1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // basic correctness checking of input to the system.
11 //
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
14 //
15 //  * Both of a binary operator's parameters are of the same type
16 //  * Verify that the indices of mem access instructions match other operands
17 //  * Verify that arithmetic and other things are only performed on first-class
18 //    types.  Verify that shifts & logicals only happen on integrals f.e.
19 //  * All of the constants in a switch statement are of the correct type
20 //  * The code is in valid SSA form
21 //  * It should be illegal to put a label into any other type (like a structure)
22 //    or to return one. [except constant arrays!]
23 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 //  * PHI nodes must have an entry for each predecessor, with no extras.
25 //  * PHI nodes must be the first thing in a basic block, all grouped together
26 //  * PHI nodes must have at least one entry
27 //  * All basic blocks should only end with terminator insts, not contain them
28 //  * The entry node to a function must not have predecessors
29 //  * All Instructions must be embedded into a basic block
30 //  * Functions cannot take a void-typed parameter
31 //  * Verify that a function's argument list agrees with it's declared type.
32 //  * It is illegal to specify a name for a void value.
33 //  * It is illegal to have a internal global value with no initializer
34 //  * It is illegal to have a ret instruction that returns a value that does not
35 //    agree with the function return value type.
36 //  * Function call argument types match the function prototype
37 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
38 //    only by the unwind edge of an invoke instruction.
39 //  * A landingpad instruction must be the first non-PHI instruction in the
40 //    block.
41 //  * Landingpad instructions must be in a function with a personality function.
42 //  * All other things that are tested by asserts spread about the code...
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/ilist.h"
62 #include "llvm/BinaryFormat/Dwarf.h"
63 #include "llvm/IR/Argument.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Comdat.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DebugInfo.h"
74 #include "llvm/IR/DebugInfoMetadata.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstVisitor.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/IntrinsicsWebAssembly.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/Metadata.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/ModuleSlotTracker.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Statepoint.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/Use.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/InitializePasses.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Debug.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include <algorithm>
110 #include <cassert>
111 #include <cstdint>
112 #include <memory>
113 #include <string>
114 #include <utility>
115 
116 using namespace llvm;
117 
118 static cl::opt<bool> VerifyNoAliasScopeDomination(
119     "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
120     cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
121              "scopes are not dominating"));
122 
123 namespace llvm {
124 
125 struct VerifierSupport {
126   raw_ostream *OS;
127   const Module &M;
128   ModuleSlotTracker MST;
129   Triple TT;
130   const DataLayout &DL;
131   LLVMContext &Context;
132 
133   /// Track the brokenness of the module while recursively visiting.
134   bool Broken = false;
135   /// Broken debug info can be "recovered" from by stripping the debug info.
136   bool BrokenDebugInfo = false;
137   /// Whether to treat broken debug info as an error.
138   bool TreatBrokenDebugInfoAsError = true;
139 
140   explicit VerifierSupport(raw_ostream *OS, const Module &M)
141       : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
142         Context(M.getContext()) {}
143 
144 private:
145   void Write(const Module *M) {
146     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
147   }
148 
149   void Write(const Value *V) {
150     if (V)
151       Write(*V);
152   }
153 
154   void Write(const Value &V) {
155     if (isa<Instruction>(V)) {
156       V.print(*OS, MST);
157       *OS << '\n';
158     } else {
159       V.printAsOperand(*OS, true, MST);
160       *OS << '\n';
161     }
162   }
163 
164   void Write(const Metadata *MD) {
165     if (!MD)
166       return;
167     MD->print(*OS, MST, &M);
168     *OS << '\n';
169   }
170 
171   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
172     Write(MD.get());
173   }
174 
175   void Write(const NamedMDNode *NMD) {
176     if (!NMD)
177       return;
178     NMD->print(*OS, MST);
179     *OS << '\n';
180   }
181 
182   void Write(Type *T) {
183     if (!T)
184       return;
185     *OS << ' ' << *T;
186   }
187 
188   void Write(const Comdat *C) {
189     if (!C)
190       return;
191     *OS << *C;
192   }
193 
194   void Write(const APInt *AI) {
195     if (!AI)
196       return;
197     *OS << *AI << '\n';
198   }
199 
200   void Write(const unsigned i) { *OS << i << '\n'; }
201 
202   // NOLINTNEXTLINE(readability-identifier-naming)
203   void Write(const Attribute *A) {
204     if (!A)
205       return;
206     *OS << A->getAsString() << '\n';
207   }
208 
209   // NOLINTNEXTLINE(readability-identifier-naming)
210   void Write(const AttributeSet *AS) {
211     if (!AS)
212       return;
213     *OS << AS->getAsString() << '\n';
214   }
215 
216   // NOLINTNEXTLINE(readability-identifier-naming)
217   void Write(const AttributeList *AL) {
218     if (!AL)
219       return;
220     AL->print(*OS);
221   }
222 
223   template <typename T> void Write(ArrayRef<T> Vs) {
224     for (const T &V : Vs)
225       Write(V);
226   }
227 
228   template <typename T1, typename... Ts>
229   void WriteTs(const T1 &V1, const Ts &... Vs) {
230     Write(V1);
231     WriteTs(Vs...);
232   }
233 
234   template <typename... Ts> void WriteTs() {}
235 
236 public:
237   /// A check failed, so printout out the condition and the message.
238   ///
239   /// This provides a nice place to put a breakpoint if you want to see why
240   /// something is not correct.
241   void CheckFailed(const Twine &Message) {
242     if (OS)
243       *OS << Message << '\n';
244     Broken = true;
245   }
246 
247   /// A check failed (with values to print).
248   ///
249   /// This calls the Message-only version so that the above is easier to set a
250   /// breakpoint on.
251   template <typename T1, typename... Ts>
252   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
253     CheckFailed(Message);
254     if (OS)
255       WriteTs(V1, Vs...);
256   }
257 
258   /// A debug info check failed.
259   void DebugInfoCheckFailed(const Twine &Message) {
260     if (OS)
261       *OS << Message << '\n';
262     Broken |= TreatBrokenDebugInfoAsError;
263     BrokenDebugInfo = true;
264   }
265 
266   /// A debug info check failed (with values to print).
267   template <typename T1, typename... Ts>
268   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
269                             const Ts &... Vs) {
270     DebugInfoCheckFailed(Message);
271     if (OS)
272       WriteTs(V1, Vs...);
273   }
274 };
275 
276 } // namespace llvm
277 
278 namespace {
279 
280 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
281   friend class InstVisitor<Verifier>;
282 
283   DominatorTree DT;
284 
285   /// When verifying a basic block, keep track of all of the
286   /// instructions we have seen so far.
287   ///
288   /// This allows us to do efficient dominance checks for the case when an
289   /// instruction has an operand that is an instruction in the same block.
290   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
291 
292   /// Keep track of the metadata nodes that have been checked already.
293   SmallPtrSet<const Metadata *, 32> MDNodes;
294 
295   /// Keep track which DISubprogram is attached to which function.
296   DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
297 
298   /// Track all DICompileUnits visited.
299   SmallPtrSet<const Metadata *, 2> CUVisited;
300 
301   /// The result type for a landingpad.
302   Type *LandingPadResultTy;
303 
304   /// Whether we've seen a call to @llvm.localescape in this function
305   /// already.
306   bool SawFrameEscape;
307 
308   /// Whether the current function has a DISubprogram attached to it.
309   bool HasDebugInfo = false;
310 
311   /// The current source language.
312   dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;
313 
314   /// Whether source was present on the first DIFile encountered in each CU.
315   DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
316 
317   /// Stores the count of how many objects were passed to llvm.localescape for a
318   /// given function and the largest index passed to llvm.localrecover.
319   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
320 
321   // Maps catchswitches and cleanuppads that unwind to siblings to the
322   // terminators that indicate the unwind, used to detect cycles therein.
323   MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
324 
325   /// Cache of constants visited in search of ConstantExprs.
326   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
327 
328   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
329   SmallVector<const Function *, 4> DeoptimizeDeclarations;
330 
331   /// Cache of attribute lists verified.
332   SmallPtrSet<const void *, 32> AttributeListsVisited;
333 
334   // Verify that this GlobalValue is only used in this module.
335   // This map is used to avoid visiting uses twice. We can arrive at a user
336   // twice, if they have multiple operands. In particular for very large
337   // constant expressions, we can arrive at a particular user many times.
338   SmallPtrSet<const Value *, 32> GlobalValueVisited;
339 
340   // Keeps track of duplicate function argument debug info.
341   SmallVector<const DILocalVariable *, 16> DebugFnArgs;
342 
343   TBAAVerifier TBAAVerifyHelper;
344 
345   SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
346 
347   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
348 
349 public:
350   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
351                     const Module &M)
352       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
353         SawFrameEscape(false), TBAAVerifyHelper(this) {
354     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
355   }
356 
357   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
358 
359   bool verify(const Function &F) {
360     assert(F.getParent() == &M &&
361            "An instance of this class only works with a specific module!");
362 
363     // First ensure the function is well-enough formed to compute dominance
364     // information, and directly compute a dominance tree. We don't rely on the
365     // pass manager to provide this as it isolates us from a potentially
366     // out-of-date dominator tree and makes it significantly more complex to run
367     // this code outside of a pass manager.
368     // FIXME: It's really gross that we have to cast away constness here.
369     if (!F.empty())
370       DT.recalculate(const_cast<Function &>(F));
371 
372     for (const BasicBlock &BB : F) {
373       if (!BB.empty() && BB.back().isTerminator())
374         continue;
375 
376       if (OS) {
377         *OS << "Basic Block in function '" << F.getName()
378             << "' does not have terminator!\n";
379         BB.printAsOperand(*OS, true, MST);
380         *OS << "\n";
381       }
382       return false;
383     }
384 
385     Broken = false;
386     // FIXME: We strip const here because the inst visitor strips const.
387     visit(const_cast<Function &>(F));
388     verifySiblingFuncletUnwinds();
389     InstsInThisBlock.clear();
390     DebugFnArgs.clear();
391     LandingPadResultTy = nullptr;
392     SawFrameEscape = false;
393     SiblingFuncletInfo.clear();
394     verifyNoAliasScopeDecl();
395     NoAliasScopeDecls.clear();
396 
397     return !Broken;
398   }
399 
400   /// Verify the module that this instance of \c Verifier was initialized with.
401   bool verify() {
402     Broken = false;
403 
404     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
405     for (const Function &F : M)
406       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
407         DeoptimizeDeclarations.push_back(&F);
408 
409     // Now that we've visited every function, verify that we never asked to
410     // recover a frame index that wasn't escaped.
411     verifyFrameRecoverIndices();
412     for (const GlobalVariable &GV : M.globals())
413       visitGlobalVariable(GV);
414 
415     for (const GlobalAlias &GA : M.aliases())
416       visitGlobalAlias(GA);
417 
418     for (const GlobalIFunc &GI : M.ifuncs())
419       visitGlobalIFunc(GI);
420 
421     for (const NamedMDNode &NMD : M.named_metadata())
422       visitNamedMDNode(NMD);
423 
424     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
425       visitComdat(SMEC.getValue());
426 
427     visitModuleFlags();
428     visitModuleIdents();
429     visitModuleCommandLines();
430 
431     verifyCompileUnits();
432 
433     verifyDeoptimizeCallingConvs();
434     DISubprogramAttachments.clear();
435     return !Broken;
436   }
437 
438 private:
439   /// Whether a metadata node is allowed to be, or contain, a DILocation.
440   enum class AreDebugLocsAllowed { No, Yes };
441 
442   // Verification methods...
443   void visitGlobalValue(const GlobalValue &GV);
444   void visitGlobalVariable(const GlobalVariable &GV);
445   void visitGlobalAlias(const GlobalAlias &GA);
446   void visitGlobalIFunc(const GlobalIFunc &GI);
447   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
448   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
449                            const GlobalAlias &A, const Constant &C);
450   void visitNamedMDNode(const NamedMDNode &NMD);
451   void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
452   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
453   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
454   void visitComdat(const Comdat &C);
455   void visitModuleIdents();
456   void visitModuleCommandLines();
457   void visitModuleFlags();
458   void visitModuleFlag(const MDNode *Op,
459                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
460                        SmallVectorImpl<const MDNode *> &Requirements);
461   void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
462   void visitFunction(const Function &F);
463   void visitBasicBlock(BasicBlock &BB);
464   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
465   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
466   void visitProfMetadata(Instruction &I, MDNode *MD);
467   void visitAnnotationMetadata(MDNode *Annotation);
468   void visitAliasScopeMetadata(const MDNode *MD);
469   void visitAliasScopeListMetadata(const MDNode *MD);
470 
471   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
472 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
473 #include "llvm/IR/Metadata.def"
474   void visitDIScope(const DIScope &N);
475   void visitDIVariable(const DIVariable &N);
476   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
477   void visitDITemplateParameter(const DITemplateParameter &N);
478 
479   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
480 
481   // InstVisitor overrides...
482   using InstVisitor<Verifier>::visit;
483   void visit(Instruction &I);
484 
485   void visitTruncInst(TruncInst &I);
486   void visitZExtInst(ZExtInst &I);
487   void visitSExtInst(SExtInst &I);
488   void visitFPTruncInst(FPTruncInst &I);
489   void visitFPExtInst(FPExtInst &I);
490   void visitFPToUIInst(FPToUIInst &I);
491   void visitFPToSIInst(FPToSIInst &I);
492   void visitUIToFPInst(UIToFPInst &I);
493   void visitSIToFPInst(SIToFPInst &I);
494   void visitIntToPtrInst(IntToPtrInst &I);
495   void visitPtrToIntInst(PtrToIntInst &I);
496   void visitBitCastInst(BitCastInst &I);
497   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
498   void visitPHINode(PHINode &PN);
499   void visitCallBase(CallBase &Call);
500   void visitUnaryOperator(UnaryOperator &U);
501   void visitBinaryOperator(BinaryOperator &B);
502   void visitICmpInst(ICmpInst &IC);
503   void visitFCmpInst(FCmpInst &FC);
504   void visitExtractElementInst(ExtractElementInst &EI);
505   void visitInsertElementInst(InsertElementInst &EI);
506   void visitShuffleVectorInst(ShuffleVectorInst &EI);
507   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
508   void visitCallInst(CallInst &CI);
509   void visitInvokeInst(InvokeInst &II);
510   void visitGetElementPtrInst(GetElementPtrInst &GEP);
511   void visitLoadInst(LoadInst &LI);
512   void visitStoreInst(StoreInst &SI);
513   void verifyDominatesUse(Instruction &I, unsigned i);
514   void visitInstruction(Instruction &I);
515   void visitTerminator(Instruction &I);
516   void visitBranchInst(BranchInst &BI);
517   void visitReturnInst(ReturnInst &RI);
518   void visitSwitchInst(SwitchInst &SI);
519   void visitIndirectBrInst(IndirectBrInst &BI);
520   void visitCallBrInst(CallBrInst &CBI);
521   void visitSelectInst(SelectInst &SI);
522   void visitUserOp1(Instruction &I);
523   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
524   void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
525   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
526   void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
527   void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
528   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
529   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
530   void visitFenceInst(FenceInst &FI);
531   void visitAllocaInst(AllocaInst &AI);
532   void visitExtractValueInst(ExtractValueInst &EVI);
533   void visitInsertValueInst(InsertValueInst &IVI);
534   void visitEHPadPredecessors(Instruction &I);
535   void visitLandingPadInst(LandingPadInst &LPI);
536   void visitResumeInst(ResumeInst &RI);
537   void visitCatchPadInst(CatchPadInst &CPI);
538   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
539   void visitCleanupPadInst(CleanupPadInst &CPI);
540   void visitFuncletPadInst(FuncletPadInst &FPI);
541   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
542   void visitCleanupReturnInst(CleanupReturnInst &CRI);
543 
544   void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
545   void verifySwiftErrorValue(const Value *SwiftErrorVal);
546   void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context);
547   void verifyMustTailCall(CallInst &CI);
548   bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
549   void verifyAttributeTypes(AttributeSet Attrs, const Value *V);
550   void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
551   void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
552                                     const Value *V);
553   void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
554                            const Value *V, bool IsIntrinsic, bool IsInlineAsm);
555   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
556 
557   void visitConstantExprsRecursively(const Constant *EntryC);
558   void visitConstantExpr(const ConstantExpr *CE);
559   void verifyInlineAsmCall(const CallBase &Call);
560   void verifyStatepoint(const CallBase &Call);
561   void verifyFrameRecoverIndices();
562   void verifySiblingFuncletUnwinds();
563 
564   void verifyFragmentExpression(const DbgVariableIntrinsic &I);
565   template <typename ValueOrMetadata>
566   void verifyFragmentExpression(const DIVariable &V,
567                                 DIExpression::FragmentInfo Fragment,
568                                 ValueOrMetadata *Desc);
569   void verifyFnArgs(const DbgVariableIntrinsic &I);
570   void verifyNotEntryValue(const DbgVariableIntrinsic &I);
571 
572   /// Module-level debug info verification...
573   void verifyCompileUnits();
574 
575   /// Module-level verification that all @llvm.experimental.deoptimize
576   /// declarations share the same calling convention.
577   void verifyDeoptimizeCallingConvs();
578 
579   void verifyAttachedCallBundle(const CallBase &Call,
580                                 const OperandBundleUse &BU);
581 
582   /// Verify all-or-nothing property of DIFile source attribute within a CU.
583   void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
584 
585   /// Verify the llvm.experimental.noalias.scope.decl declarations
586   void verifyNoAliasScopeDecl();
587 };
588 
589 } // end anonymous namespace
590 
591 /// We know that cond should be true, if not print an error message.
592 #define Assert(C, ...) \
593   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
594 
595 /// We know that a debug info condition should be true, if not print
596 /// an error message.
597 #define AssertDI(C, ...) \
598   do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
599 
600 void Verifier::visit(Instruction &I) {
601   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
602     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
603   InstVisitor<Verifier>::visit(I);
604 }
605 
606 // Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further.
607 static void forEachUser(const Value *User,
608                         SmallPtrSet<const Value *, 32> &Visited,
609                         llvm::function_ref<bool(const Value *)> Callback) {
610   if (!Visited.insert(User).second)
611     return;
612 
613   SmallVector<const Value *> WorkList;
614   append_range(WorkList, User->materialized_users());
615   while (!WorkList.empty()) {
616    const Value *Cur = WorkList.pop_back_val();
617     if (!Visited.insert(Cur).second)
618       continue;
619     if (Callback(Cur))
620       append_range(WorkList, Cur->materialized_users());
621   }
622 }
623 
624 void Verifier::visitGlobalValue(const GlobalValue &GV) {
625   Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
626          "Global is external, but doesn't have external or weak linkage!", &GV);
627 
628   if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) {
629 
630     if (MaybeAlign A = GO->getAlign()) {
631       Assert(A->value() <= Value::MaximumAlignment,
632              "huge alignment values are unsupported", GO);
633     }
634   }
635   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
636          "Only global variables can have appending linkage!", &GV);
637 
638   if (GV.hasAppendingLinkage()) {
639     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
640     Assert(GVar && GVar->getValueType()->isArrayTy(),
641            "Only global arrays can have appending linkage!", GVar);
642   }
643 
644   if (GV.isDeclarationForLinker())
645     Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
646 
647   if (GV.hasDLLImportStorageClass()) {
648     Assert(!GV.isDSOLocal(),
649            "GlobalValue with DLLImport Storage is dso_local!", &GV);
650 
651     Assert((GV.isDeclaration() &&
652             (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
653                GV.hasAvailableExternallyLinkage(),
654            "Global is marked as dllimport, but not external", &GV);
655   }
656 
657   if (GV.isImplicitDSOLocal())
658     Assert(GV.isDSOLocal(),
659            "GlobalValue with local linkage or non-default "
660            "visibility must be dso_local!",
661            &GV);
662 
663   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
664     if (const Instruction *I = dyn_cast<Instruction>(V)) {
665       if (!I->getParent() || !I->getParent()->getParent())
666         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
667                     I);
668       else if (I->getParent()->getParent()->getParent() != &M)
669         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
670                     I->getParent()->getParent(),
671                     I->getParent()->getParent()->getParent());
672       return false;
673     } else if (const Function *F = dyn_cast<Function>(V)) {
674       if (F->getParent() != &M)
675         CheckFailed("Global is used by function in a different module", &GV, &M,
676                     F, F->getParent());
677       return false;
678     }
679     return true;
680   });
681 }
682 
683 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
684   if (GV.hasInitializer()) {
685     Assert(GV.getInitializer()->getType() == GV.getValueType(),
686            "Global variable initializer type does not match global "
687            "variable type!",
688            &GV);
689     // If the global has common linkage, it must have a zero initializer and
690     // cannot be constant.
691     if (GV.hasCommonLinkage()) {
692       Assert(GV.getInitializer()->isNullValue(),
693              "'common' global must have a zero initializer!", &GV);
694       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
695              &GV);
696       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
697     }
698   }
699 
700   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
701                        GV.getName() == "llvm.global_dtors")) {
702     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
703            "invalid linkage for intrinsic global variable", &GV);
704     // Don't worry about emitting an error for it not being an array,
705     // visitGlobalValue will complain on appending non-array.
706     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
707       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
708       PointerType *FuncPtrTy =
709           FunctionType::get(Type::getVoidTy(Context), false)->
710           getPointerTo(DL.getProgramAddressSpace());
711       Assert(STy &&
712                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
713                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
714                  STy->getTypeAtIndex(1) == FuncPtrTy,
715              "wrong type for intrinsic global variable", &GV);
716       Assert(STy->getNumElements() == 3,
717              "the third field of the element type is mandatory, "
718              "specify i8* null to migrate from the obsoleted 2-field form");
719       Type *ETy = STy->getTypeAtIndex(2);
720       Type *Int8Ty = Type::getInt8Ty(ETy->getContext());
721       Assert(ETy->isPointerTy() &&
722                  cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty),
723              "wrong type for intrinsic global variable", &GV);
724     }
725   }
726 
727   if (GV.hasName() && (GV.getName() == "llvm.used" ||
728                        GV.getName() == "llvm.compiler.used")) {
729     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
730            "invalid linkage for intrinsic global variable", &GV);
731     Type *GVType = GV.getValueType();
732     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
733       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
734       Assert(PTy, "wrong type for intrinsic global variable", &GV);
735       if (GV.hasInitializer()) {
736         const Constant *Init = GV.getInitializer();
737         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
738         Assert(InitArray, "wrong initalizer for intrinsic global variable",
739                Init);
740         for (Value *Op : InitArray->operands()) {
741           Value *V = Op->stripPointerCasts();
742           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
743                      isa<GlobalAlias>(V),
744                  Twine("invalid ") + GV.getName() + " member", V);
745           Assert(V->hasName(),
746                  Twine("members of ") + GV.getName() + " must be named", V);
747         }
748       }
749     }
750   }
751 
752   // Visit any debug info attachments.
753   SmallVector<MDNode *, 1> MDs;
754   GV.getMetadata(LLVMContext::MD_dbg, MDs);
755   for (auto *MD : MDs) {
756     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
757       visitDIGlobalVariableExpression(*GVE);
758     else
759       AssertDI(false, "!dbg attachment of global variable must be a "
760                       "DIGlobalVariableExpression");
761   }
762 
763   // Scalable vectors cannot be global variables, since we don't know
764   // the runtime size. If the global is an array containing scalable vectors,
765   // that will be caught by the isValidElementType methods in StructType or
766   // ArrayType instead.
767   Assert(!isa<ScalableVectorType>(GV.getValueType()),
768          "Globals cannot contain scalable vectors", &GV);
769 
770   if (auto *STy = dyn_cast<StructType>(GV.getValueType()))
771     Assert(!STy->containsScalableVectorType(),
772            "Globals cannot contain scalable vectors", &GV);
773 
774   if (!GV.hasInitializer()) {
775     visitGlobalValue(GV);
776     return;
777   }
778 
779   // Walk any aggregate initializers looking for bitcasts between address spaces
780   visitConstantExprsRecursively(GV.getInitializer());
781 
782   visitGlobalValue(GV);
783 }
784 
785 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
786   SmallPtrSet<const GlobalAlias*, 4> Visited;
787   Visited.insert(&GA);
788   visitAliaseeSubExpr(Visited, GA, C);
789 }
790 
791 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
792                                    const GlobalAlias &GA, const Constant &C) {
793   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
794     Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
795            &GA);
796 
797     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
798       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
799 
800       Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
801              &GA);
802     } else {
803       // Only continue verifying subexpressions of GlobalAliases.
804       // Do not recurse into global initializers.
805       return;
806     }
807   }
808 
809   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
810     visitConstantExprsRecursively(CE);
811 
812   for (const Use &U : C.operands()) {
813     Value *V = &*U;
814     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
815       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
816     else if (const auto *C2 = dyn_cast<Constant>(V))
817       visitAliaseeSubExpr(Visited, GA, *C2);
818   }
819 }
820 
821 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
822   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
823          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
824          "weak_odr, or external linkage!",
825          &GA);
826   const Constant *Aliasee = GA.getAliasee();
827   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
828   Assert(GA.getType() == Aliasee->getType(),
829          "Alias and aliasee types should match!", &GA);
830 
831   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
832          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
833 
834   visitAliaseeSubExpr(GA, *Aliasee);
835 
836   visitGlobalValue(GA);
837 }
838 
839 void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) {
840   // Pierce through ConstantExprs and GlobalAliases and check that the resolver
841   // has a Function
842   const Function *Resolver = GI.getResolverFunction();
843   Assert(Resolver, "IFunc must have a Function resolver", &GI);
844 
845   // Check that the immediate resolver operand (prior to any bitcasts) has the
846   // correct type
847   const Type *ResolverTy = GI.getResolver()->getType();
848   const Type *ResolverFuncTy =
849       GlobalIFunc::getResolverFunctionType(GI.getValueType());
850   Assert(ResolverTy == ResolverFuncTy->getPointerTo(),
851          "IFunc resolver has incorrect type", &GI);
852 }
853 
854 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
855   // There used to be various other llvm.dbg.* nodes, but we don't support
856   // upgrading them and we want to reserve the namespace for future uses.
857   if (NMD.getName().startswith("llvm.dbg."))
858     AssertDI(NMD.getName() == "llvm.dbg.cu",
859              "unrecognized named metadata node in the llvm.dbg namespace",
860              &NMD);
861   for (const MDNode *MD : NMD.operands()) {
862     if (NMD.getName() == "llvm.dbg.cu")
863       AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
864 
865     if (!MD)
866       continue;
867 
868     visitMDNode(*MD, AreDebugLocsAllowed::Yes);
869   }
870 }
871 
872 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
873   // Only visit each node once.  Metadata can be mutually recursive, so this
874   // avoids infinite recursion here, as well as being an optimization.
875   if (!MDNodes.insert(&MD).second)
876     return;
877 
878   Assert(&MD.getContext() == &Context,
879          "MDNode context does not match Module context!", &MD);
880 
881   switch (MD.getMetadataID()) {
882   default:
883     llvm_unreachable("Invalid MDNode subclass");
884   case Metadata::MDTupleKind:
885     break;
886 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
887   case Metadata::CLASS##Kind:                                                  \
888     visit##CLASS(cast<CLASS>(MD));                                             \
889     break;
890 #include "llvm/IR/Metadata.def"
891   }
892 
893   for (const Metadata *Op : MD.operands()) {
894     if (!Op)
895       continue;
896     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
897            &MD, Op);
898     AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
899              "DILocation not allowed within this metadata node", &MD, Op);
900     if (auto *N = dyn_cast<MDNode>(Op)) {
901       visitMDNode(*N, AllowLocs);
902       continue;
903     }
904     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
905       visitValueAsMetadata(*V, nullptr);
906       continue;
907     }
908   }
909 
910   // Check these last, so we diagnose problems in operands first.
911   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
912   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
913 }
914 
915 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
916   Assert(MD.getValue(), "Expected valid value", &MD);
917   Assert(!MD.getValue()->getType()->isMetadataTy(),
918          "Unexpected metadata round-trip through values", &MD, MD.getValue());
919 
920   auto *L = dyn_cast<LocalAsMetadata>(&MD);
921   if (!L)
922     return;
923 
924   Assert(F, "function-local metadata used outside a function", L);
925 
926   // If this was an instruction, bb, or argument, verify that it is in the
927   // function that we expect.
928   Function *ActualF = nullptr;
929   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
930     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
931     ActualF = I->getParent()->getParent();
932   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
933     ActualF = BB->getParent();
934   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
935     ActualF = A->getParent();
936   assert(ActualF && "Unimplemented function local metadata case!");
937 
938   Assert(ActualF == F, "function-local metadata used in wrong function", L);
939 }
940 
941 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
942   Metadata *MD = MDV.getMetadata();
943   if (auto *N = dyn_cast<MDNode>(MD)) {
944     visitMDNode(*N, AreDebugLocsAllowed::No);
945     return;
946   }
947 
948   // Only visit each node once.  Metadata can be mutually recursive, so this
949   // avoids infinite recursion here, as well as being an optimization.
950   if (!MDNodes.insert(MD).second)
951     return;
952 
953   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
954     visitValueAsMetadata(*V, F);
955 }
956 
957 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
958 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
959 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
960 
961 void Verifier::visitDILocation(const DILocation &N) {
962   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
963            "location requires a valid scope", &N, N.getRawScope());
964   if (auto *IA = N.getRawInlinedAt())
965     AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
966   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
967     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
968 }
969 
970 void Verifier::visitGenericDINode(const GenericDINode &N) {
971   AssertDI(N.getTag(), "invalid tag", &N);
972 }
973 
974 void Verifier::visitDIScope(const DIScope &N) {
975   if (auto *F = N.getRawFile())
976     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
977 }
978 
979 void Verifier::visitDISubrange(const DISubrange &N) {
980   AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
981   bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang);
982   AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||
983                N.getRawUpperBound(),
984            "Subrange must contain count or upperBound", &N);
985   AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
986            "Subrange can have any one of count or upperBound", &N);
987   auto *CBound = N.getRawCountNode();
988   AssertDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
989                isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
990            "Count must be signed constant or DIVariable or DIExpression", &N);
991   auto Count = N.getCount();
992   AssertDI(!Count || !Count.is<ConstantInt *>() ||
993                Count.get<ConstantInt *>()->getSExtValue() >= -1,
994            "invalid subrange count", &N);
995   auto *LBound = N.getRawLowerBound();
996   AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
997                isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
998            "LowerBound must be signed constant or DIVariable or DIExpression",
999            &N);
1000   auto *UBound = N.getRawUpperBound();
1001   AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
1002                isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1003            "UpperBound must be signed constant or DIVariable or DIExpression",
1004            &N);
1005   auto *Stride = N.getRawStride();
1006   AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
1007                isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1008            "Stride must be signed constant or DIVariable or DIExpression", &N);
1009 }
1010 
1011 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
1012   AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
1013   AssertDI(N.getRawCountNode() || N.getRawUpperBound(),
1014            "GenericSubrange must contain count or upperBound", &N);
1015   AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1016            "GenericSubrange can have any one of count or upperBound", &N);
1017   auto *CBound = N.getRawCountNode();
1018   AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1019            "Count must be signed constant or DIVariable or DIExpression", &N);
1020   auto *LBound = N.getRawLowerBound();
1021   AssertDI(LBound, "GenericSubrange must contain lowerBound", &N);
1022   AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1023            "LowerBound must be signed constant or DIVariable or DIExpression",
1024            &N);
1025   auto *UBound = N.getRawUpperBound();
1026   AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1027            "UpperBound must be signed constant or DIVariable or DIExpression",
1028            &N);
1029   auto *Stride = N.getRawStride();
1030   AssertDI(Stride, "GenericSubrange must contain stride", &N);
1031   AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1032            "Stride must be signed constant or DIVariable or DIExpression", &N);
1033 }
1034 
1035 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
1036   AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
1037 }
1038 
1039 void Verifier::visitDIBasicType(const DIBasicType &N) {
1040   AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
1041                N.getTag() == dwarf::DW_TAG_unspecified_type ||
1042                N.getTag() == dwarf::DW_TAG_string_type,
1043            "invalid tag", &N);
1044 }
1045 
1046 void Verifier::visitDIStringType(const DIStringType &N) {
1047   AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
1048   AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
1049             "has conflicting flags", &N);
1050 }
1051 
1052 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
1053   // Common scope checks.
1054   visitDIScope(N);
1055 
1056   AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
1057                N.getTag() == dwarf::DW_TAG_pointer_type ||
1058                N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1059                N.getTag() == dwarf::DW_TAG_reference_type ||
1060                N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1061                N.getTag() == dwarf::DW_TAG_const_type ||
1062                N.getTag() == dwarf::DW_TAG_immutable_type ||
1063                N.getTag() == dwarf::DW_TAG_volatile_type ||
1064                N.getTag() == dwarf::DW_TAG_restrict_type ||
1065                N.getTag() == dwarf::DW_TAG_atomic_type ||
1066                N.getTag() == dwarf::DW_TAG_member ||
1067                N.getTag() == dwarf::DW_TAG_inheritance ||
1068                N.getTag() == dwarf::DW_TAG_friend ||
1069                N.getTag() == dwarf::DW_TAG_set_type,
1070            "invalid tag", &N);
1071   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1072     AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
1073              N.getRawExtraData());
1074   }
1075 
1076   if (N.getTag() == dwarf::DW_TAG_set_type) {
1077     if (auto *T = N.getRawBaseType()) {
1078       auto *Enum = dyn_cast_or_null<DICompositeType>(T);
1079       auto *Basic = dyn_cast_or_null<DIBasicType>(T);
1080       AssertDI(
1081           (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1082               (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1083                          Basic->getEncoding() == dwarf::DW_ATE_signed ||
1084                          Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1085                          Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1086                          Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1087           "invalid set base type", &N, T);
1088     }
1089   }
1090 
1091   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1092   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
1093            N.getRawBaseType());
1094 
1095   if (N.getDWARFAddressSpace()) {
1096     AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
1097                  N.getTag() == dwarf::DW_TAG_reference_type ||
1098                  N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1099              "DWARF address space only applies to pointer or reference types",
1100              &N);
1101   }
1102 }
1103 
1104 /// Detect mutually exclusive flags.
1105 static bool hasConflictingReferenceFlags(unsigned Flags) {
1106   return ((Flags & DINode::FlagLValueReference) &&
1107           (Flags & DINode::FlagRValueReference)) ||
1108          ((Flags & DINode::FlagTypePassByValue) &&
1109           (Flags & DINode::FlagTypePassByReference));
1110 }
1111 
1112 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
1113   auto *Params = dyn_cast<MDTuple>(&RawParams);
1114   AssertDI(Params, "invalid template params", &N, &RawParams);
1115   for (Metadata *Op : Params->operands()) {
1116     AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
1117              &N, Params, Op);
1118   }
1119 }
1120 
1121 void Verifier::visitDICompositeType(const DICompositeType &N) {
1122   // Common scope checks.
1123   visitDIScope(N);
1124 
1125   AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
1126                N.getTag() == dwarf::DW_TAG_structure_type ||
1127                N.getTag() == dwarf::DW_TAG_union_type ||
1128                N.getTag() == dwarf::DW_TAG_enumeration_type ||
1129                N.getTag() == dwarf::DW_TAG_class_type ||
1130                N.getTag() == dwarf::DW_TAG_variant_part ||
1131                N.getTag() == dwarf::DW_TAG_namelist,
1132            "invalid tag", &N);
1133 
1134   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1135   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
1136            N.getRawBaseType());
1137 
1138   AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
1139            "invalid composite elements", &N, N.getRawElements());
1140   AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
1141            N.getRawVTableHolder());
1142   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1143            "invalid reference flags", &N);
1144   unsigned DIBlockByRefStruct = 1 << 4;
1145   AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,
1146            "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
1147 
1148   if (N.isVector()) {
1149     const DINodeArray Elements = N.getElements();
1150     AssertDI(Elements.size() == 1 &&
1151              Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1152              "invalid vector, expected one element of type subrange", &N);
1153   }
1154 
1155   if (auto *Params = N.getRawTemplateParams())
1156     visitTemplateParams(N, *Params);
1157 
1158   if (auto *D = N.getRawDiscriminator()) {
1159     AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1160              "discriminator can only appear on variant part");
1161   }
1162 
1163   if (N.getRawDataLocation()) {
1164     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1165              "dataLocation can only appear in array type");
1166   }
1167 
1168   if (N.getRawAssociated()) {
1169     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1170              "associated can only appear in array type");
1171   }
1172 
1173   if (N.getRawAllocated()) {
1174     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1175              "allocated can only appear in array type");
1176   }
1177 
1178   if (N.getRawRank()) {
1179     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1180              "rank can only appear in array type");
1181   }
1182 }
1183 
1184 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1185   AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1186   if (auto *Types = N.getRawTypeArray()) {
1187     AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1188     for (Metadata *Ty : N.getTypeArray()->operands()) {
1189       AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1190     }
1191   }
1192   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1193            "invalid reference flags", &N);
1194 }
1195 
1196 void Verifier::visitDIFile(const DIFile &N) {
1197   AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1198   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1199   if (Checksum) {
1200     AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1201              "invalid checksum kind", &N);
1202     size_t Size;
1203     switch (Checksum->Kind) {
1204     case DIFile::CSK_MD5:
1205       Size = 32;
1206       break;
1207     case DIFile::CSK_SHA1:
1208       Size = 40;
1209       break;
1210     case DIFile::CSK_SHA256:
1211       Size = 64;
1212       break;
1213     }
1214     AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1215     AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1216              "invalid checksum", &N);
1217   }
1218 }
1219 
1220 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1221   AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1222   AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1223 
1224   // Don't bother verifying the compilation directory or producer string
1225   // as those could be empty.
1226   AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1227            N.getRawFile());
1228   AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1229            N.getFile());
1230 
1231   CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();
1232 
1233   verifySourceDebugInfo(N, *N.getFile());
1234 
1235   AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1236            "invalid emission kind", &N);
1237 
1238   if (auto *Array = N.getRawEnumTypes()) {
1239     AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1240     for (Metadata *Op : N.getEnumTypes()->operands()) {
1241       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1242       AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1243                "invalid enum type", &N, N.getEnumTypes(), Op);
1244     }
1245   }
1246   if (auto *Array = N.getRawRetainedTypes()) {
1247     AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1248     for (Metadata *Op : N.getRetainedTypes()->operands()) {
1249       AssertDI(Op && (isa<DIType>(Op) ||
1250                       (isa<DISubprogram>(Op) &&
1251                        !cast<DISubprogram>(Op)->isDefinition())),
1252                "invalid retained type", &N, Op);
1253     }
1254   }
1255   if (auto *Array = N.getRawGlobalVariables()) {
1256     AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1257     for (Metadata *Op : N.getGlobalVariables()->operands()) {
1258       AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1259                "invalid global variable ref", &N, Op);
1260     }
1261   }
1262   if (auto *Array = N.getRawImportedEntities()) {
1263     AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1264     for (Metadata *Op : N.getImportedEntities()->operands()) {
1265       AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1266                &N, Op);
1267     }
1268   }
1269   if (auto *Array = N.getRawMacros()) {
1270     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1271     for (Metadata *Op : N.getMacros()->operands()) {
1272       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1273     }
1274   }
1275   CUVisited.insert(&N);
1276 }
1277 
1278 void Verifier::visitDISubprogram(const DISubprogram &N) {
1279   AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1280   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1281   if (auto *F = N.getRawFile())
1282     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1283   else
1284     AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1285   if (auto *T = N.getRawType())
1286     AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1287   AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1288            N.getRawContainingType());
1289   if (auto *Params = N.getRawTemplateParams())
1290     visitTemplateParams(N, *Params);
1291   if (auto *S = N.getRawDeclaration())
1292     AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1293              "invalid subprogram declaration", &N, S);
1294   if (auto *RawNode = N.getRawRetainedNodes()) {
1295     auto *Node = dyn_cast<MDTuple>(RawNode);
1296     AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1297     for (Metadata *Op : Node->operands()) {
1298       AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1299                "invalid retained nodes, expected DILocalVariable or DILabel",
1300                &N, Node, Op);
1301     }
1302   }
1303   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1304            "invalid reference flags", &N);
1305 
1306   auto *Unit = N.getRawUnit();
1307   if (N.isDefinition()) {
1308     // Subprogram definitions (not part of the type hierarchy).
1309     AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1310     AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1311     AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1312     if (N.getFile())
1313       verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1314   } else {
1315     // Subprogram declarations (part of the type hierarchy).
1316     AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1317   }
1318 
1319   if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1320     auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1321     AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1322     for (Metadata *Op : ThrownTypes->operands())
1323       AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1324                Op);
1325   }
1326 
1327   if (N.areAllCallsDescribed())
1328     AssertDI(N.isDefinition(),
1329              "DIFlagAllCallsDescribed must be attached to a definition");
1330 }
1331 
1332 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1333   AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1334   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1335            "invalid local scope", &N, N.getRawScope());
1336   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1337     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1338 }
1339 
1340 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1341   visitDILexicalBlockBase(N);
1342 
1343   AssertDI(N.getLine() || !N.getColumn(),
1344            "cannot have column info without line info", &N);
1345 }
1346 
1347 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1348   visitDILexicalBlockBase(N);
1349 }
1350 
1351 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1352   AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1353   if (auto *S = N.getRawScope())
1354     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1355   if (auto *S = N.getRawDecl())
1356     AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1357 }
1358 
1359 void Verifier::visitDINamespace(const DINamespace &N) {
1360   AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1361   if (auto *S = N.getRawScope())
1362     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1363 }
1364 
1365 void Verifier::visitDIMacro(const DIMacro &N) {
1366   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1367                N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1368            "invalid macinfo type", &N);
1369   AssertDI(!N.getName().empty(), "anonymous macro", &N);
1370   if (!N.getValue().empty()) {
1371     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1372   }
1373 }
1374 
1375 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1376   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1377            "invalid macinfo type", &N);
1378   if (auto *F = N.getRawFile())
1379     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1380 
1381   if (auto *Array = N.getRawElements()) {
1382     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1383     for (Metadata *Op : N.getElements()->operands()) {
1384       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1385     }
1386   }
1387 }
1388 
1389 void Verifier::visitDIArgList(const DIArgList &N) {
1390   AssertDI(!N.getNumOperands(),
1391            "DIArgList should have no operands other than a list of "
1392            "ValueAsMetadata",
1393            &N);
1394 }
1395 
1396 void Verifier::visitDIModule(const DIModule &N) {
1397   AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1398   AssertDI(!N.getName().empty(), "anonymous module", &N);
1399 }
1400 
1401 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1402   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1403 }
1404 
1405 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1406   visitDITemplateParameter(N);
1407 
1408   AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1409            &N);
1410 }
1411 
1412 void Verifier::visitDITemplateValueParameter(
1413     const DITemplateValueParameter &N) {
1414   visitDITemplateParameter(N);
1415 
1416   AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1417                N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1418                N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1419            "invalid tag", &N);
1420 }
1421 
1422 void Verifier::visitDIVariable(const DIVariable &N) {
1423   if (auto *S = N.getRawScope())
1424     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1425   if (auto *F = N.getRawFile())
1426     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1427 }
1428 
1429 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1430   // Checks common to all variables.
1431   visitDIVariable(N);
1432 
1433   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1434   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1435   // Assert only if the global variable is not an extern
1436   if (N.isDefinition())
1437     AssertDI(N.getType(), "missing global variable type", &N);
1438   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1439     AssertDI(isa<DIDerivedType>(Member),
1440              "invalid static data member declaration", &N, Member);
1441   }
1442 }
1443 
1444 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1445   // Checks common to all variables.
1446   visitDIVariable(N);
1447 
1448   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1449   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1450   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1451            "local variable requires a valid scope", &N, N.getRawScope());
1452   if (auto Ty = N.getType())
1453     AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1454 }
1455 
1456 void Verifier::visitDILabel(const DILabel &N) {
1457   if (auto *S = N.getRawScope())
1458     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1459   if (auto *F = N.getRawFile())
1460     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1461 
1462   AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1463   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1464            "label requires a valid scope", &N, N.getRawScope());
1465 }
1466 
1467 void Verifier::visitDIExpression(const DIExpression &N) {
1468   AssertDI(N.isValid(), "invalid expression", &N);
1469 }
1470 
1471 void Verifier::visitDIGlobalVariableExpression(
1472     const DIGlobalVariableExpression &GVE) {
1473   AssertDI(GVE.getVariable(), "missing variable");
1474   if (auto *Var = GVE.getVariable())
1475     visitDIGlobalVariable(*Var);
1476   if (auto *Expr = GVE.getExpression()) {
1477     visitDIExpression(*Expr);
1478     if (auto Fragment = Expr->getFragmentInfo())
1479       verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1480   }
1481 }
1482 
1483 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1484   AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1485   if (auto *T = N.getRawType())
1486     AssertDI(isType(T), "invalid type ref", &N, T);
1487   if (auto *F = N.getRawFile())
1488     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1489 }
1490 
1491 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1492   AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1493                N.getTag() == dwarf::DW_TAG_imported_declaration,
1494            "invalid tag", &N);
1495   if (auto *S = N.getRawScope())
1496     AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1497   AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1498            N.getRawEntity());
1499 }
1500 
1501 void Verifier::visitComdat(const Comdat &C) {
1502   // In COFF the Module is invalid if the GlobalValue has private linkage.
1503   // Entities with private linkage don't have entries in the symbol table.
1504   if (TT.isOSBinFormatCOFF())
1505     if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1506       Assert(!GV->hasPrivateLinkage(),
1507              "comdat global value has private linkage", GV);
1508 }
1509 
1510 void Verifier::visitModuleIdents() {
1511   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1512   if (!Idents)
1513     return;
1514 
1515   // llvm.ident takes a list of metadata entry. Each entry has only one string.
1516   // Scan each llvm.ident entry and make sure that this requirement is met.
1517   for (const MDNode *N : Idents->operands()) {
1518     Assert(N->getNumOperands() == 1,
1519            "incorrect number of operands in llvm.ident metadata", N);
1520     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1521            ("invalid value for llvm.ident metadata entry operand"
1522             "(the operand should be a string)"),
1523            N->getOperand(0));
1524   }
1525 }
1526 
1527 void Verifier::visitModuleCommandLines() {
1528   const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1529   if (!CommandLines)
1530     return;
1531 
1532   // llvm.commandline takes a list of metadata entry. Each entry has only one
1533   // string. Scan each llvm.commandline entry and make sure that this
1534   // requirement is met.
1535   for (const MDNode *N : CommandLines->operands()) {
1536     Assert(N->getNumOperands() == 1,
1537            "incorrect number of operands in llvm.commandline metadata", N);
1538     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1539            ("invalid value for llvm.commandline metadata entry operand"
1540             "(the operand should be a string)"),
1541            N->getOperand(0));
1542   }
1543 }
1544 
1545 void Verifier::visitModuleFlags() {
1546   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1547   if (!Flags) return;
1548 
1549   // Scan each flag, and track the flags and requirements.
1550   DenseMap<const MDString*, const MDNode*> SeenIDs;
1551   SmallVector<const MDNode*, 16> Requirements;
1552   for (const MDNode *MDN : Flags->operands())
1553     visitModuleFlag(MDN, SeenIDs, Requirements);
1554 
1555   // Validate that the requirements in the module are valid.
1556   for (const MDNode *Requirement : Requirements) {
1557     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1558     const Metadata *ReqValue = Requirement->getOperand(1);
1559 
1560     const MDNode *Op = SeenIDs.lookup(Flag);
1561     if (!Op) {
1562       CheckFailed("invalid requirement on flag, flag is not present in module",
1563                   Flag);
1564       continue;
1565     }
1566 
1567     if (Op->getOperand(2) != ReqValue) {
1568       CheckFailed(("invalid requirement on flag, "
1569                    "flag does not have the required value"),
1570                   Flag);
1571       continue;
1572     }
1573   }
1574 }
1575 
1576 void
1577 Verifier::visitModuleFlag(const MDNode *Op,
1578                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
1579                           SmallVectorImpl<const MDNode *> &Requirements) {
1580   // Each module flag should have three arguments, the merge behavior (a
1581   // constant int), the flag ID (an MDString), and the value.
1582   Assert(Op->getNumOperands() == 3,
1583          "incorrect number of operands in module flag", Op);
1584   Module::ModFlagBehavior MFB;
1585   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1586     Assert(
1587         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1588         "invalid behavior operand in module flag (expected constant integer)",
1589         Op->getOperand(0));
1590     Assert(false,
1591            "invalid behavior operand in module flag (unexpected constant)",
1592            Op->getOperand(0));
1593   }
1594   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1595   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1596          Op->getOperand(1));
1597 
1598   // Check the values for behaviors with additional requirements.
1599   switch (MFB) {
1600   case Module::Error:
1601   case Module::Warning:
1602   case Module::Override:
1603     // These behavior types accept any value.
1604     break;
1605 
1606   case Module::Max: {
1607     Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1608            "invalid value for 'max' module flag (expected constant integer)",
1609            Op->getOperand(2));
1610     break;
1611   }
1612 
1613   case Module::Require: {
1614     // The value should itself be an MDNode with two operands, a flag ID (an
1615     // MDString), and a value.
1616     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1617     Assert(Value && Value->getNumOperands() == 2,
1618            "invalid value for 'require' module flag (expected metadata pair)",
1619            Op->getOperand(2));
1620     Assert(isa<MDString>(Value->getOperand(0)),
1621            ("invalid value for 'require' module flag "
1622             "(first value operand should be a string)"),
1623            Value->getOperand(0));
1624 
1625     // Append it to the list of requirements, to check once all module flags are
1626     // scanned.
1627     Requirements.push_back(Value);
1628     break;
1629   }
1630 
1631   case Module::Append:
1632   case Module::AppendUnique: {
1633     // These behavior types require the operand be an MDNode.
1634     Assert(isa<MDNode>(Op->getOperand(2)),
1635            "invalid value for 'append'-type module flag "
1636            "(expected a metadata node)",
1637            Op->getOperand(2));
1638     break;
1639   }
1640   }
1641 
1642   // Unless this is a "requires" flag, check the ID is unique.
1643   if (MFB != Module::Require) {
1644     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1645     Assert(Inserted,
1646            "module flag identifiers must be unique (or of 'require' type)", ID);
1647   }
1648 
1649   if (ID->getString() == "wchar_size") {
1650     ConstantInt *Value
1651       = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1652     Assert(Value, "wchar_size metadata requires constant integer argument");
1653   }
1654 
1655   if (ID->getString() == "Linker Options") {
1656     // If the llvm.linker.options named metadata exists, we assume that the
1657     // bitcode reader has upgraded the module flag. Otherwise the flag might
1658     // have been created by a client directly.
1659     Assert(M.getNamedMetadata("llvm.linker.options"),
1660            "'Linker Options' named metadata no longer supported");
1661   }
1662 
1663   if (ID->getString() == "SemanticInterposition") {
1664     ConstantInt *Value =
1665         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1666     Assert(Value,
1667            "SemanticInterposition metadata requires constant integer argument");
1668   }
1669 
1670   if (ID->getString() == "CG Profile") {
1671     for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1672       visitModuleFlagCGProfileEntry(MDO);
1673   }
1674 }
1675 
1676 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1677   auto CheckFunction = [&](const MDOperand &FuncMDO) {
1678     if (!FuncMDO)
1679       return;
1680     auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1681     Assert(F && isa<Function>(F->getValue()->stripPointerCasts()),
1682            "expected a Function or null", FuncMDO);
1683   };
1684   auto Node = dyn_cast_or_null<MDNode>(MDO);
1685   Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1686   CheckFunction(Node->getOperand(0));
1687   CheckFunction(Node->getOperand(1));
1688   auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1689   Assert(Count && Count->getType()->isIntegerTy(),
1690          "expected an integer constant", Node->getOperand(2));
1691 }
1692 
1693 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) {
1694   for (Attribute A : Attrs) {
1695 
1696     if (A.isStringAttribute()) {
1697 #define GET_ATTR_NAMES
1698 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1699 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME)                             \
1700   if (A.getKindAsString() == #DISPLAY_NAME) {                                  \
1701     auto V = A.getValueAsString();                                             \
1702     if (!(V.empty() || V == "true" || V == "false"))                           \
1703       CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V +    \
1704                   "");                                                         \
1705   }
1706 
1707 #include "llvm/IR/Attributes.inc"
1708       continue;
1709     }
1710 
1711     if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) {
1712       CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1713                   V);
1714       return;
1715     }
1716   }
1717 }
1718 
1719 // VerifyParameterAttrs - Check the given attributes for an argument or return
1720 // value of the specified type.  The value V is printed in error messages.
1721 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1722                                     const Value *V) {
1723   if (!Attrs.hasAttributes())
1724     return;
1725 
1726   verifyAttributeTypes(Attrs, V);
1727 
1728   for (Attribute Attr : Attrs)
1729     Assert(Attr.isStringAttribute() ||
1730            Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
1731            "Attribute '" + Attr.getAsString() +
1732                "' does not apply to parameters",
1733            V);
1734 
1735   if (Attrs.hasAttribute(Attribute::ImmArg)) {
1736     Assert(Attrs.getNumAttributes() == 1,
1737            "Attribute 'immarg' is incompatible with other attributes", V);
1738   }
1739 
1740   // Check for mutually incompatible attributes.  Only inreg is compatible with
1741   // sret.
1742   unsigned AttrCount = 0;
1743   AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1744   AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1745   AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1746   AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1747                Attrs.hasAttribute(Attribute::InReg);
1748   AttrCount += Attrs.hasAttribute(Attribute::Nest);
1749   AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1750   Assert(AttrCount <= 1,
1751          "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1752          "'byref', and 'sret' are incompatible!",
1753          V);
1754 
1755   Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1756            Attrs.hasAttribute(Attribute::ReadOnly)),
1757          "Attributes "
1758          "'inalloca and readonly' are incompatible!",
1759          V);
1760 
1761   Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1762            Attrs.hasAttribute(Attribute::Returned)),
1763          "Attributes "
1764          "'sret and returned' are incompatible!",
1765          V);
1766 
1767   Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1768            Attrs.hasAttribute(Attribute::SExt)),
1769          "Attributes "
1770          "'zeroext and signext' are incompatible!",
1771          V);
1772 
1773   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1774            Attrs.hasAttribute(Attribute::ReadOnly)),
1775          "Attributes "
1776          "'readnone and readonly' are incompatible!",
1777          V);
1778 
1779   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1780            Attrs.hasAttribute(Attribute::WriteOnly)),
1781          "Attributes "
1782          "'readnone and writeonly' are incompatible!",
1783          V);
1784 
1785   Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1786            Attrs.hasAttribute(Attribute::WriteOnly)),
1787          "Attributes "
1788          "'readonly and writeonly' are incompatible!",
1789          V);
1790 
1791   Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1792            Attrs.hasAttribute(Attribute::AlwaysInline)),
1793          "Attributes "
1794          "'noinline and alwaysinline' are incompatible!",
1795          V);
1796 
1797   AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1798   for (Attribute Attr : Attrs) {
1799     if (!Attr.isStringAttribute() &&
1800         IncompatibleAttrs.contains(Attr.getKindAsEnum())) {
1801       CheckFailed("Attribute '" + Attr.getAsString() +
1802                   "' applied to incompatible type!", V);
1803       return;
1804     }
1805   }
1806 
1807   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1808     if (Attrs.hasAttribute(Attribute::ByVal)) {
1809       SmallPtrSet<Type *, 4> Visited;
1810       Assert(Attrs.getByValType()->isSized(&Visited),
1811              "Attribute 'byval' does not support unsized types!", V);
1812     }
1813     if (Attrs.hasAttribute(Attribute::ByRef)) {
1814       SmallPtrSet<Type *, 4> Visited;
1815       Assert(Attrs.getByRefType()->isSized(&Visited),
1816              "Attribute 'byref' does not support unsized types!", V);
1817     }
1818     if (Attrs.hasAttribute(Attribute::InAlloca)) {
1819       SmallPtrSet<Type *, 4> Visited;
1820       Assert(Attrs.getInAllocaType()->isSized(&Visited),
1821              "Attribute 'inalloca' does not support unsized types!", V);
1822     }
1823     if (Attrs.hasAttribute(Attribute::Preallocated)) {
1824       SmallPtrSet<Type *, 4> Visited;
1825       Assert(Attrs.getPreallocatedType()->isSized(&Visited),
1826              "Attribute 'preallocated' does not support unsized types!", V);
1827     }
1828     if (!PTy->isOpaque()) {
1829       if (!isa<PointerType>(PTy->getElementType()))
1830         Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1831                "Attribute 'swifterror' only applies to parameters "
1832                "with pointer to pointer type!",
1833                V);
1834       if (Attrs.hasAttribute(Attribute::ByRef)) {
1835         Assert(Attrs.getByRefType() == PTy->getElementType(),
1836                "Attribute 'byref' type does not match parameter!", V);
1837       }
1838 
1839       if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1840         Assert(Attrs.getByValType() == PTy->getElementType(),
1841                "Attribute 'byval' type does not match parameter!", V);
1842       }
1843 
1844       if (Attrs.hasAttribute(Attribute::Preallocated)) {
1845         Assert(Attrs.getPreallocatedType() == PTy->getElementType(),
1846                "Attribute 'preallocated' type does not match parameter!", V);
1847       }
1848 
1849       if (Attrs.hasAttribute(Attribute::InAlloca)) {
1850         Assert(Attrs.getInAllocaType() == PTy->getElementType(),
1851                "Attribute 'inalloca' type does not match parameter!", V);
1852       }
1853 
1854       if (Attrs.hasAttribute(Attribute::ElementType)) {
1855         Assert(Attrs.getElementType() == PTy->getElementType(),
1856                "Attribute 'elementtype' type does not match parameter!", V);
1857       }
1858     }
1859   }
1860 }
1861 
1862 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
1863                                             const Value *V) {
1864   if (Attrs.hasFnAttr(Attr)) {
1865     StringRef S = Attrs.getFnAttr(Attr).getValueAsString();
1866     unsigned N;
1867     if (S.getAsInteger(10, N))
1868       CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V);
1869   }
1870 }
1871 
1872 // Check parameter attributes against a function type.
1873 // The value V is printed in error messages.
1874 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1875                                    const Value *V, bool IsIntrinsic,
1876                                    bool IsInlineAsm) {
1877   if (Attrs.isEmpty())
1878     return;
1879 
1880   if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
1881     Assert(Attrs.hasParentContext(Context),
1882            "Attribute list does not match Module context!", &Attrs, V);
1883     for (const auto &AttrSet : Attrs) {
1884       Assert(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
1885              "Attribute set does not match Module context!", &AttrSet, V);
1886       for (const auto &A : AttrSet) {
1887         Assert(A.hasParentContext(Context),
1888                "Attribute does not match Module context!", &A, V);
1889       }
1890     }
1891   }
1892 
1893   bool SawNest = false;
1894   bool SawReturned = false;
1895   bool SawSRet = false;
1896   bool SawSwiftSelf = false;
1897   bool SawSwiftAsync = false;
1898   bool SawSwiftError = false;
1899 
1900   // Verify return value attributes.
1901   AttributeSet RetAttrs = Attrs.getRetAttrs();
1902   for (Attribute RetAttr : RetAttrs)
1903     Assert(RetAttr.isStringAttribute() ||
1904            Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),
1905            "Attribute '" + RetAttr.getAsString() +
1906                "' does not apply to function return values",
1907            V);
1908 
1909   verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1910 
1911   // Verify parameter attributes.
1912   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1913     Type *Ty = FT->getParamType(i);
1914     AttributeSet ArgAttrs = Attrs.getParamAttrs(i);
1915 
1916     if (!IsIntrinsic) {
1917       Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1918              "immarg attribute only applies to intrinsics",V);
1919       if (!IsInlineAsm)
1920         Assert(!ArgAttrs.hasAttribute(Attribute::ElementType),
1921                "Attribute 'elementtype' can only be applied to intrinsics"
1922                " and inline asm.", V);
1923     }
1924 
1925     verifyParameterAttrs(ArgAttrs, Ty, V);
1926 
1927     if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1928       Assert(!SawNest, "More than one parameter has attribute nest!", V);
1929       SawNest = true;
1930     }
1931 
1932     if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1933       Assert(!SawReturned, "More than one parameter has attribute returned!",
1934              V);
1935       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1936              "Incompatible argument and return types for 'returned' attribute",
1937              V);
1938       SawReturned = true;
1939     }
1940 
1941     if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1942       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1943       Assert(i == 0 || i == 1,
1944              "Attribute 'sret' is not on first or second parameter!", V);
1945       SawSRet = true;
1946     }
1947 
1948     if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1949       Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1950       SawSwiftSelf = true;
1951     }
1952 
1953     if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
1954       Assert(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
1955       SawSwiftAsync = true;
1956     }
1957 
1958     if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1959       Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1960              V);
1961       SawSwiftError = true;
1962     }
1963 
1964     if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1965       Assert(i == FT->getNumParams() - 1,
1966              "inalloca isn't on the last parameter!", V);
1967     }
1968   }
1969 
1970   if (!Attrs.hasFnAttrs())
1971     return;
1972 
1973   verifyAttributeTypes(Attrs.getFnAttrs(), V);
1974   for (Attribute FnAttr : Attrs.getFnAttrs())
1975     Assert(FnAttr.isStringAttribute() ||
1976            Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),
1977            "Attribute '" + FnAttr.getAsString() +
1978                "' does not apply to functions!",
1979            V);
1980 
1981   Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
1982            Attrs.hasFnAttr(Attribute::ReadOnly)),
1983          "Attributes 'readnone and readonly' are incompatible!", V);
1984 
1985   Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
1986            Attrs.hasFnAttr(Attribute::WriteOnly)),
1987          "Attributes 'readnone and writeonly' are incompatible!", V);
1988 
1989   Assert(!(Attrs.hasFnAttr(Attribute::ReadOnly) &&
1990            Attrs.hasFnAttr(Attribute::WriteOnly)),
1991          "Attributes 'readonly and writeonly' are incompatible!", V);
1992 
1993   Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
1994            Attrs.hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly)),
1995          "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1996          "incompatible!",
1997          V);
1998 
1999   Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
2000            Attrs.hasFnAttr(Attribute::InaccessibleMemOnly)),
2001          "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
2002 
2003   Assert(!(Attrs.hasFnAttr(Attribute::NoInline) &&
2004            Attrs.hasFnAttr(Attribute::AlwaysInline)),
2005          "Attributes 'noinline and alwaysinline' are incompatible!", V);
2006 
2007   if (Attrs.hasFnAttr(Attribute::OptimizeNone)) {
2008     Assert(Attrs.hasFnAttr(Attribute::NoInline),
2009            "Attribute 'optnone' requires 'noinline'!", V);
2010 
2011     Assert(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2012            "Attributes 'optsize and optnone' are incompatible!", V);
2013 
2014     Assert(!Attrs.hasFnAttr(Attribute::MinSize),
2015            "Attributes 'minsize and optnone' are incompatible!", V);
2016   }
2017 
2018   if (Attrs.hasFnAttr(Attribute::JumpTable)) {
2019     const GlobalValue *GV = cast<GlobalValue>(V);
2020     Assert(GV->hasGlobalUnnamedAddr(),
2021            "Attribute 'jumptable' requires 'unnamed_addr'", V);
2022   }
2023 
2024   if (Attrs.hasFnAttr(Attribute::AllocSize)) {
2025     std::pair<unsigned, Optional<unsigned>> Args =
2026         Attrs.getFnAttrs().getAllocSizeArgs();
2027 
2028     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
2029       if (ParamNo >= FT->getNumParams()) {
2030         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
2031         return false;
2032       }
2033 
2034       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
2035         CheckFailed("'allocsize' " + Name +
2036                         " argument must refer to an integer parameter",
2037                     V);
2038         return false;
2039       }
2040 
2041       return true;
2042     };
2043 
2044     if (!CheckParam("element size", Args.first))
2045       return;
2046 
2047     if (Args.second && !CheckParam("number of elements", *Args.second))
2048       return;
2049   }
2050 
2051   if (Attrs.hasFnAttr(Attribute::VScaleRange)) {
2052     unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin();
2053     if (VScaleMin == 0)
2054       CheckFailed("'vscale_range' minimum must be greater than 0", V);
2055 
2056     Optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax();
2057     if (VScaleMax && VScaleMin > VScaleMax)
2058       CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
2059   }
2060 
2061   if (Attrs.hasFnAttr("frame-pointer")) {
2062     StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString();
2063     if (FP != "all" && FP != "non-leaf" && FP != "none")
2064       CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
2065   }
2066 
2067   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V);
2068   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V);
2069   checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V);
2070 }
2071 
2072 void Verifier::verifyFunctionMetadata(
2073     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2074   for (const auto &Pair : MDs) {
2075     if (Pair.first == LLVMContext::MD_prof) {
2076       MDNode *MD = Pair.second;
2077       Assert(MD->getNumOperands() >= 2,
2078              "!prof annotations should have no less than 2 operands", MD);
2079 
2080       // Check first operand.
2081       Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
2082              MD);
2083       Assert(isa<MDString>(MD->getOperand(0)),
2084              "expected string with name of the !prof annotation", MD);
2085       MDString *MDS = cast<MDString>(MD->getOperand(0));
2086       StringRef ProfName = MDS->getString();
2087       Assert(ProfName.equals("function_entry_count") ||
2088                  ProfName.equals("synthetic_function_entry_count"),
2089              "first operand should be 'function_entry_count'"
2090              " or 'synthetic_function_entry_count'",
2091              MD);
2092 
2093       // Check second operand.
2094       Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
2095              MD);
2096       Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
2097              "expected integer argument to function_entry_count", MD);
2098     }
2099   }
2100 }
2101 
2102 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2103   if (!ConstantExprVisited.insert(EntryC).second)
2104     return;
2105 
2106   SmallVector<const Constant *, 16> Stack;
2107   Stack.push_back(EntryC);
2108 
2109   while (!Stack.empty()) {
2110     const Constant *C = Stack.pop_back_val();
2111 
2112     // Check this constant expression.
2113     if (const auto *CE = dyn_cast<ConstantExpr>(C))
2114       visitConstantExpr(CE);
2115 
2116     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
2117       // Global Values get visited separately, but we do need to make sure
2118       // that the global value is in the correct module
2119       Assert(GV->getParent() == &M, "Referencing global in another module!",
2120              EntryC, &M, GV, GV->getParent());
2121       continue;
2122     }
2123 
2124     // Visit all sub-expressions.
2125     for (const Use &U : C->operands()) {
2126       const auto *OpC = dyn_cast<Constant>(U);
2127       if (!OpC)
2128         continue;
2129       if (!ConstantExprVisited.insert(OpC).second)
2130         continue;
2131       Stack.push_back(OpC);
2132     }
2133   }
2134 }
2135 
2136 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2137   if (CE->getOpcode() == Instruction::BitCast)
2138     Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
2139                                  CE->getType()),
2140            "Invalid bitcast", CE);
2141 }
2142 
2143 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2144   // There shouldn't be more attribute sets than there are parameters plus the
2145   // function and return value.
2146   return Attrs.getNumAttrSets() <= Params + 2;
2147 }
2148 
2149 void Verifier::verifyInlineAsmCall(const CallBase &Call) {
2150   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
2151   unsigned ArgNo = 0;
2152   for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2153     // Only deal with constraints that correspond to call arguments.
2154     if (!CI.hasArg())
2155       continue;
2156 
2157     if (CI.isIndirect) {
2158       const Value *Arg = Call.getArgOperand(ArgNo);
2159       Assert(Arg->getType()->isPointerTy(),
2160              "Operand for indirect constraint must have pointer type",
2161              &Call);
2162 
2163       Assert(Call.getAttributes().getParamElementType(ArgNo),
2164              "Operand for indirect constraint must have elementtype attribute",
2165              &Call);
2166     } else {
2167       Assert(!Call.paramHasAttr(ArgNo, Attribute::ElementType),
2168              "Elementtype attribute can only be applied for indirect "
2169              "constraints", &Call);
2170     }
2171 
2172     ArgNo++;
2173   }
2174 }
2175 
2176 /// Verify that statepoint intrinsic is well formed.
2177 void Verifier::verifyStatepoint(const CallBase &Call) {
2178   assert(Call.getCalledFunction() &&
2179          Call.getCalledFunction()->getIntrinsicID() ==
2180              Intrinsic::experimental_gc_statepoint);
2181 
2182   Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
2183              !Call.onlyAccessesArgMemory(),
2184          "gc.statepoint must read and write all memory to preserve "
2185          "reordering restrictions required by safepoint semantics",
2186          Call);
2187 
2188   const int64_t NumPatchBytes =
2189       cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2190   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
2191   Assert(NumPatchBytes >= 0,
2192          "gc.statepoint number of patchable bytes must be "
2193          "positive",
2194          Call);
2195 
2196   const Value *Target = Call.getArgOperand(2);
2197   auto *PT = dyn_cast<PointerType>(Target->getType());
2198   Assert(PT && PT->getElementType()->isFunctionTy(),
2199          "gc.statepoint callee must be of function pointer type", Call, Target);
2200   FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
2201 
2202   const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2203   Assert(NumCallArgs >= 0,
2204          "gc.statepoint number of arguments to underlying call "
2205          "must be positive",
2206          Call);
2207   const int NumParams = (int)TargetFuncType->getNumParams();
2208   if (TargetFuncType->isVarArg()) {
2209     Assert(NumCallArgs >= NumParams,
2210            "gc.statepoint mismatch in number of vararg call args", Call);
2211 
2212     // TODO: Remove this limitation
2213     Assert(TargetFuncType->getReturnType()->isVoidTy(),
2214            "gc.statepoint doesn't support wrapping non-void "
2215            "vararg functions yet",
2216            Call);
2217   } else
2218     Assert(NumCallArgs == NumParams,
2219            "gc.statepoint mismatch in number of call args", Call);
2220 
2221   const uint64_t Flags
2222     = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2223   Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2224          "unknown flag used in gc.statepoint flags argument", Call);
2225 
2226   // Verify that the types of the call parameter arguments match
2227   // the type of the wrapped callee.
2228   AttributeList Attrs = Call.getAttributes();
2229   for (int i = 0; i < NumParams; i++) {
2230     Type *ParamType = TargetFuncType->getParamType(i);
2231     Type *ArgType = Call.getArgOperand(5 + i)->getType();
2232     Assert(ArgType == ParamType,
2233            "gc.statepoint call argument does not match wrapped "
2234            "function type",
2235            Call);
2236 
2237     if (TargetFuncType->isVarArg()) {
2238       AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i);
2239       Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2240              "Attribute 'sret' cannot be used for vararg call arguments!",
2241              Call);
2242     }
2243   }
2244 
2245   const int EndCallArgsInx = 4 + NumCallArgs;
2246 
2247   const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2248   Assert(isa<ConstantInt>(NumTransitionArgsV),
2249          "gc.statepoint number of transition arguments "
2250          "must be constant integer",
2251          Call);
2252   const int NumTransitionArgs =
2253       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2254   Assert(NumTransitionArgs == 0,
2255          "gc.statepoint w/inline transition bundle is deprecated", Call);
2256   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2257 
2258   const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2259   Assert(isa<ConstantInt>(NumDeoptArgsV),
2260          "gc.statepoint number of deoptimization arguments "
2261          "must be constant integer",
2262          Call);
2263   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2264   Assert(NumDeoptArgs == 0,
2265          "gc.statepoint w/inline deopt operands is deprecated", Call);
2266 
2267   const int ExpectedNumArgs = 7 + NumCallArgs;
2268   Assert(ExpectedNumArgs == (int)Call.arg_size(),
2269          "gc.statepoint too many arguments", Call);
2270 
2271   // Check that the only uses of this gc.statepoint are gc.result or
2272   // gc.relocate calls which are tied to this statepoint and thus part
2273   // of the same statepoint sequence
2274   for (const User *U : Call.users()) {
2275     const CallInst *UserCall = dyn_cast<const CallInst>(U);
2276     Assert(UserCall, "illegal use of statepoint token", Call, U);
2277     if (!UserCall)
2278       continue;
2279     Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2280            "gc.result or gc.relocate are the only value uses "
2281            "of a gc.statepoint",
2282            Call, U);
2283     if (isa<GCResultInst>(UserCall)) {
2284       Assert(UserCall->getArgOperand(0) == &Call,
2285              "gc.result connected to wrong gc.statepoint", Call, UserCall);
2286     } else if (isa<GCRelocateInst>(Call)) {
2287       Assert(UserCall->getArgOperand(0) == &Call,
2288              "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2289     }
2290   }
2291 
2292   // Note: It is legal for a single derived pointer to be listed multiple
2293   // times.  It's non-optimal, but it is legal.  It can also happen after
2294   // insertion if we strip a bitcast away.
2295   // Note: It is really tempting to check that each base is relocated and
2296   // that a derived pointer is never reused as a base pointer.  This turns
2297   // out to be problematic since optimizations run after safepoint insertion
2298   // can recognize equality properties that the insertion logic doesn't know
2299   // about.  See example statepoint.ll in the verifier subdirectory
2300 }
2301 
2302 void Verifier::verifyFrameRecoverIndices() {
2303   for (auto &Counts : FrameEscapeInfo) {
2304     Function *F = Counts.first;
2305     unsigned EscapedObjectCount = Counts.second.first;
2306     unsigned MaxRecoveredIndex = Counts.second.second;
2307     Assert(MaxRecoveredIndex <= EscapedObjectCount,
2308            "all indices passed to llvm.localrecover must be less than the "
2309            "number of arguments passed to llvm.localescape in the parent "
2310            "function",
2311            F);
2312   }
2313 }
2314 
2315 static Instruction *getSuccPad(Instruction *Terminator) {
2316   BasicBlock *UnwindDest;
2317   if (auto *II = dyn_cast<InvokeInst>(Terminator))
2318     UnwindDest = II->getUnwindDest();
2319   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2320     UnwindDest = CSI->getUnwindDest();
2321   else
2322     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2323   return UnwindDest->getFirstNonPHI();
2324 }
2325 
2326 void Verifier::verifySiblingFuncletUnwinds() {
2327   SmallPtrSet<Instruction *, 8> Visited;
2328   SmallPtrSet<Instruction *, 8> Active;
2329   for (const auto &Pair : SiblingFuncletInfo) {
2330     Instruction *PredPad = Pair.first;
2331     if (Visited.count(PredPad))
2332       continue;
2333     Active.insert(PredPad);
2334     Instruction *Terminator = Pair.second;
2335     do {
2336       Instruction *SuccPad = getSuccPad(Terminator);
2337       if (Active.count(SuccPad)) {
2338         // Found a cycle; report error
2339         Instruction *CyclePad = SuccPad;
2340         SmallVector<Instruction *, 8> CycleNodes;
2341         do {
2342           CycleNodes.push_back(CyclePad);
2343           Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2344           if (CycleTerminator != CyclePad)
2345             CycleNodes.push_back(CycleTerminator);
2346           CyclePad = getSuccPad(CycleTerminator);
2347         } while (CyclePad != SuccPad);
2348         Assert(false, "EH pads can't handle each other's exceptions",
2349                ArrayRef<Instruction *>(CycleNodes));
2350       }
2351       // Don't re-walk a node we've already checked
2352       if (!Visited.insert(SuccPad).second)
2353         break;
2354       // Walk to this successor if it has a map entry.
2355       PredPad = SuccPad;
2356       auto TermI = SiblingFuncletInfo.find(PredPad);
2357       if (TermI == SiblingFuncletInfo.end())
2358         break;
2359       Terminator = TermI->second;
2360       Active.insert(PredPad);
2361     } while (true);
2362     // Each node only has one successor, so we've walked all the active
2363     // nodes' successors.
2364     Active.clear();
2365   }
2366 }
2367 
2368 // visitFunction - Verify that a function is ok.
2369 //
2370 void Verifier::visitFunction(const Function &F) {
2371   visitGlobalValue(F);
2372 
2373   // Check function arguments.
2374   FunctionType *FT = F.getFunctionType();
2375   unsigned NumArgs = F.arg_size();
2376 
2377   Assert(&Context == &F.getContext(),
2378          "Function context does not match Module context!", &F);
2379 
2380   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2381   Assert(FT->getNumParams() == NumArgs,
2382          "# formal arguments must match # of arguments for function type!", &F,
2383          FT);
2384   Assert(F.getReturnType()->isFirstClassType() ||
2385              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2386          "Functions cannot return aggregate values!", &F);
2387 
2388   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2389          "Invalid struct return type!", &F);
2390 
2391   AttributeList Attrs = F.getAttributes();
2392 
2393   Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2394          "Attribute after last parameter!", &F);
2395 
2396   bool IsIntrinsic = F.isIntrinsic();
2397 
2398   // Check function attributes.
2399   verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic, /* IsInlineAsm */ false);
2400 
2401   // On function declarations/definitions, we do not support the builtin
2402   // attribute. We do not check this in VerifyFunctionAttrs since that is
2403   // checking for Attributes that can/can not ever be on functions.
2404   Assert(!Attrs.hasFnAttr(Attribute::Builtin),
2405          "Attribute 'builtin' can only be applied to a callsite.", &F);
2406 
2407   Assert(!Attrs.hasAttrSomewhere(Attribute::ElementType),
2408          "Attribute 'elementtype' can only be applied to a callsite.", &F);
2409 
2410   // Check that this function meets the restrictions on this calling convention.
2411   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2412   // restrictions can be lifted.
2413   switch (F.getCallingConv()) {
2414   default:
2415   case CallingConv::C:
2416     break;
2417   case CallingConv::X86_INTR: {
2418     Assert(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal),
2419            "Calling convention parameter requires byval", &F);
2420     break;
2421   }
2422   case CallingConv::AMDGPU_KERNEL:
2423   case CallingConv::SPIR_KERNEL:
2424     Assert(F.getReturnType()->isVoidTy(),
2425            "Calling convention requires void return type", &F);
2426     LLVM_FALLTHROUGH;
2427   case CallingConv::AMDGPU_VS:
2428   case CallingConv::AMDGPU_HS:
2429   case CallingConv::AMDGPU_GS:
2430   case CallingConv::AMDGPU_PS:
2431   case CallingConv::AMDGPU_CS:
2432     Assert(!F.hasStructRetAttr(),
2433            "Calling convention does not allow sret", &F);
2434     if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2435       const unsigned StackAS = DL.getAllocaAddrSpace();
2436       unsigned i = 0;
2437       for (const Argument &Arg : F.args()) {
2438         Assert(!Attrs.hasParamAttr(i, Attribute::ByVal),
2439                "Calling convention disallows byval", &F);
2440         Assert(!Attrs.hasParamAttr(i, Attribute::Preallocated),
2441                "Calling convention disallows preallocated", &F);
2442         Assert(!Attrs.hasParamAttr(i, Attribute::InAlloca),
2443                "Calling convention disallows inalloca", &F);
2444 
2445         if (Attrs.hasParamAttr(i, Attribute::ByRef)) {
2446           // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2447           // value here.
2448           Assert(Arg.getType()->getPointerAddressSpace() != StackAS,
2449                  "Calling convention disallows stack byref", &F);
2450         }
2451 
2452         ++i;
2453       }
2454     }
2455 
2456     LLVM_FALLTHROUGH;
2457   case CallingConv::Fast:
2458   case CallingConv::Cold:
2459   case CallingConv::Intel_OCL_BI:
2460   case CallingConv::PTX_Kernel:
2461   case CallingConv::PTX_Device:
2462     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2463                           "perfect forwarding!",
2464            &F);
2465     break;
2466   }
2467 
2468   // Check that the argument values match the function type for this function...
2469   unsigned i = 0;
2470   for (const Argument &Arg : F.args()) {
2471     Assert(Arg.getType() == FT->getParamType(i),
2472            "Argument value does not match function argument type!", &Arg,
2473            FT->getParamType(i));
2474     Assert(Arg.getType()->isFirstClassType(),
2475            "Function arguments must have first-class types!", &Arg);
2476     if (!IsIntrinsic) {
2477       Assert(!Arg.getType()->isMetadataTy(),
2478              "Function takes metadata but isn't an intrinsic", &Arg, &F);
2479       Assert(!Arg.getType()->isTokenTy(),
2480              "Function takes token but isn't an intrinsic", &Arg, &F);
2481       Assert(!Arg.getType()->isX86_AMXTy(),
2482              "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
2483     }
2484 
2485     // Check that swifterror argument is only used by loads and stores.
2486     if (Attrs.hasParamAttr(i, Attribute::SwiftError)) {
2487       verifySwiftErrorValue(&Arg);
2488     }
2489     ++i;
2490   }
2491 
2492   if (!IsIntrinsic) {
2493     Assert(!F.getReturnType()->isTokenTy(),
2494            "Function returns a token but isn't an intrinsic", &F);
2495     Assert(!F.getReturnType()->isX86_AMXTy(),
2496            "Function returns a x86_amx but isn't an intrinsic", &F);
2497   }
2498 
2499   // Get the function metadata attachments.
2500   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2501   F.getAllMetadata(MDs);
2502   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2503   verifyFunctionMetadata(MDs);
2504 
2505   // Check validity of the personality function
2506   if (F.hasPersonalityFn()) {
2507     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2508     if (Per)
2509       Assert(Per->getParent() == F.getParent(),
2510              "Referencing personality function in another module!",
2511              &F, F.getParent(), Per, Per->getParent());
2512   }
2513 
2514   if (F.isMaterializable()) {
2515     // Function has a body somewhere we can't see.
2516     Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2517            MDs.empty() ? nullptr : MDs.front().second);
2518   } else if (F.isDeclaration()) {
2519     for (const auto &I : MDs) {
2520       // This is used for call site debug information.
2521       AssertDI(I.first != LLVMContext::MD_dbg ||
2522                    !cast<DISubprogram>(I.second)->isDistinct(),
2523                "function declaration may only have a unique !dbg attachment",
2524                &F);
2525       Assert(I.first != LLVMContext::MD_prof,
2526              "function declaration may not have a !prof attachment", &F);
2527 
2528       // Verify the metadata itself.
2529       visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2530     }
2531     Assert(!F.hasPersonalityFn(),
2532            "Function declaration shouldn't have a personality routine", &F);
2533   } else {
2534     // Verify that this function (which has a body) is not named "llvm.*".  It
2535     // is not legal to define intrinsics.
2536     Assert(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F);
2537 
2538     // Check the entry node
2539     const BasicBlock *Entry = &F.getEntryBlock();
2540     Assert(pred_empty(Entry),
2541            "Entry block to function must not have predecessors!", Entry);
2542 
2543     // The address of the entry block cannot be taken, unless it is dead.
2544     if (Entry->hasAddressTaken()) {
2545       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2546              "blockaddress may not be used with the entry block!", Entry);
2547     }
2548 
2549     unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2550     // Visit metadata attachments.
2551     for (const auto &I : MDs) {
2552       // Verify that the attachment is legal.
2553       auto AllowLocs = AreDebugLocsAllowed::No;
2554       switch (I.first) {
2555       default:
2556         break;
2557       case LLVMContext::MD_dbg: {
2558         ++NumDebugAttachments;
2559         AssertDI(NumDebugAttachments == 1,
2560                  "function must have a single !dbg attachment", &F, I.second);
2561         AssertDI(isa<DISubprogram>(I.second),
2562                  "function !dbg attachment must be a subprogram", &F, I.second);
2563         AssertDI(cast<DISubprogram>(I.second)->isDistinct(),
2564                  "function definition may only have a distinct !dbg attachment",
2565                  &F);
2566 
2567         auto *SP = cast<DISubprogram>(I.second);
2568         const Function *&AttachedTo = DISubprogramAttachments[SP];
2569         AssertDI(!AttachedTo || AttachedTo == &F,
2570                  "DISubprogram attached to more than one function", SP, &F);
2571         AttachedTo = &F;
2572         AllowLocs = AreDebugLocsAllowed::Yes;
2573         break;
2574       }
2575       case LLVMContext::MD_prof:
2576         ++NumProfAttachments;
2577         Assert(NumProfAttachments == 1,
2578                "function must have a single !prof attachment", &F, I.second);
2579         break;
2580       }
2581 
2582       // Verify the metadata itself.
2583       visitMDNode(*I.second, AllowLocs);
2584     }
2585   }
2586 
2587   // If this function is actually an intrinsic, verify that it is only used in
2588   // direct call/invokes, never having its "address taken".
2589   // Only do this if the module is materialized, otherwise we don't have all the
2590   // uses.
2591   if (F.isIntrinsic() && F.getParent()->isMaterialized()) {
2592     const User *U;
2593     if (F.hasAddressTaken(&U, false, true, false,
2594                           /*IgnoreARCAttachedCall=*/true))
2595       Assert(false, "Invalid user of intrinsic instruction!", U);
2596   }
2597 
2598   // Check intrinsics' signatures.
2599   switch (F.getIntrinsicID()) {
2600   case Intrinsic::experimental_gc_get_pointer_base: {
2601     FunctionType *FT = F.getFunctionType();
2602     Assert(FT->getNumParams() == 1, "wrong number of parameters", F);
2603     Assert(isa<PointerType>(F.getReturnType()),
2604            "gc.get.pointer.base must return a pointer", F);
2605     Assert(FT->getParamType(0) == F.getReturnType(),
2606            "gc.get.pointer.base operand and result must be of the same type",
2607            F);
2608     break;
2609   }
2610   case Intrinsic::experimental_gc_get_pointer_offset: {
2611     FunctionType *FT = F.getFunctionType();
2612     Assert(FT->getNumParams() == 1, "wrong number of parameters", F);
2613     Assert(isa<PointerType>(FT->getParamType(0)),
2614            "gc.get.pointer.offset operand must be a pointer", F);
2615     Assert(F.getReturnType()->isIntegerTy(),
2616            "gc.get.pointer.offset must return integer", F);
2617     break;
2618   }
2619   }
2620 
2621   auto *N = F.getSubprogram();
2622   HasDebugInfo = (N != nullptr);
2623   if (!HasDebugInfo)
2624     return;
2625 
2626   // Check that all !dbg attachments lead to back to N.
2627   //
2628   // FIXME: Check this incrementally while visiting !dbg attachments.
2629   // FIXME: Only check when N is the canonical subprogram for F.
2630   SmallPtrSet<const MDNode *, 32> Seen;
2631   auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2632     // Be careful about using DILocation here since we might be dealing with
2633     // broken code (this is the Verifier after all).
2634     const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2635     if (!DL)
2636       return;
2637     if (!Seen.insert(DL).second)
2638       return;
2639 
2640     Metadata *Parent = DL->getRawScope();
2641     AssertDI(Parent && isa<DILocalScope>(Parent),
2642              "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
2643              Parent);
2644 
2645     DILocalScope *Scope = DL->getInlinedAtScope();
2646     Assert(Scope, "Failed to find DILocalScope", DL);
2647 
2648     if (!Seen.insert(Scope).second)
2649       return;
2650 
2651     DISubprogram *SP = Scope->getSubprogram();
2652 
2653     // Scope and SP could be the same MDNode and we don't want to skip
2654     // validation in that case
2655     if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2656       return;
2657 
2658     AssertDI(SP->describes(&F),
2659              "!dbg attachment points at wrong subprogram for function", N, &F,
2660              &I, DL, Scope, SP);
2661   };
2662   for (auto &BB : F)
2663     for (auto &I : BB) {
2664       VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2665       // The llvm.loop annotations also contain two DILocations.
2666       if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2667         for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2668           VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2669       if (BrokenDebugInfo)
2670         return;
2671     }
2672 }
2673 
2674 // verifyBasicBlock - Verify that a basic block is well formed...
2675 //
2676 void Verifier::visitBasicBlock(BasicBlock &BB) {
2677   InstsInThisBlock.clear();
2678 
2679   // Ensure that basic blocks have terminators!
2680   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2681 
2682   // Check constraints that this basic block imposes on all of the PHI nodes in
2683   // it.
2684   if (isa<PHINode>(BB.front())) {
2685     SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
2686     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2687     llvm::sort(Preds);
2688     for (const PHINode &PN : BB.phis()) {
2689       Assert(PN.getNumIncomingValues() == Preds.size(),
2690              "PHINode should have one entry for each predecessor of its "
2691              "parent basic block!",
2692              &PN);
2693 
2694       // Get and sort all incoming values in the PHI node...
2695       Values.clear();
2696       Values.reserve(PN.getNumIncomingValues());
2697       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2698         Values.push_back(
2699             std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2700       llvm::sort(Values);
2701 
2702       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2703         // Check to make sure that if there is more than one entry for a
2704         // particular basic block in this PHI node, that the incoming values are
2705         // all identical.
2706         //
2707         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2708                    Values[i].second == Values[i - 1].second,
2709                "PHI node has multiple entries for the same basic block with "
2710                "different incoming values!",
2711                &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2712 
2713         // Check to make sure that the predecessors and PHI node entries are
2714         // matched up.
2715         Assert(Values[i].first == Preds[i],
2716                "PHI node entries do not match predecessors!", &PN,
2717                Values[i].first, Preds[i]);
2718       }
2719     }
2720   }
2721 
2722   // Check that all instructions have their parent pointers set up correctly.
2723   for (auto &I : BB)
2724   {
2725     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2726   }
2727 }
2728 
2729 void Verifier::visitTerminator(Instruction &I) {
2730   // Ensure that terminators only exist at the end of the basic block.
2731   Assert(&I == I.getParent()->getTerminator(),
2732          "Terminator found in the middle of a basic block!", I.getParent());
2733   visitInstruction(I);
2734 }
2735 
2736 void Verifier::visitBranchInst(BranchInst &BI) {
2737   if (BI.isConditional()) {
2738     Assert(BI.getCondition()->getType()->isIntegerTy(1),
2739            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2740   }
2741   visitTerminator(BI);
2742 }
2743 
2744 void Verifier::visitReturnInst(ReturnInst &RI) {
2745   Function *F = RI.getParent()->getParent();
2746   unsigned N = RI.getNumOperands();
2747   if (F->getReturnType()->isVoidTy())
2748     Assert(N == 0,
2749            "Found return instr that returns non-void in Function of void "
2750            "return type!",
2751            &RI, F->getReturnType());
2752   else
2753     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2754            "Function return type does not match operand "
2755            "type of return inst!",
2756            &RI, F->getReturnType());
2757 
2758   // Check to make sure that the return value has necessary properties for
2759   // terminators...
2760   visitTerminator(RI);
2761 }
2762 
2763 void Verifier::visitSwitchInst(SwitchInst &SI) {
2764   Assert(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI);
2765   // Check to make sure that all of the constants in the switch instruction
2766   // have the same type as the switched-on value.
2767   Type *SwitchTy = SI.getCondition()->getType();
2768   SmallPtrSet<ConstantInt*, 32> Constants;
2769   for (auto &Case : SI.cases()) {
2770     Assert(Case.getCaseValue()->getType() == SwitchTy,
2771            "Switch constants must all be same type as switch value!", &SI);
2772     Assert(Constants.insert(Case.getCaseValue()).second,
2773            "Duplicate integer as switch case", &SI, Case.getCaseValue());
2774   }
2775 
2776   visitTerminator(SI);
2777 }
2778 
2779 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2780   Assert(BI.getAddress()->getType()->isPointerTy(),
2781          "Indirectbr operand must have pointer type!", &BI);
2782   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2783     Assert(BI.getDestination(i)->getType()->isLabelTy(),
2784            "Indirectbr destinations must all have pointer type!", &BI);
2785 
2786   visitTerminator(BI);
2787 }
2788 
2789 void Verifier::visitCallBrInst(CallBrInst &CBI) {
2790   Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2791          &CBI);
2792   const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
2793   Assert(!IA->canThrow(), "Unwinding from Callbr is not allowed");
2794   for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2795     Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
2796            "Callbr successors must all have pointer type!", &CBI);
2797   for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2798     Assert(i >= CBI.arg_size() || !isa<BasicBlock>(CBI.getOperand(i)),
2799            "Using an unescaped label as a callbr argument!", &CBI);
2800     if (isa<BasicBlock>(CBI.getOperand(i)))
2801       for (unsigned j = i + 1; j != e; ++j)
2802         Assert(CBI.getOperand(i) != CBI.getOperand(j),
2803                "Duplicate callbr destination!", &CBI);
2804   }
2805   {
2806     SmallPtrSet<BasicBlock *, 4> ArgBBs;
2807     for (Value *V : CBI.args())
2808       if (auto *BA = dyn_cast<BlockAddress>(V))
2809         ArgBBs.insert(BA->getBasicBlock());
2810     for (BasicBlock *BB : CBI.getIndirectDests())
2811       Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI);
2812   }
2813 
2814   verifyInlineAsmCall(CBI);
2815   visitTerminator(CBI);
2816 }
2817 
2818 void Verifier::visitSelectInst(SelectInst &SI) {
2819   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2820                                          SI.getOperand(2)),
2821          "Invalid operands for select instruction!", &SI);
2822 
2823   Assert(SI.getTrueValue()->getType() == SI.getType(),
2824          "Select values must have same type as select instruction!", &SI);
2825   visitInstruction(SI);
2826 }
2827 
2828 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2829 /// a pass, if any exist, it's an error.
2830 ///
2831 void Verifier::visitUserOp1(Instruction &I) {
2832   Assert(false, "User-defined operators should not live outside of a pass!", &I);
2833 }
2834 
2835 void Verifier::visitTruncInst(TruncInst &I) {
2836   // Get the source and destination types
2837   Type *SrcTy = I.getOperand(0)->getType();
2838   Type *DestTy = I.getType();
2839 
2840   // Get the size of the types in bits, we'll need this later
2841   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2842   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2843 
2844   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2845   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2846   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2847          "trunc source and destination must both be a vector or neither", &I);
2848   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2849 
2850   visitInstruction(I);
2851 }
2852 
2853 void Verifier::visitZExtInst(ZExtInst &I) {
2854   // Get the source and destination types
2855   Type *SrcTy = I.getOperand(0)->getType();
2856   Type *DestTy = I.getType();
2857 
2858   // Get the size of the types in bits, we'll need this later
2859   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2860   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2861   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2862          "zext source and destination must both be a vector or neither", &I);
2863   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2864   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2865 
2866   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2867 
2868   visitInstruction(I);
2869 }
2870 
2871 void Verifier::visitSExtInst(SExtInst &I) {
2872   // Get the source and destination types
2873   Type *SrcTy = I.getOperand(0)->getType();
2874   Type *DestTy = I.getType();
2875 
2876   // Get the size of the types in bits, we'll need this later
2877   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2878   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2879 
2880   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2881   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2882   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2883          "sext source and destination must both be a vector or neither", &I);
2884   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2885 
2886   visitInstruction(I);
2887 }
2888 
2889 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2890   // Get the source and destination types
2891   Type *SrcTy = I.getOperand(0)->getType();
2892   Type *DestTy = I.getType();
2893   // Get the size of the types in bits, we'll need this later
2894   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2895   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2896 
2897   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2898   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2899   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2900          "fptrunc source and destination must both be a vector or neither", &I);
2901   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2902 
2903   visitInstruction(I);
2904 }
2905 
2906 void Verifier::visitFPExtInst(FPExtInst &I) {
2907   // Get the source and destination types
2908   Type *SrcTy = I.getOperand(0)->getType();
2909   Type *DestTy = I.getType();
2910 
2911   // Get the size of the types in bits, we'll need this later
2912   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2913   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2914 
2915   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2916   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2917   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2918          "fpext source and destination must both be a vector or neither", &I);
2919   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2920 
2921   visitInstruction(I);
2922 }
2923 
2924 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2925   // Get the source and destination types
2926   Type *SrcTy = I.getOperand(0)->getType();
2927   Type *DestTy = I.getType();
2928 
2929   bool SrcVec = SrcTy->isVectorTy();
2930   bool DstVec = DestTy->isVectorTy();
2931 
2932   Assert(SrcVec == DstVec,
2933          "UIToFP source and dest must both be vector or scalar", &I);
2934   Assert(SrcTy->isIntOrIntVectorTy(),
2935          "UIToFP source must be integer or integer vector", &I);
2936   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2937          &I);
2938 
2939   if (SrcVec && DstVec)
2940     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2941                cast<VectorType>(DestTy)->getElementCount(),
2942            "UIToFP source and dest vector length mismatch", &I);
2943 
2944   visitInstruction(I);
2945 }
2946 
2947 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2948   // Get the source and destination types
2949   Type *SrcTy = I.getOperand(0)->getType();
2950   Type *DestTy = I.getType();
2951 
2952   bool SrcVec = SrcTy->isVectorTy();
2953   bool DstVec = DestTy->isVectorTy();
2954 
2955   Assert(SrcVec == DstVec,
2956          "SIToFP source and dest must both be vector or scalar", &I);
2957   Assert(SrcTy->isIntOrIntVectorTy(),
2958          "SIToFP source must be integer or integer vector", &I);
2959   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2960          &I);
2961 
2962   if (SrcVec && DstVec)
2963     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2964                cast<VectorType>(DestTy)->getElementCount(),
2965            "SIToFP source and dest vector length mismatch", &I);
2966 
2967   visitInstruction(I);
2968 }
2969 
2970 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2971   // Get the source and destination types
2972   Type *SrcTy = I.getOperand(0)->getType();
2973   Type *DestTy = I.getType();
2974 
2975   bool SrcVec = SrcTy->isVectorTy();
2976   bool DstVec = DestTy->isVectorTy();
2977 
2978   Assert(SrcVec == DstVec,
2979          "FPToUI source and dest must both be vector or scalar", &I);
2980   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2981          &I);
2982   Assert(DestTy->isIntOrIntVectorTy(),
2983          "FPToUI result must be integer or integer vector", &I);
2984 
2985   if (SrcVec && DstVec)
2986     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2987                cast<VectorType>(DestTy)->getElementCount(),
2988            "FPToUI source and dest vector length mismatch", &I);
2989 
2990   visitInstruction(I);
2991 }
2992 
2993 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2994   // Get the source and destination types
2995   Type *SrcTy = I.getOperand(0)->getType();
2996   Type *DestTy = I.getType();
2997 
2998   bool SrcVec = SrcTy->isVectorTy();
2999   bool DstVec = DestTy->isVectorTy();
3000 
3001   Assert(SrcVec == DstVec,
3002          "FPToSI source and dest must both be vector or scalar", &I);
3003   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
3004          &I);
3005   Assert(DestTy->isIntOrIntVectorTy(),
3006          "FPToSI result must be integer or integer vector", &I);
3007 
3008   if (SrcVec && DstVec)
3009     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
3010                cast<VectorType>(DestTy)->getElementCount(),
3011            "FPToSI source and dest vector length mismatch", &I);
3012 
3013   visitInstruction(I);
3014 }
3015 
3016 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
3017   // Get the source and destination types
3018   Type *SrcTy = I.getOperand(0)->getType();
3019   Type *DestTy = I.getType();
3020 
3021   Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
3022 
3023   Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
3024   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
3025          &I);
3026 
3027   if (SrcTy->isVectorTy()) {
3028     auto *VSrc = cast<VectorType>(SrcTy);
3029     auto *VDest = cast<VectorType>(DestTy);
3030     Assert(VSrc->getElementCount() == VDest->getElementCount(),
3031            "PtrToInt Vector width mismatch", &I);
3032   }
3033 
3034   visitInstruction(I);
3035 }
3036 
3037 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
3038   // Get the source and destination types
3039   Type *SrcTy = I.getOperand(0)->getType();
3040   Type *DestTy = I.getType();
3041 
3042   Assert(SrcTy->isIntOrIntVectorTy(),
3043          "IntToPtr source must be an integral", &I);
3044   Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
3045 
3046   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
3047          &I);
3048   if (SrcTy->isVectorTy()) {
3049     auto *VSrc = cast<VectorType>(SrcTy);
3050     auto *VDest = cast<VectorType>(DestTy);
3051     Assert(VSrc->getElementCount() == VDest->getElementCount(),
3052            "IntToPtr Vector width mismatch", &I);
3053   }
3054   visitInstruction(I);
3055 }
3056 
3057 void Verifier::visitBitCastInst(BitCastInst &I) {
3058   Assert(
3059       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
3060       "Invalid bitcast", &I);
3061   visitInstruction(I);
3062 }
3063 
3064 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
3065   Type *SrcTy = I.getOperand(0)->getType();
3066   Type *DestTy = I.getType();
3067 
3068   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
3069          &I);
3070   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
3071          &I);
3072   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
3073          "AddrSpaceCast must be between different address spaces", &I);
3074   if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
3075     Assert(SrcVTy->getElementCount() ==
3076                cast<VectorType>(DestTy)->getElementCount(),
3077            "AddrSpaceCast vector pointer number of elements mismatch", &I);
3078   visitInstruction(I);
3079 }
3080 
3081 /// visitPHINode - Ensure that a PHI node is well formed.
3082 ///
3083 void Verifier::visitPHINode(PHINode &PN) {
3084   // Ensure that the PHI nodes are all grouped together at the top of the block.
3085   // This can be tested by checking whether the instruction before this is
3086   // either nonexistent (because this is begin()) or is a PHI node.  If not,
3087   // then there is some other instruction before a PHI.
3088   Assert(&PN == &PN.getParent()->front() ||
3089              isa<PHINode>(--BasicBlock::iterator(&PN)),
3090          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
3091 
3092   // Check that a PHI doesn't yield a Token.
3093   Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
3094 
3095   // Check that all of the values of the PHI node have the same type as the
3096   // result, and that the incoming blocks are really basic blocks.
3097   for (Value *IncValue : PN.incoming_values()) {
3098     Assert(PN.getType() == IncValue->getType(),
3099            "PHI node operands are not the same type as the result!", &PN);
3100   }
3101 
3102   // All other PHI node constraints are checked in the visitBasicBlock method.
3103 
3104   visitInstruction(PN);
3105 }
3106 
3107 void Verifier::visitCallBase(CallBase &Call) {
3108   Assert(Call.getCalledOperand()->getType()->isPointerTy(),
3109          "Called function must be a pointer!", Call);
3110   PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType());
3111 
3112   Assert(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()),
3113          "Called function is not the same type as the call!", Call);
3114 
3115   FunctionType *FTy = Call.getFunctionType();
3116 
3117   // Verify that the correct number of arguments are being passed
3118   if (FTy->isVarArg())
3119     Assert(Call.arg_size() >= FTy->getNumParams(),
3120            "Called function requires more parameters than were provided!",
3121            Call);
3122   else
3123     Assert(Call.arg_size() == FTy->getNumParams(),
3124            "Incorrect number of arguments passed to called function!", Call);
3125 
3126   // Verify that all arguments to the call match the function type.
3127   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3128     Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
3129            "Call parameter type does not match function signature!",
3130            Call.getArgOperand(i), FTy->getParamType(i), Call);
3131 
3132   AttributeList Attrs = Call.getAttributes();
3133 
3134   Assert(verifyAttributeCount(Attrs, Call.arg_size()),
3135          "Attribute after last parameter!", Call);
3136 
3137   Function *Callee =
3138       dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3139   bool IsIntrinsic = Callee && Callee->isIntrinsic();
3140   if (IsIntrinsic)
3141     Assert(Callee->getValueType() == FTy,
3142            "Intrinsic called with incompatible signature", Call);
3143 
3144   if (Attrs.hasFnAttr(Attribute::Speculatable)) {
3145     // Don't allow speculatable on call sites, unless the underlying function
3146     // declaration is also speculatable.
3147     Assert(Callee && Callee->isSpeculatable(),
3148            "speculatable attribute may not apply to call sites", Call);
3149   }
3150 
3151   if (Attrs.hasFnAttr(Attribute::Preallocated)) {
3152     Assert(Call.getCalledFunction()->getIntrinsicID() ==
3153                Intrinsic::call_preallocated_arg,
3154            "preallocated as a call site attribute can only be on "
3155            "llvm.call.preallocated.arg");
3156   }
3157 
3158   // Verify call attributes.
3159   verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic, Call.isInlineAsm());
3160 
3161   // Conservatively check the inalloca argument.
3162   // We have a bug if we can find that there is an underlying alloca without
3163   // inalloca.
3164   if (Call.hasInAllocaArgument()) {
3165     Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
3166     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
3167       Assert(AI->isUsedWithInAlloca(),
3168              "inalloca argument for call has mismatched alloca", AI, Call);
3169   }
3170 
3171   // For each argument of the callsite, if it has the swifterror argument,
3172   // make sure the underlying alloca/parameter it comes from has a swifterror as
3173   // well.
3174   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3175     if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3176       Value *SwiftErrorArg = Call.getArgOperand(i);
3177       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
3178         Assert(AI->isSwiftError(),
3179                "swifterror argument for call has mismatched alloca", AI, Call);
3180         continue;
3181       }
3182       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3183       Assert(ArgI,
3184              "swifterror argument should come from an alloca or parameter",
3185              SwiftErrorArg, Call);
3186       Assert(ArgI->hasSwiftErrorAttr(),
3187              "swifterror argument for call has mismatched parameter", ArgI,
3188              Call);
3189     }
3190 
3191     if (Attrs.hasParamAttr(i, Attribute::ImmArg)) {
3192       // Don't allow immarg on call sites, unless the underlying declaration
3193       // also has the matching immarg.
3194       Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
3195              "immarg may not apply only to call sites",
3196              Call.getArgOperand(i), Call);
3197     }
3198 
3199     if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3200       Value *ArgVal = Call.getArgOperand(i);
3201       Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3202              "immarg operand has non-immediate parameter", ArgVal, Call);
3203     }
3204 
3205     if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3206       Value *ArgVal = Call.getArgOperand(i);
3207       bool hasOB =
3208           Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3209       bool isMustTail = Call.isMustTailCall();
3210       Assert(hasOB != isMustTail,
3211              "preallocated operand either requires a preallocated bundle or "
3212              "the call to be musttail (but not both)",
3213              ArgVal, Call);
3214     }
3215   }
3216 
3217   if (FTy->isVarArg()) {
3218     // FIXME? is 'nest' even legal here?
3219     bool SawNest = false;
3220     bool SawReturned = false;
3221 
3222     for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3223       if (Attrs.hasParamAttr(Idx, Attribute::Nest))
3224         SawNest = true;
3225       if (Attrs.hasParamAttr(Idx, Attribute::Returned))
3226         SawReturned = true;
3227     }
3228 
3229     // Check attributes on the varargs part.
3230     for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3231       Type *Ty = Call.getArgOperand(Idx)->getType();
3232       AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx);
3233       verifyParameterAttrs(ArgAttrs, Ty, &Call);
3234 
3235       if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3236         Assert(!SawNest, "More than one parameter has attribute nest!", Call);
3237         SawNest = true;
3238       }
3239 
3240       if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3241         Assert(!SawReturned, "More than one parameter has attribute returned!",
3242                Call);
3243         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
3244                "Incompatible argument and return types for 'returned' "
3245                "attribute",
3246                Call);
3247         SawReturned = true;
3248       }
3249 
3250       // Statepoint intrinsic is vararg but the wrapped function may be not.
3251       // Allow sret here and check the wrapped function in verifyStatepoint.
3252       if (!Call.getCalledFunction() ||
3253           Call.getCalledFunction()->getIntrinsicID() !=
3254               Intrinsic::experimental_gc_statepoint)
3255         Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
3256                "Attribute 'sret' cannot be used for vararg call arguments!",
3257                Call);
3258 
3259       if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3260         Assert(Idx == Call.arg_size() - 1,
3261                "inalloca isn't on the last argument!", Call);
3262     }
3263   }
3264 
3265   // Verify that there's no metadata unless it's a direct call to an intrinsic.
3266   if (!IsIntrinsic) {
3267     for (Type *ParamTy : FTy->params()) {
3268       Assert(!ParamTy->isMetadataTy(),
3269              "Function has metadata parameter but isn't an intrinsic", Call);
3270       Assert(!ParamTy->isTokenTy(),
3271              "Function has token parameter but isn't an intrinsic", Call);
3272     }
3273   }
3274 
3275   // Verify that indirect calls don't return tokens.
3276   if (!Call.getCalledFunction()) {
3277     Assert(!FTy->getReturnType()->isTokenTy(),
3278            "Return type cannot be token for indirect call!");
3279     Assert(!FTy->getReturnType()->isX86_AMXTy(),
3280            "Return type cannot be x86_amx for indirect call!");
3281   }
3282 
3283   if (Function *F = Call.getCalledFunction())
3284     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3285       visitIntrinsicCall(ID, Call);
3286 
3287   // Verify that a callsite has at most one "deopt", at most one "funclet", at
3288   // most one "gc-transition", at most one "cfguardtarget",
3289   // and at most one "preallocated" operand bundle.
3290   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3291        FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3292        FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
3293        FoundAttachedCallBundle = false;
3294   for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3295     OperandBundleUse BU = Call.getOperandBundleAt(i);
3296     uint32_t Tag = BU.getTagID();
3297     if (Tag == LLVMContext::OB_deopt) {
3298       Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3299       FoundDeoptBundle = true;
3300     } else if (Tag == LLVMContext::OB_gc_transition) {
3301       Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3302              Call);
3303       FoundGCTransitionBundle = true;
3304     } else if (Tag == LLVMContext::OB_funclet) {
3305       Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3306       FoundFuncletBundle = true;
3307       Assert(BU.Inputs.size() == 1,
3308              "Expected exactly one funclet bundle operand", Call);
3309       Assert(isa<FuncletPadInst>(BU.Inputs.front()),
3310              "Funclet bundle operands should correspond to a FuncletPadInst",
3311              Call);
3312     } else if (Tag == LLVMContext::OB_cfguardtarget) {
3313       Assert(!FoundCFGuardTargetBundle,
3314              "Multiple CFGuardTarget operand bundles", Call);
3315       FoundCFGuardTargetBundle = true;
3316       Assert(BU.Inputs.size() == 1,
3317              "Expected exactly one cfguardtarget bundle operand", Call);
3318     } else if (Tag == LLVMContext::OB_preallocated) {
3319       Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
3320              Call);
3321       FoundPreallocatedBundle = true;
3322       Assert(BU.Inputs.size() == 1,
3323              "Expected exactly one preallocated bundle operand", Call);
3324       auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3325       Assert(Input &&
3326                  Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3327              "\"preallocated\" argument must be a token from "
3328              "llvm.call.preallocated.setup",
3329              Call);
3330     } else if (Tag == LLVMContext::OB_gc_live) {
3331       Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles",
3332              Call);
3333       FoundGCLiveBundle = true;
3334     } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
3335       Assert(!FoundAttachedCallBundle,
3336              "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
3337       FoundAttachedCallBundle = true;
3338       verifyAttachedCallBundle(Call, BU);
3339     }
3340   }
3341 
3342   // Verify that each inlinable callsite of a debug-info-bearing function in a
3343   // debug-info-bearing function has a debug location attached to it. Failure to
3344   // do so causes assertion failures when the inliner sets up inline scope info.
3345   if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3346       Call.getCalledFunction()->getSubprogram())
3347     AssertDI(Call.getDebugLoc(),
3348              "inlinable function call in a function with "
3349              "debug info must have a !dbg location",
3350              Call);
3351 
3352   if (Call.isInlineAsm())
3353     verifyInlineAsmCall(Call);
3354 
3355   visitInstruction(Call);
3356 }
3357 
3358 void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs,
3359                                          StringRef Context) {
3360   Assert(!Attrs.contains(Attribute::InAlloca),
3361          Twine("inalloca attribute not allowed in ") + Context);
3362   Assert(!Attrs.contains(Attribute::InReg),
3363          Twine("inreg attribute not allowed in ") + Context);
3364   Assert(!Attrs.contains(Attribute::SwiftError),
3365          Twine("swifterror attribute not allowed in ") + Context);
3366   Assert(!Attrs.contains(Attribute::Preallocated),
3367          Twine("preallocated attribute not allowed in ") + Context);
3368   Assert(!Attrs.contains(Attribute::ByRef),
3369          Twine("byref attribute not allowed in ") + Context);
3370 }
3371 
3372 /// Two types are "congruent" if they are identical, or if they are both pointer
3373 /// types with different pointee types and the same address space.
3374 static bool isTypeCongruent(Type *L, Type *R) {
3375   if (L == R)
3376     return true;
3377   PointerType *PL = dyn_cast<PointerType>(L);
3378   PointerType *PR = dyn_cast<PointerType>(R);
3379   if (!PL || !PR)
3380     return false;
3381   return PL->getAddressSpace() == PR->getAddressSpace();
3382 }
3383 
3384 static AttrBuilder getParameterABIAttributes(LLVMContext& C, unsigned I, AttributeList Attrs) {
3385   static const Attribute::AttrKind ABIAttrs[] = {
3386       Attribute::StructRet,  Attribute::ByVal,          Attribute::InAlloca,
3387       Attribute::InReg,      Attribute::StackAlignment, Attribute::SwiftSelf,
3388       Attribute::SwiftAsync, Attribute::SwiftError,     Attribute::Preallocated,
3389       Attribute::ByRef};
3390   AttrBuilder Copy(C);
3391   for (auto AK : ABIAttrs) {
3392     Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK);
3393     if (Attr.isValid())
3394       Copy.addAttribute(Attr);
3395   }
3396 
3397   // `align` is ABI-affecting only in combination with `byval` or `byref`.
3398   if (Attrs.hasParamAttr(I, Attribute::Alignment) &&
3399       (Attrs.hasParamAttr(I, Attribute::ByVal) ||
3400        Attrs.hasParamAttr(I, Attribute::ByRef)))
3401     Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3402   return Copy;
3403 }
3404 
3405 void Verifier::verifyMustTailCall(CallInst &CI) {
3406   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3407 
3408   Function *F = CI.getParent()->getParent();
3409   FunctionType *CallerTy = F->getFunctionType();
3410   FunctionType *CalleeTy = CI.getFunctionType();
3411   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3412          "cannot guarantee tail call due to mismatched varargs", &CI);
3413   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3414          "cannot guarantee tail call due to mismatched return types", &CI);
3415 
3416   // - The calling conventions of the caller and callee must match.
3417   Assert(F->getCallingConv() == CI.getCallingConv(),
3418          "cannot guarantee tail call due to mismatched calling conv", &CI);
3419 
3420   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3421   //   or a pointer bitcast followed by a ret instruction.
3422   // - The ret instruction must return the (possibly bitcasted) value
3423   //   produced by the call or void.
3424   Value *RetVal = &CI;
3425   Instruction *Next = CI.getNextNode();
3426 
3427   // Handle the optional bitcast.
3428   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3429     Assert(BI->getOperand(0) == RetVal,
3430            "bitcast following musttail call must use the call", BI);
3431     RetVal = BI;
3432     Next = BI->getNextNode();
3433   }
3434 
3435   // Check the return.
3436   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3437   Assert(Ret, "musttail call must precede a ret with an optional bitcast",
3438          &CI);
3439   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||
3440              isa<UndefValue>(Ret->getReturnValue()),
3441          "musttail call result must be returned", Ret);
3442 
3443   AttributeList CallerAttrs = F->getAttributes();
3444   AttributeList CalleeAttrs = CI.getAttributes();
3445   if (CI.getCallingConv() == CallingConv::SwiftTail ||
3446       CI.getCallingConv() == CallingConv::Tail) {
3447     StringRef CCName =
3448         CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc";
3449 
3450     // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
3451     //   are allowed in swifttailcc call
3452     for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3453       AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3454       SmallString<32> Context{CCName, StringRef(" musttail caller")};
3455       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3456     }
3457     for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) {
3458       AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3459       SmallString<32> Context{CCName, StringRef(" musttail callee")};
3460       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3461     }
3462     // - Varargs functions are not allowed
3463     Assert(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +
3464                                       " tail call for varargs function");
3465     return;
3466   }
3467 
3468   // - The caller and callee prototypes must match.  Pointer types of
3469   //   parameters or return types may differ in pointee type, but not
3470   //   address space.
3471   if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3472     Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3473            "cannot guarantee tail call due to mismatched parameter counts",
3474            &CI);
3475     for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3476       Assert(
3477           isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3478           "cannot guarantee tail call due to mismatched parameter types", &CI);
3479     }
3480   }
3481 
3482   // - All ABI-impacting function attributes, such as sret, byval, inreg,
3483   //   returned, preallocated, and inalloca, must match.
3484   for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3485     AttrBuilder CallerABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3486     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3487     Assert(CallerABIAttrs == CalleeABIAttrs,
3488            "cannot guarantee tail call due to mismatched ABI impacting "
3489            "function attributes",
3490            &CI, CI.getOperand(I));
3491   }
3492 }
3493 
3494 void Verifier::visitCallInst(CallInst &CI) {
3495   visitCallBase(CI);
3496 
3497   if (CI.isMustTailCall())
3498     verifyMustTailCall(CI);
3499 }
3500 
3501 void Verifier::visitInvokeInst(InvokeInst &II) {
3502   visitCallBase(II);
3503 
3504   // Verify that the first non-PHI instruction of the unwind destination is an
3505   // exception handling instruction.
3506   Assert(
3507       II.getUnwindDest()->isEHPad(),
3508       "The unwind destination does not have an exception handling instruction!",
3509       &II);
3510 
3511   visitTerminator(II);
3512 }
3513 
3514 /// visitUnaryOperator - Check the argument to the unary operator.
3515 ///
3516 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3517   Assert(U.getType() == U.getOperand(0)->getType(),
3518          "Unary operators must have same type for"
3519          "operands and result!",
3520          &U);
3521 
3522   switch (U.getOpcode()) {
3523   // Check that floating-point arithmetic operators are only used with
3524   // floating-point operands.
3525   case Instruction::FNeg:
3526     Assert(U.getType()->isFPOrFPVectorTy(),
3527            "FNeg operator only works with float types!", &U);
3528     break;
3529   default:
3530     llvm_unreachable("Unknown UnaryOperator opcode!");
3531   }
3532 
3533   visitInstruction(U);
3534 }
3535 
3536 /// visitBinaryOperator - Check that both arguments to the binary operator are
3537 /// of the same type!
3538 ///
3539 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3540   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3541          "Both operands to a binary operator are not of the same type!", &B);
3542 
3543   switch (B.getOpcode()) {
3544   // Check that integer arithmetic operators are only used with
3545   // integral operands.
3546   case Instruction::Add:
3547   case Instruction::Sub:
3548   case Instruction::Mul:
3549   case Instruction::SDiv:
3550   case Instruction::UDiv:
3551   case Instruction::SRem:
3552   case Instruction::URem:
3553     Assert(B.getType()->isIntOrIntVectorTy(),
3554            "Integer arithmetic operators only work with integral types!", &B);
3555     Assert(B.getType() == B.getOperand(0)->getType(),
3556            "Integer arithmetic operators must have same type "
3557            "for operands and result!",
3558            &B);
3559     break;
3560   // Check that floating-point arithmetic operators are only used with
3561   // floating-point operands.
3562   case Instruction::FAdd:
3563   case Instruction::FSub:
3564   case Instruction::FMul:
3565   case Instruction::FDiv:
3566   case Instruction::FRem:
3567     Assert(B.getType()->isFPOrFPVectorTy(),
3568            "Floating-point arithmetic operators only work with "
3569            "floating-point types!",
3570            &B);
3571     Assert(B.getType() == B.getOperand(0)->getType(),
3572            "Floating-point arithmetic operators must have same type "
3573            "for operands and result!",
3574            &B);
3575     break;
3576   // Check that logical operators are only used with integral operands.
3577   case Instruction::And:
3578   case Instruction::Or:
3579   case Instruction::Xor:
3580     Assert(B.getType()->isIntOrIntVectorTy(),
3581            "Logical operators only work with integral types!", &B);
3582     Assert(B.getType() == B.getOperand(0)->getType(),
3583            "Logical operators must have same type for operands and result!",
3584            &B);
3585     break;
3586   case Instruction::Shl:
3587   case Instruction::LShr:
3588   case Instruction::AShr:
3589     Assert(B.getType()->isIntOrIntVectorTy(),
3590            "Shifts only work with integral types!", &B);
3591     Assert(B.getType() == B.getOperand(0)->getType(),
3592            "Shift return type must be same as operands!", &B);
3593     break;
3594   default:
3595     llvm_unreachable("Unknown BinaryOperator opcode!");
3596   }
3597 
3598   visitInstruction(B);
3599 }
3600 
3601 void Verifier::visitICmpInst(ICmpInst &IC) {
3602   // Check that the operands are the same type
3603   Type *Op0Ty = IC.getOperand(0)->getType();
3604   Type *Op1Ty = IC.getOperand(1)->getType();
3605   Assert(Op0Ty == Op1Ty,
3606          "Both operands to ICmp instruction are not of the same type!", &IC);
3607   // Check that the operands are the right type
3608   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3609          "Invalid operand types for ICmp instruction", &IC);
3610   // Check that the predicate is valid.
3611   Assert(IC.isIntPredicate(),
3612          "Invalid predicate in ICmp instruction!", &IC);
3613 
3614   visitInstruction(IC);
3615 }
3616 
3617 void Verifier::visitFCmpInst(FCmpInst &FC) {
3618   // Check that the operands are the same type
3619   Type *Op0Ty = FC.getOperand(0)->getType();
3620   Type *Op1Ty = FC.getOperand(1)->getType();
3621   Assert(Op0Ty == Op1Ty,
3622          "Both operands to FCmp instruction are not of the same type!", &FC);
3623   // Check that the operands are the right type
3624   Assert(Op0Ty->isFPOrFPVectorTy(),
3625          "Invalid operand types for FCmp instruction", &FC);
3626   // Check that the predicate is valid.
3627   Assert(FC.isFPPredicate(),
3628          "Invalid predicate in FCmp instruction!", &FC);
3629 
3630   visitInstruction(FC);
3631 }
3632 
3633 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3634   Assert(
3635       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3636       "Invalid extractelement operands!", &EI);
3637   visitInstruction(EI);
3638 }
3639 
3640 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3641   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3642                                             IE.getOperand(2)),
3643          "Invalid insertelement operands!", &IE);
3644   visitInstruction(IE);
3645 }
3646 
3647 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3648   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3649                                             SV.getShuffleMask()),
3650          "Invalid shufflevector operands!", &SV);
3651   visitInstruction(SV);
3652 }
3653 
3654 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3655   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3656 
3657   Assert(isa<PointerType>(TargetTy),
3658          "GEP base pointer is not a vector or a vector of pointers", &GEP);
3659   Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3660 
3661   SmallVector<Value *, 16> Idxs(GEP.indices());
3662   Assert(all_of(
3663       Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3664       "GEP indexes must be integers", &GEP);
3665   Type *ElTy =
3666       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3667   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3668 
3669   Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3670              GEP.getResultElementType() == ElTy,
3671          "GEP is not of right type for indices!", &GEP, ElTy);
3672 
3673   if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
3674     // Additional checks for vector GEPs.
3675     ElementCount GEPWidth = GEPVTy->getElementCount();
3676     if (GEP.getPointerOperandType()->isVectorTy())
3677       Assert(
3678           GEPWidth ==
3679               cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
3680           "Vector GEP result width doesn't match operand's", &GEP);
3681     for (Value *Idx : Idxs) {
3682       Type *IndexTy = Idx->getType();
3683       if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
3684         ElementCount IndexWidth = IndexVTy->getElementCount();
3685         Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3686       }
3687       Assert(IndexTy->isIntOrIntVectorTy(),
3688              "All GEP indices should be of integer type");
3689     }
3690   }
3691 
3692   if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3693     Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
3694            "GEP address space doesn't match type", &GEP);
3695   }
3696 
3697   visitInstruction(GEP);
3698 }
3699 
3700 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3701   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3702 }
3703 
3704 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3705   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3706          "precondition violation");
3707 
3708   unsigned NumOperands = Range->getNumOperands();
3709   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3710   unsigned NumRanges = NumOperands / 2;
3711   Assert(NumRanges >= 1, "It should have at least one range!", Range);
3712 
3713   ConstantRange LastRange(1, true); // Dummy initial value
3714   for (unsigned i = 0; i < NumRanges; ++i) {
3715     ConstantInt *Low =
3716         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3717     Assert(Low, "The lower limit must be an integer!", Low);
3718     ConstantInt *High =
3719         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3720     Assert(High, "The upper limit must be an integer!", High);
3721     Assert(High->getType() == Low->getType() && High->getType() == Ty,
3722            "Range types must match instruction type!", &I);
3723 
3724     APInt HighV = High->getValue();
3725     APInt LowV = Low->getValue();
3726     ConstantRange CurRange(LowV, HighV);
3727     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3728            "Range must not be empty!", Range);
3729     if (i != 0) {
3730       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3731              "Intervals are overlapping", Range);
3732       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3733              Range);
3734       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3735              Range);
3736     }
3737     LastRange = ConstantRange(LowV, HighV);
3738   }
3739   if (NumRanges > 2) {
3740     APInt FirstLow =
3741         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3742     APInt FirstHigh =
3743         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3744     ConstantRange FirstRange(FirstLow, FirstHigh);
3745     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3746            "Intervals are overlapping", Range);
3747     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3748            Range);
3749   }
3750 }
3751 
3752 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3753   unsigned Size = DL.getTypeSizeInBits(Ty);
3754   Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3755   Assert(!(Size & (Size - 1)),
3756          "atomic memory access' operand must have a power-of-two size", Ty, I);
3757 }
3758 
3759 void Verifier::visitLoadInst(LoadInst &LI) {
3760   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3761   Assert(PTy, "Load operand must be a pointer.", &LI);
3762   Type *ElTy = LI.getType();
3763   if (MaybeAlign A = LI.getAlign()) {
3764     Assert(A->value() <= Value::MaximumAlignment,
3765            "huge alignment values are unsupported", &LI);
3766   }
3767   Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3768   if (LI.isAtomic()) {
3769     Assert(LI.getOrdering() != AtomicOrdering::Release &&
3770                LI.getOrdering() != AtomicOrdering::AcquireRelease,
3771            "Load cannot have Release ordering", &LI);
3772     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3773            "atomic load operand must have integer, pointer, or floating point "
3774            "type!",
3775            ElTy, &LI);
3776     checkAtomicMemAccessSize(ElTy, &LI);
3777   } else {
3778     Assert(LI.getSyncScopeID() == SyncScope::System,
3779            "Non-atomic load cannot have SynchronizationScope specified", &LI);
3780   }
3781 
3782   visitInstruction(LI);
3783 }
3784 
3785 void Verifier::visitStoreInst(StoreInst &SI) {
3786   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3787   Assert(PTy, "Store operand must be a pointer.", &SI);
3788   Type *ElTy = SI.getOperand(0)->getType();
3789   Assert(PTy->isOpaqueOrPointeeTypeMatches(ElTy),
3790          "Stored value type does not match pointer operand type!", &SI, ElTy);
3791   if (MaybeAlign A = SI.getAlign()) {
3792     Assert(A->value() <= Value::MaximumAlignment,
3793            "huge alignment values are unsupported", &SI);
3794   }
3795   Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3796   if (SI.isAtomic()) {
3797     Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3798                SI.getOrdering() != AtomicOrdering::AcquireRelease,
3799            "Store cannot have Acquire ordering", &SI);
3800     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3801            "atomic store operand must have integer, pointer, or floating point "
3802            "type!",
3803            ElTy, &SI);
3804     checkAtomicMemAccessSize(ElTy, &SI);
3805   } else {
3806     Assert(SI.getSyncScopeID() == SyncScope::System,
3807            "Non-atomic store cannot have SynchronizationScope specified", &SI);
3808   }
3809   visitInstruction(SI);
3810 }
3811 
3812 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3813 void Verifier::verifySwiftErrorCall(CallBase &Call,
3814                                     const Value *SwiftErrorVal) {
3815   for (const auto &I : llvm::enumerate(Call.args())) {
3816     if (I.value() == SwiftErrorVal) {
3817       Assert(Call.paramHasAttr(I.index(), Attribute::SwiftError),
3818              "swifterror value when used in a callsite should be marked "
3819              "with swifterror attribute",
3820              SwiftErrorVal, Call);
3821     }
3822   }
3823 }
3824 
3825 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3826   // Check that swifterror value is only used by loads, stores, or as
3827   // a swifterror argument.
3828   for (const User *U : SwiftErrorVal->users()) {
3829     Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3830            isa<InvokeInst>(U),
3831            "swifterror value can only be loaded and stored from, or "
3832            "as a swifterror argument!",
3833            SwiftErrorVal, U);
3834     // If it is used by a store, check it is the second operand.
3835     if (auto StoreI = dyn_cast<StoreInst>(U))
3836       Assert(StoreI->getOperand(1) == SwiftErrorVal,
3837              "swifterror value should be the second operand when used "
3838              "by stores", SwiftErrorVal, U);
3839     if (auto *Call = dyn_cast<CallBase>(U))
3840       verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3841   }
3842 }
3843 
3844 void Verifier::visitAllocaInst(AllocaInst &AI) {
3845   SmallPtrSet<Type*, 4> Visited;
3846   Assert(AI.getAllocatedType()->isSized(&Visited),
3847          "Cannot allocate unsized type", &AI);
3848   Assert(AI.getArraySize()->getType()->isIntegerTy(),
3849          "Alloca array size must have integer type", &AI);
3850   if (MaybeAlign A = AI.getAlign()) {
3851     Assert(A->value() <= Value::MaximumAlignment,
3852            "huge alignment values are unsupported", &AI);
3853   }
3854 
3855   if (AI.isSwiftError()) {
3856     verifySwiftErrorValue(&AI);
3857   }
3858 
3859   visitInstruction(AI);
3860 }
3861 
3862 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3863   Type *ElTy = CXI.getOperand(1)->getType();
3864   Assert(ElTy->isIntOrPtrTy(),
3865          "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3866   checkAtomicMemAccessSize(ElTy, &CXI);
3867   visitInstruction(CXI);
3868 }
3869 
3870 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3871   Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3872          "atomicrmw instructions cannot be unordered.", &RMWI);
3873   auto Op = RMWI.getOperation();
3874   Type *ElTy = RMWI.getOperand(1)->getType();
3875   if (Op == AtomicRMWInst::Xchg) {
3876     Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
3877            AtomicRMWInst::getOperationName(Op) +
3878            " operand must have integer or floating point type!",
3879            &RMWI, ElTy);
3880   } else if (AtomicRMWInst::isFPOperation(Op)) {
3881     Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
3882            AtomicRMWInst::getOperationName(Op) +
3883            " operand must have floating point type!",
3884            &RMWI, ElTy);
3885   } else {
3886     Assert(ElTy->isIntegerTy(), "atomicrmw " +
3887            AtomicRMWInst::getOperationName(Op) +
3888            " operand must have integer type!",
3889            &RMWI, ElTy);
3890   }
3891   checkAtomicMemAccessSize(ElTy, &RMWI);
3892   Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
3893          "Invalid binary operation!", &RMWI);
3894   visitInstruction(RMWI);
3895 }
3896 
3897 void Verifier::visitFenceInst(FenceInst &FI) {
3898   const AtomicOrdering Ordering = FI.getOrdering();
3899   Assert(Ordering == AtomicOrdering::Acquire ||
3900              Ordering == AtomicOrdering::Release ||
3901              Ordering == AtomicOrdering::AcquireRelease ||
3902              Ordering == AtomicOrdering::SequentiallyConsistent,
3903          "fence instructions may only have acquire, release, acq_rel, or "
3904          "seq_cst ordering.",
3905          &FI);
3906   visitInstruction(FI);
3907 }
3908 
3909 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3910   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3911                                           EVI.getIndices()) == EVI.getType(),
3912          "Invalid ExtractValueInst operands!", &EVI);
3913 
3914   visitInstruction(EVI);
3915 }
3916 
3917 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3918   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3919                                           IVI.getIndices()) ==
3920              IVI.getOperand(1)->getType(),
3921          "Invalid InsertValueInst operands!", &IVI);
3922 
3923   visitInstruction(IVI);
3924 }
3925 
3926 static Value *getParentPad(Value *EHPad) {
3927   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3928     return FPI->getParentPad();
3929 
3930   return cast<CatchSwitchInst>(EHPad)->getParentPad();
3931 }
3932 
3933 void Verifier::visitEHPadPredecessors(Instruction &I) {
3934   assert(I.isEHPad());
3935 
3936   BasicBlock *BB = I.getParent();
3937   Function *F = BB->getParent();
3938 
3939   Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3940 
3941   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3942     // The landingpad instruction defines its parent as a landing pad block. The
3943     // landing pad block may be branched to only by the unwind edge of an
3944     // invoke.
3945     for (BasicBlock *PredBB : predecessors(BB)) {
3946       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3947       Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3948              "Block containing LandingPadInst must be jumped to "
3949              "only by the unwind edge of an invoke.",
3950              LPI);
3951     }
3952     return;
3953   }
3954   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3955     if (!pred_empty(BB))
3956       Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3957              "Block containg CatchPadInst must be jumped to "
3958              "only by its catchswitch.",
3959              CPI);
3960     Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3961            "Catchswitch cannot unwind to one of its catchpads",
3962            CPI->getCatchSwitch(), CPI);
3963     return;
3964   }
3965 
3966   // Verify that each pred has a legal terminator with a legal to/from EH
3967   // pad relationship.
3968   Instruction *ToPad = &I;
3969   Value *ToPadParent = getParentPad(ToPad);
3970   for (BasicBlock *PredBB : predecessors(BB)) {
3971     Instruction *TI = PredBB->getTerminator();
3972     Value *FromPad;
3973     if (auto *II = dyn_cast<InvokeInst>(TI)) {
3974       Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3975              "EH pad must be jumped to via an unwind edge", ToPad, II);
3976       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3977         FromPad = Bundle->Inputs[0];
3978       else
3979         FromPad = ConstantTokenNone::get(II->getContext());
3980     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3981       FromPad = CRI->getOperand(0);
3982       Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3983     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3984       FromPad = CSI;
3985     } else {
3986       Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3987     }
3988 
3989     // The edge may exit from zero or more nested pads.
3990     SmallSet<Value *, 8> Seen;
3991     for (;; FromPad = getParentPad(FromPad)) {
3992       Assert(FromPad != ToPad,
3993              "EH pad cannot handle exceptions raised within it", FromPad, TI);
3994       if (FromPad == ToPadParent) {
3995         // This is a legal unwind edge.
3996         break;
3997       }
3998       Assert(!isa<ConstantTokenNone>(FromPad),
3999              "A single unwind edge may only enter one EH pad", TI);
4000       Assert(Seen.insert(FromPad).second,
4001              "EH pad jumps through a cycle of pads", FromPad);
4002 
4003       // This will be diagnosed on the corresponding instruction already. We
4004       // need the extra check here to make sure getParentPad() works.
4005       Assert(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad),
4006              "Parent pad must be catchpad/cleanuppad/catchswitch", TI);
4007     }
4008   }
4009 }
4010 
4011 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
4012   // The landingpad instruction is ill-formed if it doesn't have any clauses and
4013   // isn't a cleanup.
4014   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
4015          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
4016 
4017   visitEHPadPredecessors(LPI);
4018 
4019   if (!LandingPadResultTy)
4020     LandingPadResultTy = LPI.getType();
4021   else
4022     Assert(LandingPadResultTy == LPI.getType(),
4023            "The landingpad instruction should have a consistent result type "
4024            "inside a function.",
4025            &LPI);
4026 
4027   Function *F = LPI.getParent()->getParent();
4028   Assert(F->hasPersonalityFn(),
4029          "LandingPadInst needs to be in a function with a personality.", &LPI);
4030 
4031   // The landingpad instruction must be the first non-PHI instruction in the
4032   // block.
4033   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
4034          "LandingPadInst not the first non-PHI instruction in the block.",
4035          &LPI);
4036 
4037   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
4038     Constant *Clause = LPI.getClause(i);
4039     if (LPI.isCatch(i)) {
4040       Assert(isa<PointerType>(Clause->getType()),
4041              "Catch operand does not have pointer type!", &LPI);
4042     } else {
4043       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
4044       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
4045              "Filter operand is not an array of constants!", &LPI);
4046     }
4047   }
4048 
4049   visitInstruction(LPI);
4050 }
4051 
4052 void Verifier::visitResumeInst(ResumeInst &RI) {
4053   Assert(RI.getFunction()->hasPersonalityFn(),
4054          "ResumeInst needs to be in a function with a personality.", &RI);
4055 
4056   if (!LandingPadResultTy)
4057     LandingPadResultTy = RI.getValue()->getType();
4058   else
4059     Assert(LandingPadResultTy == RI.getValue()->getType(),
4060            "The resume instruction should have a consistent result type "
4061            "inside a function.",
4062            &RI);
4063 
4064   visitTerminator(RI);
4065 }
4066 
4067 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
4068   BasicBlock *BB = CPI.getParent();
4069 
4070   Function *F = BB->getParent();
4071   Assert(F->hasPersonalityFn(),
4072          "CatchPadInst needs to be in a function with a personality.", &CPI);
4073 
4074   Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
4075          "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4076          CPI.getParentPad());
4077 
4078   // The catchpad instruction must be the first non-PHI instruction in the
4079   // block.
4080   Assert(BB->getFirstNonPHI() == &CPI,
4081          "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4082 
4083   visitEHPadPredecessors(CPI);
4084   visitFuncletPadInst(CPI);
4085 }
4086 
4087 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4088   Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
4089          "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4090          CatchReturn.getOperand(0));
4091 
4092   visitTerminator(CatchReturn);
4093 }
4094 
4095 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4096   BasicBlock *BB = CPI.getParent();
4097 
4098   Function *F = BB->getParent();
4099   Assert(F->hasPersonalityFn(),
4100          "CleanupPadInst needs to be in a function with a personality.", &CPI);
4101 
4102   // The cleanuppad instruction must be the first non-PHI instruction in the
4103   // block.
4104   Assert(BB->getFirstNonPHI() == &CPI,
4105          "CleanupPadInst not the first non-PHI instruction in the block.",
4106          &CPI);
4107 
4108   auto *ParentPad = CPI.getParentPad();
4109   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4110          "CleanupPadInst has an invalid parent.", &CPI);
4111 
4112   visitEHPadPredecessors(CPI);
4113   visitFuncletPadInst(CPI);
4114 }
4115 
4116 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4117   User *FirstUser = nullptr;
4118   Value *FirstUnwindPad = nullptr;
4119   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
4120   SmallSet<FuncletPadInst *, 8> Seen;
4121 
4122   while (!Worklist.empty()) {
4123     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4124     Assert(Seen.insert(CurrentPad).second,
4125            "FuncletPadInst must not be nested within itself", CurrentPad);
4126     Value *UnresolvedAncestorPad = nullptr;
4127     for (User *U : CurrentPad->users()) {
4128       BasicBlock *UnwindDest;
4129       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
4130         UnwindDest = CRI->getUnwindDest();
4131       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
4132         // We allow catchswitch unwind to caller to nest
4133         // within an outer pad that unwinds somewhere else,
4134         // because catchswitch doesn't have a nounwind variant.
4135         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
4136         if (CSI->unwindsToCaller())
4137           continue;
4138         UnwindDest = CSI->getUnwindDest();
4139       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
4140         UnwindDest = II->getUnwindDest();
4141       } else if (isa<CallInst>(U)) {
4142         // Calls which don't unwind may be found inside funclet
4143         // pads that unwind somewhere else.  We don't *require*
4144         // such calls to be annotated nounwind.
4145         continue;
4146       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
4147         // The unwind dest for a cleanup can only be found by
4148         // recursive search.  Add it to the worklist, and we'll
4149         // search for its first use that determines where it unwinds.
4150         Worklist.push_back(CPI);
4151         continue;
4152       } else {
4153         Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
4154         continue;
4155       }
4156 
4157       Value *UnwindPad;
4158       bool ExitsFPI;
4159       if (UnwindDest) {
4160         UnwindPad = UnwindDest->getFirstNonPHI();
4161         if (!cast<Instruction>(UnwindPad)->isEHPad())
4162           continue;
4163         Value *UnwindParent = getParentPad(UnwindPad);
4164         // Ignore unwind edges that don't exit CurrentPad.
4165         if (UnwindParent == CurrentPad)
4166           continue;
4167         // Determine whether the original funclet pad is exited,
4168         // and if we are scanning nested pads determine how many
4169         // of them are exited so we can stop searching their
4170         // children.
4171         Value *ExitedPad = CurrentPad;
4172         ExitsFPI = false;
4173         do {
4174           if (ExitedPad == &FPI) {
4175             ExitsFPI = true;
4176             // Now we can resolve any ancestors of CurrentPad up to
4177             // FPI, but not including FPI since we need to make sure
4178             // to check all direct users of FPI for consistency.
4179             UnresolvedAncestorPad = &FPI;
4180             break;
4181           }
4182           Value *ExitedParent = getParentPad(ExitedPad);
4183           if (ExitedParent == UnwindParent) {
4184             // ExitedPad is the ancestor-most pad which this unwind
4185             // edge exits, so we can resolve up to it, meaning that
4186             // ExitedParent is the first ancestor still unresolved.
4187             UnresolvedAncestorPad = ExitedParent;
4188             break;
4189           }
4190           ExitedPad = ExitedParent;
4191         } while (!isa<ConstantTokenNone>(ExitedPad));
4192       } else {
4193         // Unwinding to caller exits all pads.
4194         UnwindPad = ConstantTokenNone::get(FPI.getContext());
4195         ExitsFPI = true;
4196         UnresolvedAncestorPad = &FPI;
4197       }
4198 
4199       if (ExitsFPI) {
4200         // This unwind edge exits FPI.  Make sure it agrees with other
4201         // such edges.
4202         if (FirstUser) {
4203           Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
4204                                               "pad must have the same unwind "
4205                                               "dest",
4206                  &FPI, U, FirstUser);
4207         } else {
4208           FirstUser = U;
4209           FirstUnwindPad = UnwindPad;
4210           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4211           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4212               getParentPad(UnwindPad) == getParentPad(&FPI))
4213             SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4214         }
4215       }
4216       // Make sure we visit all uses of FPI, but for nested pads stop as
4217       // soon as we know where they unwind to.
4218       if (CurrentPad != &FPI)
4219         break;
4220     }
4221     if (UnresolvedAncestorPad) {
4222       if (CurrentPad == UnresolvedAncestorPad) {
4223         // When CurrentPad is FPI itself, we don't mark it as resolved even if
4224         // we've found an unwind edge that exits it, because we need to verify
4225         // all direct uses of FPI.
4226         assert(CurrentPad == &FPI);
4227         continue;
4228       }
4229       // Pop off the worklist any nested pads that we've found an unwind
4230       // destination for.  The pads on the worklist are the uncles,
4231       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
4232       // for all ancestors of CurrentPad up to but not including
4233       // UnresolvedAncestorPad.
4234       Value *ResolvedPad = CurrentPad;
4235       while (!Worklist.empty()) {
4236         Value *UnclePad = Worklist.back();
4237         Value *AncestorPad = getParentPad(UnclePad);
4238         // Walk ResolvedPad up the ancestor list until we either find the
4239         // uncle's parent or the last resolved ancestor.
4240         while (ResolvedPad != AncestorPad) {
4241           Value *ResolvedParent = getParentPad(ResolvedPad);
4242           if (ResolvedParent == UnresolvedAncestorPad) {
4243             break;
4244           }
4245           ResolvedPad = ResolvedParent;
4246         }
4247         // If the resolved ancestor search didn't find the uncle's parent,
4248         // then the uncle is not yet resolved.
4249         if (ResolvedPad != AncestorPad)
4250           break;
4251         // This uncle is resolved, so pop it from the worklist.
4252         Worklist.pop_back();
4253       }
4254     }
4255   }
4256 
4257   if (FirstUnwindPad) {
4258     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
4259       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4260       Value *SwitchUnwindPad;
4261       if (SwitchUnwindDest)
4262         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
4263       else
4264         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
4265       Assert(SwitchUnwindPad == FirstUnwindPad,
4266              "Unwind edges out of a catch must have the same unwind dest as "
4267              "the parent catchswitch",
4268              &FPI, FirstUser, CatchSwitch);
4269     }
4270   }
4271 
4272   visitInstruction(FPI);
4273 }
4274 
4275 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4276   BasicBlock *BB = CatchSwitch.getParent();
4277 
4278   Function *F = BB->getParent();
4279   Assert(F->hasPersonalityFn(),
4280          "CatchSwitchInst needs to be in a function with a personality.",
4281          &CatchSwitch);
4282 
4283   // The catchswitch instruction must be the first non-PHI instruction in the
4284   // block.
4285   Assert(BB->getFirstNonPHI() == &CatchSwitch,
4286          "CatchSwitchInst not the first non-PHI instruction in the block.",
4287          &CatchSwitch);
4288 
4289   auto *ParentPad = CatchSwitch.getParentPad();
4290   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4291          "CatchSwitchInst has an invalid parent.", ParentPad);
4292 
4293   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
4294     Instruction *I = UnwindDest->getFirstNonPHI();
4295     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
4296            "CatchSwitchInst must unwind to an EH block which is not a "
4297            "landingpad.",
4298            &CatchSwitch);
4299 
4300     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
4301     if (getParentPad(I) == ParentPad)
4302       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4303   }
4304 
4305   Assert(CatchSwitch.getNumHandlers() != 0,
4306          "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4307 
4308   for (BasicBlock *Handler : CatchSwitch.handlers()) {
4309     Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
4310            "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4311   }
4312 
4313   visitEHPadPredecessors(CatchSwitch);
4314   visitTerminator(CatchSwitch);
4315 }
4316 
4317 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4318   Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
4319          "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
4320          CRI.getOperand(0));
4321 
4322   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4323     Instruction *I = UnwindDest->getFirstNonPHI();
4324     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
4325            "CleanupReturnInst must unwind to an EH block which is not a "
4326            "landingpad.",
4327            &CRI);
4328   }
4329 
4330   visitTerminator(CRI);
4331 }
4332 
4333 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4334   Instruction *Op = cast<Instruction>(I.getOperand(i));
4335   // If the we have an invalid invoke, don't try to compute the dominance.
4336   // We already reject it in the invoke specific checks and the dominance
4337   // computation doesn't handle multiple edges.
4338   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4339     if (II->getNormalDest() == II->getUnwindDest())
4340       return;
4341   }
4342 
4343   // Quick check whether the def has already been encountered in the same block.
4344   // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4345   // uses are defined to happen on the incoming edge, not at the instruction.
4346   //
4347   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4348   // wrapping an SSA value, assert that we've already encountered it.  See
4349   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4350   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4351     return;
4352 
4353   const Use &U = I.getOperandUse(i);
4354   Assert(DT.dominates(Op, U),
4355          "Instruction does not dominate all uses!", Op, &I);
4356 }
4357 
4358 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4359   Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
4360          "apply only to pointer types", &I);
4361   Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4362          "dereferenceable, dereferenceable_or_null apply only to load"
4363          " and inttoptr instructions, use attributes for calls or invokes", &I);
4364   Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
4365          "take one operand!", &I);
4366   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4367   Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
4368          "dereferenceable_or_null metadata value must be an i64!", &I);
4369 }
4370 
4371 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4372   Assert(MD->getNumOperands() >= 2,
4373          "!prof annotations should have no less than 2 operands", MD);
4374 
4375   // Check first operand.
4376   Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4377   Assert(isa<MDString>(MD->getOperand(0)),
4378          "expected string with name of the !prof annotation", MD);
4379   MDString *MDS = cast<MDString>(MD->getOperand(0));
4380   StringRef ProfName = MDS->getString();
4381 
4382   // Check consistency of !prof branch_weights metadata.
4383   if (ProfName.equals("branch_weights")) {
4384     if (isa<InvokeInst>(&I)) {
4385       Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
4386              "Wrong number of InvokeInst branch_weights operands", MD);
4387     } else {
4388       unsigned ExpectedNumOperands = 0;
4389       if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4390         ExpectedNumOperands = BI->getNumSuccessors();
4391       else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4392         ExpectedNumOperands = SI->getNumSuccessors();
4393       else if (isa<CallInst>(&I))
4394         ExpectedNumOperands = 1;
4395       else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4396         ExpectedNumOperands = IBI->getNumDestinations();
4397       else if (isa<SelectInst>(&I))
4398         ExpectedNumOperands = 2;
4399       else
4400         CheckFailed("!prof branch_weights are not allowed for this instruction",
4401                     MD);
4402 
4403       Assert(MD->getNumOperands() == 1 + ExpectedNumOperands,
4404              "Wrong number of operands", MD);
4405     }
4406     for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4407       auto &MDO = MD->getOperand(i);
4408       Assert(MDO, "second operand should not be null", MD);
4409       Assert(mdconst::dyn_extract<ConstantInt>(MDO),
4410              "!prof brunch_weights operand is not a const int");
4411     }
4412   }
4413 }
4414 
4415 void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
4416   Assert(isa<MDTuple>(Annotation), "annotation must be a tuple");
4417   Assert(Annotation->getNumOperands() >= 1,
4418          "annotation must have at least one operand");
4419   for (const MDOperand &Op : Annotation->operands())
4420     Assert(isa<MDString>(Op.get()), "operands must be strings");
4421 }
4422 
4423 void Verifier::visitAliasScopeMetadata(const MDNode *MD) {
4424   unsigned NumOps = MD->getNumOperands();
4425   Assert(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands",
4426          MD);
4427   Assert(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)),
4428          "first scope operand must be self-referential or string", MD);
4429   if (NumOps == 3)
4430     Assert(isa<MDString>(MD->getOperand(2)),
4431            "third scope operand must be string (if used)", MD);
4432 
4433   MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1));
4434   Assert(Domain != nullptr, "second scope operand must be MDNode", MD);
4435 
4436   unsigned NumDomainOps = Domain->getNumOperands();
4437   Assert(NumDomainOps >= 1 && NumDomainOps <= 2,
4438          "domain must have one or two operands", Domain);
4439   Assert(Domain->getOperand(0).get() == Domain ||
4440              isa<MDString>(Domain->getOperand(0)),
4441          "first domain operand must be self-referential or string", Domain);
4442   if (NumDomainOps == 2)
4443     Assert(isa<MDString>(Domain->getOperand(1)),
4444            "second domain operand must be string (if used)", Domain);
4445 }
4446 
4447 void Verifier::visitAliasScopeListMetadata(const MDNode *MD) {
4448   for (const MDOperand &Op : MD->operands()) {
4449     const MDNode *OpMD = dyn_cast<MDNode>(Op);
4450     Assert(OpMD != nullptr, "scope list must consist of MDNodes", MD);
4451     visitAliasScopeMetadata(OpMD);
4452   }
4453 }
4454 
4455 /// verifyInstruction - Verify that an instruction is well formed.
4456 ///
4457 void Verifier::visitInstruction(Instruction &I) {
4458   BasicBlock *BB = I.getParent();
4459   Assert(BB, "Instruction not embedded in basic block!", &I);
4460 
4461   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
4462     for (User *U : I.users()) {
4463       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
4464              "Only PHI nodes may reference their own value!", &I);
4465     }
4466   }
4467 
4468   // Check that void typed values don't have names
4469   Assert(!I.getType()->isVoidTy() || !I.hasName(),
4470          "Instruction has a name, but provides a void value!", &I);
4471 
4472   // Check that the return value of the instruction is either void or a legal
4473   // value type.
4474   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4475          "Instruction returns a non-scalar type!", &I);
4476 
4477   // Check that the instruction doesn't produce metadata. Calls are already
4478   // checked against the callee type.
4479   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4480          "Invalid use of metadata!", &I);
4481 
4482   // Check that all uses of the instruction, if they are instructions
4483   // themselves, actually have parent basic blocks.  If the use is not an
4484   // instruction, it is an error!
4485   for (Use &U : I.uses()) {
4486     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4487       Assert(Used->getParent() != nullptr,
4488              "Instruction referencing"
4489              " instruction not embedded in a basic block!",
4490              &I, Used);
4491     else {
4492       CheckFailed("Use of instruction is not an instruction!", U);
4493       return;
4494     }
4495   }
4496 
4497   // Get a pointer to the call base of the instruction if it is some form of
4498   // call.
4499   const CallBase *CBI = dyn_cast<CallBase>(&I);
4500 
4501   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4502     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4503 
4504     // Check to make sure that only first-class-values are operands to
4505     // instructions.
4506     if (!I.getOperand(i)->getType()->isFirstClassType()) {
4507       Assert(false, "Instruction operands must be first-class values!", &I);
4508     }
4509 
4510     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4511       // This code checks whether the function is used as the operand of a
4512       // clang_arc_attachedcall operand bundle.
4513       auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI,
4514                                       int Idx) {
4515         return CBI && CBI->isOperandBundleOfType(
4516                           LLVMContext::OB_clang_arc_attachedcall, Idx);
4517       };
4518 
4519       // Check to make sure that the "address of" an intrinsic function is never
4520       // taken. Ignore cases where the address of the intrinsic function is used
4521       // as the argument of operand bundle "clang.arc.attachedcall" as those
4522       // cases are handled in verifyAttachedCallBundle.
4523       Assert((!F->isIntrinsic() ||
4524               (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) ||
4525               IsAttachedCallOperand(F, CBI, i)),
4526              "Cannot take the address of an intrinsic!", &I);
4527       Assert(
4528           !F->isIntrinsic() || isa<CallInst>(I) ||
4529               F->getIntrinsicID() == Intrinsic::donothing ||
4530               F->getIntrinsicID() == Intrinsic::seh_try_begin ||
4531               F->getIntrinsicID() == Intrinsic::seh_try_end ||
4532               F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
4533               F->getIntrinsicID() == Intrinsic::seh_scope_end ||
4534               F->getIntrinsicID() == Intrinsic::coro_resume ||
4535               F->getIntrinsicID() == Intrinsic::coro_destroy ||
4536               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
4537               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4538               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4539               F->getIntrinsicID() == Intrinsic::wasm_rethrow ||
4540               IsAttachedCallOperand(F, CBI, i),
4541           "Cannot invoke an intrinsic other than donothing, patchpoint, "
4542           "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall",
4543           &I);
4544       Assert(F->getParent() == &M, "Referencing function in another module!",
4545              &I, &M, F, F->getParent());
4546     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4547       Assert(OpBB->getParent() == BB->getParent(),
4548              "Referring to a basic block in another function!", &I);
4549     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4550       Assert(OpArg->getParent() == BB->getParent(),
4551              "Referring to an argument in another function!", &I);
4552     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4553       Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
4554              &M, GV, GV->getParent());
4555     } else if (isa<Instruction>(I.getOperand(i))) {
4556       verifyDominatesUse(I, i);
4557     } else if (isa<InlineAsm>(I.getOperand(i))) {
4558       Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4559              "Cannot take the address of an inline asm!", &I);
4560     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4561       if (CE->getType()->isPtrOrPtrVectorTy()) {
4562         // If we have a ConstantExpr pointer, we need to see if it came from an
4563         // illegal bitcast.
4564         visitConstantExprsRecursively(CE);
4565       }
4566     }
4567   }
4568 
4569   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4570     Assert(I.getType()->isFPOrFPVectorTy(),
4571            "fpmath requires a floating point result!", &I);
4572     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4573     if (ConstantFP *CFP0 =
4574             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4575       const APFloat &Accuracy = CFP0->getValueAPF();
4576       Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4577              "fpmath accuracy must have float type", &I);
4578       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4579              "fpmath accuracy not a positive number!", &I);
4580     } else {
4581       Assert(false, "invalid fpmath accuracy!", &I);
4582     }
4583   }
4584 
4585   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4586     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4587            "Ranges are only for loads, calls and invokes!", &I);
4588     visitRangeMetadata(I, Range, I.getType());
4589   }
4590 
4591   if (I.hasMetadata(LLVMContext::MD_invariant_group)) {
4592     Assert(isa<LoadInst>(I) || isa<StoreInst>(I),
4593            "invariant.group metadata is only for loads and stores", &I);
4594   }
4595 
4596   if (I.getMetadata(LLVMContext::MD_nonnull)) {
4597     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4598            &I);
4599     Assert(isa<LoadInst>(I),
4600            "nonnull applies only to load instructions, use attributes"
4601            " for calls or invokes",
4602            &I);
4603   }
4604 
4605   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4606     visitDereferenceableMetadata(I, MD);
4607 
4608   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4609     visitDereferenceableMetadata(I, MD);
4610 
4611   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4612     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4613 
4614   if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias))
4615     visitAliasScopeListMetadata(MD);
4616   if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope))
4617     visitAliasScopeListMetadata(MD);
4618 
4619   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4620     Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
4621            &I);
4622     Assert(isa<LoadInst>(I), "align applies only to load instructions, "
4623            "use attributes for calls or invokes", &I);
4624     Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4625     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4626     Assert(CI && CI->getType()->isIntegerTy(64),
4627            "align metadata value must be an i64!", &I);
4628     uint64_t Align = CI->getZExtValue();
4629     Assert(isPowerOf2_64(Align),
4630            "align metadata value must be a power of 2!", &I);
4631     Assert(Align <= Value::MaximumAlignment,
4632            "alignment is larger that implementation defined limit", &I);
4633   }
4634 
4635   if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
4636     visitProfMetadata(I, MD);
4637 
4638   if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation))
4639     visitAnnotationMetadata(Annotation);
4640 
4641   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4642     AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4643     visitMDNode(*N, AreDebugLocsAllowed::Yes);
4644   }
4645 
4646   if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
4647     verifyFragmentExpression(*DII);
4648     verifyNotEntryValue(*DII);
4649   }
4650 
4651   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
4652   I.getAllMetadata(MDs);
4653   for (auto Attachment : MDs) {
4654     unsigned Kind = Attachment.first;
4655     auto AllowLocs =
4656         (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
4657             ? AreDebugLocsAllowed::Yes
4658             : AreDebugLocsAllowed::No;
4659     visitMDNode(*Attachment.second, AllowLocs);
4660   }
4661 
4662   InstsInThisBlock.insert(&I);
4663 }
4664 
4665 /// Allow intrinsics to be verified in different ways.
4666 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4667   Function *IF = Call.getCalledFunction();
4668   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4669          IF);
4670 
4671   // Verify that the intrinsic prototype lines up with what the .td files
4672   // describe.
4673   FunctionType *IFTy = IF->getFunctionType();
4674   bool IsVarArg = IFTy->isVarArg();
4675 
4676   SmallVector<Intrinsic::IITDescriptor, 8> Table;
4677   getIntrinsicInfoTableEntries(ID, Table);
4678   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4679 
4680   // Walk the descriptors to extract overloaded types.
4681   SmallVector<Type *, 4> ArgTys;
4682   Intrinsic::MatchIntrinsicTypesResult Res =
4683       Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
4684   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
4685          "Intrinsic has incorrect return type!", IF);
4686   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
4687          "Intrinsic has incorrect argument type!", IF);
4688 
4689   // Verify if the intrinsic call matches the vararg property.
4690   if (IsVarArg)
4691     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4692            "Intrinsic was not defined with variable arguments!", IF);
4693   else
4694     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4695            "Callsite was not defined with variable arguments!", IF);
4696 
4697   // All descriptors should be absorbed by now.
4698   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4699 
4700   // Now that we have the intrinsic ID and the actual argument types (and we
4701   // know they are legal for the intrinsic!) get the intrinsic name through the
4702   // usual means.  This allows us to verify the mangling of argument types into
4703   // the name.
4704   const std::string ExpectedName =
4705       Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy);
4706   Assert(ExpectedName == IF->getName(),
4707          "Intrinsic name not mangled correctly for type arguments! "
4708          "Should be: " +
4709              ExpectedName,
4710          IF);
4711 
4712   // If the intrinsic takes MDNode arguments, verify that they are either global
4713   // or are local to *this* function.
4714   for (Value *V : Call.args()) {
4715     if (auto *MD = dyn_cast<MetadataAsValue>(V))
4716       visitMetadataAsValue(*MD, Call.getCaller());
4717     if (auto *Const = dyn_cast<Constant>(V))
4718       Assert(!Const->getType()->isX86_AMXTy(),
4719              "const x86_amx is not allowed in argument!");
4720   }
4721 
4722   switch (ID) {
4723   default:
4724     break;
4725   case Intrinsic::assume: {
4726     for (auto &Elem : Call.bundle_op_infos()) {
4727       Assert(Elem.Tag->getKey() == "ignore" ||
4728                  Attribute::isExistingAttribute(Elem.Tag->getKey()),
4729              "tags must be valid attribute names", Call);
4730       Attribute::AttrKind Kind =
4731           Attribute::getAttrKindFromName(Elem.Tag->getKey());
4732       unsigned ArgCount = Elem.End - Elem.Begin;
4733       if (Kind == Attribute::Alignment) {
4734         Assert(ArgCount <= 3 && ArgCount >= 2,
4735                "alignment assumptions should have 2 or 3 arguments", Call);
4736         Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
4737                "first argument should be a pointer", Call);
4738         Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
4739                "second argument should be an integer", Call);
4740         if (ArgCount == 3)
4741           Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
4742                  "third argument should be an integer if present", Call);
4743         return;
4744       }
4745       Assert(ArgCount <= 2, "too many arguments", Call);
4746       if (Kind == Attribute::None)
4747         break;
4748       if (Attribute::isIntAttrKind(Kind)) {
4749         Assert(ArgCount == 2, "this attribute should have 2 arguments", Call);
4750         Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
4751                "the second argument should be a constant integral value", Call);
4752       } else if (Attribute::canUseAsParamAttr(Kind)) {
4753         Assert((ArgCount) == 1, "this attribute should have one argument",
4754                Call);
4755       } else if (Attribute::canUseAsFnAttr(Kind)) {
4756         Assert((ArgCount) == 0, "this attribute has no argument", Call);
4757       }
4758     }
4759     break;
4760   }
4761   case Intrinsic::coro_id: {
4762     auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4763     if (isa<ConstantPointerNull>(InfoArg))
4764       break;
4765     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4766     Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4767            "info argument of llvm.coro.id must refer to an initialized "
4768            "constant");
4769     Constant *Init = GV->getInitializer();
4770     Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4771            "info argument of llvm.coro.id must refer to either a struct or "
4772            "an array");
4773     break;
4774   }
4775 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC)                        \
4776   case Intrinsic::INTRINSIC:
4777 #include "llvm/IR/ConstrainedOps.def"
4778     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4779     break;
4780   case Intrinsic::dbg_declare: // llvm.dbg.declare
4781     Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
4782            "invalid llvm.dbg.declare intrinsic call 1", Call);
4783     visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4784     break;
4785   case Intrinsic::dbg_addr: // llvm.dbg.addr
4786     visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4787     break;
4788   case Intrinsic::dbg_value: // llvm.dbg.value
4789     visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4790     break;
4791   case Intrinsic::dbg_label: // llvm.dbg.label
4792     visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4793     break;
4794   case Intrinsic::memcpy:
4795   case Intrinsic::memcpy_inline:
4796   case Intrinsic::memmove:
4797   case Intrinsic::memset: {
4798     const auto *MI = cast<MemIntrinsic>(&Call);
4799     auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4800       return Alignment == 0 || isPowerOf2_32(Alignment);
4801     };
4802     Assert(IsValidAlignment(MI->getDestAlignment()),
4803            "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4804            Call);
4805     if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4806       Assert(IsValidAlignment(MTI->getSourceAlignment()),
4807              "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4808              Call);
4809     }
4810 
4811     break;
4812   }
4813   case Intrinsic::memcpy_element_unordered_atomic:
4814   case Intrinsic::memmove_element_unordered_atomic:
4815   case Intrinsic::memset_element_unordered_atomic: {
4816     const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4817 
4818     ConstantInt *ElementSizeCI =
4819         cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4820     const APInt &ElementSizeVal = ElementSizeCI->getValue();
4821     Assert(ElementSizeVal.isPowerOf2(),
4822            "element size of the element-wise atomic memory intrinsic "
4823            "must be a power of 2",
4824            Call);
4825 
4826     auto IsValidAlignment = [&](uint64_t Alignment) {
4827       return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4828     };
4829     uint64_t DstAlignment = AMI->getDestAlignment();
4830     Assert(IsValidAlignment(DstAlignment),
4831            "incorrect alignment of the destination argument", Call);
4832     if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4833       uint64_t SrcAlignment = AMT->getSourceAlignment();
4834       Assert(IsValidAlignment(SrcAlignment),
4835              "incorrect alignment of the source argument", Call);
4836     }
4837     break;
4838   }
4839   case Intrinsic::call_preallocated_setup: {
4840     auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
4841     Assert(NumArgs != nullptr,
4842            "llvm.call.preallocated.setup argument must be a constant");
4843     bool FoundCall = false;
4844     for (User *U : Call.users()) {
4845       auto *UseCall = dyn_cast<CallBase>(U);
4846       Assert(UseCall != nullptr,
4847              "Uses of llvm.call.preallocated.setup must be calls");
4848       const Function *Fn = UseCall->getCalledFunction();
4849       if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
4850         auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
4851         Assert(AllocArgIndex != nullptr,
4852                "llvm.call.preallocated.alloc arg index must be a constant");
4853         auto AllocArgIndexInt = AllocArgIndex->getValue();
4854         Assert(AllocArgIndexInt.sge(0) &&
4855                    AllocArgIndexInt.slt(NumArgs->getValue()),
4856                "llvm.call.preallocated.alloc arg index must be between 0 and "
4857                "corresponding "
4858                "llvm.call.preallocated.setup's argument count");
4859       } else if (Fn && Fn->getIntrinsicID() ==
4860                            Intrinsic::call_preallocated_teardown) {
4861         // nothing to do
4862       } else {
4863         Assert(!FoundCall, "Can have at most one call corresponding to a "
4864                            "llvm.call.preallocated.setup");
4865         FoundCall = true;
4866         size_t NumPreallocatedArgs = 0;
4867         for (unsigned i = 0; i < UseCall->arg_size(); i++) {
4868           if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
4869             ++NumPreallocatedArgs;
4870           }
4871         }
4872         Assert(NumPreallocatedArgs != 0,
4873                "cannot use preallocated intrinsics on a call without "
4874                "preallocated arguments");
4875         Assert(NumArgs->equalsInt(NumPreallocatedArgs),
4876                "llvm.call.preallocated.setup arg size must be equal to number "
4877                "of preallocated arguments "
4878                "at call site",
4879                Call, *UseCall);
4880         // getOperandBundle() cannot be called if more than one of the operand
4881         // bundle exists. There is already a check elsewhere for this, so skip
4882         // here if we see more than one.
4883         if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
4884             1) {
4885           return;
4886         }
4887         auto PreallocatedBundle =
4888             UseCall->getOperandBundle(LLVMContext::OB_preallocated);
4889         Assert(PreallocatedBundle,
4890                "Use of llvm.call.preallocated.setup outside intrinsics "
4891                "must be in \"preallocated\" operand bundle");
4892         Assert(PreallocatedBundle->Inputs.front().get() == &Call,
4893                "preallocated bundle must have token from corresponding "
4894                "llvm.call.preallocated.setup");
4895       }
4896     }
4897     break;
4898   }
4899   case Intrinsic::call_preallocated_arg: {
4900     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
4901     Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
4902                         Intrinsic::call_preallocated_setup,
4903            "llvm.call.preallocated.arg token argument must be a "
4904            "llvm.call.preallocated.setup");
4905     Assert(Call.hasFnAttr(Attribute::Preallocated),
4906            "llvm.call.preallocated.arg must be called with a \"preallocated\" "
4907            "call site attribute");
4908     break;
4909   }
4910   case Intrinsic::call_preallocated_teardown: {
4911     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
4912     Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
4913                         Intrinsic::call_preallocated_setup,
4914            "llvm.call.preallocated.teardown token argument must be a "
4915            "llvm.call.preallocated.setup");
4916     break;
4917   }
4918   case Intrinsic::gcroot:
4919   case Intrinsic::gcwrite:
4920   case Intrinsic::gcread:
4921     if (ID == Intrinsic::gcroot) {
4922       AllocaInst *AI =
4923           dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
4924       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
4925       Assert(isa<Constant>(Call.getArgOperand(1)),
4926              "llvm.gcroot parameter #2 must be a constant.", Call);
4927       if (!AI->getAllocatedType()->isPointerTy()) {
4928         Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
4929                "llvm.gcroot parameter #1 must either be a pointer alloca, "
4930                "or argument #2 must be a non-null constant.",
4931                Call);
4932       }
4933     }
4934 
4935     Assert(Call.getParent()->getParent()->hasGC(),
4936            "Enclosing function does not use GC.", Call);
4937     break;
4938   case Intrinsic::init_trampoline:
4939     Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
4940            "llvm.init_trampoline parameter #2 must resolve to a function.",
4941            Call);
4942     break;
4943   case Intrinsic::prefetch:
4944     Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
4945            cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
4946            "invalid arguments to llvm.prefetch", Call);
4947     break;
4948   case Intrinsic::stackprotector:
4949     Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
4950            "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
4951     break;
4952   case Intrinsic::localescape: {
4953     BasicBlock *BB = Call.getParent();
4954     Assert(BB == &BB->getParent()->front(),
4955            "llvm.localescape used outside of entry block", Call);
4956     Assert(!SawFrameEscape,
4957            "multiple calls to llvm.localescape in one function", Call);
4958     for (Value *Arg : Call.args()) {
4959       if (isa<ConstantPointerNull>(Arg))
4960         continue; // Null values are allowed as placeholders.
4961       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4962       Assert(AI && AI->isStaticAlloca(),
4963              "llvm.localescape only accepts static allocas", Call);
4964     }
4965     FrameEscapeInfo[BB->getParent()].first = Call.arg_size();
4966     SawFrameEscape = true;
4967     break;
4968   }
4969   case Intrinsic::localrecover: {
4970     Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
4971     Function *Fn = dyn_cast<Function>(FnArg);
4972     Assert(Fn && !Fn->isDeclaration(),
4973            "llvm.localrecover first "
4974            "argument must be function defined in this module",
4975            Call);
4976     auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
4977     auto &Entry = FrameEscapeInfo[Fn];
4978     Entry.second = unsigned(
4979         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4980     break;
4981   }
4982 
4983   case Intrinsic::experimental_gc_statepoint:
4984     if (auto *CI = dyn_cast<CallInst>(&Call))
4985       Assert(!CI->isInlineAsm(),
4986              "gc.statepoint support for inline assembly unimplemented", CI);
4987     Assert(Call.getParent()->getParent()->hasGC(),
4988            "Enclosing function does not use GC.", Call);
4989 
4990     verifyStatepoint(Call);
4991     break;
4992   case Intrinsic::experimental_gc_result: {
4993     Assert(Call.getParent()->getParent()->hasGC(),
4994            "Enclosing function does not use GC.", Call);
4995     // Are we tied to a statepoint properly?
4996     const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
4997     const Function *StatepointFn =
4998         StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
4999     Assert(StatepointFn && StatepointFn->isDeclaration() &&
5000                StatepointFn->getIntrinsicID() ==
5001                    Intrinsic::experimental_gc_statepoint,
5002            "gc.result operand #1 must be from a statepoint", Call,
5003            Call.getArgOperand(0));
5004 
5005     // Assert that result type matches wrapped callee.
5006     const Value *Target = StatepointCall->getArgOperand(2);
5007     auto *PT = cast<PointerType>(Target->getType());
5008     auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
5009     Assert(Call.getType() == TargetFuncType->getReturnType(),
5010            "gc.result result type does not match wrapped callee", Call);
5011     break;
5012   }
5013   case Intrinsic::experimental_gc_relocate: {
5014     Assert(Call.arg_size() == 3, "wrong number of arguments", Call);
5015 
5016     Assert(isa<PointerType>(Call.getType()->getScalarType()),
5017            "gc.relocate must return a pointer or a vector of pointers", Call);
5018 
5019     // Check that this relocate is correctly tied to the statepoint
5020 
5021     // This is case for relocate on the unwinding path of an invoke statepoint
5022     if (LandingPadInst *LandingPad =
5023             dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
5024 
5025       const BasicBlock *InvokeBB =
5026           LandingPad->getParent()->getUniquePredecessor();
5027 
5028       // Landingpad relocates should have only one predecessor with invoke
5029       // statepoint terminator
5030       Assert(InvokeBB, "safepoints should have unique landingpads",
5031              LandingPad->getParent());
5032       Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
5033              InvokeBB);
5034       Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()),
5035              "gc relocate should be linked to a statepoint", InvokeBB);
5036     } else {
5037       // In all other cases relocate should be tied to the statepoint directly.
5038       // This covers relocates on a normal return path of invoke statepoint and
5039       // relocates of a call statepoint.
5040       auto Token = Call.getArgOperand(0);
5041       Assert(isa<GCStatepointInst>(Token),
5042              "gc relocate is incorrectly tied to the statepoint", Call, Token);
5043     }
5044 
5045     // Verify rest of the relocate arguments.
5046     const CallBase &StatepointCall =
5047       *cast<GCRelocateInst>(Call).getStatepoint();
5048 
5049     // Both the base and derived must be piped through the safepoint.
5050     Value *Base = Call.getArgOperand(1);
5051     Assert(isa<ConstantInt>(Base),
5052            "gc.relocate operand #2 must be integer offset", Call);
5053 
5054     Value *Derived = Call.getArgOperand(2);
5055     Assert(isa<ConstantInt>(Derived),
5056            "gc.relocate operand #3 must be integer offset", Call);
5057 
5058     const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
5059     const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
5060 
5061     // Check the bounds
5062     if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) {
5063       Assert(BaseIndex < Opt->Inputs.size(),
5064              "gc.relocate: statepoint base index out of bounds", Call);
5065       Assert(DerivedIndex < Opt->Inputs.size(),
5066              "gc.relocate: statepoint derived index out of bounds", Call);
5067     }
5068 
5069     // Relocated value must be either a pointer type or vector-of-pointer type,
5070     // but gc_relocate does not need to return the same pointer type as the
5071     // relocated pointer. It can be casted to the correct type later if it's
5072     // desired. However, they must have the same address space and 'vectorness'
5073     GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
5074     Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
5075            "gc.relocate: relocated value must be a gc pointer", Call);
5076 
5077     auto ResultType = Call.getType();
5078     auto DerivedType = Relocate.getDerivedPtr()->getType();
5079     Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
5080            "gc.relocate: vector relocates to vector and pointer to pointer",
5081            Call);
5082     Assert(
5083         ResultType->getPointerAddressSpace() ==
5084             DerivedType->getPointerAddressSpace(),
5085         "gc.relocate: relocating a pointer shouldn't change its address space",
5086         Call);
5087     break;
5088   }
5089   case Intrinsic::eh_exceptioncode:
5090   case Intrinsic::eh_exceptionpointer: {
5091     Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
5092            "eh.exceptionpointer argument must be a catchpad", Call);
5093     break;
5094   }
5095   case Intrinsic::get_active_lane_mask: {
5096     Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a "
5097            "vector", Call);
5098     auto *ElemTy = Call.getType()->getScalarType();
5099     Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not "
5100            "i1", Call);
5101     break;
5102   }
5103   case Intrinsic::masked_load: {
5104     Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
5105            Call);
5106 
5107     Value *Ptr = Call.getArgOperand(0);
5108     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
5109     Value *Mask = Call.getArgOperand(2);
5110     Value *PassThru = Call.getArgOperand(3);
5111     Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
5112            Call);
5113     Assert(Alignment->getValue().isPowerOf2(),
5114            "masked_load: alignment must be a power of 2", Call);
5115 
5116     PointerType *PtrTy = cast<PointerType>(Ptr->getType());
5117     Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType()),
5118            "masked_load: return must match pointer type", Call);
5119     Assert(PassThru->getType() == Call.getType(),
5120            "masked_load: pass through and return type must match", Call);
5121     Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
5122                cast<VectorType>(Call.getType())->getElementCount(),
5123            "masked_load: vector mask must be same length as return", Call);
5124     break;
5125   }
5126   case Intrinsic::masked_store: {
5127     Value *Val = Call.getArgOperand(0);
5128     Value *Ptr = Call.getArgOperand(1);
5129     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
5130     Value *Mask = Call.getArgOperand(3);
5131     Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
5132            Call);
5133     Assert(Alignment->getValue().isPowerOf2(),
5134            "masked_store: alignment must be a power of 2", Call);
5135 
5136     PointerType *PtrTy = cast<PointerType>(Ptr->getType());
5137     Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType()),
5138            "masked_store: storee must match pointer type", Call);
5139     Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
5140                cast<VectorType>(Val->getType())->getElementCount(),
5141            "masked_store: vector mask must be same length as value", Call);
5142     break;
5143   }
5144 
5145   case Intrinsic::masked_gather: {
5146     const APInt &Alignment =
5147         cast<ConstantInt>(Call.getArgOperand(1))->getValue();
5148     Assert(Alignment.isZero() || Alignment.isPowerOf2(),
5149            "masked_gather: alignment must be 0 or a power of 2", Call);
5150     break;
5151   }
5152   case Intrinsic::masked_scatter: {
5153     const APInt &Alignment =
5154         cast<ConstantInt>(Call.getArgOperand(2))->getValue();
5155     Assert(Alignment.isZero() || Alignment.isPowerOf2(),
5156            "masked_scatter: alignment must be 0 or a power of 2", Call);
5157     break;
5158   }
5159 
5160   case Intrinsic::experimental_guard: {
5161     Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
5162     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5163            "experimental_guard must have exactly one "
5164            "\"deopt\" operand bundle");
5165     break;
5166   }
5167 
5168   case Intrinsic::experimental_deoptimize: {
5169     Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
5170            Call);
5171     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5172            "experimental_deoptimize must have exactly one "
5173            "\"deopt\" operand bundle");
5174     Assert(Call.getType() == Call.getFunction()->getReturnType(),
5175            "experimental_deoptimize return type must match caller return type");
5176 
5177     if (isa<CallInst>(Call)) {
5178       auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
5179       Assert(RI,
5180              "calls to experimental_deoptimize must be followed by a return");
5181 
5182       if (!Call.getType()->isVoidTy() && RI)
5183         Assert(RI->getReturnValue() == &Call,
5184                "calls to experimental_deoptimize must be followed by a return "
5185                "of the value computed by experimental_deoptimize");
5186     }
5187 
5188     break;
5189   }
5190   case Intrinsic::vector_reduce_and:
5191   case Intrinsic::vector_reduce_or:
5192   case Intrinsic::vector_reduce_xor:
5193   case Intrinsic::vector_reduce_add:
5194   case Intrinsic::vector_reduce_mul:
5195   case Intrinsic::vector_reduce_smax:
5196   case Intrinsic::vector_reduce_smin:
5197   case Intrinsic::vector_reduce_umax:
5198   case Intrinsic::vector_reduce_umin: {
5199     Type *ArgTy = Call.getArgOperand(0)->getType();
5200     Assert(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(),
5201            "Intrinsic has incorrect argument type!");
5202     break;
5203   }
5204   case Intrinsic::vector_reduce_fmax:
5205   case Intrinsic::vector_reduce_fmin: {
5206     Type *ArgTy = Call.getArgOperand(0)->getType();
5207     Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5208            "Intrinsic has incorrect argument type!");
5209     break;
5210   }
5211   case Intrinsic::vector_reduce_fadd:
5212   case Intrinsic::vector_reduce_fmul: {
5213     // Unlike the other reductions, the first argument is a start value. The
5214     // second argument is the vector to be reduced.
5215     Type *ArgTy = Call.getArgOperand(1)->getType();
5216     Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5217            "Intrinsic has incorrect argument type!");
5218     break;
5219   }
5220   case Intrinsic::smul_fix:
5221   case Intrinsic::smul_fix_sat:
5222   case Intrinsic::umul_fix:
5223   case Intrinsic::umul_fix_sat:
5224   case Intrinsic::sdiv_fix:
5225   case Intrinsic::sdiv_fix_sat:
5226   case Intrinsic::udiv_fix:
5227   case Intrinsic::udiv_fix_sat: {
5228     Value *Op1 = Call.getArgOperand(0);
5229     Value *Op2 = Call.getArgOperand(1);
5230     Assert(Op1->getType()->isIntOrIntVectorTy(),
5231            "first operand of [us][mul|div]_fix[_sat] must be an int type or "
5232            "vector of ints");
5233     Assert(Op2->getType()->isIntOrIntVectorTy(),
5234            "second operand of [us][mul|div]_fix[_sat] must be an int type or "
5235            "vector of ints");
5236 
5237     auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
5238     Assert(Op3->getType()->getBitWidth() <= 32,
5239            "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits");
5240 
5241     if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
5242         ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
5243       Assert(
5244           Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
5245           "the scale of s[mul|div]_fix[_sat] must be less than the width of "
5246           "the operands");
5247     } else {
5248       Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
5249              "the scale of u[mul|div]_fix[_sat] must be less than or equal "
5250              "to the width of the operands");
5251     }
5252     break;
5253   }
5254   case Intrinsic::lround:
5255   case Intrinsic::llround:
5256   case Intrinsic::lrint:
5257   case Intrinsic::llrint: {
5258     Type *ValTy = Call.getArgOperand(0)->getType();
5259     Type *ResultTy = Call.getType();
5260     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5261            "Intrinsic does not support vectors", &Call);
5262     break;
5263   }
5264   case Intrinsic::bswap: {
5265     Type *Ty = Call.getType();
5266     unsigned Size = Ty->getScalarSizeInBits();
5267     Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
5268     break;
5269   }
5270   case Intrinsic::invariant_start: {
5271     ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5272     Assert(InvariantSize &&
5273                (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),
5274            "invariant_start parameter must be -1, 0 or a positive number",
5275            &Call);
5276     break;
5277   }
5278   case Intrinsic::matrix_multiply:
5279   case Intrinsic::matrix_transpose:
5280   case Intrinsic::matrix_column_major_load:
5281   case Intrinsic::matrix_column_major_store: {
5282     Function *IF = Call.getCalledFunction();
5283     ConstantInt *Stride = nullptr;
5284     ConstantInt *NumRows;
5285     ConstantInt *NumColumns;
5286     VectorType *ResultTy;
5287     Type *Op0ElemTy = nullptr;
5288     Type *Op1ElemTy = nullptr;
5289     switch (ID) {
5290     case Intrinsic::matrix_multiply:
5291       NumRows = cast<ConstantInt>(Call.getArgOperand(2));
5292       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5293       ResultTy = cast<VectorType>(Call.getType());
5294       Op0ElemTy =
5295           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5296       Op1ElemTy =
5297           cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
5298       break;
5299     case Intrinsic::matrix_transpose:
5300       NumRows = cast<ConstantInt>(Call.getArgOperand(1));
5301       NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
5302       ResultTy = cast<VectorType>(Call.getType());
5303       Op0ElemTy =
5304           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5305       break;
5306     case Intrinsic::matrix_column_major_load: {
5307       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
5308       NumRows = cast<ConstantInt>(Call.getArgOperand(3));
5309       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5310       ResultTy = cast<VectorType>(Call.getType());
5311 
5312       PointerType *Op0PtrTy =
5313           cast<PointerType>(Call.getArgOperand(0)->getType());
5314       if (!Op0PtrTy->isOpaque())
5315         Op0ElemTy = Op0PtrTy->getElementType();
5316       break;
5317     }
5318     case Intrinsic::matrix_column_major_store: {
5319       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
5320       NumRows = cast<ConstantInt>(Call.getArgOperand(4));
5321       NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
5322       ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
5323       Op0ElemTy =
5324           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5325 
5326       PointerType *Op1PtrTy =
5327           cast<PointerType>(Call.getArgOperand(1)->getType());
5328       if (!Op1PtrTy->isOpaque())
5329         Op1ElemTy = Op1PtrTy->getElementType();
5330       break;
5331     }
5332     default:
5333       llvm_unreachable("unexpected intrinsic");
5334     }
5335 
5336     Assert(ResultTy->getElementType()->isIntegerTy() ||
5337            ResultTy->getElementType()->isFloatingPointTy(),
5338            "Result type must be an integer or floating-point type!", IF);
5339 
5340     if (Op0ElemTy)
5341       Assert(ResultTy->getElementType() == Op0ElemTy,
5342              "Vector element type mismatch of the result and first operand "
5343              "vector!", IF);
5344 
5345     if (Op1ElemTy)
5346       Assert(ResultTy->getElementType() == Op1ElemTy,
5347              "Vector element type mismatch of the result and second operand "
5348              "vector!", IF);
5349 
5350     Assert(cast<FixedVectorType>(ResultTy)->getNumElements() ==
5351                NumRows->getZExtValue() * NumColumns->getZExtValue(),
5352            "Result of a matrix operation does not fit in the returned vector!");
5353 
5354     if (Stride)
5355       Assert(Stride->getZExtValue() >= NumRows->getZExtValue(),
5356              "Stride must be greater or equal than the number of rows!", IF);
5357 
5358     break;
5359   }
5360   case Intrinsic::experimental_vector_splice: {
5361     VectorType *VecTy = cast<VectorType>(Call.getType());
5362     int64_t Idx = cast<ConstantInt>(Call.getArgOperand(2))->getSExtValue();
5363     int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue();
5364     if (Call.getParent() && Call.getParent()->getParent()) {
5365       AttributeList Attrs = Call.getParent()->getParent()->getAttributes();
5366       if (Attrs.hasFnAttr(Attribute::VScaleRange))
5367         KnownMinNumElements *= Attrs.getFnAttrs().getVScaleRangeMin();
5368     }
5369     Assert((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) ||
5370                (Idx >= 0 && Idx < KnownMinNumElements),
5371            "The splice index exceeds the range [-VL, VL-1] where VL is the "
5372            "known minimum number of elements in the vector. For scalable "
5373            "vectors the minimum number of elements is determined from "
5374            "vscale_range.",
5375            &Call);
5376     break;
5377   }
5378   case Intrinsic::experimental_stepvector: {
5379     VectorType *VecTy = dyn_cast<VectorType>(Call.getType());
5380     Assert(VecTy && VecTy->getScalarType()->isIntegerTy() &&
5381                VecTy->getScalarSizeInBits() >= 8,
5382            "experimental_stepvector only supported for vectors of integers "
5383            "with a bitwidth of at least 8.",
5384            &Call);
5385     break;
5386   }
5387   case Intrinsic::experimental_vector_insert: {
5388     Value *Vec = Call.getArgOperand(0);
5389     Value *SubVec = Call.getArgOperand(1);
5390     Value *Idx = Call.getArgOperand(2);
5391     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5392 
5393     VectorType *VecTy = cast<VectorType>(Vec->getType());
5394     VectorType *SubVecTy = cast<VectorType>(SubVec->getType());
5395 
5396     ElementCount VecEC = VecTy->getElementCount();
5397     ElementCount SubVecEC = SubVecTy->getElementCount();
5398     Assert(VecTy->getElementType() == SubVecTy->getElementType(),
5399            "experimental_vector_insert parameters must have the same element "
5400            "type.",
5401            &Call);
5402     Assert(IdxN % SubVecEC.getKnownMinValue() == 0,
5403            "experimental_vector_insert index must be a constant multiple of "
5404            "the subvector's known minimum vector length.");
5405 
5406     // If this insertion is not the 'mixed' case where a fixed vector is
5407     // inserted into a scalable vector, ensure that the insertion of the
5408     // subvector does not overrun the parent vector.
5409     if (VecEC.isScalable() == SubVecEC.isScalable()) {
5410       Assert(
5411           IdxN < VecEC.getKnownMinValue() &&
5412               IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5413           "subvector operand of experimental_vector_insert would overrun the "
5414           "vector being inserted into.");
5415     }
5416     break;
5417   }
5418   case Intrinsic::experimental_vector_extract: {
5419     Value *Vec = Call.getArgOperand(0);
5420     Value *Idx = Call.getArgOperand(1);
5421     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5422 
5423     VectorType *ResultTy = cast<VectorType>(Call.getType());
5424     VectorType *VecTy = cast<VectorType>(Vec->getType());
5425 
5426     ElementCount VecEC = VecTy->getElementCount();
5427     ElementCount ResultEC = ResultTy->getElementCount();
5428 
5429     Assert(ResultTy->getElementType() == VecTy->getElementType(),
5430            "experimental_vector_extract result must have the same element "
5431            "type as the input vector.",
5432            &Call);
5433     Assert(IdxN % ResultEC.getKnownMinValue() == 0,
5434            "experimental_vector_extract index must be a constant multiple of "
5435            "the result type's known minimum vector length.");
5436 
5437     // If this extraction is not the 'mixed' case where a fixed vector is is
5438     // extracted from a scalable vector, ensure that the extraction does not
5439     // overrun the parent vector.
5440     if (VecEC.isScalable() == ResultEC.isScalable()) {
5441       Assert(IdxN < VecEC.getKnownMinValue() &&
5442                  IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5443              "experimental_vector_extract would overrun.");
5444     }
5445     break;
5446   }
5447   case Intrinsic::experimental_noalias_scope_decl: {
5448     NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call));
5449     break;
5450   }
5451   case Intrinsic::preserve_array_access_index:
5452   case Intrinsic::preserve_struct_access_index: {
5453     Type *ElemTy = Call.getAttributes().getParamElementType(0);
5454     Assert(ElemTy,
5455            "Intrinsic requires elementtype attribute on first argument.",
5456            &Call);
5457     break;
5458   }
5459   };
5460 }
5461 
5462 /// Carefully grab the subprogram from a local scope.
5463 ///
5464 /// This carefully grabs the subprogram from a local scope, avoiding the
5465 /// built-in assertions that would typically fire.
5466 static DISubprogram *getSubprogram(Metadata *LocalScope) {
5467   if (!LocalScope)
5468     return nullptr;
5469 
5470   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
5471     return SP;
5472 
5473   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
5474     return getSubprogram(LB->getRawScope());
5475 
5476   // Just return null; broken scope chains are checked elsewhere.
5477   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
5478   return nullptr;
5479 }
5480 
5481 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
5482   unsigned NumOperands;
5483   bool HasRoundingMD;
5484   switch (FPI.getIntrinsicID()) {
5485 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
5486   case Intrinsic::INTRINSIC:                                                   \
5487     NumOperands = NARG;                                                        \
5488     HasRoundingMD = ROUND_MODE;                                                \
5489     break;
5490 #include "llvm/IR/ConstrainedOps.def"
5491   default:
5492     llvm_unreachable("Invalid constrained FP intrinsic!");
5493   }
5494   NumOperands += (1 + HasRoundingMD);
5495   // Compare intrinsics carry an extra predicate metadata operand.
5496   if (isa<ConstrainedFPCmpIntrinsic>(FPI))
5497     NumOperands += 1;
5498   Assert((FPI.arg_size() == NumOperands),
5499          "invalid arguments for constrained FP intrinsic", &FPI);
5500 
5501   switch (FPI.getIntrinsicID()) {
5502   case Intrinsic::experimental_constrained_lrint:
5503   case Intrinsic::experimental_constrained_llrint: {
5504     Type *ValTy = FPI.getArgOperand(0)->getType();
5505     Type *ResultTy = FPI.getType();
5506     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5507            "Intrinsic does not support vectors", &FPI);
5508   }
5509     break;
5510 
5511   case Intrinsic::experimental_constrained_lround:
5512   case Intrinsic::experimental_constrained_llround: {
5513     Type *ValTy = FPI.getArgOperand(0)->getType();
5514     Type *ResultTy = FPI.getType();
5515     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5516            "Intrinsic does not support vectors", &FPI);
5517     break;
5518   }
5519 
5520   case Intrinsic::experimental_constrained_fcmp:
5521   case Intrinsic::experimental_constrained_fcmps: {
5522     auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
5523     Assert(CmpInst::isFPPredicate(Pred),
5524            "invalid predicate for constrained FP comparison intrinsic", &FPI);
5525     break;
5526   }
5527 
5528   case Intrinsic::experimental_constrained_fptosi:
5529   case Intrinsic::experimental_constrained_fptoui: {
5530     Value *Operand = FPI.getArgOperand(0);
5531     uint64_t NumSrcElem = 0;
5532     Assert(Operand->getType()->isFPOrFPVectorTy(),
5533            "Intrinsic first argument must be floating point", &FPI);
5534     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5535       NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5536     }
5537 
5538     Operand = &FPI;
5539     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5540            "Intrinsic first argument and result disagree on vector use", &FPI);
5541     Assert(Operand->getType()->isIntOrIntVectorTy(),
5542            "Intrinsic result must be an integer", &FPI);
5543     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5544       Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5545              "Intrinsic first argument and result vector lengths must be equal",
5546              &FPI);
5547     }
5548   }
5549     break;
5550 
5551   case Intrinsic::experimental_constrained_sitofp:
5552   case Intrinsic::experimental_constrained_uitofp: {
5553     Value *Operand = FPI.getArgOperand(0);
5554     uint64_t NumSrcElem = 0;
5555     Assert(Operand->getType()->isIntOrIntVectorTy(),
5556            "Intrinsic first argument must be integer", &FPI);
5557     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5558       NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5559     }
5560 
5561     Operand = &FPI;
5562     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5563            "Intrinsic first argument and result disagree on vector use", &FPI);
5564     Assert(Operand->getType()->isFPOrFPVectorTy(),
5565            "Intrinsic result must be a floating point", &FPI);
5566     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5567       Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5568              "Intrinsic first argument and result vector lengths must be equal",
5569              &FPI);
5570     }
5571   } break;
5572 
5573   case Intrinsic::experimental_constrained_fptrunc:
5574   case Intrinsic::experimental_constrained_fpext: {
5575     Value *Operand = FPI.getArgOperand(0);
5576     Type *OperandTy = Operand->getType();
5577     Value *Result = &FPI;
5578     Type *ResultTy = Result->getType();
5579     Assert(OperandTy->isFPOrFPVectorTy(),
5580            "Intrinsic first argument must be FP or FP vector", &FPI);
5581     Assert(ResultTy->isFPOrFPVectorTy(),
5582            "Intrinsic result must be FP or FP vector", &FPI);
5583     Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
5584            "Intrinsic first argument and result disagree on vector use", &FPI);
5585     if (OperandTy->isVectorTy()) {
5586       Assert(cast<FixedVectorType>(OperandTy)->getNumElements() ==
5587                  cast<FixedVectorType>(ResultTy)->getNumElements(),
5588              "Intrinsic first argument and result vector lengths must be equal",
5589              &FPI);
5590     }
5591     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
5592       Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
5593              "Intrinsic first argument's type must be larger than result type",
5594              &FPI);
5595     } else {
5596       Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
5597              "Intrinsic first argument's type must be smaller than result type",
5598              &FPI);
5599     }
5600   }
5601     break;
5602 
5603   default:
5604     break;
5605   }
5606 
5607   // If a non-metadata argument is passed in a metadata slot then the
5608   // error will be caught earlier when the incorrect argument doesn't
5609   // match the specification in the intrinsic call table. Thus, no
5610   // argument type check is needed here.
5611 
5612   Assert(FPI.getExceptionBehavior().hasValue(),
5613          "invalid exception behavior argument", &FPI);
5614   if (HasRoundingMD) {
5615     Assert(FPI.getRoundingMode().hasValue(),
5616            "invalid rounding mode argument", &FPI);
5617   }
5618 }
5619 
5620 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
5621   auto *MD = DII.getRawLocation();
5622   AssertDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
5623                (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
5624            "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
5625   AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
5626          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
5627          DII.getRawVariable());
5628   AssertDI(isa<DIExpression>(DII.getRawExpression()),
5629          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
5630          DII.getRawExpression());
5631 
5632   // Ignore broken !dbg attachments; they're checked elsewhere.
5633   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
5634     if (!isa<DILocation>(N))
5635       return;
5636 
5637   BasicBlock *BB = DII.getParent();
5638   Function *F = BB ? BB->getParent() : nullptr;
5639 
5640   // The scopes for variables and !dbg attachments must agree.
5641   DILocalVariable *Var = DII.getVariable();
5642   DILocation *Loc = DII.getDebugLoc();
5643   AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
5644            &DII, BB, F);
5645 
5646   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
5647   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
5648   if (!VarSP || !LocSP)
5649     return; // Broken scope chains are checked elsewhere.
5650 
5651   AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
5652                                " variable and !dbg attachment",
5653            &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
5654            Loc->getScope()->getSubprogram());
5655 
5656   // This check is redundant with one in visitLocalVariable().
5657   AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
5658            Var->getRawType());
5659   verifyFnArgs(DII);
5660 }
5661 
5662 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
5663   AssertDI(isa<DILabel>(DLI.getRawLabel()),
5664          "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
5665          DLI.getRawLabel());
5666 
5667   // Ignore broken !dbg attachments; they're checked elsewhere.
5668   if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
5669     if (!isa<DILocation>(N))
5670       return;
5671 
5672   BasicBlock *BB = DLI.getParent();
5673   Function *F = BB ? BB->getParent() : nullptr;
5674 
5675   // The scopes for variables and !dbg attachments must agree.
5676   DILabel *Label = DLI.getLabel();
5677   DILocation *Loc = DLI.getDebugLoc();
5678   Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
5679          &DLI, BB, F);
5680 
5681   DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
5682   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
5683   if (!LabelSP || !LocSP)
5684     return;
5685 
5686   AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
5687                              " label and !dbg attachment",
5688            &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
5689            Loc->getScope()->getSubprogram());
5690 }
5691 
5692 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
5693   DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
5694   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5695 
5696   // We don't know whether this intrinsic verified correctly.
5697   if (!V || !E || !E->isValid())
5698     return;
5699 
5700   // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
5701   auto Fragment = E->getFragmentInfo();
5702   if (!Fragment)
5703     return;
5704 
5705   // The frontend helps out GDB by emitting the members of local anonymous
5706   // unions as artificial local variables with shared storage. When SROA splits
5707   // the storage for artificial local variables that are smaller than the entire
5708   // union, the overhang piece will be outside of the allotted space for the
5709   // variable and this check fails.
5710   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
5711   if (V->isArtificial())
5712     return;
5713 
5714   verifyFragmentExpression(*V, *Fragment, &I);
5715 }
5716 
5717 template <typename ValueOrMetadata>
5718 void Verifier::verifyFragmentExpression(const DIVariable &V,
5719                                         DIExpression::FragmentInfo Fragment,
5720                                         ValueOrMetadata *Desc) {
5721   // If there's no size, the type is broken, but that should be checked
5722   // elsewhere.
5723   auto VarSize = V.getSizeInBits();
5724   if (!VarSize)
5725     return;
5726 
5727   unsigned FragSize = Fragment.SizeInBits;
5728   unsigned FragOffset = Fragment.OffsetInBits;
5729   AssertDI(FragSize + FragOffset <= *VarSize,
5730          "fragment is larger than or outside of variable", Desc, &V);
5731   AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
5732 }
5733 
5734 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
5735   // This function does not take the scope of noninlined function arguments into
5736   // account. Don't run it if current function is nodebug, because it may
5737   // contain inlined debug intrinsics.
5738   if (!HasDebugInfo)
5739     return;
5740 
5741   // For performance reasons only check non-inlined ones.
5742   if (I.getDebugLoc()->getInlinedAt())
5743     return;
5744 
5745   DILocalVariable *Var = I.getVariable();
5746   AssertDI(Var, "dbg intrinsic without variable");
5747 
5748   unsigned ArgNo = Var->getArg();
5749   if (!ArgNo)
5750     return;
5751 
5752   // Verify there are no duplicate function argument debug info entries.
5753   // These will cause hard-to-debug assertions in the DWARF backend.
5754   if (DebugFnArgs.size() < ArgNo)
5755     DebugFnArgs.resize(ArgNo, nullptr);
5756 
5757   auto *Prev = DebugFnArgs[ArgNo - 1];
5758   DebugFnArgs[ArgNo - 1] = Var;
5759   AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
5760            Prev, Var);
5761 }
5762 
5763 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
5764   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5765 
5766   // We don't know whether this intrinsic verified correctly.
5767   if (!E || !E->isValid())
5768     return;
5769 
5770   AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I);
5771 }
5772 
5773 void Verifier::verifyCompileUnits() {
5774   // When more than one Module is imported into the same context, such as during
5775   // an LTO build before linking the modules, ODR type uniquing may cause types
5776   // to point to a different CU. This check does not make sense in this case.
5777   if (M.getContext().isODRUniquingDebugTypes())
5778     return;
5779   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
5780   SmallPtrSet<const Metadata *, 2> Listed;
5781   if (CUs)
5782     Listed.insert(CUs->op_begin(), CUs->op_end());
5783   for (auto *CU : CUVisited)
5784     AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
5785   CUVisited.clear();
5786 }
5787 
5788 void Verifier::verifyDeoptimizeCallingConvs() {
5789   if (DeoptimizeDeclarations.empty())
5790     return;
5791 
5792   const Function *First = DeoptimizeDeclarations[0];
5793   for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
5794     Assert(First->getCallingConv() == F->getCallingConv(),
5795            "All llvm.experimental.deoptimize declarations must have the same "
5796            "calling convention",
5797            First, F);
5798   }
5799 }
5800 
5801 void Verifier::verifyAttachedCallBundle(const CallBase &Call,
5802                                         const OperandBundleUse &BU) {
5803   FunctionType *FTy = Call.getFunctionType();
5804 
5805   Assert((FTy->getReturnType()->isPointerTy() ||
5806           (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),
5807          "a call with operand bundle \"clang.arc.attachedcall\" must call a "
5808          "function returning a pointer or a non-returning function that has a "
5809          "void return type",
5810          Call);
5811 
5812   Assert((BU.Inputs.empty() ||
5813           (BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()))),
5814          "operand bundle \"clang.arc.attachedcall\" can take either no "
5815          "arguments or one function as an argument",
5816          Call);
5817 
5818   if (BU.Inputs.empty())
5819     return;
5820 
5821   auto *Fn = cast<Function>(BU.Inputs.front());
5822   Intrinsic::ID IID = Fn->getIntrinsicID();
5823 
5824   if (IID) {
5825     Assert((IID == Intrinsic::objc_retainAutoreleasedReturnValue ||
5826             IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue),
5827            "invalid function argument", Call);
5828   } else {
5829     StringRef FnName = Fn->getName();
5830     Assert((FnName == "objc_retainAutoreleasedReturnValue" ||
5831             FnName == "objc_unsafeClaimAutoreleasedReturnValue"),
5832            "invalid function argument", Call);
5833   }
5834 }
5835 
5836 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
5837   bool HasSource = F.getSource().hasValue();
5838   if (!HasSourceDebugInfo.count(&U))
5839     HasSourceDebugInfo[&U] = HasSource;
5840   AssertDI(HasSource == HasSourceDebugInfo[&U],
5841            "inconsistent use of embedded source");
5842 }
5843 
5844 void Verifier::verifyNoAliasScopeDecl() {
5845   if (NoAliasScopeDecls.empty())
5846     return;
5847 
5848   // only a single scope must be declared at a time.
5849   for (auto *II : NoAliasScopeDecls) {
5850     assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
5851            "Not a llvm.experimental.noalias.scope.decl ?");
5852     const auto *ScopeListMV = dyn_cast<MetadataAsValue>(
5853         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
5854     Assert(ScopeListMV != nullptr,
5855            "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
5856            "argument",
5857            II);
5858 
5859     const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata());
5860     Assert(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode",
5861            II);
5862     Assert(ScopeListMD->getNumOperands() == 1,
5863            "!id.scope.list must point to a list with a single scope", II);
5864     visitAliasScopeListMetadata(ScopeListMD);
5865   }
5866 
5867   // Only check the domination rule when requested. Once all passes have been
5868   // adapted this option can go away.
5869   if (!VerifyNoAliasScopeDomination)
5870     return;
5871 
5872   // Now sort the intrinsics based on the scope MDNode so that declarations of
5873   // the same scopes are next to each other.
5874   auto GetScope = [](IntrinsicInst *II) {
5875     const auto *ScopeListMV = cast<MetadataAsValue>(
5876         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
5877     return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
5878   };
5879 
5880   // We are sorting on MDNode pointers here. For valid input IR this is ok.
5881   // TODO: Sort on Metadata ID to avoid non-deterministic error messages.
5882   auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
5883     return GetScope(Lhs) < GetScope(Rhs);
5884   };
5885 
5886   llvm::sort(NoAliasScopeDecls, Compare);
5887 
5888   // Go over the intrinsics and check that for the same scope, they are not
5889   // dominating each other.
5890   auto ItCurrent = NoAliasScopeDecls.begin();
5891   while (ItCurrent != NoAliasScopeDecls.end()) {
5892     auto CurScope = GetScope(*ItCurrent);
5893     auto ItNext = ItCurrent;
5894     do {
5895       ++ItNext;
5896     } while (ItNext != NoAliasScopeDecls.end() &&
5897              GetScope(*ItNext) == CurScope);
5898 
5899     // [ItCurrent, ItNext) represents the declarations for the same scope.
5900     // Ensure they are not dominating each other.. but only if it is not too
5901     // expensive.
5902     if (ItNext - ItCurrent < 32)
5903       for (auto *I : llvm::make_range(ItCurrent, ItNext))
5904         for (auto *J : llvm::make_range(ItCurrent, ItNext))
5905           if (I != J)
5906             Assert(!DT.dominates(I, J),
5907                    "llvm.experimental.noalias.scope.decl dominates another one "
5908                    "with the same scope",
5909                    I);
5910     ItCurrent = ItNext;
5911   }
5912 }
5913 
5914 //===----------------------------------------------------------------------===//
5915 //  Implement the public interfaces to this file...
5916 //===----------------------------------------------------------------------===//
5917 
5918 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
5919   Function &F = const_cast<Function &>(f);
5920 
5921   // Don't use a raw_null_ostream.  Printing IR is expensive.
5922   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
5923 
5924   // Note that this function's return value is inverted from what you would
5925   // expect of a function called "verify".
5926   return !V.verify(F);
5927 }
5928 
5929 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
5930                         bool *BrokenDebugInfo) {
5931   // Don't use a raw_null_ostream.  Printing IR is expensive.
5932   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
5933 
5934   bool Broken = false;
5935   for (const Function &F : M)
5936     Broken |= !V.verify(F);
5937 
5938   Broken |= !V.verify();
5939   if (BrokenDebugInfo)
5940     *BrokenDebugInfo = V.hasBrokenDebugInfo();
5941   // Note that this function's return value is inverted from what you would
5942   // expect of a function called "verify".
5943   return Broken;
5944 }
5945 
5946 namespace {
5947 
5948 struct VerifierLegacyPass : public FunctionPass {
5949   static char ID;
5950 
5951   std::unique_ptr<Verifier> V;
5952   bool FatalErrors = true;
5953 
5954   VerifierLegacyPass() : FunctionPass(ID) {
5955     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5956   }
5957   explicit VerifierLegacyPass(bool FatalErrors)
5958       : FunctionPass(ID),
5959         FatalErrors(FatalErrors) {
5960     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5961   }
5962 
5963   bool doInitialization(Module &M) override {
5964     V = std::make_unique<Verifier>(
5965         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
5966     return false;
5967   }
5968 
5969   bool runOnFunction(Function &F) override {
5970     if (!V->verify(F) && FatalErrors) {
5971       errs() << "in function " << F.getName() << '\n';
5972       report_fatal_error("Broken function found, compilation aborted!");
5973     }
5974     return false;
5975   }
5976 
5977   bool doFinalization(Module &M) override {
5978     bool HasErrors = false;
5979     for (Function &F : M)
5980       if (F.isDeclaration())
5981         HasErrors |= !V->verify(F);
5982 
5983     HasErrors |= !V->verify();
5984     if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
5985       report_fatal_error("Broken module found, compilation aborted!");
5986     return false;
5987   }
5988 
5989   void getAnalysisUsage(AnalysisUsage &AU) const override {
5990     AU.setPreservesAll();
5991   }
5992 };
5993 
5994 } // end anonymous namespace
5995 
5996 /// Helper to issue failure from the TBAA verification
5997 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
5998   if (Diagnostic)
5999     return Diagnostic->CheckFailed(Args...);
6000 }
6001 
6002 #define AssertTBAA(C, ...)                                                     \
6003   do {                                                                         \
6004     if (!(C)) {                                                                \
6005       CheckFailed(__VA_ARGS__);                                                \
6006       return false;                                                            \
6007     }                                                                          \
6008   } while (false)
6009 
6010 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
6011 /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
6012 /// struct-type node describing an aggregate data structure (like a struct).
6013 TBAAVerifier::TBAABaseNodeSummary
6014 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
6015                                  bool IsNewFormat) {
6016   if (BaseNode->getNumOperands() < 2) {
6017     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
6018     return {true, ~0u};
6019   }
6020 
6021   auto Itr = TBAABaseNodes.find(BaseNode);
6022   if (Itr != TBAABaseNodes.end())
6023     return Itr->second;
6024 
6025   auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
6026   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
6027   (void)InsertResult;
6028   assert(InsertResult.second && "We just checked!");
6029   return Result;
6030 }
6031 
6032 TBAAVerifier::TBAABaseNodeSummary
6033 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
6034                                      bool IsNewFormat) {
6035   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
6036 
6037   if (BaseNode->getNumOperands() == 2) {
6038     // Scalar nodes can only be accessed at offset 0.
6039     return isValidScalarTBAANode(BaseNode)
6040                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
6041                : InvalidNode;
6042   }
6043 
6044   if (IsNewFormat) {
6045     if (BaseNode->getNumOperands() % 3 != 0) {
6046       CheckFailed("Access tag nodes must have the number of operands that is a "
6047                   "multiple of 3!", BaseNode);
6048       return InvalidNode;
6049     }
6050   } else {
6051     if (BaseNode->getNumOperands() % 2 != 1) {
6052       CheckFailed("Struct tag nodes must have an odd number of operands!",
6053                   BaseNode);
6054       return InvalidNode;
6055     }
6056   }
6057 
6058   // Check the type size field.
6059   if (IsNewFormat) {
6060     auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6061         BaseNode->getOperand(1));
6062     if (!TypeSizeNode) {
6063       CheckFailed("Type size nodes must be constants!", &I, BaseNode);
6064       return InvalidNode;
6065     }
6066   }
6067 
6068   // Check the type name field. In the new format it can be anything.
6069   if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
6070     CheckFailed("Struct tag nodes have a string as their first operand",
6071                 BaseNode);
6072     return InvalidNode;
6073   }
6074 
6075   bool Failed = false;
6076 
6077   Optional<APInt> PrevOffset;
6078   unsigned BitWidth = ~0u;
6079 
6080   // We've already checked that BaseNode is not a degenerate root node with one
6081   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
6082   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6083   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6084   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6085            Idx += NumOpsPerField) {
6086     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
6087     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
6088     if (!isa<MDNode>(FieldTy)) {
6089       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
6090       Failed = true;
6091       continue;
6092     }
6093 
6094     auto *OffsetEntryCI =
6095         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
6096     if (!OffsetEntryCI) {
6097       CheckFailed("Offset entries must be constants!", &I, BaseNode);
6098       Failed = true;
6099       continue;
6100     }
6101 
6102     if (BitWidth == ~0u)
6103       BitWidth = OffsetEntryCI->getBitWidth();
6104 
6105     if (OffsetEntryCI->getBitWidth() != BitWidth) {
6106       CheckFailed(
6107           "Bitwidth between the offsets and struct type entries must match", &I,
6108           BaseNode);
6109       Failed = true;
6110       continue;
6111     }
6112 
6113     // NB! As far as I can tell, we generate a non-strictly increasing offset
6114     // sequence only from structs that have zero size bit fields.  When
6115     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
6116     // pick the field lexically the latest in struct type metadata node.  This
6117     // mirrors the actual behavior of the alias analysis implementation.
6118     bool IsAscending =
6119         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
6120 
6121     if (!IsAscending) {
6122       CheckFailed("Offsets must be increasing!", &I, BaseNode);
6123       Failed = true;
6124     }
6125 
6126     PrevOffset = OffsetEntryCI->getValue();
6127 
6128     if (IsNewFormat) {
6129       auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6130           BaseNode->getOperand(Idx + 2));
6131       if (!MemberSizeNode) {
6132         CheckFailed("Member size entries must be constants!", &I, BaseNode);
6133         Failed = true;
6134         continue;
6135       }
6136     }
6137   }
6138 
6139   return Failed ? InvalidNode
6140                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
6141 }
6142 
6143 static bool IsRootTBAANode(const MDNode *MD) {
6144   return MD->getNumOperands() < 2;
6145 }
6146 
6147 static bool IsScalarTBAANodeImpl(const MDNode *MD,
6148                                  SmallPtrSetImpl<const MDNode *> &Visited) {
6149   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
6150     return false;
6151 
6152   if (!isa<MDString>(MD->getOperand(0)))
6153     return false;
6154 
6155   if (MD->getNumOperands() == 3) {
6156     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
6157     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
6158       return false;
6159   }
6160 
6161   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6162   return Parent && Visited.insert(Parent).second &&
6163          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
6164 }
6165 
6166 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
6167   auto ResultIt = TBAAScalarNodes.find(MD);
6168   if (ResultIt != TBAAScalarNodes.end())
6169     return ResultIt->second;
6170 
6171   SmallPtrSet<const MDNode *, 4> Visited;
6172   bool Result = IsScalarTBAANodeImpl(MD, Visited);
6173   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
6174   (void)InsertResult;
6175   assert(InsertResult.second && "Just checked!");
6176 
6177   return Result;
6178 }
6179 
6180 /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
6181 /// Offset in place to be the offset within the field node returned.
6182 ///
6183 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
6184 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
6185                                                    const MDNode *BaseNode,
6186                                                    APInt &Offset,
6187                                                    bool IsNewFormat) {
6188   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
6189 
6190   // Scalar nodes have only one possible "field" -- their parent in the access
6191   // hierarchy.  Offset must be zero at this point, but our caller is supposed
6192   // to Assert that.
6193   if (BaseNode->getNumOperands() == 2)
6194     return cast<MDNode>(BaseNode->getOperand(1));
6195 
6196   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6197   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6198   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6199            Idx += NumOpsPerField) {
6200     auto *OffsetEntryCI =
6201         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
6202     if (OffsetEntryCI->getValue().ugt(Offset)) {
6203       if (Idx == FirstFieldOpNo) {
6204         CheckFailed("Could not find TBAA parent in struct type node", &I,
6205                     BaseNode, &Offset);
6206         return nullptr;
6207       }
6208 
6209       unsigned PrevIdx = Idx - NumOpsPerField;
6210       auto *PrevOffsetEntryCI =
6211           mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
6212       Offset -= PrevOffsetEntryCI->getValue();
6213       return cast<MDNode>(BaseNode->getOperand(PrevIdx));
6214     }
6215   }
6216 
6217   unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
6218   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
6219       BaseNode->getOperand(LastIdx + 1));
6220   Offset -= LastOffsetEntryCI->getValue();
6221   return cast<MDNode>(BaseNode->getOperand(LastIdx));
6222 }
6223 
6224 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
6225   if (!Type || Type->getNumOperands() < 3)
6226     return false;
6227 
6228   // In the new format type nodes shall have a reference to the parent type as
6229   // its first operand.
6230   return isa_and_nonnull<MDNode>(Type->getOperand(0));
6231 }
6232 
6233 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
6234   AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
6235                  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
6236                  isa<AtomicCmpXchgInst>(I),
6237              "This instruction shall not have a TBAA access tag!", &I);
6238 
6239   bool IsStructPathTBAA =
6240       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
6241 
6242   AssertTBAA(
6243       IsStructPathTBAA,
6244       "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
6245 
6246   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
6247   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6248 
6249   bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
6250 
6251   if (IsNewFormat) {
6252     AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
6253                "Access tag metadata must have either 4 or 5 operands", &I, MD);
6254   } else {
6255     AssertTBAA(MD->getNumOperands() < 5,
6256                "Struct tag metadata must have either 3 or 4 operands", &I, MD);
6257   }
6258 
6259   // Check the access size field.
6260   if (IsNewFormat) {
6261     auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6262         MD->getOperand(3));
6263     AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
6264   }
6265 
6266   // Check the immutability flag.
6267   unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
6268   if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
6269     auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
6270         MD->getOperand(ImmutabilityFlagOpNo));
6271     AssertTBAA(IsImmutableCI,
6272                "Immutability tag on struct tag metadata must be a constant",
6273                &I, MD);
6274     AssertTBAA(
6275         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
6276         "Immutability part of the struct tag metadata must be either 0 or 1",
6277         &I, MD);
6278   }
6279 
6280   AssertTBAA(BaseNode && AccessType,
6281              "Malformed struct tag metadata: base and access-type "
6282              "should be non-null and point to Metadata nodes",
6283              &I, MD, BaseNode, AccessType);
6284 
6285   if (!IsNewFormat) {
6286     AssertTBAA(isValidScalarTBAANode(AccessType),
6287                "Access type node must be a valid scalar type", &I, MD,
6288                AccessType);
6289   }
6290 
6291   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
6292   AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
6293 
6294   APInt Offset = OffsetCI->getValue();
6295   bool SeenAccessTypeInPath = false;
6296 
6297   SmallPtrSet<MDNode *, 4> StructPath;
6298 
6299   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
6300        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
6301                                                IsNewFormat)) {
6302     if (!StructPath.insert(BaseNode).second) {
6303       CheckFailed("Cycle detected in struct path", &I, MD);
6304       return false;
6305     }
6306 
6307     bool Invalid;
6308     unsigned BaseNodeBitWidth;
6309     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
6310                                                              IsNewFormat);
6311 
6312     // If the base node is invalid in itself, then we've already printed all the
6313     // errors we wanted to print.
6314     if (Invalid)
6315       return false;
6316 
6317     SeenAccessTypeInPath |= BaseNode == AccessType;
6318 
6319     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
6320       AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
6321                  &I, MD, &Offset);
6322 
6323     AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
6324                    (BaseNodeBitWidth == 0 && Offset == 0) ||
6325                    (IsNewFormat && BaseNodeBitWidth == ~0u),
6326                "Access bit-width not the same as description bit-width", &I, MD,
6327                BaseNodeBitWidth, Offset.getBitWidth());
6328 
6329     if (IsNewFormat && SeenAccessTypeInPath)
6330       break;
6331   }
6332 
6333   AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
6334              &I, MD);
6335   return true;
6336 }
6337 
6338 char VerifierLegacyPass::ID = 0;
6339 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
6340 
6341 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
6342   return new VerifierLegacyPass(FatalErrors);
6343 }
6344 
6345 AnalysisKey VerifierAnalysis::Key;
6346 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
6347                                                ModuleAnalysisManager &) {
6348   Result Res;
6349   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
6350   return Res;
6351 }
6352 
6353 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
6354                                                FunctionAnalysisManager &) {
6355   return { llvm::verifyFunction(F, &dbgs()), false };
6356 }
6357 
6358 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
6359   auto Res = AM.getResult<VerifierAnalysis>(M);
6360   if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
6361     report_fatal_error("Broken module found, compilation aborted!");
6362 
6363   return PreservedAnalyses::all();
6364 }
6365 
6366 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
6367   auto res = AM.getResult<VerifierAnalysis>(F);
6368   if (res.IRBroken && FatalErrors)
6369     report_fatal_error("Broken function found, compilation aborted!");
6370 
6371   return PreservedAnalyses::all();
6372 }
6373