1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // sanity checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/ADT/ilist.h" 62 #include "llvm/BinaryFormat/Dwarf.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstVisitor.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/ModuleSlotTracker.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/InitializePasses.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Debug.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <cstdint> 112 #include <memory> 113 #include <string> 114 #include <utility> 115 116 using namespace llvm; 117 118 namespace llvm { 119 120 struct VerifierSupport { 121 raw_ostream *OS; 122 const Module &M; 123 ModuleSlotTracker MST; 124 Triple TT; 125 const DataLayout &DL; 126 LLVMContext &Context; 127 128 /// Track the brokenness of the module while recursively visiting. 129 bool Broken = false; 130 /// Broken debug info can be "recovered" from by stripping the debug info. 131 bool BrokenDebugInfo = false; 132 /// Whether to treat broken debug info as an error. 133 bool TreatBrokenDebugInfoAsError = true; 134 135 explicit VerifierSupport(raw_ostream *OS, const Module &M) 136 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 137 Context(M.getContext()) {} 138 139 private: 140 void Write(const Module *M) { 141 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 142 } 143 144 void Write(const Value *V) { 145 if (V) 146 Write(*V); 147 } 148 149 void Write(const Value &V) { 150 if (isa<Instruction>(V)) { 151 V.print(*OS, MST); 152 *OS << '\n'; 153 } else { 154 V.printAsOperand(*OS, true, MST); 155 *OS << '\n'; 156 } 157 } 158 159 void Write(const Metadata *MD) { 160 if (!MD) 161 return; 162 MD->print(*OS, MST, &M); 163 *OS << '\n'; 164 } 165 166 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 167 Write(MD.get()); 168 } 169 170 void Write(const NamedMDNode *NMD) { 171 if (!NMD) 172 return; 173 NMD->print(*OS, MST); 174 *OS << '\n'; 175 } 176 177 void Write(Type *T) { 178 if (!T) 179 return; 180 *OS << ' ' << *T; 181 } 182 183 void Write(const Comdat *C) { 184 if (!C) 185 return; 186 *OS << *C; 187 } 188 189 void Write(const APInt *AI) { 190 if (!AI) 191 return; 192 *OS << *AI << '\n'; 193 } 194 195 void Write(const unsigned i) { *OS << i << '\n'; } 196 197 template <typename T> void Write(ArrayRef<T> Vs) { 198 for (const T &V : Vs) 199 Write(V); 200 } 201 202 template <typename T1, typename... Ts> 203 void WriteTs(const T1 &V1, const Ts &... Vs) { 204 Write(V1); 205 WriteTs(Vs...); 206 } 207 208 template <typename... Ts> void WriteTs() {} 209 210 public: 211 /// A check failed, so printout out the condition and the message. 212 /// 213 /// This provides a nice place to put a breakpoint if you want to see why 214 /// something is not correct. 215 void CheckFailed(const Twine &Message) { 216 if (OS) 217 *OS << Message << '\n'; 218 Broken = true; 219 } 220 221 /// A check failed (with values to print). 222 /// 223 /// This calls the Message-only version so that the above is easier to set a 224 /// breakpoint on. 225 template <typename T1, typename... Ts> 226 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 227 CheckFailed(Message); 228 if (OS) 229 WriteTs(V1, Vs...); 230 } 231 232 /// A debug info check failed. 233 void DebugInfoCheckFailed(const Twine &Message) { 234 if (OS) 235 *OS << Message << '\n'; 236 Broken |= TreatBrokenDebugInfoAsError; 237 BrokenDebugInfo = true; 238 } 239 240 /// A debug info check failed (with values to print). 241 template <typename T1, typename... Ts> 242 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 243 const Ts &... Vs) { 244 DebugInfoCheckFailed(Message); 245 if (OS) 246 WriteTs(V1, Vs...); 247 } 248 }; 249 250 } // namespace llvm 251 252 namespace { 253 254 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 255 friend class InstVisitor<Verifier>; 256 257 DominatorTree DT; 258 259 /// When verifying a basic block, keep track of all of the 260 /// instructions we have seen so far. 261 /// 262 /// This allows us to do efficient dominance checks for the case when an 263 /// instruction has an operand that is an instruction in the same block. 264 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 265 266 /// Keep track of the metadata nodes that have been checked already. 267 SmallPtrSet<const Metadata *, 32> MDNodes; 268 269 /// Keep track which DISubprogram is attached to which function. 270 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 271 272 /// Track all DICompileUnits visited. 273 SmallPtrSet<const Metadata *, 2> CUVisited; 274 275 /// The result type for a landingpad. 276 Type *LandingPadResultTy; 277 278 /// Whether we've seen a call to @llvm.localescape in this function 279 /// already. 280 bool SawFrameEscape; 281 282 /// Whether the current function has a DISubprogram attached to it. 283 bool HasDebugInfo = false; 284 285 /// The current source language. 286 dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user; 287 288 /// Whether source was present on the first DIFile encountered in each CU. 289 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 290 291 /// Stores the count of how many objects were passed to llvm.localescape for a 292 /// given function and the largest index passed to llvm.localrecover. 293 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 294 295 // Maps catchswitches and cleanuppads that unwind to siblings to the 296 // terminators that indicate the unwind, used to detect cycles therein. 297 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 298 299 /// Cache of constants visited in search of ConstantExprs. 300 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 301 302 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 303 SmallVector<const Function *, 4> DeoptimizeDeclarations; 304 305 // Verify that this GlobalValue is only used in this module. 306 // This map is used to avoid visiting uses twice. We can arrive at a user 307 // twice, if they have multiple operands. In particular for very large 308 // constant expressions, we can arrive at a particular user many times. 309 SmallPtrSet<const Value *, 32> GlobalValueVisited; 310 311 // Keeps track of duplicate function argument debug info. 312 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 313 314 TBAAVerifier TBAAVerifyHelper; 315 316 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 317 318 public: 319 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 320 const Module &M) 321 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 322 SawFrameEscape(false), TBAAVerifyHelper(this) { 323 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 324 } 325 326 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 327 328 bool verify(const Function &F) { 329 assert(F.getParent() == &M && 330 "An instance of this class only works with a specific module!"); 331 332 // First ensure the function is well-enough formed to compute dominance 333 // information, and directly compute a dominance tree. We don't rely on the 334 // pass manager to provide this as it isolates us from a potentially 335 // out-of-date dominator tree and makes it significantly more complex to run 336 // this code outside of a pass manager. 337 // FIXME: It's really gross that we have to cast away constness here. 338 if (!F.empty()) 339 DT.recalculate(const_cast<Function &>(F)); 340 341 for (const BasicBlock &BB : F) { 342 if (!BB.empty() && BB.back().isTerminator()) 343 continue; 344 345 if (OS) { 346 *OS << "Basic Block in function '" << F.getName() 347 << "' does not have terminator!\n"; 348 BB.printAsOperand(*OS, true, MST); 349 *OS << "\n"; 350 } 351 return false; 352 } 353 354 Broken = false; 355 // FIXME: We strip const here because the inst visitor strips const. 356 visit(const_cast<Function &>(F)); 357 verifySiblingFuncletUnwinds(); 358 InstsInThisBlock.clear(); 359 DebugFnArgs.clear(); 360 LandingPadResultTy = nullptr; 361 SawFrameEscape = false; 362 SiblingFuncletInfo.clear(); 363 364 return !Broken; 365 } 366 367 /// Verify the module that this instance of \c Verifier was initialized with. 368 bool verify() { 369 Broken = false; 370 371 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 372 for (const Function &F : M) 373 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 374 DeoptimizeDeclarations.push_back(&F); 375 376 // Now that we've visited every function, verify that we never asked to 377 // recover a frame index that wasn't escaped. 378 verifyFrameRecoverIndices(); 379 for (const GlobalVariable &GV : M.globals()) 380 visitGlobalVariable(GV); 381 382 for (const GlobalAlias &GA : M.aliases()) 383 visitGlobalAlias(GA); 384 385 for (const NamedMDNode &NMD : M.named_metadata()) 386 visitNamedMDNode(NMD); 387 388 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 389 visitComdat(SMEC.getValue()); 390 391 visitModuleFlags(M); 392 visitModuleIdents(M); 393 visitModuleCommandLines(M); 394 395 verifyCompileUnits(); 396 397 verifyDeoptimizeCallingConvs(); 398 DISubprogramAttachments.clear(); 399 return !Broken; 400 } 401 402 private: 403 /// Whether a metadata node is allowed to be, or contain, a DILocation. 404 enum class AreDebugLocsAllowed { No, Yes }; 405 406 // Verification methods... 407 void visitGlobalValue(const GlobalValue &GV); 408 void visitGlobalVariable(const GlobalVariable &GV); 409 void visitGlobalAlias(const GlobalAlias &GA); 410 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 411 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 412 const GlobalAlias &A, const Constant &C); 413 void visitNamedMDNode(const NamedMDNode &NMD); 414 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); 415 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 416 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 417 void visitComdat(const Comdat &C); 418 void visitModuleIdents(const Module &M); 419 void visitModuleCommandLines(const Module &M); 420 void visitModuleFlags(const Module &M); 421 void visitModuleFlag(const MDNode *Op, 422 DenseMap<const MDString *, const MDNode *> &SeenIDs, 423 SmallVectorImpl<const MDNode *> &Requirements); 424 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 425 void visitFunction(const Function &F); 426 void visitBasicBlock(BasicBlock &BB); 427 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 428 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 429 void visitProfMetadata(Instruction &I, MDNode *MD); 430 void visitAnnotationMetadata(MDNode *Annotation); 431 432 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 433 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 434 #include "llvm/IR/Metadata.def" 435 void visitDIScope(const DIScope &N); 436 void visitDIVariable(const DIVariable &N); 437 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 438 void visitDITemplateParameter(const DITemplateParameter &N); 439 440 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 441 442 // InstVisitor overrides... 443 using InstVisitor<Verifier>::visit; 444 void visit(Instruction &I); 445 446 void visitTruncInst(TruncInst &I); 447 void visitZExtInst(ZExtInst &I); 448 void visitSExtInst(SExtInst &I); 449 void visitFPTruncInst(FPTruncInst &I); 450 void visitFPExtInst(FPExtInst &I); 451 void visitFPToUIInst(FPToUIInst &I); 452 void visitFPToSIInst(FPToSIInst &I); 453 void visitUIToFPInst(UIToFPInst &I); 454 void visitSIToFPInst(SIToFPInst &I); 455 void visitIntToPtrInst(IntToPtrInst &I); 456 void visitPtrToIntInst(PtrToIntInst &I); 457 void visitBitCastInst(BitCastInst &I); 458 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 459 void visitPHINode(PHINode &PN); 460 void visitCallBase(CallBase &Call); 461 void visitUnaryOperator(UnaryOperator &U); 462 void visitBinaryOperator(BinaryOperator &B); 463 void visitICmpInst(ICmpInst &IC); 464 void visitFCmpInst(FCmpInst &FC); 465 void visitExtractElementInst(ExtractElementInst &EI); 466 void visitInsertElementInst(InsertElementInst &EI); 467 void visitShuffleVectorInst(ShuffleVectorInst &EI); 468 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 469 void visitCallInst(CallInst &CI); 470 void visitInvokeInst(InvokeInst &II); 471 void visitGetElementPtrInst(GetElementPtrInst &GEP); 472 void visitLoadInst(LoadInst &LI); 473 void visitStoreInst(StoreInst &SI); 474 void verifyDominatesUse(Instruction &I, unsigned i); 475 void visitInstruction(Instruction &I); 476 void visitTerminator(Instruction &I); 477 void visitBranchInst(BranchInst &BI); 478 void visitReturnInst(ReturnInst &RI); 479 void visitSwitchInst(SwitchInst &SI); 480 void visitIndirectBrInst(IndirectBrInst &BI); 481 void visitCallBrInst(CallBrInst &CBI); 482 void visitSelectInst(SelectInst &SI); 483 void visitUserOp1(Instruction &I); 484 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 485 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 486 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 487 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 488 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 489 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 490 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 491 void visitFenceInst(FenceInst &FI); 492 void visitAllocaInst(AllocaInst &AI); 493 void visitExtractValueInst(ExtractValueInst &EVI); 494 void visitInsertValueInst(InsertValueInst &IVI); 495 void visitEHPadPredecessors(Instruction &I); 496 void visitLandingPadInst(LandingPadInst &LPI); 497 void visitResumeInst(ResumeInst &RI); 498 void visitCatchPadInst(CatchPadInst &CPI); 499 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 500 void visitCleanupPadInst(CleanupPadInst &CPI); 501 void visitFuncletPadInst(FuncletPadInst &FPI); 502 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 503 void visitCleanupReturnInst(CleanupReturnInst &CRI); 504 505 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 506 void verifySwiftErrorValue(const Value *SwiftErrorVal); 507 void verifyMustTailCall(CallInst &CI); 508 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 509 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 510 const Value *V); 511 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 512 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 513 const Value *V, bool IsIntrinsic); 514 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 515 516 void visitConstantExprsRecursively(const Constant *EntryC); 517 void visitConstantExpr(const ConstantExpr *CE); 518 void verifyStatepoint(const CallBase &Call); 519 void verifyFrameRecoverIndices(); 520 void verifySiblingFuncletUnwinds(); 521 522 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 523 template <typename ValueOrMetadata> 524 void verifyFragmentExpression(const DIVariable &V, 525 DIExpression::FragmentInfo Fragment, 526 ValueOrMetadata *Desc); 527 void verifyFnArgs(const DbgVariableIntrinsic &I); 528 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 529 530 /// Module-level debug info verification... 531 void verifyCompileUnits(); 532 533 /// Module-level verification that all @llvm.experimental.deoptimize 534 /// declarations share the same calling convention. 535 void verifyDeoptimizeCallingConvs(); 536 537 /// Verify all-or-nothing property of DIFile source attribute within a CU. 538 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 539 }; 540 541 } // end anonymous namespace 542 543 /// We know that cond should be true, if not print an error message. 544 #define Assert(C, ...) \ 545 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 546 547 /// We know that a debug info condition should be true, if not print 548 /// an error message. 549 #define AssertDI(C, ...) \ 550 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 551 552 void Verifier::visit(Instruction &I) { 553 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 554 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 555 InstVisitor<Verifier>::visit(I); 556 } 557 558 // Helper to recursively iterate over indirect users. By 559 // returning false, the callback can ask to stop recursing 560 // further. 561 static void forEachUser(const Value *User, 562 SmallPtrSet<const Value *, 32> &Visited, 563 llvm::function_ref<bool(const Value *)> Callback) { 564 if (!Visited.insert(User).second) 565 return; 566 for (const Value *TheNextUser : User->materialized_users()) 567 if (Callback(TheNextUser)) 568 forEachUser(TheNextUser, Visited, Callback); 569 } 570 571 void Verifier::visitGlobalValue(const GlobalValue &GV) { 572 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 573 "Global is external, but doesn't have external or weak linkage!", &GV); 574 575 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) 576 Assert(GO->getAlignment() <= Value::MaximumAlignment, 577 "huge alignment values are unsupported", GO); 578 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 579 "Only global variables can have appending linkage!", &GV); 580 581 if (GV.hasAppendingLinkage()) { 582 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 583 Assert(GVar && GVar->getValueType()->isArrayTy(), 584 "Only global arrays can have appending linkage!", GVar); 585 } 586 587 if (GV.isDeclarationForLinker()) 588 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 589 590 if (GV.hasDLLImportStorageClass()) { 591 Assert(!GV.isDSOLocal(), 592 "GlobalValue with DLLImport Storage is dso_local!", &GV); 593 594 Assert((GV.isDeclaration() && 595 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) || 596 GV.hasAvailableExternallyLinkage(), 597 "Global is marked as dllimport, but not external", &GV); 598 } 599 600 if (GV.isImplicitDSOLocal()) 601 Assert(GV.isDSOLocal(), 602 "GlobalValue with local linkage or non-default " 603 "visibility must be dso_local!", 604 &GV); 605 606 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 607 if (const Instruction *I = dyn_cast<Instruction>(V)) { 608 if (!I->getParent() || !I->getParent()->getParent()) 609 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 610 I); 611 else if (I->getParent()->getParent()->getParent() != &M) 612 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 613 I->getParent()->getParent(), 614 I->getParent()->getParent()->getParent()); 615 return false; 616 } else if (const Function *F = dyn_cast<Function>(V)) { 617 if (F->getParent() != &M) 618 CheckFailed("Global is used by function in a different module", &GV, &M, 619 F, F->getParent()); 620 return false; 621 } 622 return true; 623 }); 624 } 625 626 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 627 if (GV.hasInitializer()) { 628 Assert(GV.getInitializer()->getType() == GV.getValueType(), 629 "Global variable initializer type does not match global " 630 "variable type!", 631 &GV); 632 // If the global has common linkage, it must have a zero initializer and 633 // cannot be constant. 634 if (GV.hasCommonLinkage()) { 635 Assert(GV.getInitializer()->isNullValue(), 636 "'common' global must have a zero initializer!", &GV); 637 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 638 &GV); 639 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 640 } 641 } 642 643 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 644 GV.getName() == "llvm.global_dtors")) { 645 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 646 "invalid linkage for intrinsic global variable", &GV); 647 // Don't worry about emitting an error for it not being an array, 648 // visitGlobalValue will complain on appending non-array. 649 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 650 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 651 PointerType *FuncPtrTy = 652 FunctionType::get(Type::getVoidTy(Context), false)-> 653 getPointerTo(DL.getProgramAddressSpace()); 654 Assert(STy && 655 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 656 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 657 STy->getTypeAtIndex(1) == FuncPtrTy, 658 "wrong type for intrinsic global variable", &GV); 659 Assert(STy->getNumElements() == 3, 660 "the third field of the element type is mandatory, " 661 "specify i8* null to migrate from the obsoleted 2-field form"); 662 Type *ETy = STy->getTypeAtIndex(2); 663 Assert(ETy->isPointerTy() && 664 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 665 "wrong type for intrinsic global variable", &GV); 666 } 667 } 668 669 if (GV.hasName() && (GV.getName() == "llvm.used" || 670 GV.getName() == "llvm.compiler.used")) { 671 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 672 "invalid linkage for intrinsic global variable", &GV); 673 Type *GVType = GV.getValueType(); 674 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 675 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 676 Assert(PTy, "wrong type for intrinsic global variable", &GV); 677 if (GV.hasInitializer()) { 678 const Constant *Init = GV.getInitializer(); 679 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 680 Assert(InitArray, "wrong initalizer for intrinsic global variable", 681 Init); 682 for (Value *Op : InitArray->operands()) { 683 Value *V = Op->stripPointerCasts(); 684 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 685 isa<GlobalAlias>(V), 686 "invalid llvm.used member", V); 687 Assert(V->hasName(), "members of llvm.used must be named", V); 688 } 689 } 690 } 691 } 692 693 // Visit any debug info attachments. 694 SmallVector<MDNode *, 1> MDs; 695 GV.getMetadata(LLVMContext::MD_dbg, MDs); 696 for (auto *MD : MDs) { 697 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 698 visitDIGlobalVariableExpression(*GVE); 699 else 700 AssertDI(false, "!dbg attachment of global variable must be a " 701 "DIGlobalVariableExpression"); 702 } 703 704 // Scalable vectors cannot be global variables, since we don't know 705 // the runtime size. If the global is a struct or an array containing 706 // scalable vectors, that will be caught by the isValidElementType methods 707 // in StructType or ArrayType instead. 708 Assert(!isa<ScalableVectorType>(GV.getValueType()), 709 "Globals cannot contain scalable vectors", &GV); 710 711 if (!GV.hasInitializer()) { 712 visitGlobalValue(GV); 713 return; 714 } 715 716 // Walk any aggregate initializers looking for bitcasts between address spaces 717 visitConstantExprsRecursively(GV.getInitializer()); 718 719 visitGlobalValue(GV); 720 } 721 722 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 723 SmallPtrSet<const GlobalAlias*, 4> Visited; 724 Visited.insert(&GA); 725 visitAliaseeSubExpr(Visited, GA, C); 726 } 727 728 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 729 const GlobalAlias &GA, const Constant &C) { 730 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 731 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 732 &GA); 733 734 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 735 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 736 737 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 738 &GA); 739 } else { 740 // Only continue verifying subexpressions of GlobalAliases. 741 // Do not recurse into global initializers. 742 return; 743 } 744 } 745 746 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 747 visitConstantExprsRecursively(CE); 748 749 for (const Use &U : C.operands()) { 750 Value *V = &*U; 751 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 752 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 753 else if (const auto *C2 = dyn_cast<Constant>(V)) 754 visitAliaseeSubExpr(Visited, GA, *C2); 755 } 756 } 757 758 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 759 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 760 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 761 "weak_odr, or external linkage!", 762 &GA); 763 const Constant *Aliasee = GA.getAliasee(); 764 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 765 Assert(GA.getType() == Aliasee->getType(), 766 "Alias and aliasee types should match!", &GA); 767 768 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 769 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 770 771 visitAliaseeSubExpr(GA, *Aliasee); 772 773 visitGlobalValue(GA); 774 } 775 776 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 777 // There used to be various other llvm.dbg.* nodes, but we don't support 778 // upgrading them and we want to reserve the namespace for future uses. 779 if (NMD.getName().startswith("llvm.dbg.")) 780 AssertDI(NMD.getName() == "llvm.dbg.cu", 781 "unrecognized named metadata node in the llvm.dbg namespace", 782 &NMD); 783 for (const MDNode *MD : NMD.operands()) { 784 if (NMD.getName() == "llvm.dbg.cu") 785 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 786 787 if (!MD) 788 continue; 789 790 visitMDNode(*MD, AreDebugLocsAllowed::Yes); 791 } 792 } 793 794 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { 795 // Only visit each node once. Metadata can be mutually recursive, so this 796 // avoids infinite recursion here, as well as being an optimization. 797 if (!MDNodes.insert(&MD).second) 798 return; 799 800 switch (MD.getMetadataID()) { 801 default: 802 llvm_unreachable("Invalid MDNode subclass"); 803 case Metadata::MDTupleKind: 804 break; 805 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 806 case Metadata::CLASS##Kind: \ 807 visit##CLASS(cast<CLASS>(MD)); \ 808 break; 809 #include "llvm/IR/Metadata.def" 810 } 811 812 for (const Metadata *Op : MD.operands()) { 813 if (!Op) 814 continue; 815 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 816 &MD, Op); 817 AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes, 818 "DILocation not allowed within this metadata node", &MD, Op); 819 if (auto *N = dyn_cast<MDNode>(Op)) { 820 visitMDNode(*N, AllowLocs); 821 continue; 822 } 823 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 824 visitValueAsMetadata(*V, nullptr); 825 continue; 826 } 827 } 828 829 // Check these last, so we diagnose problems in operands first. 830 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 831 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 832 } 833 834 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 835 Assert(MD.getValue(), "Expected valid value", &MD); 836 Assert(!MD.getValue()->getType()->isMetadataTy(), 837 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 838 839 auto *L = dyn_cast<LocalAsMetadata>(&MD); 840 if (!L) 841 return; 842 843 Assert(F, "function-local metadata used outside a function", L); 844 845 // If this was an instruction, bb, or argument, verify that it is in the 846 // function that we expect. 847 Function *ActualF = nullptr; 848 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 849 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 850 ActualF = I->getParent()->getParent(); 851 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 852 ActualF = BB->getParent(); 853 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 854 ActualF = A->getParent(); 855 assert(ActualF && "Unimplemented function local metadata case!"); 856 857 Assert(ActualF == F, "function-local metadata used in wrong function", L); 858 } 859 860 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 861 Metadata *MD = MDV.getMetadata(); 862 if (auto *N = dyn_cast<MDNode>(MD)) { 863 visitMDNode(*N, AreDebugLocsAllowed::No); 864 return; 865 } 866 867 // Only visit each node once. Metadata can be mutually recursive, so this 868 // avoids infinite recursion here, as well as being an optimization. 869 if (!MDNodes.insert(MD).second) 870 return; 871 872 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 873 visitValueAsMetadata(*V, F); 874 } 875 876 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 877 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 878 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 879 880 void Verifier::visitDILocation(const DILocation &N) { 881 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 882 "location requires a valid scope", &N, N.getRawScope()); 883 if (auto *IA = N.getRawInlinedAt()) 884 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 885 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 886 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 887 } 888 889 void Verifier::visitGenericDINode(const GenericDINode &N) { 890 AssertDI(N.getTag(), "invalid tag", &N); 891 } 892 893 void Verifier::visitDIScope(const DIScope &N) { 894 if (auto *F = N.getRawFile()) 895 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 896 } 897 898 void Verifier::visitDISubrange(const DISubrange &N) { 899 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 900 bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang); 901 AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() || 902 N.getRawUpperBound(), 903 "Subrange must contain count or upperBound", &N); 904 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 905 "Subrange can have any one of count or upperBound", &N); 906 AssertDI(!N.getRawCountNode() || N.getCount(), 907 "Count must either be a signed constant or a DIVariable", &N); 908 auto Count = N.getCount(); 909 AssertDI(!Count || !Count.is<ConstantInt *>() || 910 Count.get<ConstantInt *>()->getSExtValue() >= -1, 911 "invalid subrange count", &N); 912 auto *LBound = N.getRawLowerBound(); 913 AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) || 914 isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 915 "LowerBound must be signed constant or DIVariable or DIExpression", 916 &N); 917 auto *UBound = N.getRawUpperBound(); 918 AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) || 919 isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 920 "UpperBound must be signed constant or DIVariable or DIExpression", 921 &N); 922 auto *Stride = N.getRawStride(); 923 AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) || 924 isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 925 "Stride must be signed constant or DIVariable or DIExpression", &N); 926 } 927 928 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) { 929 AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N); 930 AssertDI(N.getRawCountNode() || N.getRawUpperBound(), 931 "GenericSubrange must contain count or upperBound", &N); 932 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 933 "GenericSubrange can have any one of count or upperBound", &N); 934 auto *CBound = N.getRawCountNode(); 935 AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 936 "Count must be signed constant or DIVariable or DIExpression", &N); 937 auto *LBound = N.getRawLowerBound(); 938 AssertDI(LBound, "GenericSubrange must contain lowerBound", &N); 939 AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 940 "LowerBound must be signed constant or DIVariable or DIExpression", 941 &N); 942 auto *UBound = N.getRawUpperBound(); 943 AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 944 "UpperBound must be signed constant or DIVariable or DIExpression", 945 &N); 946 auto *Stride = N.getRawStride(); 947 AssertDI(Stride, "GenericSubrange must contain stride", &N); 948 AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 949 "Stride must be signed constant or DIVariable or DIExpression", &N); 950 } 951 952 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 953 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 954 } 955 956 void Verifier::visitDIBasicType(const DIBasicType &N) { 957 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 958 N.getTag() == dwarf::DW_TAG_unspecified_type || 959 N.getTag() == dwarf::DW_TAG_string_type, 960 "invalid tag", &N); 961 } 962 963 void Verifier::visitDIStringType(const DIStringType &N) { 964 AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N); 965 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 966 "has conflicting flags", &N); 967 } 968 969 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 970 // Common scope checks. 971 visitDIScope(N); 972 973 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 974 N.getTag() == dwarf::DW_TAG_pointer_type || 975 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 976 N.getTag() == dwarf::DW_TAG_reference_type || 977 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 978 N.getTag() == dwarf::DW_TAG_const_type || 979 N.getTag() == dwarf::DW_TAG_volatile_type || 980 N.getTag() == dwarf::DW_TAG_restrict_type || 981 N.getTag() == dwarf::DW_TAG_atomic_type || 982 N.getTag() == dwarf::DW_TAG_member || 983 N.getTag() == dwarf::DW_TAG_inheritance || 984 N.getTag() == dwarf::DW_TAG_friend, 985 "invalid tag", &N); 986 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 987 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 988 N.getRawExtraData()); 989 } 990 991 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 992 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 993 N.getRawBaseType()); 994 995 if (N.getDWARFAddressSpace()) { 996 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 997 N.getTag() == dwarf::DW_TAG_reference_type || 998 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 999 "DWARF address space only applies to pointer or reference types", 1000 &N); 1001 } 1002 } 1003 1004 /// Detect mutually exclusive flags. 1005 static bool hasConflictingReferenceFlags(unsigned Flags) { 1006 return ((Flags & DINode::FlagLValueReference) && 1007 (Flags & DINode::FlagRValueReference)) || 1008 ((Flags & DINode::FlagTypePassByValue) && 1009 (Flags & DINode::FlagTypePassByReference)); 1010 } 1011 1012 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 1013 auto *Params = dyn_cast<MDTuple>(&RawParams); 1014 AssertDI(Params, "invalid template params", &N, &RawParams); 1015 for (Metadata *Op : Params->operands()) { 1016 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 1017 &N, Params, Op); 1018 } 1019 } 1020 1021 void Verifier::visitDICompositeType(const DICompositeType &N) { 1022 // Common scope checks. 1023 visitDIScope(N); 1024 1025 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 1026 N.getTag() == dwarf::DW_TAG_structure_type || 1027 N.getTag() == dwarf::DW_TAG_union_type || 1028 N.getTag() == dwarf::DW_TAG_enumeration_type || 1029 N.getTag() == dwarf::DW_TAG_class_type || 1030 N.getTag() == dwarf::DW_TAG_variant_part, 1031 "invalid tag", &N); 1032 1033 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1034 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1035 N.getRawBaseType()); 1036 1037 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 1038 "invalid composite elements", &N, N.getRawElements()); 1039 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 1040 N.getRawVTableHolder()); 1041 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1042 "invalid reference flags", &N); 1043 unsigned DIBlockByRefStruct = 1 << 4; 1044 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, 1045 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 1046 1047 if (N.isVector()) { 1048 const DINodeArray Elements = N.getElements(); 1049 AssertDI(Elements.size() == 1 && 1050 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 1051 "invalid vector, expected one element of type subrange", &N); 1052 } 1053 1054 if (auto *Params = N.getRawTemplateParams()) 1055 visitTemplateParams(N, *Params); 1056 1057 if (N.getTag() == dwarf::DW_TAG_class_type || 1058 N.getTag() == dwarf::DW_TAG_union_type) { 1059 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), 1060 "class/union requires a filename", &N, N.getFile()); 1061 } 1062 1063 if (auto *D = N.getRawDiscriminator()) { 1064 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1065 "discriminator can only appear on variant part"); 1066 } 1067 1068 if (N.getRawDataLocation()) { 1069 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1070 "dataLocation can only appear in array type"); 1071 } 1072 1073 if (N.getRawAssociated()) { 1074 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1075 "associated can only appear in array type"); 1076 } 1077 1078 if (N.getRawAllocated()) { 1079 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1080 "allocated can only appear in array type"); 1081 } 1082 1083 if (N.getRawRank()) { 1084 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1085 "rank can only appear in array type"); 1086 } 1087 } 1088 1089 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1090 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1091 if (auto *Types = N.getRawTypeArray()) { 1092 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1093 for (Metadata *Ty : N.getTypeArray()->operands()) { 1094 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1095 } 1096 } 1097 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1098 "invalid reference flags", &N); 1099 } 1100 1101 void Verifier::visitDIFile(const DIFile &N) { 1102 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1103 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1104 if (Checksum) { 1105 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1106 "invalid checksum kind", &N); 1107 size_t Size; 1108 switch (Checksum->Kind) { 1109 case DIFile::CSK_MD5: 1110 Size = 32; 1111 break; 1112 case DIFile::CSK_SHA1: 1113 Size = 40; 1114 break; 1115 case DIFile::CSK_SHA256: 1116 Size = 64; 1117 break; 1118 } 1119 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1120 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1121 "invalid checksum", &N); 1122 } 1123 } 1124 1125 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1126 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1127 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1128 1129 // Don't bother verifying the compilation directory or producer string 1130 // as those could be empty. 1131 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1132 N.getRawFile()); 1133 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1134 N.getFile()); 1135 1136 CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage(); 1137 1138 verifySourceDebugInfo(N, *N.getFile()); 1139 1140 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1141 "invalid emission kind", &N); 1142 1143 if (auto *Array = N.getRawEnumTypes()) { 1144 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1145 for (Metadata *Op : N.getEnumTypes()->operands()) { 1146 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1147 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1148 "invalid enum type", &N, N.getEnumTypes(), Op); 1149 } 1150 } 1151 if (auto *Array = N.getRawRetainedTypes()) { 1152 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1153 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1154 AssertDI(Op && (isa<DIType>(Op) || 1155 (isa<DISubprogram>(Op) && 1156 !cast<DISubprogram>(Op)->isDefinition())), 1157 "invalid retained type", &N, Op); 1158 } 1159 } 1160 if (auto *Array = N.getRawGlobalVariables()) { 1161 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1162 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1163 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1164 "invalid global variable ref", &N, Op); 1165 } 1166 } 1167 if (auto *Array = N.getRawImportedEntities()) { 1168 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1169 for (Metadata *Op : N.getImportedEntities()->operands()) { 1170 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1171 &N, Op); 1172 } 1173 } 1174 if (auto *Array = N.getRawMacros()) { 1175 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1176 for (Metadata *Op : N.getMacros()->operands()) { 1177 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1178 } 1179 } 1180 CUVisited.insert(&N); 1181 } 1182 1183 void Verifier::visitDISubprogram(const DISubprogram &N) { 1184 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1185 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1186 if (auto *F = N.getRawFile()) 1187 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1188 else 1189 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1190 if (auto *T = N.getRawType()) 1191 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1192 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1193 N.getRawContainingType()); 1194 if (auto *Params = N.getRawTemplateParams()) 1195 visitTemplateParams(N, *Params); 1196 if (auto *S = N.getRawDeclaration()) 1197 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1198 "invalid subprogram declaration", &N, S); 1199 if (auto *RawNode = N.getRawRetainedNodes()) { 1200 auto *Node = dyn_cast<MDTuple>(RawNode); 1201 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1202 for (Metadata *Op : Node->operands()) { 1203 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1204 "invalid retained nodes, expected DILocalVariable or DILabel", 1205 &N, Node, Op); 1206 } 1207 } 1208 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1209 "invalid reference flags", &N); 1210 1211 auto *Unit = N.getRawUnit(); 1212 if (N.isDefinition()) { 1213 // Subprogram definitions (not part of the type hierarchy). 1214 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1215 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1216 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1217 if (N.getFile()) 1218 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1219 } else { 1220 // Subprogram declarations (part of the type hierarchy). 1221 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1222 } 1223 1224 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1225 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1226 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1227 for (Metadata *Op : ThrownTypes->operands()) 1228 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1229 Op); 1230 } 1231 1232 if (N.areAllCallsDescribed()) 1233 AssertDI(N.isDefinition(), 1234 "DIFlagAllCallsDescribed must be attached to a definition"); 1235 } 1236 1237 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1238 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1239 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1240 "invalid local scope", &N, N.getRawScope()); 1241 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1242 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1243 } 1244 1245 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1246 visitDILexicalBlockBase(N); 1247 1248 AssertDI(N.getLine() || !N.getColumn(), 1249 "cannot have column info without line info", &N); 1250 } 1251 1252 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1253 visitDILexicalBlockBase(N); 1254 } 1255 1256 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1257 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1258 if (auto *S = N.getRawScope()) 1259 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1260 if (auto *S = N.getRawDecl()) 1261 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1262 } 1263 1264 void Verifier::visitDINamespace(const DINamespace &N) { 1265 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1266 if (auto *S = N.getRawScope()) 1267 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1268 } 1269 1270 void Verifier::visitDIMacro(const DIMacro &N) { 1271 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1272 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1273 "invalid macinfo type", &N); 1274 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1275 if (!N.getValue().empty()) { 1276 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1277 } 1278 } 1279 1280 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1281 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1282 "invalid macinfo type", &N); 1283 if (auto *F = N.getRawFile()) 1284 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1285 1286 if (auto *Array = N.getRawElements()) { 1287 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1288 for (Metadata *Op : N.getElements()->operands()) { 1289 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1290 } 1291 } 1292 } 1293 1294 void Verifier::visitDIModule(const DIModule &N) { 1295 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1296 AssertDI(!N.getName().empty(), "anonymous module", &N); 1297 } 1298 1299 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1300 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1301 } 1302 1303 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1304 visitDITemplateParameter(N); 1305 1306 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1307 &N); 1308 } 1309 1310 void Verifier::visitDITemplateValueParameter( 1311 const DITemplateValueParameter &N) { 1312 visitDITemplateParameter(N); 1313 1314 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1315 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1316 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1317 "invalid tag", &N); 1318 } 1319 1320 void Verifier::visitDIVariable(const DIVariable &N) { 1321 if (auto *S = N.getRawScope()) 1322 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1323 if (auto *F = N.getRawFile()) 1324 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1325 } 1326 1327 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1328 // Checks common to all variables. 1329 visitDIVariable(N); 1330 1331 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1332 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1333 // Assert only if the global variable is not an extern 1334 if (N.isDefinition()) 1335 AssertDI(N.getType(), "missing global variable type", &N); 1336 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1337 AssertDI(isa<DIDerivedType>(Member), 1338 "invalid static data member declaration", &N, Member); 1339 } 1340 } 1341 1342 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1343 // Checks common to all variables. 1344 visitDIVariable(N); 1345 1346 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1347 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1348 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1349 "local variable requires a valid scope", &N, N.getRawScope()); 1350 if (auto Ty = N.getType()) 1351 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1352 } 1353 1354 void Verifier::visitDILabel(const DILabel &N) { 1355 if (auto *S = N.getRawScope()) 1356 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1357 if (auto *F = N.getRawFile()) 1358 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1359 1360 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1361 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1362 "label requires a valid scope", &N, N.getRawScope()); 1363 } 1364 1365 void Verifier::visitDIExpression(const DIExpression &N) { 1366 AssertDI(N.isValid(), "invalid expression", &N); 1367 } 1368 1369 void Verifier::visitDIGlobalVariableExpression( 1370 const DIGlobalVariableExpression &GVE) { 1371 AssertDI(GVE.getVariable(), "missing variable"); 1372 if (auto *Var = GVE.getVariable()) 1373 visitDIGlobalVariable(*Var); 1374 if (auto *Expr = GVE.getExpression()) { 1375 visitDIExpression(*Expr); 1376 if (auto Fragment = Expr->getFragmentInfo()) 1377 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1378 } 1379 } 1380 1381 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1382 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1383 if (auto *T = N.getRawType()) 1384 AssertDI(isType(T), "invalid type ref", &N, T); 1385 if (auto *F = N.getRawFile()) 1386 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1387 } 1388 1389 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1390 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1391 N.getTag() == dwarf::DW_TAG_imported_declaration, 1392 "invalid tag", &N); 1393 if (auto *S = N.getRawScope()) 1394 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1395 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1396 N.getRawEntity()); 1397 } 1398 1399 void Verifier::visitComdat(const Comdat &C) { 1400 // In COFF the Module is invalid if the GlobalValue has private linkage. 1401 // Entities with private linkage don't have entries in the symbol table. 1402 if (TT.isOSBinFormatCOFF()) 1403 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1404 Assert(!GV->hasPrivateLinkage(), 1405 "comdat global value has private linkage", GV); 1406 } 1407 1408 void Verifier::visitModuleIdents(const Module &M) { 1409 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1410 if (!Idents) 1411 return; 1412 1413 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1414 // Scan each llvm.ident entry and make sure that this requirement is met. 1415 for (const MDNode *N : Idents->operands()) { 1416 Assert(N->getNumOperands() == 1, 1417 "incorrect number of operands in llvm.ident metadata", N); 1418 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1419 ("invalid value for llvm.ident metadata entry operand" 1420 "(the operand should be a string)"), 1421 N->getOperand(0)); 1422 } 1423 } 1424 1425 void Verifier::visitModuleCommandLines(const Module &M) { 1426 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1427 if (!CommandLines) 1428 return; 1429 1430 // llvm.commandline takes a list of metadata entry. Each entry has only one 1431 // string. Scan each llvm.commandline entry and make sure that this 1432 // requirement is met. 1433 for (const MDNode *N : CommandLines->operands()) { 1434 Assert(N->getNumOperands() == 1, 1435 "incorrect number of operands in llvm.commandline metadata", N); 1436 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1437 ("invalid value for llvm.commandline metadata entry operand" 1438 "(the operand should be a string)"), 1439 N->getOperand(0)); 1440 } 1441 } 1442 1443 void Verifier::visitModuleFlags(const Module &M) { 1444 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1445 if (!Flags) return; 1446 1447 // Scan each flag, and track the flags and requirements. 1448 DenseMap<const MDString*, const MDNode*> SeenIDs; 1449 SmallVector<const MDNode*, 16> Requirements; 1450 for (const MDNode *MDN : Flags->operands()) 1451 visitModuleFlag(MDN, SeenIDs, Requirements); 1452 1453 // Validate that the requirements in the module are valid. 1454 for (const MDNode *Requirement : Requirements) { 1455 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1456 const Metadata *ReqValue = Requirement->getOperand(1); 1457 1458 const MDNode *Op = SeenIDs.lookup(Flag); 1459 if (!Op) { 1460 CheckFailed("invalid requirement on flag, flag is not present in module", 1461 Flag); 1462 continue; 1463 } 1464 1465 if (Op->getOperand(2) != ReqValue) { 1466 CheckFailed(("invalid requirement on flag, " 1467 "flag does not have the required value"), 1468 Flag); 1469 continue; 1470 } 1471 } 1472 } 1473 1474 void 1475 Verifier::visitModuleFlag(const MDNode *Op, 1476 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1477 SmallVectorImpl<const MDNode *> &Requirements) { 1478 // Each module flag should have three arguments, the merge behavior (a 1479 // constant int), the flag ID (an MDString), and the value. 1480 Assert(Op->getNumOperands() == 3, 1481 "incorrect number of operands in module flag", Op); 1482 Module::ModFlagBehavior MFB; 1483 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1484 Assert( 1485 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1486 "invalid behavior operand in module flag (expected constant integer)", 1487 Op->getOperand(0)); 1488 Assert(false, 1489 "invalid behavior operand in module flag (unexpected constant)", 1490 Op->getOperand(0)); 1491 } 1492 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1493 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1494 Op->getOperand(1)); 1495 1496 // Sanity check the values for behaviors with additional requirements. 1497 switch (MFB) { 1498 case Module::Error: 1499 case Module::Warning: 1500 case Module::Override: 1501 // These behavior types accept any value. 1502 break; 1503 1504 case Module::Max: { 1505 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1506 "invalid value for 'max' module flag (expected constant integer)", 1507 Op->getOperand(2)); 1508 break; 1509 } 1510 1511 case Module::Require: { 1512 // The value should itself be an MDNode with two operands, a flag ID (an 1513 // MDString), and a value. 1514 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1515 Assert(Value && Value->getNumOperands() == 2, 1516 "invalid value for 'require' module flag (expected metadata pair)", 1517 Op->getOperand(2)); 1518 Assert(isa<MDString>(Value->getOperand(0)), 1519 ("invalid value for 'require' module flag " 1520 "(first value operand should be a string)"), 1521 Value->getOperand(0)); 1522 1523 // Append it to the list of requirements, to check once all module flags are 1524 // scanned. 1525 Requirements.push_back(Value); 1526 break; 1527 } 1528 1529 case Module::Append: 1530 case Module::AppendUnique: { 1531 // These behavior types require the operand be an MDNode. 1532 Assert(isa<MDNode>(Op->getOperand(2)), 1533 "invalid value for 'append'-type module flag " 1534 "(expected a metadata node)", 1535 Op->getOperand(2)); 1536 break; 1537 } 1538 } 1539 1540 // Unless this is a "requires" flag, check the ID is unique. 1541 if (MFB != Module::Require) { 1542 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1543 Assert(Inserted, 1544 "module flag identifiers must be unique (or of 'require' type)", ID); 1545 } 1546 1547 if (ID->getString() == "wchar_size") { 1548 ConstantInt *Value 1549 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1550 Assert(Value, "wchar_size metadata requires constant integer argument"); 1551 } 1552 1553 if (ID->getString() == "Linker Options") { 1554 // If the llvm.linker.options named metadata exists, we assume that the 1555 // bitcode reader has upgraded the module flag. Otherwise the flag might 1556 // have been created by a client directly. 1557 Assert(M.getNamedMetadata("llvm.linker.options"), 1558 "'Linker Options' named metadata no longer supported"); 1559 } 1560 1561 if (ID->getString() == "SemanticInterposition") { 1562 ConstantInt *Value = 1563 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1564 Assert(Value, 1565 "SemanticInterposition metadata requires constant integer argument"); 1566 } 1567 1568 if (ID->getString() == "CG Profile") { 1569 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1570 visitModuleFlagCGProfileEntry(MDO); 1571 } 1572 } 1573 1574 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1575 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1576 if (!FuncMDO) 1577 return; 1578 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1579 Assert(F && isa<Function>(F->getValue()->stripPointerCasts()), 1580 "expected a Function or null", FuncMDO); 1581 }; 1582 auto Node = dyn_cast_or_null<MDNode>(MDO); 1583 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1584 CheckFunction(Node->getOperand(0)); 1585 CheckFunction(Node->getOperand(1)); 1586 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1587 Assert(Count && Count->getType()->isIntegerTy(), 1588 "expected an integer constant", Node->getOperand(2)); 1589 } 1590 1591 /// Return true if this attribute kind only applies to functions. 1592 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { 1593 switch (Kind) { 1594 case Attribute::NoMerge: 1595 case Attribute::NoReturn: 1596 case Attribute::NoSync: 1597 case Attribute::WillReturn: 1598 case Attribute::NoCallback: 1599 case Attribute::NoCfCheck: 1600 case Attribute::NoUnwind: 1601 case Attribute::NoInline: 1602 case Attribute::AlwaysInline: 1603 case Attribute::OptimizeForSize: 1604 case Attribute::StackProtect: 1605 case Attribute::StackProtectReq: 1606 case Attribute::StackProtectStrong: 1607 case Attribute::SafeStack: 1608 case Attribute::ShadowCallStack: 1609 case Attribute::NoRedZone: 1610 case Attribute::NoImplicitFloat: 1611 case Attribute::Naked: 1612 case Attribute::InlineHint: 1613 case Attribute::StackAlignment: 1614 case Attribute::UWTable: 1615 case Attribute::NonLazyBind: 1616 case Attribute::ReturnsTwice: 1617 case Attribute::SanitizeAddress: 1618 case Attribute::SanitizeHWAddress: 1619 case Attribute::SanitizeMemTag: 1620 case Attribute::SanitizeThread: 1621 case Attribute::SanitizeMemory: 1622 case Attribute::MinSize: 1623 case Attribute::NoDuplicate: 1624 case Attribute::Builtin: 1625 case Attribute::NoBuiltin: 1626 case Attribute::Cold: 1627 case Attribute::Hot: 1628 case Attribute::OptForFuzzing: 1629 case Attribute::OptimizeNone: 1630 case Attribute::JumpTable: 1631 case Attribute::Convergent: 1632 case Attribute::ArgMemOnly: 1633 case Attribute::NoRecurse: 1634 case Attribute::InaccessibleMemOnly: 1635 case Attribute::InaccessibleMemOrArgMemOnly: 1636 case Attribute::AllocSize: 1637 case Attribute::SpeculativeLoadHardening: 1638 case Attribute::Speculatable: 1639 case Attribute::StrictFP: 1640 case Attribute::NullPointerIsValid: 1641 case Attribute::MustProgress: 1642 return true; 1643 default: 1644 break; 1645 } 1646 return false; 1647 } 1648 1649 /// Return true if this is a function attribute that can also appear on 1650 /// arguments. 1651 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { 1652 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || 1653 Kind == Attribute::ReadNone || Kind == Attribute::NoFree || 1654 Kind == Attribute::Preallocated; 1655 } 1656 1657 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 1658 const Value *V) { 1659 for (Attribute A : Attrs) { 1660 if (A.isStringAttribute()) 1661 continue; 1662 1663 if (A.isIntAttribute() != 1664 Attribute::doesAttrKindHaveArgument(A.getKindAsEnum())) { 1665 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", 1666 V); 1667 return; 1668 } 1669 1670 if (isFuncOnlyAttr(A.getKindAsEnum())) { 1671 if (!IsFunction) { 1672 CheckFailed("Attribute '" + A.getAsString() + 1673 "' only applies to functions!", 1674 V); 1675 return; 1676 } 1677 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { 1678 CheckFailed("Attribute '" + A.getAsString() + 1679 "' does not apply to functions!", 1680 V); 1681 return; 1682 } 1683 } 1684 } 1685 1686 // VerifyParameterAttrs - Check the given attributes for an argument or return 1687 // value of the specified type. The value V is printed in error messages. 1688 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1689 const Value *V) { 1690 if (!Attrs.hasAttributes()) 1691 return; 1692 1693 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); 1694 1695 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1696 Assert(Attrs.getNumAttributes() == 1, 1697 "Attribute 'immarg' is incompatible with other attributes", V); 1698 } 1699 1700 // Check for mutually incompatible attributes. Only inreg is compatible with 1701 // sret. 1702 unsigned AttrCount = 0; 1703 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1704 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1705 AttrCount += Attrs.hasAttribute(Attribute::Preallocated); 1706 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1707 Attrs.hasAttribute(Attribute::InReg); 1708 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1709 AttrCount += Attrs.hasAttribute(Attribute::ByRef); 1710 Assert(AttrCount <= 1, 1711 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " 1712 "'byref', and 'sret' are incompatible!", 1713 V); 1714 1715 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1716 Attrs.hasAttribute(Attribute::ReadOnly)), 1717 "Attributes " 1718 "'inalloca and readonly' are incompatible!", 1719 V); 1720 1721 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1722 Attrs.hasAttribute(Attribute::Returned)), 1723 "Attributes " 1724 "'sret and returned' are incompatible!", 1725 V); 1726 1727 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1728 Attrs.hasAttribute(Attribute::SExt)), 1729 "Attributes " 1730 "'zeroext and signext' are incompatible!", 1731 V); 1732 1733 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1734 Attrs.hasAttribute(Attribute::ReadOnly)), 1735 "Attributes " 1736 "'readnone and readonly' are incompatible!", 1737 V); 1738 1739 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1740 Attrs.hasAttribute(Attribute::WriteOnly)), 1741 "Attributes " 1742 "'readnone and writeonly' are incompatible!", 1743 V); 1744 1745 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1746 Attrs.hasAttribute(Attribute::WriteOnly)), 1747 "Attributes " 1748 "'readonly and writeonly' are incompatible!", 1749 V); 1750 1751 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1752 Attrs.hasAttribute(Attribute::AlwaysInline)), 1753 "Attributes " 1754 "'noinline and alwaysinline' are incompatible!", 1755 V); 1756 1757 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1758 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), 1759 "Wrong types for attribute: " + 1760 AttributeSet::get(Context, IncompatibleAttrs).getAsString(), 1761 V); 1762 1763 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1764 SmallPtrSet<Type*, 4> Visited; 1765 if (!PTy->getElementType()->isSized(&Visited)) { 1766 Assert(!Attrs.hasAttribute(Attribute::ByVal) && 1767 !Attrs.hasAttribute(Attribute::ByRef) && 1768 !Attrs.hasAttribute(Attribute::InAlloca) && 1769 !Attrs.hasAttribute(Attribute::Preallocated), 1770 "Attributes 'byval', 'byref', 'inalloca', and 'preallocated' do not " 1771 "support unsized types!", 1772 V); 1773 } 1774 if (!isa<PointerType>(PTy->getElementType())) 1775 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1776 "Attribute 'swifterror' only applies to parameters " 1777 "with pointer to pointer type!", 1778 V); 1779 1780 if (Attrs.hasAttribute(Attribute::ByRef)) { 1781 Assert(Attrs.getByRefType() == PTy->getElementType(), 1782 "Attribute 'byref' type does not match parameter!", V); 1783 } 1784 1785 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1786 Assert(Attrs.getByValType() == PTy->getElementType(), 1787 "Attribute 'byval' type does not match parameter!", V); 1788 } 1789 1790 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1791 Assert(Attrs.getPreallocatedType() == PTy->getElementType(), 1792 "Attribute 'preallocated' type does not match parameter!", V); 1793 } 1794 } else { 1795 Assert(!Attrs.hasAttribute(Attribute::ByVal), 1796 "Attribute 'byval' only applies to parameters with pointer type!", 1797 V); 1798 Assert(!Attrs.hasAttribute(Attribute::ByRef), 1799 "Attribute 'byref' only applies to parameters with pointer type!", 1800 V); 1801 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1802 "Attribute 'swifterror' only applies to parameters " 1803 "with pointer type!", 1804 V); 1805 } 1806 } 1807 1808 // Check parameter attributes against a function type. 1809 // The value V is printed in error messages. 1810 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1811 const Value *V, bool IsIntrinsic) { 1812 if (Attrs.isEmpty()) 1813 return; 1814 1815 bool SawNest = false; 1816 bool SawReturned = false; 1817 bool SawSRet = false; 1818 bool SawSwiftSelf = false; 1819 bool SawSwiftError = false; 1820 1821 // Verify return value attributes. 1822 AttributeSet RetAttrs = Attrs.getRetAttributes(); 1823 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && 1824 !RetAttrs.hasAttribute(Attribute::Nest) && 1825 !RetAttrs.hasAttribute(Attribute::StructRet) && 1826 !RetAttrs.hasAttribute(Attribute::NoCapture) && 1827 !RetAttrs.hasAttribute(Attribute::NoFree) && 1828 !RetAttrs.hasAttribute(Attribute::Returned) && 1829 !RetAttrs.hasAttribute(Attribute::InAlloca) && 1830 !RetAttrs.hasAttribute(Attribute::Preallocated) && 1831 !RetAttrs.hasAttribute(Attribute::ByRef) && 1832 !RetAttrs.hasAttribute(Attribute::SwiftSelf) && 1833 !RetAttrs.hasAttribute(Attribute::SwiftError)), 1834 "Attributes 'byval', 'inalloca', 'preallocated', 'byref', " 1835 "'nest', 'sret', 'nocapture', 'nofree', " 1836 "'returned', 'swiftself', and 'swifterror' do not apply to return " 1837 "values!", 1838 V); 1839 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && 1840 !RetAttrs.hasAttribute(Attribute::WriteOnly) && 1841 !RetAttrs.hasAttribute(Attribute::ReadNone)), 1842 "Attribute '" + RetAttrs.getAsString() + 1843 "' does not apply to function returns", 1844 V); 1845 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1846 1847 // Verify parameter attributes. 1848 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1849 Type *Ty = FT->getParamType(i); 1850 AttributeSet ArgAttrs = Attrs.getParamAttributes(i); 1851 1852 if (!IsIntrinsic) { 1853 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1854 "immarg attribute only applies to intrinsics",V); 1855 } 1856 1857 verifyParameterAttrs(ArgAttrs, Ty, V); 1858 1859 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1860 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1861 SawNest = true; 1862 } 1863 1864 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1865 Assert(!SawReturned, "More than one parameter has attribute returned!", 1866 V); 1867 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1868 "Incompatible argument and return types for 'returned' attribute", 1869 V); 1870 SawReturned = true; 1871 } 1872 1873 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1874 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1875 Assert(i == 0 || i == 1, 1876 "Attribute 'sret' is not on first or second parameter!", V); 1877 SawSRet = true; 1878 } 1879 1880 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1881 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1882 SawSwiftSelf = true; 1883 } 1884 1885 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1886 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1887 V); 1888 SawSwiftError = true; 1889 } 1890 1891 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1892 Assert(i == FT->getNumParams() - 1, 1893 "inalloca isn't on the last parameter!", V); 1894 } 1895 } 1896 1897 if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) 1898 return; 1899 1900 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); 1901 1902 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1903 Attrs.hasFnAttribute(Attribute::ReadOnly)), 1904 "Attributes 'readnone and readonly' are incompatible!", V); 1905 1906 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1907 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1908 "Attributes 'readnone and writeonly' are incompatible!", V); 1909 1910 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && 1911 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1912 "Attributes 'readonly and writeonly' are incompatible!", V); 1913 1914 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1915 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), 1916 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1917 "incompatible!", 1918 V); 1919 1920 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1921 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), 1922 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1923 1924 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && 1925 Attrs.hasFnAttribute(Attribute::AlwaysInline)), 1926 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1927 1928 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { 1929 Assert(Attrs.hasFnAttribute(Attribute::NoInline), 1930 "Attribute 'optnone' requires 'noinline'!", V); 1931 1932 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), 1933 "Attributes 'optsize and optnone' are incompatible!", V); 1934 1935 Assert(!Attrs.hasFnAttribute(Attribute::MinSize), 1936 "Attributes 'minsize and optnone' are incompatible!", V); 1937 } 1938 1939 if (Attrs.hasFnAttribute(Attribute::JumpTable)) { 1940 const GlobalValue *GV = cast<GlobalValue>(V); 1941 Assert(GV->hasGlobalUnnamedAddr(), 1942 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1943 } 1944 1945 if (Attrs.hasFnAttribute(Attribute::AllocSize)) { 1946 std::pair<unsigned, Optional<unsigned>> Args = 1947 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 1948 1949 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1950 if (ParamNo >= FT->getNumParams()) { 1951 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1952 return false; 1953 } 1954 1955 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1956 CheckFailed("'allocsize' " + Name + 1957 " argument must refer to an integer parameter", 1958 V); 1959 return false; 1960 } 1961 1962 return true; 1963 }; 1964 1965 if (!CheckParam("element size", Args.first)) 1966 return; 1967 1968 if (Args.second && !CheckParam("number of elements", *Args.second)) 1969 return; 1970 } 1971 1972 if (Attrs.hasFnAttribute("frame-pointer")) { 1973 StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex, 1974 "frame-pointer").getValueAsString(); 1975 if (FP != "all" && FP != "non-leaf" && FP != "none") 1976 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 1977 } 1978 1979 if (Attrs.hasFnAttribute("patchable-function-prefix")) { 1980 StringRef S = Attrs 1981 .getAttribute(AttributeList::FunctionIndex, 1982 "patchable-function-prefix") 1983 .getValueAsString(); 1984 unsigned N; 1985 if (S.getAsInteger(10, N)) 1986 CheckFailed( 1987 "\"patchable-function-prefix\" takes an unsigned integer: " + S, V); 1988 } 1989 if (Attrs.hasFnAttribute("patchable-function-entry")) { 1990 StringRef S = Attrs 1991 .getAttribute(AttributeList::FunctionIndex, 1992 "patchable-function-entry") 1993 .getValueAsString(); 1994 unsigned N; 1995 if (S.getAsInteger(10, N)) 1996 CheckFailed( 1997 "\"patchable-function-entry\" takes an unsigned integer: " + S, V); 1998 } 1999 } 2000 2001 void Verifier::verifyFunctionMetadata( 2002 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 2003 for (const auto &Pair : MDs) { 2004 if (Pair.first == LLVMContext::MD_prof) { 2005 MDNode *MD = Pair.second; 2006 Assert(MD->getNumOperands() >= 2, 2007 "!prof annotations should have no less than 2 operands", MD); 2008 2009 // Check first operand. 2010 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 2011 MD); 2012 Assert(isa<MDString>(MD->getOperand(0)), 2013 "expected string with name of the !prof annotation", MD); 2014 MDString *MDS = cast<MDString>(MD->getOperand(0)); 2015 StringRef ProfName = MDS->getString(); 2016 Assert(ProfName.equals("function_entry_count") || 2017 ProfName.equals("synthetic_function_entry_count"), 2018 "first operand should be 'function_entry_count'" 2019 " or 'synthetic_function_entry_count'", 2020 MD); 2021 2022 // Check second operand. 2023 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 2024 MD); 2025 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 2026 "expected integer argument to function_entry_count", MD); 2027 } 2028 } 2029 } 2030 2031 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 2032 if (!ConstantExprVisited.insert(EntryC).second) 2033 return; 2034 2035 SmallVector<const Constant *, 16> Stack; 2036 Stack.push_back(EntryC); 2037 2038 while (!Stack.empty()) { 2039 const Constant *C = Stack.pop_back_val(); 2040 2041 // Check this constant expression. 2042 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 2043 visitConstantExpr(CE); 2044 2045 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 2046 // Global Values get visited separately, but we do need to make sure 2047 // that the global value is in the correct module 2048 Assert(GV->getParent() == &M, "Referencing global in another module!", 2049 EntryC, &M, GV, GV->getParent()); 2050 continue; 2051 } 2052 2053 // Visit all sub-expressions. 2054 for (const Use &U : C->operands()) { 2055 const auto *OpC = dyn_cast<Constant>(U); 2056 if (!OpC) 2057 continue; 2058 if (!ConstantExprVisited.insert(OpC).second) 2059 continue; 2060 Stack.push_back(OpC); 2061 } 2062 } 2063 } 2064 2065 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 2066 if (CE->getOpcode() == Instruction::BitCast) 2067 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 2068 CE->getType()), 2069 "Invalid bitcast", CE); 2070 2071 if (CE->getOpcode() == Instruction::IntToPtr || 2072 CE->getOpcode() == Instruction::PtrToInt) { 2073 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 2074 ? CE->getType() 2075 : CE->getOperand(0)->getType(); 2076 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 2077 ? "inttoptr not supported for non-integral pointers" 2078 : "ptrtoint not supported for non-integral pointers"; 2079 Assert( 2080 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 2081 Msg); 2082 } 2083 } 2084 2085 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 2086 // There shouldn't be more attribute sets than there are parameters plus the 2087 // function and return value. 2088 return Attrs.getNumAttrSets() <= Params + 2; 2089 } 2090 2091 /// Verify that statepoint intrinsic is well formed. 2092 void Verifier::verifyStatepoint(const CallBase &Call) { 2093 assert(Call.getCalledFunction() && 2094 Call.getCalledFunction()->getIntrinsicID() == 2095 Intrinsic::experimental_gc_statepoint); 2096 2097 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 2098 !Call.onlyAccessesArgMemory(), 2099 "gc.statepoint must read and write all memory to preserve " 2100 "reordering restrictions required by safepoint semantics", 2101 Call); 2102 2103 const int64_t NumPatchBytes = 2104 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 2105 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 2106 Assert(NumPatchBytes >= 0, 2107 "gc.statepoint number of patchable bytes must be " 2108 "positive", 2109 Call); 2110 2111 const Value *Target = Call.getArgOperand(2); 2112 auto *PT = dyn_cast<PointerType>(Target->getType()); 2113 Assert(PT && PT->getElementType()->isFunctionTy(), 2114 "gc.statepoint callee must be of function pointer type", Call, Target); 2115 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 2116 2117 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 2118 Assert(NumCallArgs >= 0, 2119 "gc.statepoint number of arguments to underlying call " 2120 "must be positive", 2121 Call); 2122 const int NumParams = (int)TargetFuncType->getNumParams(); 2123 if (TargetFuncType->isVarArg()) { 2124 Assert(NumCallArgs >= NumParams, 2125 "gc.statepoint mismatch in number of vararg call args", Call); 2126 2127 // TODO: Remove this limitation 2128 Assert(TargetFuncType->getReturnType()->isVoidTy(), 2129 "gc.statepoint doesn't support wrapping non-void " 2130 "vararg functions yet", 2131 Call); 2132 } else 2133 Assert(NumCallArgs == NumParams, 2134 "gc.statepoint mismatch in number of call args", Call); 2135 2136 const uint64_t Flags 2137 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 2138 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 2139 "unknown flag used in gc.statepoint flags argument", Call); 2140 2141 // Verify that the types of the call parameter arguments match 2142 // the type of the wrapped callee. 2143 AttributeList Attrs = Call.getAttributes(); 2144 for (int i = 0; i < NumParams; i++) { 2145 Type *ParamType = TargetFuncType->getParamType(i); 2146 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 2147 Assert(ArgType == ParamType, 2148 "gc.statepoint call argument does not match wrapped " 2149 "function type", 2150 Call); 2151 2152 if (TargetFuncType->isVarArg()) { 2153 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); 2154 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2155 "Attribute 'sret' cannot be used for vararg call arguments!", 2156 Call); 2157 } 2158 } 2159 2160 const int EndCallArgsInx = 4 + NumCallArgs; 2161 2162 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2163 Assert(isa<ConstantInt>(NumTransitionArgsV), 2164 "gc.statepoint number of transition arguments " 2165 "must be constant integer", 2166 Call); 2167 const int NumTransitionArgs = 2168 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2169 Assert(NumTransitionArgs == 0, 2170 "gc.statepoint w/inline transition bundle is deprecated", Call); 2171 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2172 2173 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2174 Assert(isa<ConstantInt>(NumDeoptArgsV), 2175 "gc.statepoint number of deoptimization arguments " 2176 "must be constant integer", 2177 Call); 2178 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2179 Assert(NumDeoptArgs == 0, 2180 "gc.statepoint w/inline deopt operands is deprecated", Call); 2181 2182 const int ExpectedNumArgs = 7 + NumCallArgs; 2183 Assert(ExpectedNumArgs == (int)Call.arg_size(), 2184 "gc.statepoint too many arguments", Call); 2185 2186 // Check that the only uses of this gc.statepoint are gc.result or 2187 // gc.relocate calls which are tied to this statepoint and thus part 2188 // of the same statepoint sequence 2189 for (const User *U : Call.users()) { 2190 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2191 Assert(UserCall, "illegal use of statepoint token", Call, U); 2192 if (!UserCall) 2193 continue; 2194 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2195 "gc.result or gc.relocate are the only value uses " 2196 "of a gc.statepoint", 2197 Call, U); 2198 if (isa<GCResultInst>(UserCall)) { 2199 Assert(UserCall->getArgOperand(0) == &Call, 2200 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2201 } else if (isa<GCRelocateInst>(Call)) { 2202 Assert(UserCall->getArgOperand(0) == &Call, 2203 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2204 } 2205 } 2206 2207 // Note: It is legal for a single derived pointer to be listed multiple 2208 // times. It's non-optimal, but it is legal. It can also happen after 2209 // insertion if we strip a bitcast away. 2210 // Note: It is really tempting to check that each base is relocated and 2211 // that a derived pointer is never reused as a base pointer. This turns 2212 // out to be problematic since optimizations run after safepoint insertion 2213 // can recognize equality properties that the insertion logic doesn't know 2214 // about. See example statepoint.ll in the verifier subdirectory 2215 } 2216 2217 void Verifier::verifyFrameRecoverIndices() { 2218 for (auto &Counts : FrameEscapeInfo) { 2219 Function *F = Counts.first; 2220 unsigned EscapedObjectCount = Counts.second.first; 2221 unsigned MaxRecoveredIndex = Counts.second.second; 2222 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2223 "all indices passed to llvm.localrecover must be less than the " 2224 "number of arguments passed to llvm.localescape in the parent " 2225 "function", 2226 F); 2227 } 2228 } 2229 2230 static Instruction *getSuccPad(Instruction *Terminator) { 2231 BasicBlock *UnwindDest; 2232 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2233 UnwindDest = II->getUnwindDest(); 2234 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2235 UnwindDest = CSI->getUnwindDest(); 2236 else 2237 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2238 return UnwindDest->getFirstNonPHI(); 2239 } 2240 2241 void Verifier::verifySiblingFuncletUnwinds() { 2242 SmallPtrSet<Instruction *, 8> Visited; 2243 SmallPtrSet<Instruction *, 8> Active; 2244 for (const auto &Pair : SiblingFuncletInfo) { 2245 Instruction *PredPad = Pair.first; 2246 if (Visited.count(PredPad)) 2247 continue; 2248 Active.insert(PredPad); 2249 Instruction *Terminator = Pair.second; 2250 do { 2251 Instruction *SuccPad = getSuccPad(Terminator); 2252 if (Active.count(SuccPad)) { 2253 // Found a cycle; report error 2254 Instruction *CyclePad = SuccPad; 2255 SmallVector<Instruction *, 8> CycleNodes; 2256 do { 2257 CycleNodes.push_back(CyclePad); 2258 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2259 if (CycleTerminator != CyclePad) 2260 CycleNodes.push_back(CycleTerminator); 2261 CyclePad = getSuccPad(CycleTerminator); 2262 } while (CyclePad != SuccPad); 2263 Assert(false, "EH pads can't handle each other's exceptions", 2264 ArrayRef<Instruction *>(CycleNodes)); 2265 } 2266 // Don't re-walk a node we've already checked 2267 if (!Visited.insert(SuccPad).second) 2268 break; 2269 // Walk to this successor if it has a map entry. 2270 PredPad = SuccPad; 2271 auto TermI = SiblingFuncletInfo.find(PredPad); 2272 if (TermI == SiblingFuncletInfo.end()) 2273 break; 2274 Terminator = TermI->second; 2275 Active.insert(PredPad); 2276 } while (true); 2277 // Each node only has one successor, so we've walked all the active 2278 // nodes' successors. 2279 Active.clear(); 2280 } 2281 } 2282 2283 // visitFunction - Verify that a function is ok. 2284 // 2285 void Verifier::visitFunction(const Function &F) { 2286 visitGlobalValue(F); 2287 2288 // Check function arguments. 2289 FunctionType *FT = F.getFunctionType(); 2290 unsigned NumArgs = F.arg_size(); 2291 2292 Assert(&Context == &F.getContext(), 2293 "Function context does not match Module context!", &F); 2294 2295 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2296 Assert(FT->getNumParams() == NumArgs, 2297 "# formal arguments must match # of arguments for function type!", &F, 2298 FT); 2299 Assert(F.getReturnType()->isFirstClassType() || 2300 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2301 "Functions cannot return aggregate values!", &F); 2302 2303 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2304 "Invalid struct return type!", &F); 2305 2306 AttributeList Attrs = F.getAttributes(); 2307 2308 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2309 "Attribute after last parameter!", &F); 2310 2311 bool isLLVMdotName = F.getName().size() >= 5 && 2312 F.getName().substr(0, 5) == "llvm."; 2313 2314 // Check function attributes. 2315 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName); 2316 2317 // On function declarations/definitions, we do not support the builtin 2318 // attribute. We do not check this in VerifyFunctionAttrs since that is 2319 // checking for Attributes that can/can not ever be on functions. 2320 Assert(!Attrs.hasFnAttribute(Attribute::Builtin), 2321 "Attribute 'builtin' can only be applied to a callsite.", &F); 2322 2323 // Check that this function meets the restrictions on this calling convention. 2324 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2325 // restrictions can be lifted. 2326 switch (F.getCallingConv()) { 2327 default: 2328 case CallingConv::C: 2329 break; 2330 case CallingConv::X86_INTR: { 2331 Assert(F.arg_empty() || Attrs.hasParamAttribute(0, Attribute::ByVal), 2332 "Calling convention parameter requires byval", &F); 2333 break; 2334 } 2335 case CallingConv::AMDGPU_KERNEL: 2336 case CallingConv::SPIR_KERNEL: 2337 Assert(F.getReturnType()->isVoidTy(), 2338 "Calling convention requires void return type", &F); 2339 LLVM_FALLTHROUGH; 2340 case CallingConv::AMDGPU_VS: 2341 case CallingConv::AMDGPU_HS: 2342 case CallingConv::AMDGPU_GS: 2343 case CallingConv::AMDGPU_PS: 2344 case CallingConv::AMDGPU_CS: 2345 Assert(!F.hasStructRetAttr(), 2346 "Calling convention does not allow sret", &F); 2347 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) { 2348 const unsigned StackAS = DL.getAllocaAddrSpace(); 2349 unsigned i = 0; 2350 for (const Argument &Arg : F.args()) { 2351 Assert(!Attrs.hasParamAttribute(i, Attribute::ByVal), 2352 "Calling convention disallows byval", &F); 2353 Assert(!Attrs.hasParamAttribute(i, Attribute::Preallocated), 2354 "Calling convention disallows preallocated", &F); 2355 Assert(!Attrs.hasParamAttribute(i, Attribute::InAlloca), 2356 "Calling convention disallows inalloca", &F); 2357 2358 if (Attrs.hasParamAttribute(i, Attribute::ByRef)) { 2359 // FIXME: Should also disallow LDS and GDS, but we don't have the enum 2360 // value here. 2361 Assert(Arg.getType()->getPointerAddressSpace() != StackAS, 2362 "Calling convention disallows stack byref", &F); 2363 } 2364 2365 ++i; 2366 } 2367 } 2368 2369 LLVM_FALLTHROUGH; 2370 case CallingConv::Fast: 2371 case CallingConv::Cold: 2372 case CallingConv::Intel_OCL_BI: 2373 case CallingConv::PTX_Kernel: 2374 case CallingConv::PTX_Device: 2375 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2376 "perfect forwarding!", 2377 &F); 2378 break; 2379 } 2380 2381 // Check that the argument values match the function type for this function... 2382 unsigned i = 0; 2383 for (const Argument &Arg : F.args()) { 2384 Assert(Arg.getType() == FT->getParamType(i), 2385 "Argument value does not match function argument type!", &Arg, 2386 FT->getParamType(i)); 2387 Assert(Arg.getType()->isFirstClassType(), 2388 "Function arguments must have first-class types!", &Arg); 2389 if (!isLLVMdotName) { 2390 Assert(!Arg.getType()->isMetadataTy(), 2391 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2392 Assert(!Arg.getType()->isTokenTy(), 2393 "Function takes token but isn't an intrinsic", &Arg, &F); 2394 } 2395 2396 // Check that swifterror argument is only used by loads and stores. 2397 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { 2398 verifySwiftErrorValue(&Arg); 2399 } 2400 ++i; 2401 } 2402 2403 if (!isLLVMdotName) 2404 Assert(!F.getReturnType()->isTokenTy(), 2405 "Functions returns a token but isn't an intrinsic", &F); 2406 2407 // Get the function metadata attachments. 2408 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2409 F.getAllMetadata(MDs); 2410 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2411 verifyFunctionMetadata(MDs); 2412 2413 // Check validity of the personality function 2414 if (F.hasPersonalityFn()) { 2415 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2416 if (Per) 2417 Assert(Per->getParent() == F.getParent(), 2418 "Referencing personality function in another module!", 2419 &F, F.getParent(), Per, Per->getParent()); 2420 } 2421 2422 if (F.isMaterializable()) { 2423 // Function has a body somewhere we can't see. 2424 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2425 MDs.empty() ? nullptr : MDs.front().second); 2426 } else if (F.isDeclaration()) { 2427 for (const auto &I : MDs) { 2428 // This is used for call site debug information. 2429 AssertDI(I.first != LLVMContext::MD_dbg || 2430 !cast<DISubprogram>(I.second)->isDistinct(), 2431 "function declaration may only have a unique !dbg attachment", 2432 &F); 2433 Assert(I.first != LLVMContext::MD_prof, 2434 "function declaration may not have a !prof attachment", &F); 2435 2436 // Verify the metadata itself. 2437 visitMDNode(*I.second, AreDebugLocsAllowed::Yes); 2438 } 2439 Assert(!F.hasPersonalityFn(), 2440 "Function declaration shouldn't have a personality routine", &F); 2441 } else { 2442 // Verify that this function (which has a body) is not named "llvm.*". It 2443 // is not legal to define intrinsics. 2444 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 2445 2446 // Check the entry node 2447 const BasicBlock *Entry = &F.getEntryBlock(); 2448 Assert(pred_empty(Entry), 2449 "Entry block to function must not have predecessors!", Entry); 2450 2451 // The address of the entry block cannot be taken, unless it is dead. 2452 if (Entry->hasAddressTaken()) { 2453 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2454 "blockaddress may not be used with the entry block!", Entry); 2455 } 2456 2457 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2458 // Visit metadata attachments. 2459 for (const auto &I : MDs) { 2460 // Verify that the attachment is legal. 2461 auto AllowLocs = AreDebugLocsAllowed::No; 2462 switch (I.first) { 2463 default: 2464 break; 2465 case LLVMContext::MD_dbg: { 2466 ++NumDebugAttachments; 2467 AssertDI(NumDebugAttachments == 1, 2468 "function must have a single !dbg attachment", &F, I.second); 2469 AssertDI(isa<DISubprogram>(I.second), 2470 "function !dbg attachment must be a subprogram", &F, I.second); 2471 AssertDI(cast<DISubprogram>(I.second)->isDistinct(), 2472 "function definition may only have a distinct !dbg attachment", 2473 &F); 2474 2475 auto *SP = cast<DISubprogram>(I.second); 2476 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2477 AssertDI(!AttachedTo || AttachedTo == &F, 2478 "DISubprogram attached to more than one function", SP, &F); 2479 AttachedTo = &F; 2480 AllowLocs = AreDebugLocsAllowed::Yes; 2481 break; 2482 } 2483 case LLVMContext::MD_prof: 2484 ++NumProfAttachments; 2485 Assert(NumProfAttachments == 1, 2486 "function must have a single !prof attachment", &F, I.second); 2487 break; 2488 } 2489 2490 // Verify the metadata itself. 2491 visitMDNode(*I.second, AllowLocs); 2492 } 2493 } 2494 2495 // If this function is actually an intrinsic, verify that it is only used in 2496 // direct call/invokes, never having its "address taken". 2497 // Only do this if the module is materialized, otherwise we don't have all the 2498 // uses. 2499 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2500 const User *U; 2501 if (F.hasAddressTaken(&U)) 2502 Assert(false, "Invalid user of intrinsic instruction!", U); 2503 } 2504 2505 auto *N = F.getSubprogram(); 2506 HasDebugInfo = (N != nullptr); 2507 if (!HasDebugInfo) 2508 return; 2509 2510 // Check that all !dbg attachments lead to back to N. 2511 // 2512 // FIXME: Check this incrementally while visiting !dbg attachments. 2513 // FIXME: Only check when N is the canonical subprogram for F. 2514 SmallPtrSet<const MDNode *, 32> Seen; 2515 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2516 // Be careful about using DILocation here since we might be dealing with 2517 // broken code (this is the Verifier after all). 2518 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2519 if (!DL) 2520 return; 2521 if (!Seen.insert(DL).second) 2522 return; 2523 2524 Metadata *Parent = DL->getRawScope(); 2525 AssertDI(Parent && isa<DILocalScope>(Parent), 2526 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2527 Parent); 2528 2529 DILocalScope *Scope = DL->getInlinedAtScope(); 2530 Assert(Scope, "Failed to find DILocalScope", DL); 2531 2532 if (!Seen.insert(Scope).second) 2533 return; 2534 2535 DISubprogram *SP = Scope->getSubprogram(); 2536 2537 // Scope and SP could be the same MDNode and we don't want to skip 2538 // validation in that case 2539 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2540 return; 2541 2542 AssertDI(SP->describes(&F), 2543 "!dbg attachment points at wrong subprogram for function", N, &F, 2544 &I, DL, Scope, SP); 2545 }; 2546 for (auto &BB : F) 2547 for (auto &I : BB) { 2548 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2549 // The llvm.loop annotations also contain two DILocations. 2550 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2551 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2552 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2553 if (BrokenDebugInfo) 2554 return; 2555 } 2556 } 2557 2558 // verifyBasicBlock - Verify that a basic block is well formed... 2559 // 2560 void Verifier::visitBasicBlock(BasicBlock &BB) { 2561 InstsInThisBlock.clear(); 2562 2563 // Ensure that basic blocks have terminators! 2564 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2565 2566 // Check constraints that this basic block imposes on all of the PHI nodes in 2567 // it. 2568 if (isa<PHINode>(BB.front())) { 2569 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 2570 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2571 llvm::sort(Preds); 2572 for (const PHINode &PN : BB.phis()) { 2573 Assert(PN.getNumIncomingValues() == Preds.size(), 2574 "PHINode should have one entry for each predecessor of its " 2575 "parent basic block!", 2576 &PN); 2577 2578 // Get and sort all incoming values in the PHI node... 2579 Values.clear(); 2580 Values.reserve(PN.getNumIncomingValues()); 2581 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2582 Values.push_back( 2583 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2584 llvm::sort(Values); 2585 2586 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2587 // Check to make sure that if there is more than one entry for a 2588 // particular basic block in this PHI node, that the incoming values are 2589 // all identical. 2590 // 2591 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2592 Values[i].second == Values[i - 1].second, 2593 "PHI node has multiple entries for the same basic block with " 2594 "different incoming values!", 2595 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2596 2597 // Check to make sure that the predecessors and PHI node entries are 2598 // matched up. 2599 Assert(Values[i].first == Preds[i], 2600 "PHI node entries do not match predecessors!", &PN, 2601 Values[i].first, Preds[i]); 2602 } 2603 } 2604 } 2605 2606 // Check that all instructions have their parent pointers set up correctly. 2607 for (auto &I : BB) 2608 { 2609 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2610 } 2611 } 2612 2613 void Verifier::visitTerminator(Instruction &I) { 2614 // Ensure that terminators only exist at the end of the basic block. 2615 Assert(&I == I.getParent()->getTerminator(), 2616 "Terminator found in the middle of a basic block!", I.getParent()); 2617 visitInstruction(I); 2618 } 2619 2620 void Verifier::visitBranchInst(BranchInst &BI) { 2621 if (BI.isConditional()) { 2622 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2623 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2624 } 2625 visitTerminator(BI); 2626 } 2627 2628 void Verifier::visitReturnInst(ReturnInst &RI) { 2629 Function *F = RI.getParent()->getParent(); 2630 unsigned N = RI.getNumOperands(); 2631 if (F->getReturnType()->isVoidTy()) 2632 Assert(N == 0, 2633 "Found return instr that returns non-void in Function of void " 2634 "return type!", 2635 &RI, F->getReturnType()); 2636 else 2637 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2638 "Function return type does not match operand " 2639 "type of return inst!", 2640 &RI, F->getReturnType()); 2641 2642 // Check to make sure that the return value has necessary properties for 2643 // terminators... 2644 visitTerminator(RI); 2645 } 2646 2647 void Verifier::visitSwitchInst(SwitchInst &SI) { 2648 // Check to make sure that all of the constants in the switch instruction 2649 // have the same type as the switched-on value. 2650 Type *SwitchTy = SI.getCondition()->getType(); 2651 SmallPtrSet<ConstantInt*, 32> Constants; 2652 for (auto &Case : SI.cases()) { 2653 Assert(Case.getCaseValue()->getType() == SwitchTy, 2654 "Switch constants must all be same type as switch value!", &SI); 2655 Assert(Constants.insert(Case.getCaseValue()).second, 2656 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2657 } 2658 2659 visitTerminator(SI); 2660 } 2661 2662 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2663 Assert(BI.getAddress()->getType()->isPointerTy(), 2664 "Indirectbr operand must have pointer type!", &BI); 2665 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2666 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2667 "Indirectbr destinations must all have pointer type!", &BI); 2668 2669 visitTerminator(BI); 2670 } 2671 2672 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2673 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2674 &CBI); 2675 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2676 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2677 "Callbr successors must all have pointer type!", &CBI); 2678 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2679 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), 2680 "Using an unescaped label as a callbr argument!", &CBI); 2681 if (isa<BasicBlock>(CBI.getOperand(i))) 2682 for (unsigned j = i + 1; j != e; ++j) 2683 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2684 "Duplicate callbr destination!", &CBI); 2685 } 2686 { 2687 SmallPtrSet<BasicBlock *, 4> ArgBBs; 2688 for (Value *V : CBI.args()) 2689 if (auto *BA = dyn_cast<BlockAddress>(V)) 2690 ArgBBs.insert(BA->getBasicBlock()); 2691 for (BasicBlock *BB : CBI.getIndirectDests()) 2692 Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI); 2693 } 2694 2695 visitTerminator(CBI); 2696 } 2697 2698 void Verifier::visitSelectInst(SelectInst &SI) { 2699 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2700 SI.getOperand(2)), 2701 "Invalid operands for select instruction!", &SI); 2702 2703 Assert(SI.getTrueValue()->getType() == SI.getType(), 2704 "Select values must have same type as select instruction!", &SI); 2705 visitInstruction(SI); 2706 } 2707 2708 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2709 /// a pass, if any exist, it's an error. 2710 /// 2711 void Verifier::visitUserOp1(Instruction &I) { 2712 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2713 } 2714 2715 void Verifier::visitTruncInst(TruncInst &I) { 2716 // Get the source and destination types 2717 Type *SrcTy = I.getOperand(0)->getType(); 2718 Type *DestTy = I.getType(); 2719 2720 // Get the size of the types in bits, we'll need this later 2721 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2722 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2723 2724 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2725 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2726 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2727 "trunc source and destination must both be a vector or neither", &I); 2728 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2729 2730 visitInstruction(I); 2731 } 2732 2733 void Verifier::visitZExtInst(ZExtInst &I) { 2734 // Get the source and destination types 2735 Type *SrcTy = I.getOperand(0)->getType(); 2736 Type *DestTy = I.getType(); 2737 2738 // Get the size of the types in bits, we'll need this later 2739 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2740 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2741 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2742 "zext source and destination must both be a vector or neither", &I); 2743 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2744 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2745 2746 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2747 2748 visitInstruction(I); 2749 } 2750 2751 void Verifier::visitSExtInst(SExtInst &I) { 2752 // Get the source and destination types 2753 Type *SrcTy = I.getOperand(0)->getType(); 2754 Type *DestTy = I.getType(); 2755 2756 // Get the size of the types in bits, we'll need this later 2757 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2758 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2759 2760 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2761 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2762 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2763 "sext source and destination must both be a vector or neither", &I); 2764 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2765 2766 visitInstruction(I); 2767 } 2768 2769 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2770 // Get the source and destination types 2771 Type *SrcTy = I.getOperand(0)->getType(); 2772 Type *DestTy = I.getType(); 2773 // Get the size of the types in bits, we'll need this later 2774 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2775 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2776 2777 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2778 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2779 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2780 "fptrunc source and destination must both be a vector or neither", &I); 2781 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2782 2783 visitInstruction(I); 2784 } 2785 2786 void Verifier::visitFPExtInst(FPExtInst &I) { 2787 // Get the source and destination types 2788 Type *SrcTy = I.getOperand(0)->getType(); 2789 Type *DestTy = I.getType(); 2790 2791 // Get the size of the types in bits, we'll need this later 2792 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2793 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2794 2795 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2796 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2797 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2798 "fpext source and destination must both be a vector or neither", &I); 2799 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2800 2801 visitInstruction(I); 2802 } 2803 2804 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2805 // Get the source and destination types 2806 Type *SrcTy = I.getOperand(0)->getType(); 2807 Type *DestTy = I.getType(); 2808 2809 bool SrcVec = SrcTy->isVectorTy(); 2810 bool DstVec = DestTy->isVectorTy(); 2811 2812 Assert(SrcVec == DstVec, 2813 "UIToFP source and dest must both be vector or scalar", &I); 2814 Assert(SrcTy->isIntOrIntVectorTy(), 2815 "UIToFP source must be integer or integer vector", &I); 2816 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2817 &I); 2818 2819 if (SrcVec && DstVec) 2820 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2821 cast<VectorType>(DestTy)->getElementCount(), 2822 "UIToFP source and dest vector length mismatch", &I); 2823 2824 visitInstruction(I); 2825 } 2826 2827 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2828 // Get the source and destination types 2829 Type *SrcTy = I.getOperand(0)->getType(); 2830 Type *DestTy = I.getType(); 2831 2832 bool SrcVec = SrcTy->isVectorTy(); 2833 bool DstVec = DestTy->isVectorTy(); 2834 2835 Assert(SrcVec == DstVec, 2836 "SIToFP source and dest must both be vector or scalar", &I); 2837 Assert(SrcTy->isIntOrIntVectorTy(), 2838 "SIToFP source must be integer or integer vector", &I); 2839 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2840 &I); 2841 2842 if (SrcVec && DstVec) 2843 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2844 cast<VectorType>(DestTy)->getElementCount(), 2845 "SIToFP source and dest vector length mismatch", &I); 2846 2847 visitInstruction(I); 2848 } 2849 2850 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2851 // Get the source and destination types 2852 Type *SrcTy = I.getOperand(0)->getType(); 2853 Type *DestTy = I.getType(); 2854 2855 bool SrcVec = SrcTy->isVectorTy(); 2856 bool DstVec = DestTy->isVectorTy(); 2857 2858 Assert(SrcVec == DstVec, 2859 "FPToUI source and dest must both be vector or scalar", &I); 2860 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2861 &I); 2862 Assert(DestTy->isIntOrIntVectorTy(), 2863 "FPToUI result must be integer or integer vector", &I); 2864 2865 if (SrcVec && DstVec) 2866 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2867 cast<VectorType>(DestTy)->getElementCount(), 2868 "FPToUI source and dest vector length mismatch", &I); 2869 2870 visitInstruction(I); 2871 } 2872 2873 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2874 // Get the source and destination types 2875 Type *SrcTy = I.getOperand(0)->getType(); 2876 Type *DestTy = I.getType(); 2877 2878 bool SrcVec = SrcTy->isVectorTy(); 2879 bool DstVec = DestTy->isVectorTy(); 2880 2881 Assert(SrcVec == DstVec, 2882 "FPToSI source and dest must both be vector or scalar", &I); 2883 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2884 &I); 2885 Assert(DestTy->isIntOrIntVectorTy(), 2886 "FPToSI result must be integer or integer vector", &I); 2887 2888 if (SrcVec && DstVec) 2889 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2890 cast<VectorType>(DestTy)->getElementCount(), 2891 "FPToSI source and dest vector length mismatch", &I); 2892 2893 visitInstruction(I); 2894 } 2895 2896 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2897 // Get the source and destination types 2898 Type *SrcTy = I.getOperand(0)->getType(); 2899 Type *DestTy = I.getType(); 2900 2901 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2902 2903 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 2904 Assert(!DL.isNonIntegralPointerType(PTy), 2905 "ptrtoint not supported for non-integral pointers"); 2906 2907 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 2908 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2909 &I); 2910 2911 if (SrcTy->isVectorTy()) { 2912 auto *VSrc = cast<VectorType>(SrcTy); 2913 auto *VDest = cast<VectorType>(DestTy); 2914 Assert(VSrc->getElementCount() == VDest->getElementCount(), 2915 "PtrToInt Vector width mismatch", &I); 2916 } 2917 2918 visitInstruction(I); 2919 } 2920 2921 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2922 // Get the source and destination types 2923 Type *SrcTy = I.getOperand(0)->getType(); 2924 Type *DestTy = I.getType(); 2925 2926 Assert(SrcTy->isIntOrIntVectorTy(), 2927 "IntToPtr source must be an integral", &I); 2928 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 2929 2930 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 2931 Assert(!DL.isNonIntegralPointerType(PTy), 2932 "inttoptr not supported for non-integral pointers"); 2933 2934 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2935 &I); 2936 if (SrcTy->isVectorTy()) { 2937 auto *VSrc = cast<VectorType>(SrcTy); 2938 auto *VDest = cast<VectorType>(DestTy); 2939 Assert(VSrc->getElementCount() == VDest->getElementCount(), 2940 "IntToPtr Vector width mismatch", &I); 2941 } 2942 visitInstruction(I); 2943 } 2944 2945 void Verifier::visitBitCastInst(BitCastInst &I) { 2946 Assert( 2947 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2948 "Invalid bitcast", &I); 2949 visitInstruction(I); 2950 } 2951 2952 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2953 Type *SrcTy = I.getOperand(0)->getType(); 2954 Type *DestTy = I.getType(); 2955 2956 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2957 &I); 2958 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 2959 &I); 2960 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 2961 "AddrSpaceCast must be between different address spaces", &I); 2962 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) 2963 Assert(SrcVTy->getElementCount() == 2964 cast<VectorType>(DestTy)->getElementCount(), 2965 "AddrSpaceCast vector pointer number of elements mismatch", &I); 2966 visitInstruction(I); 2967 } 2968 2969 /// visitPHINode - Ensure that a PHI node is well formed. 2970 /// 2971 void Verifier::visitPHINode(PHINode &PN) { 2972 // Ensure that the PHI nodes are all grouped together at the top of the block. 2973 // This can be tested by checking whether the instruction before this is 2974 // either nonexistent (because this is begin()) or is a PHI node. If not, 2975 // then there is some other instruction before a PHI. 2976 Assert(&PN == &PN.getParent()->front() || 2977 isa<PHINode>(--BasicBlock::iterator(&PN)), 2978 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 2979 2980 // Check that a PHI doesn't yield a Token. 2981 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 2982 2983 // Check that all of the values of the PHI node have the same type as the 2984 // result, and that the incoming blocks are really basic blocks. 2985 for (Value *IncValue : PN.incoming_values()) { 2986 Assert(PN.getType() == IncValue->getType(), 2987 "PHI node operands are not the same type as the result!", &PN); 2988 } 2989 2990 // All other PHI node constraints are checked in the visitBasicBlock method. 2991 2992 visitInstruction(PN); 2993 } 2994 2995 void Verifier::visitCallBase(CallBase &Call) { 2996 Assert(Call.getCalledOperand()->getType()->isPointerTy(), 2997 "Called function must be a pointer!", Call); 2998 PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType()); 2999 3000 Assert(FPTy->getElementType()->isFunctionTy(), 3001 "Called function is not pointer to function type!", Call); 3002 3003 Assert(FPTy->getElementType() == Call.getFunctionType(), 3004 "Called function is not the same type as the call!", Call); 3005 3006 FunctionType *FTy = Call.getFunctionType(); 3007 3008 // Verify that the correct number of arguments are being passed 3009 if (FTy->isVarArg()) 3010 Assert(Call.arg_size() >= FTy->getNumParams(), 3011 "Called function requires more parameters than were provided!", 3012 Call); 3013 else 3014 Assert(Call.arg_size() == FTy->getNumParams(), 3015 "Incorrect number of arguments passed to called function!", Call); 3016 3017 // Verify that all arguments to the call match the function type. 3018 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3019 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 3020 "Call parameter type does not match function signature!", 3021 Call.getArgOperand(i), FTy->getParamType(i), Call); 3022 3023 AttributeList Attrs = Call.getAttributes(); 3024 3025 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 3026 "Attribute after last parameter!", Call); 3027 3028 bool IsIntrinsic = Call.getCalledFunction() && 3029 Call.getCalledFunction()->getName().startswith("llvm."); 3030 3031 Function *Callee = 3032 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 3033 3034 if (Attrs.hasFnAttribute(Attribute::Speculatable)) { 3035 // Don't allow speculatable on call sites, unless the underlying function 3036 // declaration is also speculatable. 3037 Assert(Callee && Callee->isSpeculatable(), 3038 "speculatable attribute may not apply to call sites", Call); 3039 } 3040 3041 if (Attrs.hasFnAttribute(Attribute::Preallocated)) { 3042 Assert(Call.getCalledFunction()->getIntrinsicID() == 3043 Intrinsic::call_preallocated_arg, 3044 "preallocated as a call site attribute can only be on " 3045 "llvm.call.preallocated.arg"); 3046 } 3047 3048 // Verify call attributes. 3049 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 3050 3051 // Conservatively check the inalloca argument. 3052 // We have a bug if we can find that there is an underlying alloca without 3053 // inalloca. 3054 if (Call.hasInAllocaArgument()) { 3055 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 3056 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 3057 Assert(AI->isUsedWithInAlloca(), 3058 "inalloca argument for call has mismatched alloca", AI, Call); 3059 } 3060 3061 // For each argument of the callsite, if it has the swifterror argument, 3062 // make sure the underlying alloca/parameter it comes from has a swifterror as 3063 // well. 3064 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3065 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 3066 Value *SwiftErrorArg = Call.getArgOperand(i); 3067 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 3068 Assert(AI->isSwiftError(), 3069 "swifterror argument for call has mismatched alloca", AI, Call); 3070 continue; 3071 } 3072 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 3073 Assert(ArgI, 3074 "swifterror argument should come from an alloca or parameter", 3075 SwiftErrorArg, Call); 3076 Assert(ArgI->hasSwiftErrorAttr(), 3077 "swifterror argument for call has mismatched parameter", ArgI, 3078 Call); 3079 } 3080 3081 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) { 3082 // Don't allow immarg on call sites, unless the underlying declaration 3083 // also has the matching immarg. 3084 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 3085 "immarg may not apply only to call sites", 3086 Call.getArgOperand(i), Call); 3087 } 3088 3089 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 3090 Value *ArgVal = Call.getArgOperand(i); 3091 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 3092 "immarg operand has non-immediate parameter", ArgVal, Call); 3093 } 3094 3095 if (Call.paramHasAttr(i, Attribute::Preallocated)) { 3096 Value *ArgVal = Call.getArgOperand(i); 3097 bool hasOB = 3098 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0; 3099 bool isMustTail = Call.isMustTailCall(); 3100 Assert(hasOB != isMustTail, 3101 "preallocated operand either requires a preallocated bundle or " 3102 "the call to be musttail (but not both)", 3103 ArgVal, Call); 3104 } 3105 } 3106 3107 if (FTy->isVarArg()) { 3108 // FIXME? is 'nest' even legal here? 3109 bool SawNest = false; 3110 bool SawReturned = false; 3111 3112 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 3113 if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) 3114 SawNest = true; 3115 if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) 3116 SawReturned = true; 3117 } 3118 3119 // Check attributes on the varargs part. 3120 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 3121 Type *Ty = Call.getArgOperand(Idx)->getType(); 3122 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); 3123 verifyParameterAttrs(ArgAttrs, Ty, &Call); 3124 3125 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 3126 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 3127 SawNest = true; 3128 } 3129 3130 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 3131 Assert(!SawReturned, "More than one parameter has attribute returned!", 3132 Call); 3133 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 3134 "Incompatible argument and return types for 'returned' " 3135 "attribute", 3136 Call); 3137 SawReturned = true; 3138 } 3139 3140 // Statepoint intrinsic is vararg but the wrapped function may be not. 3141 // Allow sret here and check the wrapped function in verifyStatepoint. 3142 if (!Call.getCalledFunction() || 3143 Call.getCalledFunction()->getIntrinsicID() != 3144 Intrinsic::experimental_gc_statepoint) 3145 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 3146 "Attribute 'sret' cannot be used for vararg call arguments!", 3147 Call); 3148 3149 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 3150 Assert(Idx == Call.arg_size() - 1, 3151 "inalloca isn't on the last argument!", Call); 3152 } 3153 } 3154 3155 // Verify that there's no metadata unless it's a direct call to an intrinsic. 3156 if (!IsIntrinsic) { 3157 for (Type *ParamTy : FTy->params()) { 3158 Assert(!ParamTy->isMetadataTy(), 3159 "Function has metadata parameter but isn't an intrinsic", Call); 3160 Assert(!ParamTy->isTokenTy(), 3161 "Function has token parameter but isn't an intrinsic", Call); 3162 } 3163 } 3164 3165 // Verify that indirect calls don't return tokens. 3166 if (!Call.getCalledFunction()) 3167 Assert(!FTy->getReturnType()->isTokenTy(), 3168 "Return type cannot be token for indirect call!"); 3169 3170 if (Function *F = Call.getCalledFunction()) 3171 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 3172 visitIntrinsicCall(ID, Call); 3173 3174 // Verify that a callsite has at most one "deopt", at most one "funclet", at 3175 // most one "gc-transition", at most one "cfguardtarget", 3176 // and at most one "preallocated" operand bundle. 3177 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3178 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, 3179 FoundPreallocatedBundle = false, FoundGCLiveBundle = false;; 3180 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 3181 OperandBundleUse BU = Call.getOperandBundleAt(i); 3182 uint32_t Tag = BU.getTagID(); 3183 if (Tag == LLVMContext::OB_deopt) { 3184 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 3185 FoundDeoptBundle = true; 3186 } else if (Tag == LLVMContext::OB_gc_transition) { 3187 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 3188 Call); 3189 FoundGCTransitionBundle = true; 3190 } else if (Tag == LLVMContext::OB_funclet) { 3191 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 3192 FoundFuncletBundle = true; 3193 Assert(BU.Inputs.size() == 1, 3194 "Expected exactly one funclet bundle operand", Call); 3195 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 3196 "Funclet bundle operands should correspond to a FuncletPadInst", 3197 Call); 3198 } else if (Tag == LLVMContext::OB_cfguardtarget) { 3199 Assert(!FoundCFGuardTargetBundle, 3200 "Multiple CFGuardTarget operand bundles", Call); 3201 FoundCFGuardTargetBundle = true; 3202 Assert(BU.Inputs.size() == 1, 3203 "Expected exactly one cfguardtarget bundle operand", Call); 3204 } else if (Tag == LLVMContext::OB_preallocated) { 3205 Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles", 3206 Call); 3207 FoundPreallocatedBundle = true; 3208 Assert(BU.Inputs.size() == 1, 3209 "Expected exactly one preallocated bundle operand", Call); 3210 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); 3211 Assert(Input && 3212 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup, 3213 "\"preallocated\" argument must be a token from " 3214 "llvm.call.preallocated.setup", 3215 Call); 3216 } else if (Tag == LLVMContext::OB_gc_live) { 3217 Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles", 3218 Call); 3219 FoundGCLiveBundle = true; 3220 } 3221 } 3222 3223 // Verify that each inlinable callsite of a debug-info-bearing function in a 3224 // debug-info-bearing function has a debug location attached to it. Failure to 3225 // do so causes assertion failures when the inliner sets up inline scope info. 3226 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3227 Call.getCalledFunction()->getSubprogram()) 3228 AssertDI(Call.getDebugLoc(), 3229 "inlinable function call in a function with " 3230 "debug info must have a !dbg location", 3231 Call); 3232 3233 visitInstruction(Call); 3234 } 3235 3236 /// Two types are "congruent" if they are identical, or if they are both pointer 3237 /// types with different pointee types and the same address space. 3238 static bool isTypeCongruent(Type *L, Type *R) { 3239 if (L == R) 3240 return true; 3241 PointerType *PL = dyn_cast<PointerType>(L); 3242 PointerType *PR = dyn_cast<PointerType>(R); 3243 if (!PL || !PR) 3244 return false; 3245 return PL->getAddressSpace() == PR->getAddressSpace(); 3246 } 3247 3248 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 3249 static const Attribute::AttrKind ABIAttrs[] = { 3250 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3251 Attribute::InReg, Attribute::SwiftSelf, Attribute::SwiftError, 3252 Attribute::Preallocated, Attribute::ByRef}; 3253 AttrBuilder Copy; 3254 for (auto AK : ABIAttrs) { 3255 if (Attrs.hasParamAttribute(I, AK)) 3256 Copy.addAttribute(AK); 3257 } 3258 3259 // `align` is ABI-affecting only in combination with `byval` or `byref`. 3260 if (Attrs.hasParamAttribute(I, Attribute::Alignment) && 3261 (Attrs.hasParamAttribute(I, Attribute::ByVal) || 3262 Attrs.hasParamAttribute(I, Attribute::ByRef))) 3263 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3264 return Copy; 3265 } 3266 3267 void Verifier::verifyMustTailCall(CallInst &CI) { 3268 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3269 3270 // - The caller and callee prototypes must match. Pointer types of 3271 // parameters or return types may differ in pointee type, but not 3272 // address space. 3273 Function *F = CI.getParent()->getParent(); 3274 FunctionType *CallerTy = F->getFunctionType(); 3275 FunctionType *CalleeTy = CI.getFunctionType(); 3276 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3277 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3278 "cannot guarantee tail call due to mismatched parameter counts", 3279 &CI); 3280 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3281 Assert( 3282 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3283 "cannot guarantee tail call due to mismatched parameter types", &CI); 3284 } 3285 } 3286 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3287 "cannot guarantee tail call due to mismatched varargs", &CI); 3288 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3289 "cannot guarantee tail call due to mismatched return types", &CI); 3290 3291 // - The calling conventions of the caller and callee must match. 3292 Assert(F->getCallingConv() == CI.getCallingConv(), 3293 "cannot guarantee tail call due to mismatched calling conv", &CI); 3294 3295 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3296 // returned, preallocated, and inalloca, must match. 3297 AttributeList CallerAttrs = F->getAttributes(); 3298 AttributeList CalleeAttrs = CI.getAttributes(); 3299 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3300 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3301 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3302 Assert(CallerABIAttrs == CalleeABIAttrs, 3303 "cannot guarantee tail call due to mismatched ABI impacting " 3304 "function attributes", 3305 &CI, CI.getOperand(I)); 3306 } 3307 3308 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3309 // or a pointer bitcast followed by a ret instruction. 3310 // - The ret instruction must return the (possibly bitcasted) value 3311 // produced by the call or void. 3312 Value *RetVal = &CI; 3313 Instruction *Next = CI.getNextNode(); 3314 3315 // Handle the optional bitcast. 3316 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3317 Assert(BI->getOperand(0) == RetVal, 3318 "bitcast following musttail call must use the call", BI); 3319 RetVal = BI; 3320 Next = BI->getNextNode(); 3321 } 3322 3323 // Check the return. 3324 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3325 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3326 &CI); 3327 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 3328 "musttail call result must be returned", Ret); 3329 } 3330 3331 void Verifier::visitCallInst(CallInst &CI) { 3332 visitCallBase(CI); 3333 3334 if (CI.isMustTailCall()) 3335 verifyMustTailCall(CI); 3336 } 3337 3338 void Verifier::visitInvokeInst(InvokeInst &II) { 3339 visitCallBase(II); 3340 3341 // Verify that the first non-PHI instruction of the unwind destination is an 3342 // exception handling instruction. 3343 Assert( 3344 II.getUnwindDest()->isEHPad(), 3345 "The unwind destination does not have an exception handling instruction!", 3346 &II); 3347 3348 visitTerminator(II); 3349 } 3350 3351 /// visitUnaryOperator - Check the argument to the unary operator. 3352 /// 3353 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3354 Assert(U.getType() == U.getOperand(0)->getType(), 3355 "Unary operators must have same type for" 3356 "operands and result!", 3357 &U); 3358 3359 switch (U.getOpcode()) { 3360 // Check that floating-point arithmetic operators are only used with 3361 // floating-point operands. 3362 case Instruction::FNeg: 3363 Assert(U.getType()->isFPOrFPVectorTy(), 3364 "FNeg operator only works with float types!", &U); 3365 break; 3366 default: 3367 llvm_unreachable("Unknown UnaryOperator opcode!"); 3368 } 3369 3370 visitInstruction(U); 3371 } 3372 3373 /// visitBinaryOperator - Check that both arguments to the binary operator are 3374 /// of the same type! 3375 /// 3376 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3377 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3378 "Both operands to a binary operator are not of the same type!", &B); 3379 3380 switch (B.getOpcode()) { 3381 // Check that integer arithmetic operators are only used with 3382 // integral operands. 3383 case Instruction::Add: 3384 case Instruction::Sub: 3385 case Instruction::Mul: 3386 case Instruction::SDiv: 3387 case Instruction::UDiv: 3388 case Instruction::SRem: 3389 case Instruction::URem: 3390 Assert(B.getType()->isIntOrIntVectorTy(), 3391 "Integer arithmetic operators only work with integral types!", &B); 3392 Assert(B.getType() == B.getOperand(0)->getType(), 3393 "Integer arithmetic operators must have same type " 3394 "for operands and result!", 3395 &B); 3396 break; 3397 // Check that floating-point arithmetic operators are only used with 3398 // floating-point operands. 3399 case Instruction::FAdd: 3400 case Instruction::FSub: 3401 case Instruction::FMul: 3402 case Instruction::FDiv: 3403 case Instruction::FRem: 3404 Assert(B.getType()->isFPOrFPVectorTy(), 3405 "Floating-point arithmetic operators only work with " 3406 "floating-point types!", 3407 &B); 3408 Assert(B.getType() == B.getOperand(0)->getType(), 3409 "Floating-point arithmetic operators must have same type " 3410 "for operands and result!", 3411 &B); 3412 break; 3413 // Check that logical operators are only used with integral operands. 3414 case Instruction::And: 3415 case Instruction::Or: 3416 case Instruction::Xor: 3417 Assert(B.getType()->isIntOrIntVectorTy(), 3418 "Logical operators only work with integral types!", &B); 3419 Assert(B.getType() == B.getOperand(0)->getType(), 3420 "Logical operators must have same type for operands and result!", 3421 &B); 3422 break; 3423 case Instruction::Shl: 3424 case Instruction::LShr: 3425 case Instruction::AShr: 3426 Assert(B.getType()->isIntOrIntVectorTy(), 3427 "Shifts only work with integral types!", &B); 3428 Assert(B.getType() == B.getOperand(0)->getType(), 3429 "Shift return type must be same as operands!", &B); 3430 break; 3431 default: 3432 llvm_unreachable("Unknown BinaryOperator opcode!"); 3433 } 3434 3435 visitInstruction(B); 3436 } 3437 3438 void Verifier::visitICmpInst(ICmpInst &IC) { 3439 // Check that the operands are the same type 3440 Type *Op0Ty = IC.getOperand(0)->getType(); 3441 Type *Op1Ty = IC.getOperand(1)->getType(); 3442 Assert(Op0Ty == Op1Ty, 3443 "Both operands to ICmp instruction are not of the same type!", &IC); 3444 // Check that the operands are the right type 3445 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3446 "Invalid operand types for ICmp instruction", &IC); 3447 // Check that the predicate is valid. 3448 Assert(IC.isIntPredicate(), 3449 "Invalid predicate in ICmp instruction!", &IC); 3450 3451 visitInstruction(IC); 3452 } 3453 3454 void Verifier::visitFCmpInst(FCmpInst &FC) { 3455 // Check that the operands are the same type 3456 Type *Op0Ty = FC.getOperand(0)->getType(); 3457 Type *Op1Ty = FC.getOperand(1)->getType(); 3458 Assert(Op0Ty == Op1Ty, 3459 "Both operands to FCmp instruction are not of the same type!", &FC); 3460 // Check that the operands are the right type 3461 Assert(Op0Ty->isFPOrFPVectorTy(), 3462 "Invalid operand types for FCmp instruction", &FC); 3463 // Check that the predicate is valid. 3464 Assert(FC.isFPPredicate(), 3465 "Invalid predicate in FCmp instruction!", &FC); 3466 3467 visitInstruction(FC); 3468 } 3469 3470 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3471 Assert( 3472 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3473 "Invalid extractelement operands!", &EI); 3474 visitInstruction(EI); 3475 } 3476 3477 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3478 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3479 IE.getOperand(2)), 3480 "Invalid insertelement operands!", &IE); 3481 visitInstruction(IE); 3482 } 3483 3484 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3485 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3486 SV.getShuffleMask()), 3487 "Invalid shufflevector operands!", &SV); 3488 visitInstruction(SV); 3489 } 3490 3491 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3492 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3493 3494 Assert(isa<PointerType>(TargetTy), 3495 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3496 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3497 3498 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 3499 Assert(all_of( 3500 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3501 "GEP indexes must be integers", &GEP); 3502 Type *ElTy = 3503 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3504 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3505 3506 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3507 GEP.getResultElementType() == ElTy, 3508 "GEP is not of right type for indices!", &GEP, ElTy); 3509 3510 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { 3511 // Additional checks for vector GEPs. 3512 ElementCount GEPWidth = GEPVTy->getElementCount(); 3513 if (GEP.getPointerOperandType()->isVectorTy()) 3514 Assert( 3515 GEPWidth == 3516 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(), 3517 "Vector GEP result width doesn't match operand's", &GEP); 3518 for (Value *Idx : Idxs) { 3519 Type *IndexTy = Idx->getType(); 3520 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { 3521 ElementCount IndexWidth = IndexVTy->getElementCount(); 3522 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3523 } 3524 Assert(IndexTy->isIntOrIntVectorTy(), 3525 "All GEP indices should be of integer type"); 3526 } 3527 } 3528 3529 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3530 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3531 "GEP address space doesn't match type", &GEP); 3532 } 3533 3534 visitInstruction(GEP); 3535 } 3536 3537 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3538 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3539 } 3540 3541 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3542 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3543 "precondition violation"); 3544 3545 unsigned NumOperands = Range->getNumOperands(); 3546 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3547 unsigned NumRanges = NumOperands / 2; 3548 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3549 3550 ConstantRange LastRange(1, true); // Dummy initial value 3551 for (unsigned i = 0; i < NumRanges; ++i) { 3552 ConstantInt *Low = 3553 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3554 Assert(Low, "The lower limit must be an integer!", Low); 3555 ConstantInt *High = 3556 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3557 Assert(High, "The upper limit must be an integer!", High); 3558 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3559 "Range types must match instruction type!", &I); 3560 3561 APInt HighV = High->getValue(); 3562 APInt LowV = Low->getValue(); 3563 ConstantRange CurRange(LowV, HighV); 3564 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3565 "Range must not be empty!", Range); 3566 if (i != 0) { 3567 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3568 "Intervals are overlapping", Range); 3569 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3570 Range); 3571 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3572 Range); 3573 } 3574 LastRange = ConstantRange(LowV, HighV); 3575 } 3576 if (NumRanges > 2) { 3577 APInt FirstLow = 3578 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3579 APInt FirstHigh = 3580 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3581 ConstantRange FirstRange(FirstLow, FirstHigh); 3582 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3583 "Intervals are overlapping", Range); 3584 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3585 Range); 3586 } 3587 } 3588 3589 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3590 unsigned Size = DL.getTypeSizeInBits(Ty); 3591 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3592 Assert(!(Size & (Size - 1)), 3593 "atomic memory access' operand must have a power-of-two size", Ty, I); 3594 } 3595 3596 void Verifier::visitLoadInst(LoadInst &LI) { 3597 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3598 Assert(PTy, "Load operand must be a pointer.", &LI); 3599 Type *ElTy = LI.getType(); 3600 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3601 "huge alignment values are unsupported", &LI); 3602 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3603 if (LI.isAtomic()) { 3604 Assert(LI.getOrdering() != AtomicOrdering::Release && 3605 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3606 "Load cannot have Release ordering", &LI); 3607 Assert(LI.getAlignment() != 0, 3608 "Atomic load must specify explicit alignment", &LI); 3609 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3610 "atomic load operand must have integer, pointer, or floating point " 3611 "type!", 3612 ElTy, &LI); 3613 checkAtomicMemAccessSize(ElTy, &LI); 3614 } else { 3615 Assert(LI.getSyncScopeID() == SyncScope::System, 3616 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3617 } 3618 3619 visitInstruction(LI); 3620 } 3621 3622 void Verifier::visitStoreInst(StoreInst &SI) { 3623 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3624 Assert(PTy, "Store operand must be a pointer.", &SI); 3625 Type *ElTy = PTy->getElementType(); 3626 Assert(ElTy == SI.getOperand(0)->getType(), 3627 "Stored value type does not match pointer operand type!", &SI, ElTy); 3628 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3629 "huge alignment values are unsupported", &SI); 3630 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3631 if (SI.isAtomic()) { 3632 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3633 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3634 "Store cannot have Acquire ordering", &SI); 3635 Assert(SI.getAlignment() != 0, 3636 "Atomic store must specify explicit alignment", &SI); 3637 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3638 "atomic store operand must have integer, pointer, or floating point " 3639 "type!", 3640 ElTy, &SI); 3641 checkAtomicMemAccessSize(ElTy, &SI); 3642 } else { 3643 Assert(SI.getSyncScopeID() == SyncScope::System, 3644 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3645 } 3646 visitInstruction(SI); 3647 } 3648 3649 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3650 void Verifier::verifySwiftErrorCall(CallBase &Call, 3651 const Value *SwiftErrorVal) { 3652 unsigned Idx = 0; 3653 for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) { 3654 if (*I == SwiftErrorVal) { 3655 Assert(Call.paramHasAttr(Idx, Attribute::SwiftError), 3656 "swifterror value when used in a callsite should be marked " 3657 "with swifterror attribute", 3658 SwiftErrorVal, Call); 3659 } 3660 } 3661 } 3662 3663 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3664 // Check that swifterror value is only used by loads, stores, or as 3665 // a swifterror argument. 3666 for (const User *U : SwiftErrorVal->users()) { 3667 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3668 isa<InvokeInst>(U), 3669 "swifterror value can only be loaded and stored from, or " 3670 "as a swifterror argument!", 3671 SwiftErrorVal, U); 3672 // If it is used by a store, check it is the second operand. 3673 if (auto StoreI = dyn_cast<StoreInst>(U)) 3674 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3675 "swifterror value should be the second operand when used " 3676 "by stores", SwiftErrorVal, U); 3677 if (auto *Call = dyn_cast<CallBase>(U)) 3678 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3679 } 3680 } 3681 3682 void Verifier::visitAllocaInst(AllocaInst &AI) { 3683 SmallPtrSet<Type*, 4> Visited; 3684 PointerType *PTy = AI.getType(); 3685 // TODO: Relax this restriction? 3686 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), 3687 "Allocation instruction pointer not in the stack address space!", 3688 &AI); 3689 Assert(AI.getAllocatedType()->isSized(&Visited), 3690 "Cannot allocate unsized type", &AI); 3691 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3692 "Alloca array size must have integer type", &AI); 3693 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3694 "huge alignment values are unsupported", &AI); 3695 3696 if (AI.isSwiftError()) { 3697 verifySwiftErrorValue(&AI); 3698 } 3699 3700 visitInstruction(AI); 3701 } 3702 3703 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3704 3705 // FIXME: more conditions??? 3706 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 3707 "cmpxchg instructions must be atomic.", &CXI); 3708 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 3709 "cmpxchg instructions must be atomic.", &CXI); 3710 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 3711 "cmpxchg instructions cannot be unordered.", &CXI); 3712 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 3713 "cmpxchg instructions cannot be unordered.", &CXI); 3714 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 3715 "cmpxchg instructions failure argument shall be no stronger than the " 3716 "success argument", 3717 &CXI); 3718 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 3719 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 3720 "cmpxchg failure ordering cannot include release semantics", &CXI); 3721 3722 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 3723 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 3724 Type *ElTy = PTy->getElementType(); 3725 Assert(ElTy->isIntOrPtrTy(), 3726 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3727 checkAtomicMemAccessSize(ElTy, &CXI); 3728 Assert(ElTy == CXI.getOperand(1)->getType(), 3729 "Expected value type does not match pointer operand type!", &CXI, 3730 ElTy); 3731 Assert(ElTy == CXI.getOperand(2)->getType(), 3732 "Stored value type does not match pointer operand type!", &CXI, ElTy); 3733 visitInstruction(CXI); 3734 } 3735 3736 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3737 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 3738 "atomicrmw instructions must be atomic.", &RMWI); 3739 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3740 "atomicrmw instructions cannot be unordered.", &RMWI); 3741 auto Op = RMWI.getOperation(); 3742 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 3743 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 3744 Type *ElTy = PTy->getElementType(); 3745 if (Op == AtomicRMWInst::Xchg) { 3746 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3747 AtomicRMWInst::getOperationName(Op) + 3748 " operand must have integer or floating point type!", 3749 &RMWI, ElTy); 3750 } else if (AtomicRMWInst::isFPOperation(Op)) { 3751 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3752 AtomicRMWInst::getOperationName(Op) + 3753 " operand must have floating point type!", 3754 &RMWI, ElTy); 3755 } else { 3756 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3757 AtomicRMWInst::getOperationName(Op) + 3758 " operand must have integer type!", 3759 &RMWI, ElTy); 3760 } 3761 checkAtomicMemAccessSize(ElTy, &RMWI); 3762 Assert(ElTy == RMWI.getOperand(1)->getType(), 3763 "Argument value type does not match pointer operand type!", &RMWI, 3764 ElTy); 3765 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3766 "Invalid binary operation!", &RMWI); 3767 visitInstruction(RMWI); 3768 } 3769 3770 void Verifier::visitFenceInst(FenceInst &FI) { 3771 const AtomicOrdering Ordering = FI.getOrdering(); 3772 Assert(Ordering == AtomicOrdering::Acquire || 3773 Ordering == AtomicOrdering::Release || 3774 Ordering == AtomicOrdering::AcquireRelease || 3775 Ordering == AtomicOrdering::SequentiallyConsistent, 3776 "fence instructions may only have acquire, release, acq_rel, or " 3777 "seq_cst ordering.", 3778 &FI); 3779 visitInstruction(FI); 3780 } 3781 3782 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3783 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3784 EVI.getIndices()) == EVI.getType(), 3785 "Invalid ExtractValueInst operands!", &EVI); 3786 3787 visitInstruction(EVI); 3788 } 3789 3790 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3791 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3792 IVI.getIndices()) == 3793 IVI.getOperand(1)->getType(), 3794 "Invalid InsertValueInst operands!", &IVI); 3795 3796 visitInstruction(IVI); 3797 } 3798 3799 static Value *getParentPad(Value *EHPad) { 3800 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3801 return FPI->getParentPad(); 3802 3803 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3804 } 3805 3806 void Verifier::visitEHPadPredecessors(Instruction &I) { 3807 assert(I.isEHPad()); 3808 3809 BasicBlock *BB = I.getParent(); 3810 Function *F = BB->getParent(); 3811 3812 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3813 3814 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3815 // The landingpad instruction defines its parent as a landing pad block. The 3816 // landing pad block may be branched to only by the unwind edge of an 3817 // invoke. 3818 for (BasicBlock *PredBB : predecessors(BB)) { 3819 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3820 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3821 "Block containing LandingPadInst must be jumped to " 3822 "only by the unwind edge of an invoke.", 3823 LPI); 3824 } 3825 return; 3826 } 3827 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3828 if (!pred_empty(BB)) 3829 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3830 "Block containg CatchPadInst must be jumped to " 3831 "only by its catchswitch.", 3832 CPI); 3833 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3834 "Catchswitch cannot unwind to one of its catchpads", 3835 CPI->getCatchSwitch(), CPI); 3836 return; 3837 } 3838 3839 // Verify that each pred has a legal terminator with a legal to/from EH 3840 // pad relationship. 3841 Instruction *ToPad = &I; 3842 Value *ToPadParent = getParentPad(ToPad); 3843 for (BasicBlock *PredBB : predecessors(BB)) { 3844 Instruction *TI = PredBB->getTerminator(); 3845 Value *FromPad; 3846 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3847 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3848 "EH pad must be jumped to via an unwind edge", ToPad, II); 3849 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3850 FromPad = Bundle->Inputs[0]; 3851 else 3852 FromPad = ConstantTokenNone::get(II->getContext()); 3853 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3854 FromPad = CRI->getOperand(0); 3855 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3856 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3857 FromPad = CSI; 3858 } else { 3859 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3860 } 3861 3862 // The edge may exit from zero or more nested pads. 3863 SmallSet<Value *, 8> Seen; 3864 for (;; FromPad = getParentPad(FromPad)) { 3865 Assert(FromPad != ToPad, 3866 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3867 if (FromPad == ToPadParent) { 3868 // This is a legal unwind edge. 3869 break; 3870 } 3871 Assert(!isa<ConstantTokenNone>(FromPad), 3872 "A single unwind edge may only enter one EH pad", TI); 3873 Assert(Seen.insert(FromPad).second, 3874 "EH pad jumps through a cycle of pads", FromPad); 3875 } 3876 } 3877 } 3878 3879 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3880 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3881 // isn't a cleanup. 3882 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3883 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3884 3885 visitEHPadPredecessors(LPI); 3886 3887 if (!LandingPadResultTy) 3888 LandingPadResultTy = LPI.getType(); 3889 else 3890 Assert(LandingPadResultTy == LPI.getType(), 3891 "The landingpad instruction should have a consistent result type " 3892 "inside a function.", 3893 &LPI); 3894 3895 Function *F = LPI.getParent()->getParent(); 3896 Assert(F->hasPersonalityFn(), 3897 "LandingPadInst needs to be in a function with a personality.", &LPI); 3898 3899 // The landingpad instruction must be the first non-PHI instruction in the 3900 // block. 3901 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3902 "LandingPadInst not the first non-PHI instruction in the block.", 3903 &LPI); 3904 3905 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3906 Constant *Clause = LPI.getClause(i); 3907 if (LPI.isCatch(i)) { 3908 Assert(isa<PointerType>(Clause->getType()), 3909 "Catch operand does not have pointer type!", &LPI); 3910 } else { 3911 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3912 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3913 "Filter operand is not an array of constants!", &LPI); 3914 } 3915 } 3916 3917 visitInstruction(LPI); 3918 } 3919 3920 void Verifier::visitResumeInst(ResumeInst &RI) { 3921 Assert(RI.getFunction()->hasPersonalityFn(), 3922 "ResumeInst needs to be in a function with a personality.", &RI); 3923 3924 if (!LandingPadResultTy) 3925 LandingPadResultTy = RI.getValue()->getType(); 3926 else 3927 Assert(LandingPadResultTy == RI.getValue()->getType(), 3928 "The resume instruction should have a consistent result type " 3929 "inside a function.", 3930 &RI); 3931 3932 visitTerminator(RI); 3933 } 3934 3935 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3936 BasicBlock *BB = CPI.getParent(); 3937 3938 Function *F = BB->getParent(); 3939 Assert(F->hasPersonalityFn(), 3940 "CatchPadInst needs to be in a function with a personality.", &CPI); 3941 3942 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 3943 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 3944 CPI.getParentPad()); 3945 3946 // The catchpad instruction must be the first non-PHI instruction in the 3947 // block. 3948 Assert(BB->getFirstNonPHI() == &CPI, 3949 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 3950 3951 visitEHPadPredecessors(CPI); 3952 visitFuncletPadInst(CPI); 3953 } 3954 3955 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 3956 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 3957 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 3958 CatchReturn.getOperand(0)); 3959 3960 visitTerminator(CatchReturn); 3961 } 3962 3963 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 3964 BasicBlock *BB = CPI.getParent(); 3965 3966 Function *F = BB->getParent(); 3967 Assert(F->hasPersonalityFn(), 3968 "CleanupPadInst needs to be in a function with a personality.", &CPI); 3969 3970 // The cleanuppad instruction must be the first non-PHI instruction in the 3971 // block. 3972 Assert(BB->getFirstNonPHI() == &CPI, 3973 "CleanupPadInst not the first non-PHI instruction in the block.", 3974 &CPI); 3975 3976 auto *ParentPad = CPI.getParentPad(); 3977 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3978 "CleanupPadInst has an invalid parent.", &CPI); 3979 3980 visitEHPadPredecessors(CPI); 3981 visitFuncletPadInst(CPI); 3982 } 3983 3984 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 3985 User *FirstUser = nullptr; 3986 Value *FirstUnwindPad = nullptr; 3987 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 3988 SmallSet<FuncletPadInst *, 8> Seen; 3989 3990 while (!Worklist.empty()) { 3991 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 3992 Assert(Seen.insert(CurrentPad).second, 3993 "FuncletPadInst must not be nested within itself", CurrentPad); 3994 Value *UnresolvedAncestorPad = nullptr; 3995 for (User *U : CurrentPad->users()) { 3996 BasicBlock *UnwindDest; 3997 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 3998 UnwindDest = CRI->getUnwindDest(); 3999 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 4000 // We allow catchswitch unwind to caller to nest 4001 // within an outer pad that unwinds somewhere else, 4002 // because catchswitch doesn't have a nounwind variant. 4003 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 4004 if (CSI->unwindsToCaller()) 4005 continue; 4006 UnwindDest = CSI->getUnwindDest(); 4007 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 4008 UnwindDest = II->getUnwindDest(); 4009 } else if (isa<CallInst>(U)) { 4010 // Calls which don't unwind may be found inside funclet 4011 // pads that unwind somewhere else. We don't *require* 4012 // such calls to be annotated nounwind. 4013 continue; 4014 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 4015 // The unwind dest for a cleanup can only be found by 4016 // recursive search. Add it to the worklist, and we'll 4017 // search for its first use that determines where it unwinds. 4018 Worklist.push_back(CPI); 4019 continue; 4020 } else { 4021 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 4022 continue; 4023 } 4024 4025 Value *UnwindPad; 4026 bool ExitsFPI; 4027 if (UnwindDest) { 4028 UnwindPad = UnwindDest->getFirstNonPHI(); 4029 if (!cast<Instruction>(UnwindPad)->isEHPad()) 4030 continue; 4031 Value *UnwindParent = getParentPad(UnwindPad); 4032 // Ignore unwind edges that don't exit CurrentPad. 4033 if (UnwindParent == CurrentPad) 4034 continue; 4035 // Determine whether the original funclet pad is exited, 4036 // and if we are scanning nested pads determine how many 4037 // of them are exited so we can stop searching their 4038 // children. 4039 Value *ExitedPad = CurrentPad; 4040 ExitsFPI = false; 4041 do { 4042 if (ExitedPad == &FPI) { 4043 ExitsFPI = true; 4044 // Now we can resolve any ancestors of CurrentPad up to 4045 // FPI, but not including FPI since we need to make sure 4046 // to check all direct users of FPI for consistency. 4047 UnresolvedAncestorPad = &FPI; 4048 break; 4049 } 4050 Value *ExitedParent = getParentPad(ExitedPad); 4051 if (ExitedParent == UnwindParent) { 4052 // ExitedPad is the ancestor-most pad which this unwind 4053 // edge exits, so we can resolve up to it, meaning that 4054 // ExitedParent is the first ancestor still unresolved. 4055 UnresolvedAncestorPad = ExitedParent; 4056 break; 4057 } 4058 ExitedPad = ExitedParent; 4059 } while (!isa<ConstantTokenNone>(ExitedPad)); 4060 } else { 4061 // Unwinding to caller exits all pads. 4062 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 4063 ExitsFPI = true; 4064 UnresolvedAncestorPad = &FPI; 4065 } 4066 4067 if (ExitsFPI) { 4068 // This unwind edge exits FPI. Make sure it agrees with other 4069 // such edges. 4070 if (FirstUser) { 4071 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 4072 "pad must have the same unwind " 4073 "dest", 4074 &FPI, U, FirstUser); 4075 } else { 4076 FirstUser = U; 4077 FirstUnwindPad = UnwindPad; 4078 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 4079 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 4080 getParentPad(UnwindPad) == getParentPad(&FPI)) 4081 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 4082 } 4083 } 4084 // Make sure we visit all uses of FPI, but for nested pads stop as 4085 // soon as we know where they unwind to. 4086 if (CurrentPad != &FPI) 4087 break; 4088 } 4089 if (UnresolvedAncestorPad) { 4090 if (CurrentPad == UnresolvedAncestorPad) { 4091 // When CurrentPad is FPI itself, we don't mark it as resolved even if 4092 // we've found an unwind edge that exits it, because we need to verify 4093 // all direct uses of FPI. 4094 assert(CurrentPad == &FPI); 4095 continue; 4096 } 4097 // Pop off the worklist any nested pads that we've found an unwind 4098 // destination for. The pads on the worklist are the uncles, 4099 // great-uncles, etc. of CurrentPad. We've found an unwind destination 4100 // for all ancestors of CurrentPad up to but not including 4101 // UnresolvedAncestorPad. 4102 Value *ResolvedPad = CurrentPad; 4103 while (!Worklist.empty()) { 4104 Value *UnclePad = Worklist.back(); 4105 Value *AncestorPad = getParentPad(UnclePad); 4106 // Walk ResolvedPad up the ancestor list until we either find the 4107 // uncle's parent or the last resolved ancestor. 4108 while (ResolvedPad != AncestorPad) { 4109 Value *ResolvedParent = getParentPad(ResolvedPad); 4110 if (ResolvedParent == UnresolvedAncestorPad) { 4111 break; 4112 } 4113 ResolvedPad = ResolvedParent; 4114 } 4115 // If the resolved ancestor search didn't find the uncle's parent, 4116 // then the uncle is not yet resolved. 4117 if (ResolvedPad != AncestorPad) 4118 break; 4119 // This uncle is resolved, so pop it from the worklist. 4120 Worklist.pop_back(); 4121 } 4122 } 4123 } 4124 4125 if (FirstUnwindPad) { 4126 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 4127 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 4128 Value *SwitchUnwindPad; 4129 if (SwitchUnwindDest) 4130 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 4131 else 4132 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 4133 Assert(SwitchUnwindPad == FirstUnwindPad, 4134 "Unwind edges out of a catch must have the same unwind dest as " 4135 "the parent catchswitch", 4136 &FPI, FirstUser, CatchSwitch); 4137 } 4138 } 4139 4140 visitInstruction(FPI); 4141 } 4142 4143 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 4144 BasicBlock *BB = CatchSwitch.getParent(); 4145 4146 Function *F = BB->getParent(); 4147 Assert(F->hasPersonalityFn(), 4148 "CatchSwitchInst needs to be in a function with a personality.", 4149 &CatchSwitch); 4150 4151 // The catchswitch instruction must be the first non-PHI instruction in the 4152 // block. 4153 Assert(BB->getFirstNonPHI() == &CatchSwitch, 4154 "CatchSwitchInst not the first non-PHI instruction in the block.", 4155 &CatchSwitch); 4156 4157 auto *ParentPad = CatchSwitch.getParentPad(); 4158 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4159 "CatchSwitchInst has an invalid parent.", ParentPad); 4160 4161 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 4162 Instruction *I = UnwindDest->getFirstNonPHI(); 4163 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4164 "CatchSwitchInst must unwind to an EH block which is not a " 4165 "landingpad.", 4166 &CatchSwitch); 4167 4168 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 4169 if (getParentPad(I) == ParentPad) 4170 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 4171 } 4172 4173 Assert(CatchSwitch.getNumHandlers() != 0, 4174 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 4175 4176 for (BasicBlock *Handler : CatchSwitch.handlers()) { 4177 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 4178 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 4179 } 4180 4181 visitEHPadPredecessors(CatchSwitch); 4182 visitTerminator(CatchSwitch); 4183 } 4184 4185 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 4186 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 4187 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 4188 CRI.getOperand(0)); 4189 4190 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 4191 Instruction *I = UnwindDest->getFirstNonPHI(); 4192 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4193 "CleanupReturnInst must unwind to an EH block which is not a " 4194 "landingpad.", 4195 &CRI); 4196 } 4197 4198 visitTerminator(CRI); 4199 } 4200 4201 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 4202 Instruction *Op = cast<Instruction>(I.getOperand(i)); 4203 // If the we have an invalid invoke, don't try to compute the dominance. 4204 // We already reject it in the invoke specific checks and the dominance 4205 // computation doesn't handle multiple edges. 4206 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 4207 if (II->getNormalDest() == II->getUnwindDest()) 4208 return; 4209 } 4210 4211 // Quick check whether the def has already been encountered in the same block. 4212 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 4213 // uses are defined to happen on the incoming edge, not at the instruction. 4214 // 4215 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 4216 // wrapping an SSA value, assert that we've already encountered it. See 4217 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 4218 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 4219 return; 4220 4221 const Use &U = I.getOperandUse(i); 4222 Assert(DT.dominates(Op, U), 4223 "Instruction does not dominate all uses!", Op, &I); 4224 } 4225 4226 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4227 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 4228 "apply only to pointer types", &I); 4229 Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4230 "dereferenceable, dereferenceable_or_null apply only to load" 4231 " and inttoptr instructions, use attributes for calls or invokes", &I); 4232 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 4233 "take one operand!", &I); 4234 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4235 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 4236 "dereferenceable_or_null metadata value must be an i64!", &I); 4237 } 4238 4239 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4240 Assert(MD->getNumOperands() >= 2, 4241 "!prof annotations should have no less than 2 operands", MD); 4242 4243 // Check first operand. 4244 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4245 Assert(isa<MDString>(MD->getOperand(0)), 4246 "expected string with name of the !prof annotation", MD); 4247 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4248 StringRef ProfName = MDS->getString(); 4249 4250 // Check consistency of !prof branch_weights metadata. 4251 if (ProfName.equals("branch_weights")) { 4252 if (isa<InvokeInst>(&I)) { 4253 Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3, 4254 "Wrong number of InvokeInst branch_weights operands", MD); 4255 } else { 4256 unsigned ExpectedNumOperands = 0; 4257 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4258 ExpectedNumOperands = BI->getNumSuccessors(); 4259 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4260 ExpectedNumOperands = SI->getNumSuccessors(); 4261 else if (isa<CallInst>(&I)) 4262 ExpectedNumOperands = 1; 4263 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4264 ExpectedNumOperands = IBI->getNumDestinations(); 4265 else if (isa<SelectInst>(&I)) 4266 ExpectedNumOperands = 2; 4267 else 4268 CheckFailed("!prof branch_weights are not allowed for this instruction", 4269 MD); 4270 4271 Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, 4272 "Wrong number of operands", MD); 4273 } 4274 for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 4275 auto &MDO = MD->getOperand(i); 4276 Assert(MDO, "second operand should not be null", MD); 4277 Assert(mdconst::dyn_extract<ConstantInt>(MDO), 4278 "!prof brunch_weights operand is not a const int"); 4279 } 4280 } 4281 } 4282 4283 void Verifier::visitAnnotationMetadata(MDNode *Annotation) { 4284 Assert(isa<MDTuple>(Annotation), "annotation must be a tuple"); 4285 Assert(Annotation->getNumOperands() >= 1, 4286 "annotation must have at least one operand"); 4287 for (const MDOperand &Op : Annotation->operands()) 4288 Assert(isa<MDString>(Op.get()), "operands must be strings"); 4289 } 4290 4291 /// verifyInstruction - Verify that an instruction is well formed. 4292 /// 4293 void Verifier::visitInstruction(Instruction &I) { 4294 BasicBlock *BB = I.getParent(); 4295 Assert(BB, "Instruction not embedded in basic block!", &I); 4296 4297 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4298 for (User *U : I.users()) { 4299 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 4300 "Only PHI nodes may reference their own value!", &I); 4301 } 4302 } 4303 4304 // Check that void typed values don't have names 4305 Assert(!I.getType()->isVoidTy() || !I.hasName(), 4306 "Instruction has a name, but provides a void value!", &I); 4307 4308 // Check that the return value of the instruction is either void or a legal 4309 // value type. 4310 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4311 "Instruction returns a non-scalar type!", &I); 4312 4313 // Check that the instruction doesn't produce metadata. Calls are already 4314 // checked against the callee type. 4315 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4316 "Invalid use of metadata!", &I); 4317 4318 // Check that all uses of the instruction, if they are instructions 4319 // themselves, actually have parent basic blocks. If the use is not an 4320 // instruction, it is an error! 4321 for (Use &U : I.uses()) { 4322 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4323 Assert(Used->getParent() != nullptr, 4324 "Instruction referencing" 4325 " instruction not embedded in a basic block!", 4326 &I, Used); 4327 else { 4328 CheckFailed("Use of instruction is not an instruction!", U); 4329 return; 4330 } 4331 } 4332 4333 // Get a pointer to the call base of the instruction if it is some form of 4334 // call. 4335 const CallBase *CBI = dyn_cast<CallBase>(&I); 4336 4337 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4338 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4339 4340 // Check to make sure that only first-class-values are operands to 4341 // instructions. 4342 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4343 Assert(false, "Instruction operands must be first-class values!", &I); 4344 } 4345 4346 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4347 // Check to make sure that the "address of" an intrinsic function is never 4348 // taken. 4349 Assert(!F->isIntrinsic() || 4350 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), 4351 "Cannot take the address of an intrinsic!", &I); 4352 Assert( 4353 !F->isIntrinsic() || isa<CallInst>(I) || 4354 F->getIntrinsicID() == Intrinsic::donothing || 4355 F->getIntrinsicID() == Intrinsic::coro_resume || 4356 F->getIntrinsicID() == Intrinsic::coro_destroy || 4357 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4358 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4359 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4360 F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch, 4361 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4362 "statepoint, coro_resume or coro_destroy", 4363 &I); 4364 Assert(F->getParent() == &M, "Referencing function in another module!", 4365 &I, &M, F, F->getParent()); 4366 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4367 Assert(OpBB->getParent() == BB->getParent(), 4368 "Referring to a basic block in another function!", &I); 4369 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4370 Assert(OpArg->getParent() == BB->getParent(), 4371 "Referring to an argument in another function!", &I); 4372 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4373 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4374 &M, GV, GV->getParent()); 4375 } else if (isa<Instruction>(I.getOperand(i))) { 4376 verifyDominatesUse(I, i); 4377 } else if (isa<InlineAsm>(I.getOperand(i))) { 4378 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4379 "Cannot take the address of an inline asm!", &I); 4380 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4381 if (CE->getType()->isPtrOrPtrVectorTy() || 4382 !DL.getNonIntegralAddressSpaces().empty()) { 4383 // If we have a ConstantExpr pointer, we need to see if it came from an 4384 // illegal bitcast. If the datalayout string specifies non-integral 4385 // address spaces then we also need to check for illegal ptrtoint and 4386 // inttoptr expressions. 4387 visitConstantExprsRecursively(CE); 4388 } 4389 } 4390 } 4391 4392 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4393 Assert(I.getType()->isFPOrFPVectorTy(), 4394 "fpmath requires a floating point result!", &I); 4395 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4396 if (ConstantFP *CFP0 = 4397 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4398 const APFloat &Accuracy = CFP0->getValueAPF(); 4399 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4400 "fpmath accuracy must have float type", &I); 4401 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4402 "fpmath accuracy not a positive number!", &I); 4403 } else { 4404 Assert(false, "invalid fpmath accuracy!", &I); 4405 } 4406 } 4407 4408 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4409 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4410 "Ranges are only for loads, calls and invokes!", &I); 4411 visitRangeMetadata(I, Range, I.getType()); 4412 } 4413 4414 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4415 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4416 &I); 4417 Assert(isa<LoadInst>(I), 4418 "nonnull applies only to load instructions, use attributes" 4419 " for calls or invokes", 4420 &I); 4421 } 4422 4423 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4424 visitDereferenceableMetadata(I, MD); 4425 4426 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4427 visitDereferenceableMetadata(I, MD); 4428 4429 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4430 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4431 4432 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4433 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4434 &I); 4435 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4436 "use attributes for calls or invokes", &I); 4437 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4438 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4439 Assert(CI && CI->getType()->isIntegerTy(64), 4440 "align metadata value must be an i64!", &I); 4441 uint64_t Align = CI->getZExtValue(); 4442 Assert(isPowerOf2_64(Align), 4443 "align metadata value must be a power of 2!", &I); 4444 Assert(Align <= Value::MaximumAlignment, 4445 "alignment is larger that implementation defined limit", &I); 4446 } 4447 4448 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 4449 visitProfMetadata(I, MD); 4450 4451 if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation)) 4452 visitAnnotationMetadata(Annotation); 4453 4454 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4455 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4456 visitMDNode(*N, AreDebugLocsAllowed::Yes); 4457 } 4458 4459 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 4460 verifyFragmentExpression(*DII); 4461 verifyNotEntryValue(*DII); 4462 } 4463 4464 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 4465 I.getAllMetadata(MDs); 4466 for (auto Attachment : MDs) { 4467 unsigned Kind = Attachment.first; 4468 auto AllowLocs = 4469 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) 4470 ? AreDebugLocsAllowed::Yes 4471 : AreDebugLocsAllowed::No; 4472 visitMDNode(*Attachment.second, AllowLocs); 4473 } 4474 4475 InstsInThisBlock.insert(&I); 4476 } 4477 4478 /// Allow intrinsics to be verified in different ways. 4479 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4480 Function *IF = Call.getCalledFunction(); 4481 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4482 IF); 4483 4484 // Verify that the intrinsic prototype lines up with what the .td files 4485 // describe. 4486 FunctionType *IFTy = IF->getFunctionType(); 4487 bool IsVarArg = IFTy->isVarArg(); 4488 4489 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4490 getIntrinsicInfoTableEntries(ID, Table); 4491 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4492 4493 // Walk the descriptors to extract overloaded types. 4494 SmallVector<Type *, 4> ArgTys; 4495 Intrinsic::MatchIntrinsicTypesResult Res = 4496 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4497 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4498 "Intrinsic has incorrect return type!", IF); 4499 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4500 "Intrinsic has incorrect argument type!", IF); 4501 4502 // Verify if the intrinsic call matches the vararg property. 4503 if (IsVarArg) 4504 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4505 "Intrinsic was not defined with variable arguments!", IF); 4506 else 4507 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4508 "Callsite was not defined with variable arguments!", IF); 4509 4510 // All descriptors should be absorbed by now. 4511 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4512 4513 // Now that we have the intrinsic ID and the actual argument types (and we 4514 // know they are legal for the intrinsic!) get the intrinsic name through the 4515 // usual means. This allows us to verify the mangling of argument types into 4516 // the name. 4517 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 4518 Assert(ExpectedName == IF->getName(), 4519 "Intrinsic name not mangled correctly for type arguments! " 4520 "Should be: " + 4521 ExpectedName, 4522 IF); 4523 4524 // If the intrinsic takes MDNode arguments, verify that they are either global 4525 // or are local to *this* function. 4526 for (Value *V : Call.args()) 4527 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4528 visitMetadataAsValue(*MD, Call.getCaller()); 4529 4530 switch (ID) { 4531 default: 4532 break; 4533 case Intrinsic::assume: { 4534 for (auto &Elem : Call.bundle_op_infos()) { 4535 Assert(Elem.Tag->getKey() == "ignore" || 4536 Attribute::isExistingAttribute(Elem.Tag->getKey()), 4537 "tags must be valid attribute names"); 4538 Attribute::AttrKind Kind = 4539 Attribute::getAttrKindFromName(Elem.Tag->getKey()); 4540 unsigned ArgCount = Elem.End - Elem.Begin; 4541 if (Kind == Attribute::Alignment) { 4542 Assert(ArgCount <= 3 && ArgCount >= 2, 4543 "alignment assumptions should have 2 or 3 arguments"); 4544 Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(), 4545 "first argument should be a pointer"); 4546 Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(), 4547 "second argument should be an integer"); 4548 if (ArgCount == 3) 4549 Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(), 4550 "third argument should be an integer if present"); 4551 return; 4552 } 4553 Assert(ArgCount <= 2, "to many arguments"); 4554 if (Kind == Attribute::None) 4555 break; 4556 if (Attribute::doesAttrKindHaveArgument(Kind)) { 4557 Assert(ArgCount == 2, "this attribute should have 2 arguments"); 4558 Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), 4559 "the second argument should be a constant integral value"); 4560 } else if (isFuncOnlyAttr(Kind)) { 4561 Assert((ArgCount) == 0, "this attribute has no argument"); 4562 } else if (!isFuncOrArgAttr(Kind)) { 4563 Assert((ArgCount) == 1, "this attribute should have one argument"); 4564 } 4565 } 4566 break; 4567 } 4568 case Intrinsic::coro_id: { 4569 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4570 if (isa<ConstantPointerNull>(InfoArg)) 4571 break; 4572 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4573 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4574 "info argument of llvm.coro.begin must refer to an initialized " 4575 "constant"); 4576 Constant *Init = GV->getInitializer(); 4577 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4578 "info argument of llvm.coro.begin must refer to either a struct or " 4579 "an array"); 4580 break; 4581 } 4582 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ 4583 case Intrinsic::INTRINSIC: 4584 #include "llvm/IR/ConstrainedOps.def" 4585 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4586 break; 4587 case Intrinsic::dbg_declare: // llvm.dbg.declare 4588 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4589 "invalid llvm.dbg.declare intrinsic call 1", Call); 4590 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4591 break; 4592 case Intrinsic::dbg_addr: // llvm.dbg.addr 4593 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4594 break; 4595 case Intrinsic::dbg_value: // llvm.dbg.value 4596 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4597 break; 4598 case Intrinsic::dbg_label: // llvm.dbg.label 4599 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4600 break; 4601 case Intrinsic::memcpy: 4602 case Intrinsic::memcpy_inline: 4603 case Intrinsic::memmove: 4604 case Intrinsic::memset: { 4605 const auto *MI = cast<MemIntrinsic>(&Call); 4606 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4607 return Alignment == 0 || isPowerOf2_32(Alignment); 4608 }; 4609 Assert(IsValidAlignment(MI->getDestAlignment()), 4610 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4611 Call); 4612 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4613 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4614 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4615 Call); 4616 } 4617 4618 break; 4619 } 4620 case Intrinsic::memcpy_element_unordered_atomic: 4621 case Intrinsic::memmove_element_unordered_atomic: 4622 case Intrinsic::memset_element_unordered_atomic: { 4623 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4624 4625 ConstantInt *ElementSizeCI = 4626 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4627 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4628 Assert(ElementSizeVal.isPowerOf2(), 4629 "element size of the element-wise atomic memory intrinsic " 4630 "must be a power of 2", 4631 Call); 4632 4633 auto IsValidAlignment = [&](uint64_t Alignment) { 4634 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4635 }; 4636 uint64_t DstAlignment = AMI->getDestAlignment(); 4637 Assert(IsValidAlignment(DstAlignment), 4638 "incorrect alignment of the destination argument", Call); 4639 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4640 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4641 Assert(IsValidAlignment(SrcAlignment), 4642 "incorrect alignment of the source argument", Call); 4643 } 4644 break; 4645 } 4646 case Intrinsic::call_preallocated_setup: { 4647 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 4648 Assert(NumArgs != nullptr, 4649 "llvm.call.preallocated.setup argument must be a constant"); 4650 bool FoundCall = false; 4651 for (User *U : Call.users()) { 4652 auto *UseCall = dyn_cast<CallBase>(U); 4653 Assert(UseCall != nullptr, 4654 "Uses of llvm.call.preallocated.setup must be calls"); 4655 const Function *Fn = UseCall->getCalledFunction(); 4656 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { 4657 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); 4658 Assert(AllocArgIndex != nullptr, 4659 "llvm.call.preallocated.alloc arg index must be a constant"); 4660 auto AllocArgIndexInt = AllocArgIndex->getValue(); 4661 Assert(AllocArgIndexInt.sge(0) && 4662 AllocArgIndexInt.slt(NumArgs->getValue()), 4663 "llvm.call.preallocated.alloc arg index must be between 0 and " 4664 "corresponding " 4665 "llvm.call.preallocated.setup's argument count"); 4666 } else if (Fn && Fn->getIntrinsicID() == 4667 Intrinsic::call_preallocated_teardown) { 4668 // nothing to do 4669 } else { 4670 Assert(!FoundCall, "Can have at most one call corresponding to a " 4671 "llvm.call.preallocated.setup"); 4672 FoundCall = true; 4673 size_t NumPreallocatedArgs = 0; 4674 for (unsigned i = 0; i < UseCall->getNumArgOperands(); i++) { 4675 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { 4676 ++NumPreallocatedArgs; 4677 } 4678 } 4679 Assert(NumPreallocatedArgs != 0, 4680 "cannot use preallocated intrinsics on a call without " 4681 "preallocated arguments"); 4682 Assert(NumArgs->equalsInt(NumPreallocatedArgs), 4683 "llvm.call.preallocated.setup arg size must be equal to number " 4684 "of preallocated arguments " 4685 "at call site", 4686 Call, *UseCall); 4687 // getOperandBundle() cannot be called if more than one of the operand 4688 // bundle exists. There is already a check elsewhere for this, so skip 4689 // here if we see more than one. 4690 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > 4691 1) { 4692 return; 4693 } 4694 auto PreallocatedBundle = 4695 UseCall->getOperandBundle(LLVMContext::OB_preallocated); 4696 Assert(PreallocatedBundle, 4697 "Use of llvm.call.preallocated.setup outside intrinsics " 4698 "must be in \"preallocated\" operand bundle"); 4699 Assert(PreallocatedBundle->Inputs.front().get() == &Call, 4700 "preallocated bundle must have token from corresponding " 4701 "llvm.call.preallocated.setup"); 4702 } 4703 } 4704 break; 4705 } 4706 case Intrinsic::call_preallocated_arg: { 4707 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4708 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4709 Intrinsic::call_preallocated_setup, 4710 "llvm.call.preallocated.arg token argument must be a " 4711 "llvm.call.preallocated.setup"); 4712 Assert(Call.hasFnAttr(Attribute::Preallocated), 4713 "llvm.call.preallocated.arg must be called with a \"preallocated\" " 4714 "call site attribute"); 4715 break; 4716 } 4717 case Intrinsic::call_preallocated_teardown: { 4718 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4719 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4720 Intrinsic::call_preallocated_setup, 4721 "llvm.call.preallocated.teardown token argument must be a " 4722 "llvm.call.preallocated.setup"); 4723 break; 4724 } 4725 case Intrinsic::gcroot: 4726 case Intrinsic::gcwrite: 4727 case Intrinsic::gcread: 4728 if (ID == Intrinsic::gcroot) { 4729 AllocaInst *AI = 4730 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4731 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4732 Assert(isa<Constant>(Call.getArgOperand(1)), 4733 "llvm.gcroot parameter #2 must be a constant.", Call); 4734 if (!AI->getAllocatedType()->isPointerTy()) { 4735 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4736 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4737 "or argument #2 must be a non-null constant.", 4738 Call); 4739 } 4740 } 4741 4742 Assert(Call.getParent()->getParent()->hasGC(), 4743 "Enclosing function does not use GC.", Call); 4744 break; 4745 case Intrinsic::init_trampoline: 4746 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4747 "llvm.init_trampoline parameter #2 must resolve to a function.", 4748 Call); 4749 break; 4750 case Intrinsic::prefetch: 4751 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4752 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4753 "invalid arguments to llvm.prefetch", Call); 4754 break; 4755 case Intrinsic::stackprotector: 4756 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4757 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4758 break; 4759 case Intrinsic::localescape: { 4760 BasicBlock *BB = Call.getParent(); 4761 Assert(BB == &BB->getParent()->front(), 4762 "llvm.localescape used outside of entry block", Call); 4763 Assert(!SawFrameEscape, 4764 "multiple calls to llvm.localescape in one function", Call); 4765 for (Value *Arg : Call.args()) { 4766 if (isa<ConstantPointerNull>(Arg)) 4767 continue; // Null values are allowed as placeholders. 4768 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4769 Assert(AI && AI->isStaticAlloca(), 4770 "llvm.localescape only accepts static allocas", Call); 4771 } 4772 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); 4773 SawFrameEscape = true; 4774 break; 4775 } 4776 case Intrinsic::localrecover: { 4777 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4778 Function *Fn = dyn_cast<Function>(FnArg); 4779 Assert(Fn && !Fn->isDeclaration(), 4780 "llvm.localrecover first " 4781 "argument must be function defined in this module", 4782 Call); 4783 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 4784 auto &Entry = FrameEscapeInfo[Fn]; 4785 Entry.second = unsigned( 4786 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4787 break; 4788 } 4789 4790 case Intrinsic::experimental_gc_statepoint: 4791 if (auto *CI = dyn_cast<CallInst>(&Call)) 4792 Assert(!CI->isInlineAsm(), 4793 "gc.statepoint support for inline assembly unimplemented", CI); 4794 Assert(Call.getParent()->getParent()->hasGC(), 4795 "Enclosing function does not use GC.", Call); 4796 4797 verifyStatepoint(Call); 4798 break; 4799 case Intrinsic::experimental_gc_result: { 4800 Assert(Call.getParent()->getParent()->hasGC(), 4801 "Enclosing function does not use GC.", Call); 4802 // Are we tied to a statepoint properly? 4803 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4804 const Function *StatepointFn = 4805 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 4806 Assert(StatepointFn && StatepointFn->isDeclaration() && 4807 StatepointFn->getIntrinsicID() == 4808 Intrinsic::experimental_gc_statepoint, 4809 "gc.result operand #1 must be from a statepoint", Call, 4810 Call.getArgOperand(0)); 4811 4812 // Assert that result type matches wrapped callee. 4813 const Value *Target = StatepointCall->getArgOperand(2); 4814 auto *PT = cast<PointerType>(Target->getType()); 4815 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4816 Assert(Call.getType() == TargetFuncType->getReturnType(), 4817 "gc.result result type does not match wrapped callee", Call); 4818 break; 4819 } 4820 case Intrinsic::experimental_gc_relocate: { 4821 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); 4822 4823 Assert(isa<PointerType>(Call.getType()->getScalarType()), 4824 "gc.relocate must return a pointer or a vector of pointers", Call); 4825 4826 // Check that this relocate is correctly tied to the statepoint 4827 4828 // This is case for relocate on the unwinding path of an invoke statepoint 4829 if (LandingPadInst *LandingPad = 4830 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 4831 4832 const BasicBlock *InvokeBB = 4833 LandingPad->getParent()->getUniquePredecessor(); 4834 4835 // Landingpad relocates should have only one predecessor with invoke 4836 // statepoint terminator 4837 Assert(InvokeBB, "safepoints should have unique landingpads", 4838 LandingPad->getParent()); 4839 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4840 InvokeBB); 4841 Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()), 4842 "gc relocate should be linked to a statepoint", InvokeBB); 4843 } else { 4844 // In all other cases relocate should be tied to the statepoint directly. 4845 // This covers relocates on a normal return path of invoke statepoint and 4846 // relocates of a call statepoint. 4847 auto Token = Call.getArgOperand(0); 4848 Assert(isa<GCStatepointInst>(Token), 4849 "gc relocate is incorrectly tied to the statepoint", Call, Token); 4850 } 4851 4852 // Verify rest of the relocate arguments. 4853 const CallBase &StatepointCall = 4854 *cast<GCRelocateInst>(Call).getStatepoint(); 4855 4856 // Both the base and derived must be piped through the safepoint. 4857 Value *Base = Call.getArgOperand(1); 4858 Assert(isa<ConstantInt>(Base), 4859 "gc.relocate operand #2 must be integer offset", Call); 4860 4861 Value *Derived = Call.getArgOperand(2); 4862 Assert(isa<ConstantInt>(Derived), 4863 "gc.relocate operand #3 must be integer offset", Call); 4864 4865 const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4866 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4867 4868 // Check the bounds 4869 if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) { 4870 Assert(BaseIndex < Opt->Inputs.size(), 4871 "gc.relocate: statepoint base index out of bounds", Call); 4872 Assert(DerivedIndex < Opt->Inputs.size(), 4873 "gc.relocate: statepoint derived index out of bounds", Call); 4874 } 4875 4876 // Relocated value must be either a pointer type or vector-of-pointer type, 4877 // but gc_relocate does not need to return the same pointer type as the 4878 // relocated pointer. It can be casted to the correct type later if it's 4879 // desired. However, they must have the same address space and 'vectorness' 4880 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 4881 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 4882 "gc.relocate: relocated value must be a gc pointer", Call); 4883 4884 auto ResultType = Call.getType(); 4885 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4886 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4887 "gc.relocate: vector relocates to vector and pointer to pointer", 4888 Call); 4889 Assert( 4890 ResultType->getPointerAddressSpace() == 4891 DerivedType->getPointerAddressSpace(), 4892 "gc.relocate: relocating a pointer shouldn't change its address space", 4893 Call); 4894 break; 4895 } 4896 case Intrinsic::eh_exceptioncode: 4897 case Intrinsic::eh_exceptionpointer: { 4898 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 4899 "eh.exceptionpointer argument must be a catchpad", Call); 4900 break; 4901 } 4902 case Intrinsic::get_active_lane_mask: { 4903 Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a " 4904 "vector", Call); 4905 auto *ElemTy = Call.getType()->getScalarType(); 4906 Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not " 4907 "i1", Call); 4908 break; 4909 } 4910 case Intrinsic::masked_load: { 4911 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 4912 Call); 4913 4914 Value *Ptr = Call.getArgOperand(0); 4915 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 4916 Value *Mask = Call.getArgOperand(2); 4917 Value *PassThru = Call.getArgOperand(3); 4918 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 4919 Call); 4920 Assert(Alignment->getValue().isPowerOf2(), 4921 "masked_load: alignment must be a power of 2", Call); 4922 4923 // DataTy is the overloaded type 4924 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4925 Assert(DataTy == Call.getType(), 4926 "masked_load: return must match pointer type", Call); 4927 Assert(PassThru->getType() == DataTy, 4928 "masked_load: pass through and data type must match", Call); 4929 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 4930 cast<VectorType>(DataTy)->getElementCount(), 4931 "masked_load: vector mask must be same length as data", Call); 4932 break; 4933 } 4934 case Intrinsic::masked_store: { 4935 Value *Val = Call.getArgOperand(0); 4936 Value *Ptr = Call.getArgOperand(1); 4937 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 4938 Value *Mask = Call.getArgOperand(3); 4939 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 4940 Call); 4941 Assert(Alignment->getValue().isPowerOf2(), 4942 "masked_store: alignment must be a power of 2", Call); 4943 4944 // DataTy is the overloaded type 4945 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4946 Assert(DataTy == Val->getType(), 4947 "masked_store: storee must match pointer type", Call); 4948 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 4949 cast<VectorType>(DataTy)->getElementCount(), 4950 "masked_store: vector mask must be same length as data", Call); 4951 break; 4952 } 4953 4954 case Intrinsic::masked_gather: { 4955 const APInt &Alignment = 4956 cast<ConstantInt>(Call.getArgOperand(1))->getValue(); 4957 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 4958 "masked_gather: alignment must be 0 or a power of 2", Call); 4959 break; 4960 } 4961 case Intrinsic::masked_scatter: { 4962 const APInt &Alignment = 4963 cast<ConstantInt>(Call.getArgOperand(2))->getValue(); 4964 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 4965 "masked_scatter: alignment must be 0 or a power of 2", Call); 4966 break; 4967 } 4968 4969 case Intrinsic::experimental_guard: { 4970 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 4971 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4972 "experimental_guard must have exactly one " 4973 "\"deopt\" operand bundle"); 4974 break; 4975 } 4976 4977 case Intrinsic::experimental_deoptimize: { 4978 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 4979 Call); 4980 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4981 "experimental_deoptimize must have exactly one " 4982 "\"deopt\" operand bundle"); 4983 Assert(Call.getType() == Call.getFunction()->getReturnType(), 4984 "experimental_deoptimize return type must match caller return type"); 4985 4986 if (isa<CallInst>(Call)) { 4987 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 4988 Assert(RI, 4989 "calls to experimental_deoptimize must be followed by a return"); 4990 4991 if (!Call.getType()->isVoidTy() && RI) 4992 Assert(RI->getReturnValue() == &Call, 4993 "calls to experimental_deoptimize must be followed by a return " 4994 "of the value computed by experimental_deoptimize"); 4995 } 4996 4997 break; 4998 } 4999 case Intrinsic::sadd_sat: 5000 case Intrinsic::uadd_sat: 5001 case Intrinsic::ssub_sat: 5002 case Intrinsic::usub_sat: 5003 case Intrinsic::sshl_sat: 5004 case Intrinsic::ushl_sat: { 5005 Value *Op1 = Call.getArgOperand(0); 5006 Value *Op2 = Call.getArgOperand(1); 5007 Assert(Op1->getType()->isIntOrIntVectorTy(), 5008 "first operand of [us][add|sub|shl]_sat must be an int type or " 5009 "vector of ints"); 5010 Assert(Op2->getType()->isIntOrIntVectorTy(), 5011 "second operand of [us][add|sub|shl]_sat must be an int type or " 5012 "vector of ints"); 5013 break; 5014 } 5015 case Intrinsic::smul_fix: 5016 case Intrinsic::smul_fix_sat: 5017 case Intrinsic::umul_fix: 5018 case Intrinsic::umul_fix_sat: 5019 case Intrinsic::sdiv_fix: 5020 case Intrinsic::sdiv_fix_sat: 5021 case Intrinsic::udiv_fix: 5022 case Intrinsic::udiv_fix_sat: { 5023 Value *Op1 = Call.getArgOperand(0); 5024 Value *Op2 = Call.getArgOperand(1); 5025 Assert(Op1->getType()->isIntOrIntVectorTy(), 5026 "first operand of [us][mul|div]_fix[_sat] must be an int type or " 5027 "vector of ints"); 5028 Assert(Op2->getType()->isIntOrIntVectorTy(), 5029 "second operand of [us][mul|div]_fix[_sat] must be an int type or " 5030 "vector of ints"); 5031 5032 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 5033 Assert(Op3->getType()->getBitWidth() <= 32, 5034 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); 5035 5036 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 5037 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { 5038 Assert( 5039 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 5040 "the scale of s[mul|div]_fix[_sat] must be less than the width of " 5041 "the operands"); 5042 } else { 5043 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 5044 "the scale of u[mul|div]_fix[_sat] must be less than or equal " 5045 "to the width of the operands"); 5046 } 5047 break; 5048 } 5049 case Intrinsic::lround: 5050 case Intrinsic::llround: 5051 case Intrinsic::lrint: 5052 case Intrinsic::llrint: { 5053 Type *ValTy = Call.getArgOperand(0)->getType(); 5054 Type *ResultTy = Call.getType(); 5055 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5056 "Intrinsic does not support vectors", &Call); 5057 break; 5058 } 5059 case Intrinsic::bswap: { 5060 Type *Ty = Call.getType(); 5061 unsigned Size = Ty->getScalarSizeInBits(); 5062 Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call); 5063 break; 5064 } 5065 case Intrinsic::invariant_start: { 5066 ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 5067 Assert(InvariantSize && 5068 (!InvariantSize->isNegative() || InvariantSize->isMinusOne()), 5069 "invariant_start parameter must be -1, 0 or a positive number", 5070 &Call); 5071 break; 5072 } 5073 case Intrinsic::matrix_multiply: 5074 case Intrinsic::matrix_transpose: 5075 case Intrinsic::matrix_column_major_load: 5076 case Intrinsic::matrix_column_major_store: { 5077 Function *IF = Call.getCalledFunction(); 5078 ConstantInt *Stride = nullptr; 5079 ConstantInt *NumRows; 5080 ConstantInt *NumColumns; 5081 VectorType *ResultTy; 5082 Type *Op0ElemTy = nullptr; 5083 Type *Op1ElemTy = nullptr; 5084 switch (ID) { 5085 case Intrinsic::matrix_multiply: 5086 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 5087 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5088 ResultTy = cast<VectorType>(Call.getType()); 5089 Op0ElemTy = 5090 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5091 Op1ElemTy = 5092 cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType(); 5093 break; 5094 case Intrinsic::matrix_transpose: 5095 NumRows = cast<ConstantInt>(Call.getArgOperand(1)); 5096 NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); 5097 ResultTy = cast<VectorType>(Call.getType()); 5098 Op0ElemTy = 5099 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5100 break; 5101 case Intrinsic::matrix_column_major_load: 5102 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1)); 5103 NumRows = cast<ConstantInt>(Call.getArgOperand(3)); 5104 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5105 ResultTy = cast<VectorType>(Call.getType()); 5106 Op0ElemTy = 5107 cast<PointerType>(Call.getArgOperand(0)->getType())->getElementType(); 5108 break; 5109 case Intrinsic::matrix_column_major_store: 5110 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2)); 5111 NumRows = cast<ConstantInt>(Call.getArgOperand(4)); 5112 NumColumns = cast<ConstantInt>(Call.getArgOperand(5)); 5113 ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 5114 Op0ElemTy = 5115 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5116 Op1ElemTy = 5117 cast<PointerType>(Call.getArgOperand(1)->getType())->getElementType(); 5118 break; 5119 default: 5120 llvm_unreachable("unexpected intrinsic"); 5121 } 5122 5123 Assert(ResultTy->getElementType()->isIntegerTy() || 5124 ResultTy->getElementType()->isFloatingPointTy(), 5125 "Result type must be an integer or floating-point type!", IF); 5126 5127 Assert(ResultTy->getElementType() == Op0ElemTy, 5128 "Vector element type mismatch of the result and first operand " 5129 "vector!", IF); 5130 5131 if (Op1ElemTy) 5132 Assert(ResultTy->getElementType() == Op1ElemTy, 5133 "Vector element type mismatch of the result and second operand " 5134 "vector!", IF); 5135 5136 Assert(cast<FixedVectorType>(ResultTy)->getNumElements() == 5137 NumRows->getZExtValue() * NumColumns->getZExtValue(), 5138 "Result of a matrix operation does not fit in the returned vector!"); 5139 5140 if (Stride) 5141 Assert(Stride->getZExtValue() >= NumRows->getZExtValue(), 5142 "Stride must be greater or equal than the number of rows!", IF); 5143 5144 break; 5145 } 5146 case Intrinsic::experimental_vector_insert: { 5147 VectorType *VecTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 5148 VectorType *SubVecTy = cast<VectorType>(Call.getArgOperand(1)->getType()); 5149 5150 Assert(VecTy->getElementType() == SubVecTy->getElementType(), 5151 "experimental_vector_insert parameters must have the same element " 5152 "type.", 5153 &Call); 5154 break; 5155 } 5156 case Intrinsic::experimental_vector_extract: { 5157 VectorType *ResultTy = cast<VectorType>(Call.getType()); 5158 VectorType *VecTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 5159 5160 Assert(ResultTy->getElementType() == VecTy->getElementType(), 5161 "experimental_vector_extract result must have the same element " 5162 "type as the input vector.", 5163 &Call); 5164 break; 5165 } 5166 }; 5167 } 5168 5169 /// Carefully grab the subprogram from a local scope. 5170 /// 5171 /// This carefully grabs the subprogram from a local scope, avoiding the 5172 /// built-in assertions that would typically fire. 5173 static DISubprogram *getSubprogram(Metadata *LocalScope) { 5174 if (!LocalScope) 5175 return nullptr; 5176 5177 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 5178 return SP; 5179 5180 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 5181 return getSubprogram(LB->getRawScope()); 5182 5183 // Just return null; broken scope chains are checked elsewhere. 5184 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 5185 return nullptr; 5186 } 5187 5188 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 5189 unsigned NumOperands; 5190 bool HasRoundingMD; 5191 switch (FPI.getIntrinsicID()) { 5192 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 5193 case Intrinsic::INTRINSIC: \ 5194 NumOperands = NARG; \ 5195 HasRoundingMD = ROUND_MODE; \ 5196 break; 5197 #include "llvm/IR/ConstrainedOps.def" 5198 default: 5199 llvm_unreachable("Invalid constrained FP intrinsic!"); 5200 } 5201 NumOperands += (1 + HasRoundingMD); 5202 // Compare intrinsics carry an extra predicate metadata operand. 5203 if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 5204 NumOperands += 1; 5205 Assert((FPI.getNumArgOperands() == NumOperands), 5206 "invalid arguments for constrained FP intrinsic", &FPI); 5207 5208 switch (FPI.getIntrinsicID()) { 5209 case Intrinsic::experimental_constrained_lrint: 5210 case Intrinsic::experimental_constrained_llrint: { 5211 Type *ValTy = FPI.getArgOperand(0)->getType(); 5212 Type *ResultTy = FPI.getType(); 5213 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5214 "Intrinsic does not support vectors", &FPI); 5215 } 5216 break; 5217 5218 case Intrinsic::experimental_constrained_lround: 5219 case Intrinsic::experimental_constrained_llround: { 5220 Type *ValTy = FPI.getArgOperand(0)->getType(); 5221 Type *ResultTy = FPI.getType(); 5222 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5223 "Intrinsic does not support vectors", &FPI); 5224 break; 5225 } 5226 5227 case Intrinsic::experimental_constrained_fcmp: 5228 case Intrinsic::experimental_constrained_fcmps: { 5229 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 5230 Assert(CmpInst::isFPPredicate(Pred), 5231 "invalid predicate for constrained FP comparison intrinsic", &FPI); 5232 break; 5233 } 5234 5235 case Intrinsic::experimental_constrained_fptosi: 5236 case Intrinsic::experimental_constrained_fptoui: { 5237 Value *Operand = FPI.getArgOperand(0); 5238 uint64_t NumSrcElem = 0; 5239 Assert(Operand->getType()->isFPOrFPVectorTy(), 5240 "Intrinsic first argument must be floating point", &FPI); 5241 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5242 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5243 } 5244 5245 Operand = &FPI; 5246 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5247 "Intrinsic first argument and result disagree on vector use", &FPI); 5248 Assert(Operand->getType()->isIntOrIntVectorTy(), 5249 "Intrinsic result must be an integer", &FPI); 5250 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5251 Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5252 "Intrinsic first argument and result vector lengths must be equal", 5253 &FPI); 5254 } 5255 } 5256 break; 5257 5258 case Intrinsic::experimental_constrained_sitofp: 5259 case Intrinsic::experimental_constrained_uitofp: { 5260 Value *Operand = FPI.getArgOperand(0); 5261 uint64_t NumSrcElem = 0; 5262 Assert(Operand->getType()->isIntOrIntVectorTy(), 5263 "Intrinsic first argument must be integer", &FPI); 5264 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5265 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5266 } 5267 5268 Operand = &FPI; 5269 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5270 "Intrinsic first argument and result disagree on vector use", &FPI); 5271 Assert(Operand->getType()->isFPOrFPVectorTy(), 5272 "Intrinsic result must be a floating point", &FPI); 5273 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5274 Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5275 "Intrinsic first argument and result vector lengths must be equal", 5276 &FPI); 5277 } 5278 } break; 5279 5280 case Intrinsic::experimental_constrained_fptrunc: 5281 case Intrinsic::experimental_constrained_fpext: { 5282 Value *Operand = FPI.getArgOperand(0); 5283 Type *OperandTy = Operand->getType(); 5284 Value *Result = &FPI; 5285 Type *ResultTy = Result->getType(); 5286 Assert(OperandTy->isFPOrFPVectorTy(), 5287 "Intrinsic first argument must be FP or FP vector", &FPI); 5288 Assert(ResultTy->isFPOrFPVectorTy(), 5289 "Intrinsic result must be FP or FP vector", &FPI); 5290 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 5291 "Intrinsic first argument and result disagree on vector use", &FPI); 5292 if (OperandTy->isVectorTy()) { 5293 Assert(cast<FixedVectorType>(OperandTy)->getNumElements() == 5294 cast<FixedVectorType>(ResultTy)->getNumElements(), 5295 "Intrinsic first argument and result vector lengths must be equal", 5296 &FPI); 5297 } 5298 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 5299 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 5300 "Intrinsic first argument's type must be larger than result type", 5301 &FPI); 5302 } else { 5303 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 5304 "Intrinsic first argument's type must be smaller than result type", 5305 &FPI); 5306 } 5307 } 5308 break; 5309 5310 default: 5311 break; 5312 } 5313 5314 // If a non-metadata argument is passed in a metadata slot then the 5315 // error will be caught earlier when the incorrect argument doesn't 5316 // match the specification in the intrinsic call table. Thus, no 5317 // argument type check is needed here. 5318 5319 Assert(FPI.getExceptionBehavior().hasValue(), 5320 "invalid exception behavior argument", &FPI); 5321 if (HasRoundingMD) { 5322 Assert(FPI.getRoundingMode().hasValue(), 5323 "invalid rounding mode argument", &FPI); 5324 } 5325 } 5326 5327 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 5328 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); 5329 AssertDI(isa<ValueAsMetadata>(MD) || 5330 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 5331 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 5332 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 5333 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 5334 DII.getRawVariable()); 5335 AssertDI(isa<DIExpression>(DII.getRawExpression()), 5336 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 5337 DII.getRawExpression()); 5338 5339 // Ignore broken !dbg attachments; they're checked elsewhere. 5340 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 5341 if (!isa<DILocation>(N)) 5342 return; 5343 5344 BasicBlock *BB = DII.getParent(); 5345 Function *F = BB ? BB->getParent() : nullptr; 5346 5347 // The scopes for variables and !dbg attachments must agree. 5348 DILocalVariable *Var = DII.getVariable(); 5349 DILocation *Loc = DII.getDebugLoc(); 5350 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5351 &DII, BB, F); 5352 5353 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 5354 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5355 if (!VarSP || !LocSP) 5356 return; // Broken scope chains are checked elsewhere. 5357 5358 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5359 " variable and !dbg attachment", 5360 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 5361 Loc->getScope()->getSubprogram()); 5362 5363 // This check is redundant with one in visitLocalVariable(). 5364 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 5365 Var->getRawType()); 5366 verifyFnArgs(DII); 5367 } 5368 5369 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 5370 AssertDI(isa<DILabel>(DLI.getRawLabel()), 5371 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 5372 DLI.getRawLabel()); 5373 5374 // Ignore broken !dbg attachments; they're checked elsewhere. 5375 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 5376 if (!isa<DILocation>(N)) 5377 return; 5378 5379 BasicBlock *BB = DLI.getParent(); 5380 Function *F = BB ? BB->getParent() : nullptr; 5381 5382 // The scopes for variables and !dbg attachments must agree. 5383 DILabel *Label = DLI.getLabel(); 5384 DILocation *Loc = DLI.getDebugLoc(); 5385 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5386 &DLI, BB, F); 5387 5388 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 5389 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5390 if (!LabelSP || !LocSP) 5391 return; 5392 5393 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5394 " label and !dbg attachment", 5395 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 5396 Loc->getScope()->getSubprogram()); 5397 } 5398 5399 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 5400 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 5401 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5402 5403 // We don't know whether this intrinsic verified correctly. 5404 if (!V || !E || !E->isValid()) 5405 return; 5406 5407 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 5408 auto Fragment = E->getFragmentInfo(); 5409 if (!Fragment) 5410 return; 5411 5412 // The frontend helps out GDB by emitting the members of local anonymous 5413 // unions as artificial local variables with shared storage. When SROA splits 5414 // the storage for artificial local variables that are smaller than the entire 5415 // union, the overhang piece will be outside of the allotted space for the 5416 // variable and this check fails. 5417 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 5418 if (V->isArtificial()) 5419 return; 5420 5421 verifyFragmentExpression(*V, *Fragment, &I); 5422 } 5423 5424 template <typename ValueOrMetadata> 5425 void Verifier::verifyFragmentExpression(const DIVariable &V, 5426 DIExpression::FragmentInfo Fragment, 5427 ValueOrMetadata *Desc) { 5428 // If there's no size, the type is broken, but that should be checked 5429 // elsewhere. 5430 auto VarSize = V.getSizeInBits(); 5431 if (!VarSize) 5432 return; 5433 5434 unsigned FragSize = Fragment.SizeInBits; 5435 unsigned FragOffset = Fragment.OffsetInBits; 5436 AssertDI(FragSize + FragOffset <= *VarSize, 5437 "fragment is larger than or outside of variable", Desc, &V); 5438 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 5439 } 5440 5441 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 5442 // This function does not take the scope of noninlined function arguments into 5443 // account. Don't run it if current function is nodebug, because it may 5444 // contain inlined debug intrinsics. 5445 if (!HasDebugInfo) 5446 return; 5447 5448 // For performance reasons only check non-inlined ones. 5449 if (I.getDebugLoc()->getInlinedAt()) 5450 return; 5451 5452 DILocalVariable *Var = I.getVariable(); 5453 AssertDI(Var, "dbg intrinsic without variable"); 5454 5455 unsigned ArgNo = Var->getArg(); 5456 if (!ArgNo) 5457 return; 5458 5459 // Verify there are no duplicate function argument debug info entries. 5460 // These will cause hard-to-debug assertions in the DWARF backend. 5461 if (DebugFnArgs.size() < ArgNo) 5462 DebugFnArgs.resize(ArgNo, nullptr); 5463 5464 auto *Prev = DebugFnArgs[ArgNo - 1]; 5465 DebugFnArgs[ArgNo - 1] = Var; 5466 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 5467 Prev, Var); 5468 } 5469 5470 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 5471 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5472 5473 // We don't know whether this intrinsic verified correctly. 5474 if (!E || !E->isValid()) 5475 return; 5476 5477 AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); 5478 } 5479 5480 void Verifier::verifyCompileUnits() { 5481 // When more than one Module is imported into the same context, such as during 5482 // an LTO build before linking the modules, ODR type uniquing may cause types 5483 // to point to a different CU. This check does not make sense in this case. 5484 if (M.getContext().isODRUniquingDebugTypes()) 5485 return; 5486 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 5487 SmallPtrSet<const Metadata *, 2> Listed; 5488 if (CUs) 5489 Listed.insert(CUs->op_begin(), CUs->op_end()); 5490 for (auto *CU : CUVisited) 5491 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 5492 CUVisited.clear(); 5493 } 5494 5495 void Verifier::verifyDeoptimizeCallingConvs() { 5496 if (DeoptimizeDeclarations.empty()) 5497 return; 5498 5499 const Function *First = DeoptimizeDeclarations[0]; 5500 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 5501 Assert(First->getCallingConv() == F->getCallingConv(), 5502 "All llvm.experimental.deoptimize declarations must have the same " 5503 "calling convention", 5504 First, F); 5505 } 5506 } 5507 5508 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 5509 bool HasSource = F.getSource().hasValue(); 5510 if (!HasSourceDebugInfo.count(&U)) 5511 HasSourceDebugInfo[&U] = HasSource; 5512 AssertDI(HasSource == HasSourceDebugInfo[&U], 5513 "inconsistent use of embedded source"); 5514 } 5515 5516 //===----------------------------------------------------------------------===// 5517 // Implement the public interfaces to this file... 5518 //===----------------------------------------------------------------------===// 5519 5520 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 5521 Function &F = const_cast<Function &>(f); 5522 5523 // Don't use a raw_null_ostream. Printing IR is expensive. 5524 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 5525 5526 // Note that this function's return value is inverted from what you would 5527 // expect of a function called "verify". 5528 return !V.verify(F); 5529 } 5530 5531 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 5532 bool *BrokenDebugInfo) { 5533 // Don't use a raw_null_ostream. Printing IR is expensive. 5534 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 5535 5536 bool Broken = false; 5537 for (const Function &F : M) 5538 Broken |= !V.verify(F); 5539 5540 Broken |= !V.verify(); 5541 if (BrokenDebugInfo) 5542 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 5543 // Note that this function's return value is inverted from what you would 5544 // expect of a function called "verify". 5545 return Broken; 5546 } 5547 5548 namespace { 5549 5550 struct VerifierLegacyPass : public FunctionPass { 5551 static char ID; 5552 5553 std::unique_ptr<Verifier> V; 5554 bool FatalErrors = true; 5555 5556 VerifierLegacyPass() : FunctionPass(ID) { 5557 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5558 } 5559 explicit VerifierLegacyPass(bool FatalErrors) 5560 : FunctionPass(ID), 5561 FatalErrors(FatalErrors) { 5562 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5563 } 5564 5565 bool doInitialization(Module &M) override { 5566 V = std::make_unique<Verifier>( 5567 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 5568 return false; 5569 } 5570 5571 bool runOnFunction(Function &F) override { 5572 if (!V->verify(F) && FatalErrors) { 5573 errs() << "in function " << F.getName() << '\n'; 5574 report_fatal_error("Broken function found, compilation aborted!"); 5575 } 5576 return false; 5577 } 5578 5579 bool doFinalization(Module &M) override { 5580 bool HasErrors = false; 5581 for (Function &F : M) 5582 if (F.isDeclaration()) 5583 HasErrors |= !V->verify(F); 5584 5585 HasErrors |= !V->verify(); 5586 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 5587 report_fatal_error("Broken module found, compilation aborted!"); 5588 return false; 5589 } 5590 5591 void getAnalysisUsage(AnalysisUsage &AU) const override { 5592 AU.setPreservesAll(); 5593 } 5594 }; 5595 5596 } // end anonymous namespace 5597 5598 /// Helper to issue failure from the TBAA verification 5599 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 5600 if (Diagnostic) 5601 return Diagnostic->CheckFailed(Args...); 5602 } 5603 5604 #define AssertTBAA(C, ...) \ 5605 do { \ 5606 if (!(C)) { \ 5607 CheckFailed(__VA_ARGS__); \ 5608 return false; \ 5609 } \ 5610 } while (false) 5611 5612 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 5613 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 5614 /// struct-type node describing an aggregate data structure (like a struct). 5615 TBAAVerifier::TBAABaseNodeSummary 5616 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 5617 bool IsNewFormat) { 5618 if (BaseNode->getNumOperands() < 2) { 5619 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 5620 return {true, ~0u}; 5621 } 5622 5623 auto Itr = TBAABaseNodes.find(BaseNode); 5624 if (Itr != TBAABaseNodes.end()) 5625 return Itr->second; 5626 5627 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 5628 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 5629 (void)InsertResult; 5630 assert(InsertResult.second && "We just checked!"); 5631 return Result; 5632 } 5633 5634 TBAAVerifier::TBAABaseNodeSummary 5635 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 5636 bool IsNewFormat) { 5637 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 5638 5639 if (BaseNode->getNumOperands() == 2) { 5640 // Scalar nodes can only be accessed at offset 0. 5641 return isValidScalarTBAANode(BaseNode) 5642 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 5643 : InvalidNode; 5644 } 5645 5646 if (IsNewFormat) { 5647 if (BaseNode->getNumOperands() % 3 != 0) { 5648 CheckFailed("Access tag nodes must have the number of operands that is a " 5649 "multiple of 3!", BaseNode); 5650 return InvalidNode; 5651 } 5652 } else { 5653 if (BaseNode->getNumOperands() % 2 != 1) { 5654 CheckFailed("Struct tag nodes must have an odd number of operands!", 5655 BaseNode); 5656 return InvalidNode; 5657 } 5658 } 5659 5660 // Check the type size field. 5661 if (IsNewFormat) { 5662 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5663 BaseNode->getOperand(1)); 5664 if (!TypeSizeNode) { 5665 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 5666 return InvalidNode; 5667 } 5668 } 5669 5670 // Check the type name field. In the new format it can be anything. 5671 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 5672 CheckFailed("Struct tag nodes have a string as their first operand", 5673 BaseNode); 5674 return InvalidNode; 5675 } 5676 5677 bool Failed = false; 5678 5679 Optional<APInt> PrevOffset; 5680 unsigned BitWidth = ~0u; 5681 5682 // We've already checked that BaseNode is not a degenerate root node with one 5683 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 5684 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5685 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5686 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5687 Idx += NumOpsPerField) { 5688 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 5689 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 5690 if (!isa<MDNode>(FieldTy)) { 5691 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 5692 Failed = true; 5693 continue; 5694 } 5695 5696 auto *OffsetEntryCI = 5697 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 5698 if (!OffsetEntryCI) { 5699 CheckFailed("Offset entries must be constants!", &I, BaseNode); 5700 Failed = true; 5701 continue; 5702 } 5703 5704 if (BitWidth == ~0u) 5705 BitWidth = OffsetEntryCI->getBitWidth(); 5706 5707 if (OffsetEntryCI->getBitWidth() != BitWidth) { 5708 CheckFailed( 5709 "Bitwidth between the offsets and struct type entries must match", &I, 5710 BaseNode); 5711 Failed = true; 5712 continue; 5713 } 5714 5715 // NB! As far as I can tell, we generate a non-strictly increasing offset 5716 // sequence only from structs that have zero size bit fields. When 5717 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 5718 // pick the field lexically the latest in struct type metadata node. This 5719 // mirrors the actual behavior of the alias analysis implementation. 5720 bool IsAscending = 5721 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 5722 5723 if (!IsAscending) { 5724 CheckFailed("Offsets must be increasing!", &I, BaseNode); 5725 Failed = true; 5726 } 5727 5728 PrevOffset = OffsetEntryCI->getValue(); 5729 5730 if (IsNewFormat) { 5731 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5732 BaseNode->getOperand(Idx + 2)); 5733 if (!MemberSizeNode) { 5734 CheckFailed("Member size entries must be constants!", &I, BaseNode); 5735 Failed = true; 5736 continue; 5737 } 5738 } 5739 } 5740 5741 return Failed ? InvalidNode 5742 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 5743 } 5744 5745 static bool IsRootTBAANode(const MDNode *MD) { 5746 return MD->getNumOperands() < 2; 5747 } 5748 5749 static bool IsScalarTBAANodeImpl(const MDNode *MD, 5750 SmallPtrSetImpl<const MDNode *> &Visited) { 5751 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 5752 return false; 5753 5754 if (!isa<MDString>(MD->getOperand(0))) 5755 return false; 5756 5757 if (MD->getNumOperands() == 3) { 5758 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 5759 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 5760 return false; 5761 } 5762 5763 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5764 return Parent && Visited.insert(Parent).second && 5765 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 5766 } 5767 5768 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 5769 auto ResultIt = TBAAScalarNodes.find(MD); 5770 if (ResultIt != TBAAScalarNodes.end()) 5771 return ResultIt->second; 5772 5773 SmallPtrSet<const MDNode *, 4> Visited; 5774 bool Result = IsScalarTBAANodeImpl(MD, Visited); 5775 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 5776 (void)InsertResult; 5777 assert(InsertResult.second && "Just checked!"); 5778 5779 return Result; 5780 } 5781 5782 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 5783 /// Offset in place to be the offset within the field node returned. 5784 /// 5785 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 5786 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 5787 const MDNode *BaseNode, 5788 APInt &Offset, 5789 bool IsNewFormat) { 5790 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 5791 5792 // Scalar nodes have only one possible "field" -- their parent in the access 5793 // hierarchy. Offset must be zero at this point, but our caller is supposed 5794 // to Assert that. 5795 if (BaseNode->getNumOperands() == 2) 5796 return cast<MDNode>(BaseNode->getOperand(1)); 5797 5798 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5799 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5800 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5801 Idx += NumOpsPerField) { 5802 auto *OffsetEntryCI = 5803 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 5804 if (OffsetEntryCI->getValue().ugt(Offset)) { 5805 if (Idx == FirstFieldOpNo) { 5806 CheckFailed("Could not find TBAA parent in struct type node", &I, 5807 BaseNode, &Offset); 5808 return nullptr; 5809 } 5810 5811 unsigned PrevIdx = Idx - NumOpsPerField; 5812 auto *PrevOffsetEntryCI = 5813 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 5814 Offset -= PrevOffsetEntryCI->getValue(); 5815 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 5816 } 5817 } 5818 5819 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 5820 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 5821 BaseNode->getOperand(LastIdx + 1)); 5822 Offset -= LastOffsetEntryCI->getValue(); 5823 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 5824 } 5825 5826 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 5827 if (!Type || Type->getNumOperands() < 3) 5828 return false; 5829 5830 // In the new format type nodes shall have a reference to the parent type as 5831 // its first operand. 5832 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 5833 if (!Parent) 5834 return false; 5835 5836 return true; 5837 } 5838 5839 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 5840 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 5841 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 5842 isa<AtomicCmpXchgInst>(I), 5843 "This instruction shall not have a TBAA access tag!", &I); 5844 5845 bool IsStructPathTBAA = 5846 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 5847 5848 AssertTBAA( 5849 IsStructPathTBAA, 5850 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 5851 5852 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 5853 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5854 5855 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 5856 5857 if (IsNewFormat) { 5858 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 5859 "Access tag metadata must have either 4 or 5 operands", &I, MD); 5860 } else { 5861 AssertTBAA(MD->getNumOperands() < 5, 5862 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 5863 } 5864 5865 // Check the access size field. 5866 if (IsNewFormat) { 5867 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5868 MD->getOperand(3)); 5869 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 5870 } 5871 5872 // Check the immutability flag. 5873 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 5874 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 5875 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 5876 MD->getOperand(ImmutabilityFlagOpNo)); 5877 AssertTBAA(IsImmutableCI, 5878 "Immutability tag on struct tag metadata must be a constant", 5879 &I, MD); 5880 AssertTBAA( 5881 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 5882 "Immutability part of the struct tag metadata must be either 0 or 1", 5883 &I, MD); 5884 } 5885 5886 AssertTBAA(BaseNode && AccessType, 5887 "Malformed struct tag metadata: base and access-type " 5888 "should be non-null and point to Metadata nodes", 5889 &I, MD, BaseNode, AccessType); 5890 5891 if (!IsNewFormat) { 5892 AssertTBAA(isValidScalarTBAANode(AccessType), 5893 "Access type node must be a valid scalar type", &I, MD, 5894 AccessType); 5895 } 5896 5897 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 5898 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 5899 5900 APInt Offset = OffsetCI->getValue(); 5901 bool SeenAccessTypeInPath = false; 5902 5903 SmallPtrSet<MDNode *, 4> StructPath; 5904 5905 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 5906 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 5907 IsNewFormat)) { 5908 if (!StructPath.insert(BaseNode).second) { 5909 CheckFailed("Cycle detected in struct path", &I, MD); 5910 return false; 5911 } 5912 5913 bool Invalid; 5914 unsigned BaseNodeBitWidth; 5915 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 5916 IsNewFormat); 5917 5918 // If the base node is invalid in itself, then we've already printed all the 5919 // errors we wanted to print. 5920 if (Invalid) 5921 return false; 5922 5923 SeenAccessTypeInPath |= BaseNode == AccessType; 5924 5925 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 5926 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 5927 &I, MD, &Offset); 5928 5929 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 5930 (BaseNodeBitWidth == 0 && Offset == 0) || 5931 (IsNewFormat && BaseNodeBitWidth == ~0u), 5932 "Access bit-width not the same as description bit-width", &I, MD, 5933 BaseNodeBitWidth, Offset.getBitWidth()); 5934 5935 if (IsNewFormat && SeenAccessTypeInPath) 5936 break; 5937 } 5938 5939 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 5940 &I, MD); 5941 return true; 5942 } 5943 5944 char VerifierLegacyPass::ID = 0; 5945 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 5946 5947 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 5948 return new VerifierLegacyPass(FatalErrors); 5949 } 5950 5951 AnalysisKey VerifierAnalysis::Key; 5952 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 5953 ModuleAnalysisManager &) { 5954 Result Res; 5955 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 5956 return Res; 5957 } 5958 5959 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 5960 FunctionAnalysisManager &) { 5961 return { llvm::verifyFunction(F, &dbgs()), false }; 5962 } 5963 5964 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 5965 auto Res = AM.getResult<VerifierAnalysis>(M); 5966 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 5967 report_fatal_error("Broken module found, compilation aborted!"); 5968 5969 return PreservedAnalyses::all(); 5970 } 5971 5972 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 5973 auto res = AM.getResult<VerifierAnalysis>(F); 5974 if (res.IRBroken && FatalErrors) 5975 report_fatal_error("Broken function found, compilation aborted!"); 5976 5977 return PreservedAnalyses::all(); 5978 } 5979