1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // sanity checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/ADT/ilist.h" 62 #include "llvm/BinaryFormat/Dwarf.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstVisitor.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/ModuleSlotTracker.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/InitializePasses.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Debug.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <cstdint> 112 #include <memory> 113 #include <string> 114 #include <utility> 115 116 using namespace llvm; 117 118 static cl::opt<bool> VerifyNoAliasScopeDomination( 119 "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false), 120 cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical " 121 "scopes are not dominating")); 122 123 namespace llvm { 124 125 struct VerifierSupport { 126 raw_ostream *OS; 127 const Module &M; 128 ModuleSlotTracker MST; 129 Triple TT; 130 const DataLayout &DL; 131 LLVMContext &Context; 132 133 /// Track the brokenness of the module while recursively visiting. 134 bool Broken = false; 135 /// Broken debug info can be "recovered" from by stripping the debug info. 136 bool BrokenDebugInfo = false; 137 /// Whether to treat broken debug info as an error. 138 bool TreatBrokenDebugInfoAsError = true; 139 140 explicit VerifierSupport(raw_ostream *OS, const Module &M) 141 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 142 Context(M.getContext()) {} 143 144 private: 145 void Write(const Module *M) { 146 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 147 } 148 149 void Write(const Value *V) { 150 if (V) 151 Write(*V); 152 } 153 154 void Write(const Value &V) { 155 if (isa<Instruction>(V)) { 156 V.print(*OS, MST); 157 *OS << '\n'; 158 } else { 159 V.printAsOperand(*OS, true, MST); 160 *OS << '\n'; 161 } 162 } 163 164 void Write(const Metadata *MD) { 165 if (!MD) 166 return; 167 MD->print(*OS, MST, &M); 168 *OS << '\n'; 169 } 170 171 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 172 Write(MD.get()); 173 } 174 175 void Write(const NamedMDNode *NMD) { 176 if (!NMD) 177 return; 178 NMD->print(*OS, MST); 179 *OS << '\n'; 180 } 181 182 void Write(Type *T) { 183 if (!T) 184 return; 185 *OS << ' ' << *T; 186 } 187 188 void Write(const Comdat *C) { 189 if (!C) 190 return; 191 *OS << *C; 192 } 193 194 void Write(const APInt *AI) { 195 if (!AI) 196 return; 197 *OS << *AI << '\n'; 198 } 199 200 void Write(const unsigned i) { *OS << i << '\n'; } 201 202 // NOLINTNEXTLINE(readability-identifier-naming) 203 void Write(const Attribute *A) { 204 if (!A) 205 return; 206 *OS << A->getAsString() << '\n'; 207 } 208 209 // NOLINTNEXTLINE(readability-identifier-naming) 210 void Write(const AttributeSet *AS) { 211 if (!AS) 212 return; 213 *OS << AS->getAsString() << '\n'; 214 } 215 216 // NOLINTNEXTLINE(readability-identifier-naming) 217 void Write(const AttributeList *AL) { 218 if (!AL) 219 return; 220 AL->print(*OS); 221 } 222 223 template <typename T> void Write(ArrayRef<T> Vs) { 224 for (const T &V : Vs) 225 Write(V); 226 } 227 228 template <typename T1, typename... Ts> 229 void WriteTs(const T1 &V1, const Ts &... Vs) { 230 Write(V1); 231 WriteTs(Vs...); 232 } 233 234 template <typename... Ts> void WriteTs() {} 235 236 public: 237 /// A check failed, so printout out the condition and the message. 238 /// 239 /// This provides a nice place to put a breakpoint if you want to see why 240 /// something is not correct. 241 void CheckFailed(const Twine &Message) { 242 if (OS) 243 *OS << Message << '\n'; 244 Broken = true; 245 } 246 247 /// A check failed (with values to print). 248 /// 249 /// This calls the Message-only version so that the above is easier to set a 250 /// breakpoint on. 251 template <typename T1, typename... Ts> 252 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 253 CheckFailed(Message); 254 if (OS) 255 WriteTs(V1, Vs...); 256 } 257 258 /// A debug info check failed. 259 void DebugInfoCheckFailed(const Twine &Message) { 260 if (OS) 261 *OS << Message << '\n'; 262 Broken |= TreatBrokenDebugInfoAsError; 263 BrokenDebugInfo = true; 264 } 265 266 /// A debug info check failed (with values to print). 267 template <typename T1, typename... Ts> 268 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 269 const Ts &... Vs) { 270 DebugInfoCheckFailed(Message); 271 if (OS) 272 WriteTs(V1, Vs...); 273 } 274 }; 275 276 } // namespace llvm 277 278 namespace { 279 280 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 281 friend class InstVisitor<Verifier>; 282 283 DominatorTree DT; 284 285 /// When verifying a basic block, keep track of all of the 286 /// instructions we have seen so far. 287 /// 288 /// This allows us to do efficient dominance checks for the case when an 289 /// instruction has an operand that is an instruction in the same block. 290 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 291 292 /// Keep track of the metadata nodes that have been checked already. 293 SmallPtrSet<const Metadata *, 32> MDNodes; 294 295 /// Keep track which DISubprogram is attached to which function. 296 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 297 298 /// Track all DICompileUnits visited. 299 SmallPtrSet<const Metadata *, 2> CUVisited; 300 301 /// The result type for a landingpad. 302 Type *LandingPadResultTy; 303 304 /// Whether we've seen a call to @llvm.localescape in this function 305 /// already. 306 bool SawFrameEscape; 307 308 /// Whether the current function has a DISubprogram attached to it. 309 bool HasDebugInfo = false; 310 311 /// The current source language. 312 dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user; 313 314 /// Whether source was present on the first DIFile encountered in each CU. 315 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 316 317 /// Stores the count of how many objects were passed to llvm.localescape for a 318 /// given function and the largest index passed to llvm.localrecover. 319 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 320 321 // Maps catchswitches and cleanuppads that unwind to siblings to the 322 // terminators that indicate the unwind, used to detect cycles therein. 323 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 324 325 /// Cache of constants visited in search of ConstantExprs. 326 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 327 328 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 329 SmallVector<const Function *, 4> DeoptimizeDeclarations; 330 331 /// Cache of attribute lists verified. 332 SmallPtrSet<const void *, 32> AttributeListsVisited; 333 334 // Verify that this GlobalValue is only used in this module. 335 // This map is used to avoid visiting uses twice. We can arrive at a user 336 // twice, if they have multiple operands. In particular for very large 337 // constant expressions, we can arrive at a particular user many times. 338 SmallPtrSet<const Value *, 32> GlobalValueVisited; 339 340 // Keeps track of duplicate function argument debug info. 341 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 342 343 TBAAVerifier TBAAVerifyHelper; 344 345 SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls; 346 347 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 348 349 public: 350 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 351 const Module &M) 352 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 353 SawFrameEscape(false), TBAAVerifyHelper(this) { 354 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 355 } 356 357 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 358 359 bool verify(const Function &F) { 360 assert(F.getParent() == &M && 361 "An instance of this class only works with a specific module!"); 362 363 // First ensure the function is well-enough formed to compute dominance 364 // information, and directly compute a dominance tree. We don't rely on the 365 // pass manager to provide this as it isolates us from a potentially 366 // out-of-date dominator tree and makes it significantly more complex to run 367 // this code outside of a pass manager. 368 // FIXME: It's really gross that we have to cast away constness here. 369 if (!F.empty()) 370 DT.recalculate(const_cast<Function &>(F)); 371 372 for (const BasicBlock &BB : F) { 373 if (!BB.empty() && BB.back().isTerminator()) 374 continue; 375 376 if (OS) { 377 *OS << "Basic Block in function '" << F.getName() 378 << "' does not have terminator!\n"; 379 BB.printAsOperand(*OS, true, MST); 380 *OS << "\n"; 381 } 382 return false; 383 } 384 385 Broken = false; 386 // FIXME: We strip const here because the inst visitor strips const. 387 visit(const_cast<Function &>(F)); 388 verifySiblingFuncletUnwinds(); 389 InstsInThisBlock.clear(); 390 DebugFnArgs.clear(); 391 LandingPadResultTy = nullptr; 392 SawFrameEscape = false; 393 SiblingFuncletInfo.clear(); 394 verifyNoAliasScopeDecl(); 395 NoAliasScopeDecls.clear(); 396 397 return !Broken; 398 } 399 400 /// Verify the module that this instance of \c Verifier was initialized with. 401 bool verify() { 402 Broken = false; 403 404 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 405 for (const Function &F : M) 406 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 407 DeoptimizeDeclarations.push_back(&F); 408 409 // Now that we've visited every function, verify that we never asked to 410 // recover a frame index that wasn't escaped. 411 verifyFrameRecoverIndices(); 412 for (const GlobalVariable &GV : M.globals()) 413 visitGlobalVariable(GV); 414 415 for (const GlobalAlias &GA : M.aliases()) 416 visitGlobalAlias(GA); 417 418 for (const NamedMDNode &NMD : M.named_metadata()) 419 visitNamedMDNode(NMD); 420 421 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 422 visitComdat(SMEC.getValue()); 423 424 visitModuleFlags(M); 425 visitModuleIdents(M); 426 visitModuleCommandLines(M); 427 428 verifyCompileUnits(); 429 430 verifyDeoptimizeCallingConvs(); 431 DISubprogramAttachments.clear(); 432 return !Broken; 433 } 434 435 private: 436 /// Whether a metadata node is allowed to be, or contain, a DILocation. 437 enum class AreDebugLocsAllowed { No, Yes }; 438 439 // Verification methods... 440 void visitGlobalValue(const GlobalValue &GV); 441 void visitGlobalVariable(const GlobalVariable &GV); 442 void visitGlobalAlias(const GlobalAlias &GA); 443 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 444 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 445 const GlobalAlias &A, const Constant &C); 446 void visitNamedMDNode(const NamedMDNode &NMD); 447 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); 448 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 449 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 450 void visitComdat(const Comdat &C); 451 void visitModuleIdents(const Module &M); 452 void visitModuleCommandLines(const Module &M); 453 void visitModuleFlags(const Module &M); 454 void visitModuleFlag(const MDNode *Op, 455 DenseMap<const MDString *, const MDNode *> &SeenIDs, 456 SmallVectorImpl<const MDNode *> &Requirements); 457 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 458 void visitFunction(const Function &F); 459 void visitBasicBlock(BasicBlock &BB); 460 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 461 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 462 void visitProfMetadata(Instruction &I, MDNode *MD); 463 void visitAnnotationMetadata(MDNode *Annotation); 464 void visitAliasScopeMetadata(const MDNode *MD); 465 void visitAliasScopeListMetadata(const MDNode *MD); 466 467 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 468 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 469 #include "llvm/IR/Metadata.def" 470 void visitDIScope(const DIScope &N); 471 void visitDIVariable(const DIVariable &N); 472 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 473 void visitDITemplateParameter(const DITemplateParameter &N); 474 475 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 476 477 // InstVisitor overrides... 478 using InstVisitor<Verifier>::visit; 479 void visit(Instruction &I); 480 481 void visitTruncInst(TruncInst &I); 482 void visitZExtInst(ZExtInst &I); 483 void visitSExtInst(SExtInst &I); 484 void visitFPTruncInst(FPTruncInst &I); 485 void visitFPExtInst(FPExtInst &I); 486 void visitFPToUIInst(FPToUIInst &I); 487 void visitFPToSIInst(FPToSIInst &I); 488 void visitUIToFPInst(UIToFPInst &I); 489 void visitSIToFPInst(SIToFPInst &I); 490 void visitIntToPtrInst(IntToPtrInst &I); 491 void visitPtrToIntInst(PtrToIntInst &I); 492 void visitBitCastInst(BitCastInst &I); 493 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 494 void visitPHINode(PHINode &PN); 495 void visitCallBase(CallBase &Call); 496 void visitUnaryOperator(UnaryOperator &U); 497 void visitBinaryOperator(BinaryOperator &B); 498 void visitICmpInst(ICmpInst &IC); 499 void visitFCmpInst(FCmpInst &FC); 500 void visitExtractElementInst(ExtractElementInst &EI); 501 void visitInsertElementInst(InsertElementInst &EI); 502 void visitShuffleVectorInst(ShuffleVectorInst &EI); 503 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 504 void visitCallInst(CallInst &CI); 505 void visitInvokeInst(InvokeInst &II); 506 void visitGetElementPtrInst(GetElementPtrInst &GEP); 507 void visitLoadInst(LoadInst &LI); 508 void visitStoreInst(StoreInst &SI); 509 void verifyDominatesUse(Instruction &I, unsigned i); 510 void visitInstruction(Instruction &I); 511 void visitTerminator(Instruction &I); 512 void visitBranchInst(BranchInst &BI); 513 void visitReturnInst(ReturnInst &RI); 514 void visitSwitchInst(SwitchInst &SI); 515 void visitIndirectBrInst(IndirectBrInst &BI); 516 void visitCallBrInst(CallBrInst &CBI); 517 void visitSelectInst(SelectInst &SI); 518 void visitUserOp1(Instruction &I); 519 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 520 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 521 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 522 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 523 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 524 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 525 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 526 void visitFenceInst(FenceInst &FI); 527 void visitAllocaInst(AllocaInst &AI); 528 void visitExtractValueInst(ExtractValueInst &EVI); 529 void visitInsertValueInst(InsertValueInst &IVI); 530 void visitEHPadPredecessors(Instruction &I); 531 void visitLandingPadInst(LandingPadInst &LPI); 532 void visitResumeInst(ResumeInst &RI); 533 void visitCatchPadInst(CatchPadInst &CPI); 534 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 535 void visitCleanupPadInst(CleanupPadInst &CPI); 536 void visitFuncletPadInst(FuncletPadInst &FPI); 537 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 538 void visitCleanupReturnInst(CleanupReturnInst &CRI); 539 540 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 541 void verifySwiftErrorValue(const Value *SwiftErrorVal); 542 void verifyTailCCMustTailAttrs(AttrBuilder Attrs, StringRef Context); 543 void verifyMustTailCall(CallInst &CI); 544 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 545 void verifyAttributeTypes(AttributeSet Attrs, const Value *V); 546 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 547 void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 548 const Value *V); 549 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 550 const Value *V, bool IsIntrinsic); 551 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 552 553 void visitConstantExprsRecursively(const Constant *EntryC); 554 void visitConstantExpr(const ConstantExpr *CE); 555 void verifyStatepoint(const CallBase &Call); 556 void verifyFrameRecoverIndices(); 557 void verifySiblingFuncletUnwinds(); 558 559 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 560 template <typename ValueOrMetadata> 561 void verifyFragmentExpression(const DIVariable &V, 562 DIExpression::FragmentInfo Fragment, 563 ValueOrMetadata *Desc); 564 void verifyFnArgs(const DbgVariableIntrinsic &I); 565 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 566 567 /// Module-level debug info verification... 568 void verifyCompileUnits(); 569 570 /// Module-level verification that all @llvm.experimental.deoptimize 571 /// declarations share the same calling convention. 572 void verifyDeoptimizeCallingConvs(); 573 574 void verifyAttachedCallBundle(const CallBase &Call, 575 const OperandBundleUse &BU); 576 577 /// Verify all-or-nothing property of DIFile source attribute within a CU. 578 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 579 580 /// Verify the llvm.experimental.noalias.scope.decl declarations 581 void verifyNoAliasScopeDecl(); 582 }; 583 584 } // end anonymous namespace 585 586 /// We know that cond should be true, if not print an error message. 587 #define Assert(C, ...) \ 588 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 589 590 /// We know that a debug info condition should be true, if not print 591 /// an error message. 592 #define AssertDI(C, ...) \ 593 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 594 595 void Verifier::visit(Instruction &I) { 596 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 597 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 598 InstVisitor<Verifier>::visit(I); 599 } 600 601 // Helper to recursively iterate over indirect users. By 602 // returning false, the callback can ask to stop recursing 603 // further. 604 static void forEachUser(const Value *User, 605 SmallPtrSet<const Value *, 32> &Visited, 606 llvm::function_ref<bool(const Value *)> Callback) { 607 if (!Visited.insert(User).second) 608 return; 609 for (const Value *TheNextUser : User->materialized_users()) 610 if (Callback(TheNextUser)) 611 forEachUser(TheNextUser, Visited, Callback); 612 } 613 614 void Verifier::visitGlobalValue(const GlobalValue &GV) { 615 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 616 "Global is external, but doesn't have external or weak linkage!", &GV); 617 618 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) 619 Assert(GO->getAlignment() <= Value::MaximumAlignment, 620 "huge alignment values are unsupported", GO); 621 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 622 "Only global variables can have appending linkage!", &GV); 623 624 if (GV.hasAppendingLinkage()) { 625 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 626 Assert(GVar && GVar->getValueType()->isArrayTy(), 627 "Only global arrays can have appending linkage!", GVar); 628 } 629 630 if (GV.isDeclarationForLinker()) 631 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 632 633 if (GV.hasDLLImportStorageClass()) { 634 Assert(!GV.isDSOLocal(), 635 "GlobalValue with DLLImport Storage is dso_local!", &GV); 636 637 Assert((GV.isDeclaration() && 638 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) || 639 GV.hasAvailableExternallyLinkage(), 640 "Global is marked as dllimport, but not external", &GV); 641 } 642 643 if (GV.isImplicitDSOLocal()) 644 Assert(GV.isDSOLocal(), 645 "GlobalValue with local linkage or non-default " 646 "visibility must be dso_local!", 647 &GV); 648 649 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 650 if (const Instruction *I = dyn_cast<Instruction>(V)) { 651 if (!I->getParent() || !I->getParent()->getParent()) 652 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 653 I); 654 else if (I->getParent()->getParent()->getParent() != &M) 655 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 656 I->getParent()->getParent(), 657 I->getParent()->getParent()->getParent()); 658 return false; 659 } else if (const Function *F = dyn_cast<Function>(V)) { 660 if (F->getParent() != &M) 661 CheckFailed("Global is used by function in a different module", &GV, &M, 662 F, F->getParent()); 663 return false; 664 } 665 return true; 666 }); 667 } 668 669 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 670 if (GV.hasInitializer()) { 671 Assert(GV.getInitializer()->getType() == GV.getValueType(), 672 "Global variable initializer type does not match global " 673 "variable type!", 674 &GV); 675 // If the global has common linkage, it must have a zero initializer and 676 // cannot be constant. 677 if (GV.hasCommonLinkage()) { 678 Assert(GV.getInitializer()->isNullValue(), 679 "'common' global must have a zero initializer!", &GV); 680 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 681 &GV); 682 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 683 } 684 } 685 686 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 687 GV.getName() == "llvm.global_dtors")) { 688 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 689 "invalid linkage for intrinsic global variable", &GV); 690 // Don't worry about emitting an error for it not being an array, 691 // visitGlobalValue will complain on appending non-array. 692 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 693 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 694 PointerType *FuncPtrTy = 695 FunctionType::get(Type::getVoidTy(Context), false)-> 696 getPointerTo(DL.getProgramAddressSpace()); 697 Assert(STy && 698 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 699 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 700 STy->getTypeAtIndex(1) == FuncPtrTy, 701 "wrong type for intrinsic global variable", &GV); 702 Assert(STy->getNumElements() == 3, 703 "the third field of the element type is mandatory, " 704 "specify i8* null to migrate from the obsoleted 2-field form"); 705 Type *ETy = STy->getTypeAtIndex(2); 706 Type *Int8Ty = Type::getInt8Ty(ETy->getContext()); 707 Assert(ETy->isPointerTy() && 708 cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty), 709 "wrong type for intrinsic global variable", &GV); 710 } 711 } 712 713 if (GV.hasName() && (GV.getName() == "llvm.used" || 714 GV.getName() == "llvm.compiler.used")) { 715 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 716 "invalid linkage for intrinsic global variable", &GV); 717 Type *GVType = GV.getValueType(); 718 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 719 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 720 Assert(PTy, "wrong type for intrinsic global variable", &GV); 721 if (GV.hasInitializer()) { 722 const Constant *Init = GV.getInitializer(); 723 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 724 Assert(InitArray, "wrong initalizer for intrinsic global variable", 725 Init); 726 for (Value *Op : InitArray->operands()) { 727 Value *V = Op->stripPointerCasts(); 728 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 729 isa<GlobalAlias>(V), 730 "invalid llvm.used member", V); 731 Assert(V->hasName(), "members of llvm.used must be named", V); 732 } 733 } 734 } 735 } 736 737 // Visit any debug info attachments. 738 SmallVector<MDNode *, 1> MDs; 739 GV.getMetadata(LLVMContext::MD_dbg, MDs); 740 for (auto *MD : MDs) { 741 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 742 visitDIGlobalVariableExpression(*GVE); 743 else 744 AssertDI(false, "!dbg attachment of global variable must be a " 745 "DIGlobalVariableExpression"); 746 } 747 748 // Scalable vectors cannot be global variables, since we don't know 749 // the runtime size. If the global is an array containing scalable vectors, 750 // that will be caught by the isValidElementType methods in StructType or 751 // ArrayType instead. 752 Assert(!isa<ScalableVectorType>(GV.getValueType()), 753 "Globals cannot contain scalable vectors", &GV); 754 755 if (auto *STy = dyn_cast<StructType>(GV.getValueType())) 756 Assert(!STy->containsScalableVectorType(), 757 "Globals cannot contain scalable vectors", &GV); 758 759 if (!GV.hasInitializer()) { 760 visitGlobalValue(GV); 761 return; 762 } 763 764 // Walk any aggregate initializers looking for bitcasts between address spaces 765 visitConstantExprsRecursively(GV.getInitializer()); 766 767 visitGlobalValue(GV); 768 } 769 770 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 771 SmallPtrSet<const GlobalAlias*, 4> Visited; 772 Visited.insert(&GA); 773 visitAliaseeSubExpr(Visited, GA, C); 774 } 775 776 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 777 const GlobalAlias &GA, const Constant &C) { 778 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 779 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 780 &GA); 781 782 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 783 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 784 785 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 786 &GA); 787 } else { 788 // Only continue verifying subexpressions of GlobalAliases. 789 // Do not recurse into global initializers. 790 return; 791 } 792 } 793 794 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 795 visitConstantExprsRecursively(CE); 796 797 for (const Use &U : C.operands()) { 798 Value *V = &*U; 799 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 800 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 801 else if (const auto *C2 = dyn_cast<Constant>(V)) 802 visitAliaseeSubExpr(Visited, GA, *C2); 803 } 804 } 805 806 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 807 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 808 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 809 "weak_odr, or external linkage!", 810 &GA); 811 const Constant *Aliasee = GA.getAliasee(); 812 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 813 Assert(GA.getType() == Aliasee->getType(), 814 "Alias and aliasee types should match!", &GA); 815 816 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 817 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 818 819 visitAliaseeSubExpr(GA, *Aliasee); 820 821 visitGlobalValue(GA); 822 } 823 824 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 825 // There used to be various other llvm.dbg.* nodes, but we don't support 826 // upgrading them and we want to reserve the namespace for future uses. 827 if (NMD.getName().startswith("llvm.dbg.")) 828 AssertDI(NMD.getName() == "llvm.dbg.cu", 829 "unrecognized named metadata node in the llvm.dbg namespace", 830 &NMD); 831 for (const MDNode *MD : NMD.operands()) { 832 if (NMD.getName() == "llvm.dbg.cu") 833 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 834 835 if (!MD) 836 continue; 837 838 visitMDNode(*MD, AreDebugLocsAllowed::Yes); 839 } 840 } 841 842 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { 843 // Only visit each node once. Metadata can be mutually recursive, so this 844 // avoids infinite recursion here, as well as being an optimization. 845 if (!MDNodes.insert(&MD).second) 846 return; 847 848 Assert(&MD.getContext() == &Context, 849 "MDNode context does not match Module context!", &MD); 850 851 switch (MD.getMetadataID()) { 852 default: 853 llvm_unreachable("Invalid MDNode subclass"); 854 case Metadata::MDTupleKind: 855 break; 856 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 857 case Metadata::CLASS##Kind: \ 858 visit##CLASS(cast<CLASS>(MD)); \ 859 break; 860 #include "llvm/IR/Metadata.def" 861 } 862 863 for (const Metadata *Op : MD.operands()) { 864 if (!Op) 865 continue; 866 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 867 &MD, Op); 868 AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes, 869 "DILocation not allowed within this metadata node", &MD, Op); 870 if (auto *N = dyn_cast<MDNode>(Op)) { 871 visitMDNode(*N, AllowLocs); 872 continue; 873 } 874 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 875 visitValueAsMetadata(*V, nullptr); 876 continue; 877 } 878 } 879 880 // Check these last, so we diagnose problems in operands first. 881 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 882 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 883 } 884 885 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 886 Assert(MD.getValue(), "Expected valid value", &MD); 887 Assert(!MD.getValue()->getType()->isMetadataTy(), 888 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 889 890 auto *L = dyn_cast<LocalAsMetadata>(&MD); 891 if (!L) 892 return; 893 894 Assert(F, "function-local metadata used outside a function", L); 895 896 // If this was an instruction, bb, or argument, verify that it is in the 897 // function that we expect. 898 Function *ActualF = nullptr; 899 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 900 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 901 ActualF = I->getParent()->getParent(); 902 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 903 ActualF = BB->getParent(); 904 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 905 ActualF = A->getParent(); 906 assert(ActualF && "Unimplemented function local metadata case!"); 907 908 Assert(ActualF == F, "function-local metadata used in wrong function", L); 909 } 910 911 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 912 Metadata *MD = MDV.getMetadata(); 913 if (auto *N = dyn_cast<MDNode>(MD)) { 914 visitMDNode(*N, AreDebugLocsAllowed::No); 915 return; 916 } 917 918 // Only visit each node once. Metadata can be mutually recursive, so this 919 // avoids infinite recursion here, as well as being an optimization. 920 if (!MDNodes.insert(MD).second) 921 return; 922 923 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 924 visitValueAsMetadata(*V, F); 925 } 926 927 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 928 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 929 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 930 931 void Verifier::visitDILocation(const DILocation &N) { 932 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 933 "location requires a valid scope", &N, N.getRawScope()); 934 if (auto *IA = N.getRawInlinedAt()) 935 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 936 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 937 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 938 } 939 940 void Verifier::visitGenericDINode(const GenericDINode &N) { 941 AssertDI(N.getTag(), "invalid tag", &N); 942 } 943 944 void Verifier::visitDIScope(const DIScope &N) { 945 if (auto *F = N.getRawFile()) 946 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 947 } 948 949 void Verifier::visitDISubrange(const DISubrange &N) { 950 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 951 bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang); 952 AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() || 953 N.getRawUpperBound(), 954 "Subrange must contain count or upperBound", &N); 955 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 956 "Subrange can have any one of count or upperBound", &N); 957 auto *CBound = N.getRawCountNode(); 958 AssertDI(!CBound || isa<ConstantAsMetadata>(CBound) || 959 isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 960 "Count must be signed constant or DIVariable or DIExpression", &N); 961 auto Count = N.getCount(); 962 AssertDI(!Count || !Count.is<ConstantInt *>() || 963 Count.get<ConstantInt *>()->getSExtValue() >= -1, 964 "invalid subrange count", &N); 965 auto *LBound = N.getRawLowerBound(); 966 AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) || 967 isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 968 "LowerBound must be signed constant or DIVariable or DIExpression", 969 &N); 970 auto *UBound = N.getRawUpperBound(); 971 AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) || 972 isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 973 "UpperBound must be signed constant or DIVariable or DIExpression", 974 &N); 975 auto *Stride = N.getRawStride(); 976 AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) || 977 isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 978 "Stride must be signed constant or DIVariable or DIExpression", &N); 979 } 980 981 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) { 982 AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N); 983 AssertDI(N.getRawCountNode() || N.getRawUpperBound(), 984 "GenericSubrange must contain count or upperBound", &N); 985 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 986 "GenericSubrange can have any one of count or upperBound", &N); 987 auto *CBound = N.getRawCountNode(); 988 AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 989 "Count must be signed constant or DIVariable or DIExpression", &N); 990 auto *LBound = N.getRawLowerBound(); 991 AssertDI(LBound, "GenericSubrange must contain lowerBound", &N); 992 AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 993 "LowerBound must be signed constant or DIVariable or DIExpression", 994 &N); 995 auto *UBound = N.getRawUpperBound(); 996 AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 997 "UpperBound must be signed constant or DIVariable or DIExpression", 998 &N); 999 auto *Stride = N.getRawStride(); 1000 AssertDI(Stride, "GenericSubrange must contain stride", &N); 1001 AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 1002 "Stride must be signed constant or DIVariable or DIExpression", &N); 1003 } 1004 1005 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 1006 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 1007 } 1008 1009 void Verifier::visitDIBasicType(const DIBasicType &N) { 1010 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 1011 N.getTag() == dwarf::DW_TAG_unspecified_type || 1012 N.getTag() == dwarf::DW_TAG_string_type, 1013 "invalid tag", &N); 1014 } 1015 1016 void Verifier::visitDIStringType(const DIStringType &N) { 1017 AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N); 1018 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 1019 "has conflicting flags", &N); 1020 } 1021 1022 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 1023 // Common scope checks. 1024 visitDIScope(N); 1025 1026 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 1027 N.getTag() == dwarf::DW_TAG_pointer_type || 1028 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 1029 N.getTag() == dwarf::DW_TAG_reference_type || 1030 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 1031 N.getTag() == dwarf::DW_TAG_const_type || 1032 N.getTag() == dwarf::DW_TAG_volatile_type || 1033 N.getTag() == dwarf::DW_TAG_restrict_type || 1034 N.getTag() == dwarf::DW_TAG_atomic_type || 1035 N.getTag() == dwarf::DW_TAG_member || 1036 N.getTag() == dwarf::DW_TAG_inheritance || 1037 N.getTag() == dwarf::DW_TAG_friend || 1038 N.getTag() == dwarf::DW_TAG_set_type, 1039 "invalid tag", &N); 1040 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 1041 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 1042 N.getRawExtraData()); 1043 } 1044 1045 if (N.getTag() == dwarf::DW_TAG_set_type) { 1046 if (auto *T = N.getRawBaseType()) { 1047 auto *Enum = dyn_cast_or_null<DICompositeType>(T); 1048 auto *Basic = dyn_cast_or_null<DIBasicType>(T); 1049 AssertDI( 1050 (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) || 1051 (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned || 1052 Basic->getEncoding() == dwarf::DW_ATE_signed || 1053 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char || 1054 Basic->getEncoding() == dwarf::DW_ATE_signed_char || 1055 Basic->getEncoding() == dwarf::DW_ATE_boolean)), 1056 "invalid set base type", &N, T); 1057 } 1058 } 1059 1060 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1061 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1062 N.getRawBaseType()); 1063 1064 if (N.getDWARFAddressSpace()) { 1065 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 1066 N.getTag() == dwarf::DW_TAG_reference_type || 1067 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 1068 "DWARF address space only applies to pointer or reference types", 1069 &N); 1070 } 1071 } 1072 1073 /// Detect mutually exclusive flags. 1074 static bool hasConflictingReferenceFlags(unsigned Flags) { 1075 return ((Flags & DINode::FlagLValueReference) && 1076 (Flags & DINode::FlagRValueReference)) || 1077 ((Flags & DINode::FlagTypePassByValue) && 1078 (Flags & DINode::FlagTypePassByReference)); 1079 } 1080 1081 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 1082 auto *Params = dyn_cast<MDTuple>(&RawParams); 1083 AssertDI(Params, "invalid template params", &N, &RawParams); 1084 for (Metadata *Op : Params->operands()) { 1085 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 1086 &N, Params, Op); 1087 } 1088 } 1089 1090 void Verifier::visitDICompositeType(const DICompositeType &N) { 1091 // Common scope checks. 1092 visitDIScope(N); 1093 1094 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 1095 N.getTag() == dwarf::DW_TAG_structure_type || 1096 N.getTag() == dwarf::DW_TAG_union_type || 1097 N.getTag() == dwarf::DW_TAG_enumeration_type || 1098 N.getTag() == dwarf::DW_TAG_class_type || 1099 N.getTag() == dwarf::DW_TAG_variant_part || 1100 N.getTag() == dwarf::DW_TAG_namelist, 1101 "invalid tag", &N); 1102 1103 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1104 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1105 N.getRawBaseType()); 1106 1107 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 1108 "invalid composite elements", &N, N.getRawElements()); 1109 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 1110 N.getRawVTableHolder()); 1111 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1112 "invalid reference flags", &N); 1113 unsigned DIBlockByRefStruct = 1 << 4; 1114 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, 1115 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 1116 1117 if (N.isVector()) { 1118 const DINodeArray Elements = N.getElements(); 1119 AssertDI(Elements.size() == 1 && 1120 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 1121 "invalid vector, expected one element of type subrange", &N); 1122 } 1123 1124 if (auto *Params = N.getRawTemplateParams()) 1125 visitTemplateParams(N, *Params); 1126 1127 if (auto *D = N.getRawDiscriminator()) { 1128 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1129 "discriminator can only appear on variant part"); 1130 } 1131 1132 if (N.getRawDataLocation()) { 1133 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1134 "dataLocation can only appear in array type"); 1135 } 1136 1137 if (N.getRawAssociated()) { 1138 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1139 "associated can only appear in array type"); 1140 } 1141 1142 if (N.getRawAllocated()) { 1143 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1144 "allocated can only appear in array type"); 1145 } 1146 1147 if (N.getRawRank()) { 1148 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1149 "rank can only appear in array type"); 1150 } 1151 } 1152 1153 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1154 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1155 if (auto *Types = N.getRawTypeArray()) { 1156 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1157 for (Metadata *Ty : N.getTypeArray()->operands()) { 1158 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1159 } 1160 } 1161 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1162 "invalid reference flags", &N); 1163 } 1164 1165 void Verifier::visitDIFile(const DIFile &N) { 1166 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1167 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1168 if (Checksum) { 1169 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1170 "invalid checksum kind", &N); 1171 size_t Size; 1172 switch (Checksum->Kind) { 1173 case DIFile::CSK_MD5: 1174 Size = 32; 1175 break; 1176 case DIFile::CSK_SHA1: 1177 Size = 40; 1178 break; 1179 case DIFile::CSK_SHA256: 1180 Size = 64; 1181 break; 1182 } 1183 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1184 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1185 "invalid checksum", &N); 1186 } 1187 } 1188 1189 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1190 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1191 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1192 1193 // Don't bother verifying the compilation directory or producer string 1194 // as those could be empty. 1195 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1196 N.getRawFile()); 1197 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1198 N.getFile()); 1199 1200 CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage(); 1201 1202 verifySourceDebugInfo(N, *N.getFile()); 1203 1204 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1205 "invalid emission kind", &N); 1206 1207 if (auto *Array = N.getRawEnumTypes()) { 1208 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1209 for (Metadata *Op : N.getEnumTypes()->operands()) { 1210 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1211 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1212 "invalid enum type", &N, N.getEnumTypes(), Op); 1213 } 1214 } 1215 if (auto *Array = N.getRawRetainedTypes()) { 1216 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1217 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1218 AssertDI(Op && (isa<DIType>(Op) || 1219 (isa<DISubprogram>(Op) && 1220 !cast<DISubprogram>(Op)->isDefinition())), 1221 "invalid retained type", &N, Op); 1222 } 1223 } 1224 if (auto *Array = N.getRawGlobalVariables()) { 1225 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1226 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1227 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1228 "invalid global variable ref", &N, Op); 1229 } 1230 } 1231 if (auto *Array = N.getRawImportedEntities()) { 1232 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1233 for (Metadata *Op : N.getImportedEntities()->operands()) { 1234 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1235 &N, Op); 1236 } 1237 } 1238 if (auto *Array = N.getRawMacros()) { 1239 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1240 for (Metadata *Op : N.getMacros()->operands()) { 1241 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1242 } 1243 } 1244 CUVisited.insert(&N); 1245 } 1246 1247 void Verifier::visitDISubprogram(const DISubprogram &N) { 1248 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1249 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1250 if (auto *F = N.getRawFile()) 1251 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1252 else 1253 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1254 if (auto *T = N.getRawType()) 1255 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1256 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1257 N.getRawContainingType()); 1258 if (auto *Params = N.getRawTemplateParams()) 1259 visitTemplateParams(N, *Params); 1260 if (auto *S = N.getRawDeclaration()) 1261 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1262 "invalid subprogram declaration", &N, S); 1263 if (auto *RawNode = N.getRawRetainedNodes()) { 1264 auto *Node = dyn_cast<MDTuple>(RawNode); 1265 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1266 for (Metadata *Op : Node->operands()) { 1267 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1268 "invalid retained nodes, expected DILocalVariable or DILabel", 1269 &N, Node, Op); 1270 } 1271 } 1272 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1273 "invalid reference flags", &N); 1274 1275 auto *Unit = N.getRawUnit(); 1276 if (N.isDefinition()) { 1277 // Subprogram definitions (not part of the type hierarchy). 1278 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1279 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1280 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1281 if (N.getFile()) 1282 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1283 } else { 1284 // Subprogram declarations (part of the type hierarchy). 1285 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1286 } 1287 1288 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1289 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1290 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1291 for (Metadata *Op : ThrownTypes->operands()) 1292 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1293 Op); 1294 } 1295 1296 if (N.areAllCallsDescribed()) 1297 AssertDI(N.isDefinition(), 1298 "DIFlagAllCallsDescribed must be attached to a definition"); 1299 } 1300 1301 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1302 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1303 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1304 "invalid local scope", &N, N.getRawScope()); 1305 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1306 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1307 } 1308 1309 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1310 visitDILexicalBlockBase(N); 1311 1312 AssertDI(N.getLine() || !N.getColumn(), 1313 "cannot have column info without line info", &N); 1314 } 1315 1316 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1317 visitDILexicalBlockBase(N); 1318 } 1319 1320 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1321 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1322 if (auto *S = N.getRawScope()) 1323 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1324 if (auto *S = N.getRawDecl()) 1325 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1326 } 1327 1328 void Verifier::visitDINamespace(const DINamespace &N) { 1329 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1330 if (auto *S = N.getRawScope()) 1331 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1332 } 1333 1334 void Verifier::visitDIMacro(const DIMacro &N) { 1335 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1336 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1337 "invalid macinfo type", &N); 1338 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1339 if (!N.getValue().empty()) { 1340 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1341 } 1342 } 1343 1344 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1345 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1346 "invalid macinfo type", &N); 1347 if (auto *F = N.getRawFile()) 1348 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1349 1350 if (auto *Array = N.getRawElements()) { 1351 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1352 for (Metadata *Op : N.getElements()->operands()) { 1353 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1354 } 1355 } 1356 } 1357 1358 void Verifier::visitDIArgList(const DIArgList &N) { 1359 AssertDI(!N.getNumOperands(), 1360 "DIArgList should have no operands other than a list of " 1361 "ValueAsMetadata", 1362 &N); 1363 } 1364 1365 void Verifier::visitDIModule(const DIModule &N) { 1366 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1367 AssertDI(!N.getName().empty(), "anonymous module", &N); 1368 } 1369 1370 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1371 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1372 } 1373 1374 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1375 visitDITemplateParameter(N); 1376 1377 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1378 &N); 1379 } 1380 1381 void Verifier::visitDITemplateValueParameter( 1382 const DITemplateValueParameter &N) { 1383 visitDITemplateParameter(N); 1384 1385 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1386 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1387 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1388 "invalid tag", &N); 1389 } 1390 1391 void Verifier::visitDIVariable(const DIVariable &N) { 1392 if (auto *S = N.getRawScope()) 1393 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1394 if (auto *F = N.getRawFile()) 1395 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1396 } 1397 1398 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1399 // Checks common to all variables. 1400 visitDIVariable(N); 1401 1402 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1403 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1404 // Assert only if the global variable is not an extern 1405 if (N.isDefinition()) 1406 AssertDI(N.getType(), "missing global variable type", &N); 1407 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1408 AssertDI(isa<DIDerivedType>(Member), 1409 "invalid static data member declaration", &N, Member); 1410 } 1411 } 1412 1413 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1414 // Checks common to all variables. 1415 visitDIVariable(N); 1416 1417 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1418 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1419 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1420 "local variable requires a valid scope", &N, N.getRawScope()); 1421 if (auto Ty = N.getType()) 1422 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1423 } 1424 1425 void Verifier::visitDILabel(const DILabel &N) { 1426 if (auto *S = N.getRawScope()) 1427 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1428 if (auto *F = N.getRawFile()) 1429 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1430 1431 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1432 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1433 "label requires a valid scope", &N, N.getRawScope()); 1434 } 1435 1436 void Verifier::visitDIExpression(const DIExpression &N) { 1437 AssertDI(N.isValid(), "invalid expression", &N); 1438 } 1439 1440 void Verifier::visitDIGlobalVariableExpression( 1441 const DIGlobalVariableExpression &GVE) { 1442 AssertDI(GVE.getVariable(), "missing variable"); 1443 if (auto *Var = GVE.getVariable()) 1444 visitDIGlobalVariable(*Var); 1445 if (auto *Expr = GVE.getExpression()) { 1446 visitDIExpression(*Expr); 1447 if (auto Fragment = Expr->getFragmentInfo()) 1448 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1449 } 1450 } 1451 1452 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1453 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1454 if (auto *T = N.getRawType()) 1455 AssertDI(isType(T), "invalid type ref", &N, T); 1456 if (auto *F = N.getRawFile()) 1457 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1458 } 1459 1460 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1461 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1462 N.getTag() == dwarf::DW_TAG_imported_declaration, 1463 "invalid tag", &N); 1464 if (auto *S = N.getRawScope()) 1465 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1466 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1467 N.getRawEntity()); 1468 } 1469 1470 void Verifier::visitComdat(const Comdat &C) { 1471 // In COFF the Module is invalid if the GlobalValue has private linkage. 1472 // Entities with private linkage don't have entries in the symbol table. 1473 if (TT.isOSBinFormatCOFF()) 1474 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1475 Assert(!GV->hasPrivateLinkage(), 1476 "comdat global value has private linkage", GV); 1477 } 1478 1479 void Verifier::visitModuleIdents(const Module &M) { 1480 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1481 if (!Idents) 1482 return; 1483 1484 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1485 // Scan each llvm.ident entry and make sure that this requirement is met. 1486 for (const MDNode *N : Idents->operands()) { 1487 Assert(N->getNumOperands() == 1, 1488 "incorrect number of operands in llvm.ident metadata", N); 1489 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1490 ("invalid value for llvm.ident metadata entry operand" 1491 "(the operand should be a string)"), 1492 N->getOperand(0)); 1493 } 1494 } 1495 1496 void Verifier::visitModuleCommandLines(const Module &M) { 1497 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1498 if (!CommandLines) 1499 return; 1500 1501 // llvm.commandline takes a list of metadata entry. Each entry has only one 1502 // string. Scan each llvm.commandline entry and make sure that this 1503 // requirement is met. 1504 for (const MDNode *N : CommandLines->operands()) { 1505 Assert(N->getNumOperands() == 1, 1506 "incorrect number of operands in llvm.commandline metadata", N); 1507 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1508 ("invalid value for llvm.commandline metadata entry operand" 1509 "(the operand should be a string)"), 1510 N->getOperand(0)); 1511 } 1512 } 1513 1514 void Verifier::visitModuleFlags(const Module &M) { 1515 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1516 if (!Flags) return; 1517 1518 // Scan each flag, and track the flags and requirements. 1519 DenseMap<const MDString*, const MDNode*> SeenIDs; 1520 SmallVector<const MDNode*, 16> Requirements; 1521 for (const MDNode *MDN : Flags->operands()) 1522 visitModuleFlag(MDN, SeenIDs, Requirements); 1523 1524 // Validate that the requirements in the module are valid. 1525 for (const MDNode *Requirement : Requirements) { 1526 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1527 const Metadata *ReqValue = Requirement->getOperand(1); 1528 1529 const MDNode *Op = SeenIDs.lookup(Flag); 1530 if (!Op) { 1531 CheckFailed("invalid requirement on flag, flag is not present in module", 1532 Flag); 1533 continue; 1534 } 1535 1536 if (Op->getOperand(2) != ReqValue) { 1537 CheckFailed(("invalid requirement on flag, " 1538 "flag does not have the required value"), 1539 Flag); 1540 continue; 1541 } 1542 } 1543 } 1544 1545 void 1546 Verifier::visitModuleFlag(const MDNode *Op, 1547 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1548 SmallVectorImpl<const MDNode *> &Requirements) { 1549 // Each module flag should have three arguments, the merge behavior (a 1550 // constant int), the flag ID (an MDString), and the value. 1551 Assert(Op->getNumOperands() == 3, 1552 "incorrect number of operands in module flag", Op); 1553 Module::ModFlagBehavior MFB; 1554 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1555 Assert( 1556 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1557 "invalid behavior operand in module flag (expected constant integer)", 1558 Op->getOperand(0)); 1559 Assert(false, 1560 "invalid behavior operand in module flag (unexpected constant)", 1561 Op->getOperand(0)); 1562 } 1563 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1564 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1565 Op->getOperand(1)); 1566 1567 // Sanity check the values for behaviors with additional requirements. 1568 switch (MFB) { 1569 case Module::Error: 1570 case Module::Warning: 1571 case Module::Override: 1572 // These behavior types accept any value. 1573 break; 1574 1575 case Module::Max: { 1576 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1577 "invalid value for 'max' module flag (expected constant integer)", 1578 Op->getOperand(2)); 1579 break; 1580 } 1581 1582 case Module::Require: { 1583 // The value should itself be an MDNode with two operands, a flag ID (an 1584 // MDString), and a value. 1585 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1586 Assert(Value && Value->getNumOperands() == 2, 1587 "invalid value for 'require' module flag (expected metadata pair)", 1588 Op->getOperand(2)); 1589 Assert(isa<MDString>(Value->getOperand(0)), 1590 ("invalid value for 'require' module flag " 1591 "(first value operand should be a string)"), 1592 Value->getOperand(0)); 1593 1594 // Append it to the list of requirements, to check once all module flags are 1595 // scanned. 1596 Requirements.push_back(Value); 1597 break; 1598 } 1599 1600 case Module::Append: 1601 case Module::AppendUnique: { 1602 // These behavior types require the operand be an MDNode. 1603 Assert(isa<MDNode>(Op->getOperand(2)), 1604 "invalid value for 'append'-type module flag " 1605 "(expected a metadata node)", 1606 Op->getOperand(2)); 1607 break; 1608 } 1609 } 1610 1611 // Unless this is a "requires" flag, check the ID is unique. 1612 if (MFB != Module::Require) { 1613 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1614 Assert(Inserted, 1615 "module flag identifiers must be unique (or of 'require' type)", ID); 1616 } 1617 1618 if (ID->getString() == "wchar_size") { 1619 ConstantInt *Value 1620 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1621 Assert(Value, "wchar_size metadata requires constant integer argument"); 1622 } 1623 1624 if (ID->getString() == "Linker Options") { 1625 // If the llvm.linker.options named metadata exists, we assume that the 1626 // bitcode reader has upgraded the module flag. Otherwise the flag might 1627 // have been created by a client directly. 1628 Assert(M.getNamedMetadata("llvm.linker.options"), 1629 "'Linker Options' named metadata no longer supported"); 1630 } 1631 1632 if (ID->getString() == "SemanticInterposition") { 1633 ConstantInt *Value = 1634 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1635 Assert(Value, 1636 "SemanticInterposition metadata requires constant integer argument"); 1637 } 1638 1639 if (ID->getString() == "CG Profile") { 1640 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1641 visitModuleFlagCGProfileEntry(MDO); 1642 } 1643 } 1644 1645 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1646 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1647 if (!FuncMDO) 1648 return; 1649 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1650 Assert(F && isa<Function>(F->getValue()->stripPointerCasts()), 1651 "expected a Function or null", FuncMDO); 1652 }; 1653 auto Node = dyn_cast_or_null<MDNode>(MDO); 1654 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1655 CheckFunction(Node->getOperand(0)); 1656 CheckFunction(Node->getOperand(1)); 1657 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1658 Assert(Count && Count->getType()->isIntegerTy(), 1659 "expected an integer constant", Node->getOperand(2)); 1660 } 1661 1662 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) { 1663 for (Attribute A : Attrs) { 1664 1665 if (A.isStringAttribute()) { 1666 #define GET_ATTR_NAMES 1667 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) 1668 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \ 1669 if (A.getKindAsString() == #DISPLAY_NAME) { \ 1670 auto V = A.getValueAsString(); \ 1671 if (!(V.empty() || V == "true" || V == "false")) \ 1672 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \ 1673 ""); \ 1674 } 1675 1676 #include "llvm/IR/Attributes.inc" 1677 continue; 1678 } 1679 1680 if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) { 1681 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", 1682 V); 1683 return; 1684 } 1685 } 1686 } 1687 1688 // VerifyParameterAttrs - Check the given attributes for an argument or return 1689 // value of the specified type. The value V is printed in error messages. 1690 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1691 const Value *V) { 1692 if (!Attrs.hasAttributes()) 1693 return; 1694 1695 verifyAttributeTypes(Attrs, V); 1696 1697 for (Attribute Attr : Attrs) 1698 Assert(Attr.isStringAttribute() || 1699 Attribute::canUseAsParamAttr(Attr.getKindAsEnum()), 1700 "Attribute '" + Attr.getAsString() + 1701 "' does not apply to parameters", 1702 V); 1703 1704 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1705 Assert(Attrs.getNumAttributes() == 1, 1706 "Attribute 'immarg' is incompatible with other attributes", V); 1707 } 1708 1709 // Check for mutually incompatible attributes. Only inreg is compatible with 1710 // sret. 1711 unsigned AttrCount = 0; 1712 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1713 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1714 AttrCount += Attrs.hasAttribute(Attribute::Preallocated); 1715 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1716 Attrs.hasAttribute(Attribute::InReg); 1717 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1718 AttrCount += Attrs.hasAttribute(Attribute::ByRef); 1719 Assert(AttrCount <= 1, 1720 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " 1721 "'byref', and 'sret' are incompatible!", 1722 V); 1723 1724 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1725 Attrs.hasAttribute(Attribute::ReadOnly)), 1726 "Attributes " 1727 "'inalloca and readonly' are incompatible!", 1728 V); 1729 1730 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1731 Attrs.hasAttribute(Attribute::Returned)), 1732 "Attributes " 1733 "'sret and returned' are incompatible!", 1734 V); 1735 1736 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1737 Attrs.hasAttribute(Attribute::SExt)), 1738 "Attributes " 1739 "'zeroext and signext' are incompatible!", 1740 V); 1741 1742 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1743 Attrs.hasAttribute(Attribute::ReadOnly)), 1744 "Attributes " 1745 "'readnone and readonly' are incompatible!", 1746 V); 1747 1748 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1749 Attrs.hasAttribute(Attribute::WriteOnly)), 1750 "Attributes " 1751 "'readnone and writeonly' are incompatible!", 1752 V); 1753 1754 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1755 Attrs.hasAttribute(Attribute::WriteOnly)), 1756 "Attributes " 1757 "'readonly and writeonly' are incompatible!", 1758 V); 1759 1760 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1761 Attrs.hasAttribute(Attribute::AlwaysInline)), 1762 "Attributes " 1763 "'noinline and alwaysinline' are incompatible!", 1764 V); 1765 1766 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1767 for (Attribute Attr : Attrs) { 1768 if (!Attr.isStringAttribute() && 1769 IncompatibleAttrs.contains(Attr.getKindAsEnum())) { 1770 CheckFailed("Attribute '" + Attr.getAsString() + 1771 "' applied to incompatible type!", V); 1772 return; 1773 } 1774 } 1775 1776 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1777 if (Attrs.hasAttribute(Attribute::ByVal)) { 1778 SmallPtrSet<Type *, 4> Visited; 1779 Assert(Attrs.getByValType()->isSized(&Visited), 1780 "Attribute 'byval' does not support unsized types!", V); 1781 } 1782 if (Attrs.hasAttribute(Attribute::ByRef)) { 1783 SmallPtrSet<Type *, 4> Visited; 1784 Assert(Attrs.getByRefType()->isSized(&Visited), 1785 "Attribute 'byref' does not support unsized types!", V); 1786 } 1787 if (Attrs.hasAttribute(Attribute::InAlloca)) { 1788 SmallPtrSet<Type *, 4> Visited; 1789 Assert(Attrs.getInAllocaType()->isSized(&Visited), 1790 "Attribute 'inalloca' does not support unsized types!", V); 1791 } 1792 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1793 SmallPtrSet<Type *, 4> Visited; 1794 Assert(Attrs.getPreallocatedType()->isSized(&Visited), 1795 "Attribute 'preallocated' does not support unsized types!", V); 1796 } 1797 if (!PTy->isOpaque()) { 1798 if (!isa<PointerType>(PTy->getElementType())) 1799 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1800 "Attribute 'swifterror' only applies to parameters " 1801 "with pointer to pointer type!", 1802 V); 1803 if (Attrs.hasAttribute(Attribute::ByRef)) { 1804 Assert(Attrs.getByRefType() == PTy->getElementType(), 1805 "Attribute 'byref' type does not match parameter!", V); 1806 } 1807 1808 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1809 Assert(Attrs.getByValType() == PTy->getElementType(), 1810 "Attribute 'byval' type does not match parameter!", V); 1811 } 1812 1813 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1814 Assert(Attrs.getPreallocatedType() == PTy->getElementType(), 1815 "Attribute 'preallocated' type does not match parameter!", V); 1816 } 1817 1818 if (Attrs.hasAttribute(Attribute::InAlloca)) { 1819 Assert(Attrs.getInAllocaType() == PTy->getElementType(), 1820 "Attribute 'inalloca' type does not match parameter!", V); 1821 } 1822 1823 if (Attrs.hasAttribute(Attribute::ElementType)) { 1824 Assert(Attrs.getElementType() == PTy->getElementType(), 1825 "Attribute 'elementtype' type does not match parameter!", V); 1826 } 1827 } 1828 } 1829 } 1830 1831 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 1832 const Value *V) { 1833 if (Attrs.hasFnAttr(Attr)) { 1834 StringRef S = Attrs.getFnAttr(Attr).getValueAsString(); 1835 unsigned N; 1836 if (S.getAsInteger(10, N)) 1837 CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V); 1838 } 1839 } 1840 1841 // Check parameter attributes against a function type. 1842 // The value V is printed in error messages. 1843 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1844 const Value *V, bool IsIntrinsic) { 1845 if (Attrs.isEmpty()) 1846 return; 1847 1848 if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) { 1849 Assert(Attrs.hasParentContext(Context), 1850 "Attribute list does not match Module context!", &Attrs, V); 1851 for (const auto &AttrSet : Attrs) { 1852 Assert(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context), 1853 "Attribute set does not match Module context!", &AttrSet, V); 1854 for (const auto &A : AttrSet) { 1855 Assert(A.hasParentContext(Context), 1856 "Attribute does not match Module context!", &A, V); 1857 } 1858 } 1859 } 1860 1861 bool SawNest = false; 1862 bool SawReturned = false; 1863 bool SawSRet = false; 1864 bool SawSwiftSelf = false; 1865 bool SawSwiftAsync = false; 1866 bool SawSwiftError = false; 1867 1868 // Verify return value attributes. 1869 AttributeSet RetAttrs = Attrs.getRetAttrs(); 1870 for (Attribute RetAttr : RetAttrs) 1871 Assert(RetAttr.isStringAttribute() || 1872 Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()), 1873 "Attribute '" + RetAttr.getAsString() + 1874 "' does not apply to function return values", 1875 V); 1876 1877 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1878 1879 // Verify parameter attributes. 1880 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1881 Type *Ty = FT->getParamType(i); 1882 AttributeSet ArgAttrs = Attrs.getParamAttrs(i); 1883 1884 if (!IsIntrinsic) { 1885 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1886 "immarg attribute only applies to intrinsics",V); 1887 Assert(!ArgAttrs.hasAttribute(Attribute::ElementType), 1888 "Attribute 'elementtype' can only be applied to intrinsics.", V); 1889 } 1890 1891 verifyParameterAttrs(ArgAttrs, Ty, V); 1892 1893 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1894 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1895 SawNest = true; 1896 } 1897 1898 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1899 Assert(!SawReturned, "More than one parameter has attribute returned!", 1900 V); 1901 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1902 "Incompatible argument and return types for 'returned' attribute", 1903 V); 1904 SawReturned = true; 1905 } 1906 1907 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1908 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1909 Assert(i == 0 || i == 1, 1910 "Attribute 'sret' is not on first or second parameter!", V); 1911 SawSRet = true; 1912 } 1913 1914 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1915 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1916 SawSwiftSelf = true; 1917 } 1918 1919 if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) { 1920 Assert(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V); 1921 SawSwiftAsync = true; 1922 } 1923 1924 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1925 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1926 V); 1927 SawSwiftError = true; 1928 } 1929 1930 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1931 Assert(i == FT->getNumParams() - 1, 1932 "inalloca isn't on the last parameter!", V); 1933 } 1934 } 1935 1936 if (!Attrs.hasFnAttrs()) 1937 return; 1938 1939 verifyAttributeTypes(Attrs.getFnAttrs(), V); 1940 for (Attribute FnAttr : Attrs.getFnAttrs()) 1941 Assert(FnAttr.isStringAttribute() || 1942 Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()), 1943 "Attribute '" + FnAttr.getAsString() + 1944 "' does not apply to functions!", 1945 V); 1946 1947 Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 1948 Attrs.hasFnAttr(Attribute::ReadOnly)), 1949 "Attributes 'readnone and readonly' are incompatible!", V); 1950 1951 Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 1952 Attrs.hasFnAttr(Attribute::WriteOnly)), 1953 "Attributes 'readnone and writeonly' are incompatible!", V); 1954 1955 Assert(!(Attrs.hasFnAttr(Attribute::ReadOnly) && 1956 Attrs.hasFnAttr(Attribute::WriteOnly)), 1957 "Attributes 'readonly and writeonly' are incompatible!", V); 1958 1959 Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 1960 Attrs.hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly)), 1961 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1962 "incompatible!", 1963 V); 1964 1965 Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 1966 Attrs.hasFnAttr(Attribute::InaccessibleMemOnly)), 1967 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1968 1969 Assert(!(Attrs.hasFnAttr(Attribute::NoInline) && 1970 Attrs.hasFnAttr(Attribute::AlwaysInline)), 1971 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1972 1973 if (Attrs.hasFnAttr(Attribute::OptimizeNone)) { 1974 Assert(Attrs.hasFnAttr(Attribute::NoInline), 1975 "Attribute 'optnone' requires 'noinline'!", V); 1976 1977 Assert(!Attrs.hasFnAttr(Attribute::OptimizeForSize), 1978 "Attributes 'optsize and optnone' are incompatible!", V); 1979 1980 Assert(!Attrs.hasFnAttr(Attribute::MinSize), 1981 "Attributes 'minsize and optnone' are incompatible!", V); 1982 } 1983 1984 if (Attrs.hasFnAttr(Attribute::JumpTable)) { 1985 const GlobalValue *GV = cast<GlobalValue>(V); 1986 Assert(GV->hasGlobalUnnamedAddr(), 1987 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1988 } 1989 1990 if (Attrs.hasFnAttr(Attribute::AllocSize)) { 1991 std::pair<unsigned, Optional<unsigned>> Args = 1992 Attrs.getFnAttrs().getAllocSizeArgs(); 1993 1994 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1995 if (ParamNo >= FT->getNumParams()) { 1996 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1997 return false; 1998 } 1999 2000 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 2001 CheckFailed("'allocsize' " + Name + 2002 " argument must refer to an integer parameter", 2003 V); 2004 return false; 2005 } 2006 2007 return true; 2008 }; 2009 2010 if (!CheckParam("element size", Args.first)) 2011 return; 2012 2013 if (Args.second && !CheckParam("number of elements", *Args.second)) 2014 return; 2015 } 2016 2017 if (Attrs.hasFnAttr(Attribute::VScaleRange)) { 2018 std::pair<unsigned, unsigned> Args = 2019 Attrs.getFnAttrs().getVScaleRangeArgs(); 2020 2021 if (Args.first > Args.second && Args.second != 0) 2022 CheckFailed("'vscale_range' minimum cannot be greater than maximum", V); 2023 } 2024 2025 if (Attrs.hasFnAttr("frame-pointer")) { 2026 StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString(); 2027 if (FP != "all" && FP != "non-leaf" && FP != "none") 2028 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 2029 } 2030 2031 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V); 2032 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V); 2033 checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V); 2034 } 2035 2036 void Verifier::verifyFunctionMetadata( 2037 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 2038 for (const auto &Pair : MDs) { 2039 if (Pair.first == LLVMContext::MD_prof) { 2040 MDNode *MD = Pair.second; 2041 Assert(MD->getNumOperands() >= 2, 2042 "!prof annotations should have no less than 2 operands", MD); 2043 2044 // Check first operand. 2045 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 2046 MD); 2047 Assert(isa<MDString>(MD->getOperand(0)), 2048 "expected string with name of the !prof annotation", MD); 2049 MDString *MDS = cast<MDString>(MD->getOperand(0)); 2050 StringRef ProfName = MDS->getString(); 2051 Assert(ProfName.equals("function_entry_count") || 2052 ProfName.equals("synthetic_function_entry_count"), 2053 "first operand should be 'function_entry_count'" 2054 " or 'synthetic_function_entry_count'", 2055 MD); 2056 2057 // Check second operand. 2058 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 2059 MD); 2060 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 2061 "expected integer argument to function_entry_count", MD); 2062 } 2063 } 2064 } 2065 2066 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 2067 if (!ConstantExprVisited.insert(EntryC).second) 2068 return; 2069 2070 SmallVector<const Constant *, 16> Stack; 2071 Stack.push_back(EntryC); 2072 2073 while (!Stack.empty()) { 2074 const Constant *C = Stack.pop_back_val(); 2075 2076 // Check this constant expression. 2077 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 2078 visitConstantExpr(CE); 2079 2080 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 2081 // Global Values get visited separately, but we do need to make sure 2082 // that the global value is in the correct module 2083 Assert(GV->getParent() == &M, "Referencing global in another module!", 2084 EntryC, &M, GV, GV->getParent()); 2085 continue; 2086 } 2087 2088 // Visit all sub-expressions. 2089 for (const Use &U : C->operands()) { 2090 const auto *OpC = dyn_cast<Constant>(U); 2091 if (!OpC) 2092 continue; 2093 if (!ConstantExprVisited.insert(OpC).second) 2094 continue; 2095 Stack.push_back(OpC); 2096 } 2097 } 2098 } 2099 2100 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 2101 if (CE->getOpcode() == Instruction::BitCast) 2102 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 2103 CE->getType()), 2104 "Invalid bitcast", CE); 2105 } 2106 2107 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 2108 // There shouldn't be more attribute sets than there are parameters plus the 2109 // function and return value. 2110 return Attrs.getNumAttrSets() <= Params + 2; 2111 } 2112 2113 /// Verify that statepoint intrinsic is well formed. 2114 void Verifier::verifyStatepoint(const CallBase &Call) { 2115 assert(Call.getCalledFunction() && 2116 Call.getCalledFunction()->getIntrinsicID() == 2117 Intrinsic::experimental_gc_statepoint); 2118 2119 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 2120 !Call.onlyAccessesArgMemory(), 2121 "gc.statepoint must read and write all memory to preserve " 2122 "reordering restrictions required by safepoint semantics", 2123 Call); 2124 2125 const int64_t NumPatchBytes = 2126 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 2127 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 2128 Assert(NumPatchBytes >= 0, 2129 "gc.statepoint number of patchable bytes must be " 2130 "positive", 2131 Call); 2132 2133 const Value *Target = Call.getArgOperand(2); 2134 auto *PT = dyn_cast<PointerType>(Target->getType()); 2135 Assert(PT && PT->getElementType()->isFunctionTy(), 2136 "gc.statepoint callee must be of function pointer type", Call, Target); 2137 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 2138 2139 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 2140 Assert(NumCallArgs >= 0, 2141 "gc.statepoint number of arguments to underlying call " 2142 "must be positive", 2143 Call); 2144 const int NumParams = (int)TargetFuncType->getNumParams(); 2145 if (TargetFuncType->isVarArg()) { 2146 Assert(NumCallArgs >= NumParams, 2147 "gc.statepoint mismatch in number of vararg call args", Call); 2148 2149 // TODO: Remove this limitation 2150 Assert(TargetFuncType->getReturnType()->isVoidTy(), 2151 "gc.statepoint doesn't support wrapping non-void " 2152 "vararg functions yet", 2153 Call); 2154 } else 2155 Assert(NumCallArgs == NumParams, 2156 "gc.statepoint mismatch in number of call args", Call); 2157 2158 const uint64_t Flags 2159 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 2160 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 2161 "unknown flag used in gc.statepoint flags argument", Call); 2162 2163 // Verify that the types of the call parameter arguments match 2164 // the type of the wrapped callee. 2165 AttributeList Attrs = Call.getAttributes(); 2166 for (int i = 0; i < NumParams; i++) { 2167 Type *ParamType = TargetFuncType->getParamType(i); 2168 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 2169 Assert(ArgType == ParamType, 2170 "gc.statepoint call argument does not match wrapped " 2171 "function type", 2172 Call); 2173 2174 if (TargetFuncType->isVarArg()) { 2175 AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i); 2176 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2177 "Attribute 'sret' cannot be used for vararg call arguments!", 2178 Call); 2179 } 2180 } 2181 2182 const int EndCallArgsInx = 4 + NumCallArgs; 2183 2184 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2185 Assert(isa<ConstantInt>(NumTransitionArgsV), 2186 "gc.statepoint number of transition arguments " 2187 "must be constant integer", 2188 Call); 2189 const int NumTransitionArgs = 2190 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2191 Assert(NumTransitionArgs == 0, 2192 "gc.statepoint w/inline transition bundle is deprecated", Call); 2193 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2194 2195 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2196 Assert(isa<ConstantInt>(NumDeoptArgsV), 2197 "gc.statepoint number of deoptimization arguments " 2198 "must be constant integer", 2199 Call); 2200 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2201 Assert(NumDeoptArgs == 0, 2202 "gc.statepoint w/inline deopt operands is deprecated", Call); 2203 2204 const int ExpectedNumArgs = 7 + NumCallArgs; 2205 Assert(ExpectedNumArgs == (int)Call.arg_size(), 2206 "gc.statepoint too many arguments", Call); 2207 2208 // Check that the only uses of this gc.statepoint are gc.result or 2209 // gc.relocate calls which are tied to this statepoint and thus part 2210 // of the same statepoint sequence 2211 for (const User *U : Call.users()) { 2212 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2213 Assert(UserCall, "illegal use of statepoint token", Call, U); 2214 if (!UserCall) 2215 continue; 2216 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2217 "gc.result or gc.relocate are the only value uses " 2218 "of a gc.statepoint", 2219 Call, U); 2220 if (isa<GCResultInst>(UserCall)) { 2221 Assert(UserCall->getArgOperand(0) == &Call, 2222 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2223 } else if (isa<GCRelocateInst>(Call)) { 2224 Assert(UserCall->getArgOperand(0) == &Call, 2225 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2226 } 2227 } 2228 2229 // Note: It is legal for a single derived pointer to be listed multiple 2230 // times. It's non-optimal, but it is legal. It can also happen after 2231 // insertion if we strip a bitcast away. 2232 // Note: It is really tempting to check that each base is relocated and 2233 // that a derived pointer is never reused as a base pointer. This turns 2234 // out to be problematic since optimizations run after safepoint insertion 2235 // can recognize equality properties that the insertion logic doesn't know 2236 // about. See example statepoint.ll in the verifier subdirectory 2237 } 2238 2239 void Verifier::verifyFrameRecoverIndices() { 2240 for (auto &Counts : FrameEscapeInfo) { 2241 Function *F = Counts.first; 2242 unsigned EscapedObjectCount = Counts.second.first; 2243 unsigned MaxRecoveredIndex = Counts.second.second; 2244 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2245 "all indices passed to llvm.localrecover must be less than the " 2246 "number of arguments passed to llvm.localescape in the parent " 2247 "function", 2248 F); 2249 } 2250 } 2251 2252 static Instruction *getSuccPad(Instruction *Terminator) { 2253 BasicBlock *UnwindDest; 2254 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2255 UnwindDest = II->getUnwindDest(); 2256 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2257 UnwindDest = CSI->getUnwindDest(); 2258 else 2259 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2260 return UnwindDest->getFirstNonPHI(); 2261 } 2262 2263 void Verifier::verifySiblingFuncletUnwinds() { 2264 SmallPtrSet<Instruction *, 8> Visited; 2265 SmallPtrSet<Instruction *, 8> Active; 2266 for (const auto &Pair : SiblingFuncletInfo) { 2267 Instruction *PredPad = Pair.first; 2268 if (Visited.count(PredPad)) 2269 continue; 2270 Active.insert(PredPad); 2271 Instruction *Terminator = Pair.second; 2272 do { 2273 Instruction *SuccPad = getSuccPad(Terminator); 2274 if (Active.count(SuccPad)) { 2275 // Found a cycle; report error 2276 Instruction *CyclePad = SuccPad; 2277 SmallVector<Instruction *, 8> CycleNodes; 2278 do { 2279 CycleNodes.push_back(CyclePad); 2280 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2281 if (CycleTerminator != CyclePad) 2282 CycleNodes.push_back(CycleTerminator); 2283 CyclePad = getSuccPad(CycleTerminator); 2284 } while (CyclePad != SuccPad); 2285 Assert(false, "EH pads can't handle each other's exceptions", 2286 ArrayRef<Instruction *>(CycleNodes)); 2287 } 2288 // Don't re-walk a node we've already checked 2289 if (!Visited.insert(SuccPad).second) 2290 break; 2291 // Walk to this successor if it has a map entry. 2292 PredPad = SuccPad; 2293 auto TermI = SiblingFuncletInfo.find(PredPad); 2294 if (TermI == SiblingFuncletInfo.end()) 2295 break; 2296 Terminator = TermI->second; 2297 Active.insert(PredPad); 2298 } while (true); 2299 // Each node only has one successor, so we've walked all the active 2300 // nodes' successors. 2301 Active.clear(); 2302 } 2303 } 2304 2305 // visitFunction - Verify that a function is ok. 2306 // 2307 void Verifier::visitFunction(const Function &F) { 2308 visitGlobalValue(F); 2309 2310 // Check function arguments. 2311 FunctionType *FT = F.getFunctionType(); 2312 unsigned NumArgs = F.arg_size(); 2313 2314 Assert(&Context == &F.getContext(), 2315 "Function context does not match Module context!", &F); 2316 2317 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2318 Assert(FT->getNumParams() == NumArgs, 2319 "# formal arguments must match # of arguments for function type!", &F, 2320 FT); 2321 Assert(F.getReturnType()->isFirstClassType() || 2322 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2323 "Functions cannot return aggregate values!", &F); 2324 2325 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2326 "Invalid struct return type!", &F); 2327 2328 AttributeList Attrs = F.getAttributes(); 2329 2330 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2331 "Attribute after last parameter!", &F); 2332 2333 bool IsIntrinsic = F.isIntrinsic(); 2334 2335 // Check function attributes. 2336 verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic); 2337 2338 // On function declarations/definitions, we do not support the builtin 2339 // attribute. We do not check this in VerifyFunctionAttrs since that is 2340 // checking for Attributes that can/can not ever be on functions. 2341 Assert(!Attrs.hasFnAttr(Attribute::Builtin), 2342 "Attribute 'builtin' can only be applied to a callsite.", &F); 2343 2344 Assert(!Attrs.hasAttrSomewhere(Attribute::ElementType), 2345 "Attribute 'elementtype' can only be applied to a callsite.", &F); 2346 2347 // Check that this function meets the restrictions on this calling convention. 2348 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2349 // restrictions can be lifted. 2350 switch (F.getCallingConv()) { 2351 default: 2352 case CallingConv::C: 2353 break; 2354 case CallingConv::X86_INTR: { 2355 Assert(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal), 2356 "Calling convention parameter requires byval", &F); 2357 break; 2358 } 2359 case CallingConv::AMDGPU_KERNEL: 2360 case CallingConv::SPIR_KERNEL: 2361 Assert(F.getReturnType()->isVoidTy(), 2362 "Calling convention requires void return type", &F); 2363 LLVM_FALLTHROUGH; 2364 case CallingConv::AMDGPU_VS: 2365 case CallingConv::AMDGPU_HS: 2366 case CallingConv::AMDGPU_GS: 2367 case CallingConv::AMDGPU_PS: 2368 case CallingConv::AMDGPU_CS: 2369 Assert(!F.hasStructRetAttr(), 2370 "Calling convention does not allow sret", &F); 2371 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) { 2372 const unsigned StackAS = DL.getAllocaAddrSpace(); 2373 unsigned i = 0; 2374 for (const Argument &Arg : F.args()) { 2375 Assert(!Attrs.hasParamAttr(i, Attribute::ByVal), 2376 "Calling convention disallows byval", &F); 2377 Assert(!Attrs.hasParamAttr(i, Attribute::Preallocated), 2378 "Calling convention disallows preallocated", &F); 2379 Assert(!Attrs.hasParamAttr(i, Attribute::InAlloca), 2380 "Calling convention disallows inalloca", &F); 2381 2382 if (Attrs.hasParamAttr(i, Attribute::ByRef)) { 2383 // FIXME: Should also disallow LDS and GDS, but we don't have the enum 2384 // value here. 2385 Assert(Arg.getType()->getPointerAddressSpace() != StackAS, 2386 "Calling convention disallows stack byref", &F); 2387 } 2388 2389 ++i; 2390 } 2391 } 2392 2393 LLVM_FALLTHROUGH; 2394 case CallingConv::Fast: 2395 case CallingConv::Cold: 2396 case CallingConv::Intel_OCL_BI: 2397 case CallingConv::PTX_Kernel: 2398 case CallingConv::PTX_Device: 2399 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2400 "perfect forwarding!", 2401 &F); 2402 break; 2403 } 2404 2405 // Check that the argument values match the function type for this function... 2406 unsigned i = 0; 2407 for (const Argument &Arg : F.args()) { 2408 Assert(Arg.getType() == FT->getParamType(i), 2409 "Argument value does not match function argument type!", &Arg, 2410 FT->getParamType(i)); 2411 Assert(Arg.getType()->isFirstClassType(), 2412 "Function arguments must have first-class types!", &Arg); 2413 if (!IsIntrinsic) { 2414 Assert(!Arg.getType()->isMetadataTy(), 2415 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2416 Assert(!Arg.getType()->isTokenTy(), 2417 "Function takes token but isn't an intrinsic", &Arg, &F); 2418 Assert(!Arg.getType()->isX86_AMXTy(), 2419 "Function takes x86_amx but isn't an intrinsic", &Arg, &F); 2420 } 2421 2422 // Check that swifterror argument is only used by loads and stores. 2423 if (Attrs.hasParamAttr(i, Attribute::SwiftError)) { 2424 verifySwiftErrorValue(&Arg); 2425 } 2426 ++i; 2427 } 2428 2429 if (!IsIntrinsic) { 2430 Assert(!F.getReturnType()->isTokenTy(), 2431 "Function returns a token but isn't an intrinsic", &F); 2432 Assert(!F.getReturnType()->isX86_AMXTy(), 2433 "Function returns a x86_amx but isn't an intrinsic", &F); 2434 } 2435 2436 // Get the function metadata attachments. 2437 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2438 F.getAllMetadata(MDs); 2439 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2440 verifyFunctionMetadata(MDs); 2441 2442 // Check validity of the personality function 2443 if (F.hasPersonalityFn()) { 2444 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2445 if (Per) 2446 Assert(Per->getParent() == F.getParent(), 2447 "Referencing personality function in another module!", 2448 &F, F.getParent(), Per, Per->getParent()); 2449 } 2450 2451 if (F.isMaterializable()) { 2452 // Function has a body somewhere we can't see. 2453 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2454 MDs.empty() ? nullptr : MDs.front().second); 2455 } else if (F.isDeclaration()) { 2456 for (const auto &I : MDs) { 2457 // This is used for call site debug information. 2458 AssertDI(I.first != LLVMContext::MD_dbg || 2459 !cast<DISubprogram>(I.second)->isDistinct(), 2460 "function declaration may only have a unique !dbg attachment", 2461 &F); 2462 Assert(I.first != LLVMContext::MD_prof, 2463 "function declaration may not have a !prof attachment", &F); 2464 2465 // Verify the metadata itself. 2466 visitMDNode(*I.second, AreDebugLocsAllowed::Yes); 2467 } 2468 Assert(!F.hasPersonalityFn(), 2469 "Function declaration shouldn't have a personality routine", &F); 2470 } else { 2471 // Verify that this function (which has a body) is not named "llvm.*". It 2472 // is not legal to define intrinsics. 2473 Assert(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F); 2474 2475 // Check the entry node 2476 const BasicBlock *Entry = &F.getEntryBlock(); 2477 Assert(pred_empty(Entry), 2478 "Entry block to function must not have predecessors!", Entry); 2479 2480 // The address of the entry block cannot be taken, unless it is dead. 2481 if (Entry->hasAddressTaken()) { 2482 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2483 "blockaddress may not be used with the entry block!", Entry); 2484 } 2485 2486 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2487 // Visit metadata attachments. 2488 for (const auto &I : MDs) { 2489 // Verify that the attachment is legal. 2490 auto AllowLocs = AreDebugLocsAllowed::No; 2491 switch (I.first) { 2492 default: 2493 break; 2494 case LLVMContext::MD_dbg: { 2495 ++NumDebugAttachments; 2496 AssertDI(NumDebugAttachments == 1, 2497 "function must have a single !dbg attachment", &F, I.second); 2498 AssertDI(isa<DISubprogram>(I.second), 2499 "function !dbg attachment must be a subprogram", &F, I.second); 2500 AssertDI(cast<DISubprogram>(I.second)->isDistinct(), 2501 "function definition may only have a distinct !dbg attachment", 2502 &F); 2503 2504 auto *SP = cast<DISubprogram>(I.second); 2505 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2506 AssertDI(!AttachedTo || AttachedTo == &F, 2507 "DISubprogram attached to more than one function", SP, &F); 2508 AttachedTo = &F; 2509 AllowLocs = AreDebugLocsAllowed::Yes; 2510 break; 2511 } 2512 case LLVMContext::MD_prof: 2513 ++NumProfAttachments; 2514 Assert(NumProfAttachments == 1, 2515 "function must have a single !prof attachment", &F, I.second); 2516 break; 2517 } 2518 2519 // Verify the metadata itself. 2520 visitMDNode(*I.second, AllowLocs); 2521 } 2522 } 2523 2524 // If this function is actually an intrinsic, verify that it is only used in 2525 // direct call/invokes, never having its "address taken". 2526 // Only do this if the module is materialized, otherwise we don't have all the 2527 // uses. 2528 if (F.isIntrinsic() && F.getParent()->isMaterialized()) { 2529 const User *U; 2530 if (F.hasAddressTaken(&U, false, true, false, 2531 /*IgnoreARCAttachedCall=*/true)) 2532 Assert(false, "Invalid user of intrinsic instruction!", U); 2533 } 2534 2535 // Check intrinsics' signatures. 2536 switch (F.getIntrinsicID()) { 2537 case Intrinsic::experimental_gc_get_pointer_base: { 2538 FunctionType *FT = F.getFunctionType(); 2539 Assert(FT->getNumParams() == 1, "wrong number of parameters", F); 2540 Assert(isa<PointerType>(F.getReturnType()), 2541 "gc.get.pointer.base must return a pointer", F); 2542 Assert(FT->getParamType(0) == F.getReturnType(), 2543 "gc.get.pointer.base operand and result must be of the same type", 2544 F); 2545 break; 2546 } 2547 case Intrinsic::experimental_gc_get_pointer_offset: { 2548 FunctionType *FT = F.getFunctionType(); 2549 Assert(FT->getNumParams() == 1, "wrong number of parameters", F); 2550 Assert(isa<PointerType>(FT->getParamType(0)), 2551 "gc.get.pointer.offset operand must be a pointer", F); 2552 Assert(F.getReturnType()->isIntegerTy(), 2553 "gc.get.pointer.offset must return integer", F); 2554 break; 2555 } 2556 } 2557 2558 auto *N = F.getSubprogram(); 2559 HasDebugInfo = (N != nullptr); 2560 if (!HasDebugInfo) 2561 return; 2562 2563 // Check that all !dbg attachments lead to back to N. 2564 // 2565 // FIXME: Check this incrementally while visiting !dbg attachments. 2566 // FIXME: Only check when N is the canonical subprogram for F. 2567 SmallPtrSet<const MDNode *, 32> Seen; 2568 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2569 // Be careful about using DILocation here since we might be dealing with 2570 // broken code (this is the Verifier after all). 2571 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2572 if (!DL) 2573 return; 2574 if (!Seen.insert(DL).second) 2575 return; 2576 2577 Metadata *Parent = DL->getRawScope(); 2578 AssertDI(Parent && isa<DILocalScope>(Parent), 2579 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2580 Parent); 2581 2582 DILocalScope *Scope = DL->getInlinedAtScope(); 2583 Assert(Scope, "Failed to find DILocalScope", DL); 2584 2585 if (!Seen.insert(Scope).second) 2586 return; 2587 2588 DISubprogram *SP = Scope->getSubprogram(); 2589 2590 // Scope and SP could be the same MDNode and we don't want to skip 2591 // validation in that case 2592 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2593 return; 2594 2595 AssertDI(SP->describes(&F), 2596 "!dbg attachment points at wrong subprogram for function", N, &F, 2597 &I, DL, Scope, SP); 2598 }; 2599 for (auto &BB : F) 2600 for (auto &I : BB) { 2601 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2602 // The llvm.loop annotations also contain two DILocations. 2603 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2604 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2605 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2606 if (BrokenDebugInfo) 2607 return; 2608 } 2609 } 2610 2611 // verifyBasicBlock - Verify that a basic block is well formed... 2612 // 2613 void Verifier::visitBasicBlock(BasicBlock &BB) { 2614 InstsInThisBlock.clear(); 2615 2616 // Ensure that basic blocks have terminators! 2617 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2618 2619 // Check constraints that this basic block imposes on all of the PHI nodes in 2620 // it. 2621 if (isa<PHINode>(BB.front())) { 2622 SmallVector<BasicBlock *, 8> Preds(predecessors(&BB)); 2623 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2624 llvm::sort(Preds); 2625 for (const PHINode &PN : BB.phis()) { 2626 Assert(PN.getNumIncomingValues() == Preds.size(), 2627 "PHINode should have one entry for each predecessor of its " 2628 "parent basic block!", 2629 &PN); 2630 2631 // Get and sort all incoming values in the PHI node... 2632 Values.clear(); 2633 Values.reserve(PN.getNumIncomingValues()); 2634 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2635 Values.push_back( 2636 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2637 llvm::sort(Values); 2638 2639 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2640 // Check to make sure that if there is more than one entry for a 2641 // particular basic block in this PHI node, that the incoming values are 2642 // all identical. 2643 // 2644 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2645 Values[i].second == Values[i - 1].second, 2646 "PHI node has multiple entries for the same basic block with " 2647 "different incoming values!", 2648 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2649 2650 // Check to make sure that the predecessors and PHI node entries are 2651 // matched up. 2652 Assert(Values[i].first == Preds[i], 2653 "PHI node entries do not match predecessors!", &PN, 2654 Values[i].first, Preds[i]); 2655 } 2656 } 2657 } 2658 2659 // Check that all instructions have their parent pointers set up correctly. 2660 for (auto &I : BB) 2661 { 2662 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2663 } 2664 } 2665 2666 void Verifier::visitTerminator(Instruction &I) { 2667 // Ensure that terminators only exist at the end of the basic block. 2668 Assert(&I == I.getParent()->getTerminator(), 2669 "Terminator found in the middle of a basic block!", I.getParent()); 2670 visitInstruction(I); 2671 } 2672 2673 void Verifier::visitBranchInst(BranchInst &BI) { 2674 if (BI.isConditional()) { 2675 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2676 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2677 } 2678 visitTerminator(BI); 2679 } 2680 2681 void Verifier::visitReturnInst(ReturnInst &RI) { 2682 Function *F = RI.getParent()->getParent(); 2683 unsigned N = RI.getNumOperands(); 2684 if (F->getReturnType()->isVoidTy()) 2685 Assert(N == 0, 2686 "Found return instr that returns non-void in Function of void " 2687 "return type!", 2688 &RI, F->getReturnType()); 2689 else 2690 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2691 "Function return type does not match operand " 2692 "type of return inst!", 2693 &RI, F->getReturnType()); 2694 2695 // Check to make sure that the return value has necessary properties for 2696 // terminators... 2697 visitTerminator(RI); 2698 } 2699 2700 void Verifier::visitSwitchInst(SwitchInst &SI) { 2701 Assert(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI); 2702 // Check to make sure that all of the constants in the switch instruction 2703 // have the same type as the switched-on value. 2704 Type *SwitchTy = SI.getCondition()->getType(); 2705 SmallPtrSet<ConstantInt*, 32> Constants; 2706 for (auto &Case : SI.cases()) { 2707 Assert(Case.getCaseValue()->getType() == SwitchTy, 2708 "Switch constants must all be same type as switch value!", &SI); 2709 Assert(Constants.insert(Case.getCaseValue()).second, 2710 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2711 } 2712 2713 visitTerminator(SI); 2714 } 2715 2716 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2717 Assert(BI.getAddress()->getType()->isPointerTy(), 2718 "Indirectbr operand must have pointer type!", &BI); 2719 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2720 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2721 "Indirectbr destinations must all have pointer type!", &BI); 2722 2723 visitTerminator(BI); 2724 } 2725 2726 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2727 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2728 &CBI); 2729 const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand()); 2730 Assert(!IA->canThrow(), "Unwinding from Callbr is not allowed"); 2731 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2732 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2733 "Callbr successors must all have pointer type!", &CBI); 2734 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2735 Assert(i >= CBI.arg_size() || !isa<BasicBlock>(CBI.getOperand(i)), 2736 "Using an unescaped label as a callbr argument!", &CBI); 2737 if (isa<BasicBlock>(CBI.getOperand(i))) 2738 for (unsigned j = i + 1; j != e; ++j) 2739 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2740 "Duplicate callbr destination!", &CBI); 2741 } 2742 { 2743 SmallPtrSet<BasicBlock *, 4> ArgBBs; 2744 for (Value *V : CBI.args()) 2745 if (auto *BA = dyn_cast<BlockAddress>(V)) 2746 ArgBBs.insert(BA->getBasicBlock()); 2747 for (BasicBlock *BB : CBI.getIndirectDests()) 2748 Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI); 2749 } 2750 2751 visitTerminator(CBI); 2752 } 2753 2754 void Verifier::visitSelectInst(SelectInst &SI) { 2755 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2756 SI.getOperand(2)), 2757 "Invalid operands for select instruction!", &SI); 2758 2759 Assert(SI.getTrueValue()->getType() == SI.getType(), 2760 "Select values must have same type as select instruction!", &SI); 2761 visitInstruction(SI); 2762 } 2763 2764 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2765 /// a pass, if any exist, it's an error. 2766 /// 2767 void Verifier::visitUserOp1(Instruction &I) { 2768 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2769 } 2770 2771 void Verifier::visitTruncInst(TruncInst &I) { 2772 // Get the source and destination types 2773 Type *SrcTy = I.getOperand(0)->getType(); 2774 Type *DestTy = I.getType(); 2775 2776 // Get the size of the types in bits, we'll need this later 2777 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2778 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2779 2780 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2781 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2782 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2783 "trunc source and destination must both be a vector or neither", &I); 2784 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2785 2786 visitInstruction(I); 2787 } 2788 2789 void Verifier::visitZExtInst(ZExtInst &I) { 2790 // Get the source and destination types 2791 Type *SrcTy = I.getOperand(0)->getType(); 2792 Type *DestTy = I.getType(); 2793 2794 // Get the size of the types in bits, we'll need this later 2795 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2796 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2797 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2798 "zext source and destination must both be a vector or neither", &I); 2799 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2800 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2801 2802 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2803 2804 visitInstruction(I); 2805 } 2806 2807 void Verifier::visitSExtInst(SExtInst &I) { 2808 // Get the source and destination types 2809 Type *SrcTy = I.getOperand(0)->getType(); 2810 Type *DestTy = I.getType(); 2811 2812 // Get the size of the types in bits, we'll need this later 2813 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2814 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2815 2816 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2817 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2818 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2819 "sext source and destination must both be a vector or neither", &I); 2820 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2821 2822 visitInstruction(I); 2823 } 2824 2825 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2826 // Get the source and destination types 2827 Type *SrcTy = I.getOperand(0)->getType(); 2828 Type *DestTy = I.getType(); 2829 // Get the size of the types in bits, we'll need this later 2830 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2831 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2832 2833 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2834 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2835 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2836 "fptrunc source and destination must both be a vector or neither", &I); 2837 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2838 2839 visitInstruction(I); 2840 } 2841 2842 void Verifier::visitFPExtInst(FPExtInst &I) { 2843 // Get the source and destination types 2844 Type *SrcTy = I.getOperand(0)->getType(); 2845 Type *DestTy = I.getType(); 2846 2847 // Get the size of the types in bits, we'll need this later 2848 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2849 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2850 2851 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2852 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2853 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2854 "fpext source and destination must both be a vector or neither", &I); 2855 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2856 2857 visitInstruction(I); 2858 } 2859 2860 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2861 // Get the source and destination types 2862 Type *SrcTy = I.getOperand(0)->getType(); 2863 Type *DestTy = I.getType(); 2864 2865 bool SrcVec = SrcTy->isVectorTy(); 2866 bool DstVec = DestTy->isVectorTy(); 2867 2868 Assert(SrcVec == DstVec, 2869 "UIToFP source and dest must both be vector or scalar", &I); 2870 Assert(SrcTy->isIntOrIntVectorTy(), 2871 "UIToFP source must be integer or integer vector", &I); 2872 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2873 &I); 2874 2875 if (SrcVec && DstVec) 2876 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2877 cast<VectorType>(DestTy)->getElementCount(), 2878 "UIToFP source and dest vector length mismatch", &I); 2879 2880 visitInstruction(I); 2881 } 2882 2883 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2884 // Get the source and destination types 2885 Type *SrcTy = I.getOperand(0)->getType(); 2886 Type *DestTy = I.getType(); 2887 2888 bool SrcVec = SrcTy->isVectorTy(); 2889 bool DstVec = DestTy->isVectorTy(); 2890 2891 Assert(SrcVec == DstVec, 2892 "SIToFP source and dest must both be vector or scalar", &I); 2893 Assert(SrcTy->isIntOrIntVectorTy(), 2894 "SIToFP source must be integer or integer vector", &I); 2895 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2896 &I); 2897 2898 if (SrcVec && DstVec) 2899 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2900 cast<VectorType>(DestTy)->getElementCount(), 2901 "SIToFP source and dest vector length mismatch", &I); 2902 2903 visitInstruction(I); 2904 } 2905 2906 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2907 // Get the source and destination types 2908 Type *SrcTy = I.getOperand(0)->getType(); 2909 Type *DestTy = I.getType(); 2910 2911 bool SrcVec = SrcTy->isVectorTy(); 2912 bool DstVec = DestTy->isVectorTy(); 2913 2914 Assert(SrcVec == DstVec, 2915 "FPToUI source and dest must both be vector or scalar", &I); 2916 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2917 &I); 2918 Assert(DestTy->isIntOrIntVectorTy(), 2919 "FPToUI result must be integer or integer vector", &I); 2920 2921 if (SrcVec && DstVec) 2922 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2923 cast<VectorType>(DestTy)->getElementCount(), 2924 "FPToUI source and dest vector length mismatch", &I); 2925 2926 visitInstruction(I); 2927 } 2928 2929 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2930 // Get the source and destination types 2931 Type *SrcTy = I.getOperand(0)->getType(); 2932 Type *DestTy = I.getType(); 2933 2934 bool SrcVec = SrcTy->isVectorTy(); 2935 bool DstVec = DestTy->isVectorTy(); 2936 2937 Assert(SrcVec == DstVec, 2938 "FPToSI source and dest must both be vector or scalar", &I); 2939 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2940 &I); 2941 Assert(DestTy->isIntOrIntVectorTy(), 2942 "FPToSI result must be integer or integer vector", &I); 2943 2944 if (SrcVec && DstVec) 2945 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2946 cast<VectorType>(DestTy)->getElementCount(), 2947 "FPToSI source and dest vector length mismatch", &I); 2948 2949 visitInstruction(I); 2950 } 2951 2952 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2953 // Get the source and destination types 2954 Type *SrcTy = I.getOperand(0)->getType(); 2955 Type *DestTy = I.getType(); 2956 2957 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2958 2959 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 2960 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2961 &I); 2962 2963 if (SrcTy->isVectorTy()) { 2964 auto *VSrc = cast<VectorType>(SrcTy); 2965 auto *VDest = cast<VectorType>(DestTy); 2966 Assert(VSrc->getElementCount() == VDest->getElementCount(), 2967 "PtrToInt Vector width mismatch", &I); 2968 } 2969 2970 visitInstruction(I); 2971 } 2972 2973 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2974 // Get the source and destination types 2975 Type *SrcTy = I.getOperand(0)->getType(); 2976 Type *DestTy = I.getType(); 2977 2978 Assert(SrcTy->isIntOrIntVectorTy(), 2979 "IntToPtr source must be an integral", &I); 2980 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 2981 2982 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2983 &I); 2984 if (SrcTy->isVectorTy()) { 2985 auto *VSrc = cast<VectorType>(SrcTy); 2986 auto *VDest = cast<VectorType>(DestTy); 2987 Assert(VSrc->getElementCount() == VDest->getElementCount(), 2988 "IntToPtr Vector width mismatch", &I); 2989 } 2990 visitInstruction(I); 2991 } 2992 2993 void Verifier::visitBitCastInst(BitCastInst &I) { 2994 Assert( 2995 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2996 "Invalid bitcast", &I); 2997 visitInstruction(I); 2998 } 2999 3000 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 3001 Type *SrcTy = I.getOperand(0)->getType(); 3002 Type *DestTy = I.getType(); 3003 3004 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 3005 &I); 3006 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 3007 &I); 3008 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 3009 "AddrSpaceCast must be between different address spaces", &I); 3010 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) 3011 Assert(SrcVTy->getElementCount() == 3012 cast<VectorType>(DestTy)->getElementCount(), 3013 "AddrSpaceCast vector pointer number of elements mismatch", &I); 3014 visitInstruction(I); 3015 } 3016 3017 /// visitPHINode - Ensure that a PHI node is well formed. 3018 /// 3019 void Verifier::visitPHINode(PHINode &PN) { 3020 // Ensure that the PHI nodes are all grouped together at the top of the block. 3021 // This can be tested by checking whether the instruction before this is 3022 // either nonexistent (because this is begin()) or is a PHI node. If not, 3023 // then there is some other instruction before a PHI. 3024 Assert(&PN == &PN.getParent()->front() || 3025 isa<PHINode>(--BasicBlock::iterator(&PN)), 3026 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 3027 3028 // Check that a PHI doesn't yield a Token. 3029 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 3030 3031 // Check that all of the values of the PHI node have the same type as the 3032 // result, and that the incoming blocks are really basic blocks. 3033 for (Value *IncValue : PN.incoming_values()) { 3034 Assert(PN.getType() == IncValue->getType(), 3035 "PHI node operands are not the same type as the result!", &PN); 3036 } 3037 3038 // All other PHI node constraints are checked in the visitBasicBlock method. 3039 3040 visitInstruction(PN); 3041 } 3042 3043 void Verifier::visitCallBase(CallBase &Call) { 3044 Assert(Call.getCalledOperand()->getType()->isPointerTy(), 3045 "Called function must be a pointer!", Call); 3046 PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType()); 3047 3048 Assert(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()), 3049 "Called function is not the same type as the call!", Call); 3050 3051 FunctionType *FTy = Call.getFunctionType(); 3052 3053 // Verify that the correct number of arguments are being passed 3054 if (FTy->isVarArg()) 3055 Assert(Call.arg_size() >= FTy->getNumParams(), 3056 "Called function requires more parameters than were provided!", 3057 Call); 3058 else 3059 Assert(Call.arg_size() == FTy->getNumParams(), 3060 "Incorrect number of arguments passed to called function!", Call); 3061 3062 // Verify that all arguments to the call match the function type. 3063 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3064 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 3065 "Call parameter type does not match function signature!", 3066 Call.getArgOperand(i), FTy->getParamType(i), Call); 3067 3068 AttributeList Attrs = Call.getAttributes(); 3069 3070 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 3071 "Attribute after last parameter!", Call); 3072 3073 Function *Callee = 3074 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 3075 bool IsIntrinsic = Callee && Callee->isIntrinsic(); 3076 if (IsIntrinsic) 3077 Assert(Callee->getValueType() == FTy, 3078 "Intrinsic called with incompatible signature", Call); 3079 3080 if (Attrs.hasFnAttr(Attribute::Speculatable)) { 3081 // Don't allow speculatable on call sites, unless the underlying function 3082 // declaration is also speculatable. 3083 Assert(Callee && Callee->isSpeculatable(), 3084 "speculatable attribute may not apply to call sites", Call); 3085 } 3086 3087 if (Attrs.hasFnAttr(Attribute::Preallocated)) { 3088 Assert(Call.getCalledFunction()->getIntrinsicID() == 3089 Intrinsic::call_preallocated_arg, 3090 "preallocated as a call site attribute can only be on " 3091 "llvm.call.preallocated.arg"); 3092 } 3093 3094 // Verify call attributes. 3095 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 3096 3097 // Conservatively check the inalloca argument. 3098 // We have a bug if we can find that there is an underlying alloca without 3099 // inalloca. 3100 if (Call.hasInAllocaArgument()) { 3101 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 3102 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 3103 Assert(AI->isUsedWithInAlloca(), 3104 "inalloca argument for call has mismatched alloca", AI, Call); 3105 } 3106 3107 // For each argument of the callsite, if it has the swifterror argument, 3108 // make sure the underlying alloca/parameter it comes from has a swifterror as 3109 // well. 3110 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3111 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 3112 Value *SwiftErrorArg = Call.getArgOperand(i); 3113 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 3114 Assert(AI->isSwiftError(), 3115 "swifterror argument for call has mismatched alloca", AI, Call); 3116 continue; 3117 } 3118 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 3119 Assert(ArgI, 3120 "swifterror argument should come from an alloca or parameter", 3121 SwiftErrorArg, Call); 3122 Assert(ArgI->hasSwiftErrorAttr(), 3123 "swifterror argument for call has mismatched parameter", ArgI, 3124 Call); 3125 } 3126 3127 if (Attrs.hasParamAttr(i, Attribute::ImmArg)) { 3128 // Don't allow immarg on call sites, unless the underlying declaration 3129 // also has the matching immarg. 3130 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 3131 "immarg may not apply only to call sites", 3132 Call.getArgOperand(i), Call); 3133 } 3134 3135 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 3136 Value *ArgVal = Call.getArgOperand(i); 3137 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 3138 "immarg operand has non-immediate parameter", ArgVal, Call); 3139 } 3140 3141 if (Call.paramHasAttr(i, Attribute::Preallocated)) { 3142 Value *ArgVal = Call.getArgOperand(i); 3143 bool hasOB = 3144 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0; 3145 bool isMustTail = Call.isMustTailCall(); 3146 Assert(hasOB != isMustTail, 3147 "preallocated operand either requires a preallocated bundle or " 3148 "the call to be musttail (but not both)", 3149 ArgVal, Call); 3150 } 3151 } 3152 3153 if (FTy->isVarArg()) { 3154 // FIXME? is 'nest' even legal here? 3155 bool SawNest = false; 3156 bool SawReturned = false; 3157 3158 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 3159 if (Attrs.hasParamAttr(Idx, Attribute::Nest)) 3160 SawNest = true; 3161 if (Attrs.hasParamAttr(Idx, Attribute::Returned)) 3162 SawReturned = true; 3163 } 3164 3165 // Check attributes on the varargs part. 3166 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 3167 Type *Ty = Call.getArgOperand(Idx)->getType(); 3168 AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx); 3169 verifyParameterAttrs(ArgAttrs, Ty, &Call); 3170 3171 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 3172 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 3173 SawNest = true; 3174 } 3175 3176 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 3177 Assert(!SawReturned, "More than one parameter has attribute returned!", 3178 Call); 3179 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 3180 "Incompatible argument and return types for 'returned' " 3181 "attribute", 3182 Call); 3183 SawReturned = true; 3184 } 3185 3186 // Statepoint intrinsic is vararg but the wrapped function may be not. 3187 // Allow sret here and check the wrapped function in verifyStatepoint. 3188 if (!Call.getCalledFunction() || 3189 Call.getCalledFunction()->getIntrinsicID() != 3190 Intrinsic::experimental_gc_statepoint) 3191 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 3192 "Attribute 'sret' cannot be used for vararg call arguments!", 3193 Call); 3194 3195 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 3196 Assert(Idx == Call.arg_size() - 1, 3197 "inalloca isn't on the last argument!", Call); 3198 } 3199 } 3200 3201 // Verify that there's no metadata unless it's a direct call to an intrinsic. 3202 if (!IsIntrinsic) { 3203 for (Type *ParamTy : FTy->params()) { 3204 Assert(!ParamTy->isMetadataTy(), 3205 "Function has metadata parameter but isn't an intrinsic", Call); 3206 Assert(!ParamTy->isTokenTy(), 3207 "Function has token parameter but isn't an intrinsic", Call); 3208 } 3209 } 3210 3211 // Verify that indirect calls don't return tokens. 3212 if (!Call.getCalledFunction()) { 3213 Assert(!FTy->getReturnType()->isTokenTy(), 3214 "Return type cannot be token for indirect call!"); 3215 Assert(!FTy->getReturnType()->isX86_AMXTy(), 3216 "Return type cannot be x86_amx for indirect call!"); 3217 } 3218 3219 if (Function *F = Call.getCalledFunction()) 3220 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 3221 visitIntrinsicCall(ID, Call); 3222 3223 // Verify that a callsite has at most one "deopt", at most one "funclet", at 3224 // most one "gc-transition", at most one "cfguardtarget", 3225 // and at most one "preallocated" operand bundle. 3226 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3227 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, 3228 FoundPreallocatedBundle = false, FoundGCLiveBundle = false, 3229 FoundAttachedCallBundle = false; 3230 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 3231 OperandBundleUse BU = Call.getOperandBundleAt(i); 3232 uint32_t Tag = BU.getTagID(); 3233 if (Tag == LLVMContext::OB_deopt) { 3234 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 3235 FoundDeoptBundle = true; 3236 } else if (Tag == LLVMContext::OB_gc_transition) { 3237 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 3238 Call); 3239 FoundGCTransitionBundle = true; 3240 } else if (Tag == LLVMContext::OB_funclet) { 3241 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 3242 FoundFuncletBundle = true; 3243 Assert(BU.Inputs.size() == 1, 3244 "Expected exactly one funclet bundle operand", Call); 3245 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 3246 "Funclet bundle operands should correspond to a FuncletPadInst", 3247 Call); 3248 } else if (Tag == LLVMContext::OB_cfguardtarget) { 3249 Assert(!FoundCFGuardTargetBundle, 3250 "Multiple CFGuardTarget operand bundles", Call); 3251 FoundCFGuardTargetBundle = true; 3252 Assert(BU.Inputs.size() == 1, 3253 "Expected exactly one cfguardtarget bundle operand", Call); 3254 } else if (Tag == LLVMContext::OB_preallocated) { 3255 Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles", 3256 Call); 3257 FoundPreallocatedBundle = true; 3258 Assert(BU.Inputs.size() == 1, 3259 "Expected exactly one preallocated bundle operand", Call); 3260 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); 3261 Assert(Input && 3262 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup, 3263 "\"preallocated\" argument must be a token from " 3264 "llvm.call.preallocated.setup", 3265 Call); 3266 } else if (Tag == LLVMContext::OB_gc_live) { 3267 Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles", 3268 Call); 3269 FoundGCLiveBundle = true; 3270 } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) { 3271 Assert(!FoundAttachedCallBundle, 3272 "Multiple \"clang.arc.attachedcall\" operand bundles", Call); 3273 FoundAttachedCallBundle = true; 3274 verifyAttachedCallBundle(Call, BU); 3275 } 3276 } 3277 3278 // Verify that each inlinable callsite of a debug-info-bearing function in a 3279 // debug-info-bearing function has a debug location attached to it. Failure to 3280 // do so causes assertion failures when the inliner sets up inline scope info. 3281 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3282 Call.getCalledFunction()->getSubprogram()) 3283 AssertDI(Call.getDebugLoc(), 3284 "inlinable function call in a function with " 3285 "debug info must have a !dbg location", 3286 Call); 3287 3288 visitInstruction(Call); 3289 } 3290 3291 void Verifier::verifyTailCCMustTailAttrs(AttrBuilder Attrs, 3292 StringRef Context) { 3293 Assert(!Attrs.contains(Attribute::InAlloca), 3294 Twine("inalloca attribute not allowed in ") + Context); 3295 Assert(!Attrs.contains(Attribute::InReg), 3296 Twine("inreg attribute not allowed in ") + Context); 3297 Assert(!Attrs.contains(Attribute::SwiftError), 3298 Twine("swifterror attribute not allowed in ") + Context); 3299 Assert(!Attrs.contains(Attribute::Preallocated), 3300 Twine("preallocated attribute not allowed in ") + Context); 3301 Assert(!Attrs.contains(Attribute::ByRef), 3302 Twine("byref attribute not allowed in ") + Context); 3303 } 3304 3305 /// Two types are "congruent" if they are identical, or if they are both pointer 3306 /// types with different pointee types and the same address space. 3307 static bool isTypeCongruent(Type *L, Type *R) { 3308 if (L == R) 3309 return true; 3310 PointerType *PL = dyn_cast<PointerType>(L); 3311 PointerType *PR = dyn_cast<PointerType>(R); 3312 if (!PL || !PR) 3313 return false; 3314 return PL->getAddressSpace() == PR->getAddressSpace(); 3315 } 3316 3317 static AttrBuilder getParameterABIAttributes(unsigned I, AttributeList Attrs) { 3318 static const Attribute::AttrKind ABIAttrs[] = { 3319 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3320 Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf, 3321 Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated, 3322 Attribute::ByRef}; 3323 AttrBuilder Copy; 3324 for (auto AK : ABIAttrs) { 3325 Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK); 3326 if (Attr.isValid()) 3327 Copy.addAttribute(Attr); 3328 } 3329 3330 // `align` is ABI-affecting only in combination with `byval` or `byref`. 3331 if (Attrs.hasParamAttr(I, Attribute::Alignment) && 3332 (Attrs.hasParamAttr(I, Attribute::ByVal) || 3333 Attrs.hasParamAttr(I, Attribute::ByRef))) 3334 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3335 return Copy; 3336 } 3337 3338 void Verifier::verifyMustTailCall(CallInst &CI) { 3339 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3340 3341 Function *F = CI.getParent()->getParent(); 3342 FunctionType *CallerTy = F->getFunctionType(); 3343 FunctionType *CalleeTy = CI.getFunctionType(); 3344 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3345 "cannot guarantee tail call due to mismatched varargs", &CI); 3346 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3347 "cannot guarantee tail call due to mismatched return types", &CI); 3348 3349 // - The calling conventions of the caller and callee must match. 3350 Assert(F->getCallingConv() == CI.getCallingConv(), 3351 "cannot guarantee tail call due to mismatched calling conv", &CI); 3352 3353 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3354 // or a pointer bitcast followed by a ret instruction. 3355 // - The ret instruction must return the (possibly bitcasted) value 3356 // produced by the call or void. 3357 Value *RetVal = &CI; 3358 Instruction *Next = CI.getNextNode(); 3359 3360 // Handle the optional bitcast. 3361 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3362 Assert(BI->getOperand(0) == RetVal, 3363 "bitcast following musttail call must use the call", BI); 3364 RetVal = BI; 3365 Next = BI->getNextNode(); 3366 } 3367 3368 // Check the return. 3369 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3370 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3371 &CI); 3372 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal || 3373 isa<UndefValue>(Ret->getReturnValue()), 3374 "musttail call result must be returned", Ret); 3375 3376 AttributeList CallerAttrs = F->getAttributes(); 3377 AttributeList CalleeAttrs = CI.getAttributes(); 3378 if (CI.getCallingConv() == CallingConv::SwiftTail || 3379 CI.getCallingConv() == CallingConv::Tail) { 3380 StringRef CCName = 3381 CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc"; 3382 3383 // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes 3384 // are allowed in swifttailcc call 3385 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3386 AttrBuilder ABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3387 SmallString<32> Context{CCName, StringRef(" musttail caller")}; 3388 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3389 } 3390 for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) { 3391 AttrBuilder ABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3392 SmallString<32> Context{CCName, StringRef(" musttail callee")}; 3393 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3394 } 3395 // - Varargs functions are not allowed 3396 Assert(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName + 3397 " tail call for varargs function"); 3398 return; 3399 } 3400 3401 // - The caller and callee prototypes must match. Pointer types of 3402 // parameters or return types may differ in pointee type, but not 3403 // address space. 3404 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3405 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3406 "cannot guarantee tail call due to mismatched parameter counts", 3407 &CI); 3408 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3409 Assert( 3410 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3411 "cannot guarantee tail call due to mismatched parameter types", &CI); 3412 } 3413 } 3414 3415 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3416 // returned, preallocated, and inalloca, must match. 3417 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3418 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3419 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3420 Assert(CallerABIAttrs == CalleeABIAttrs, 3421 "cannot guarantee tail call due to mismatched ABI impacting " 3422 "function attributes", 3423 &CI, CI.getOperand(I)); 3424 } 3425 } 3426 3427 void Verifier::visitCallInst(CallInst &CI) { 3428 visitCallBase(CI); 3429 3430 if (CI.isMustTailCall()) 3431 verifyMustTailCall(CI); 3432 } 3433 3434 void Verifier::visitInvokeInst(InvokeInst &II) { 3435 visitCallBase(II); 3436 3437 // Verify that the first non-PHI instruction of the unwind destination is an 3438 // exception handling instruction. 3439 Assert( 3440 II.getUnwindDest()->isEHPad(), 3441 "The unwind destination does not have an exception handling instruction!", 3442 &II); 3443 3444 visitTerminator(II); 3445 } 3446 3447 /// visitUnaryOperator - Check the argument to the unary operator. 3448 /// 3449 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3450 Assert(U.getType() == U.getOperand(0)->getType(), 3451 "Unary operators must have same type for" 3452 "operands and result!", 3453 &U); 3454 3455 switch (U.getOpcode()) { 3456 // Check that floating-point arithmetic operators are only used with 3457 // floating-point operands. 3458 case Instruction::FNeg: 3459 Assert(U.getType()->isFPOrFPVectorTy(), 3460 "FNeg operator only works with float types!", &U); 3461 break; 3462 default: 3463 llvm_unreachable("Unknown UnaryOperator opcode!"); 3464 } 3465 3466 visitInstruction(U); 3467 } 3468 3469 /// visitBinaryOperator - Check that both arguments to the binary operator are 3470 /// of the same type! 3471 /// 3472 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3473 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3474 "Both operands to a binary operator are not of the same type!", &B); 3475 3476 switch (B.getOpcode()) { 3477 // Check that integer arithmetic operators are only used with 3478 // integral operands. 3479 case Instruction::Add: 3480 case Instruction::Sub: 3481 case Instruction::Mul: 3482 case Instruction::SDiv: 3483 case Instruction::UDiv: 3484 case Instruction::SRem: 3485 case Instruction::URem: 3486 Assert(B.getType()->isIntOrIntVectorTy(), 3487 "Integer arithmetic operators only work with integral types!", &B); 3488 Assert(B.getType() == B.getOperand(0)->getType(), 3489 "Integer arithmetic operators must have same type " 3490 "for operands and result!", 3491 &B); 3492 break; 3493 // Check that floating-point arithmetic operators are only used with 3494 // floating-point operands. 3495 case Instruction::FAdd: 3496 case Instruction::FSub: 3497 case Instruction::FMul: 3498 case Instruction::FDiv: 3499 case Instruction::FRem: 3500 Assert(B.getType()->isFPOrFPVectorTy(), 3501 "Floating-point arithmetic operators only work with " 3502 "floating-point types!", 3503 &B); 3504 Assert(B.getType() == B.getOperand(0)->getType(), 3505 "Floating-point arithmetic operators must have same type " 3506 "for operands and result!", 3507 &B); 3508 break; 3509 // Check that logical operators are only used with integral operands. 3510 case Instruction::And: 3511 case Instruction::Or: 3512 case Instruction::Xor: 3513 Assert(B.getType()->isIntOrIntVectorTy(), 3514 "Logical operators only work with integral types!", &B); 3515 Assert(B.getType() == B.getOperand(0)->getType(), 3516 "Logical operators must have same type for operands and result!", 3517 &B); 3518 break; 3519 case Instruction::Shl: 3520 case Instruction::LShr: 3521 case Instruction::AShr: 3522 Assert(B.getType()->isIntOrIntVectorTy(), 3523 "Shifts only work with integral types!", &B); 3524 Assert(B.getType() == B.getOperand(0)->getType(), 3525 "Shift return type must be same as operands!", &B); 3526 break; 3527 default: 3528 llvm_unreachable("Unknown BinaryOperator opcode!"); 3529 } 3530 3531 visitInstruction(B); 3532 } 3533 3534 void Verifier::visitICmpInst(ICmpInst &IC) { 3535 // Check that the operands are the same type 3536 Type *Op0Ty = IC.getOperand(0)->getType(); 3537 Type *Op1Ty = IC.getOperand(1)->getType(); 3538 Assert(Op0Ty == Op1Ty, 3539 "Both operands to ICmp instruction are not of the same type!", &IC); 3540 // Check that the operands are the right type 3541 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3542 "Invalid operand types for ICmp instruction", &IC); 3543 // Check that the predicate is valid. 3544 Assert(IC.isIntPredicate(), 3545 "Invalid predicate in ICmp instruction!", &IC); 3546 3547 visitInstruction(IC); 3548 } 3549 3550 void Verifier::visitFCmpInst(FCmpInst &FC) { 3551 // Check that the operands are the same type 3552 Type *Op0Ty = FC.getOperand(0)->getType(); 3553 Type *Op1Ty = FC.getOperand(1)->getType(); 3554 Assert(Op0Ty == Op1Ty, 3555 "Both operands to FCmp instruction are not of the same type!", &FC); 3556 // Check that the operands are the right type 3557 Assert(Op0Ty->isFPOrFPVectorTy(), 3558 "Invalid operand types for FCmp instruction", &FC); 3559 // Check that the predicate is valid. 3560 Assert(FC.isFPPredicate(), 3561 "Invalid predicate in FCmp instruction!", &FC); 3562 3563 visitInstruction(FC); 3564 } 3565 3566 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3567 Assert( 3568 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3569 "Invalid extractelement operands!", &EI); 3570 visitInstruction(EI); 3571 } 3572 3573 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3574 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3575 IE.getOperand(2)), 3576 "Invalid insertelement operands!", &IE); 3577 visitInstruction(IE); 3578 } 3579 3580 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3581 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3582 SV.getShuffleMask()), 3583 "Invalid shufflevector operands!", &SV); 3584 visitInstruction(SV); 3585 } 3586 3587 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3588 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3589 3590 Assert(isa<PointerType>(TargetTy), 3591 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3592 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3593 3594 SmallVector<Value *, 16> Idxs(GEP.indices()); 3595 Assert(all_of( 3596 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3597 "GEP indexes must be integers", &GEP); 3598 Type *ElTy = 3599 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3600 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3601 3602 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3603 GEP.getResultElementType() == ElTy, 3604 "GEP is not of right type for indices!", &GEP, ElTy); 3605 3606 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { 3607 // Additional checks for vector GEPs. 3608 ElementCount GEPWidth = GEPVTy->getElementCount(); 3609 if (GEP.getPointerOperandType()->isVectorTy()) 3610 Assert( 3611 GEPWidth == 3612 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(), 3613 "Vector GEP result width doesn't match operand's", &GEP); 3614 for (Value *Idx : Idxs) { 3615 Type *IndexTy = Idx->getType(); 3616 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { 3617 ElementCount IndexWidth = IndexVTy->getElementCount(); 3618 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3619 } 3620 Assert(IndexTy->isIntOrIntVectorTy(), 3621 "All GEP indices should be of integer type"); 3622 } 3623 } 3624 3625 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3626 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3627 "GEP address space doesn't match type", &GEP); 3628 } 3629 3630 visitInstruction(GEP); 3631 } 3632 3633 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3634 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3635 } 3636 3637 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3638 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3639 "precondition violation"); 3640 3641 unsigned NumOperands = Range->getNumOperands(); 3642 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3643 unsigned NumRanges = NumOperands / 2; 3644 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3645 3646 ConstantRange LastRange(1, true); // Dummy initial value 3647 for (unsigned i = 0; i < NumRanges; ++i) { 3648 ConstantInt *Low = 3649 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3650 Assert(Low, "The lower limit must be an integer!", Low); 3651 ConstantInt *High = 3652 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3653 Assert(High, "The upper limit must be an integer!", High); 3654 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3655 "Range types must match instruction type!", &I); 3656 3657 APInt HighV = High->getValue(); 3658 APInt LowV = Low->getValue(); 3659 ConstantRange CurRange(LowV, HighV); 3660 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3661 "Range must not be empty!", Range); 3662 if (i != 0) { 3663 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3664 "Intervals are overlapping", Range); 3665 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3666 Range); 3667 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3668 Range); 3669 } 3670 LastRange = ConstantRange(LowV, HighV); 3671 } 3672 if (NumRanges > 2) { 3673 APInt FirstLow = 3674 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3675 APInt FirstHigh = 3676 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3677 ConstantRange FirstRange(FirstLow, FirstHigh); 3678 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3679 "Intervals are overlapping", Range); 3680 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3681 Range); 3682 } 3683 } 3684 3685 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3686 unsigned Size = DL.getTypeSizeInBits(Ty); 3687 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3688 Assert(!(Size & (Size - 1)), 3689 "atomic memory access' operand must have a power-of-two size", Ty, I); 3690 } 3691 3692 void Verifier::visitLoadInst(LoadInst &LI) { 3693 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3694 Assert(PTy, "Load operand must be a pointer.", &LI); 3695 Type *ElTy = LI.getType(); 3696 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3697 "huge alignment values are unsupported", &LI); 3698 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3699 if (LI.isAtomic()) { 3700 Assert(LI.getOrdering() != AtomicOrdering::Release && 3701 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3702 "Load cannot have Release ordering", &LI); 3703 Assert(LI.getAlignment() != 0, 3704 "Atomic load must specify explicit alignment", &LI); 3705 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3706 "atomic load operand must have integer, pointer, or floating point " 3707 "type!", 3708 ElTy, &LI); 3709 checkAtomicMemAccessSize(ElTy, &LI); 3710 } else { 3711 Assert(LI.getSyncScopeID() == SyncScope::System, 3712 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3713 } 3714 3715 visitInstruction(LI); 3716 } 3717 3718 void Verifier::visitStoreInst(StoreInst &SI) { 3719 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3720 Assert(PTy, "Store operand must be a pointer.", &SI); 3721 Type *ElTy = SI.getOperand(0)->getType(); 3722 Assert(PTy->isOpaqueOrPointeeTypeMatches(ElTy), 3723 "Stored value type does not match pointer operand type!", &SI, ElTy); 3724 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3725 "huge alignment values are unsupported", &SI); 3726 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3727 if (SI.isAtomic()) { 3728 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3729 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3730 "Store cannot have Acquire ordering", &SI); 3731 Assert(SI.getAlignment() != 0, 3732 "Atomic store must specify explicit alignment", &SI); 3733 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3734 "atomic store operand must have integer, pointer, or floating point " 3735 "type!", 3736 ElTy, &SI); 3737 checkAtomicMemAccessSize(ElTy, &SI); 3738 } else { 3739 Assert(SI.getSyncScopeID() == SyncScope::System, 3740 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3741 } 3742 visitInstruction(SI); 3743 } 3744 3745 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3746 void Verifier::verifySwiftErrorCall(CallBase &Call, 3747 const Value *SwiftErrorVal) { 3748 for (const auto &I : llvm::enumerate(Call.args())) { 3749 if (I.value() == SwiftErrorVal) { 3750 Assert(Call.paramHasAttr(I.index(), Attribute::SwiftError), 3751 "swifterror value when used in a callsite should be marked " 3752 "with swifterror attribute", 3753 SwiftErrorVal, Call); 3754 } 3755 } 3756 } 3757 3758 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3759 // Check that swifterror value is only used by loads, stores, or as 3760 // a swifterror argument. 3761 for (const User *U : SwiftErrorVal->users()) { 3762 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3763 isa<InvokeInst>(U), 3764 "swifterror value can only be loaded and stored from, or " 3765 "as a swifterror argument!", 3766 SwiftErrorVal, U); 3767 // If it is used by a store, check it is the second operand. 3768 if (auto StoreI = dyn_cast<StoreInst>(U)) 3769 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3770 "swifterror value should be the second operand when used " 3771 "by stores", SwiftErrorVal, U); 3772 if (auto *Call = dyn_cast<CallBase>(U)) 3773 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3774 } 3775 } 3776 3777 void Verifier::visitAllocaInst(AllocaInst &AI) { 3778 SmallPtrSet<Type*, 4> Visited; 3779 Assert(AI.getAllocatedType()->isSized(&Visited), 3780 "Cannot allocate unsized type", &AI); 3781 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3782 "Alloca array size must have integer type", &AI); 3783 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3784 "huge alignment values are unsupported", &AI); 3785 3786 if (AI.isSwiftError()) { 3787 verifySwiftErrorValue(&AI); 3788 } 3789 3790 visitInstruction(AI); 3791 } 3792 3793 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3794 Type *ElTy = CXI.getOperand(1)->getType(); 3795 Assert(ElTy->isIntOrPtrTy(), 3796 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3797 checkAtomicMemAccessSize(ElTy, &CXI); 3798 visitInstruction(CXI); 3799 } 3800 3801 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3802 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3803 "atomicrmw instructions cannot be unordered.", &RMWI); 3804 auto Op = RMWI.getOperation(); 3805 Type *ElTy = RMWI.getOperand(1)->getType(); 3806 if (Op == AtomicRMWInst::Xchg) { 3807 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3808 AtomicRMWInst::getOperationName(Op) + 3809 " operand must have integer or floating point type!", 3810 &RMWI, ElTy); 3811 } else if (AtomicRMWInst::isFPOperation(Op)) { 3812 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3813 AtomicRMWInst::getOperationName(Op) + 3814 " operand must have floating point type!", 3815 &RMWI, ElTy); 3816 } else { 3817 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3818 AtomicRMWInst::getOperationName(Op) + 3819 " operand must have integer type!", 3820 &RMWI, ElTy); 3821 } 3822 checkAtomicMemAccessSize(ElTy, &RMWI); 3823 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3824 "Invalid binary operation!", &RMWI); 3825 visitInstruction(RMWI); 3826 } 3827 3828 void Verifier::visitFenceInst(FenceInst &FI) { 3829 const AtomicOrdering Ordering = FI.getOrdering(); 3830 Assert(Ordering == AtomicOrdering::Acquire || 3831 Ordering == AtomicOrdering::Release || 3832 Ordering == AtomicOrdering::AcquireRelease || 3833 Ordering == AtomicOrdering::SequentiallyConsistent, 3834 "fence instructions may only have acquire, release, acq_rel, or " 3835 "seq_cst ordering.", 3836 &FI); 3837 visitInstruction(FI); 3838 } 3839 3840 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3841 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3842 EVI.getIndices()) == EVI.getType(), 3843 "Invalid ExtractValueInst operands!", &EVI); 3844 3845 visitInstruction(EVI); 3846 } 3847 3848 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3849 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3850 IVI.getIndices()) == 3851 IVI.getOperand(1)->getType(), 3852 "Invalid InsertValueInst operands!", &IVI); 3853 3854 visitInstruction(IVI); 3855 } 3856 3857 static Value *getParentPad(Value *EHPad) { 3858 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3859 return FPI->getParentPad(); 3860 3861 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3862 } 3863 3864 void Verifier::visitEHPadPredecessors(Instruction &I) { 3865 assert(I.isEHPad()); 3866 3867 BasicBlock *BB = I.getParent(); 3868 Function *F = BB->getParent(); 3869 3870 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3871 3872 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3873 // The landingpad instruction defines its parent as a landing pad block. The 3874 // landing pad block may be branched to only by the unwind edge of an 3875 // invoke. 3876 for (BasicBlock *PredBB : predecessors(BB)) { 3877 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3878 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3879 "Block containing LandingPadInst must be jumped to " 3880 "only by the unwind edge of an invoke.", 3881 LPI); 3882 } 3883 return; 3884 } 3885 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3886 if (!pred_empty(BB)) 3887 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3888 "Block containg CatchPadInst must be jumped to " 3889 "only by its catchswitch.", 3890 CPI); 3891 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3892 "Catchswitch cannot unwind to one of its catchpads", 3893 CPI->getCatchSwitch(), CPI); 3894 return; 3895 } 3896 3897 // Verify that each pred has a legal terminator with a legal to/from EH 3898 // pad relationship. 3899 Instruction *ToPad = &I; 3900 Value *ToPadParent = getParentPad(ToPad); 3901 for (BasicBlock *PredBB : predecessors(BB)) { 3902 Instruction *TI = PredBB->getTerminator(); 3903 Value *FromPad; 3904 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3905 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3906 "EH pad must be jumped to via an unwind edge", ToPad, II); 3907 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3908 FromPad = Bundle->Inputs[0]; 3909 else 3910 FromPad = ConstantTokenNone::get(II->getContext()); 3911 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3912 FromPad = CRI->getOperand(0); 3913 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3914 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3915 FromPad = CSI; 3916 } else { 3917 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3918 } 3919 3920 // The edge may exit from zero or more nested pads. 3921 SmallSet<Value *, 8> Seen; 3922 for (;; FromPad = getParentPad(FromPad)) { 3923 Assert(FromPad != ToPad, 3924 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3925 if (FromPad == ToPadParent) { 3926 // This is a legal unwind edge. 3927 break; 3928 } 3929 Assert(!isa<ConstantTokenNone>(FromPad), 3930 "A single unwind edge may only enter one EH pad", TI); 3931 Assert(Seen.insert(FromPad).second, 3932 "EH pad jumps through a cycle of pads", FromPad); 3933 } 3934 } 3935 } 3936 3937 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3938 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3939 // isn't a cleanup. 3940 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3941 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3942 3943 visitEHPadPredecessors(LPI); 3944 3945 if (!LandingPadResultTy) 3946 LandingPadResultTy = LPI.getType(); 3947 else 3948 Assert(LandingPadResultTy == LPI.getType(), 3949 "The landingpad instruction should have a consistent result type " 3950 "inside a function.", 3951 &LPI); 3952 3953 Function *F = LPI.getParent()->getParent(); 3954 Assert(F->hasPersonalityFn(), 3955 "LandingPadInst needs to be in a function with a personality.", &LPI); 3956 3957 // The landingpad instruction must be the first non-PHI instruction in the 3958 // block. 3959 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3960 "LandingPadInst not the first non-PHI instruction in the block.", 3961 &LPI); 3962 3963 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3964 Constant *Clause = LPI.getClause(i); 3965 if (LPI.isCatch(i)) { 3966 Assert(isa<PointerType>(Clause->getType()), 3967 "Catch operand does not have pointer type!", &LPI); 3968 } else { 3969 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3970 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3971 "Filter operand is not an array of constants!", &LPI); 3972 } 3973 } 3974 3975 visitInstruction(LPI); 3976 } 3977 3978 void Verifier::visitResumeInst(ResumeInst &RI) { 3979 Assert(RI.getFunction()->hasPersonalityFn(), 3980 "ResumeInst needs to be in a function with a personality.", &RI); 3981 3982 if (!LandingPadResultTy) 3983 LandingPadResultTy = RI.getValue()->getType(); 3984 else 3985 Assert(LandingPadResultTy == RI.getValue()->getType(), 3986 "The resume instruction should have a consistent result type " 3987 "inside a function.", 3988 &RI); 3989 3990 visitTerminator(RI); 3991 } 3992 3993 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3994 BasicBlock *BB = CPI.getParent(); 3995 3996 Function *F = BB->getParent(); 3997 Assert(F->hasPersonalityFn(), 3998 "CatchPadInst needs to be in a function with a personality.", &CPI); 3999 4000 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 4001 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 4002 CPI.getParentPad()); 4003 4004 // The catchpad instruction must be the first non-PHI instruction in the 4005 // block. 4006 Assert(BB->getFirstNonPHI() == &CPI, 4007 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 4008 4009 visitEHPadPredecessors(CPI); 4010 visitFuncletPadInst(CPI); 4011 } 4012 4013 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 4014 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 4015 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 4016 CatchReturn.getOperand(0)); 4017 4018 visitTerminator(CatchReturn); 4019 } 4020 4021 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 4022 BasicBlock *BB = CPI.getParent(); 4023 4024 Function *F = BB->getParent(); 4025 Assert(F->hasPersonalityFn(), 4026 "CleanupPadInst needs to be in a function with a personality.", &CPI); 4027 4028 // The cleanuppad instruction must be the first non-PHI instruction in the 4029 // block. 4030 Assert(BB->getFirstNonPHI() == &CPI, 4031 "CleanupPadInst not the first non-PHI instruction in the block.", 4032 &CPI); 4033 4034 auto *ParentPad = CPI.getParentPad(); 4035 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4036 "CleanupPadInst has an invalid parent.", &CPI); 4037 4038 visitEHPadPredecessors(CPI); 4039 visitFuncletPadInst(CPI); 4040 } 4041 4042 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 4043 User *FirstUser = nullptr; 4044 Value *FirstUnwindPad = nullptr; 4045 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 4046 SmallSet<FuncletPadInst *, 8> Seen; 4047 4048 while (!Worklist.empty()) { 4049 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 4050 Assert(Seen.insert(CurrentPad).second, 4051 "FuncletPadInst must not be nested within itself", CurrentPad); 4052 Value *UnresolvedAncestorPad = nullptr; 4053 for (User *U : CurrentPad->users()) { 4054 BasicBlock *UnwindDest; 4055 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 4056 UnwindDest = CRI->getUnwindDest(); 4057 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 4058 // We allow catchswitch unwind to caller to nest 4059 // within an outer pad that unwinds somewhere else, 4060 // because catchswitch doesn't have a nounwind variant. 4061 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 4062 if (CSI->unwindsToCaller()) 4063 continue; 4064 UnwindDest = CSI->getUnwindDest(); 4065 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 4066 UnwindDest = II->getUnwindDest(); 4067 } else if (isa<CallInst>(U)) { 4068 // Calls which don't unwind may be found inside funclet 4069 // pads that unwind somewhere else. We don't *require* 4070 // such calls to be annotated nounwind. 4071 continue; 4072 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 4073 // The unwind dest for a cleanup can only be found by 4074 // recursive search. Add it to the worklist, and we'll 4075 // search for its first use that determines where it unwinds. 4076 Worklist.push_back(CPI); 4077 continue; 4078 } else { 4079 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 4080 continue; 4081 } 4082 4083 Value *UnwindPad; 4084 bool ExitsFPI; 4085 if (UnwindDest) { 4086 UnwindPad = UnwindDest->getFirstNonPHI(); 4087 if (!cast<Instruction>(UnwindPad)->isEHPad()) 4088 continue; 4089 Value *UnwindParent = getParentPad(UnwindPad); 4090 // Ignore unwind edges that don't exit CurrentPad. 4091 if (UnwindParent == CurrentPad) 4092 continue; 4093 // Determine whether the original funclet pad is exited, 4094 // and if we are scanning nested pads determine how many 4095 // of them are exited so we can stop searching their 4096 // children. 4097 Value *ExitedPad = CurrentPad; 4098 ExitsFPI = false; 4099 do { 4100 if (ExitedPad == &FPI) { 4101 ExitsFPI = true; 4102 // Now we can resolve any ancestors of CurrentPad up to 4103 // FPI, but not including FPI since we need to make sure 4104 // to check all direct users of FPI for consistency. 4105 UnresolvedAncestorPad = &FPI; 4106 break; 4107 } 4108 Value *ExitedParent = getParentPad(ExitedPad); 4109 if (ExitedParent == UnwindParent) { 4110 // ExitedPad is the ancestor-most pad which this unwind 4111 // edge exits, so we can resolve up to it, meaning that 4112 // ExitedParent is the first ancestor still unresolved. 4113 UnresolvedAncestorPad = ExitedParent; 4114 break; 4115 } 4116 ExitedPad = ExitedParent; 4117 } while (!isa<ConstantTokenNone>(ExitedPad)); 4118 } else { 4119 // Unwinding to caller exits all pads. 4120 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 4121 ExitsFPI = true; 4122 UnresolvedAncestorPad = &FPI; 4123 } 4124 4125 if (ExitsFPI) { 4126 // This unwind edge exits FPI. Make sure it agrees with other 4127 // such edges. 4128 if (FirstUser) { 4129 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 4130 "pad must have the same unwind " 4131 "dest", 4132 &FPI, U, FirstUser); 4133 } else { 4134 FirstUser = U; 4135 FirstUnwindPad = UnwindPad; 4136 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 4137 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 4138 getParentPad(UnwindPad) == getParentPad(&FPI)) 4139 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 4140 } 4141 } 4142 // Make sure we visit all uses of FPI, but for nested pads stop as 4143 // soon as we know where they unwind to. 4144 if (CurrentPad != &FPI) 4145 break; 4146 } 4147 if (UnresolvedAncestorPad) { 4148 if (CurrentPad == UnresolvedAncestorPad) { 4149 // When CurrentPad is FPI itself, we don't mark it as resolved even if 4150 // we've found an unwind edge that exits it, because we need to verify 4151 // all direct uses of FPI. 4152 assert(CurrentPad == &FPI); 4153 continue; 4154 } 4155 // Pop off the worklist any nested pads that we've found an unwind 4156 // destination for. The pads on the worklist are the uncles, 4157 // great-uncles, etc. of CurrentPad. We've found an unwind destination 4158 // for all ancestors of CurrentPad up to but not including 4159 // UnresolvedAncestorPad. 4160 Value *ResolvedPad = CurrentPad; 4161 while (!Worklist.empty()) { 4162 Value *UnclePad = Worklist.back(); 4163 Value *AncestorPad = getParentPad(UnclePad); 4164 // Walk ResolvedPad up the ancestor list until we either find the 4165 // uncle's parent or the last resolved ancestor. 4166 while (ResolvedPad != AncestorPad) { 4167 Value *ResolvedParent = getParentPad(ResolvedPad); 4168 if (ResolvedParent == UnresolvedAncestorPad) { 4169 break; 4170 } 4171 ResolvedPad = ResolvedParent; 4172 } 4173 // If the resolved ancestor search didn't find the uncle's parent, 4174 // then the uncle is not yet resolved. 4175 if (ResolvedPad != AncestorPad) 4176 break; 4177 // This uncle is resolved, so pop it from the worklist. 4178 Worklist.pop_back(); 4179 } 4180 } 4181 } 4182 4183 if (FirstUnwindPad) { 4184 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 4185 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 4186 Value *SwitchUnwindPad; 4187 if (SwitchUnwindDest) 4188 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 4189 else 4190 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 4191 Assert(SwitchUnwindPad == FirstUnwindPad, 4192 "Unwind edges out of a catch must have the same unwind dest as " 4193 "the parent catchswitch", 4194 &FPI, FirstUser, CatchSwitch); 4195 } 4196 } 4197 4198 visitInstruction(FPI); 4199 } 4200 4201 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 4202 BasicBlock *BB = CatchSwitch.getParent(); 4203 4204 Function *F = BB->getParent(); 4205 Assert(F->hasPersonalityFn(), 4206 "CatchSwitchInst needs to be in a function with a personality.", 4207 &CatchSwitch); 4208 4209 // The catchswitch instruction must be the first non-PHI instruction in the 4210 // block. 4211 Assert(BB->getFirstNonPHI() == &CatchSwitch, 4212 "CatchSwitchInst not the first non-PHI instruction in the block.", 4213 &CatchSwitch); 4214 4215 auto *ParentPad = CatchSwitch.getParentPad(); 4216 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4217 "CatchSwitchInst has an invalid parent.", ParentPad); 4218 4219 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 4220 Instruction *I = UnwindDest->getFirstNonPHI(); 4221 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4222 "CatchSwitchInst must unwind to an EH block which is not a " 4223 "landingpad.", 4224 &CatchSwitch); 4225 4226 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 4227 if (getParentPad(I) == ParentPad) 4228 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 4229 } 4230 4231 Assert(CatchSwitch.getNumHandlers() != 0, 4232 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 4233 4234 for (BasicBlock *Handler : CatchSwitch.handlers()) { 4235 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 4236 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 4237 } 4238 4239 visitEHPadPredecessors(CatchSwitch); 4240 visitTerminator(CatchSwitch); 4241 } 4242 4243 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 4244 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 4245 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 4246 CRI.getOperand(0)); 4247 4248 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 4249 Instruction *I = UnwindDest->getFirstNonPHI(); 4250 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4251 "CleanupReturnInst must unwind to an EH block which is not a " 4252 "landingpad.", 4253 &CRI); 4254 } 4255 4256 visitTerminator(CRI); 4257 } 4258 4259 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 4260 Instruction *Op = cast<Instruction>(I.getOperand(i)); 4261 // If the we have an invalid invoke, don't try to compute the dominance. 4262 // We already reject it in the invoke specific checks and the dominance 4263 // computation doesn't handle multiple edges. 4264 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 4265 if (II->getNormalDest() == II->getUnwindDest()) 4266 return; 4267 } 4268 4269 // Quick check whether the def has already been encountered in the same block. 4270 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 4271 // uses are defined to happen on the incoming edge, not at the instruction. 4272 // 4273 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 4274 // wrapping an SSA value, assert that we've already encountered it. See 4275 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 4276 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 4277 return; 4278 4279 const Use &U = I.getOperandUse(i); 4280 Assert(DT.dominates(Op, U), 4281 "Instruction does not dominate all uses!", Op, &I); 4282 } 4283 4284 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4285 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 4286 "apply only to pointer types", &I); 4287 Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4288 "dereferenceable, dereferenceable_or_null apply only to load" 4289 " and inttoptr instructions, use attributes for calls or invokes", &I); 4290 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 4291 "take one operand!", &I); 4292 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4293 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 4294 "dereferenceable_or_null metadata value must be an i64!", &I); 4295 } 4296 4297 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4298 Assert(MD->getNumOperands() >= 2, 4299 "!prof annotations should have no less than 2 operands", MD); 4300 4301 // Check first operand. 4302 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4303 Assert(isa<MDString>(MD->getOperand(0)), 4304 "expected string with name of the !prof annotation", MD); 4305 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4306 StringRef ProfName = MDS->getString(); 4307 4308 // Check consistency of !prof branch_weights metadata. 4309 if (ProfName.equals("branch_weights")) { 4310 if (isa<InvokeInst>(&I)) { 4311 Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3, 4312 "Wrong number of InvokeInst branch_weights operands", MD); 4313 } else { 4314 unsigned ExpectedNumOperands = 0; 4315 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4316 ExpectedNumOperands = BI->getNumSuccessors(); 4317 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4318 ExpectedNumOperands = SI->getNumSuccessors(); 4319 else if (isa<CallInst>(&I)) 4320 ExpectedNumOperands = 1; 4321 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4322 ExpectedNumOperands = IBI->getNumDestinations(); 4323 else if (isa<SelectInst>(&I)) 4324 ExpectedNumOperands = 2; 4325 else 4326 CheckFailed("!prof branch_weights are not allowed for this instruction", 4327 MD); 4328 4329 Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, 4330 "Wrong number of operands", MD); 4331 } 4332 for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 4333 auto &MDO = MD->getOperand(i); 4334 Assert(MDO, "second operand should not be null", MD); 4335 Assert(mdconst::dyn_extract<ConstantInt>(MDO), 4336 "!prof brunch_weights operand is not a const int"); 4337 } 4338 } 4339 } 4340 4341 void Verifier::visitAnnotationMetadata(MDNode *Annotation) { 4342 Assert(isa<MDTuple>(Annotation), "annotation must be a tuple"); 4343 Assert(Annotation->getNumOperands() >= 1, 4344 "annotation must have at least one operand"); 4345 for (const MDOperand &Op : Annotation->operands()) 4346 Assert(isa<MDString>(Op.get()), "operands must be strings"); 4347 } 4348 4349 void Verifier::visitAliasScopeMetadata(const MDNode *MD) { 4350 unsigned NumOps = MD->getNumOperands(); 4351 Assert(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands", 4352 MD); 4353 Assert(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)), 4354 "first scope operand must be self-referential or string", MD); 4355 if (NumOps == 3) 4356 Assert(isa<MDString>(MD->getOperand(2)), 4357 "third scope operand must be string (if used)", MD); 4358 4359 MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1)); 4360 Assert(Domain != nullptr, "second scope operand must be MDNode", MD); 4361 4362 unsigned NumDomainOps = Domain->getNumOperands(); 4363 Assert(NumDomainOps >= 1 && NumDomainOps <= 2, 4364 "domain must have one or two operands", Domain); 4365 Assert(Domain->getOperand(0).get() == Domain || 4366 isa<MDString>(Domain->getOperand(0)), 4367 "first domain operand must be self-referential or string", Domain); 4368 if (NumDomainOps == 2) 4369 Assert(isa<MDString>(Domain->getOperand(1)), 4370 "second domain operand must be string (if used)", Domain); 4371 } 4372 4373 void Verifier::visitAliasScopeListMetadata(const MDNode *MD) { 4374 for (const MDOperand &Op : MD->operands()) { 4375 const MDNode *OpMD = dyn_cast<MDNode>(Op); 4376 Assert(OpMD != nullptr, "scope list must consist of MDNodes", MD); 4377 visitAliasScopeMetadata(OpMD); 4378 } 4379 } 4380 4381 /// verifyInstruction - Verify that an instruction is well formed. 4382 /// 4383 void Verifier::visitInstruction(Instruction &I) { 4384 BasicBlock *BB = I.getParent(); 4385 Assert(BB, "Instruction not embedded in basic block!", &I); 4386 4387 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4388 for (User *U : I.users()) { 4389 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 4390 "Only PHI nodes may reference their own value!", &I); 4391 } 4392 } 4393 4394 // Check that void typed values don't have names 4395 Assert(!I.getType()->isVoidTy() || !I.hasName(), 4396 "Instruction has a name, but provides a void value!", &I); 4397 4398 // Check that the return value of the instruction is either void or a legal 4399 // value type. 4400 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4401 "Instruction returns a non-scalar type!", &I); 4402 4403 // Check that the instruction doesn't produce metadata. Calls are already 4404 // checked against the callee type. 4405 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4406 "Invalid use of metadata!", &I); 4407 4408 // Check that all uses of the instruction, if they are instructions 4409 // themselves, actually have parent basic blocks. If the use is not an 4410 // instruction, it is an error! 4411 for (Use &U : I.uses()) { 4412 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4413 Assert(Used->getParent() != nullptr, 4414 "Instruction referencing" 4415 " instruction not embedded in a basic block!", 4416 &I, Used); 4417 else { 4418 CheckFailed("Use of instruction is not an instruction!", U); 4419 return; 4420 } 4421 } 4422 4423 // Get a pointer to the call base of the instruction if it is some form of 4424 // call. 4425 const CallBase *CBI = dyn_cast<CallBase>(&I); 4426 4427 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4428 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4429 4430 // Check to make sure that only first-class-values are operands to 4431 // instructions. 4432 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4433 Assert(false, "Instruction operands must be first-class values!", &I); 4434 } 4435 4436 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4437 // This code checks whether the function is used as the operand of a 4438 // clang_arc_attachedcall operand bundle. 4439 auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI, 4440 int Idx) { 4441 return CBI && CBI->isOperandBundleOfType( 4442 LLVMContext::OB_clang_arc_attachedcall, Idx); 4443 }; 4444 4445 // Check to make sure that the "address of" an intrinsic function is never 4446 // taken. Ignore cases where the address of the intrinsic function is used 4447 // as the argument of operand bundle "clang.arc.attachedcall" as those 4448 // cases are handled in verifyAttachedCallBundle. 4449 Assert((!F->isIntrinsic() || 4450 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) || 4451 IsAttachedCallOperand(F, CBI, i)), 4452 "Cannot take the address of an intrinsic!", &I); 4453 Assert( 4454 !F->isIntrinsic() || isa<CallInst>(I) || 4455 F->getIntrinsicID() == Intrinsic::donothing || 4456 F->getIntrinsicID() == Intrinsic::seh_try_begin || 4457 F->getIntrinsicID() == Intrinsic::seh_try_end || 4458 F->getIntrinsicID() == Intrinsic::seh_scope_begin || 4459 F->getIntrinsicID() == Intrinsic::seh_scope_end || 4460 F->getIntrinsicID() == Intrinsic::coro_resume || 4461 F->getIntrinsicID() == Intrinsic::coro_destroy || 4462 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4463 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4464 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4465 F->getIntrinsicID() == Intrinsic::wasm_rethrow || 4466 IsAttachedCallOperand(F, CBI, i), 4467 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4468 "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall", 4469 &I); 4470 Assert(F->getParent() == &M, "Referencing function in another module!", 4471 &I, &M, F, F->getParent()); 4472 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4473 Assert(OpBB->getParent() == BB->getParent(), 4474 "Referring to a basic block in another function!", &I); 4475 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4476 Assert(OpArg->getParent() == BB->getParent(), 4477 "Referring to an argument in another function!", &I); 4478 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4479 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4480 &M, GV, GV->getParent()); 4481 } else if (isa<Instruction>(I.getOperand(i))) { 4482 verifyDominatesUse(I, i); 4483 } else if (isa<InlineAsm>(I.getOperand(i))) { 4484 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4485 "Cannot take the address of an inline asm!", &I); 4486 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4487 if (CE->getType()->isPtrOrPtrVectorTy()) { 4488 // If we have a ConstantExpr pointer, we need to see if it came from an 4489 // illegal bitcast. 4490 visitConstantExprsRecursively(CE); 4491 } 4492 } 4493 } 4494 4495 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4496 Assert(I.getType()->isFPOrFPVectorTy(), 4497 "fpmath requires a floating point result!", &I); 4498 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4499 if (ConstantFP *CFP0 = 4500 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4501 const APFloat &Accuracy = CFP0->getValueAPF(); 4502 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4503 "fpmath accuracy must have float type", &I); 4504 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4505 "fpmath accuracy not a positive number!", &I); 4506 } else { 4507 Assert(false, "invalid fpmath accuracy!", &I); 4508 } 4509 } 4510 4511 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4512 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4513 "Ranges are only for loads, calls and invokes!", &I); 4514 visitRangeMetadata(I, Range, I.getType()); 4515 } 4516 4517 if (I.hasMetadata(LLVMContext::MD_invariant_group)) { 4518 Assert(isa<LoadInst>(I) || isa<StoreInst>(I), 4519 "invariant.group metadata is only for loads and stores", &I); 4520 } 4521 4522 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4523 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4524 &I); 4525 Assert(isa<LoadInst>(I), 4526 "nonnull applies only to load instructions, use attributes" 4527 " for calls or invokes", 4528 &I); 4529 } 4530 4531 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4532 visitDereferenceableMetadata(I, MD); 4533 4534 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4535 visitDereferenceableMetadata(I, MD); 4536 4537 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4538 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4539 4540 if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias)) 4541 visitAliasScopeListMetadata(MD); 4542 if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope)) 4543 visitAliasScopeListMetadata(MD); 4544 4545 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4546 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4547 &I); 4548 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4549 "use attributes for calls or invokes", &I); 4550 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4551 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4552 Assert(CI && CI->getType()->isIntegerTy(64), 4553 "align metadata value must be an i64!", &I); 4554 uint64_t Align = CI->getZExtValue(); 4555 Assert(isPowerOf2_64(Align), 4556 "align metadata value must be a power of 2!", &I); 4557 Assert(Align <= Value::MaximumAlignment, 4558 "alignment is larger that implementation defined limit", &I); 4559 } 4560 4561 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 4562 visitProfMetadata(I, MD); 4563 4564 if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation)) 4565 visitAnnotationMetadata(Annotation); 4566 4567 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4568 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4569 visitMDNode(*N, AreDebugLocsAllowed::Yes); 4570 } 4571 4572 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 4573 verifyFragmentExpression(*DII); 4574 verifyNotEntryValue(*DII); 4575 } 4576 4577 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 4578 I.getAllMetadata(MDs); 4579 for (auto Attachment : MDs) { 4580 unsigned Kind = Attachment.first; 4581 auto AllowLocs = 4582 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) 4583 ? AreDebugLocsAllowed::Yes 4584 : AreDebugLocsAllowed::No; 4585 visitMDNode(*Attachment.second, AllowLocs); 4586 } 4587 4588 InstsInThisBlock.insert(&I); 4589 } 4590 4591 /// Allow intrinsics to be verified in different ways. 4592 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4593 Function *IF = Call.getCalledFunction(); 4594 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4595 IF); 4596 4597 // Verify that the intrinsic prototype lines up with what the .td files 4598 // describe. 4599 FunctionType *IFTy = IF->getFunctionType(); 4600 bool IsVarArg = IFTy->isVarArg(); 4601 4602 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4603 getIntrinsicInfoTableEntries(ID, Table); 4604 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4605 4606 // Walk the descriptors to extract overloaded types. 4607 SmallVector<Type *, 4> ArgTys; 4608 Intrinsic::MatchIntrinsicTypesResult Res = 4609 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4610 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4611 "Intrinsic has incorrect return type!", IF); 4612 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4613 "Intrinsic has incorrect argument type!", IF); 4614 4615 // Verify if the intrinsic call matches the vararg property. 4616 if (IsVarArg) 4617 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4618 "Intrinsic was not defined with variable arguments!", IF); 4619 else 4620 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4621 "Callsite was not defined with variable arguments!", IF); 4622 4623 // All descriptors should be absorbed by now. 4624 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4625 4626 // Now that we have the intrinsic ID and the actual argument types (and we 4627 // know they are legal for the intrinsic!) get the intrinsic name through the 4628 // usual means. This allows us to verify the mangling of argument types into 4629 // the name. 4630 const std::string ExpectedName = 4631 Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy); 4632 Assert(ExpectedName == IF->getName(), 4633 "Intrinsic name not mangled correctly for type arguments! " 4634 "Should be: " + 4635 ExpectedName, 4636 IF); 4637 4638 // If the intrinsic takes MDNode arguments, verify that they are either global 4639 // or are local to *this* function. 4640 for (Value *V : Call.args()) { 4641 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4642 visitMetadataAsValue(*MD, Call.getCaller()); 4643 if (auto *Const = dyn_cast<Constant>(V)) 4644 Assert(!Const->getType()->isX86_AMXTy(), 4645 "const x86_amx is not allowed in argument!"); 4646 } 4647 4648 switch (ID) { 4649 default: 4650 break; 4651 case Intrinsic::assume: { 4652 for (auto &Elem : Call.bundle_op_infos()) { 4653 Assert(Elem.Tag->getKey() == "ignore" || 4654 Attribute::isExistingAttribute(Elem.Tag->getKey()), 4655 "tags must be valid attribute names"); 4656 Attribute::AttrKind Kind = 4657 Attribute::getAttrKindFromName(Elem.Tag->getKey()); 4658 unsigned ArgCount = Elem.End - Elem.Begin; 4659 if (Kind == Attribute::Alignment) { 4660 Assert(ArgCount <= 3 && ArgCount >= 2, 4661 "alignment assumptions should have 2 or 3 arguments"); 4662 Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(), 4663 "first argument should be a pointer"); 4664 Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(), 4665 "second argument should be an integer"); 4666 if (ArgCount == 3) 4667 Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(), 4668 "third argument should be an integer if present"); 4669 return; 4670 } 4671 Assert(ArgCount <= 2, "to many arguments"); 4672 if (Kind == Attribute::None) 4673 break; 4674 if (Attribute::isIntAttrKind(Kind)) { 4675 Assert(ArgCount == 2, "this attribute should have 2 arguments"); 4676 Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), 4677 "the second argument should be a constant integral value"); 4678 } else if (Attribute::canUseAsParamAttr(Kind)) { 4679 Assert((ArgCount) == 1, "this attribute should have one argument"); 4680 } else if (Attribute::canUseAsFnAttr(Kind)) { 4681 Assert((ArgCount) == 0, "this attribute has no argument"); 4682 } 4683 } 4684 break; 4685 } 4686 case Intrinsic::coro_id: { 4687 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4688 if (isa<ConstantPointerNull>(InfoArg)) 4689 break; 4690 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4691 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4692 "info argument of llvm.coro.id must refer to an initialized " 4693 "constant"); 4694 Constant *Init = GV->getInitializer(); 4695 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4696 "info argument of llvm.coro.id must refer to either a struct or " 4697 "an array"); 4698 break; 4699 } 4700 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ 4701 case Intrinsic::INTRINSIC: 4702 #include "llvm/IR/ConstrainedOps.def" 4703 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4704 break; 4705 case Intrinsic::dbg_declare: // llvm.dbg.declare 4706 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4707 "invalid llvm.dbg.declare intrinsic call 1", Call); 4708 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4709 break; 4710 case Intrinsic::dbg_addr: // llvm.dbg.addr 4711 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4712 break; 4713 case Intrinsic::dbg_value: // llvm.dbg.value 4714 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4715 break; 4716 case Intrinsic::dbg_label: // llvm.dbg.label 4717 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4718 break; 4719 case Intrinsic::memcpy: 4720 case Intrinsic::memcpy_inline: 4721 case Intrinsic::memmove: 4722 case Intrinsic::memset: { 4723 const auto *MI = cast<MemIntrinsic>(&Call); 4724 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4725 return Alignment == 0 || isPowerOf2_32(Alignment); 4726 }; 4727 Assert(IsValidAlignment(MI->getDestAlignment()), 4728 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4729 Call); 4730 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4731 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4732 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4733 Call); 4734 } 4735 4736 break; 4737 } 4738 case Intrinsic::memcpy_element_unordered_atomic: 4739 case Intrinsic::memmove_element_unordered_atomic: 4740 case Intrinsic::memset_element_unordered_atomic: { 4741 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4742 4743 ConstantInt *ElementSizeCI = 4744 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4745 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4746 Assert(ElementSizeVal.isPowerOf2(), 4747 "element size of the element-wise atomic memory intrinsic " 4748 "must be a power of 2", 4749 Call); 4750 4751 auto IsValidAlignment = [&](uint64_t Alignment) { 4752 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4753 }; 4754 uint64_t DstAlignment = AMI->getDestAlignment(); 4755 Assert(IsValidAlignment(DstAlignment), 4756 "incorrect alignment of the destination argument", Call); 4757 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4758 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4759 Assert(IsValidAlignment(SrcAlignment), 4760 "incorrect alignment of the source argument", Call); 4761 } 4762 break; 4763 } 4764 case Intrinsic::call_preallocated_setup: { 4765 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 4766 Assert(NumArgs != nullptr, 4767 "llvm.call.preallocated.setup argument must be a constant"); 4768 bool FoundCall = false; 4769 for (User *U : Call.users()) { 4770 auto *UseCall = dyn_cast<CallBase>(U); 4771 Assert(UseCall != nullptr, 4772 "Uses of llvm.call.preallocated.setup must be calls"); 4773 const Function *Fn = UseCall->getCalledFunction(); 4774 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { 4775 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); 4776 Assert(AllocArgIndex != nullptr, 4777 "llvm.call.preallocated.alloc arg index must be a constant"); 4778 auto AllocArgIndexInt = AllocArgIndex->getValue(); 4779 Assert(AllocArgIndexInt.sge(0) && 4780 AllocArgIndexInt.slt(NumArgs->getValue()), 4781 "llvm.call.preallocated.alloc arg index must be between 0 and " 4782 "corresponding " 4783 "llvm.call.preallocated.setup's argument count"); 4784 } else if (Fn && Fn->getIntrinsicID() == 4785 Intrinsic::call_preallocated_teardown) { 4786 // nothing to do 4787 } else { 4788 Assert(!FoundCall, "Can have at most one call corresponding to a " 4789 "llvm.call.preallocated.setup"); 4790 FoundCall = true; 4791 size_t NumPreallocatedArgs = 0; 4792 for (unsigned i = 0; i < UseCall->arg_size(); i++) { 4793 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { 4794 ++NumPreallocatedArgs; 4795 } 4796 } 4797 Assert(NumPreallocatedArgs != 0, 4798 "cannot use preallocated intrinsics on a call without " 4799 "preallocated arguments"); 4800 Assert(NumArgs->equalsInt(NumPreallocatedArgs), 4801 "llvm.call.preallocated.setup arg size must be equal to number " 4802 "of preallocated arguments " 4803 "at call site", 4804 Call, *UseCall); 4805 // getOperandBundle() cannot be called if more than one of the operand 4806 // bundle exists. There is already a check elsewhere for this, so skip 4807 // here if we see more than one. 4808 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > 4809 1) { 4810 return; 4811 } 4812 auto PreallocatedBundle = 4813 UseCall->getOperandBundle(LLVMContext::OB_preallocated); 4814 Assert(PreallocatedBundle, 4815 "Use of llvm.call.preallocated.setup outside intrinsics " 4816 "must be in \"preallocated\" operand bundle"); 4817 Assert(PreallocatedBundle->Inputs.front().get() == &Call, 4818 "preallocated bundle must have token from corresponding " 4819 "llvm.call.preallocated.setup"); 4820 } 4821 } 4822 break; 4823 } 4824 case Intrinsic::call_preallocated_arg: { 4825 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4826 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4827 Intrinsic::call_preallocated_setup, 4828 "llvm.call.preallocated.arg token argument must be a " 4829 "llvm.call.preallocated.setup"); 4830 Assert(Call.hasFnAttr(Attribute::Preallocated), 4831 "llvm.call.preallocated.arg must be called with a \"preallocated\" " 4832 "call site attribute"); 4833 break; 4834 } 4835 case Intrinsic::call_preallocated_teardown: { 4836 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4837 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4838 Intrinsic::call_preallocated_setup, 4839 "llvm.call.preallocated.teardown token argument must be a " 4840 "llvm.call.preallocated.setup"); 4841 break; 4842 } 4843 case Intrinsic::gcroot: 4844 case Intrinsic::gcwrite: 4845 case Intrinsic::gcread: 4846 if (ID == Intrinsic::gcroot) { 4847 AllocaInst *AI = 4848 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4849 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4850 Assert(isa<Constant>(Call.getArgOperand(1)), 4851 "llvm.gcroot parameter #2 must be a constant.", Call); 4852 if (!AI->getAllocatedType()->isPointerTy()) { 4853 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4854 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4855 "or argument #2 must be a non-null constant.", 4856 Call); 4857 } 4858 } 4859 4860 Assert(Call.getParent()->getParent()->hasGC(), 4861 "Enclosing function does not use GC.", Call); 4862 break; 4863 case Intrinsic::init_trampoline: 4864 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4865 "llvm.init_trampoline parameter #2 must resolve to a function.", 4866 Call); 4867 break; 4868 case Intrinsic::prefetch: 4869 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4870 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4871 "invalid arguments to llvm.prefetch", Call); 4872 break; 4873 case Intrinsic::stackprotector: 4874 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4875 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4876 break; 4877 case Intrinsic::localescape: { 4878 BasicBlock *BB = Call.getParent(); 4879 Assert(BB == &BB->getParent()->front(), 4880 "llvm.localescape used outside of entry block", Call); 4881 Assert(!SawFrameEscape, 4882 "multiple calls to llvm.localescape in one function", Call); 4883 for (Value *Arg : Call.args()) { 4884 if (isa<ConstantPointerNull>(Arg)) 4885 continue; // Null values are allowed as placeholders. 4886 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4887 Assert(AI && AI->isStaticAlloca(), 4888 "llvm.localescape only accepts static allocas", Call); 4889 } 4890 FrameEscapeInfo[BB->getParent()].first = Call.arg_size(); 4891 SawFrameEscape = true; 4892 break; 4893 } 4894 case Intrinsic::localrecover: { 4895 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4896 Function *Fn = dyn_cast<Function>(FnArg); 4897 Assert(Fn && !Fn->isDeclaration(), 4898 "llvm.localrecover first " 4899 "argument must be function defined in this module", 4900 Call); 4901 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 4902 auto &Entry = FrameEscapeInfo[Fn]; 4903 Entry.second = unsigned( 4904 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4905 break; 4906 } 4907 4908 case Intrinsic::experimental_gc_statepoint: 4909 if (auto *CI = dyn_cast<CallInst>(&Call)) 4910 Assert(!CI->isInlineAsm(), 4911 "gc.statepoint support for inline assembly unimplemented", CI); 4912 Assert(Call.getParent()->getParent()->hasGC(), 4913 "Enclosing function does not use GC.", Call); 4914 4915 verifyStatepoint(Call); 4916 break; 4917 case Intrinsic::experimental_gc_result: { 4918 Assert(Call.getParent()->getParent()->hasGC(), 4919 "Enclosing function does not use GC.", Call); 4920 // Are we tied to a statepoint properly? 4921 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4922 const Function *StatepointFn = 4923 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 4924 Assert(StatepointFn && StatepointFn->isDeclaration() && 4925 StatepointFn->getIntrinsicID() == 4926 Intrinsic::experimental_gc_statepoint, 4927 "gc.result operand #1 must be from a statepoint", Call, 4928 Call.getArgOperand(0)); 4929 4930 // Assert that result type matches wrapped callee. 4931 const Value *Target = StatepointCall->getArgOperand(2); 4932 auto *PT = cast<PointerType>(Target->getType()); 4933 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4934 Assert(Call.getType() == TargetFuncType->getReturnType(), 4935 "gc.result result type does not match wrapped callee", Call); 4936 break; 4937 } 4938 case Intrinsic::experimental_gc_relocate: { 4939 Assert(Call.arg_size() == 3, "wrong number of arguments", Call); 4940 4941 Assert(isa<PointerType>(Call.getType()->getScalarType()), 4942 "gc.relocate must return a pointer or a vector of pointers", Call); 4943 4944 // Check that this relocate is correctly tied to the statepoint 4945 4946 // This is case for relocate on the unwinding path of an invoke statepoint 4947 if (LandingPadInst *LandingPad = 4948 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 4949 4950 const BasicBlock *InvokeBB = 4951 LandingPad->getParent()->getUniquePredecessor(); 4952 4953 // Landingpad relocates should have only one predecessor with invoke 4954 // statepoint terminator 4955 Assert(InvokeBB, "safepoints should have unique landingpads", 4956 LandingPad->getParent()); 4957 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4958 InvokeBB); 4959 Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()), 4960 "gc relocate should be linked to a statepoint", InvokeBB); 4961 } else { 4962 // In all other cases relocate should be tied to the statepoint directly. 4963 // This covers relocates on a normal return path of invoke statepoint and 4964 // relocates of a call statepoint. 4965 auto Token = Call.getArgOperand(0); 4966 Assert(isa<GCStatepointInst>(Token), 4967 "gc relocate is incorrectly tied to the statepoint", Call, Token); 4968 } 4969 4970 // Verify rest of the relocate arguments. 4971 const CallBase &StatepointCall = 4972 *cast<GCRelocateInst>(Call).getStatepoint(); 4973 4974 // Both the base and derived must be piped through the safepoint. 4975 Value *Base = Call.getArgOperand(1); 4976 Assert(isa<ConstantInt>(Base), 4977 "gc.relocate operand #2 must be integer offset", Call); 4978 4979 Value *Derived = Call.getArgOperand(2); 4980 Assert(isa<ConstantInt>(Derived), 4981 "gc.relocate operand #3 must be integer offset", Call); 4982 4983 const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4984 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4985 4986 // Check the bounds 4987 if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) { 4988 Assert(BaseIndex < Opt->Inputs.size(), 4989 "gc.relocate: statepoint base index out of bounds", Call); 4990 Assert(DerivedIndex < Opt->Inputs.size(), 4991 "gc.relocate: statepoint derived index out of bounds", Call); 4992 } 4993 4994 // Relocated value must be either a pointer type or vector-of-pointer type, 4995 // but gc_relocate does not need to return the same pointer type as the 4996 // relocated pointer. It can be casted to the correct type later if it's 4997 // desired. However, they must have the same address space and 'vectorness' 4998 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 4999 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 5000 "gc.relocate: relocated value must be a gc pointer", Call); 5001 5002 auto ResultType = Call.getType(); 5003 auto DerivedType = Relocate.getDerivedPtr()->getType(); 5004 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 5005 "gc.relocate: vector relocates to vector and pointer to pointer", 5006 Call); 5007 Assert( 5008 ResultType->getPointerAddressSpace() == 5009 DerivedType->getPointerAddressSpace(), 5010 "gc.relocate: relocating a pointer shouldn't change its address space", 5011 Call); 5012 break; 5013 } 5014 case Intrinsic::eh_exceptioncode: 5015 case Intrinsic::eh_exceptionpointer: { 5016 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 5017 "eh.exceptionpointer argument must be a catchpad", Call); 5018 break; 5019 } 5020 case Intrinsic::get_active_lane_mask: { 5021 Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a " 5022 "vector", Call); 5023 auto *ElemTy = Call.getType()->getScalarType(); 5024 Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not " 5025 "i1", Call); 5026 break; 5027 } 5028 case Intrinsic::masked_load: { 5029 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 5030 Call); 5031 5032 Value *Ptr = Call.getArgOperand(0); 5033 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 5034 Value *Mask = Call.getArgOperand(2); 5035 Value *PassThru = Call.getArgOperand(3); 5036 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 5037 Call); 5038 Assert(Alignment->getValue().isPowerOf2(), 5039 "masked_load: alignment must be a power of 2", Call); 5040 5041 PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 5042 Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType()), 5043 "masked_load: return must match pointer type", Call); 5044 Assert(PassThru->getType() == Call.getType(), 5045 "masked_load: pass through and return type must match", Call); 5046 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 5047 cast<VectorType>(Call.getType())->getElementCount(), 5048 "masked_load: vector mask must be same length as return", Call); 5049 break; 5050 } 5051 case Intrinsic::masked_store: { 5052 Value *Val = Call.getArgOperand(0); 5053 Value *Ptr = Call.getArgOperand(1); 5054 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 5055 Value *Mask = Call.getArgOperand(3); 5056 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 5057 Call); 5058 Assert(Alignment->getValue().isPowerOf2(), 5059 "masked_store: alignment must be a power of 2", Call); 5060 5061 PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 5062 Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType()), 5063 "masked_store: storee must match pointer type", Call); 5064 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 5065 cast<VectorType>(Val->getType())->getElementCount(), 5066 "masked_store: vector mask must be same length as value", Call); 5067 break; 5068 } 5069 5070 case Intrinsic::masked_gather: { 5071 const APInt &Alignment = 5072 cast<ConstantInt>(Call.getArgOperand(1))->getValue(); 5073 Assert(Alignment.isZero() || Alignment.isPowerOf2(), 5074 "masked_gather: alignment must be 0 or a power of 2", Call); 5075 break; 5076 } 5077 case Intrinsic::masked_scatter: { 5078 const APInt &Alignment = 5079 cast<ConstantInt>(Call.getArgOperand(2))->getValue(); 5080 Assert(Alignment.isZero() || Alignment.isPowerOf2(), 5081 "masked_scatter: alignment must be 0 or a power of 2", Call); 5082 break; 5083 } 5084 5085 case Intrinsic::experimental_guard: { 5086 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 5087 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5088 "experimental_guard must have exactly one " 5089 "\"deopt\" operand bundle"); 5090 break; 5091 } 5092 5093 case Intrinsic::experimental_deoptimize: { 5094 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 5095 Call); 5096 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5097 "experimental_deoptimize must have exactly one " 5098 "\"deopt\" operand bundle"); 5099 Assert(Call.getType() == Call.getFunction()->getReturnType(), 5100 "experimental_deoptimize return type must match caller return type"); 5101 5102 if (isa<CallInst>(Call)) { 5103 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 5104 Assert(RI, 5105 "calls to experimental_deoptimize must be followed by a return"); 5106 5107 if (!Call.getType()->isVoidTy() && RI) 5108 Assert(RI->getReturnValue() == &Call, 5109 "calls to experimental_deoptimize must be followed by a return " 5110 "of the value computed by experimental_deoptimize"); 5111 } 5112 5113 break; 5114 } 5115 case Intrinsic::vector_reduce_and: 5116 case Intrinsic::vector_reduce_or: 5117 case Intrinsic::vector_reduce_xor: 5118 case Intrinsic::vector_reduce_add: 5119 case Intrinsic::vector_reduce_mul: 5120 case Intrinsic::vector_reduce_smax: 5121 case Intrinsic::vector_reduce_smin: 5122 case Intrinsic::vector_reduce_umax: 5123 case Intrinsic::vector_reduce_umin: { 5124 Type *ArgTy = Call.getArgOperand(0)->getType(); 5125 Assert(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(), 5126 "Intrinsic has incorrect argument type!"); 5127 break; 5128 } 5129 case Intrinsic::vector_reduce_fmax: 5130 case Intrinsic::vector_reduce_fmin: { 5131 Type *ArgTy = Call.getArgOperand(0)->getType(); 5132 Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5133 "Intrinsic has incorrect argument type!"); 5134 break; 5135 } 5136 case Intrinsic::vector_reduce_fadd: 5137 case Intrinsic::vector_reduce_fmul: { 5138 // Unlike the other reductions, the first argument is a start value. The 5139 // second argument is the vector to be reduced. 5140 Type *ArgTy = Call.getArgOperand(1)->getType(); 5141 Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5142 "Intrinsic has incorrect argument type!"); 5143 break; 5144 } 5145 case Intrinsic::smul_fix: 5146 case Intrinsic::smul_fix_sat: 5147 case Intrinsic::umul_fix: 5148 case Intrinsic::umul_fix_sat: 5149 case Intrinsic::sdiv_fix: 5150 case Intrinsic::sdiv_fix_sat: 5151 case Intrinsic::udiv_fix: 5152 case Intrinsic::udiv_fix_sat: { 5153 Value *Op1 = Call.getArgOperand(0); 5154 Value *Op2 = Call.getArgOperand(1); 5155 Assert(Op1->getType()->isIntOrIntVectorTy(), 5156 "first operand of [us][mul|div]_fix[_sat] must be an int type or " 5157 "vector of ints"); 5158 Assert(Op2->getType()->isIntOrIntVectorTy(), 5159 "second operand of [us][mul|div]_fix[_sat] must be an int type or " 5160 "vector of ints"); 5161 5162 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 5163 Assert(Op3->getType()->getBitWidth() <= 32, 5164 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); 5165 5166 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 5167 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { 5168 Assert( 5169 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 5170 "the scale of s[mul|div]_fix[_sat] must be less than the width of " 5171 "the operands"); 5172 } else { 5173 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 5174 "the scale of u[mul|div]_fix[_sat] must be less than or equal " 5175 "to the width of the operands"); 5176 } 5177 break; 5178 } 5179 case Intrinsic::lround: 5180 case Intrinsic::llround: 5181 case Intrinsic::lrint: 5182 case Intrinsic::llrint: { 5183 Type *ValTy = Call.getArgOperand(0)->getType(); 5184 Type *ResultTy = Call.getType(); 5185 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5186 "Intrinsic does not support vectors", &Call); 5187 break; 5188 } 5189 case Intrinsic::bswap: { 5190 Type *Ty = Call.getType(); 5191 unsigned Size = Ty->getScalarSizeInBits(); 5192 Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call); 5193 break; 5194 } 5195 case Intrinsic::invariant_start: { 5196 ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 5197 Assert(InvariantSize && 5198 (!InvariantSize->isNegative() || InvariantSize->isMinusOne()), 5199 "invariant_start parameter must be -1, 0 or a positive number", 5200 &Call); 5201 break; 5202 } 5203 case Intrinsic::matrix_multiply: 5204 case Intrinsic::matrix_transpose: 5205 case Intrinsic::matrix_column_major_load: 5206 case Intrinsic::matrix_column_major_store: { 5207 Function *IF = Call.getCalledFunction(); 5208 ConstantInt *Stride = nullptr; 5209 ConstantInt *NumRows; 5210 ConstantInt *NumColumns; 5211 VectorType *ResultTy; 5212 Type *Op0ElemTy = nullptr; 5213 Type *Op1ElemTy = nullptr; 5214 switch (ID) { 5215 case Intrinsic::matrix_multiply: 5216 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 5217 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5218 ResultTy = cast<VectorType>(Call.getType()); 5219 Op0ElemTy = 5220 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5221 Op1ElemTy = 5222 cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType(); 5223 break; 5224 case Intrinsic::matrix_transpose: 5225 NumRows = cast<ConstantInt>(Call.getArgOperand(1)); 5226 NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); 5227 ResultTy = cast<VectorType>(Call.getType()); 5228 Op0ElemTy = 5229 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5230 break; 5231 case Intrinsic::matrix_column_major_load: 5232 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1)); 5233 NumRows = cast<ConstantInt>(Call.getArgOperand(3)); 5234 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5235 ResultTy = cast<VectorType>(Call.getType()); 5236 Op0ElemTy = 5237 cast<PointerType>(Call.getArgOperand(0)->getType())->getElementType(); 5238 break; 5239 case Intrinsic::matrix_column_major_store: 5240 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2)); 5241 NumRows = cast<ConstantInt>(Call.getArgOperand(4)); 5242 NumColumns = cast<ConstantInt>(Call.getArgOperand(5)); 5243 ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 5244 Op0ElemTy = 5245 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5246 Op1ElemTy = 5247 cast<PointerType>(Call.getArgOperand(1)->getType())->getElementType(); 5248 break; 5249 default: 5250 llvm_unreachable("unexpected intrinsic"); 5251 } 5252 5253 Assert(ResultTy->getElementType()->isIntegerTy() || 5254 ResultTy->getElementType()->isFloatingPointTy(), 5255 "Result type must be an integer or floating-point type!", IF); 5256 5257 Assert(ResultTy->getElementType() == Op0ElemTy, 5258 "Vector element type mismatch of the result and first operand " 5259 "vector!", IF); 5260 5261 if (Op1ElemTy) 5262 Assert(ResultTy->getElementType() == Op1ElemTy, 5263 "Vector element type mismatch of the result and second operand " 5264 "vector!", IF); 5265 5266 Assert(cast<FixedVectorType>(ResultTy)->getNumElements() == 5267 NumRows->getZExtValue() * NumColumns->getZExtValue(), 5268 "Result of a matrix operation does not fit in the returned vector!"); 5269 5270 if (Stride) 5271 Assert(Stride->getZExtValue() >= NumRows->getZExtValue(), 5272 "Stride must be greater or equal than the number of rows!", IF); 5273 5274 break; 5275 } 5276 case Intrinsic::experimental_stepvector: { 5277 VectorType *VecTy = dyn_cast<VectorType>(Call.getType()); 5278 Assert(VecTy && VecTy->getScalarType()->isIntegerTy() && 5279 VecTy->getScalarSizeInBits() >= 8, 5280 "experimental_stepvector only supported for vectors of integers " 5281 "with a bitwidth of at least 8.", 5282 &Call); 5283 break; 5284 } 5285 case Intrinsic::experimental_vector_insert: { 5286 Value *Vec = Call.getArgOperand(0); 5287 Value *SubVec = Call.getArgOperand(1); 5288 Value *Idx = Call.getArgOperand(2); 5289 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5290 5291 VectorType *VecTy = cast<VectorType>(Vec->getType()); 5292 VectorType *SubVecTy = cast<VectorType>(SubVec->getType()); 5293 5294 ElementCount VecEC = VecTy->getElementCount(); 5295 ElementCount SubVecEC = SubVecTy->getElementCount(); 5296 Assert(VecTy->getElementType() == SubVecTy->getElementType(), 5297 "experimental_vector_insert parameters must have the same element " 5298 "type.", 5299 &Call); 5300 Assert(IdxN % SubVecEC.getKnownMinValue() == 0, 5301 "experimental_vector_insert index must be a constant multiple of " 5302 "the subvector's known minimum vector length."); 5303 5304 // If this insertion is not the 'mixed' case where a fixed vector is 5305 // inserted into a scalable vector, ensure that the insertion of the 5306 // subvector does not overrun the parent vector. 5307 if (VecEC.isScalable() == SubVecEC.isScalable()) { 5308 Assert( 5309 IdxN < VecEC.getKnownMinValue() && 5310 IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 5311 "subvector operand of experimental_vector_insert would overrun the " 5312 "vector being inserted into."); 5313 } 5314 break; 5315 } 5316 case Intrinsic::experimental_vector_extract: { 5317 Value *Vec = Call.getArgOperand(0); 5318 Value *Idx = Call.getArgOperand(1); 5319 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5320 5321 VectorType *ResultTy = cast<VectorType>(Call.getType()); 5322 VectorType *VecTy = cast<VectorType>(Vec->getType()); 5323 5324 ElementCount VecEC = VecTy->getElementCount(); 5325 ElementCount ResultEC = ResultTy->getElementCount(); 5326 5327 Assert(ResultTy->getElementType() == VecTy->getElementType(), 5328 "experimental_vector_extract result must have the same element " 5329 "type as the input vector.", 5330 &Call); 5331 Assert(IdxN % ResultEC.getKnownMinValue() == 0, 5332 "experimental_vector_extract index must be a constant multiple of " 5333 "the result type's known minimum vector length."); 5334 5335 // If this extraction is not the 'mixed' case where a fixed vector is is 5336 // extracted from a scalable vector, ensure that the extraction does not 5337 // overrun the parent vector. 5338 if (VecEC.isScalable() == ResultEC.isScalable()) { 5339 Assert(IdxN < VecEC.getKnownMinValue() && 5340 IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 5341 "experimental_vector_extract would overrun."); 5342 } 5343 break; 5344 } 5345 case Intrinsic::experimental_noalias_scope_decl: { 5346 NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call)); 5347 break; 5348 } 5349 case Intrinsic::preserve_array_access_index: 5350 case Intrinsic::preserve_struct_access_index: { 5351 Type *ElemTy = Call.getAttributes().getParamElementType(0); 5352 Assert(ElemTy, 5353 "Intrinsic requires elementtype attribute on first argument.", 5354 &Call); 5355 break; 5356 } 5357 }; 5358 } 5359 5360 /// Carefully grab the subprogram from a local scope. 5361 /// 5362 /// This carefully grabs the subprogram from a local scope, avoiding the 5363 /// built-in assertions that would typically fire. 5364 static DISubprogram *getSubprogram(Metadata *LocalScope) { 5365 if (!LocalScope) 5366 return nullptr; 5367 5368 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 5369 return SP; 5370 5371 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 5372 return getSubprogram(LB->getRawScope()); 5373 5374 // Just return null; broken scope chains are checked elsewhere. 5375 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 5376 return nullptr; 5377 } 5378 5379 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 5380 unsigned NumOperands; 5381 bool HasRoundingMD; 5382 switch (FPI.getIntrinsicID()) { 5383 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 5384 case Intrinsic::INTRINSIC: \ 5385 NumOperands = NARG; \ 5386 HasRoundingMD = ROUND_MODE; \ 5387 break; 5388 #include "llvm/IR/ConstrainedOps.def" 5389 default: 5390 llvm_unreachable("Invalid constrained FP intrinsic!"); 5391 } 5392 NumOperands += (1 + HasRoundingMD); 5393 // Compare intrinsics carry an extra predicate metadata operand. 5394 if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 5395 NumOperands += 1; 5396 Assert((FPI.arg_size() == NumOperands), 5397 "invalid arguments for constrained FP intrinsic", &FPI); 5398 5399 switch (FPI.getIntrinsicID()) { 5400 case Intrinsic::experimental_constrained_lrint: 5401 case Intrinsic::experimental_constrained_llrint: { 5402 Type *ValTy = FPI.getArgOperand(0)->getType(); 5403 Type *ResultTy = FPI.getType(); 5404 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5405 "Intrinsic does not support vectors", &FPI); 5406 } 5407 break; 5408 5409 case Intrinsic::experimental_constrained_lround: 5410 case Intrinsic::experimental_constrained_llround: { 5411 Type *ValTy = FPI.getArgOperand(0)->getType(); 5412 Type *ResultTy = FPI.getType(); 5413 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5414 "Intrinsic does not support vectors", &FPI); 5415 break; 5416 } 5417 5418 case Intrinsic::experimental_constrained_fcmp: 5419 case Intrinsic::experimental_constrained_fcmps: { 5420 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 5421 Assert(CmpInst::isFPPredicate(Pred), 5422 "invalid predicate for constrained FP comparison intrinsic", &FPI); 5423 break; 5424 } 5425 5426 case Intrinsic::experimental_constrained_fptosi: 5427 case Intrinsic::experimental_constrained_fptoui: { 5428 Value *Operand = FPI.getArgOperand(0); 5429 uint64_t NumSrcElem = 0; 5430 Assert(Operand->getType()->isFPOrFPVectorTy(), 5431 "Intrinsic first argument must be floating point", &FPI); 5432 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5433 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5434 } 5435 5436 Operand = &FPI; 5437 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5438 "Intrinsic first argument and result disagree on vector use", &FPI); 5439 Assert(Operand->getType()->isIntOrIntVectorTy(), 5440 "Intrinsic result must be an integer", &FPI); 5441 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5442 Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5443 "Intrinsic first argument and result vector lengths must be equal", 5444 &FPI); 5445 } 5446 } 5447 break; 5448 5449 case Intrinsic::experimental_constrained_sitofp: 5450 case Intrinsic::experimental_constrained_uitofp: { 5451 Value *Operand = FPI.getArgOperand(0); 5452 uint64_t NumSrcElem = 0; 5453 Assert(Operand->getType()->isIntOrIntVectorTy(), 5454 "Intrinsic first argument must be integer", &FPI); 5455 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5456 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5457 } 5458 5459 Operand = &FPI; 5460 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5461 "Intrinsic first argument and result disagree on vector use", &FPI); 5462 Assert(Operand->getType()->isFPOrFPVectorTy(), 5463 "Intrinsic result must be a floating point", &FPI); 5464 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5465 Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5466 "Intrinsic first argument and result vector lengths must be equal", 5467 &FPI); 5468 } 5469 } break; 5470 5471 case Intrinsic::experimental_constrained_fptrunc: 5472 case Intrinsic::experimental_constrained_fpext: { 5473 Value *Operand = FPI.getArgOperand(0); 5474 Type *OperandTy = Operand->getType(); 5475 Value *Result = &FPI; 5476 Type *ResultTy = Result->getType(); 5477 Assert(OperandTy->isFPOrFPVectorTy(), 5478 "Intrinsic first argument must be FP or FP vector", &FPI); 5479 Assert(ResultTy->isFPOrFPVectorTy(), 5480 "Intrinsic result must be FP or FP vector", &FPI); 5481 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 5482 "Intrinsic first argument and result disagree on vector use", &FPI); 5483 if (OperandTy->isVectorTy()) { 5484 Assert(cast<FixedVectorType>(OperandTy)->getNumElements() == 5485 cast<FixedVectorType>(ResultTy)->getNumElements(), 5486 "Intrinsic first argument and result vector lengths must be equal", 5487 &FPI); 5488 } 5489 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 5490 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 5491 "Intrinsic first argument's type must be larger than result type", 5492 &FPI); 5493 } else { 5494 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 5495 "Intrinsic first argument's type must be smaller than result type", 5496 &FPI); 5497 } 5498 } 5499 break; 5500 5501 default: 5502 break; 5503 } 5504 5505 // If a non-metadata argument is passed in a metadata slot then the 5506 // error will be caught earlier when the incorrect argument doesn't 5507 // match the specification in the intrinsic call table. Thus, no 5508 // argument type check is needed here. 5509 5510 Assert(FPI.getExceptionBehavior().hasValue(), 5511 "invalid exception behavior argument", &FPI); 5512 if (HasRoundingMD) { 5513 Assert(FPI.getRoundingMode().hasValue(), 5514 "invalid rounding mode argument", &FPI); 5515 } 5516 } 5517 5518 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 5519 auto *MD = DII.getRawLocation(); 5520 AssertDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) || 5521 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 5522 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 5523 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 5524 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 5525 DII.getRawVariable()); 5526 AssertDI(isa<DIExpression>(DII.getRawExpression()), 5527 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 5528 DII.getRawExpression()); 5529 5530 // Ignore broken !dbg attachments; they're checked elsewhere. 5531 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 5532 if (!isa<DILocation>(N)) 5533 return; 5534 5535 BasicBlock *BB = DII.getParent(); 5536 Function *F = BB ? BB->getParent() : nullptr; 5537 5538 // The scopes for variables and !dbg attachments must agree. 5539 DILocalVariable *Var = DII.getVariable(); 5540 DILocation *Loc = DII.getDebugLoc(); 5541 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5542 &DII, BB, F); 5543 5544 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 5545 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5546 if (!VarSP || !LocSP) 5547 return; // Broken scope chains are checked elsewhere. 5548 5549 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5550 " variable and !dbg attachment", 5551 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 5552 Loc->getScope()->getSubprogram()); 5553 5554 // This check is redundant with one in visitLocalVariable(). 5555 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 5556 Var->getRawType()); 5557 verifyFnArgs(DII); 5558 } 5559 5560 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 5561 AssertDI(isa<DILabel>(DLI.getRawLabel()), 5562 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 5563 DLI.getRawLabel()); 5564 5565 // Ignore broken !dbg attachments; they're checked elsewhere. 5566 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 5567 if (!isa<DILocation>(N)) 5568 return; 5569 5570 BasicBlock *BB = DLI.getParent(); 5571 Function *F = BB ? BB->getParent() : nullptr; 5572 5573 // The scopes for variables and !dbg attachments must agree. 5574 DILabel *Label = DLI.getLabel(); 5575 DILocation *Loc = DLI.getDebugLoc(); 5576 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5577 &DLI, BB, F); 5578 5579 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 5580 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5581 if (!LabelSP || !LocSP) 5582 return; 5583 5584 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5585 " label and !dbg attachment", 5586 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 5587 Loc->getScope()->getSubprogram()); 5588 } 5589 5590 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 5591 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 5592 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5593 5594 // We don't know whether this intrinsic verified correctly. 5595 if (!V || !E || !E->isValid()) 5596 return; 5597 5598 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 5599 auto Fragment = E->getFragmentInfo(); 5600 if (!Fragment) 5601 return; 5602 5603 // The frontend helps out GDB by emitting the members of local anonymous 5604 // unions as artificial local variables with shared storage. When SROA splits 5605 // the storage for artificial local variables that are smaller than the entire 5606 // union, the overhang piece will be outside of the allotted space for the 5607 // variable and this check fails. 5608 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 5609 if (V->isArtificial()) 5610 return; 5611 5612 verifyFragmentExpression(*V, *Fragment, &I); 5613 } 5614 5615 template <typename ValueOrMetadata> 5616 void Verifier::verifyFragmentExpression(const DIVariable &V, 5617 DIExpression::FragmentInfo Fragment, 5618 ValueOrMetadata *Desc) { 5619 // If there's no size, the type is broken, but that should be checked 5620 // elsewhere. 5621 auto VarSize = V.getSizeInBits(); 5622 if (!VarSize) 5623 return; 5624 5625 unsigned FragSize = Fragment.SizeInBits; 5626 unsigned FragOffset = Fragment.OffsetInBits; 5627 AssertDI(FragSize + FragOffset <= *VarSize, 5628 "fragment is larger than or outside of variable", Desc, &V); 5629 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 5630 } 5631 5632 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 5633 // This function does not take the scope of noninlined function arguments into 5634 // account. Don't run it if current function is nodebug, because it may 5635 // contain inlined debug intrinsics. 5636 if (!HasDebugInfo) 5637 return; 5638 5639 // For performance reasons only check non-inlined ones. 5640 if (I.getDebugLoc()->getInlinedAt()) 5641 return; 5642 5643 DILocalVariable *Var = I.getVariable(); 5644 AssertDI(Var, "dbg intrinsic without variable"); 5645 5646 unsigned ArgNo = Var->getArg(); 5647 if (!ArgNo) 5648 return; 5649 5650 // Verify there are no duplicate function argument debug info entries. 5651 // These will cause hard-to-debug assertions in the DWARF backend. 5652 if (DebugFnArgs.size() < ArgNo) 5653 DebugFnArgs.resize(ArgNo, nullptr); 5654 5655 auto *Prev = DebugFnArgs[ArgNo - 1]; 5656 DebugFnArgs[ArgNo - 1] = Var; 5657 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 5658 Prev, Var); 5659 } 5660 5661 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 5662 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5663 5664 // We don't know whether this intrinsic verified correctly. 5665 if (!E || !E->isValid()) 5666 return; 5667 5668 AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); 5669 } 5670 5671 void Verifier::verifyCompileUnits() { 5672 // When more than one Module is imported into the same context, such as during 5673 // an LTO build before linking the modules, ODR type uniquing may cause types 5674 // to point to a different CU. This check does not make sense in this case. 5675 if (M.getContext().isODRUniquingDebugTypes()) 5676 return; 5677 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 5678 SmallPtrSet<const Metadata *, 2> Listed; 5679 if (CUs) 5680 Listed.insert(CUs->op_begin(), CUs->op_end()); 5681 for (auto *CU : CUVisited) 5682 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 5683 CUVisited.clear(); 5684 } 5685 5686 void Verifier::verifyDeoptimizeCallingConvs() { 5687 if (DeoptimizeDeclarations.empty()) 5688 return; 5689 5690 const Function *First = DeoptimizeDeclarations[0]; 5691 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 5692 Assert(First->getCallingConv() == F->getCallingConv(), 5693 "All llvm.experimental.deoptimize declarations must have the same " 5694 "calling convention", 5695 First, F); 5696 } 5697 } 5698 5699 void Verifier::verifyAttachedCallBundle(const CallBase &Call, 5700 const OperandBundleUse &BU) { 5701 FunctionType *FTy = Call.getFunctionType(); 5702 5703 Assert((FTy->getReturnType()->isPointerTy() || 5704 (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())), 5705 "a call with operand bundle \"clang.arc.attachedcall\" must call a " 5706 "function returning a pointer or a non-returning function that has a " 5707 "void return type", 5708 Call); 5709 5710 Assert((BU.Inputs.empty() || 5711 (BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()))), 5712 "operand bundle \"clang.arc.attachedcall\" can take either no " 5713 "arguments or one function as an argument", 5714 Call); 5715 5716 if (BU.Inputs.empty()) 5717 return; 5718 5719 auto *Fn = cast<Function>(BU.Inputs.front()); 5720 Intrinsic::ID IID = Fn->getIntrinsicID(); 5721 5722 if (IID) { 5723 Assert((IID == Intrinsic::objc_retainAutoreleasedReturnValue || 5724 IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue), 5725 "invalid function argument", Call); 5726 } else { 5727 StringRef FnName = Fn->getName(); 5728 Assert((FnName == "objc_retainAutoreleasedReturnValue" || 5729 FnName == "objc_unsafeClaimAutoreleasedReturnValue"), 5730 "invalid function argument", Call); 5731 } 5732 } 5733 5734 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 5735 bool HasSource = F.getSource().hasValue(); 5736 if (!HasSourceDebugInfo.count(&U)) 5737 HasSourceDebugInfo[&U] = HasSource; 5738 AssertDI(HasSource == HasSourceDebugInfo[&U], 5739 "inconsistent use of embedded source"); 5740 } 5741 5742 void Verifier::verifyNoAliasScopeDecl() { 5743 if (NoAliasScopeDecls.empty()) 5744 return; 5745 5746 // only a single scope must be declared at a time. 5747 for (auto *II : NoAliasScopeDecls) { 5748 assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl && 5749 "Not a llvm.experimental.noalias.scope.decl ?"); 5750 const auto *ScopeListMV = dyn_cast<MetadataAsValue>( 5751 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 5752 Assert(ScopeListMV != nullptr, 5753 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue " 5754 "argument", 5755 II); 5756 5757 const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata()); 5758 Assert(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", 5759 II); 5760 Assert(ScopeListMD->getNumOperands() == 1, 5761 "!id.scope.list must point to a list with a single scope", II); 5762 visitAliasScopeListMetadata(ScopeListMD); 5763 } 5764 5765 // Only check the domination rule when requested. Once all passes have been 5766 // adapted this option can go away. 5767 if (!VerifyNoAliasScopeDomination) 5768 return; 5769 5770 // Now sort the intrinsics based on the scope MDNode so that declarations of 5771 // the same scopes are next to each other. 5772 auto GetScope = [](IntrinsicInst *II) { 5773 const auto *ScopeListMV = cast<MetadataAsValue>( 5774 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 5775 return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0); 5776 }; 5777 5778 // We are sorting on MDNode pointers here. For valid input IR this is ok. 5779 // TODO: Sort on Metadata ID to avoid non-deterministic error messages. 5780 auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) { 5781 return GetScope(Lhs) < GetScope(Rhs); 5782 }; 5783 5784 llvm::sort(NoAliasScopeDecls, Compare); 5785 5786 // Go over the intrinsics and check that for the same scope, they are not 5787 // dominating each other. 5788 auto ItCurrent = NoAliasScopeDecls.begin(); 5789 while (ItCurrent != NoAliasScopeDecls.end()) { 5790 auto CurScope = GetScope(*ItCurrent); 5791 auto ItNext = ItCurrent; 5792 do { 5793 ++ItNext; 5794 } while (ItNext != NoAliasScopeDecls.end() && 5795 GetScope(*ItNext) == CurScope); 5796 5797 // [ItCurrent, ItNext) represents the declarations for the same scope. 5798 // Ensure they are not dominating each other.. but only if it is not too 5799 // expensive. 5800 if (ItNext - ItCurrent < 32) 5801 for (auto *I : llvm::make_range(ItCurrent, ItNext)) 5802 for (auto *J : llvm::make_range(ItCurrent, ItNext)) 5803 if (I != J) 5804 Assert(!DT.dominates(I, J), 5805 "llvm.experimental.noalias.scope.decl dominates another one " 5806 "with the same scope", 5807 I); 5808 ItCurrent = ItNext; 5809 } 5810 } 5811 5812 //===----------------------------------------------------------------------===// 5813 // Implement the public interfaces to this file... 5814 //===----------------------------------------------------------------------===// 5815 5816 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 5817 Function &F = const_cast<Function &>(f); 5818 5819 // Don't use a raw_null_ostream. Printing IR is expensive. 5820 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 5821 5822 // Note that this function's return value is inverted from what you would 5823 // expect of a function called "verify". 5824 return !V.verify(F); 5825 } 5826 5827 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 5828 bool *BrokenDebugInfo) { 5829 // Don't use a raw_null_ostream. Printing IR is expensive. 5830 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 5831 5832 bool Broken = false; 5833 for (const Function &F : M) 5834 Broken |= !V.verify(F); 5835 5836 Broken |= !V.verify(); 5837 if (BrokenDebugInfo) 5838 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 5839 // Note that this function's return value is inverted from what you would 5840 // expect of a function called "verify". 5841 return Broken; 5842 } 5843 5844 namespace { 5845 5846 struct VerifierLegacyPass : public FunctionPass { 5847 static char ID; 5848 5849 std::unique_ptr<Verifier> V; 5850 bool FatalErrors = true; 5851 5852 VerifierLegacyPass() : FunctionPass(ID) { 5853 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5854 } 5855 explicit VerifierLegacyPass(bool FatalErrors) 5856 : FunctionPass(ID), 5857 FatalErrors(FatalErrors) { 5858 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5859 } 5860 5861 bool doInitialization(Module &M) override { 5862 V = std::make_unique<Verifier>( 5863 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 5864 return false; 5865 } 5866 5867 bool runOnFunction(Function &F) override { 5868 if (!V->verify(F) && FatalErrors) { 5869 errs() << "in function " << F.getName() << '\n'; 5870 report_fatal_error("Broken function found, compilation aborted!"); 5871 } 5872 return false; 5873 } 5874 5875 bool doFinalization(Module &M) override { 5876 bool HasErrors = false; 5877 for (Function &F : M) 5878 if (F.isDeclaration()) 5879 HasErrors |= !V->verify(F); 5880 5881 HasErrors |= !V->verify(); 5882 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 5883 report_fatal_error("Broken module found, compilation aborted!"); 5884 return false; 5885 } 5886 5887 void getAnalysisUsage(AnalysisUsage &AU) const override { 5888 AU.setPreservesAll(); 5889 } 5890 }; 5891 5892 } // end anonymous namespace 5893 5894 /// Helper to issue failure from the TBAA verification 5895 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 5896 if (Diagnostic) 5897 return Diagnostic->CheckFailed(Args...); 5898 } 5899 5900 #define AssertTBAA(C, ...) \ 5901 do { \ 5902 if (!(C)) { \ 5903 CheckFailed(__VA_ARGS__); \ 5904 return false; \ 5905 } \ 5906 } while (false) 5907 5908 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 5909 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 5910 /// struct-type node describing an aggregate data structure (like a struct). 5911 TBAAVerifier::TBAABaseNodeSummary 5912 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 5913 bool IsNewFormat) { 5914 if (BaseNode->getNumOperands() < 2) { 5915 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 5916 return {true, ~0u}; 5917 } 5918 5919 auto Itr = TBAABaseNodes.find(BaseNode); 5920 if (Itr != TBAABaseNodes.end()) 5921 return Itr->second; 5922 5923 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 5924 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 5925 (void)InsertResult; 5926 assert(InsertResult.second && "We just checked!"); 5927 return Result; 5928 } 5929 5930 TBAAVerifier::TBAABaseNodeSummary 5931 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 5932 bool IsNewFormat) { 5933 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 5934 5935 if (BaseNode->getNumOperands() == 2) { 5936 // Scalar nodes can only be accessed at offset 0. 5937 return isValidScalarTBAANode(BaseNode) 5938 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 5939 : InvalidNode; 5940 } 5941 5942 if (IsNewFormat) { 5943 if (BaseNode->getNumOperands() % 3 != 0) { 5944 CheckFailed("Access tag nodes must have the number of operands that is a " 5945 "multiple of 3!", BaseNode); 5946 return InvalidNode; 5947 } 5948 } else { 5949 if (BaseNode->getNumOperands() % 2 != 1) { 5950 CheckFailed("Struct tag nodes must have an odd number of operands!", 5951 BaseNode); 5952 return InvalidNode; 5953 } 5954 } 5955 5956 // Check the type size field. 5957 if (IsNewFormat) { 5958 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5959 BaseNode->getOperand(1)); 5960 if (!TypeSizeNode) { 5961 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 5962 return InvalidNode; 5963 } 5964 } 5965 5966 // Check the type name field. In the new format it can be anything. 5967 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 5968 CheckFailed("Struct tag nodes have a string as their first operand", 5969 BaseNode); 5970 return InvalidNode; 5971 } 5972 5973 bool Failed = false; 5974 5975 Optional<APInt> PrevOffset; 5976 unsigned BitWidth = ~0u; 5977 5978 // We've already checked that BaseNode is not a degenerate root node with one 5979 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 5980 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5981 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5982 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5983 Idx += NumOpsPerField) { 5984 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 5985 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 5986 if (!isa<MDNode>(FieldTy)) { 5987 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 5988 Failed = true; 5989 continue; 5990 } 5991 5992 auto *OffsetEntryCI = 5993 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 5994 if (!OffsetEntryCI) { 5995 CheckFailed("Offset entries must be constants!", &I, BaseNode); 5996 Failed = true; 5997 continue; 5998 } 5999 6000 if (BitWidth == ~0u) 6001 BitWidth = OffsetEntryCI->getBitWidth(); 6002 6003 if (OffsetEntryCI->getBitWidth() != BitWidth) { 6004 CheckFailed( 6005 "Bitwidth between the offsets and struct type entries must match", &I, 6006 BaseNode); 6007 Failed = true; 6008 continue; 6009 } 6010 6011 // NB! As far as I can tell, we generate a non-strictly increasing offset 6012 // sequence only from structs that have zero size bit fields. When 6013 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 6014 // pick the field lexically the latest in struct type metadata node. This 6015 // mirrors the actual behavior of the alias analysis implementation. 6016 bool IsAscending = 6017 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 6018 6019 if (!IsAscending) { 6020 CheckFailed("Offsets must be increasing!", &I, BaseNode); 6021 Failed = true; 6022 } 6023 6024 PrevOffset = OffsetEntryCI->getValue(); 6025 6026 if (IsNewFormat) { 6027 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6028 BaseNode->getOperand(Idx + 2)); 6029 if (!MemberSizeNode) { 6030 CheckFailed("Member size entries must be constants!", &I, BaseNode); 6031 Failed = true; 6032 continue; 6033 } 6034 } 6035 } 6036 6037 return Failed ? InvalidNode 6038 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 6039 } 6040 6041 static bool IsRootTBAANode(const MDNode *MD) { 6042 return MD->getNumOperands() < 2; 6043 } 6044 6045 static bool IsScalarTBAANodeImpl(const MDNode *MD, 6046 SmallPtrSetImpl<const MDNode *> &Visited) { 6047 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 6048 return false; 6049 6050 if (!isa<MDString>(MD->getOperand(0))) 6051 return false; 6052 6053 if (MD->getNumOperands() == 3) { 6054 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 6055 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 6056 return false; 6057 } 6058 6059 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 6060 return Parent && Visited.insert(Parent).second && 6061 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 6062 } 6063 6064 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 6065 auto ResultIt = TBAAScalarNodes.find(MD); 6066 if (ResultIt != TBAAScalarNodes.end()) 6067 return ResultIt->second; 6068 6069 SmallPtrSet<const MDNode *, 4> Visited; 6070 bool Result = IsScalarTBAANodeImpl(MD, Visited); 6071 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 6072 (void)InsertResult; 6073 assert(InsertResult.second && "Just checked!"); 6074 6075 return Result; 6076 } 6077 6078 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 6079 /// Offset in place to be the offset within the field node returned. 6080 /// 6081 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 6082 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 6083 const MDNode *BaseNode, 6084 APInt &Offset, 6085 bool IsNewFormat) { 6086 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 6087 6088 // Scalar nodes have only one possible "field" -- their parent in the access 6089 // hierarchy. Offset must be zero at this point, but our caller is supposed 6090 // to Assert that. 6091 if (BaseNode->getNumOperands() == 2) 6092 return cast<MDNode>(BaseNode->getOperand(1)); 6093 6094 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 6095 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 6096 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 6097 Idx += NumOpsPerField) { 6098 auto *OffsetEntryCI = 6099 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 6100 if (OffsetEntryCI->getValue().ugt(Offset)) { 6101 if (Idx == FirstFieldOpNo) { 6102 CheckFailed("Could not find TBAA parent in struct type node", &I, 6103 BaseNode, &Offset); 6104 return nullptr; 6105 } 6106 6107 unsigned PrevIdx = Idx - NumOpsPerField; 6108 auto *PrevOffsetEntryCI = 6109 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 6110 Offset -= PrevOffsetEntryCI->getValue(); 6111 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 6112 } 6113 } 6114 6115 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 6116 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 6117 BaseNode->getOperand(LastIdx + 1)); 6118 Offset -= LastOffsetEntryCI->getValue(); 6119 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 6120 } 6121 6122 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 6123 if (!Type || Type->getNumOperands() < 3) 6124 return false; 6125 6126 // In the new format type nodes shall have a reference to the parent type as 6127 // its first operand. 6128 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 6129 if (!Parent) 6130 return false; 6131 6132 return true; 6133 } 6134 6135 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 6136 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 6137 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 6138 isa<AtomicCmpXchgInst>(I), 6139 "This instruction shall not have a TBAA access tag!", &I); 6140 6141 bool IsStructPathTBAA = 6142 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 6143 6144 AssertTBAA( 6145 IsStructPathTBAA, 6146 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 6147 6148 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 6149 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 6150 6151 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 6152 6153 if (IsNewFormat) { 6154 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 6155 "Access tag metadata must have either 4 or 5 operands", &I, MD); 6156 } else { 6157 AssertTBAA(MD->getNumOperands() < 5, 6158 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 6159 } 6160 6161 // Check the access size field. 6162 if (IsNewFormat) { 6163 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6164 MD->getOperand(3)); 6165 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 6166 } 6167 6168 // Check the immutability flag. 6169 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 6170 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 6171 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 6172 MD->getOperand(ImmutabilityFlagOpNo)); 6173 AssertTBAA(IsImmutableCI, 6174 "Immutability tag on struct tag metadata must be a constant", 6175 &I, MD); 6176 AssertTBAA( 6177 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 6178 "Immutability part of the struct tag metadata must be either 0 or 1", 6179 &I, MD); 6180 } 6181 6182 AssertTBAA(BaseNode && AccessType, 6183 "Malformed struct tag metadata: base and access-type " 6184 "should be non-null and point to Metadata nodes", 6185 &I, MD, BaseNode, AccessType); 6186 6187 if (!IsNewFormat) { 6188 AssertTBAA(isValidScalarTBAANode(AccessType), 6189 "Access type node must be a valid scalar type", &I, MD, 6190 AccessType); 6191 } 6192 6193 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 6194 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 6195 6196 APInt Offset = OffsetCI->getValue(); 6197 bool SeenAccessTypeInPath = false; 6198 6199 SmallPtrSet<MDNode *, 4> StructPath; 6200 6201 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 6202 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 6203 IsNewFormat)) { 6204 if (!StructPath.insert(BaseNode).second) { 6205 CheckFailed("Cycle detected in struct path", &I, MD); 6206 return false; 6207 } 6208 6209 bool Invalid; 6210 unsigned BaseNodeBitWidth; 6211 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 6212 IsNewFormat); 6213 6214 // If the base node is invalid in itself, then we've already printed all the 6215 // errors we wanted to print. 6216 if (Invalid) 6217 return false; 6218 6219 SeenAccessTypeInPath |= BaseNode == AccessType; 6220 6221 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 6222 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 6223 &I, MD, &Offset); 6224 6225 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 6226 (BaseNodeBitWidth == 0 && Offset == 0) || 6227 (IsNewFormat && BaseNodeBitWidth == ~0u), 6228 "Access bit-width not the same as description bit-width", &I, MD, 6229 BaseNodeBitWidth, Offset.getBitWidth()); 6230 6231 if (IsNewFormat && SeenAccessTypeInPath) 6232 break; 6233 } 6234 6235 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 6236 &I, MD); 6237 return true; 6238 } 6239 6240 char VerifierLegacyPass::ID = 0; 6241 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 6242 6243 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 6244 return new VerifierLegacyPass(FatalErrors); 6245 } 6246 6247 AnalysisKey VerifierAnalysis::Key; 6248 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 6249 ModuleAnalysisManager &) { 6250 Result Res; 6251 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 6252 return Res; 6253 } 6254 6255 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 6256 FunctionAnalysisManager &) { 6257 return { llvm::verifyFunction(F, &dbgs()), false }; 6258 } 6259 6260 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 6261 auto Res = AM.getResult<VerifierAnalysis>(M); 6262 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 6263 report_fatal_error("Broken module found, compilation aborted!"); 6264 6265 return PreservedAnalyses::all(); 6266 } 6267 6268 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 6269 auto res = AM.getResult<VerifierAnalysis>(F); 6270 if (res.IRBroken && FatalErrors) 6271 report_fatal_error("Broken function found, compilation aborted!"); 6272 6273 return PreservedAnalyses::all(); 6274 } 6275