         *OS << "Basic Block in function '" << F.getName()
347             << "' does not have terminator!\n";
348         BB.printAsOperand(*OS, true, MST);
349         *OS << "\n";
350       }
351       return false;
352     }
353 
354     Broken = false;
355     // FIXME: We strip const here because the inst visitor strips const.
356     visit(const_cast<Function &>(F));
357     verifySiblingFuncletUnwinds();
358     InstsInThisBlock.clear();
359     DebugFnArgs.clear();
360     LandingPadResultTy = nullptr;
361     SawFrameEscape = false;
362     SiblingFuncletInfo.clear();
363 
364     return !Broken;
365   }
366 
367   /// Verify the module that this instance of \c Verifier was initialized with.
368   bool verify() {
369     Broken = false;
370 
371     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
372     for (const Function &F : M)
373       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
374         DeoptimizeDeclarations.push_back(&F);
375 
376     // Now that we've visited every function, verify that we never asked to
377     // recover a frame index that wasn't escaped.
378     verifyFrameRecoverIndices();
379     for (const GlobalVariable &GV : M.globals())
380       visitGlobalVariable(GV);
381 
382     for (const GlobalAlias &GA : M.aliases())
383       visitGlobalAlias(GA);
384 
385     for (const NamedMDNode &NMD : M.named_metadata())
386       visitNamedMDNode(NMD);
387 
388     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
389       visitComdat(SMEC.getValue());
390 
391     visitModuleFlags(M);
392     visitModuleIdents(M);
393     visitModuleCommandLines(M);
394 
395     verifyCompileUnits();
396 
397     verifyDeoptimizeCallingConvs();
398     DISubprogramAttachments.clear();
399     return !Broken;
400   }
401 
402 private:
403   /// Whether a metadata node is allowed to be, or contain, a DILocation.
404   enum class AreDebugLocsAllowed { No, Yes };
405 
406   // Verification methods...
407   void visitGlobalValue(const GlobalValue &GV);
408   void visitGlobalVariable(const GlobalVariable &GV);
409   void visitGlobalAlias(const GlobalAlias &GA);
410   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
411   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
412                            const GlobalAlias &A, const Constant &C);
413   void visitNamedMDNode(const NamedMDNode &NMD);
414   void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
415   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
416   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
417   void visitComdat(const Comdat &C);
418   void visitModuleIdents(const Module &M);
419   void visitModuleCommandLines(const Module &M);
420   void visitModuleFlags(const Module &M);
421   void visitModuleFlag(const MDNode *Op,
422                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
423                        SmallVectorImpl<const MDNode *> &Requirements);
424   void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
425   void visitFunction(const Function &F);
426   void visitBasicBlock(BasicBlock &BB);
427   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
428   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
429   void visitProfMetadata(Instruction &I, MDNode *MD);
430 
431   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
432 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
433 #include "llvm/IR/Metadata.def"
434   void visitDIScope(const DIScope &N);
435   void visitDIVariable(const DIVariable &N);
436   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
437   void visitDITemplateParameter(const DITemplateParameter &N);
438 
439   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
440 
441   // InstVisitor overrides...
442   using InstVisitor<Verifier>::visit;
443   void visit(Instruction &I);
444 
445   void visitTruncInst(TruncInst &I);
446   void visitZExtInst(ZExtInst &I);
447   void visitSExtInst(SExtInst &I);
448   void visitFPTruncInst(FPTruncInst &I);
449   void visitFPExtInst(FPExtInst &I);
450   void visitFPToUIInst(FPToUIInst &I);
451   void visitFPToSIInst(FPToSIInst &I);
452   void visitUIToFPInst(UIToFPInst &I);
453   void visitSIToFPInst(SIToFPInst &I);
454   void visitIntToPtrInst(IntToPtrInst &I);
455   void visitPtrToIntInst(PtrToIntInst &I);
456   void visitBitCastInst(BitCastInst &I);
457   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
458   void visitPHINode(PHINode &PN);
459   void visitCallBase(CallBase &Call);
460   void visitUnaryOperator(UnaryOperator &U);
461   void visitBinaryOperator(BinaryOperator &B);
462   void visitICmpInst(ICmpInst &IC);
463   void visitFCmpInst(FCmpInst &FC);
464   void visitExtractElementInst(ExtractElementInst &EI);
465   void visitInsertElementInst(InsertElementInst &EI);
466   void visitShuffleVectorInst(ShuffleVectorInst &EI);
467   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
468   void visitCallInst(CallInst &CI);
469   void visitInvokeInst(InvokeInst &II);
470   void visitGetElementPtrInst(GetElementPtrInst &GEP);
471   void visitLoadInst(LoadInst &LI);
472   void visitStoreInst(StoreInst &SI);
473   void verifyDominatesUse(Instruction &I, unsigned i);
474   void visitInstruction(Instruction &I);
475   void visitTerminator(Instruction &I);
476   void visitBranchInst(BranchInst &BI);
477   void visitReturnInst(ReturnInst &RI);
478   void visitSwitchInst(SwitchInst &SI);
479   void visitIndirectBrInst(IndirectBrInst &BI);
480   void visitCallBrInst(CallBrInst &CBI);
481   void visitSelectInst(SelectInst &SI);
482   void visitUserOp1(Instruction &I);
483   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
484   void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
485   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
486   void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
487   void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
488   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
489   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
490   void visitFenceInst(FenceInst &FI);
491   void visitAllocaInst(AllocaInst &AI);
492   void visitExtractValueInst(ExtractValueInst &EVI);
493   void visitInsertValueInst(InsertValueInst &IVI);
494   void visitEHPadPredecessors(Instruction &I);
495   void visitLandingPadInst(LandingPadInst &LPI);
496   void visitResumeInst(ResumeInst &RI);
497   void visitCatchPadInst(CatchPadInst &CPI);
498   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
499   void visitCleanupPadInst(CleanupPadInst &CPI);
500   void visitFuncletPadInst(FuncletPadInst &FPI);
501   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
502   void visitCleanupReturnInst(CleanupReturnInst &CRI);
503 
504   void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
505   void verifySwiftErrorValue(const Value *SwiftErrorVal);
506   void verifyMustTailCall(CallInst &CI);
507   bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
508                         unsigned ArgNo, std::string &Suffix);
509   bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
510   void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
511                             const Value *V);
512   void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
513   void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
514                            const Value *V, bool IsIntrinsic);
515   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
516 
517   void visitConstantExprsRecursively(const Constant *EntryC);
518   void visitConstantExpr(const ConstantExpr *CE);
519   void verifyStatepoint(const CallBase &Call);
520   void verifyFrameRecoverIndices();
521   void verifySiblingFuncletUnwinds();
522 
523   void verifyFragmentExpression(const DbgVariableIntrinsic &I);
524   template <typename ValueOrMetadata>
525   void verifyFragmentExpression(const DIVariable &V,
526                                 DIExpression::FragmentInfo Fragment,
527                                 ValueOrMetadata *Desc);
528   void verifyFnArgs(const DbgVariableIntrinsic &I);
529   void verifyNotEntryValue(const DbgVariableIntrinsic &I);
530 
531   /// Module-level debug info verification...
532   void verifyCompileUnits();
533 
534   /// Module-level verification that all @llvm.experimental.deoptimize
535   /// declarations share the same calling convention.
536   void verifyDeoptimizeCallingConvs();
537 
538   /// Verify all-or-nothing property of DIFile source attribute within a CU.
539   void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
540 };
541 
542 } // end anonymous namespace
543 
544 /// We know that cond should be true, if not print an error message.
545 #define Assert(C, ...) \
546   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
547 
548 /// We know that a debug info condition should be true, if not print
549 /// an error message.
550 #define AssertDI(C, ...) \
551   do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
552 
553 void Verifier::visit(Instruction &I) {
554   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
555     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
556   InstVisitor<Verifier>::visit(I);
557 }
558 
559 // Helper to recursively iterate over indirect users. By
560 // returning false, the callback can ask to stop recursing
561 // further.
562 static void forEachUser(const Value *User,
563                         SmallPtrSet<const Value *, 32> &Visited,
564                         llvm::function_ref<bool(const Value *)> Callback) {
565   if (!Visited.insert(User).second)
566     return;
567   for (const Value *TheNextUser : User->materialized_users())
568     if (Callback(TheNextUser))
569       forEachUser(TheNextUser, Visited, Callback);
570 }
571 
572 void Verifier::visitGlobalValue(const GlobalValue &GV) {
573   Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
574          "Global is external, but doesn't have external or weak linkage!", &GV);
575 
576   if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV))
577     Assert(GO->getAlignment() <= Value::MaximumAlignment,
578            "huge alignment values are unsupported", GO);
579   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
580          "Only global variables can have appending linkage!", &GV);
581 
582   if (GV.hasAppendingLinkage()) {
583     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
584     Assert(GVar && GVar->getValueType()->isArrayTy(),
585            "Only global arrays can have appending linkage!", GVar);
586   }
587 
588   if (GV.isDeclarationForLinker())
589     Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
590 
591   if (GV.hasDLLImportStorageClass()) {
592     Assert(!GV.isDSOLocal(),
593            "GlobalValue with DLLImport Storage is dso_local!", &GV);
594 
595     Assert((GV.isDeclaration() &&
596             (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
597                GV.hasAvailableExternallyLinkage(),
598            "Global is marked as dllimport, but not external", &GV);
599   }
600 
601   if (GV.isImplicitDSOLocal())
602     Assert(GV.isDSOLocal(),
603            "GlobalValue with local linkage or non-default "
604            "visibility must be dso_local!",
605            &GV);
606 
607   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
608     if (const Instruction *I = dyn_cast<Instruction>(V)) {
609       if (!I->getParent() || !I->getParent()->getParent())
610         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
611                     I);
612       else if (I->getParent()->getParent()->getParent() != &M)
613         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
614                     I->getParent()->getParent(),
615                     I->getParent()->getParent()->getParent());
616       return false;
617     } else if (const Function *F = dyn_cast<Function>(V)) {
618       if (F->getParent() != &M)
619         CheckFailed("Global is used by function in a different module", &GV, &M,
620                     F, F->getParent());
621       return false;
622     }
623     return true;
624   });
625 }
626 
627 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
628   if (GV.hasInitializer()) {
629     Assert(GV.getInitializer()->getType() == GV.getValueType(),
630            "Global variable initializer type does not match global "
631            "variable type!",
632            &GV);
633     // If the global has common linkage, it must have a zero initializer and
634     // cannot be constant.
635     if (GV.hasCommonLinkage()) {
636       Assert(GV.getInitializer()->isNullValue(),
637              "'common' global must have a zero initializer!", &GV);
638       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
639              &GV);
640       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
641     }
642   }
643 
644   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
645                        GV.getName() == "llvm.global_dtors")) {
646     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
647            "invalid linkage for intrinsic global variable", &GV);
648     // Don't worry about emitting an error for it not being an array,
649     // visitGlobalValue will complain on appending non-array.
650     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
651       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
652       PointerType *FuncPtrTy =
653           FunctionType::get(Type::getVoidTy(Context), false)->
654           getPointerTo(DL.getProgramAddressSpace());
655       Assert(STy &&
656                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
657                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
658                  STy->getTypeAtIndex(1) == FuncPtrTy,
659              "wrong type for intrinsic global variable", &GV);
660       Assert(STy->getNumElements() == 3,
661              "the third field of the element type is mandatory, "
662              "specify i8* null to migrate from the obsoleted 2-field form");
663       Type *ETy = STy->getTypeAtIndex(2);
664       Assert(ETy->isPointerTy() &&
665                  cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
666              "wrong type for intrinsic global variable", &GV);
667     }
668   }
669 
670   if (GV.hasName() && (GV.getName() == "llvm.used" ||
671                        GV.getName() == "llvm.compiler.used")) {
672     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
673            "invalid linkage for intrinsic global variable", &GV);
674     Type *GVType = GV.getValueType();
675     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
676       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
677       Assert(PTy, "wrong type for intrinsic global variable", &GV);
678       if (GV.hasInitializer()) {
679         const Constant *Init = GV.getInitializer();
680         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
681         Assert(InitArray, "wrong initalizer for intrinsic global variable",
682                Init);
683         for (Value *Op : InitArray->operands()) {
684           Value *V = Op->stripPointerCasts();
685           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
686                      isa<GlobalAlias>(V),
687                  "invalid llvm.used member", V);
688           Assert(V->hasName(), "members of llvm.used must be named", V);
689         }
690       }
691     }
692   }
693 
694   // Visit any debug info attachments.
695   SmallVector<MDNode *, 1> MDs;
696   GV.getMetadata(LLVMContext::MD_dbg, MDs);
697   for (auto *MD : MDs) {
698     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
699       visitDIGlobalVariableExpression(*GVE);
700     else
701       AssertDI(false, "!dbg attachment of global variable must be a "
702                       "DIGlobalVariableExpression");
703   }
704 
705   // Scalable vectors cannot be global variables, since we don't know
706   // the runtime size. If the global is a struct or an array containing
707   // scalable vectors, that will be caught by the isValidElementType methods
708   // in StructType or ArrayType instead.
709   Assert(!isa<ScalableVectorType>(GV.getValueType()),
710          "Globals cannot contain scalable vectors", &GV);
711 
712   if (!GV.hasInitializer()) {
713     visitGlobalValue(GV);
714     return;
715   }
716 
717   // Walk any aggregate initializers looking for bitcasts between address spaces
718   visitConstantExprsRecursively(GV.getInitializer());
719 
720   visitGlobalValue(GV);
721 }
722 
723 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
724   SmallPtrSet<const GlobalAlias*, 4> Visited;
725   Visited.insert(&GA);
726   visitAliaseeSubExpr(Visited, GA, C);
727 }
728 
729 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
730                                    const GlobalAlias &GA, const Constant &C) {
731   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
732     Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
733            &GA);
734 
735     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
736       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
737 
738       Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
739              &GA);
740     } else {
741       // Only continue verifying subexpressions of GlobalAliases.
742       // Do not recurse into global initializers.
743       return;
744     }
745   }
746 
747   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
748     visitConstantExprsRecursively(CE);
749 
750   for (const Use &U : C.operands()) {
751     Value *V = &*U;
752     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
753       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
754     else if (const auto *C2 = dyn_cast<Constant>(V))
755       visitAliaseeSubExpr(Visited, GA, *C2);
756   }
757 }
758 
759 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
760   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
761          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
762          "weak_odr, or external linkage!",
763          &GA);
764   const Constant *Aliasee = GA.getAliasee();
765   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
766   Assert(GA.getType() == Aliasee->getType(),
767          "Alias and aliasee types should match!", &GA);
768 
769   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
770          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
771 
772   visitAliaseeSubExpr(GA, *Aliasee);
773 
774   visitGlobalValue(GA);
775 }
776 
777 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
778   // There used to be various other llvm.dbg.* nodes, but we don't support
779   // upgrading them and we want to reserve the namespace for future uses.
780   if (NMD.getName().startswith("llvm.dbg."))
781     AssertDI(NMD.getName() == "llvm.dbg.cu",
782              "unrecognized named metadata node in the llvm.dbg namespace",
783              &NMD);
784   for (const MDNode *MD : NMD.operands()) {
785     if (NMD.getName() == "llvm.dbg.cu")
786       AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
787 
788     if (!MD)
789       continue;
790 
791     visitMDNode(*MD, AreDebugLocsAllowed::Yes);
792   }
793 }
794 
795 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
796   // Only visit each node once.  Metadata can be mutually recursive, so this
797   // avoids infinite recursion here, as well as being an optimization.
798   if (!MDNodes.insert(&MD).second)
799     return;
800 
801   switch (MD.getMetadataID()) {
802   default:
803     llvm_unreachable("Invalid MDNode subclass");
804   case Metadata::MDTupleKind:
805     break;
806 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
807   case Metadata::CLASS##Kind:                                                  \
808     visit##CLASS(cast<CLASS>(MD));                                             \
809     break;
810 #include "llvm/IR/Metadata.def"
811   }
812 
813   for (const Metadata *Op : MD.operands()) {
814     if (!Op)
815       continue;
816     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
817            &MD, Op);
818     AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
819              "DILocation not allowed within this metadata node", &MD, Op);
820     if (auto *N = dyn_cast<MDNode>(Op)) {
821       visitMDNode(*N, AllowLocs);
822       continue;
823     }
824     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
825       visitValueAsMetadata(*V, nullptr);
826       continue;
827     }
828   }
829 
830   // Check these last, so we diagnose problems in operands first.
831   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
832   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
833 }
834 
835 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
836   Assert(MD.getValue(), "Expected valid value", &MD);
837   Assert(!MD.getValue()->getType()->isMetadataTy(),
838          "Unexpected metadata round-trip through values", &MD, MD.getValue());
839 
840   auto *L = dyn_cast<LocalAsMetadata>(&MD);
841   if (!L)
842     return;
843 
844   Assert(F, "function-local metadata used outside a function", L);
845 
846   // If this was an instruction, bb, or argument, verify that it is in the
847   // function that we expect.
848   Function *ActualF = nullptr;
849   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
850     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
851     ActualF = I->getParent()->getParent();
852   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
853     ActualF = BB->getParent();
854   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
855     ActualF = A->getParent();
856   assert(ActualF && "Unimplemented function local metadata case!");
857 
858   Assert(ActualF == F, "function-local metadata used in wrong function", L);
859 }
860 
861 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
862   Metadata *MD = MDV.getMetadata();
863   if (auto *N = dyn_cast<MDNode>(MD)) {
864     visitMDNode(*N, AreDebugLocsAllowed::No);
865     return;
866   }
867 
868   // Only visit each node once.  Metadata can be mutually recursive, so this
869   // avoids infinite recursion here, as well as being an optimization.
870   if (!MDNodes.insert(MD).second)
871     return;
872 
873   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
874     visitValueAsMetadata(*V, F);
875 }
876 
877 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
878 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
879 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
880 
881 void Verifier::visitDILocation(const DILocation &N) {
882   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
883            "location requires a valid scope", &N, N.getRawScope());
884   if (auto *IA = N.getRawInlinedAt())
885     AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
886   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
887     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
888 }
889 
890 void Verifier::visitGenericDINode(const GenericDINode &N) {
891   AssertDI(N.getTag(), "invalid tag", &N);
892 }
893 
894 void Verifier::visitDIScope(const DIScope &N) {
895   if (auto *F = N.getRawFile())
896     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
897 }
898 
899 void Verifier::visitDISubrange(const DISubrange &N) {
900   AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
901   bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang);
902   AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||
903                N.getRawUpperBound(),
904            "Subrange must contain count or upperBound", &N);
905   AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
906            "Subrange can have any one of count or upperBound", &N);
907   AssertDI(!N.getRawCountNode() || N.getCount(),
908            "Count must either be a signed constant or a DIVariable", &N);
909   auto Count = N.getCount();
910   AssertDI(!Count || !Count.is<ConstantInt *>() ||
911                Count.get<ConstantInt *>()->getSExtValue() >= -1,
912            "invalid subrange count", &N);
913   auto *LBound = N.getRawLowerBound();
914   AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
915                isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
916            "LowerBound must be signed constant or DIVariable or DIExpression",
917            &N);
918   auto *UBound = N.getRawUpperBound();
919   AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
920                isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
921            "UpperBound must be signed constant or DIVariable or DIExpression",
922            &N);
923   auto *Stride = N.getRawStride();
924   AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
925                isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
926            "Stride must be signed constant or DIVariable or DIExpression", &N);
927 }
928 
929 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
930   AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
931 }
932 
933 void Verifier::visitDIBasicType(const DIBasicType &N) {
934   AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
935                N.getTag() == dwarf::DW_TAG_unspecified_type ||
936                N.getTag() == dwarf::DW_TAG_string_type,
937            "invalid tag", &N);
938 }
939 
940 void Verifier::visitDIStringType(const DIStringType &N) {
941   AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
942   AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
943             "has conflicting flags", &N);
944 }
945 
946 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
947   // Common scope checks.
948   visitDIScope(N);
949 
950   AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
951                N.getTag() == dwarf::DW_TAG_pointer_type ||
952                N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
953                N.getTag() == dwarf::DW_TAG_reference_type ||
954                N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
955                N.getTag() == dwarf::DW_TAG_const_type ||
956                N.getTag() == dwarf::DW_TAG_volatile_type ||
957                N.getTag() == dwarf::DW_TAG_restrict_type ||
958                N.getTag() == dwarf::DW_TAG_atomic_type ||
959                N.getTag() == dwarf::DW_TAG_member ||
960                N.getTag() == dwarf::DW_TAG_inheritance ||
961                N.getTag() == dwarf::DW_TAG_friend,
962            "invalid tag", &N);
963   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
964     AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
965              N.getRawExtraData());
966   }
967 
968   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
969   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
970            N.getRawBaseType());
971 
972   if (N.getDWARFAddressSpace()) {
973     AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
974                  N.getTag() == dwarf::DW_TAG_reference_type ||
975                  N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
976              "DWARF address space only applies to pointer or reference types",
977              &N);
978   }
979 }
980 
981 /// Detect mutually exclusive flags.
982 static bool hasConflictingReferenceFlags(unsigned Flags) {
983   return ((Flags & DINode::FlagLValueReference) &&
984           (Flags & DINode::FlagRValueReference)) ||
985          ((Flags & DINode::FlagTypePassByValue) &&
986           (Flags & DINode::FlagTypePassByReference));
987 }
988 
989 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
990   auto *Params = dyn_cast<MDTuple>(&RawParams);
991   AssertDI(Params, "invalid template params", &N, &RawParams);
992   for (Metadata *Op : Params->operands()) {
993     AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
994              &N, Params, Op);
995   }
996 }
997 
998 void Verifier::visitDICompositeType(const DICompositeType &N) {
999   // Common scope checks.
1000   visitDIScope(N);
1001 
1002   AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
1003                N.getTag() == dwarf::DW_TAG_structure_type ||
1004                N.getTag() == dwarf::DW_TAG_union_type ||
1005                N.getTag() == dwarf::DW_TAG_enumeration_type ||
1006                N.getTag() == dwarf::DW_TAG_class_type ||
1007                N.getTag() == dwarf::DW_TAG_variant_part,
1008            "invalid tag", &N);
1009 
1010   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1011   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
1012            N.getRawBaseType());
1013 
1014   AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
1015            "invalid composite elements", &N, N.getRawElements());
1016   AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
1017            N.getRawVTableHolder());
1018   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1019            "invalid reference flags", &N);
1020   unsigned DIBlockByRefStruct = 1 << 4;
1021   AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,
1022            "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
1023 
1024   if (N.isVector()) {
1025     const DINodeArray Elements = N.getElements();
1026     AssertDI(Elements.size() == 1 &&
1027              Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1028              "invalid vector, expected one element of type subrange", &N);
1029   }
1030 
1031   if (auto *Params = N.getRawTemplateParams())
1032     visitTemplateParams(N, *Params);
1033 
1034   if (N.getTag() == dwarf::DW_TAG_class_type ||
1035       N.getTag() == dwarf::DW_TAG_union_type) {
1036     AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
1037              "class/union requires a filename", &N, N.getFile());
1038   }
1039 
1040   if (auto *D = N.getRawDiscriminator()) {
1041     AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1042              "discriminator can only appear on variant part");
1043   }
1044 
1045   if (N.getRawDataLocation()) {
1046     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1047              "dataLocation can only appear in array type");
1048   }
1049 
1050   if (N.getRawAssociated()) {
1051     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1052              "associated can only appear in array type");
1053   }
1054 
1055   if (N.getRawAllocated()) {
1056     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1057              "allocated can only appear in array type");
1058   }
1059 }
1060 
1061 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1062   AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1063   if (auto *Types = N.getRawTypeArray()) {
1064     AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1065     for (Metadata *Ty : N.getTypeArray()->operands()) {
1066       AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1067     }
1068   }
1069   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1070            "invalid reference flags", &N);
1071 }
1072 
1073 void Verifier::visitDIFile(const DIFile &N) {
1074   AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1075   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1076   if (Checksum) {
1077     AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1078              "invalid checksum kind", &N);
1079     size_t Size;
1080     switch (Checksum->Kind) {
1081     case DIFile::CSK_MD5:
1082       Size = 32;
1083       break;
1084     case DIFile::CSK_SHA1:
1085       Size = 40;
1086       break;
1087     case DIFile::CSK_SHA256:
1088       Size = 64;
1089       break;
1090     }
1091     AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1092     AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1093              "invalid checksum", &N);
1094   }
1095 }
1096 
1097 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1098   AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1099   AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1100 
1101   // Don't bother verifying the compilation directory or producer string
1102   // as those could be empty.
1103   AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1104            N.getRawFile());
1105   AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1106            N.getFile());
1107 
1108   CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();
1109 
1110   verifySourceDebugInfo(N, *N.getFile());
1111 
1112   AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1113            "invalid emission kind", &N);
1114 
1115   if (auto *Array = N.getRawEnumTypes()) {
1116     AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1117     for (Metadata *Op : N.getEnumTypes()->operands()) {
1118       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1119       AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1120                "invalid enum type", &N, N.getEnumTypes(), Op);
1121     }
1122   }
1123   if (auto *Array = N.getRawRetainedTypes()) {
1124     AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1125     for (Metadata *Op : N.getRetainedTypes()->operands()) {
1126       AssertDI(Op && (isa<DIType>(Op) ||
1127                       (isa<DISubprogram>(Op) &&
1128                        !cast<DISubprogram>(Op)->isDefinition())),
1129                "invalid retained type", &N, Op);
1130     }
1131   }
1132   if (auto *Array = N.getRawGlobalVariables()) {
1133     AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1134     for (Metadata *Op : N.getGlobalVariables()->operands()) {
1135       AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1136                "invalid global variable ref", &N, Op);
1137     }
1138   }
1139   if (auto *Array = N.getRawImportedEntities()) {
1140     AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1141     for (Metadata *Op : N.getImportedEntities()->operands()) {
1142       AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1143                &N, Op);
1144     }
1145   }
1146   if (auto *Array = N.getRawMacros()) {
1147     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1148     for (Metadata *Op : N.getMacros()->operands()) {
1149       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1150     }
1151   }
1152   CUVisited.insert(&N);
1153 }
1154 
1155 void Verifier::visitDISubprogram(const DISubprogram &N) {
1156   AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1157   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1158   if (auto *F = N.getRawFile())
1159     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1160   else
1161     AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1162   if (auto *T = N.getRawType())
1163     AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1164   AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1165            N.getRawContainingType());
1166   if (auto *Params = N.getRawTemplateParams())
1167     visitTemplateParams(N, *Params);
1168   if (auto *S = N.getRawDeclaration())
1169     AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1170              "invalid subprogram declaration", &N, S);
1171   if (auto *RawNode = N.getRawRetainedNodes()) {
1172     auto *Node = dyn_cast<MDTuple>(RawNode);
1173     AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1174     for (Metadata *Op : Node->operands()) {
1175       AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1176                "invalid retained nodes, expected DILocalVariable or DILabel",
1177                &N, Node, Op);
1178     }
1179   }
1180   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1181            "invalid reference flags", &N);
1182 
1183   auto *Unit = N.getRawUnit();
1184   if (N.isDefinition()) {
1185     // Subprogram definitions (not part of the type hierarchy).
1186     AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1187     AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1188     AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1189     if (N.getFile())
1190       verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1191   } else {
1192     // Subprogram declarations (part of the type hierarchy).
1193     AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1194   }
1195 
1196   if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1197     auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1198     AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1199     for (Metadata *Op : ThrownTypes->operands())
1200       AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1201                Op);
1202   }
1203 
1204   if (N.areAllCallsDescribed())
1205     AssertDI(N.isDefinition(),
1206              "DIFlagAllCallsDescribed must be attached to a definition");
1207 }
1208 
1209 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1210   AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1211   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1212            "invalid local scope", &N, N.getRawScope());
1213   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1214     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1215 }
1216 
1217 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1218   visitDILexicalBlockBase(N);
1219 
1220   AssertDI(N.getLine() || !N.getColumn(),
1221            "cannot have column info without line info", &N);
1222 }
1223 
1224 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1225   visitDILexicalBlockBase(N);
1226 }
1227 
1228 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1229   AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1230   if (auto *S = N.getRawScope())
1231     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1232   if (auto *S = N.getRawDecl())
1233     AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1234 }
1235 
1236 void Verifier::visitDINamespace(const DINamespace &N) {
1237   AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1238   if (auto *S = N.getRawScope())
1239     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1240 }
1241 
1242 void Verifier::visitDIMacro(const DIMacro &N) {
1243   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1244                N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1245            "invalid macinfo type", &N);
1246   AssertDI(!N.getName().empty(), "anonymous macro", &N);
1247   if (!N.getValue().empty()) {
1248     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1249   }
1250 }
1251 
1252 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1253   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1254            "invalid macinfo type", &N);
1255   if (auto *F = N.getRawFile())
1256     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1257 
1258   if (auto *Array = N.getRawElements()) {
1259     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1260     for (Metadata *Op : N.getElements()->operands()) {
1261       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1262     }
1263   }
1264 }
1265 
1266 void Verifier::visitDIModule(const DIModule &N) {
1267   AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1268   AssertDI(!N.getName().empty(), "anonymous module", &N);
1269 }
1270 
1271 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1272   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1273 }
1274 
1275 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1276   visitDITemplateParameter(N);
1277 
1278   AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1279            &N);
1280 }
1281 
1282 void Verifier::visitDITemplateValueParameter(
1283     const DITemplateValueParameter &N) {
1284   visitDITemplateParameter(N);
1285 
1286   AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1287                N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1288                N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1289            "invalid tag", &N);
1290 }
1291 
1292 void Verifier::visitDIVariable(const DIVariable &N) {
1293   if (auto *S = N.getRawScope())
1294     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1295   if (auto *F = N.getRawFile())
1296     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1297 }
1298 
1299 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1300   // Checks common to all variables.
1301   visitDIVariable(N);
1302 
1303   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1304   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1305   // Assert only if the global variable is not an extern
1306   if (N.isDefinition())
1307     AssertDI(N.getType(), "missing global variable type", &N);
1308   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1309     AssertDI(isa<DIDerivedType>(Member),
1310              "invalid static data member declaration", &N, Member);
1311   }
1312 }
1313 
1314 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1315   // Checks common to all variables.
1316   visitDIVariable(N);
1317 
1318   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1319   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1320   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1321            "local variable requires a valid scope", &N, N.getRawScope());
1322   if (auto Ty = N.getType())
1323     AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1324 }
1325 
1326 void Verifier::visitDILabel(const DILabel &N) {
1327   if (auto *S = N.getRawScope())
1328     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1329   if (auto *F = N.getRawFile())
1330     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1331 
1332   AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1333   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1334            "label requires a valid scope", &N, N.getRawScope());
1335 }
1336 
1337 void Verifier::visitDIExpression(const DIExpression &N) {
1338   AssertDI(N.isValid(), "invalid expression", &N);
1339 }
1340 
1341 void Verifier::visitDIGlobalVariableExpression(
1342     const DIGlobalVariableExpression &GVE) {
1343   AssertDI(GVE.getVariable(), "missing variable");
1344   if (auto *Var = GVE.getVariable())
1345     visitDIGlobalVariable(*Var);
1346   if (auto *Expr = GVE.getExpression()) {
1347     visitDIExpression(*Expr);
1348     if (auto Fragment = Expr->getFragmentInfo())
1349       verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1350   }
1351 }
1352 
1353 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1354   AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1355   if (auto *T = N.getRawType())
1356     AssertDI(isType(T), "invalid type ref", &N, T);
1357   if (auto *F = N.getRawFile())
1358     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1359 }
1360 
1361 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1362   AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1363                N.getTag() == dwarf::DW_TAG_imported_declaration,
1364            "invalid tag", &N);
1365   if (auto *S = N.getRawScope())
1366     AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1367   AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1368            N.getRawEntity());
1369 }
1370 
1371 void Verifier::visitComdat(const Comdat &C) {
1372   // In COFF the Module is invalid if the GlobalValue has private linkage.
1373   // Entities with private linkage don't have entries in the symbol table.
1374   if (TT.isOSBinFormatCOFF())
1375     if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1376       Assert(!GV->hasPrivateLinkage(),
1377              "comdat global value has private linkage", GV);
1378 }
1379 
1380 void Verifier::visitModuleIdents(const Module &M) {
1381   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1382   if (!Idents)
1383     return;
1384 
1385   // llvm.ident takes a list of metadata entry. Each entry has only one string.
1386   // Scan each llvm.ident entry and make sure that this requirement is met.
1387   for (const MDNode *N : Idents->operands()) {
1388     Assert(N->getNumOperands() == 1,
1389            "incorrect number of operands in llvm.ident metadata", N);
1390     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1391            ("invalid value for llvm.ident metadata entry operand"
1392             "(the operand should be a string)"),
1393            N->getOperand(0));
1394   }
1395 }
1396 
1397 void Verifier::visitModuleCommandLines(const Module &M) {
1398   const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1399   if (!CommandLines)
1400     return;
1401 
1402   // llvm.commandline takes a list of metadata entry. Each entry has only one
1403   // string. Scan each llvm.commandline entry and make sure that this
1404   // requirement is met.
1405   for (const MDNode *N : CommandLines->operands()) {
1406     Assert(N->getNumOperands() == 1,
1407            "incorrect number of operands in llvm.commandline metadata", N);
1408     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1409            ("invalid value for llvm.commandline metadata entry operand"
1410             "(the operand should be a string)"),
1411            N->getOperand(0));
1412   }
1413 }
1414 
1415 void Verifier::visitModuleFlags(const Module &M) {
1416   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1417   if (!Flags) return;
1418 
1419   // Scan each flag, and track the flags and requirements.
1420   DenseMap<const MDString*, const MDNode*> SeenIDs;
1421   SmallVector<const MDNode*, 16> Requirements;
1422   for (const MDNode *MDN : Flags->operands())
1423     visitModuleFlag(MDN, SeenIDs, Requirements);
1424 
1425   // Validate that the requirements in the module are valid.
1426   for (const MDNode *Requirement : Requirements) {
1427     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1428     const Metadata *ReqValue = Requirement->getOperand(1);
1429 
1430     const MDNode *Op = SeenIDs.lookup(Flag);
1431     if (!Op) {
1432       CheckFailed("invalid requirement on flag, flag is not present in module",
1433                   Flag);
1434       continue;
1435     }
1436 
1437     if (Op->getOperand(2) != ReqValue) {
1438       CheckFailed(("invalid requirement on flag, "
1439                    "flag does not have the required value"),
1440                   Flag);
1441       continue;
1442     }
1443   }
1444 }
1445 
1446 void
1447 Verifier::visitModuleFlag(const MDNode *Op,
1448                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
1449                           SmallVectorImpl<const MDNode *> &Requirements) {
1450   // Each module flag should have three arguments, the merge behavior (a
1451   // constant int), the flag ID (an MDString), and the value.
1452   Assert(Op->getNumOperands() == 3,
1453          "incorrect number of operands in module flag", Op);
1454   Module::ModFlagBehavior MFB;
1455   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1456     Assert(
1457         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1458         "invalid behavior operand in module flag (expected constant integer)",
1459         Op->getOperand(0));
1460     Assert(false,
1461            "invalid behavior operand in module flag (unexpected constant)",
1462            Op->getOperand(0));
1463   }
1464   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1465   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1466          Op->getOperand(1));
1467 
1468   // Sanity check the values for behaviors with additional requirements.
1469   switch (MFB) {
1470   case Module::Error:
1471   case Module::Warning:
1472   case Module::Override:
1473     // These behavior types accept any value.
1474     break;
1475 
1476   case Module::Max: {
1477     Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1478            "invalid value for 'max' module flag (expected constant integer)",
1479            Op->getOperand(2));
1480     break;
1481   }
1482 
1483   case Module::Require: {
1484     // The value should itself be an MDNode with two operands, a flag ID (an
1485     // MDString), and a value.
1486     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1487     Assert(Value && Value->getNumOperands() == 2,
1488            "invalid value for 'require' module flag (expected metadata pair)",
1489            Op->getOperand(2));
1490     Assert(isa<MDString>(Value->getOperand(0)),
1491            ("invalid value for 'require' module flag "
1492             "(first value operand should be a string)"),
1493            Value->getOperand(0));
1494 
1495     // Append it to the list of requirements, to check once all module flags are
1496     // scanned.
1497     Requirements.push_back(Value);
1498     break;
1499   }
1500 
1501   case Module::Append:
1502   case Module::AppendUnique: {
1503     // These behavior types require the operand be an MDNode.
1504     Assert(isa<MDNode>(Op->getOperand(2)),
1505            "invalid value for 'append'-type module flag "
1506            "(expected a metadata node)",
1507            Op->getOperand(2));
1508     break;
1509   }
1510   }
1511 
1512   // Unless this is a "requires" flag, check the ID is unique.
1513   if (MFB != Module::Require) {
1514     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1515     Assert(Inserted,
1516            "module flag identifiers must be unique (or of 'require' type)", ID);
1517   }
1518 
1519   if (ID->getString() == "wchar_size") {
1520     ConstantInt *Value
1521       = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1522     Assert(Value, "wchar_size metadata requires constant integer argument");
1523   }
1524 
1525   if (ID->getString() == "Linker Options") {
1526     // If the llvm.linker.options named metadata exists, we assume that the
1527     // bitcode reader has upgraded the module flag. Otherwise the flag might
1528     // have been created by a client directly.
1529     Assert(M.getNamedMetadata("llvm.linker.options"),
1530            "'Linker Options' named metadata no longer supported");
1531   }
1532 
1533   if (ID->getString() == "SemanticInterposition") {
1534     ConstantInt *Value =
1535         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1536     Assert(Value,
1537            "SemanticInterposition metadata requires constant integer argument");
1538   }
1539 
1540   if (ID->getString() == "CG Profile") {
1541     for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1542       visitModuleFlagCGProfileEntry(MDO);
1543   }
1544 }
1545 
1546 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1547   auto CheckFunction = [&](const MDOperand &FuncMDO) {
1548     if (!FuncMDO)
1549       return;
1550     auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1551     Assert(F && isa<Function>(F->getValue()), "expected a Function or null",
1552            FuncMDO);
1553   };
1554   auto Node = dyn_cast_or_null<MDNode>(MDO);
1555   Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1556   CheckFunction(Node->getOperand(0));
1557   CheckFunction(Node->getOperand(1));
1558   auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1559   Assert(Count && Count->getType()->isIntegerTy(),
1560          "expected an integer constant", Node->getOperand(2));
1561 }
1562 
1563 /// Return true if this attribute kind only applies to functions.
1564 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1565   switch (Kind) {
1566   case Attribute::NoMerge:
1567   case Attribute::NoReturn:
1568   case Attribute::NoSync:
1569   case Attribute::WillReturn:
1570   case Attribute::NoCfCheck:
1571   case Attribute::NoUnwind:
1572   case Attribute::NoInline:
1573   case Attribute::AlwaysInline:
1574   case Attribute::OptimizeForSize:
1575   case Attribute::StackProtect:
1576   case Attribute::StackProtectReq:
1577   case Attribute::StackProtectStrong:
1578   case Attribute::SafeStack:
1579   case Attribute::ShadowCallStack:
1580   case Attribute::NoRedZone:
1581   case Attribute::NoImplicitFloat:
1582   case Attribute::Naked:
1583   case Attribute::InlineHint:
1584   case Attribute::StackAlignment:
1585   case Attribute::UWTable:
1586   case Attribute::NonLazyBind:
1587   case Attribute::ReturnsTwice:
1588   case Attribute::SanitizeAddress:
1589   case Attribute::SanitizeHWAddress:
1590   case Attribute::SanitizeMemTag:
1591   case Attribute::SanitizeThread:
1592   case Attribute::SanitizeMemory:
1593   case Attribute::MinSize:
1594   case Attribute::NoDuplicate:
1595   case Attribute::Builtin:
1596   case Attribute::NoBuiltin:
1597   case Attribute::Cold:
1598   case Attribute::OptForFuzzing:
1599   case Attribute::OptimizeNone:
1600   case Attribute::JumpTable:
1601   case Attribute::Convergent:
1602   case Attribute::ArgMemOnly:
1603   case Attribute::NoRecurse:
1604   case Attribute::InaccessibleMemOnly:
1605   case Attribute::InaccessibleMemOrArgMemOnly:
1606   case Attribute::AllocSize:
1607   case Attribute::SpeculativeLoadHardening:
1608   case Attribute::Speculatable:
1609   case Attribute::StrictFP:
1610   case Attribute::NullPointerIsValid:
1611     return true;
1612   default:
1613     break;
1614   }
1615   return false;
1616 }
1617 
1618 /// Return true if this is a function attribute that can also appear on
1619 /// arguments.
1620 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1621   return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1622          Kind == Attribute::ReadNone || Kind == Attribute::NoFree ||
1623          Kind == Attribute::Preallocated;
1624 }
1625 
1626 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1627                                     const Value *V) {
1628   for (Attribute A : Attrs) {
1629     if (A.isStringAttribute())
1630       continue;
1631 
1632     if (A.isIntAttribute() !=
1633         Attribute::doesAttrKindHaveArgument(A.getKindAsEnum())) {
1634       CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1635                   V);
1636       return;
1637     }
1638 
1639     if (isFuncOnlyAttr(A.getKindAsEnum())) {
1640       if (!IsFunction) {
1641         CheckFailed("Attribute '" + A.getAsString() +
1642                         "' only applies to functions!",
1643                     V);
1644         return;
1645       }
1646     } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1647       CheckFailed("Attribute '" + A.getAsString() +
1648                       "' does not apply to functions!",
1649                   V);
1650       return;
1651     }
1652   }
1653 }
1654 
1655 // VerifyParameterAttrs - Check the given attributes for an argument or return
1656 // value of the specified type.  The value V is printed in error messages.
1657 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1658                                     const Value *V) {
1659   if (!Attrs.hasAttributes())
1660     return;
1661 
1662   verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1663 
1664   if (Attrs.hasAttribute(Attribute::ImmArg)) {
1665     Assert(Attrs.getNumAttributes() == 1,
1666            "Attribute 'immarg' is incompatible with other attributes", V);
1667   }
1668 
1669   // Check for mutually incompatible attributes.  Only inreg is compatible with
1670   // sret.
1671   unsigned AttrCount = 0;
1672   AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1673   AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1674   AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1675   AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1676                Attrs.hasAttribute(Attribute::InReg);
1677   AttrCount += Attrs.hasAttribute(Attribute::Nest);
1678   AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1679   Assert(AttrCount <= 1,
1680          "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1681          "'byref', and 'sret' are incompatible!",
1682          V);
1683 
1684   Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1685            Attrs.hasAttribute(Attribute::ReadOnly)),
1686          "Attributes "
1687          "'inalloca and readonly' are incompatible!",
1688          V);
1689 
1690   Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1691            Attrs.hasAttribute(Attribute::Returned)),
1692          "Attributes "
1693          "'sret and returned' are incompatible!",
1694          V);
1695 
1696   Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1697            Attrs.hasAttribute(Attribute::SExt)),
1698          "Attributes "
1699          "'zeroext and signext' are incompatible!",
1700          V);
1701 
1702   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1703            Attrs.hasAttribute(Attribute::ReadOnly)),
1704          "Attributes "
1705          "'readnone and readonly' are incompatible!",
1706          V);
1707 
1708   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1709            Attrs.hasAttribute(Attribute::WriteOnly)),
1710          "Attributes "
1711          "'readnone and writeonly' are incompatible!",
1712          V);
1713 
1714   Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1715            Attrs.hasAttribute(Attribute::WriteOnly)),
1716          "Attributes "
1717          "'readonly and writeonly' are incompatible!",
1718          V);
1719 
1720   Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1721            Attrs.hasAttribute(Attribute::AlwaysInline)),
1722          "Attributes "
1723          "'noinline and alwaysinline' are incompatible!",
1724          V);
1725 
1726   if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1727     Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(),
1728            "Attribute 'byval' type does not match parameter!", V);
1729   }
1730 
1731   if (Attrs.hasAttribute(Attribute::Preallocated)) {
1732     Assert(Attrs.getPreallocatedType() ==
1733                cast<PointerType>(Ty)->getElementType(),
1734            "Attribute 'preallocated' type does not match parameter!", V);
1735   }
1736 
1737   AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1738   Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1739          "Wrong types for attribute: " +
1740              AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1741          V);
1742 
1743   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1744     SmallPtrSet<Type*, 4> Visited;
1745     if (!PTy->getElementType()->isSized(&Visited)) {
1746       Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1747              !Attrs.hasAttribute(Attribute::ByRef) &&
1748              !Attrs.hasAttribute(Attribute::InAlloca) &&
1749              !Attrs.hasAttribute(Attribute::Preallocated),
1750              "Attributes 'byval', 'byref', 'inalloca', and 'preallocated' do not "
1751              "support unsized types!",
1752              V);
1753     }
1754     if (!isa<PointerType>(PTy->getElementType()))
1755       Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1756              "Attribute 'swifterror' only applies to parameters "
1757              "with pointer to pointer type!",
1758              V);
1759 
1760     if (Attrs.hasAttribute(Attribute::ByRef)) {
1761       Assert(Attrs.getByRefType() == PTy->getElementType(),
1762              "Attribute 'byref' type does not match parameter!", V);
1763     }
1764   } else {
1765     Assert(!Attrs.hasAttribute(Attribute::ByVal),
1766            "Attribute 'byval' only applies to parameters with pointer type!",
1767            V);
1768     Assert(!Attrs.hasAttribute(Attribute::ByRef),
1769            "Attribute 'byref' only applies to parameters with pointer type!",
1770            V);
1771     Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1772            "Attribute 'swifterror' only applies to parameters "
1773            "with pointer type!",
1774            V);
1775   }
1776 }
1777 
1778 // Check parameter attributes against a function type.
1779 // The value V is printed in error messages.
1780 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1781                                    const Value *V, bool IsIntrinsic) {
1782   if (Attrs.isEmpty())
1783     return;
1784 
1785   bool SawNest = false;
1786   bool SawReturned = false;
1787   bool SawSRet = false;
1788   bool SawSwiftSelf = false;
1789   bool SawSwiftError = false;
1790 
1791   // Verify return value attributes.
1792   AttributeSet RetAttrs = Attrs.getRetAttributes();
1793   Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1794           !RetAttrs.hasAttribute(Attribute::Nest) &&
1795           !RetAttrs.hasAttribute(Attribute::StructRet) &&
1796           !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1797           !RetAttrs.hasAttribute(Attribute::NoFree) &&
1798           !RetAttrs.hasAttribute(Attribute::Returned) &&
1799           !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1800           !RetAttrs.hasAttribute(Attribute::Preallocated) &&
1801           !RetAttrs.hasAttribute(Attribute::ByRef) &&
1802           !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1803           !RetAttrs.hasAttribute(Attribute::SwiftError)),
1804          "Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
1805          "'nest', 'sret', 'nocapture', 'nofree', "
1806          "'returned', 'swiftself', and 'swifterror' do not apply to return "
1807          "values!",
1808          V);
1809   Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1810           !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1811           !RetAttrs.hasAttribute(Attribute::ReadNone)),
1812          "Attribute '" + RetAttrs.getAsString() +
1813              "' does not apply to function returns",
1814          V);
1815   verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1816 
1817   // Verify parameter attributes.
1818   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1819     Type *Ty = FT->getParamType(i);
1820     AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1821 
1822     if (!IsIntrinsic) {
1823       Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1824              "immarg attribute only applies to intrinsics",V);
1825     }
1826 
1827     verifyParameterAttrs(ArgAttrs, Ty, V);
1828 
1829     if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1830       Assert(!SawNest, "More than one parameter has attribute nest!", V);
1831       SawNest = true;
1832     }
1833 
1834     if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1835       Assert(!SawReturned, "More than one parameter has attribute returned!",
1836              V);
1837       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1838              "Incompatible argument and return types for 'returned' attribute",
1839              V);
1840       SawReturned = true;
1841     }
1842 
1843     if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1844       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1845       Assert(i == 0 || i == 1,
1846              "Attribute 'sret' is not on first or second parameter!", V);
1847       SawSRet = true;
1848     }
1849 
1850     if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1851       Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1852       SawSwiftSelf = true;
1853     }
1854 
1855     if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1856       Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1857              V);
1858       SawSwiftError = true;
1859     }
1860 
1861     if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1862       Assert(i == FT->getNumParams() - 1,
1863              "inalloca isn't on the last parameter!", V);
1864     }
1865   }
1866 
1867   if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1868     return;
1869 
1870   verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1871 
1872   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1873            Attrs.hasFnAttribute(Attribute::ReadOnly)),
1874          "Attributes 'readnone and readonly' are incompatible!", V);
1875 
1876   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1877            Attrs.hasFnAttribute(Attribute::WriteOnly)),
1878          "Attributes 'readnone and writeonly' are incompatible!", V);
1879 
1880   Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1881            Attrs.hasFnAttribute(Attribute::WriteOnly)),
1882          "Attributes 'readonly and writeonly' are incompatible!", V);
1883 
1884   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1885            Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1886          "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1887          "incompatible!",
1888          V);
1889 
1890   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1891            Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1892          "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1893 
1894   Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1895            Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1896          "Attributes 'noinline and alwaysinline' are incompatible!", V);
1897 
1898   if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1899     Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1900            "Attribute 'optnone' requires 'noinline'!", V);
1901 
1902     Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1903            "Attributes 'optsize and optnone' are incompatible!", V);
1904 
1905     Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1906            "Attributes 'minsize and optnone' are incompatible!", V);
1907   }
1908 
1909   if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1910     const GlobalValue *GV = cast<GlobalValue>(V);
1911     Assert(GV->hasGlobalUnnamedAddr(),
1912            "Attribute 'jumptable' requires 'unnamed_addr'", V);
1913   }
1914 
1915   if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1916     std::pair<unsigned, Optional<unsigned>> Args =
1917         Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1918 
1919     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1920       if (ParamNo >= FT->getNumParams()) {
1921         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1922         return false;
1923       }
1924 
1925       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1926         CheckFailed("'allocsize' " + Name +
1927                         " argument must refer to an integer parameter",
1928                     V);
1929         return false;
1930       }
1931 
1932       return true;
1933     };
1934 
1935     if (!CheckParam("element size", Args.first))
1936       return;
1937 
1938     if (Args.second && !CheckParam("number of elements", *Args.second))
1939       return;
1940   }
1941 
1942   if (Attrs.hasFnAttribute("frame-pointer")) {
1943     StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex,
1944                                       "frame-pointer").getValueAsString();
1945     if (FP != "all" && FP != "non-leaf" && FP != "none")
1946       CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
1947   }
1948 
1949   if (Attrs.hasFnAttribute("patchable-function-prefix")) {
1950     StringRef S = Attrs
1951                       .getAttribute(AttributeList::FunctionIndex,
1952                                     "patchable-function-prefix")
1953                       .getValueAsString();
1954     unsigned N;
1955     if (S.getAsInteger(10, N))
1956       CheckFailed(
1957           "\"patchable-function-prefix\" takes an unsigned integer: " + S, V);
1958   }
1959   if (Attrs.hasFnAttribute("patchable-function-entry")) {
1960     StringRef S = Attrs
1961                       .getAttribute(AttributeList::FunctionIndex,
1962                                     "patchable-function-entry")
1963                       .getValueAsString();
1964     unsigned N;
1965     if (S.getAsInteger(10, N))
1966       CheckFailed(
1967           "\"patchable-function-entry\" takes an unsigned integer: " + S, V);
1968   }
1969 }
1970 
1971 void Verifier::verifyFunctionMetadata(
1972     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1973   for (const auto &Pair : MDs) {
1974     if (Pair.first == LLVMContext::MD_prof) {
1975       MDNode *MD = Pair.second;
1976       Assert(MD->getNumOperands() >= 2,
1977              "!prof annotations should have no less than 2 operands", MD);
1978 
1979       // Check first operand.
1980       Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1981              MD);
1982       Assert(isa<MDString>(MD->getOperand(0)),
1983              "expected string with name of the !prof annotation", MD);
1984       MDString *MDS = cast<MDString>(MD->getOperand(0));
1985       StringRef ProfName = MDS->getString();
1986       Assert(ProfName.equals("function_entry_count") ||
1987                  ProfName.equals("synthetic_function_entry_count"),
1988              "first operand should be 'function_entry_count'"
1989              " or 'synthetic_function_entry_count'",
1990              MD);
1991 
1992       // Check second operand.
1993       Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1994              MD);
1995       Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1996              "expected integer argument to function_entry_count", MD);
1997     }
1998   }
1999 }
2000 
2001 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2002   if (!ConstantExprVisited.insert(EntryC).second)
2003     return;
2004 
2005   SmallVector<const Constant *, 16> Stack;
2006   Stack.push_back(EntryC);
2007 
2008   while (!Stack.empty()) {
2009     const Constant *C = Stack.pop_back_val();
2010 
2011     // Check this constant expression.
2012     if (const auto *CE = dyn_cast<ConstantExpr>(C))
2013       visitConstantExpr(CE);
2014 
2015     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
2016       // Global Values get visited separately, but we do need to make sure
2017       // that the global value is in the correct module
2018       Assert(GV->getParent() == &M, "Referencing global in another module!",
2019              EntryC, &M, GV, GV->getParent());
2020       continue;
2021     }
2022 
2023     // Visit all sub-expressions.
2024     for (const Use &U : C->operands()) {
2025       const auto *OpC = dyn_cast<Constant>(U);
2026       if (!OpC)
2027         continue;
2028       if (!ConstantExprVisited.insert(OpC).second)
2029         continue;
2030       Stack.push_back(OpC);
2031     }
2032   }
2033 }
2034 
2035 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2036   if (CE->getOpcode() == Instruction::BitCast)
2037     Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
2038                                  CE->getType()),
2039            "Invalid bitcast", CE);
2040 
2041   if (CE->getOpcode() == Instruction::IntToPtr ||
2042       CE->getOpcode() == Instruction::PtrToInt) {
2043     auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
2044                       ? CE->getType()
2045                       : CE->getOperand(0)->getType();
2046     StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
2047                         ? "inttoptr not supported for non-integral pointers"
2048                         : "ptrtoint not supported for non-integral pointers";
2049     Assert(
2050         !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
2051         Msg);
2052   }
2053 }
2054 
2055 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2056   // There shouldn't be more attribute sets than there are parameters plus the
2057   // function and return value.
2058   return Attrs.getNumAttrSets() <= Params + 2;
2059 }
2060 
2061 /// Verify that statepoint intrinsic is well formed.
2062 void Verifier::verifyStatepoint(const CallBase &Call) {
2063   assert(Call.getCalledFunction() &&
2064          Call.getCalledFunction()->getIntrinsicID() ==
2065              Intrinsic::experimental_gc_statepoint);
2066 
2067   Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
2068              !Call.onlyAccessesArgMemory(),
2069          "gc.statepoint must read and write all memory to preserve "
2070          "reordering restrictions required by safepoint semantics",
2071          Call);
2072 
2073   const int64_t NumPatchBytes =
2074       cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2075   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
2076   Assert(NumPatchBytes >= 0,
2077          "gc.statepoint number of patchable bytes must be "
2078          "positive",
2079          Call);
2080 
2081   const Value *Target = Call.getArgOperand(2);
2082   auto *PT = dyn_cast<PointerType>(Target->getType());
2083   Assert(PT && PT->getElementType()->isFunctionTy(),
2084          "gc.statepoint callee must be of function pointer type", Call, Target);
2085   FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
2086 
2087   const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2088   Assert(NumCallArgs >= 0,
2089          "gc.statepoint number of arguments to underlying call "
2090          "must be positive",
2091          Call);
2092   const int NumParams = (int)TargetFuncType->getNumParams();
2093   if (TargetFuncType->isVarArg()) {
2094     Assert(NumCallArgs >= NumParams,
2095            "gc.statepoint mismatch in number of vararg call args", Call);
2096 
2097     // TODO: Remove this limitation
2098     Assert(TargetFuncType->getReturnType()->isVoidTy(),
2099            "gc.statepoint doesn't support wrapping non-void "
2100            "vararg functions yet",
2101            Call);
2102   } else
2103     Assert(NumCallArgs == NumParams,
2104            "gc.statepoint mismatch in number of call args", Call);
2105 
2106   const uint64_t Flags
2107     = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2108   Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2109          "unknown flag used in gc.statepoint flags argument", Call);
2110 
2111   // Verify that the types of the call parameter arguments match
2112   // the type of the wrapped callee.
2113   AttributeList Attrs = Call.getAttributes();
2114   for (int i = 0; i < NumParams; i++) {
2115     Type *ParamType = TargetFuncType->getParamType(i);
2116     Type *ArgType = Call.getArgOperand(5 + i)->getType();
2117     Assert(ArgType == ParamType,
2118            "gc.statepoint call argument does not match wrapped "
2119            "function type",
2120            Call);
2121 
2122     if (TargetFuncType->isVarArg()) {
2123       AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
2124       Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2125              "Attribute 'sret' cannot be used for vararg call arguments!",
2126              Call);
2127     }
2128   }
2129 
2130   const int EndCallArgsInx = 4 + NumCallArgs;
2131 
2132   const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2133   Assert(isa<ConstantInt>(NumTransitionArgsV),
2134          "gc.statepoint number of transition arguments "
2135          "must be constant integer",
2136          Call);
2137   const int NumTransitionArgs =
2138       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2139   Assert(NumTransitionArgs == 0,
2140          "gc.statepoint w/inline transition bundle is deprecated", Call);
2141   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2142 
2143   const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2144   Assert(isa<ConstantInt>(NumDeoptArgsV),
2145          "gc.statepoint number of deoptimization arguments "
2146          "must be constant integer",
2147          Call);
2148   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2149   Assert(NumDeoptArgs == 0,
2150          "gc.statepoint w/inline deopt operands is deprecated", Call);
2151 
2152   const int ExpectedNumArgs = 7 + NumCallArgs;
2153   Assert(ExpectedNumArgs == (int)Call.arg_size(),
2154          "gc.statepoint too many arguments", Call);
2155 
2156   // Check that the only uses of this gc.statepoint are gc.result or
2157   // gc.relocate calls which are tied to this statepoint and thus part
2158   // of the same statepoint sequence
2159   for (const User *U : Call.users()) {
2160     const CallInst *UserCall = dyn_cast<const CallInst>(U);
2161     Assert(UserCall, "illegal use of statepoint token", Call, U);
2162     if (!UserCall)
2163       continue;
2164     Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2165            "gc.result or gc.relocate are the only value uses "
2166            "of a gc.statepoint",
2167            Call, U);
2168     if (isa<GCResultInst>(UserCall)) {
2169       Assert(UserCall->getArgOperand(0) == &Call,
2170              "gc.result connected to wrong gc.statepoint", Call, UserCall);
2171     } else if (isa<GCRelocateInst>(Call)) {
2172       Assert(UserCall->getArgOperand(0) == &Call,
2173              "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2174     }
2175   }
2176 
2177   // Note: It is legal for a single derived pointer to be listed multiple
2178   // times.  It's non-optimal, but it is legal.  It can also happen after
2179   // insertion if we strip a bitcast away.
2180   // Note: It is really tempting to check that each base is relocated and
2181   // that a derived pointer is never reused as a base pointer.  This turns
2182   // out to be problematic since optimizations run after safepoint insertion
2183   // can recognize equality properties that the insertion logic doesn't know
2184   // about.  See example statepoint.ll in the verifier subdirectory
2185 }
2186 
2187 void Verifier::verifyFrameRecoverIndices() {
2188   for (auto &Counts : FrameEscapeInfo) {
2189     Function *F = Counts.first;
2190     unsigned EscapedObjectCount = Counts.second.first;
2191     unsigned MaxRecoveredIndex = Counts.second.second;
2192     Assert(MaxRecoveredIndex <= EscapedObjectCount,
2193            "all indices passed to llvm.localrecover must be less than the "
2194            "number of arguments passed to llvm.localescape in the parent "
2195            "function",
2196            F);
2197   }
2198 }
2199 
2200 static Instruction *getSuccPad(Instruction *Terminator) {
2201   BasicBlock *UnwindDest;
2202   if (auto *II = dyn_cast<InvokeInst>(Terminator))
2203     UnwindDest = II->getUnwindDest();
2204   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2205     UnwindDest = CSI->getUnwindDest();
2206   else
2207     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2208   return UnwindDest->getFirstNonPHI();
2209 }
2210 
2211 void Verifier::verifySiblingFuncletUnwinds() {
2212   SmallPtrSet<Instruction *, 8> Visited;
2213   SmallPtrSet<Instruction *, 8> Active;
2214   for (const auto &Pair : SiblingFuncletInfo) {
2215     Instruction *PredPad = Pair.first;
2216     if (Visited.count(PredPad))
2217       continue;
2218     Active.insert(PredPad);
2219     Instruction *Terminator = Pair.second;
2220     do {
2221       Instruction *SuccPad = getSuccPad(Terminator);
2222       if (Active.count(SuccPad)) {
2223         // Found a cycle; report error
2224         Instruction *CyclePad = SuccPad;
2225         SmallVector<Instruction *, 8> CycleNodes;
2226         do {
2227           CycleNodes.push_back(CyclePad);
2228           Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2229           if (CycleTerminator != CyclePad)
2230             CycleNodes.push_back(CycleTerminator);
2231           CyclePad = getSuccPad(CycleTerminator);
2232         } while (CyclePad != SuccPad);
2233         Assert(false, "EH pads can't handle each other's exceptions",
2234                ArrayRef<Instruction *>(CycleNodes));
2235       }
2236       // Don't re-walk a node we've already checked
2237       if (!Visited.insert(SuccPad).second)
2238         break;
2239       // Walk to this successor if it has a map entry.
2240       PredPad = SuccPad;
2241       auto TermI = SiblingFuncletInfo.find(PredPad);
2242       if (TermI == SiblingFuncletInfo.end())
2243         break;
2244       Terminator = TermI->second;
2245       Active.insert(PredPad);
2246     } while (true);
2247     // Each node only has one successor, so we've walked all the active
2248     // nodes' successors.
2249     Active.clear();
2250   }
2251 }
2252 
2253 // visitFunction - Verify that a function is ok.
2254 //
2255 void Verifier::visitFunction(const Function &F) {
2256   visitGlobalValue(F);
2257 
2258   // Check function arguments.
2259   FunctionType *FT = F.getFunctionType();
2260   unsigned NumArgs = F.arg_size();
2261 
2262   Assert(&Context == &F.getContext(),
2263          "Function context does not match Module context!", &F);
2264 
2265   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2266   Assert(FT->getNumParams() == NumArgs,
2267          "# formal arguments must match # of arguments for function type!", &F,
2268          FT);
2269   Assert(F.getReturnType()->isFirstClassType() ||
2270              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2271          "Functions cannot return aggregate values!", &F);
2272 
2273   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2274          "Invalid struct return type!", &F);
2275 
2276   AttributeList Attrs = F.getAttributes();
2277 
2278   Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2279          "Attribute after last parameter!", &F);
2280 
2281   bool isLLVMdotName = F.getName().size() >= 5 &&
2282                        F.getName().substr(0, 5) == "llvm.";
2283 
2284   // Check function attributes.
2285   verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName);
2286 
2287   // On function declarations/definitions, we do not support the builtin
2288   // attribute. We do not check this in VerifyFunctionAttrs since that is
2289   // checking for Attributes that can/can not ever be on functions.
2290   Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2291          "Attribute 'builtin' can only be applied to a callsite.", &F);
2292 
2293   // Check that this function meets the restrictions on this calling convention.
2294   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2295   // restrictions can be lifted.
2296   switch (F.getCallingConv()) {
2297   default:
2298   case CallingConv::C:
2299     break;
2300   case CallingConv::AMDGPU_KERNEL:
2301   case CallingConv::SPIR_KERNEL:
2302     Assert(F.getReturnType()->isVoidTy(),
2303            "Calling convention requires void return type", &F);
2304     LLVM_FALLTHROUGH;
2305   case CallingConv::AMDGPU_VS:
2306   case CallingConv::AMDGPU_HS:
2307   case CallingConv::AMDGPU_GS:
2308   case CallingConv::AMDGPU_PS:
2309   case CallingConv::AMDGPU_CS:
2310     Assert(!F.hasStructRetAttr(),
2311            "Calling convention does not allow sret", &F);
2312     if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2313       const unsigned StackAS = DL.getAllocaAddrSpace();
2314       unsigned i = 0;
2315       for (const Argument &Arg : F.args()) {
2316         Assert(!Attrs.hasParamAttribute(i, Attribute::ByVal),
2317                "Calling convention disallows byval", &F);
2318         Assert(!Attrs.hasParamAttribute(i, Attribute::Preallocated),
2319                "Calling convention disallows preallocated", &F);
2320         Assert(!Attrs.hasParamAttribute(i, Attribute::InAlloca),
2321                "Calling convention disallows inalloca", &F);
2322 
2323         if (Attrs.hasParamAttribute(i, Attribute::ByRef)) {
2324           // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2325           // value here.
2326           Assert(Arg.getType()->getPointerAddressSpace() != StackAS,
2327                  "Calling convention disallows stack byref", &F);
2328         }
2329 
2330         ++i;
2331       }
2332     }
2333 
2334     LLVM_FALLTHROUGH;
2335   case CallingConv::Fast:
2336   case CallingConv::Cold:
2337   case CallingConv::Intel_OCL_BI:
2338   case CallingConv::PTX_Kernel:
2339   case CallingConv::PTX_Device:
2340     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2341                           "perfect forwarding!",
2342            &F);
2343     break;
2344   }
2345 
2346   // Check that the argument values match the function type for this function...
2347   unsigned i = 0;
2348   for (const Argument &Arg : F.args()) {
2349     Assert(Arg.getType() == FT->getParamType(i),
2350            "Argument value does not match function argument type!", &Arg,
2351            FT->getParamType(i));
2352     Assert(Arg.getType()->isFirstClassType(),
2353            "Function arguments must have first-class types!", &Arg);
2354     if (!isLLVMdotName) {
2355       Assert(!Arg.getType()->isMetadataTy(),
2356              "Function takes metadata but isn't an intrinsic", &Arg, &F);
2357       Assert(!Arg.getType()->isTokenTy(),
2358              "Function takes token but isn't an intrinsic", &Arg, &F);
2359     }
2360 
2361     // Check that swifterror argument is only used by loads and stores.
2362     if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2363       verifySwiftErrorValue(&Arg);
2364     }
2365     ++i;
2366   }
2367 
2368   if (!isLLVMdotName)
2369     Assert(!F.getReturnType()->isTokenTy(),
2370            "Functions returns a token but isn't an intrinsic", &F);
2371 
2372   // Get the function metadata attachments.
2373   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2374   F.getAllMetadata(MDs);
2375   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2376   verifyFunctionMetadata(MDs);
2377 
2378   // Check validity of the personality function
2379   if (F.hasPersonalityFn()) {
2380     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2381     if (Per)
2382       Assert(Per->getParent() == F.getParent(),
2383              "Referencing personality function in another module!",
2384              &F, F.getParent(), Per, Per->getParent());
2385   }
2386 
2387   if (F.isMaterializable()) {
2388     // Function has a body somewhere we can't see.
2389     Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2390            MDs.empty() ? nullptr : MDs.front().second);
2391   } else if (F.isDeclaration()) {
2392     for (const auto &I : MDs) {
2393       // This is used for call site debug information.
2394       AssertDI(I.first != LLVMContext::MD_dbg ||
2395                    !cast<DISubprogram>(I.second)->isDistinct(),
2396                "function declaration may only have a unique !dbg attachment",
2397                &F);
2398       Assert(I.first != LLVMContext::MD_prof,
2399              "function declaration may not have a !prof attachment", &F);
2400 
2401       // Verify the metadata itself.
2402       visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2403     }
2404     Assert(!F.hasPersonalityFn(),
2405            "Function declaration shouldn't have a personality routine", &F);
2406   } else {
2407     // Verify that this function (which has a body) is not named "llvm.*".  It
2408     // is not legal to define intrinsics.
2409     Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2410 
2411     // Check the entry node
2412     const BasicBlock *Entry = &F.getEntryBlock();
2413     Assert(pred_empty(Entry),
2414            "Entry block to function must not have predecessors!", Entry);
2415 
2416     // The address of the entry block cannot be taken, unless it is dead.
2417     if (Entry->hasAddressTaken()) {
2418       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2419              "blockaddress may not be used with the entry block!", Entry);
2420     }
2421 
2422     unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2423     // Visit metadata attachments.
2424     for (const auto &I : MDs) {
2425       // Verify that the attachment is legal.
2426       auto AllowLocs = AreDebugLocsAllowed::No;
2427       switch (I.first) {
2428       default:
2429         break;
2430       case LLVMContext::MD_dbg: {
2431         ++NumDebugAttachments;
2432         AssertDI(NumDebugAttachments == 1,
2433                  "function must have a single !dbg attachment", &F, I.second);
2434         AssertDI(isa<DISubprogram>(I.second),
2435                  "function !dbg attachment must be a subprogram", &F, I.second);
2436         auto *SP = cast<DISubprogram>(I.second);
2437         const Function *&AttachedTo = DISubprogramAttachments[SP];
2438         AssertDI(!AttachedTo || AttachedTo == &F,
2439                  "DISubprogram attached to more than one function", SP, &F);
2440         AttachedTo = &F;
2441         AllowLocs = AreDebugLocsAllowed::Yes;
2442         break;
2443       }
2444       case LLVMContext::MD_prof:
2445         ++NumProfAttachments;
2446         Assert(NumProfAttachments == 1,
2447                "function must have a single !prof attachment", &F, I.second);
2448         break;
2449       }
2450 
2451       // Verify the metadata itself.
2452       visitMDNode(*I.second, AllowLocs);
2453     }
2454   }
2455 
2456   // If this function is actually an intrinsic, verify that it is only used in
2457   // direct call/invokes, never having its "address taken".
2458   // Only do this if the module is materialized, otherwise we don't have all the
2459   // uses.
2460   if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2461     const User *U;
2462     if (F.hasAddressTaken(&U))
2463       Assert(false, "Invalid user of intrinsic instruction!", U);
2464   }
2465 
2466   auto *N = F.getSubprogram();
2467   HasDebugInfo = (N != nullptr);
2468   if (!HasDebugInfo)
2469     return;
2470 
2471   // Check that all !dbg attachments lead to back to N.
2472   //
2473   // FIXME: Check this incrementally while visiting !dbg attachments.
2474   // FIXME: Only check when N is the canonical subprogram for F.
2475   SmallPtrSet<const MDNode *, 32> Seen;
2476   auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2477     // Be careful about using DILocation here since we might be dealing with
2478     // broken code (this is the Verifier after all).
2479     const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2480     if (!DL)
2481       return;
2482     if (!Seen.insert(DL).second)
2483       return;
2484 
2485     Metadata *Parent = DL->getRawScope();
2486     AssertDI(Parent && isa<DILocalScope>(Parent),
2487              "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
2488              Parent);
2489 
2490     DILocalScope *Scope = DL->getInlinedAtScope();
2491     Assert(Scope, "Failed to find DILocalScope", DL);
2492 
2493     if (!Seen.insert(Scope).second)
2494       return;
2495 
2496     DISubprogram *SP = Scope->getSubprogram();
2497 
2498     // Scope and SP could be the same MDNode and we don't want to skip
2499     // validation in that case
2500     if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2501       return;
2502 
2503     AssertDI(SP->describes(&F),
2504              "!dbg attachment points at wrong subprogram for function", N, &F,
2505              &I, DL, Scope, SP);
2506   };
2507   for (auto &BB : F)
2508     for (auto &I : BB) {
2509       VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2510       // The llvm.loop annotations also contain two DILocations.
2511       if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2512         for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2513           VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2514       if (BrokenDebugInfo)
2515         return;
2516     }
2517 }
2518 
2519 // verifyBasicBlock - Verify that a basic block is well formed...
2520 //
2521 void Verifier::visitBasicBlock(BasicBlock &BB) {
2522   InstsInThisBlock.clear();
2523 
2524   // Ensure that basic blocks have terminators!
2525   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2526 
2527   // Check constraints that this basic block imposes on all of the PHI nodes in
2528   // it.
2529   if (isa<PHINode>(BB.front())) {
2530     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2531     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2532     llvm::sort(Preds);
2533     for (const PHINode &PN : BB.phis()) {
2534       // Ensure that PHI nodes have at least one entry!
2535       Assert(PN.getNumIncomingValues() != 0,
2536              "PHI nodes must have at least one entry.  If the block is dead, "
2537              "the PHI should be removed!",
2538              &PN);
2539       Assert(PN.getNumIncomingValues() == Preds.size(),
2540              "PHINode should have one entry for each predecessor of its "
2541              "parent basic block!",
2542              &PN);
2543 
2544       // Get and sort all incoming values in the PHI node...
2545       Values.clear();
2546       Values.reserve(PN.getNumIncomingValues());
2547       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2548         Values.push_back(
2549             std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2550       llvm::sort(Values);
2551 
2552       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2553         // Check to make sure that if there is more than one entry for a
2554         // particular basic block in this PHI node, that the incoming values are
2555         // all identical.
2556         //
2557         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2558                    Values[i].second == Values[i - 1].second,
2559                "PHI node has multiple entries for the same basic block with "
2560                "different incoming values!",
2561                &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2562 
2563         // Check to make sure that the predecessors and PHI node entries are
2564         // matched up.
2565         Assert(Values[i].first == Preds[i],
2566                "PHI node entries do not match predecessors!", &PN,
2567                Values[i].first, Preds[i]);
2568       }
2569     }
2570   }
2571 
2572   // Check that all instructions have their parent pointers set up correctly.
2573   for (auto &I : BB)
2574   {
2575     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2576   }
2577 }
2578 
2579 void Verifier::visitTerminator(Instruction &I) {
2580   // Ensure that terminators only exist at the end of the basic block.
2581   Assert(&I == I.getParent()->getTerminator(),
2582          "Terminator found in the middle of a basic block!", I.getParent());
2583   visitInstruction(I);
2584 }
2585 
2586 void Verifier::visitBranchInst(BranchInst &BI) {
2587   if (BI.isConditional()) {
2588     Assert(BI.getCondition()->getType()->isIntegerTy(1),
2589            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2590   }
2591   visitTerminator(BI);
2592 }
2593 
2594 void Verifier::visitReturnInst(ReturnInst &RI) {
2595   Function *F = RI.getParent()->getParent();
2596   unsigned N = RI.getNumOperands();
2597   if (F->getReturnType()->isVoidTy())
2598     Assert(N == 0,
2599            "Found return instr that returns non-void in Function of void "
2600            "return type!",
2601            &RI, F->getReturnType());
2602   else
2603     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2604            "Function return type does not match operand "
2605            "type of return inst!",
2606            &RI, F->getReturnType());
2607 
2608   // Check to make sure that the return value has necessary properties for
2609   // terminators...
2610   visitTerminator(RI);
2611 }
2612 
2613 void Verifier::visitSwitchInst(SwitchInst &SI) {
2614   // Check to make sure that all of the constants in the switch instruction
2615   // have the same type as the switched-on value.
2616   Type *SwitchTy = SI.getCondition()->getType();
2617   SmallPtrSet<ConstantInt*, 32> Constants;
2618   for (auto &Case : SI.cases()) {
2619     Assert(Case.getCaseValue()->getType() == SwitchTy,
2620            "Switch constants must all be same type as switch value!", &SI);
2621     Assert(Constants.insert(Case.getCaseValue()).second,
2622            "Duplicate integer as switch case", &SI, Case.getCaseValue());
2623   }
2624 
2625   visitTerminator(SI);
2626 }
2627 
2628 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2629   Assert(BI.getAddress()->getType()->isPointerTy(),
2630          "Indirectbr operand must have pointer type!", &BI);
2631   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2632     Assert(BI.getDestination(i)->getType()->isLabelTy(),
2633            "Indirectbr destinations must all have pointer type!", &BI);
2634 
2635   visitTerminator(BI);
2636 }
2637 
2638 void Verifier::visitCallBrInst(CallBrInst &CBI) {
2639   Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2640          &CBI);
2641   for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2642     Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
2643            "Callbr successors must all have pointer type!", &CBI);
2644   for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2645     Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),
2646            "Using an unescaped label as a callbr argument!", &CBI);
2647     if (isa<BasicBlock>(CBI.getOperand(i)))
2648       for (unsigned j = i + 1; j != e; ++j)
2649         Assert(CBI.getOperand(i) != CBI.getOperand(j),
2650                "Duplicate callbr destination!", &CBI);
2651   }
2652   {
2653     SmallPtrSet<BasicBlock *, 4> ArgBBs;
2654     for (Value *V : CBI.args())
2655       if (auto *BA = dyn_cast<BlockAddress>(V))
2656         ArgBBs.insert(BA->getBasicBlock());
2657     for (BasicBlock *BB : CBI.getIndirectDests())
2658       Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI);
2659   }
2660 
2661   visitTerminator(CBI);
2662 }
2663 
2664 void Verifier::visitSelectInst(SelectInst &SI) {
2665   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2666                                          SI.getOperand(2)),
2667          "Invalid operands for select instruction!", &SI);
2668 
2669   Assert(SI.getTrueValue()->getType() == SI.getType(),
2670          "Select values must have same type as select instruction!", &SI);
2671   visitInstruction(SI);
2672 }
2673 
2674 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2675 /// a pass, if any exist, it's an error.
2676 ///
2677 void Verifier::visitUserOp1(Instruction &I) {
2678   Assert(false, "User-defined operators should not live outside of a pass!", &I);
2679 }
2680 
2681 void Verifier::visitTruncInst(TruncInst &I) {
2682   // Get the source and destination types
2683   Type *SrcTy = I.getOperand(0)->getType();
2684   Type *DestTy = I.getType();
2685 
2686   // Get the size of the types in bits, we'll need this later
2687   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2688   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2689 
2690   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2691   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2692   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2693          "trunc source and destination must both be a vector or neither", &I);
2694   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2695 
2696   visitInstruction(I);
2697 }
2698 
2699 void Verifier::visitZExtInst(ZExtInst &I) {
2700   // Get the source and destination types
2701   Type *SrcTy = I.getOperand(0)->getType();
2702   Type *DestTy = I.getType();
2703 
2704   // Get the size of the types in bits, we'll need this later
2705   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2706   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2707   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2708          "zext source and destination must both be a vector or neither", &I);
2709   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2710   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2711 
2712   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2713 
2714   visitInstruction(I);
2715 }
2716 
2717 void Verifier::visitSExtInst(SExtInst &I) {
2718   // Get the source and destination types
2719   Type *SrcTy = I.getOperand(0)->getType();
2720   Type *DestTy = I.getType();
2721 
2722   // Get the size of the types in bits, we'll need this later
2723   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2724   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2725 
2726   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2727   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2728   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2729          "sext source and destination must both be a vector or neither", &I);
2730   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2731 
2732   visitInstruction(I);
2733 }
2734 
2735 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2736   // Get the source and destination types
2737   Type *SrcTy = I.getOperand(0)->getType();
2738   Type *DestTy = I.getType();
2739   // Get the size of the types in bits, we'll need this later
2740   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2741   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2742 
2743   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2744   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2745   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2746          "fptrunc source and destination must both be a vector or neither", &I);
2747   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2748 
2749   visitInstruction(I);
2750 }
2751 
2752 void Verifier::visitFPExtInst(FPExtInst &I) {
2753   // Get the source and destination types
2754   Type *SrcTy = I.getOperand(0)->getType();
2755   Type *DestTy = I.getType();
2756 
2757   // Get the size of the types in bits, we'll need this later
2758   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2759   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2760 
2761   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2762   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2763   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2764          "fpext source and destination must both be a vector or neither", &I);
2765   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2766 
2767   visitInstruction(I);
2768 }
2769 
2770 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2771   // Get the source and destination types
2772   Type *SrcTy = I.getOperand(0)->getType();
2773   Type *DestTy = I.getType();
2774 
2775   bool SrcVec = SrcTy->isVectorTy();
2776   bool DstVec = DestTy->isVectorTy();
2777 
2778   Assert(SrcVec == DstVec,
2779          "UIToFP source and dest must both be vector or scalar", &I);
2780   Assert(SrcTy->isIntOrIntVectorTy(),
2781          "UIToFP source must be integer or integer vector", &I);
2782   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2783          &I);
2784 
2785   if (SrcVec && DstVec)
2786     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2787                cast<VectorType>(DestTy)->getElementCount(),
2788            "UIToFP source and dest vector length mismatch", &I);
2789 
2790   visitInstruction(I);
2791 }
2792 
2793 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2794   // Get the source and destination types
2795   Type *SrcTy = I.getOperand(0)->getType();
2796   Type *DestTy = I.getType();
2797 
2798   bool SrcVec = SrcTy->isVectorTy();
2799   bool DstVec = DestTy->isVectorTy();
2800 
2801   Assert(SrcVec == DstVec,
2802          "SIToFP source and dest must both be vector or scalar", &I);
2803   Assert(SrcTy->isIntOrIntVectorTy(),
2804          "SIToFP source must be integer or integer vector", &I);
2805   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2806          &I);
2807 
2808   if (SrcVec && DstVec)
2809     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2810                cast<VectorType>(DestTy)->getElementCount(),
2811            "SIToFP source and dest vector length mismatch", &I);
2812 
2813   visitInstruction(I);
2814 }
2815 
2816 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2817   // Get the source and destination types
2818   Type *SrcTy = I.getOperand(0)->getType();
2819   Type *DestTy = I.getType();
2820 
2821   bool SrcVec = SrcTy->isVectorTy();
2822   bool DstVec = DestTy->isVectorTy();
2823 
2824   Assert(SrcVec == DstVec,
2825          "FPToUI source and dest must both be vector or scalar", &I);
2826   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2827          &I);
2828   Assert(DestTy->isIntOrIntVectorTy(),
2829          "FPToUI result must be integer or integer vector", &I);
2830 
2831   if (SrcVec && DstVec)
2832     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2833                cast<VectorType>(DestTy)->getElementCount(),
2834            "FPToUI source and dest vector length mismatch", &I);
2835 
2836   visitInstruction(I);
2837 }
2838 
2839 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2840   // Get the source and destination types
2841   Type *SrcTy = I.getOperand(0)->getType();
2842   Type *DestTy = I.getType();
2843 
2844   bool SrcVec = SrcTy->isVectorTy();
2845   bool DstVec = DestTy->isVectorTy();
2846 
2847   Assert(SrcVec == DstVec,
2848          "FPToSI source and dest must both be vector or scalar", &I);
2849   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2850          &I);
2851   Assert(DestTy->isIntOrIntVectorTy(),
2852          "FPToSI result must be integer or integer vector", &I);
2853 
2854   if (SrcVec && DstVec)
2855     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2856                cast<VectorType>(DestTy)->getElementCount(),
2857            "FPToSI source and dest vector length mismatch", &I);
2858 
2859   visitInstruction(I);
2860 }
2861 
2862 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2863   // Get the source and destination types
2864   Type *SrcTy = I.getOperand(0)->getType();
2865   Type *DestTy = I.getType();
2866 
2867   Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2868 
2869   if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2870     Assert(!DL.isNonIntegralPointerType(PTy),
2871            "ptrtoint not supported for non-integral pointers");
2872 
2873   Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2874   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2875          &I);
2876 
2877   if (SrcTy->isVectorTy()) {
2878     auto *VSrc = cast<VectorType>(SrcTy);
2879     auto *VDest = cast<VectorType>(DestTy);
2880     Assert(VSrc->getElementCount() == VDest->getElementCount(),
2881            "PtrToInt Vector width mismatch", &I);
2882   }
2883 
2884   visitInstruction(I);
2885 }
2886 
2887 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2888   // Get the source and destination types
2889   Type *SrcTy = I.getOperand(0)->getType();
2890   Type *DestTy = I.getType();
2891 
2892   Assert(SrcTy->isIntOrIntVectorTy(),
2893          "IntToPtr source must be an integral", &I);
2894   Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2895 
2896   if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2897     Assert(!DL.isNonIntegralPointerType(PTy),
2898            "inttoptr not supported for non-integral pointers");
2899 
2900   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2901          &I);
2902   if (SrcTy->isVectorTy()) {
2903     auto *VSrc = cast<VectorType>(SrcTy);
2904     auto *VDest = cast<VectorType>(DestTy);
2905     Assert(VSrc->getElementCount() == VDest->getElementCount(),
2906            "IntToPtr Vector width mismatch", &I);
2907   }
2908   visitInstruction(I);
2909 }
2910 
2911 void Verifier::visitBitCastInst(BitCastInst &I) {
2912   Assert(
2913       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2914       "Invalid bitcast", &I);
2915   visitInstruction(I);
2916 }
2917 
2918 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2919   Type *SrcTy = I.getOperand(0)->getType();
2920   Type *DestTy = I.getType();
2921 
2922   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2923          &I);
2924   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2925          &I);
2926   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2927          "AddrSpaceCast must be between different address spaces", &I);
2928   if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
2929     Assert(cast<FixedVectorType>(SrcVTy)->getNumElements() ==
2930                cast<FixedVectorType>(DestTy)->getNumElements(),
2931            "AddrSpaceCast vector pointer number of elements mismatch", &I);
2932   visitInstruction(I);
2933 }
2934 
2935 /// visitPHINode - Ensure that a PHI node is well formed.
2936 ///
2937 void Verifier::visitPHINode(PHINode &PN) {
2938   // Ensure that the PHI nodes are all grouped together at the top of the block.
2939   // This can be tested by checking whether the instruction before this is
2940   // either nonexistent (because this is begin()) or is a PHI node.  If not,
2941   // then there is some other instruction before a PHI.
2942   Assert(&PN == &PN.getParent()->front() ||
2943              isa<PHINode>(--BasicBlock::iterator(&PN)),
2944          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2945 
2946   // Check that a PHI doesn't yield a Token.
2947   Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2948 
2949   // Check that all of the values of the PHI node have the same type as the
2950   // result, and that the incoming blocks are really basic blocks.
2951   for (Value *IncValue : PN.incoming_values()) {
2952     Assert(PN.getType() == IncValue->getType(),
2953            "PHI node operands are not the same type as the result!", &PN);
2954   }
2955 
2956   // All other PHI node constraints are checked in the visitBasicBlock method.
2957 
2958   visitInstruction(PN);
2959 }
2960 
2961 void Verifier::visitCallBase(CallBase &Call) {
2962   Assert(Call.getCalledOperand()->getType()->isPointerTy(),
2963          "Called function must be a pointer!", Call);
2964   PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType());
2965 
2966   Assert(FPTy->getElementType()->isFunctionTy(),
2967          "Called function is not pointer to function type!", Call);
2968 
2969   Assert(FPTy->getElementType() == Call.getFunctionType(),
2970          "Called function is not the same type as the call!", Call);
2971 
2972   FunctionType *FTy = Call.getFunctionType();
2973 
2974   // Verify that the correct number of arguments are being passed
2975   if (FTy->isVarArg())
2976     Assert(Call.arg_size() >= FTy->getNumParams(),
2977            "Called function requires more parameters than were provided!",
2978            Call);
2979   else
2980     Assert(Call.arg_size() == FTy->getNumParams(),
2981            "Incorrect number of arguments passed to called function!", Call);
2982 
2983   // Verify that all arguments to the call match the function type.
2984   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2985     Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
2986            "Call parameter type does not match function signature!",
2987            Call.getArgOperand(i), FTy->getParamType(i), Call);
2988 
2989   AttributeList Attrs = Call.getAttributes();
2990 
2991   Assert(verifyAttributeCount(Attrs, Call.arg_size()),
2992          "Attribute after last parameter!", Call);
2993 
2994   bool IsIntrinsic = Call.getCalledFunction() &&
2995                      Call.getCalledFunction()->getName().startswith("llvm.");
2996 
2997   Function *Callee =
2998       dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
2999 
3000   if (Attrs.hasFnAttribute(Attribute::Speculatable)) {
3001     // Don't allow speculatable on call sites, unless the underlying function
3002     // declaration is also speculatable.
3003     Assert(Callee && Callee->isSpeculatable(),
3004            "speculatable attribute may not apply to call sites", Call);
3005   }
3006 
3007   if (Attrs.hasFnAttribute(Attribute::Preallocated)) {
3008     Assert(Call.getCalledFunction()->getIntrinsicID() ==
3009                Intrinsic::call_preallocated_arg,
3010            "preallocated as a call site attribute can only be on "
3011            "llvm.call.preallocated.arg");
3012   }
3013 
3014   // Verify call attributes.
3015   verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
3016 
3017   // Conservatively check the inalloca argument.
3018   // We have a bug if we can find that there is an underlying alloca without
3019   // inalloca.
3020   if (Call.hasInAllocaArgument()) {
3021     Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
3022     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
3023       Assert(AI->isUsedWithInAlloca(),
3024              "inalloca argument for call has mismatched alloca", AI, Call);
3025   }
3026 
3027   // For each argument of the callsite, if it has the swifterror argument,
3028   // make sure the underlying alloca/parameter it comes from has a swifterror as
3029   // well.
3030   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3031     if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3032       Value *SwiftErrorArg = Call.getArgOperand(i);
3033       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
3034         Assert(AI->isSwiftError(),
3035                "swifterror argument for call has mismatched alloca", AI, Call);
3036         continue;
3037       }
3038       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3039       Assert(ArgI,
3040              "swifterror argument should come from an alloca or parameter",
3041              SwiftErrorArg, Call);
3042       Assert(ArgI->hasSwiftErrorAttr(),
3043              "swifterror argument for call has mismatched parameter", ArgI,
3044              Call);
3045     }
3046 
3047     if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
3048       // Don't allow immarg on call sites, unless the underlying declaration
3049       // also has the matching immarg.
3050       Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
3051              "immarg may not apply only to call sites",
3052              Call.getArgOperand(i), Call);
3053     }
3054 
3055     if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3056       Value *ArgVal = Call.getArgOperand(i);
3057       Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3058              "immarg operand has non-immediate parameter", ArgVal, Call);
3059     }
3060 
3061     if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3062       Value *ArgVal = Call.getArgOperand(i);
3063       bool hasOB =
3064           Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3065       bool isMustTail = Call.isMustTailCall();
3066       Assert(hasOB != isMustTail,
3067              "preallocated operand either requires a preallocated bundle or "
3068              "the call to be musttail (but not both)",
3069              ArgVal, Call);
3070     }
3071   }
3072 
3073   if (FTy->isVarArg()) {
3074     // FIXME? is 'nest' even legal here?
3075     bool SawNest = false;
3076     bool SawReturned = false;
3077 
3078     for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3079       if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
3080         SawNest = true;
3081       if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
3082         SawReturned = true;
3083     }
3084 
3085     // Check attributes on the varargs part.
3086     for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3087       Type *Ty = Call.getArgOperand(Idx)->getType();
3088       AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
3089       verifyParameterAttrs(ArgAttrs, Ty, &Call);
3090 
3091       if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3092         Assert(!SawNest, "More than one parameter has attribute nest!", Call);
3093         SawNest = true;
3094       }
3095 
3096       if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3097         Assert(!SawReturned, "More than one parameter has attribute returned!",
3098                Call);
3099         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
3100                "Incompatible argument and return types for 'returned' "
3101                "attribute",
3102                Call);
3103         SawReturned = true;
3104       }
3105 
3106       // Statepoint intrinsic is vararg but the wrapped function may be not.
3107       // Allow sret here and check the wrapped function in verifyStatepoint.
3108       if (!Call.getCalledFunction() ||
3109           Call.getCalledFunction()->getIntrinsicID() !=
3110               Intrinsic::experimental_gc_statepoint)
3111         Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
3112                "Attribute 'sret' cannot be used for vararg call arguments!",
3113                Call);
3114 
3115       if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3116         Assert(Idx == Call.arg_size() - 1,
3117                "inalloca isn't on the last argument!", Call);
3118     }
3119   }
3120 
3121   // Verify that there's no metadata unless it's a direct call to an intrinsic.
3122   if (!IsIntrinsic) {
3123     for (Type *ParamTy : FTy->params()) {
3124       Assert(!ParamTy->isMetadataTy(),
3125              "Function has metadata parameter but isn't an intrinsic", Call);
3126       Assert(!ParamTy->isTokenTy(),
3127              "Function has token parameter but isn't an intrinsic", Call);
3128     }
3129   }
3130 
3131   // Verify that indirect calls don't return tokens.
3132   if (!Call.getCalledFunction())
3133     Assert(!FTy->getReturnType()->isTokenTy(),
3134            "Return type cannot be token for indirect call!");
3135 
3136   if (Function *F = Call.getCalledFunction())
3137     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3138       visitIntrinsicCall(ID, Call);
3139 
3140   // Verify that a callsite has at most one "deopt", at most one "funclet", at
3141   // most one "gc-transition", at most one "cfguardtarget",
3142   // and at most one "preallocated" operand bundle.
3143   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3144        FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3145        FoundPreallocatedBundle = false, FoundGCLiveBundle = false;;
3146   for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3147     OperandBundleUse BU = Call.getOperandBundleAt(i);
3148     uint32_t Tag = BU.getTagID();
3149     if (Tag == LLVMContext::OB_deopt) {
3150       Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3151       FoundDeoptBundle = true;
3152     } else if (Tag == LLVMContext::OB_gc_transition) {
3153       Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3154              Call);
3155       FoundGCTransitionBundle = true;
3156     } else if (Tag == LLVMContext::OB_funclet) {
3157       Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3158       FoundFuncletBundle = true;
3159       Assert(BU.Inputs.size() == 1,
3160              "Expected exactly one funclet bundle operand", Call);
3161       Assert(isa<FuncletPadInst>(BU.Inputs.front()),
3162              "Funclet bundle operands should correspond to a FuncletPadInst",
3163              Call);
3164     } else if (Tag == LLVMContext::OB_cfguardtarget) {
3165       Assert(!FoundCFGuardTargetBundle,
3166              "Multiple CFGuardTarget operand bundles", Call);
3167       FoundCFGuardTargetBundle = true;
3168       Assert(BU.Inputs.size() == 1,
3169              "Expected exactly one cfguardtarget bundle operand", Call);
3170     } else if (Tag == LLVMContext::OB_preallocated) {
3171       Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
3172              Call);
3173       FoundPreallocatedBundle = true;
3174       Assert(BU.Inputs.size() == 1,
3175              "Expected exactly one preallocated bundle operand", Call);
3176       auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3177       Assert(Input &&
3178                  Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3179              "\"preallocated\" argument must be a token from "
3180              "llvm.call.preallocated.setup",
3181              Call);
3182     } else if (Tag == LLVMContext::OB_gc_live) {
3183       Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles",
3184              Call);
3185       FoundGCLiveBundle = true;
3186     }
3187   }
3188 
3189   // Verify that each inlinable callsite of a debug-info-bearing function in a
3190   // debug-info-bearing function has a debug location attached to it. Failure to
3191   // do so causes assertion failures when the inliner sets up inline scope info.
3192   if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3193       Call.getCalledFunction()->getSubprogram())
3194     AssertDI(Call.getDebugLoc(),
3195              "inlinable function call in a function with "
3196              "debug info must have a !dbg location",
3197              Call);
3198 
3199   visitInstruction(Call);
3200 }
3201 
3202 /// Two types are "congruent" if they are identical, or if they are both pointer
3203 /// types with different pointee types and the same address space.
3204 static bool isTypeCongruent(Type *L, Type *R) {
3205   if (L == R)
3206     return true;
3207   PointerType *PL = dyn_cast<PointerType>(L);
3208   PointerType *PR = dyn_cast<PointerType>(R);
3209   if (!PL || !PR)
3210     return false;
3211   return PL->getAddressSpace() == PR->getAddressSpace();
3212 }
3213 
3214 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
3215   static const Attribute::AttrKind ABIAttrs[] = {
3216       Attribute::StructRet,    Attribute::ByVal,     Attribute::InAlloca,
3217       Attribute::InReg,        Attribute::SwiftSelf, Attribute::SwiftError,
3218       Attribute::Preallocated, Attribute::ByRef};
3219   AttrBuilder Copy;
3220   for (auto AK : ABIAttrs) {
3221     if (Attrs.hasParamAttribute(I, AK))
3222       Copy.addAttribute(AK);
3223   }
3224 
3225   // `align` is ABI-affecting only in combination with `byval` or `byref`.
3226   if (Attrs.hasParamAttribute(I, Attribute::Alignment) &&
3227       (Attrs.hasParamAttribute(I, Attribute::ByVal) ||
3228        Attrs.hasParamAttribute(I, Attribute::ByRef)))
3229     Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3230   return Copy;
3231 }
3232 
3233 void Verifier::verifyMustTailCall(CallInst &CI) {
3234   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3235 
3236   // - The caller and callee prototypes must match.  Pointer types of
3237   //   parameters or return types may differ in pointee type, but not
3238   //   address space.
3239   Function *F = CI.getParent()->getParent();
3240   FunctionType *CallerTy = F->getFunctionType();
3241   FunctionType *CalleeTy = CI.getFunctionType();
3242   if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3243     Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3244            "cannot guarantee tail call due to mismatched parameter counts",
3245            &CI);
3246     for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3247       Assert(
3248           isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3249           "cannot guarantee tail call due to mismatched parameter types", &CI);
3250     }
3251   }
3252   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3253          "cannot guarantee tail call due to mismatched varargs", &CI);
3254   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3255          "cannot guarantee tail call due to mismatched return types", &CI);
3256 
3257   // - The calling conventions of the caller and callee must match.
3258   Assert(F->getCallingConv() == CI.getCallingConv(),
3259          "cannot guarantee tail call due to mismatched calling conv", &CI);
3260 
3261   // - All ABI-impacting function attributes, such as sret, byval, inreg,
3262   //   returned, preallocated, and inalloca, must match.
3263   AttributeList CallerAttrs = F->getAttributes();
3264   AttributeList CalleeAttrs = CI.getAttributes();
3265   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3266     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3267     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3268     Assert(CallerABIAttrs == CalleeABIAttrs,
3269            "cannot guarantee tail call due to mismatched ABI impacting "
3270            "function attributes",
3271            &CI, CI.getOperand(I));
3272   }
3273 
3274   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3275   //   or a pointer bitcast followed by a ret instruction.
3276   // - The ret instruction must return the (possibly bitcasted) value
3277   //   produced by the call or void.
3278   Value *RetVal = &CI;
3279   Instruction *Next = CI.getNextNode();
3280 
3281   // Handle the optional bitcast.
3282   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3283     Assert(BI->getOperand(0) == RetVal,
3284            "bitcast following musttail call must use the call", BI);
3285     RetVal = BI;
3286     Next = BI->getNextNode();
3287   }
3288 
3289   // Check the return.
3290   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3291   Assert(Ret, "musttail call must precede a ret with an optional bitcast",
3292          &CI);
3293   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
3294          "musttail call result must be returned", Ret);
3295 }
3296 
3297 void Verifier::visitCallInst(CallInst &CI) {
3298   visitCallBase(CI);
3299 
3300   if (CI.isMustTailCall())
3301     verifyMustTailCall(CI);
3302 }
3303 
3304 void Verifier::visitInvokeInst(InvokeInst &II) {
3305   visitCallBase(II);
3306 
3307   // Verify that the first non-PHI instruction of the unwind destination is an
3308   // exception handling instruction.
3309   Assert(
3310       II.getUnwindDest()->isEHPad(),
3311       "The unwind destination does not have an exception handling instruction!",
3312       &II);
3313 
3314   visitTerminator(II);
3315 }
3316 
3317 /// visitUnaryOperator - Check the argument to the unary operator.
3318 ///
3319 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3320   Assert(U.getType() == U.getOperand(0)->getType(),
3321          "Unary operators must have same type for"
3322          "operands and result!",
3323          &U);
3324 
3325   switch (U.getOpcode()) {
3326   // Check that floating-point arithmetic operators are only used with
3327   // floating-point operands.
3328   case Instruction::FNeg:
3329     Assert(U.getType()->isFPOrFPVectorTy(),
3330            "FNeg operator only works with float types!", &U);
3331     break;
3332   default:
3333     llvm_unreachable("Unknown UnaryOperator opcode!");
3334   }
3335 
3336   visitInstruction(U);
3337 }
3338 
3339 /// visitBinaryOperator - Check that both arguments to the binary operator are
3340 /// of the same type!
3341 ///
3342 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3343   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3344          "Both operands to a binary operator are not of the same type!", &B);
3345 
3346   switch (B.getOpcode()) {
3347   // Check that integer arithmetic operators are only used with
3348   // integral operands.
3349   case Instruction::Add:
3350   case Instruction::Sub:
3351   case Instruction::Mul:
3352   case Instruction::SDiv:
3353   case Instruction::UDiv:
3354   case Instruction::SRem:
3355   case Instruction::URem:
3356     Assert(B.getType()->isIntOrIntVectorTy(),
3357            "Integer arithmetic operators only work with integral types!", &B);
3358     Assert(B.getType() == B.getOperand(0)->getType(),
3359            "Integer arithmetic operators must have same type "
3360            "for operands and result!",
3361            &B);
3362     break;
3363   // Check that floating-point arithmetic operators are only used with
3364   // floating-point operands.
3365   case Instruction::FAdd:
3366   case Instruction::FSub:
3367   case Instruction::FMul:
3368   case Instruction::FDiv:
3369   case Instruction::FRem:
3370     Assert(B.getType()->isFPOrFPVectorTy(),
3371            "Floating-point arithmetic operators only work with "
3372            "floating-point types!",
3373            &B);
3374     Assert(B.getType() == B.getOperand(0)->getType(),
3375            "Floating-point arithmetic operators must have same type "
3376            "for operands and result!",
3377            &B);
3378     break;
3379   // Check that logical operators are only used with integral operands.
3380   case Instruction::And:
3381   case Instruction::Or:
3382   case Instruction::Xor:
3383     Assert(B.getType()->isIntOrIntVectorTy(),
3384            "Logical operators only work with integral types!", &B);
3385     Assert(B.getType() == B.getOperand(0)->getType(),
3386            "Logical operators must have same type for operands and result!",
3387            &B);
3388     break;
3389   case Instruction::Shl:
3390   case Instruction::LShr:
3391   case Instruction::AShr:
3392     Assert(B.getType()->isIntOrIntVectorTy(),
3393            "Shifts only work with integral types!", &B);
3394     Assert(B.getType() == B.getOperand(0)->getType(),
3395            "Shift return type must be same as operands!", &B);
3396     break;
3397   default:
3398     llvm_unreachable("Unknown BinaryOperator opcode!");
3399   }
3400 
3401   visitInstruction(B);
3402 }
3403 
3404 void Verifier::visitICmpInst(ICmpInst &IC) {
3405   // Check that the operands are the same type
3406   Type *Op0Ty = IC.getOperand(0)->getType();
3407   Type *Op1Ty = IC.getOperand(1)->getType();
3408   Assert(Op0Ty == Op1Ty,
3409          "Both operands to ICmp instruction are not of the same type!", &IC);
3410   // Check that the operands are the right type
3411   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3412          "Invalid operand types for ICmp instruction", &IC);
3413   // Check that the predicate is valid.
3414   Assert(IC.isIntPredicate(),
3415          "Invalid predicate in ICmp instruction!", &IC);
3416 
3417   visitInstruction(IC);
3418 }
3419 
3420 void Verifier::visitFCmpInst(FCmpInst &FC) {
3421   // Check that the operands are the same type
3422   Type *Op0Ty = FC.getOperand(0)->getType();
3423   Type *Op1Ty = FC.getOperand(1)->getType();
3424   Assert(Op0Ty == Op1Ty,
3425          "Both operands to FCmp instruction are not of the same type!", &FC);
3426   // Check that the operands are the right type
3427   Assert(Op0Ty->isFPOrFPVectorTy(),
3428          "Invalid operand types for FCmp instruction", &FC);
3429   // Check that the predicate is valid.
3430   Assert(FC.isFPPredicate(),
3431          "Invalid predicate in FCmp instruction!", &FC);
3432 
3433   visitInstruction(FC);
3434 }
3435 
3436 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3437   Assert(
3438       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3439       "Invalid extractelement operands!", &EI);
3440   visitInstruction(EI);
3441 }
3442 
3443 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3444   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3445                                             IE.getOperand(2)),
3446          "Invalid insertelement operands!", &IE);
3447   visitInstruction(IE);
3448 }
3449 
3450 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3451   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3452                                             SV.getShuffleMask()),
3453          "Invalid shufflevector operands!", &SV);
3454   visitInstruction(SV);
3455 }
3456 
3457 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3458   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3459 
3460   Assert(isa<PointerType>(TargetTy),
3461          "GEP base pointer is not a vector or a vector of pointers", &GEP);
3462   Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3463 
3464   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3465   Assert(all_of(
3466       Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3467       "GEP indexes must be integers", &GEP);
3468   Type *ElTy =
3469       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3470   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3471 
3472   Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3473              GEP.getResultElementType() == ElTy,
3474          "GEP is not of right type for indices!", &GEP, ElTy);
3475 
3476   if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
3477     // Additional checks for vector GEPs.
3478     ElementCount GEPWidth = GEPVTy->getElementCount();
3479     if (GEP.getPointerOperandType()->isVectorTy())
3480       Assert(
3481           GEPWidth ==
3482               cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
3483           "Vector GEP result width doesn't match operand's", &GEP);
3484     for (Value *Idx : Idxs) {
3485       Type *IndexTy = Idx->getType();
3486       if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
3487         ElementCount IndexWidth = IndexVTy->getElementCount();
3488         Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3489       }
3490       Assert(IndexTy->isIntOrIntVectorTy(),
3491              "All GEP indices should be of integer type");
3492     }
3493   }
3494 
3495   if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3496     Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
3497            "GEP address space doesn't match type", &GEP);
3498   }
3499 
3500   visitInstruction(GEP);
3501 }
3502 
3503 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3504   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3505 }
3506 
3507 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3508   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3509          "precondition violation");
3510 
3511   unsigned NumOperands = Range->getNumOperands();
3512   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3513   unsigned NumRanges = NumOperands / 2;
3514   Assert(NumRanges >= 1, "It should have at least one range!", Range);
3515 
3516   ConstantRange LastRange(1, true); // Dummy initial value
3517   for (unsigned i = 0; i < NumRanges; ++i) {
3518     ConstantInt *Low =
3519         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3520     Assert(Low, "The lower limit must be an integer!", Low);
3521     ConstantInt *High =
3522         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3523     Assert(High, "The upper limit must be an integer!", High);
3524     Assert(High->getType() == Low->getType() && High->getType() == Ty,
3525            "Range types must match instruction type!", &I);
3526 
3527     APInt HighV = High->getValue();
3528     APInt LowV = Low->getValue();
3529     ConstantRange CurRange(LowV, HighV);
3530     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3531            "Range must not be empty!", Range);
3532     if (i != 0) {
3533       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3534              "Intervals are overlapping", Range);
3535       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3536              Range);
3537       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3538              Range);
3539     }
3540     LastRange = ConstantRange(LowV, HighV);
3541   }
3542   if (NumRanges > 2) {
3543     APInt FirstLow =
3544         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3545     APInt FirstHigh =
3546         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3547     ConstantRange FirstRange(FirstLow, FirstHigh);
3548     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3549            "Intervals are overlapping", Range);
3550     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3551            Range);
3552   }
3553 }
3554 
3555 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3556   unsigned Size = DL.getTypeSizeInBits(Ty);
3557   Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3558   Assert(!(Size & (Size - 1)),
3559          "atomic memory access' operand must have a power-of-two size", Ty, I);
3560 }
3561 
3562 void Verifier::visitLoadInst(LoadInst &LI) {
3563   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3564   Assert(PTy, "Load operand must be a pointer.", &LI);
3565   Type *ElTy = LI.getType();
3566   Assert(LI.getAlignment() <= Value::MaximumAlignment,
3567          "huge alignment values are unsupported", &LI);
3568   Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3569   if (LI.isAtomic()) {
3570     Assert(LI.getOrdering() != AtomicOrdering::Release &&
3571                LI.getOrdering() != AtomicOrdering::AcquireRelease,
3572            "Load cannot have Release ordering", &LI);
3573     Assert(LI.getAlignment() != 0,
3574            "Atomic load must specify explicit alignment", &LI);
3575     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3576            "atomic load operand must have integer, pointer, or floating point "
3577            "type!",
3578            ElTy, &LI);
3579     checkAtomicMemAccessSize(ElTy, &LI);
3580   } else {
3581     Assert(LI.getSyncScopeID() == SyncScope::System,
3582            "Non-atomic load cannot have SynchronizationScope specified", &LI);
3583   }
3584 
3585   visitInstruction(LI);
3586 }
3587 
3588 void Verifier::visitStoreInst(StoreInst &SI) {
3589   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3590   Assert(PTy, "Store operand must be a pointer.", &SI);
3591   Type *ElTy = PTy->getElementType();
3592   Assert(ElTy == SI.getOperand(0)->getType(),
3593          "Stored value type does not match pointer operand type!", &SI, ElTy);
3594   Assert(SI.getAlignment() <= Value::MaximumAlignment,
3595          "huge alignment values are unsupported", &SI);
3596   Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3597   if (SI.isAtomic()) {
3598     Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3599                SI.getOrdering() != AtomicOrdering::AcquireRelease,
3600            "Store cannot have Acquire ordering", &SI);
3601     Assert(SI.getAlignment() != 0,
3602            "Atomic store must specify explicit alignment", &SI);
3603     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3604            "atomic store operand must have integer, pointer, or floating point "
3605            "type!",
3606            ElTy, &SI);
3607     checkAtomicMemAccessSize(ElTy, &SI);
3608   } else {
3609     Assert(SI.getSyncScopeID() == SyncScope::System,
3610            "Non-atomic store cannot have SynchronizationScope specified", &SI);
3611   }
3612   visitInstruction(SI);
3613 }
3614 
3615 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3616 void Verifier::verifySwiftErrorCall(CallBase &Call,
3617                                     const Value *SwiftErrorVal) {
3618   unsigned Idx = 0;
3619   for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) {
3620     if (*I == SwiftErrorVal) {
3621       Assert(Call.paramHasAttr(Idx, Attribute::SwiftError),
3622              "swifterror value when used in a callsite should be marked "
3623              "with swifterror attribute",
3624              SwiftErrorVal, Call);
3625     }
3626   }
3627 }
3628 
3629 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3630   // Check that swifterror value is only used by loads, stores, or as
3631   // a swifterror argument.
3632   for (const User *U : SwiftErrorVal->users()) {
3633     Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3634            isa<InvokeInst>(U),
3635            "swifterror value can only be loaded and stored from, or "
3636            "as a swifterror argument!",
3637            SwiftErrorVal, U);
3638     // If it is used by a store, check it is the second operand.
3639     if (auto StoreI = dyn_cast<StoreInst>(U))
3640       Assert(StoreI->getOperand(1) == SwiftErrorVal,
3641              "swifterror value should be the second operand when used "
3642              "by stores", SwiftErrorVal, U);
3643     if (auto *Call = dyn_cast<CallBase>(U))
3644       verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3645   }
3646 }
3647 
3648 void Verifier::visitAllocaInst(AllocaInst &AI) {
3649   SmallPtrSet<Type*, 4> Visited;
3650   PointerType *PTy = AI.getType();
3651   // TODO: Relax this restriction?
3652   Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),
3653          "Allocation instruction pointer not in the stack address space!",
3654          &AI);
3655   Assert(AI.getAllocatedType()->isSized(&Visited),
3656          "Cannot allocate unsized type", &AI);
3657   Assert(AI.getArraySize()->getType()->isIntegerTy(),
3658          "Alloca array size must have integer type", &AI);
3659   Assert(AI.getAlignment() <= Value::MaximumAlignment,
3660          "huge alignment values are unsupported", &AI);
3661 
3662   if (AI.isSwiftError()) {
3663     verifySwiftErrorValue(&AI);
3664   }
3665 
3666   visitInstruction(AI);
3667 }
3668 
3669 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3670 
3671   // FIXME: more conditions???
3672   Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
3673          "cmpxchg instructions must be atomic.", &CXI);
3674   Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
3675          "cmpxchg instructions must be atomic.", &CXI);
3676   Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
3677          "cmpxchg instructions cannot be unordered.", &CXI);
3678   Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
3679          "cmpxchg instructions cannot be unordered.", &CXI);
3680   Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
3681          "cmpxchg instructions failure argument shall be no stronger than the "
3682          "success argument",
3683          &CXI);
3684   Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
3685              CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
3686          "cmpxchg failure ordering cannot include release semantics", &CXI);
3687 
3688   PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3689   Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3690   Type *ElTy = PTy->getElementType();
3691   Assert(ElTy->isIntOrPtrTy(),
3692          "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3693   checkAtomicMemAccessSize(ElTy, &CXI);
3694   Assert(ElTy == CXI.getOperand(1)->getType(),
3695          "Expected value type does not match pointer operand type!", &CXI,
3696          ElTy);
3697   Assert(ElTy == CXI.getOperand(2)->getType(),
3698          "Stored value type does not match pointer operand type!", &CXI, ElTy);
3699   visitInstruction(CXI);
3700 }
3701 
3702 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3703   Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
3704          "atomicrmw instructions must be atomic.", &RMWI);
3705   Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3706          "atomicrmw instructions cannot be unordered.", &RMWI);
3707   auto Op = RMWI.getOperation();
3708   PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3709   Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3710   Type *ElTy = PTy->getElementType();
3711   if (Op == AtomicRMWInst::Xchg) {
3712     Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
3713            AtomicRMWInst::getOperationName(Op) +
3714            " operand must have integer or floating point type!",
3715            &RMWI, ElTy);
3716   } else if (AtomicRMWInst::isFPOperation(Op)) {
3717     Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
3718            AtomicRMWInst::getOperationName(Op) +
3719            " operand must have floating point type!",
3720            &RMWI, ElTy);
3721   } else {
3722     Assert(ElTy->isIntegerTy(), "atomicrmw " +
3723            AtomicRMWInst::getOperationName(Op) +
3724            " operand must have integer type!",
3725            &RMWI, ElTy);
3726   }
3727   checkAtomicMemAccessSize(ElTy, &RMWI);
3728   Assert(ElTy == RMWI.getOperand(1)->getType(),
3729          "Argument value type does not match pointer operand type!", &RMWI,
3730          ElTy);
3731   Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
3732          "Invalid binary operation!", &RMWI);
3733   visitInstruction(RMWI);
3734 }
3735 
3736 void Verifier::visitFenceInst(FenceInst &FI) {
3737   const AtomicOrdering Ordering = FI.getOrdering();
3738   Assert(Ordering == AtomicOrdering::Acquire ||
3739              Ordering == AtomicOrdering::Release ||
3740              Ordering == AtomicOrdering::AcquireRelease ||
3741              Ordering == AtomicOrdering::SequentiallyConsistent,
3742          "fence instructions may only have acquire, release, acq_rel, or "
3743          "seq_cst ordering.",
3744          &FI);
3745   visitInstruction(FI);
3746 }
3747 
3748 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3749   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3750                                           EVI.getIndices()) == EVI.getType(),
3751          "Invalid ExtractValueInst operands!", &EVI);
3752 
3753   visitInstruction(EVI);
3754 }
3755 
3756 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3757   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3758                                           IVI.getIndices()) ==
3759              IVI.getOperand(1)->getType(),
3760          "Invalid InsertValueInst operands!", &IVI);
3761 
3762   visitInstruction(IVI);
3763 }
3764 
3765 static Value *getParentPad(Value *EHPad) {
3766   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3767     return FPI->getParentPad();
3768 
3769   return cast<CatchSwitchInst>(EHPad)->getParentPad();
3770 }
3771 
3772 void Verifier::visitEHPadPredecessors(Instruction &I) {
3773   assert(I.isEHPad());
3774 
3775   BasicBlock *BB = I.getParent();
3776   Function *F = BB->getParent();
3777 
3778   Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3779 
3780   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3781     // The landingpad instruction defines its parent as a landing pad block. The
3782     // landing pad block may be branched to only by the unwind edge of an
3783     // invoke.
3784     for (BasicBlock *PredBB : predecessors(BB)) {
3785       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3786       Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3787              "Block containing LandingPadInst must be jumped to "
3788              "only by the unwind edge of an invoke.",
3789              LPI);
3790     }
3791     return;
3792   }
3793   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3794     if (!pred_empty(BB))
3795       Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3796              "Block containg CatchPadInst must be jumped to "
3797              "only by its catchswitch.",
3798              CPI);
3799     Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3800            "Catchswitch cannot unwind to one of its catchpads",
3801            CPI->getCatchSwitch(), CPI);
3802     return;
3803   }
3804 
3805   // Verify that each pred has a legal terminator with a legal to/from EH
3806   // pad relationship.
3807   Instruction *ToPad = &I;
3808   Value *ToPadParent = getParentPad(ToPad);
3809   for (BasicBlock *PredBB : predecessors(BB)) {
3810     Instruction *TI = PredBB->getTerminator();
3811     Value *FromPad;
3812     if (auto *II = dyn_cast<InvokeInst>(TI)) {
3813       Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3814              "EH pad must be jumped to via an unwind edge", ToPad, II);
3815       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3816         FromPad = Bundle->Inputs[0];
3817       else
3818         FromPad = ConstantTokenNone::get(II->getContext());
3819     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3820       FromPad = CRI->getOperand(0);
3821       Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3822     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3823       FromPad = CSI;
3824     } else {
3825       Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3826     }
3827 
3828     // The edge may exit from zero or more nested pads.
3829     SmallSet<Value *, 8> Seen;
3830     for (;; FromPad = getParentPad(FromPad)) {
3831       Assert(FromPad != ToPad,
3832              "EH pad cannot handle exceptions raised within it", FromPad, TI);
3833       if (FromPad == ToPadParent) {
3834         // This is a legal unwind edge.
3835         break;
3836       }
3837       Assert(!isa<ConstantTokenNone>(FromPad),
3838              "A single unwind edge may only enter one EH pad", TI);
3839       Assert(Seen.insert(FromPad).second,
3840              "EH pad jumps through a cycle of pads", FromPad);
3841     }
3842   }
3843 }
3844 
3845 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3846   // The landingpad instruction is ill-formed if it doesn't have any clauses and
3847   // isn't a cleanup.
3848   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3849          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3850 
3851   visitEHPadPredecessors(LPI);
3852 
3853   if (!LandingPadResultTy)
3854     LandingPadResultTy = LPI.getType();
3855   else
3856     Assert(LandingPadResultTy == LPI.getType(),
3857            "The landingpad instruction should have a consistent result type "
3858            "inside a function.",
3859            &LPI);
3860 
3861   Function *F = LPI.getParent()->getParent();
3862   Assert(F->hasPersonalityFn(),
3863          "LandingPadInst needs to be in a function with a personality.", &LPI);
3864 
3865   // The landingpad instruction must be the first non-PHI instruction in the
3866   // block.
3867   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3868          "LandingPadInst not the first non-PHI instruction in the block.",
3869          &LPI);
3870 
3871   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3872     Constant *Clause = LPI.getClause(i);
3873     if (LPI.isCatch(i)) {
3874       Assert(isa<PointerType>(Clause->getType()),
3875              "Catch operand does not have pointer type!", &LPI);
3876     } else {
3877       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3878       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3879              "Filter operand is not an array of constants!", &LPI);
3880     }
3881   }
3882 
3883   visitInstruction(LPI);
3884 }
3885 
3886 void Verifier::visitResumeInst(ResumeInst &RI) {
3887   Assert(RI.getFunction()->hasPersonalityFn(),
3888          "ResumeInst needs to be in a function with a personality.", &RI);
3889 
3890   if (!LandingPadResultTy)
3891     LandingPadResultTy = RI.getValue()->getType();
3892   else
3893     Assert(LandingPadResultTy == RI.getValue()->getType(),
3894            "The resume instruction should have a consistent result type "
3895            "inside a function.",
3896            &RI);
3897 
3898   visitTerminator(RI);
3899 }
3900 
3901 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3902   BasicBlock *BB = CPI.getParent();
3903 
3904   Function *F = BB->getParent();
3905   Assert(F->hasPersonalityFn(),
3906          "CatchPadInst needs to be in a function with a personality.", &CPI);
3907 
3908   Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3909          "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3910          CPI.getParentPad());
3911 
3912   // The catchpad instruction must be the first non-PHI instruction in the
3913   // block.
3914   Assert(BB->getFirstNonPHI() == &CPI,
3915          "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3916 
3917   visitEHPadPredecessors(CPI);
3918   visitFuncletPadInst(CPI);
3919 }
3920 
3921 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3922   Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3923          "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3924          CatchReturn.getOperand(0));
3925 
3926   visitTerminator(CatchReturn);
3927 }
3928 
3929 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3930   BasicBlock *BB = CPI.getParent();
3931 
3932   Function *F = BB->getParent();
3933   Assert(F->hasPersonalityFn(),
3934          "CleanupPadInst needs to be in a function with a personality.", &CPI);
3935 
3936   // The cleanuppad instruction must be the first non-PHI instruction in the
3937   // block.
3938   Assert(BB->getFirstNonPHI() == &CPI,
3939          "CleanupPadInst not the first non-PHI instruction in the block.",
3940          &CPI);
3941 
3942   auto *ParentPad = CPI.getParentPad();
3943   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3944          "CleanupPadInst has an invalid parent.", &CPI);
3945 
3946   visitEHPadPredecessors(CPI);
3947   visitFuncletPadInst(CPI);
3948 }
3949 
3950 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3951   User *FirstUser = nullptr;
3952   Value *FirstUnwindPad = nullptr;
3953   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3954   SmallSet<FuncletPadInst *, 8> Seen;
3955 
3956   while (!Worklist.empty()) {
3957     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3958     Assert(Seen.insert(CurrentPad).second,
3959            "FuncletPadInst must not be nested within itself", CurrentPad);
3960     Value *UnresolvedAncestorPad = nullptr;
3961     for (User *U : CurrentPad->users()) {
3962       BasicBlock *UnwindDest;
3963       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3964         UnwindDest = CRI->getUnwindDest();
3965       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3966         // We allow catchswitch unwind to caller to nest
3967         // within an outer pad that unwinds somewhere else,
3968         // because catchswitch doesn't have a nounwind variant.
3969         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3970         if (CSI->unwindsToCaller())
3971           continue;
3972         UnwindDest = CSI->getUnwindDest();
3973       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3974         UnwindDest = II->getUnwindDest();
3975       } else if (isa<CallInst>(U)) {
3976         // Calls which don't unwind may be found inside funclet
3977         // pads that unwind somewhere else.  We don't *require*
3978         // such calls to be annotated nounwind.
3979         continue;
3980       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3981         // The unwind dest for a cleanup can only be found by
3982         // recursive search.  Add it to the worklist, and we'll
3983         // search for its first use that determines where it unwinds.
3984         Worklist.push_back(CPI);
3985         continue;
3986       } else {
3987         Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3988         continue;
3989       }
3990 
3991       Value *UnwindPad;
3992       bool ExitsFPI;
3993       if (UnwindDest) {
3994         UnwindPad = UnwindDest->getFirstNonPHI();
3995         if (!cast<Instruction>(UnwindPad)->isEHPad())
3996           continue;
3997         Value *UnwindParent = getParentPad(UnwindPad);
3998         // Ignore unwind edges that don't exit CurrentPad.
3999         if (UnwindParent == CurrentPad)
4000           continue;
4001         // Determine whether the original funclet pad is exited,
4002         // and if we are scanning nested pads determine how many
4003         // of them are exited so we can stop searching their
4004         // children.
4005         Value *ExitedPad = CurrentPad;
4006         ExitsFPI = false;
4007         do {
4008           if (ExitedPad == &FPI) {
4009             ExitsFPI = true;
4010             // Now we can resolve any ancestors of CurrentPad up to
4011             // FPI, but not including FPI since we need to make sure
4012             // to check all direct users of FPI for consistency.
4013             UnresolvedAncestorPad = &FPI;
4014             break;
4015           }
4016           Value *ExitedParent = getParentPad(ExitedPad);
4017           if (ExitedParent == UnwindParent) {
4018             // ExitedPad is the ancestor-most pad which this unwind
4019             // edge exits, so we can resolve up to it, meaning that
4020             // ExitedParent is the first ancestor still unresolved.
4021             UnresolvedAncestorPad = ExitedParent;
4022             break;
4023           }
4024           ExitedPad = ExitedParent;
4025         } while (!isa<ConstantTokenNone>(ExitedPad));
4026       } else {
4027         // Unwinding to caller exits all pads.
4028         UnwindPad = ConstantTokenNone::get(FPI.getContext());
4029         ExitsFPI = true;
4030         UnresolvedAncestorPad = &FPI;
4031       }
4032 
4033       if (ExitsFPI) {
4034         // This unwind edge exits FPI.  Make sure it agrees with other
4035         // such edges.
4036         if (FirstUser) {
4037           Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
4038                                               "pad must have the same unwind "
4039                                               "dest",
4040                  &FPI, U, FirstUser);
4041         } else {
4042           FirstUser = U;
4043           FirstUnwindPad = UnwindPad;
4044           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4045           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4046               getParentPad(UnwindPad) == getParentPad(&FPI))
4047             SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4048         }
4049       }
4050       // Make sure we visit all uses of FPI, but for nested pads stop as
4051       // soon as we know where they unwind to.
4052       if (CurrentPad != &FPI)
4053         break;
4054     }
4055     if (UnresolvedAncestorPad) {
4056       if (CurrentPad == UnresolvedAncestorPad) {
4057         // When CurrentPad is FPI itself, we don't mark it as resolved even if
4058         // we've found an unwind edge that exits it, because we need to verify
4059         // all direct uses of FPI.
4060         assert(CurrentPad == &FPI);
4061         continue;
4062       }
4063       // Pop off the worklist any nested pads that we've found an unwind
4064       // destination for.  The pads on the worklist are the uncles,
4065       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
4066       // for all ancestors of CurrentPad up to but not including
4067       // UnresolvedAncestorPad.
4068       Value *ResolvedPad = CurrentPad;
4069       while (!Worklist.empty()) {
4070         Value *UnclePad = Worklist.back();
4071         Value *AncestorPad = getParentPad(UnclePad);
4072         // Walk ResolvedPad up the ancestor list until we either find the
4073         // uncle's parent or the last resolved ancestor.
4074         while (ResolvedPad != AncestorPad) {
4075           Value *ResolvedParent = getParentPad(ResolvedPad);
4076           if (ResolvedParent == UnresolvedAncestorPad) {
4077             break;
4078           }
4079           ResolvedPad = ResolvedParent;
4080         }
4081         // If the resolved ancestor search didn't find the uncle's parent,
4082         // then the uncle is not yet resolved.
4083         if (ResolvedPad != AncestorPad)
4084           break;
4085         // This uncle is resolved, so pop it from the worklist.
4086         Worklist.pop_back();
4087       }
4088     }
4089   }
4090 
4091   if (FirstUnwindPad) {
4092     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
4093       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4094       Value *SwitchUnwindPad;
4095       if (SwitchUnwindDest)
4096         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
4097       else
4098         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
4099       Assert(SwitchUnwindPad == FirstUnwindPad,
4100              "Unwind edges out of a catch must have the same unwind dest as "
4101              "the parent catchswitch",
4102              &FPI, FirstUser, CatchSwitch);
4103     }
4104   }
4105 
4106   visitInstruction(FPI);
4107 }
4108 
4109 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4110   BasicBlock *BB = CatchSwitch.getParent();
4111 
4112   Function *F = BB->getParent();
4113   Assert(F->hasPersonalityFn(),
4114          "CatchSwitchInst needs to be in a function with a personality.",
4115          &CatchSwitch);
4116 
4117   // The catchswitch instruction must be the first non-PHI instruction in the
4118   // block.
4119   Assert(BB->getFirstNonPHI() == &CatchSwitch,
4120          "CatchSwitchInst not the first non-PHI instruction in the block.",
4121          &CatchSwitch);
4122 
4123   auto *ParentPad = CatchSwitch.getParentPad();
4124   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4125          "CatchSwitchInst has an invalid parent.", ParentPad);
4126 
4127   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
4128     Instruction *I = UnwindDest->getFirstNonPHI();
4129     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
4130            "CatchSwitchInst must unwind to an EH block which is not a "
4131            "landingpad.",
4132            &CatchSwitch);
4133 
4134     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
4135     if (getParentPad(I) == ParentPad)
4136       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4137   }
4138 
4139   Assert(CatchSwitch.getNumHandlers() != 0,
4140          "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4141 
4142   for (BasicBlock *Handler : CatchSwitch.handlers()) {
4143     Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
4144            "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4145   }
4146 
4147   visitEHPadPredecessors(CatchSwitch);
4148   visitTerminator(CatchSwitch);
4149 }
4150 
4151 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4152   Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
4153          "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
4154          CRI.getOperand(0));
4155 
4156   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4157     Instruction *I = UnwindDest->getFirstNonPHI();
4158     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
4159            "CleanupReturnInst must unwind to an EH block which is not a "
4160            "landingpad.",
4161            &CRI);
4162   }
4163 
4164   visitTerminator(CRI);
4165 }
4166 
4167 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4168   Instruction *Op = cast<Instruction>(I.getOperand(i));
4169   // If the we have an invalid invoke, don't try to compute the dominance.
4170   // We already reject it in the invoke specific checks and the dominance
4171   // computation doesn't handle multiple edges.
4172   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4173     if (II->getNormalDest() == II->getUnwindDest())
4174       return;
4175   }
4176 
4177   // Quick check whether the def has already been encountered in the same block.
4178   // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4179   // uses are defined to happen on the incoming edge, not at the instruction.
4180   //
4181   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4182   // wrapping an SSA value, assert that we've already encountered it.  See
4183   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4184   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4185     return;
4186 
4187   const Use &U = I.getOperandUse(i);
4188   Assert(DT.dominates(Op, U),
4189          "Instruction does not dominate all uses!", Op, &I);
4190 }
4191 
4192 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4193   Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
4194          "apply only to pointer types", &I);
4195   Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4196          "dereferenceable, dereferenceable_or_null apply only to load"
4197          " and inttoptr instructions, use attributes for calls or invokes", &I);
4198   Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
4199          "take one operand!", &I);
4200   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4201   Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
4202          "dereferenceable_or_null metadata value must be an i64!", &I);
4203 }
4204 
4205 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4206   Assert(MD->getNumOperands() >= 2,
4207          "!prof annotations should have no less than 2 operands", MD);
4208 
4209   // Check first operand.
4210   Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4211   Assert(isa<MDString>(MD->getOperand(0)),
4212          "expected string with name of the !prof annotation", MD);
4213   MDString *MDS = cast<MDString>(MD->getOperand(0));
4214   StringRef ProfName = MDS->getString();
4215 
4216   // Check consistency of !prof branch_weights metadata.
4217   if (ProfName.equals("branch_weights")) {
4218     if (isa<InvokeInst>(&I)) {
4219       Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
4220              "Wrong number of InvokeInst branch_weights operands", MD);
4221     } else {
4222       unsigned ExpectedNumOperands = 0;
4223       if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4224         ExpectedNumOperands = BI->getNumSuccessors();
4225       else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4226         ExpectedNumOperands = SI->getNumSuccessors();
4227       else if (isa<CallInst>(&I))
4228         ExpectedNumOperands = 1;
4229       else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4230         ExpectedNumOperands = IBI->getNumDestinations();
4231       else if (isa<SelectInst>(&I))
4232         ExpectedNumOperands = 2;
4233       else
4234         CheckFailed("!prof branch_weights are not allowed for this instruction",
4235                     MD);
4236 
4237       Assert(MD->getNumOperands() == 1 + ExpectedNumOperands,
4238              "Wrong number of operands", MD);
4239     }
4240     for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4241       auto &MDO = MD->getOperand(i);
4242       Assert(MDO, "second operand should not be null", MD);
4243       Assert(mdconst::dyn_extract<ConstantInt>(MDO),
4244              "!prof brunch_weights operand is not a const int");
4245     }
4246   }
4247 }
4248 
4249 /// verifyInstruction - Verify that an instruction is well formed.
4250 ///
4251 void Verifier::visitInstruction(Instruction &I) {
4252   BasicBlock *BB = I.getParent();
4253   Assert(BB, "Instruction not embedded in basic block!", &I);
4254 
4255   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
4256     for (User *U : I.users()) {
4257       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
4258              "Only PHI nodes may reference their own value!", &I);
4259     }
4260   }
4261 
4262   // Check that void typed values don't have names
4263   Assert(!I.getType()->isVoidTy() || !I.hasName(),
4264          "Instruction has a name, but provides a void value!", &I);
4265 
4266   // Check that the return value of the instruction is either void or a legal
4267   // value type.
4268   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4269          "Instruction returns a non-scalar type!", &I);
4270 
4271   // Check that the instruction doesn't produce metadata. Calls are already
4272   // checked against the callee type.
4273   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4274          "Invalid use of metadata!", &I);
4275 
4276   // Check that all uses of the instruction, if they are instructions
4277   // themselves, actually have parent basic blocks.  If the use is not an
4278   // instruction, it is an error!
4279   for (Use &U : I.uses()) {
4280     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4281       Assert(Used->getParent() != nullptr,
4282              "Instruction referencing"
4283              " instruction not embedded in a basic block!",
4284              &I, Used);
4285     else {
4286       CheckFailed("Use of instruction is not an instruction!", U);
4287       return;
4288     }
4289   }
4290 
4291   // Get a pointer to the call base of the instruction if it is some form of
4292   // call.
4293   const CallBase *CBI = dyn_cast<CallBase>(&I);
4294 
4295   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4296     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4297 
4298     // Check to make sure that only first-class-values are operands to
4299     // instructions.
4300     if (!I.getOperand(i)->getType()->isFirstClassType()) {
4301       Assert(false, "Instruction operands must be first-class values!", &I);
4302     }
4303 
4304     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4305       // Check to make sure that the "address of" an intrinsic function is never
4306       // taken.
4307       Assert(!F->isIntrinsic() ||
4308                  (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),
4309              "Cannot take the address of an intrinsic!", &I);
4310       Assert(
4311           !F->isIntrinsic() || isa<CallInst>(I) ||
4312               F->getIntrinsicID() == Intrinsic::donothing ||
4313               F->getIntrinsicID() == Intrinsic::coro_resume ||
4314               F->getIntrinsicID() == Intrinsic::coro_destroy ||
4315               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
4316               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4317               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4318               F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch,
4319           "Cannot invoke an intrinsic other than donothing, patchpoint, "
4320           "statepoint, coro_resume or coro_destroy",
4321           &I);
4322       Assert(F->getParent() == &M, "Referencing function in another module!",
4323              &I, &M, F, F->getParent());
4324     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4325       Assert(OpBB->getParent() == BB->getParent(),
4326              "Referring to a basic block in another function!", &I);
4327     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4328       Assert(OpArg->getParent() == BB->getParent(),
4329              "Referring to an argument in another function!", &I);
4330     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4331       Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
4332              &M, GV, GV->getParent());
4333     } else if (isa<Instruction>(I.getOperand(i))) {
4334       verifyDominatesUse(I, i);
4335     } else if (isa<InlineAsm>(I.getOperand(i))) {
4336       Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4337              "Cannot take the address of an inline asm!", &I);
4338     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4339       if (CE->getType()->isPtrOrPtrVectorTy() ||
4340           !DL.getNonIntegralAddressSpaces().empty()) {
4341         // If we have a ConstantExpr pointer, we need to see if it came from an
4342         // illegal bitcast.  If the datalayout string specifies non-integral
4343         // address spaces then we also need to check for illegal ptrtoint and
4344         // inttoptr expressions.
4345         visitConstantExprsRecursively(CE);
4346       }
4347     }
4348   }
4349 
4350   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4351     Assert(I.getType()->isFPOrFPVectorTy(),
4352            "fpmath requires a floating point result!", &I);
4353     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4354     if (ConstantFP *CFP0 =
4355             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4356       const APFloat &Accuracy = CFP0->getValueAPF();
4357       Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4358              "fpmath accuracy must have float type", &I);
4359       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4360              "fpmath accuracy not a positive number!", &I);
4361     } else {
4362       Assert(false, "invalid fpmath accuracy!", &I);
4363     }
4364   }
4365 
4366   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4367     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4368            "Ranges are only for loads, calls and invokes!", &I);
4369     visitRangeMetadata(I, Range, I.getType());
4370   }
4371 
4372   if (I.getMetadata(LLVMContext::MD_nonnull)) {
4373     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4374            &I);
4375     Assert(isa<LoadInst>(I),
4376            "nonnull applies only to load instructions, use attributes"
4377            " for calls or invokes",
4378            &I);
4379   }
4380 
4381   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4382     visitDereferenceableMetadata(I, MD);
4383 
4384   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4385     visitDereferenceableMetadata(I, MD);
4386 
4387   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4388     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4389 
4390   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4391     Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
4392            &I);
4393     Assert(isa<LoadInst>(I), "align applies only to load instructions, "
4394            "use attributes for calls or invokes", &I);
4395     Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4396     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4397     Assert(CI && CI->getType()->isIntegerTy(64),
4398            "align metadata value must be an i64!", &I);
4399     uint64_t Align = CI->getZExtValue();
4400     Assert(isPowerOf2_64(Align),
4401            "align metadata value must be a power of 2!", &I);
4402     Assert(Align <= Value::MaximumAlignment,
4403            "alignment is larger that implementation defined limit", &I);
4404   }
4405 
4406   if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
4407     visitProfMetadata(I, MD);
4408 
4409   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4410     AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4411     visitMDNode(*N, AreDebugLocsAllowed::Yes);
4412   }
4413 
4414   if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
4415     verifyFragmentExpression(*DII);
4416     verifyNotEntryValue(*DII);
4417   }
4418 
4419   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
4420   I.getAllMetadata(MDs);
4421   for (auto Attachment : MDs) {
4422     unsigned Kind = Attachment.first;
4423     auto AllowLocs =
4424         (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
4425             ? AreDebugLocsAllowed::Yes
4426             : AreDebugLocsAllowed::No;
4427     visitMDNode(*Attachment.second, AllowLocs);
4428   }
4429 
4430   InstsInThisBlock.insert(&I);
4431 }
4432 
4433 /// Allow intrinsics to be verified in different ways.
4434 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4435   Function *IF = Call.getCalledFunction();
4436   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4437          IF);
4438 
4439   // Verify that the intrinsic prototype lines up with what the .td files
4440   // describe.
4441   FunctionType *IFTy = IF->getFunctionType();
4442   bool IsVarArg = IFTy->isVarArg();
4443 
4444   SmallVector<Intrinsic::IITDescriptor, 8> Table;
4445   getIntrinsicInfoTableEntries(ID, Table);
4446   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4447 
4448   // Walk the descriptors to extract overloaded types.
4449   SmallVector<Type *, 4> ArgTys;
4450   Intrinsic::MatchIntrinsicTypesResult Res =
4451       Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
4452   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
4453          "Intrinsic has incorrect return type!", IF);
4454   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
4455          "Intrinsic has incorrect argument type!", IF);
4456 
4457   // Verify if the intrinsic call matches the vararg property.
4458   if (IsVarArg)
4459     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4460            "Intrinsic was not defined with variable arguments!", IF);
4461   else
4462     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4463            "Callsite was not defined with variable arguments!", IF);
4464 
4465   // All descriptors should be absorbed by now.
4466   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4467 
4468   // Now that we have the intrinsic ID and the actual argument types (and we
4469   // know they are legal for the intrinsic!) get the intrinsic name through the
4470   // usual means.  This allows us to verify the mangling of argument types into
4471   // the name.
4472   const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
4473   Assert(ExpectedName == IF->getName(),
4474          "Intrinsic name not mangled correctly for type arguments! "
4475          "Should be: " +
4476              ExpectedName,
4477          IF);
4478 
4479   // If the intrinsic takes MDNode arguments, verify that they are either global
4480   // or are local to *this* function.
4481   for (Value *V : Call.args())
4482     if (auto *MD = dyn_cast<MetadataAsValue>(V))
4483       visitMetadataAsValue(*MD, Call.getCaller());
4484 
4485   switch (ID) {
4486   default:
4487     break;
4488   case Intrinsic::assume: {
4489     for (auto &Elem : Call.bundle_op_infos()) {
4490       Assert(Elem.Tag->getKey() == "ignore" ||
4491                  Attribute::isExistingAttribute(Elem.Tag->getKey()),
4492              "tags must be valid attribute names");
4493       Attribute::AttrKind Kind =
4494           Attribute::getAttrKindFromName(Elem.Tag->getKey());
4495       unsigned ArgCount = Elem.End - Elem.Begin;
4496       if (Kind == Attribute::Alignment) {
4497         Assert(ArgCount <= 3 && ArgCount >= 2,
4498                "alignment assumptions should have 2 or 3 arguments");
4499         Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
4500                "first argument should be a pointer");
4501         Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
4502                "second argument should be an integer");
4503         if (ArgCount == 3)
4504           Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
4505                  "third argument should be an integer if present");
4506         return;
4507       }
4508       Assert(ArgCount <= 2, "to many arguments");
4509       if (Kind == Attribute::None)
4510         break;
4511       if (Attribute::doesAttrKindHaveArgument(Kind)) {
4512         Assert(ArgCount == 2, "this attribute should have 2 arguments");
4513         Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
4514                "the second argument should be a constant integral value");
4515       } else if (isFuncOnlyAttr(Kind)) {
4516         Assert((ArgCount) == 0, "this attribute has no argument");
4517       } else if (!isFuncOrArgAttr(Kind)) {
4518         Assert((ArgCount) == 1, "this attribute should have one argument");
4519       }
4520     }
4521     break;
4522   }
4523   case Intrinsic::coro_id: {
4524     auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4525     if (isa<ConstantPointerNull>(InfoArg))
4526       break;
4527     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4528     Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4529       "info argument of llvm.coro.begin must refer to an initialized "
4530       "constant");
4531     Constant *Init = GV->getInitializer();
4532     Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4533       "info argument of llvm.coro.begin must refer to either a struct or "
4534       "an array");
4535     break;
4536   }
4537 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC)                        \
4538   case Intrinsic::INTRINSIC:
4539 #include "llvm/IR/ConstrainedOps.def"
4540     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4541     break;
4542   case Intrinsic::dbg_declare: // llvm.dbg.declare
4543     Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
4544            "invalid llvm.dbg.declare intrinsic call 1", Call);
4545     visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4546     break;
4547   case Intrinsic::dbg_addr: // llvm.dbg.addr
4548     visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4549     break;
4550   case Intrinsic::dbg_value: // llvm.dbg.value
4551     visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4552     break;
4553   case Intrinsic::dbg_label: // llvm.dbg.label
4554     visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4555     break;
4556   case Intrinsic::memcpy:
4557   case Intrinsic::memcpy_inline:
4558   case Intrinsic::memmove:
4559   case Intrinsic::memset: {
4560     const auto *MI = cast<MemIntrinsic>(&Call);
4561     auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4562       return Alignment == 0 || isPowerOf2_32(Alignment);
4563     };
4564     Assert(IsValidAlignment(MI->getDestAlignment()),
4565            "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4566            Call);
4567     if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4568       Assert(IsValidAlignment(MTI->getSourceAlignment()),
4569              "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4570              Call);
4571     }
4572 
4573     break;
4574   }
4575   case Intrinsic::memcpy_element_unordered_atomic:
4576   case Intrinsic::memmove_element_unordered_atomic:
4577   case Intrinsic::memset_element_unordered_atomic: {
4578     const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4579 
4580     ConstantInt *ElementSizeCI =
4581         cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4582     const APInt &ElementSizeVal = ElementSizeCI->getValue();
4583     Assert(ElementSizeVal.isPowerOf2(),
4584            "element size of the element-wise atomic memory intrinsic "
4585            "must be a power of 2",
4586            Call);
4587 
4588     auto IsValidAlignment = [&](uint64_t Alignment) {
4589       return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4590     };
4591     uint64_t DstAlignment = AMI->getDestAlignment();
4592     Assert(IsValidAlignment(DstAlignment),
4593            "incorrect alignment of the destination argument", Call);
4594     if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4595       uint64_t SrcAlignment = AMT->getSourceAlignment();
4596       Assert(IsValidAlignment(SrcAlignment),
4597              "incorrect alignment of the source argument", Call);
4598     }
4599     break;
4600   }
4601   case Intrinsic::call_preallocated_setup: {
4602     auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
4603     Assert(NumArgs != nullptr,
4604            "llvm.call.preallocated.setup argument must be a constant");
4605     bool FoundCall = false;
4606     for (User *U : Call.users()) {
4607       auto *UseCall = dyn_cast<CallBase>(U);
4608       Assert(UseCall != nullptr,
4609              "Uses of llvm.call.preallocated.setup must be calls");
4610       const Function *Fn = UseCall->getCalledFunction();
4611       if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
4612         auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
4613         Assert(AllocArgIndex != nullptr,
4614                "llvm.call.preallocated.alloc arg index must be a constant");
4615         auto AllocArgIndexInt = AllocArgIndex->getValue();
4616         Assert(AllocArgIndexInt.sge(0) &&
4617                    AllocArgIndexInt.slt(NumArgs->getValue()),
4618                "llvm.call.preallocated.alloc arg index must be between 0 and "
4619                "corresponding "
4620                "llvm.call.preallocated.setup's argument count");
4621       } else if (Fn && Fn->getIntrinsicID() ==
4622                            Intrinsic::call_preallocated_teardown) {
4623         // nothing to do
4624       } else {
4625         Assert(!FoundCall, "Can have at most one call corresponding to a "
4626                            "llvm.call.preallocated.setup");
4627         FoundCall = true;
4628         size_t NumPreallocatedArgs = 0;
4629         for (unsigned i = 0; i < UseCall->getNumArgOperands(); i++) {
4630           if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
4631             ++NumPreallocatedArgs;
4632           }
4633         }
4634         Assert(NumPreallocatedArgs != 0,
4635                "cannot use preallocated intrinsics on a call without "
4636                "preallocated arguments");
4637         Assert(NumArgs->equalsInt(NumPreallocatedArgs),
4638                "llvm.call.preallocated.setup arg size must be equal to number "
4639                "of preallocated arguments "
4640                "at call site",
4641                Call, *UseCall);
4642         // getOperandBundle() cannot be called if more than one of the operand
4643         // bundle exists. There is already a check elsewhere for this, so skip
4644         // here if we see more than one.
4645         if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
4646             1) {
4647           return;
4648         }
4649         auto PreallocatedBundle =
4650             UseCall->getOperandBundle(LLVMContext::OB_preallocated);
4651         Assert(PreallocatedBundle,
4652                "Use of llvm.call.preallocated.setup outside intrinsics "
4653                "must be in \"preallocated\" operand bundle");
4654         Assert(PreallocatedBundle->Inputs.front().get() == &Call,
4655                "preallocated bundle must have token from corresponding "
4656                "llvm.call.preallocated.setup");
4657       }
4658     }
4659     break;
4660   }
4661   case Intrinsic::call_preallocated_arg: {
4662     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
4663     Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
4664                         Intrinsic::call_preallocated_setup,
4665            "llvm.call.preallocated.arg token argument must be a "
4666            "llvm.call.preallocated.setup");
4667     Assert(Call.hasFnAttr(Attribute::Preallocated),
4668            "llvm.call.preallocated.arg must be called with a \"preallocated\" "
4669            "call site attribute");
4670     break;
4671   }
4672   case Intrinsic::call_preallocated_teardown: {
4673     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
4674     Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
4675                         Intrinsic::call_preallocated_setup,
4676            "llvm.call.preallocated.teardown token argument must be a "
4677            "llvm.call.preallocated.setup");
4678     break;
4679   }
4680   case Intrinsic::gcroot:
4681   case Intrinsic::gcwrite:
4682   case Intrinsic::gcread:
4683     if (ID == Intrinsic::gcroot) {
4684       AllocaInst *AI =
4685           dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
4686       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
4687       Assert(isa<Constant>(Call.getArgOperand(1)),
4688              "llvm.gcroot parameter #2 must be a constant.", Call);
4689       if (!AI->getAllocatedType()->isPointerTy()) {
4690         Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
4691                "llvm.gcroot parameter #1 must either be a pointer alloca, "
4692                "or argument #2 must be a non-null constant.",
4693                Call);
4694       }
4695     }
4696 
4697     Assert(Call.getParent()->getParent()->hasGC(),
4698            "Enclosing function does not use GC.", Call);
4699     break;
4700   case Intrinsic::init_trampoline:
4701     Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
4702            "llvm.init_trampoline parameter #2 must resolve to a function.",
4703            Call);
4704     break;
4705   case Intrinsic::prefetch:
4706     Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
4707            cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
4708            "invalid arguments to llvm.prefetch", Call);
4709     break;
4710   case Intrinsic::stackprotector:
4711     Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
4712            "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
4713     break;
4714   case Intrinsic::localescape: {
4715     BasicBlock *BB = Call.getParent();
4716     Assert(BB == &BB->getParent()->front(),
4717            "llvm.localescape used outside of entry block", Call);
4718     Assert(!SawFrameEscape,
4719            "multiple calls to llvm.localescape in one function", Call);
4720     for (Value *Arg : Call.args()) {
4721       if (isa<ConstantPointerNull>(Arg))
4722         continue; // Null values are allowed as placeholders.
4723       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4724       Assert(AI && AI->isStaticAlloca(),
4725              "llvm.localescape only accepts static allocas", Call);
4726     }
4727     FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands();
4728     SawFrameEscape = true;
4729     break;
4730   }
4731   case Intrinsic::localrecover: {
4732     Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
4733     Function *Fn = dyn_cast<Function>(FnArg);
4734     Assert(Fn && !Fn->isDeclaration(),
4735            "llvm.localrecover first "
4736            "argument must be function defined in this module",
4737            Call);
4738     auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
4739     auto &Entry = FrameEscapeInfo[Fn];
4740     Entry.second = unsigned(
4741         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4742     break;
4743   }
4744 
4745   case Intrinsic::experimental_gc_statepoint:
4746     if (auto *CI = dyn_cast<CallInst>(&Call))
4747       Assert(!CI->isInlineAsm(),
4748              "gc.statepoint support for inline assembly unimplemented", CI);
4749     Assert(Call.getParent()->getParent()->hasGC(),
4750            "Enclosing function does not use GC.", Call);
4751 
4752     verifyStatepoint(Call);
4753     break;
4754   case Intrinsic::experimental_gc_result: {
4755     Assert(Call.getParent()->getParent()->hasGC(),
4756            "Enclosing function does not use GC.", Call);
4757     // Are we tied to a statepoint properly?
4758     const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
4759     const Function *StatepointFn =
4760         StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
4761     Assert(StatepointFn && StatepointFn->isDeclaration() &&
4762                StatepointFn->getIntrinsicID() ==
4763                    Intrinsic::experimental_gc_statepoint,
4764            "gc.result operand #1 must be from a statepoint", Call,
4765            Call.getArgOperand(0));
4766 
4767     // Assert that result type matches wrapped callee.
4768     const Value *Target = StatepointCall->getArgOperand(2);
4769     auto *PT = cast<PointerType>(Target->getType());
4770     auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4771     Assert(Call.getType() == TargetFuncType->getReturnType(),
4772            "gc.result result type does not match wrapped callee", Call);
4773     break;
4774   }
4775   case Intrinsic::experimental_gc_relocate: {
4776     Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call);
4777 
4778     Assert(isa<PointerType>(Call.getType()->getScalarType()),
4779            "gc.relocate must return a pointer or a vector of pointers", Call);
4780 
4781     // Check that this relocate is correctly tied to the statepoint
4782 
4783     // This is case for relocate on the unwinding path of an invoke statepoint
4784     if (LandingPadInst *LandingPad =
4785             dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
4786 
4787       const BasicBlock *InvokeBB =
4788           LandingPad->getParent()->getUniquePredecessor();
4789 
4790       // Landingpad relocates should have only one predecessor with invoke
4791       // statepoint terminator
4792       Assert(InvokeBB, "safepoints should have unique landingpads",
4793              LandingPad->getParent());
4794       Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4795              InvokeBB);
4796       Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()),
4797              "gc relocate should be linked to a statepoint", InvokeBB);
4798     } else {
4799       // In all other cases relocate should be tied to the statepoint directly.
4800       // This covers relocates on a normal return path of invoke statepoint and
4801       // relocates of a call statepoint.
4802       auto Token = Call.getArgOperand(0);
4803       Assert(isa<GCStatepointInst>(Token),
4804              "gc relocate is incorrectly tied to the statepoint", Call, Token);
4805     }
4806 
4807     // Verify rest of the relocate arguments.
4808     const CallBase &StatepointCall =
4809       *cast<GCRelocateInst>(Call).getStatepoint();
4810 
4811     // Both the base and derived must be piped through the safepoint.
4812     Value *Base = Call.getArgOperand(1);
4813     Assert(isa<ConstantInt>(Base),
4814            "gc.relocate operand #2 must be integer offset", Call);
4815 
4816     Value *Derived = Call.getArgOperand(2);
4817     Assert(isa<ConstantInt>(Derived),
4818            "gc.relocate operand #3 must be integer offset", Call);
4819 
4820     const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4821     const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4822 
4823     // Check the bounds
4824     if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) {
4825       Assert(BaseIndex < Opt->Inputs.size(),
4826              "gc.relocate: statepoint base index out of bounds", Call);
4827       Assert(DerivedIndex < Opt->Inputs.size(),
4828              "gc.relocate: statepoint derived index out of bounds", Call);
4829     }
4830 
4831     // Relocated value must be either a pointer type or vector-of-pointer type,
4832     // but gc_relocate does not need to return the same pointer type as the
4833     // relocated pointer. It can be casted to the correct type later if it's
4834     // desired. However, they must have the same address space and 'vectorness'
4835     GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
4836     Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
4837            "gc.relocate: relocated value must be a gc pointer", Call);
4838 
4839     auto ResultType = Call.getType();
4840     auto DerivedType = Relocate.getDerivedPtr()->getType();
4841     Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4842            "gc.relocate: vector relocates to vector and pointer to pointer",
4843            Call);
4844     Assert(
4845         ResultType->getPointerAddressSpace() ==
4846             DerivedType->getPointerAddressSpace(),
4847         "gc.relocate: relocating a pointer shouldn't change its address space",
4848         Call);
4849     break;
4850   }
4851   case Intrinsic::eh_exceptioncode:
4852   case Intrinsic::eh_exceptionpointer: {
4853     Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
4854            "eh.exceptionpointer argument must be a catchpad", Call);
4855     break;
4856   }
4857   case Intrinsic::get_active_lane_mask: {
4858     Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a "
4859            "vector", Call);
4860     auto *ElemTy = Call.getType()->getScalarType();
4861     Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not "
4862            "i1", Call);
4863     break;
4864   }
4865   case Intrinsic::masked_load: {
4866     Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
4867            Call);
4868 
4869     Value *Ptr = Call.getArgOperand(0);
4870     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
4871     Value *Mask = Call.getArgOperand(2);
4872     Value *PassThru = Call.getArgOperand(3);
4873     Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
4874            Call);
4875     Assert(Alignment->getValue().isPowerOf2(),
4876            "masked_load: alignment must be a power of 2", Call);
4877 
4878     // DataTy is the overloaded type
4879     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4880     Assert(DataTy == Call.getType(),
4881            "masked_load: return must match pointer type", Call);
4882     Assert(PassThru->getType() == DataTy,
4883            "masked_load: pass through and data type must match", Call);
4884     Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
4885                cast<VectorType>(DataTy)->getElementCount(),
4886            "masked_load: vector mask must be same length as data", Call);
4887     break;
4888   }
4889   case Intrinsic::masked_store: {
4890     Value *Val = Call.getArgOperand(0);
4891     Value *Ptr = Call.getArgOperand(1);
4892     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
4893     Value *Mask = Call.getArgOperand(3);
4894     Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
4895            Call);
4896     Assert(Alignment->getValue().isPowerOf2(),
4897            "masked_store: alignment must be a power of 2", Call);
4898 
4899     // DataTy is the overloaded type
4900     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4901     Assert(DataTy == Val->getType(),
4902            "masked_store: storee must match pointer type", Call);
4903     Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
4904                cast<VectorType>(DataTy)->getElementCount(),
4905            "masked_store: vector mask must be same length as data", Call);
4906     break;
4907   }
4908 
4909   case Intrinsic::masked_gather: {
4910     const APInt &Alignment =
4911         cast<ConstantInt>(Call.getArgOperand(1))->getValue();
4912     Assert(Alignment.isNullValue() || Alignment.isPowerOf2(),
4913            "masked_gather: alignment must be 0 or a power of 2", Call);
4914     break;
4915   }
4916   case Intrinsic::masked_scatter: {
4917     const APInt &Alignment =
4918         cast<ConstantInt>(Call.getArgOperand(2))->getValue();
4919     Assert(Alignment.isNullValue() || Alignment.isPowerOf2(),
4920            "masked_scatter: alignment must be 0 or a power of 2", Call);
4921     break;
4922   }
4923 
4924   case Intrinsic::experimental_guard: {
4925     Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
4926     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4927            "experimental_guard must have exactly one "
4928            "\"deopt\" operand bundle");
4929     break;
4930   }
4931 
4932   case Intrinsic::experimental_deoptimize: {
4933     Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
4934            Call);
4935     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4936            "experimental_deoptimize must have exactly one "
4937            "\"deopt\" operand bundle");
4938     Assert(Call.getType() == Call.getFunction()->getReturnType(),
4939            "experimental_deoptimize return type must match caller return type");
4940 
4941     if (isa<CallInst>(Call)) {
4942       auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
4943       Assert(RI,
4944              "calls to experimental_deoptimize must be followed by a return");
4945 
4946       if (!Call.getType()->isVoidTy() && RI)
4947         Assert(RI->getReturnValue() == &Call,
4948                "calls to experimental_deoptimize must be followed by a return "
4949                "of the value computed by experimental_deoptimize");
4950     }
4951 
4952     break;
4953   }
4954   case Intrinsic::sadd_sat:
4955   case Intrinsic::uadd_sat:
4956   case Intrinsic::ssub_sat:
4957   case Intrinsic::usub_sat:
4958   case Intrinsic::sshl_sat:
4959   case Intrinsic::ushl_sat: {
4960     Value *Op1 = Call.getArgOperand(0);
4961     Value *Op2 = Call.getArgOperand(1);
4962     Assert(Op1->getType()->isIntOrIntVectorTy(),
4963            "first operand of [us][add|sub|shl]_sat must be an int type or "
4964            "vector of ints");
4965     Assert(Op2->getType()->isIntOrIntVectorTy(),
4966            "second operand of [us][add|sub|shl]_sat must be an int type or "
4967            "vector of ints");
4968     break;
4969   }
4970   case Intrinsic::smul_fix:
4971   case Intrinsic::smul_fix_sat:
4972   case Intrinsic::umul_fix:
4973   case Intrinsic::umul_fix_sat:
4974   case Intrinsic::sdiv_fix:
4975   case Intrinsic::sdiv_fix_sat:
4976   case Intrinsic::udiv_fix:
4977   case Intrinsic::udiv_fix_sat: {
4978     Value *Op1 = Call.getArgOperand(0);
4979     Value *Op2 = Call.getArgOperand(1);
4980     Assert(Op1->getType()->isIntOrIntVectorTy(),
4981            "first operand of [us][mul|div]_fix[_sat] must be an int type or "
4982            "vector of ints");
4983     Assert(Op2->getType()->isIntOrIntVectorTy(),
4984            "second operand of [us][mul|div]_fix[_sat] must be an int type or "
4985            "vector of ints");
4986 
4987     auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
4988     Assert(Op3->getType()->getBitWidth() <= 32,
4989            "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits");
4990 
4991     if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
4992         ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
4993       Assert(
4994           Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
4995           "the scale of s[mul|div]_fix[_sat] must be less than the width of "
4996           "the operands");
4997     } else {
4998       Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
4999              "the scale of u[mul|div]_fix[_sat] must be less than or equal "
5000              "to the width of the operands");
5001     }
5002     break;
5003   }
5004   case Intrinsic::lround:
5005   case Intrinsic::llround:
5006   case Intrinsic::lrint:
5007   case Intrinsic::llrint: {
5008     Type *ValTy = Call.getArgOperand(0)->getType();
5009     Type *ResultTy = Call.getType();
5010     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5011            "Intrinsic does not support vectors", &Call);
5012     break;
5013   }
5014   case Intrinsic::bswap: {
5015     Type *Ty = Call.getType();
5016     unsigned Size = Ty->getScalarSizeInBits();
5017     Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
5018     break;
5019   }
5020   case Intrinsic::invariant_start: {
5021     ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5022     Assert(InvariantSize &&
5023                (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),
5024            "invariant_start parameter must be -1, 0 or a positive number",
5025            &Call);
5026     break;
5027   }
5028   case Intrinsic::matrix_multiply:
5029   case Intrinsic::matrix_transpose:
5030   case Intrinsic::matrix_column_major_load:
5031   case Intrinsic::matrix_column_major_store: {
5032     Function *IF = Call.getCalledFunction();
5033     ConstantInt *Stride = nullptr;
5034     ConstantInt *NumRows;
5035     ConstantInt *NumColumns;
5036     VectorType *ResultTy;
5037     Type *Op0ElemTy = nullptr;
5038     Type *Op1ElemTy = nullptr;
5039     switch (ID) {
5040     case Intrinsic::matrix_multiply:
5041       NumRows = cast<ConstantInt>(Call.getArgOperand(2));
5042       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5043       ResultTy = cast<VectorType>(Call.getType());
5044       Op0ElemTy =
5045           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5046       Op1ElemTy =
5047           cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
5048       break;
5049     case Intrinsic::matrix_transpose:
5050       NumRows = cast<ConstantInt>(Call.getArgOperand(1));
5051       NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
5052       ResultTy = cast<VectorType>(Call.getType());
5053       Op0ElemTy =
5054           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5055       break;
5056     case Intrinsic::matrix_column_major_load:
5057       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
5058       NumRows = cast<ConstantInt>(Call.getArgOperand(3));
5059       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5060       ResultTy = cast<VectorType>(Call.getType());
5061       Op0ElemTy =
5062           cast<PointerType>(Call.getArgOperand(0)->getType())->getElementType();
5063       break;
5064     case Intrinsic::matrix_column_major_store:
5065       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
5066       NumRows = cast<ConstantInt>(Call.getArgOperand(4));
5067       NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
5068       ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
5069       Op0ElemTy =
5070           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5071       Op1ElemTy =
5072           cast<PointerType>(Call.getArgOperand(1)->getType())->getElementType();
5073       break;
5074     default:
5075       llvm_unreachable("unexpected intrinsic");
5076     }
5077 
5078     Assert(ResultTy->getElementType()->isIntegerTy() ||
5079            ResultTy->getElementType()->isFloatingPointTy(),
5080            "Result type must be an integer or floating-point type!", IF);
5081 
5082     Assert(ResultTy->getElementType() == Op0ElemTy,
5083            "Vector element type mismatch of the result and first operand "
5084            "vector!", IF);
5085 
5086     if (Op1ElemTy)
5087       Assert(ResultTy->getElementType() == Op1ElemTy,
5088              "Vector element type mismatch of the result and second operand "
5089              "vector!", IF);
5090 
5091     Assert(cast<FixedVectorType>(ResultTy)->getNumElements() ==
5092                NumRows->getZExtValue() * NumColumns->getZExtValue(),
5093            "Result of a matrix operation does not fit in the returned vector!");
5094 
5095     if (Stride)
5096       Assert(Stride->getZExtValue() >= NumRows->getZExtValue(),
5097              "Stride must be greater or equal than the number of rows!", IF);
5098 
5099     break;
5100   }
5101   };
5102 }
5103 
5104 /// Carefully grab the subprogram from a local scope.
5105 ///
5106 /// This carefully grabs the subprogram from a local scope, avoiding the
5107 /// built-in assertions that would typically fire.
5108 static DISubprogram *getSubprogram(Metadata *LocalScope) {
5109   if (!LocalScope)
5110     return nullptr;
5111 
5112   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
5113     return SP;
5114 
5115   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
5116     return getSubprogram(LB->getRawScope());
5117 
5118   // Just return null; broken scope chains are checked elsewhere.
5119   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
5120   return nullptr;
5121 }
5122 
5123 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
5124   unsigned NumOperands;
5125   bool HasRoundingMD;
5126   switch (FPI.getIntrinsicID()) {
5127 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
5128   case Intrinsic::INTRINSIC:                                                   \
5129     NumOperands = NARG;                                                        \
5130     HasRoundingMD = ROUND_MODE;                                                \
5131     break;
5132 #include "llvm/IR/ConstrainedOps.def"
5133   default:
5134     llvm_unreachable("Invalid constrained FP intrinsic!");
5135   }
5136   NumOperands += (1 + HasRoundingMD);
5137   // Compare intrinsics carry an extra predicate metadata operand.
5138   if (isa<ConstrainedFPCmpIntrinsic>(FPI))
5139     NumOperands += 1;
5140   Assert((FPI.getNumArgOperands() == NumOperands),
5141          "invalid arguments for constrained FP intrinsic", &FPI);
5142 
5143   switch (FPI.getIntrinsicID()) {
5144   case Intrinsic::experimental_constrained_lrint:
5145   case Intrinsic::experimental_constrained_llrint: {
5146     Type *ValTy = FPI.getArgOperand(0)->getType();
5147     Type *ResultTy = FPI.getType();
5148     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5149            "Intrinsic does not support vectors", &FPI);
5150   }
5151     break;
5152 
5153   case Intrinsic::experimental_constrained_lround:
5154   case Intrinsic::experimental_constrained_llround: {
5155     Type *ValTy = FPI.getArgOperand(0)->getType();
5156     Type *ResultTy = FPI.getType();
5157     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5158            "Intrinsic does not support vectors", &FPI);
5159     break;
5160   }
5161 
5162   case Intrinsic::experimental_constrained_fcmp:
5163   case Intrinsic::experimental_constrained_fcmps: {
5164     auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
5165     Assert(CmpInst::isFPPredicate(Pred),
5166            "invalid predicate for constrained FP comparison intrinsic", &FPI);
5167     break;
5168   }
5169 
5170   case Intrinsic::experimental_constrained_fptosi:
5171   case Intrinsic::experimental_constrained_fptoui: {
5172     Value *Operand = FPI.getArgOperand(0);
5173     uint64_t NumSrcElem = 0;
5174     Assert(Operand->getType()->isFPOrFPVectorTy(),
5175            "Intrinsic first argument must be floating point", &FPI);
5176     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5177       NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5178     }
5179 
5180     Operand = &FPI;
5181     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5182            "Intrinsic first argument and result disagree on vector use", &FPI);
5183     Assert(Operand->getType()->isIntOrIntVectorTy(),
5184            "Intrinsic result must be an integer", &FPI);
5185     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5186       Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5187              "Intrinsic first argument and result vector lengths must be equal",
5188              &FPI);
5189     }
5190   }
5191     break;
5192 
5193   case Intrinsic::experimental_constrained_sitofp:
5194   case Intrinsic::experimental_constrained_uitofp: {
5195     Value *Operand = FPI.getArgOperand(0);
5196     uint64_t NumSrcElem = 0;
5197     Assert(Operand->getType()->isIntOrIntVectorTy(),
5198            "Intrinsic first argument must be integer", &FPI);
5199     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5200       NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5201     }
5202 
5203     Operand = &FPI;
5204     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5205            "Intrinsic first argument and result disagree on vector use", &FPI);
5206     Assert(Operand->getType()->isFPOrFPVectorTy(),
5207            "Intrinsic result must be a floating point", &FPI);
5208     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5209       Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5210              "Intrinsic first argument and result vector lengths must be equal",
5211              &FPI);
5212     }
5213   } break;
5214 
5215   case Intrinsic::experimental_constrained_fptrunc:
5216   case Intrinsic::experimental_constrained_fpext: {
5217     Value *Operand = FPI.getArgOperand(0);
5218     Type *OperandTy = Operand->getType();
5219     Value *Result = &FPI;
5220     Type *ResultTy = Result->getType();
5221     Assert(OperandTy->isFPOrFPVectorTy(),
5222            "Intrinsic first argument must be FP or FP vector", &FPI);
5223     Assert(ResultTy->isFPOrFPVectorTy(),
5224            "Intrinsic result must be FP or FP vector", &FPI);
5225     Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
5226            "Intrinsic first argument and result disagree on vector use", &FPI);
5227     if (OperandTy->isVectorTy()) {
5228       Assert(cast<FixedVectorType>(OperandTy)->getNumElements() ==
5229                  cast<FixedVectorType>(ResultTy)->getNumElements(),
5230              "Intrinsic first argument and result vector lengths must be equal",
5231              &FPI);
5232     }
5233     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
5234       Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
5235              "Intrinsic first argument's type must be larger than result type",
5236              &FPI);
5237     } else {
5238       Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
5239              "Intrinsic first argument's type must be smaller than result type",
5240              &FPI);
5241     }
5242   }
5243     break;
5244 
5245   default:
5246     break;
5247   }
5248 
5249   // If a non-metadata argument is passed in a metadata slot then the
5250   // error will be caught earlier when the incorrect argument doesn't
5251   // match the specification in the intrinsic call table. Thus, no
5252   // argument type check is needed here.
5253 
5254   Assert(FPI.getExceptionBehavior().hasValue(),
5255          "invalid exception behavior argument", &FPI);
5256   if (HasRoundingMD) {
5257     Assert(FPI.getRoundingMode().hasValue(),
5258            "invalid rounding mode argument", &FPI);
5259   }
5260 }
5261 
5262 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
5263   auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
5264   AssertDI(isa<ValueAsMetadata>(MD) ||
5265              (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
5266          "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
5267   AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
5268          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
5269          DII.getRawVariable());
5270   AssertDI(isa<DIExpression>(DII.getRawExpression()),
5271          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
5272          DII.getRawExpression());
5273 
5274   // Ignore broken !dbg attachments; they're checked elsewhere.
5275   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
5276     if (!isa<DILocation>(N))
5277       return;
5278 
5279   BasicBlock *BB = DII.getParent();
5280   Function *F = BB ? BB->getParent() : nullptr;
5281 
5282   // The scopes for variables and !dbg attachments must agree.
5283   DILocalVariable *Var = DII.getVariable();
5284   DILocation *Loc = DII.getDebugLoc();
5285   AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
5286            &DII, BB, F);
5287 
5288   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
5289   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
5290   if (!VarSP || !LocSP)
5291     return; // Broken scope chains are checked elsewhere.
5292 
5293   AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
5294                                " variable and !dbg attachment",
5295            &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
5296            Loc->getScope()->getSubprogram());
5297 
5298   // This check is redundant with one in visitLocalVariable().
5299   AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
5300            Var->getRawType());
5301   verifyFnArgs(DII);
5302 }
5303 
5304 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
5305   AssertDI(isa<DILabel>(DLI.getRawLabel()),
5306          "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
5307          DLI.getRawLabel());
5308 
5309   // Ignore broken !dbg attachments; they're checked elsewhere.
5310   if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
5311     if (!isa<DILocation>(N))
5312       return;
5313 
5314   BasicBlock *BB = DLI.getParent();
5315   Function *F = BB ? BB->getParent() : nullptr;
5316 
5317   // The scopes for variables and !dbg attachments must agree.
5318   DILabel *Label = DLI.getLabel();
5319   DILocation *Loc = DLI.getDebugLoc();
5320   Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
5321          &DLI, BB, F);
5322 
5323   DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
5324   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
5325   if (!LabelSP || !LocSP)
5326     return;
5327 
5328   AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
5329                              " label and !dbg attachment",
5330            &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
5331            Loc->getScope()->getSubprogram());
5332 }
5333 
5334 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
5335   DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
5336   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5337 
5338   // We don't know whether this intrinsic verified correctly.
5339   if (!V || !E || !E->isValid())
5340     return;
5341 
5342   // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
5343   auto Fragment = E->getFragmentInfo();
5344   if (!Fragment)
5345     return;
5346 
5347   // The frontend helps out GDB by emitting the members of local anonymous
5348   // unions as artificial local variables with shared storage. When SROA splits
5349   // the storage for artificial local variables that are smaller than the entire
5350   // union, the overhang piece will be outside of the allotted space for the
5351   // variable and this check fails.
5352   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
5353   if (V->isArtificial())
5354     return;
5355 
5356   verifyFragmentExpression(*V, *Fragment, &I);
5357 }
5358 
5359 template <typename ValueOrMetadata>
5360 void Verifier::verifyFragmentExpression(const DIVariable &V,
5361                                         DIExpression::FragmentInfo Fragment,
5362                                         ValueOrMetadata *Desc) {
5363   // If there's no size, the type is broken, but that should be checked
5364   // elsewhere.
5365   auto VarSize = V.getSizeInBits();
5366   if (!VarSize)
5367     return;
5368 
5369   unsigned FragSize = Fragment.SizeInBits;
5370   unsigned FragOffset = Fragment.OffsetInBits;
5371   AssertDI(FragSize + FragOffset <= *VarSize,
5372          "fragment is larger than or outside of variable", Desc, &V);
5373   AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
5374 }
5375 
5376 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
5377   // This function does not take the scope of noninlined function arguments into
5378   // account. Don't run it if current function is nodebug, because it may
5379   // contain inlined debug intrinsics.
5380   if (!HasDebugInfo)
5381     return;
5382 
5383   // For performance reasons only check non-inlined ones.
5384   if (I.getDebugLoc()->getInlinedAt())
5385     return;
5386 
5387   DILocalVariable *Var = I.getVariable();
5388   AssertDI(Var, "dbg intrinsic without variable");
5389 
5390   unsigned ArgNo = Var->getArg();
5391   if (!ArgNo)
5392     return;
5393 
5394   // Verify there are no duplicate function argument debug info entries.
5395   // These will cause hard-to-debug assertions in the DWARF backend.
5396   if (DebugFnArgs.size() < ArgNo)
5397     DebugFnArgs.resize(ArgNo, nullptr);
5398 
5399   auto *Prev = DebugFnArgs[ArgNo - 1];
5400   DebugFnArgs[ArgNo - 1] = Var;
5401   AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
5402            Prev, Var);
5403 }
5404 
5405 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
5406   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5407 
5408   // We don't know whether this intrinsic verified correctly.
5409   if (!E || !E->isValid())
5410     return;
5411 
5412   AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I);
5413 }
5414 
5415 void Verifier::verifyCompileUnits() {
5416   // When more than one Module is imported into the same context, such as during
5417   // an LTO build before linking the modules, ODR type uniquing may cause types
5418   // to point to a different CU. This check does not make sense in this case.
5419   if (M.getContext().isODRUniquingDebugTypes())
5420     return;
5421   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
5422   SmallPtrSet<const Metadata *, 2> Listed;
5423   if (CUs)
5424     Listed.insert(CUs->op_begin(), CUs->op_end());
5425   for (auto *CU : CUVisited)
5426     AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
5427   CUVisited.clear();
5428 }
5429 
5430 void Verifier::verifyDeoptimizeCallingConvs() {
5431   if (DeoptimizeDeclarations.empty())
5432     return;
5433 
5434   const Function *First = DeoptimizeDeclarations[0];
5435   for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
5436     Assert(First->getCallingConv() == F->getCallingConv(),
5437            "All llvm.experimental.deoptimize declarations must have the same "
5438            "calling convention",
5439            First, F);
5440   }
5441 }
5442 
5443 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
5444   bool HasSource = F.getSource().hasValue();
5445   if (!HasSourceDebugInfo.count(&U))
5446     HasSourceDebugInfo[&U] = HasSource;
5447   AssertDI(HasSource == HasSourceDebugInfo[&U],
5448            "inconsistent use of embedded source");
5449 }
5450 
5451 //===----------------------------------------------------------------------===//
5452 //  Implement the public interfaces to this file...
5453 //===----------------------------------------------------------------------===//
5454 
5455 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
5456   Function &F = const_cast<Function &>(f);
5457 
5458   // Don't use a raw_null_ostream.  Printing IR is expensive.
5459   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
5460 
5461   // Note that this function's return value is inverted from what you would
5462   // expect of a function called "verify".
5463   return !V.verify(F);
5464 }
5465 
5466 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
5467                         bool *BrokenDebugInfo) {
5468   // Don't use a raw_null_ostream.  Printing IR is expensive.
5469   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
5470 
5471   bool Broken = false;
5472   for (const Function &F : M)
5473     Broken |= !V.verify(F);
5474 
5475   Broken |= !V.verify();
5476   if (BrokenDebugInfo)
5477     *BrokenDebugInfo = V.hasBrokenDebugInfo();
5478   // Note that this function's return value is inverted from what you would
5479   // expect of a function called "verify".
5480   return Broken;
5481 }
5482 
5483 namespace {
5484 
5485 struct VerifierLegacyPass : public FunctionPass {
5486   static char ID;
5487 
5488   std::unique_ptr<Verifier> V;
5489   bool FatalErrors = true;
5490 
5491   VerifierLegacyPass() : FunctionPass(ID) {
5492     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5493   }
5494   explicit VerifierLegacyPass(bool FatalErrors)
5495       : FunctionPass(ID),
5496         FatalErrors(FatalErrors) {
5497     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5498   }
5499 
5500   bool doInitialization(Module &M) override {
5501     V = std::make_unique<Verifier>(
5502         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
5503     return false;
5504   }
5505 
5506   bool runOnFunction(Function &F) override {
5507     if (!V->verify(F) && FatalErrors) {
5508       errs() << "in function " << F.getName() << '\n';
5509       report_fatal_error("Broken function found, compilation aborted!");
5510     }
5511     return false;
5512   }
5513 
5514   bool doFinalization(Module &M) override {
5515     bool HasErrors = false;
5516     for (Function &F : M)
5517       if (F.isDeclaration())
5518         HasErrors |= !V->verify(F);
5519 
5520     HasErrors |= !V->verify();
5521     if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
5522       report_fatal_error("Broken module found, compilation aborted!");
5523     return false;
5524   }
5525 
5526   void getAnalysisUsage(AnalysisUsage &AU) const override {
5527     AU.setPreservesAll();
5528   }
5529 };
5530 
5531 } // end anonymous namespace
5532 
5533 /// Helper to issue failure from the TBAA verification
5534 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
5535   if (Diagnostic)
5536     return Diagnostic->CheckFailed(Args...);
5537 }
5538 
5539 #define AssertTBAA(C, ...)                                                     \
5540   do {                                                                         \
5541     if (!(C)) {                                                                \
5542       CheckFailed(__VA_ARGS__);                                                \
5543       return false;                                                            \
5544     }                                                                          \
5545   } while (false)
5546 
5547 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
5548 /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
5549 /// struct-type node describing an aggregate data structure (like a struct).
5550 TBAAVerifier::TBAABaseNodeSummary
5551 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
5552                                  bool IsNewFormat) {
5553   if (BaseNode->getNumOperands() < 2) {
5554     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
5555     return {true, ~0u};
5556   }
5557 
5558   auto Itr = TBAABaseNodes.find(BaseNode);
5559   if (Itr != TBAABaseNodes.end())
5560     return Itr->second;
5561 
5562   auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
5563   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
5564   (void)InsertResult;
5565   assert(InsertResult.second && "We just checked!");
5566   return Result;
5567 }
5568 
5569 TBAAVerifier::TBAABaseNodeSummary
5570 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
5571                                      bool IsNewFormat) {
5572   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
5573 
5574   if (BaseNode->getNumOperands() == 2) {
5575     // Scalar nodes can only be accessed at offset 0.
5576     return isValidScalarTBAANode(BaseNode)
5577                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
5578                : InvalidNode;
5579   }
5580 
5581   if (IsNewFormat) {
5582     if (BaseNode->getNumOperands() % 3 != 0) {
5583       CheckFailed("Access tag nodes must have the number of operands that is a "
5584                   "multiple of 3!", BaseNode);
5585       return InvalidNode;
5586     }
5587   } else {
5588     if (BaseNode->getNumOperands() % 2 != 1) {
5589       CheckFailed("Struct tag nodes must have an odd number of operands!",
5590                   BaseNode);
5591       return InvalidNode;
5592     }
5593   }
5594 
5595   // Check the type size field.
5596   if (IsNewFormat) {
5597     auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5598         BaseNode->getOperand(1));
5599     if (!TypeSizeNode) {
5600       CheckFailed("Type size nodes must be constants!", &I, BaseNode);
5601       return InvalidNode;
5602     }
5603   }
5604 
5605   // Check the type name field. In the new format it can be anything.
5606   if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
5607     CheckFailed("Struct tag nodes have a string as their first operand",
5608                 BaseNode);
5609     return InvalidNode;
5610   }
5611 
5612   bool Failed = false;
5613 
5614   Optional<APInt> PrevOffset;
5615   unsigned BitWidth = ~0u;
5616 
5617   // We've already checked that BaseNode is not a degenerate root node with one
5618   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
5619   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5620   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5621   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5622            Idx += NumOpsPerField) {
5623     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
5624     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
5625     if (!isa<MDNode>(FieldTy)) {
5626       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
5627       Failed = true;
5628       continue;
5629     }
5630 
5631     auto *OffsetEntryCI =
5632         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
5633     if (!OffsetEntryCI) {
5634       CheckFailed("Offset entries must be constants!", &I, BaseNode);
5635       Failed = true;
5636       continue;
5637     }
5638 
5639     if (BitWidth == ~0u)
5640       BitWidth = OffsetEntryCI->getBitWidth();
5641 
5642     if (OffsetEntryCI->getBitWidth() != BitWidth) {
5643       CheckFailed(
5644           "Bitwidth between the offsets and struct type entries must match", &I,
5645           BaseNode);
5646       Failed = true;
5647       continue;
5648     }
5649 
5650     // NB! As far as I can tell, we generate a non-strictly increasing offset
5651     // sequence only from structs that have zero size bit fields.  When
5652     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
5653     // pick the field lexically the latest in struct type metadata node.  This
5654     // mirrors the actual behavior of the alias analysis implementation.
5655     bool IsAscending =
5656         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
5657 
5658     if (!IsAscending) {
5659       CheckFailed("Offsets must be increasing!", &I, BaseNode);
5660       Failed = true;
5661     }
5662 
5663     PrevOffset = OffsetEntryCI->getValue();
5664 
5665     if (IsNewFormat) {
5666       auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5667           BaseNode->getOperand(Idx + 2));
5668       if (!MemberSizeNode) {
5669         CheckFailed("Member size entries must be constants!", &I, BaseNode);
5670         Failed = true;
5671         continue;
5672       }
5673     }
5674   }
5675 
5676   return Failed ? InvalidNode
5677                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
5678 }
5679 
5680 static bool IsRootTBAANode(const MDNode *MD) {
5681   return MD->getNumOperands() < 2;
5682 }
5683 
5684 static bool IsScalarTBAANodeImpl(const MDNode *MD,
5685                                  SmallPtrSetImpl<const MDNode *> &Visited) {
5686   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
5687     return false;
5688 
5689   if (!isa<MDString>(MD->getOperand(0)))
5690     return false;
5691 
5692   if (MD->getNumOperands() == 3) {
5693     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
5694     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
5695       return false;
5696   }
5697 
5698   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5699   return Parent && Visited.insert(Parent).second &&
5700          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
5701 }
5702 
5703 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
5704   auto ResultIt = TBAAScalarNodes.find(MD);
5705   if (ResultIt != TBAAScalarNodes.end())
5706     return ResultIt->second;
5707 
5708   SmallPtrSet<const MDNode *, 4> Visited;
5709   bool Result = IsScalarTBAANodeImpl(MD, Visited);
5710   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
5711   (void)InsertResult;
5712   assert(InsertResult.second && "Just checked!");
5713 
5714   return Result;
5715 }
5716 
5717 /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
5718 /// Offset in place to be the offset within the field node returned.
5719 ///
5720 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
5721 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
5722                                                    const MDNode *BaseNode,
5723                                                    APInt &Offset,
5724                                                    bool IsNewFormat) {
5725   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
5726 
5727   // Scalar nodes have only one possible "field" -- their parent in the access
5728   // hierarchy.  Offset must be zero at this point, but our caller is supposed
5729   // to Assert that.
5730   if (BaseNode->getNumOperands() == 2)
5731     return cast<MDNode>(BaseNode->getOperand(1));
5732 
5733   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5734   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5735   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5736            Idx += NumOpsPerField) {
5737     auto *OffsetEntryCI =
5738         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
5739     if (OffsetEntryCI->getValue().ugt(Offset)) {
5740       if (Idx == FirstFieldOpNo) {
5741         CheckFailed("Could not find TBAA parent in struct type node", &I,
5742                     BaseNode, &Offset);
5743         return nullptr;
5744       }
5745 
5746       unsigned PrevIdx = Idx - NumOpsPerField;
5747       auto *PrevOffsetEntryCI =
5748           mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
5749       Offset -= PrevOffsetEntryCI->getValue();
5750       return cast<MDNode>(BaseNode->getOperand(PrevIdx));
5751     }
5752   }
5753 
5754   unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
5755   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
5756       BaseNode->getOperand(LastIdx + 1));
5757   Offset -= LastOffsetEntryCI->getValue();
5758   return cast<MDNode>(BaseNode->getOperand(LastIdx));
5759 }
5760 
5761 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
5762   if (!Type || Type->getNumOperands() < 3)
5763     return false;
5764 
5765   // In the new format type nodes shall have a reference to the parent type as
5766   // its first operand.
5767   MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
5768   if (!Parent)
5769     return false;
5770 
5771   return true;
5772 }
5773 
5774 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
5775   AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
5776                  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
5777                  isa<AtomicCmpXchgInst>(I),
5778              "This instruction shall not have a TBAA access tag!", &I);
5779 
5780   bool IsStructPathTBAA =
5781       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
5782 
5783   AssertTBAA(
5784       IsStructPathTBAA,
5785       "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
5786 
5787   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
5788   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5789 
5790   bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
5791 
5792   if (IsNewFormat) {
5793     AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
5794                "Access tag metadata must have either 4 or 5 operands", &I, MD);
5795   } else {
5796     AssertTBAA(MD->getNumOperands() < 5,
5797                "Struct tag metadata must have either 3 or 4 operands", &I, MD);
5798   }
5799 
5800   // Check the access size field.
5801   if (IsNewFormat) {
5802     auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5803         MD->getOperand(3));
5804     AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
5805   }
5806 
5807   // Check the immutability flag.
5808   unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
5809   if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
5810     auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
5811         MD->getOperand(ImmutabilityFlagOpNo));
5812     AssertTBAA(IsImmutableCI,
5813                "Immutability tag on struct tag metadata must be a constant",
5814                &I, MD);
5815     AssertTBAA(
5816         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
5817         "Immutability part of the struct tag metadata must be either 0 or 1",
5818         &I, MD);
5819   }
5820 
5821   AssertTBAA(BaseNode && AccessType,
5822              "Malformed struct tag metadata: base and access-type "
5823              "should be non-null and point to Metadata nodes",
5824              &I, MD, BaseNode, AccessType);
5825 
5826   if (!IsNewFormat) {
5827     AssertTBAA(isValidScalarTBAANode(AccessType),
5828                "Access type node must be a valid scalar type", &I, MD,
5829                AccessType);
5830   }
5831 
5832   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
5833   AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
5834 
5835   APInt Offset = OffsetCI->getValue();
5836   bool SeenAccessTypeInPath = false;
5837 
5838   SmallPtrSet<MDNode *, 4> StructPath;
5839 
5840   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
5841        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
5842                                                IsNewFormat)) {
5843     if (!StructPath.insert(BaseNode).second) {
5844       CheckFailed("Cycle detected in struct path", &I, MD);
5845       return false;
5846     }
5847 
5848     bool Invalid;
5849     unsigned BaseNodeBitWidth;
5850     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
5851                                                              IsNewFormat);
5852 
5853     // If the base node is invalid in itself, then we've already printed all the
5854     // errors we wanted to print.
5855     if (Invalid)
5856       return false;
5857 
5858     SeenAccessTypeInPath |= BaseNode == AccessType;
5859 
5860     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
5861       AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
5862                  &I, MD, &Offset);
5863 
5864     AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
5865                    (BaseNodeBitWidth == 0 && Offset == 0) ||
5866                    (IsNewFormat && BaseNodeBitWidth == ~0u),
5867                "Access bit-width not the same as description bit-width", &I, MD,
5868                BaseNodeBitWidth, Offset.getBitWidth());
5869 
5870     if (IsNewFormat && SeenAccessTypeInPath)
5871       break;
5872   }
5873 
5874   AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
5875              &I, MD);
5876   return true;
5877 }
5878 
5879 char VerifierLegacyPass::ID = 0;
5880 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
5881 
5882 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
5883   return new VerifierLegacyPass(FatalErrors);
5884 }
5885 
5886 AnalysisKey VerifierAnalysis::Key;
5887 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
5888                                                ModuleAnalysisManager &) {
5889   Result Res;
5890   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
5891   return Res;
5892 }
5893 
5894 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
5895                                                FunctionAnalysisManager &) {
5896   return { llvm::verifyFunction(F, &dbgs()), false };
5897 }
5898 
5899 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
5900   auto Res = AM.getResult<VerifierAnalysis>(M);
5901   if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
5902     report_fatal_error("Broken module found, compilation aborted!");
5903 
5904   return PreservedAnalyses::all();
5905 }
5906 
5907 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
5908   auto res = AM.getResult<VerifierAnalysis>(F);
5909   if (res.IRBroken && FatalErrors)
5910     report_fatal_error("Broken function found, compilation aborted!");
5911 
5912   return PreservedAnalyses::all();
5913 }
5914