1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the function verifier interface, that can be used for some 11 // sanity checking of input to the system. 12 // 13 // Note that this does not provide full `Java style' security and verifications, 14 // instead it just tries to ensure that code is well-formed. 15 // 16 // * Both of a binary operator's parameters are of the same type 17 // * Verify that the indices of mem access instructions match other operands 18 // * Verify that arithmetic and other things are only performed on first-class 19 // types. Verify that shifts & logicals only happen on integrals f.e. 20 // * All of the constants in a switch statement are of the correct type 21 // * The code is in valid SSA form 22 // * It should be illegal to put a label into any other type (like a structure) 23 // or to return one. [except constant arrays!] 24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 25 // * PHI nodes must have an entry for each predecessor, with no extras. 26 // * PHI nodes must be the first thing in a basic block, all grouped together 27 // * PHI nodes must have at least one entry 28 // * All basic blocks should only end with terminator insts, not contain them 29 // * The entry node to a function must not have predecessors 30 // * All Instructions must be embedded into a basic block 31 // * Functions cannot take a void-typed parameter 32 // * Verify that a function's argument list agrees with it's declared type. 33 // * It is illegal to specify a name for a void value. 34 // * It is illegal to have a internal global value with no initializer 35 // * It is illegal to have a ret instruction that returns a value that does not 36 // agree with the function return value type. 37 // * Function call argument types match the function prototype 38 // * A landing pad is defined by a landingpad instruction, and can be jumped to 39 // only by the unwind edge of an invoke instruction. 40 // * A landingpad instruction must be the first non-PHI instruction in the 41 // block. 42 // * Landingpad instructions must be in a function with a personality function. 43 // * All other things that are tested by asserts spread about the code... 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "llvm/IR/Verifier.h" 48 #include "llvm/ADT/APFloat.h" 49 #include "llvm/ADT/APInt.h" 50 #include "llvm/ADT/ArrayRef.h" 51 #include "llvm/ADT/DenseMap.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/Optional.h" 54 #include "llvm/ADT/STLExtras.h" 55 #include "llvm/ADT/SmallPtrSet.h" 56 #include "llvm/ADT/SmallSet.h" 57 #include "llvm/ADT/SmallVector.h" 58 #include "llvm/ADT/StringExtras.h" 59 #include "llvm/ADT/StringMap.h" 60 #include "llvm/ADT/StringRef.h" 61 #include "llvm/ADT/Twine.h" 62 #include "llvm/ADT/ilist.h" 63 #include "llvm/BinaryFormat/Dwarf.h" 64 #include "llvm/IR/Argument.h" 65 #include "llvm/IR/Attributes.h" 66 #include "llvm/IR/BasicBlock.h" 67 #include "llvm/IR/CFG.h" 68 #include "llvm/IR/CallSite.h" 69 #include "llvm/IR/CallingConv.h" 70 #include "llvm/IR/Comdat.h" 71 #include "llvm/IR/Constant.h" 72 #include "llvm/IR/ConstantRange.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DebugInfo.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Dominators.h" 80 #include "llvm/IR/Function.h" 81 #include "llvm/IR/GlobalAlias.h" 82 #include "llvm/IR/GlobalValue.h" 83 #include "llvm/IR/GlobalVariable.h" 84 #include "llvm/IR/InlineAsm.h" 85 #include "llvm/IR/InstVisitor.h" 86 #include "llvm/IR/InstrTypes.h" 87 #include "llvm/IR/Instruction.h" 88 #include "llvm/IR/Instructions.h" 89 #include "llvm/IR/IntrinsicInst.h" 90 #include "llvm/IR/Intrinsics.h" 91 #include "llvm/IR/LLVMContext.h" 92 #include "llvm/IR/Metadata.h" 93 #include "llvm/IR/Module.h" 94 #include "llvm/IR/ModuleSlotTracker.h" 95 #include "llvm/IR/PassManager.h" 96 #include "llvm/IR/Statepoint.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/Use.h" 99 #include "llvm/IR/User.h" 100 #include "llvm/IR/Value.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Debug.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <cstdint> 112 #include <memory> 113 #include <string> 114 #include <utility> 115 116 using namespace llvm; 117 118 namespace llvm { 119 120 struct VerifierSupport { 121 raw_ostream *OS; 122 const Module &M; 123 ModuleSlotTracker MST; 124 const DataLayout &DL; 125 LLVMContext &Context; 126 127 /// Track the brokenness of the module while recursively visiting. 128 bool Broken = false; 129 /// Broken debug info can be "recovered" from by stripping the debug info. 130 bool BrokenDebugInfo = false; 131 /// Whether to treat broken debug info as an error. 132 bool TreatBrokenDebugInfoAsError = true; 133 134 explicit VerifierSupport(raw_ostream *OS, const Module &M) 135 : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {} 136 137 private: 138 void Write(const Module *M) { 139 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 140 } 141 142 void Write(const Value *V) { 143 if (!V) 144 return; 145 if (isa<Instruction>(V)) { 146 V->print(*OS, MST); 147 *OS << '\n'; 148 } else { 149 V->printAsOperand(*OS, true, MST); 150 *OS << '\n'; 151 } 152 } 153 154 void Write(ImmutableCallSite CS) { 155 Write(CS.getInstruction()); 156 } 157 158 void Write(const Metadata *MD) { 159 if (!MD) 160 return; 161 MD->print(*OS, MST, &M); 162 *OS << '\n'; 163 } 164 165 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 166 Write(MD.get()); 167 } 168 169 void Write(const NamedMDNode *NMD) { 170 if (!NMD) 171 return; 172 NMD->print(*OS, MST); 173 *OS << '\n'; 174 } 175 176 void Write(Type *T) { 177 if (!T) 178 return; 179 *OS << ' ' << *T; 180 } 181 182 void Write(const Comdat *C) { 183 if (!C) 184 return; 185 *OS << *C; 186 } 187 188 void Write(const APInt *AI) { 189 if (!AI) 190 return; 191 *OS << *AI << '\n'; 192 } 193 194 void Write(const unsigned i) { *OS << i << '\n'; } 195 196 template <typename T> void Write(ArrayRef<T> Vs) { 197 for (const T &V : Vs) 198 Write(V); 199 } 200 201 template <typename T1, typename... Ts> 202 void WriteTs(const T1 &V1, const Ts &... Vs) { 203 Write(V1); 204 WriteTs(Vs...); 205 } 206 207 template <typename... Ts> void WriteTs() {} 208 209 public: 210 /// \brief A check failed, so printout out the condition and the message. 211 /// 212 /// This provides a nice place to put a breakpoint if you want to see why 213 /// something is not correct. 214 void CheckFailed(const Twine &Message) { 215 if (OS) 216 *OS << Message << '\n'; 217 Broken = true; 218 } 219 220 /// \brief A check failed (with values to print). 221 /// 222 /// This calls the Message-only version so that the above is easier to set a 223 /// breakpoint on. 224 template <typename T1, typename... Ts> 225 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 226 CheckFailed(Message); 227 if (OS) 228 WriteTs(V1, Vs...); 229 } 230 231 /// A debug info check failed. 232 void DebugInfoCheckFailed(const Twine &Message) { 233 if (OS) 234 *OS << Message << '\n'; 235 Broken |= TreatBrokenDebugInfoAsError; 236 BrokenDebugInfo = true; 237 } 238 239 /// A debug info check failed (with values to print). 240 template <typename T1, typename... Ts> 241 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 242 const Ts &... Vs) { 243 DebugInfoCheckFailed(Message); 244 if (OS) 245 WriteTs(V1, Vs...); 246 } 247 }; 248 249 } // namespace llvm 250 251 namespace { 252 253 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 254 friend class InstVisitor<Verifier>; 255 256 DominatorTree DT; 257 258 /// \brief When verifying a basic block, keep track of all of the 259 /// instructions we have seen so far. 260 /// 261 /// This allows us to do efficient dominance checks for the case when an 262 /// instruction has an operand that is an instruction in the same block. 263 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 264 265 /// \brief Keep track of the metadata nodes that have been checked already. 266 SmallPtrSet<const Metadata *, 32> MDNodes; 267 268 /// Keep track which DISubprogram is attached to which function. 269 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 270 271 /// Track all DICompileUnits visited. 272 SmallPtrSet<const Metadata *, 2> CUVisited; 273 274 /// \brief The result type for a landingpad. 275 Type *LandingPadResultTy; 276 277 /// \brief Whether we've seen a call to @llvm.localescape in this function 278 /// already. 279 bool SawFrameEscape; 280 281 /// Whether the current function has a DISubprogram attached to it. 282 bool HasDebugInfo = false; 283 284 /// Stores the count of how many objects were passed to llvm.localescape for a 285 /// given function and the largest index passed to llvm.localrecover. 286 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 287 288 // Maps catchswitches and cleanuppads that unwind to siblings to the 289 // terminators that indicate the unwind, used to detect cycles therein. 290 MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo; 291 292 /// Cache of constants visited in search of ConstantExprs. 293 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 294 295 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 296 SmallVector<const Function *, 4> DeoptimizeDeclarations; 297 298 // Verify that this GlobalValue is only used in this module. 299 // This map is used to avoid visiting uses twice. We can arrive at a user 300 // twice, if they have multiple operands. In particular for very large 301 // constant expressions, we can arrive at a particular user many times. 302 SmallPtrSet<const Value *, 32> GlobalValueVisited; 303 304 // Keeps track of duplicate function argument debug info. 305 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 306 307 TBAAVerifier TBAAVerifyHelper; 308 309 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 310 311 public: 312 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 313 const Module &M) 314 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 315 SawFrameEscape(false), TBAAVerifyHelper(this) { 316 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 317 } 318 319 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 320 321 bool verify(const Function &F) { 322 assert(F.getParent() == &M && 323 "An instance of this class only works with a specific module!"); 324 325 // First ensure the function is well-enough formed to compute dominance 326 // information, and directly compute a dominance tree. We don't rely on the 327 // pass manager to provide this as it isolates us from a potentially 328 // out-of-date dominator tree and makes it significantly more complex to run 329 // this code outside of a pass manager. 330 // FIXME: It's really gross that we have to cast away constness here. 331 if (!F.empty()) 332 DT.recalculate(const_cast<Function &>(F)); 333 334 for (const BasicBlock &BB : F) { 335 if (!BB.empty() && BB.back().isTerminator()) 336 continue; 337 338 if (OS) { 339 *OS << "Basic Block in function '" << F.getName() 340 << "' does not have terminator!\n"; 341 BB.printAsOperand(*OS, true, MST); 342 *OS << "\n"; 343 } 344 return false; 345 } 346 347 Broken = false; 348 // FIXME: We strip const here because the inst visitor strips const. 349 visit(const_cast<Function &>(F)); 350 verifySiblingFuncletUnwinds(); 351 InstsInThisBlock.clear(); 352 DebugFnArgs.clear(); 353 LandingPadResultTy = nullptr; 354 SawFrameEscape = false; 355 SiblingFuncletInfo.clear(); 356 357 return !Broken; 358 } 359 360 /// Verify the module that this instance of \c Verifier was initialized with. 361 bool verify() { 362 Broken = false; 363 364 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 365 for (const Function &F : M) 366 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 367 DeoptimizeDeclarations.push_back(&F); 368 369 // Now that we've visited every function, verify that we never asked to 370 // recover a frame index that wasn't escaped. 371 verifyFrameRecoverIndices(); 372 for (const GlobalVariable &GV : M.globals()) 373 visitGlobalVariable(GV); 374 375 for (const GlobalAlias &GA : M.aliases()) 376 visitGlobalAlias(GA); 377 378 for (const NamedMDNode &NMD : M.named_metadata()) 379 visitNamedMDNode(NMD); 380 381 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 382 visitComdat(SMEC.getValue()); 383 384 visitModuleFlags(M); 385 visitModuleIdents(M); 386 387 verifyCompileUnits(); 388 389 verifyDeoptimizeCallingConvs(); 390 DISubprogramAttachments.clear(); 391 return !Broken; 392 } 393 394 private: 395 // Verification methods... 396 void visitGlobalValue(const GlobalValue &GV); 397 void visitGlobalVariable(const GlobalVariable &GV); 398 void visitGlobalAlias(const GlobalAlias &GA); 399 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 400 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 401 const GlobalAlias &A, const Constant &C); 402 void visitNamedMDNode(const NamedMDNode &NMD); 403 void visitMDNode(const MDNode &MD); 404 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 405 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 406 void visitComdat(const Comdat &C); 407 void visitModuleIdents(const Module &M); 408 void visitModuleFlags(const Module &M); 409 void visitModuleFlag(const MDNode *Op, 410 DenseMap<const MDString *, const MDNode *> &SeenIDs, 411 SmallVectorImpl<const MDNode *> &Requirements); 412 void visitFunction(const Function &F); 413 void visitBasicBlock(BasicBlock &BB); 414 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 415 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 416 417 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 418 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 419 #include "llvm/IR/Metadata.def" 420 void visitDIScope(const DIScope &N); 421 void visitDIVariable(const DIVariable &N); 422 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 423 void visitDITemplateParameter(const DITemplateParameter &N); 424 425 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 426 427 // InstVisitor overrides... 428 using InstVisitor<Verifier>::visit; 429 void visit(Instruction &I); 430 431 void visitTruncInst(TruncInst &I); 432 void visitZExtInst(ZExtInst &I); 433 void visitSExtInst(SExtInst &I); 434 void visitFPTruncInst(FPTruncInst &I); 435 void visitFPExtInst(FPExtInst &I); 436 void visitFPToUIInst(FPToUIInst &I); 437 void visitFPToSIInst(FPToSIInst &I); 438 void visitUIToFPInst(UIToFPInst &I); 439 void visitSIToFPInst(SIToFPInst &I); 440 void visitIntToPtrInst(IntToPtrInst &I); 441 void visitPtrToIntInst(PtrToIntInst &I); 442 void visitBitCastInst(BitCastInst &I); 443 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 444 void visitPHINode(PHINode &PN); 445 void visitBinaryOperator(BinaryOperator &B); 446 void visitICmpInst(ICmpInst &IC); 447 void visitFCmpInst(FCmpInst &FC); 448 void visitExtractElementInst(ExtractElementInst &EI); 449 void visitInsertElementInst(InsertElementInst &EI); 450 void visitShuffleVectorInst(ShuffleVectorInst &EI); 451 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 452 void visitCallInst(CallInst &CI); 453 void visitInvokeInst(InvokeInst &II); 454 void visitGetElementPtrInst(GetElementPtrInst &GEP); 455 void visitLoadInst(LoadInst &LI); 456 void visitStoreInst(StoreInst &SI); 457 void verifyDominatesUse(Instruction &I, unsigned i); 458 void visitInstruction(Instruction &I); 459 void visitTerminatorInst(TerminatorInst &I); 460 void visitBranchInst(BranchInst &BI); 461 void visitReturnInst(ReturnInst &RI); 462 void visitSwitchInst(SwitchInst &SI); 463 void visitIndirectBrInst(IndirectBrInst &BI); 464 void visitSelectInst(SelectInst &SI); 465 void visitUserOp1(Instruction &I); 466 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 467 void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS); 468 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 469 void visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII); 470 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 471 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 472 void visitFenceInst(FenceInst &FI); 473 void visitAllocaInst(AllocaInst &AI); 474 void visitExtractValueInst(ExtractValueInst &EVI); 475 void visitInsertValueInst(InsertValueInst &IVI); 476 void visitEHPadPredecessors(Instruction &I); 477 void visitLandingPadInst(LandingPadInst &LPI); 478 void visitResumeInst(ResumeInst &RI); 479 void visitCatchPadInst(CatchPadInst &CPI); 480 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 481 void visitCleanupPadInst(CleanupPadInst &CPI); 482 void visitFuncletPadInst(FuncletPadInst &FPI); 483 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 484 void visitCleanupReturnInst(CleanupReturnInst &CRI); 485 486 void verifyCallSite(CallSite CS); 487 void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal); 488 void verifySwiftErrorValue(const Value *SwiftErrorVal); 489 void verifyMustTailCall(CallInst &CI); 490 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, 491 unsigned ArgNo, std::string &Suffix); 492 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 493 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 494 const Value *V); 495 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 496 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 497 const Value *V); 498 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 499 500 void visitConstantExprsRecursively(const Constant *EntryC); 501 void visitConstantExpr(const ConstantExpr *CE); 502 void verifyStatepoint(ImmutableCallSite CS); 503 void verifyFrameRecoverIndices(); 504 void verifySiblingFuncletUnwinds(); 505 506 void verifyFragmentExpression(const DbgInfoIntrinsic &I); 507 template <typename ValueOrMetadata> 508 void verifyFragmentExpression(const DIVariable &V, 509 DIExpression::FragmentInfo Fragment, 510 ValueOrMetadata *Desc); 511 void verifyFnArgs(const DbgInfoIntrinsic &I); 512 513 /// Module-level debug info verification... 514 void verifyCompileUnits(); 515 516 /// Module-level verification that all @llvm.experimental.deoptimize 517 /// declarations share the same calling convention. 518 void verifyDeoptimizeCallingConvs(); 519 }; 520 521 } // end anonymous namespace 522 523 /// We know that cond should be true, if not print an error message. 524 #define Assert(C, ...) \ 525 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 526 527 /// We know that a debug info condition should be true, if not print 528 /// an error message. 529 #define AssertDI(C, ...) \ 530 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 531 532 void Verifier::visit(Instruction &I) { 533 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 534 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 535 InstVisitor<Verifier>::visit(I); 536 } 537 538 // Helper to recursively iterate over indirect users. By 539 // returning false, the callback can ask to stop recursing 540 // further. 541 static void forEachUser(const Value *User, 542 SmallPtrSet<const Value *, 32> &Visited, 543 llvm::function_ref<bool(const Value *)> Callback) { 544 if (!Visited.insert(User).second) 545 return; 546 for (const Value *TheNextUser : User->materialized_users()) 547 if (Callback(TheNextUser)) 548 forEachUser(TheNextUser, Visited, Callback); 549 } 550 551 void Verifier::visitGlobalValue(const GlobalValue &GV) { 552 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 553 "Global is external, but doesn't have external or weak linkage!", &GV); 554 555 Assert(GV.getAlignment() <= Value::MaximumAlignment, 556 "huge alignment values are unsupported", &GV); 557 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 558 "Only global variables can have appending linkage!", &GV); 559 560 if (GV.hasAppendingLinkage()) { 561 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 562 Assert(GVar && GVar->getValueType()->isArrayTy(), 563 "Only global arrays can have appending linkage!", GVar); 564 } 565 566 if (GV.isDeclarationForLinker()) 567 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 568 569 if (GV.hasDLLImportStorageClass()) { 570 Assert(!GV.isDSOLocal(), 571 "GlobalValue with DLLImport Storage is dso_local!", &GV); 572 573 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) || 574 GV.hasAvailableExternallyLinkage(), 575 "Global is marked as dllimport, but not external", &GV); 576 } 577 578 if (GV.hasLocalLinkage()) 579 Assert(GV.isDSOLocal(), 580 "GlobalValue with private or internal linkage must be dso_local!", 581 &GV); 582 583 if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage()) 584 Assert(GV.isDSOLocal(), 585 "GlobalValue with non default visibility must be dso_local!", &GV); 586 587 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 588 if (const Instruction *I = dyn_cast<Instruction>(V)) { 589 if (!I->getParent() || !I->getParent()->getParent()) 590 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 591 I); 592 else if (I->getParent()->getParent()->getParent() != &M) 593 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 594 I->getParent()->getParent(), 595 I->getParent()->getParent()->getParent()); 596 return false; 597 } else if (const Function *F = dyn_cast<Function>(V)) { 598 if (F->getParent() != &M) 599 CheckFailed("Global is used by function in a different module", &GV, &M, 600 F, F->getParent()); 601 return false; 602 } 603 return true; 604 }); 605 } 606 607 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 608 if (GV.hasInitializer()) { 609 Assert(GV.getInitializer()->getType() == GV.getValueType(), 610 "Global variable initializer type does not match global " 611 "variable type!", 612 &GV); 613 // If the global has common linkage, it must have a zero initializer and 614 // cannot be constant. 615 if (GV.hasCommonLinkage()) { 616 Assert(GV.getInitializer()->isNullValue(), 617 "'common' global must have a zero initializer!", &GV); 618 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 619 &GV); 620 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 621 } 622 } 623 624 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 625 GV.getName() == "llvm.global_dtors")) { 626 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 627 "invalid linkage for intrinsic global variable", &GV); 628 // Don't worry about emitting an error for it not being an array, 629 // visitGlobalValue will complain on appending non-array. 630 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 631 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 632 PointerType *FuncPtrTy = 633 FunctionType::get(Type::getVoidTy(Context), false)->getPointerTo(); 634 // FIXME: Reject the 2-field form in LLVM 4.0. 635 Assert(STy && 636 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 637 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 638 STy->getTypeAtIndex(1) == FuncPtrTy, 639 "wrong type for intrinsic global variable", &GV); 640 if (STy->getNumElements() == 3) { 641 Type *ETy = STy->getTypeAtIndex(2); 642 Assert(ETy->isPointerTy() && 643 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 644 "wrong type for intrinsic global variable", &GV); 645 } 646 } 647 } 648 649 if (GV.hasName() && (GV.getName() == "llvm.used" || 650 GV.getName() == "llvm.compiler.used")) { 651 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 652 "invalid linkage for intrinsic global variable", &GV); 653 Type *GVType = GV.getValueType(); 654 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 655 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 656 Assert(PTy, "wrong type for intrinsic global variable", &GV); 657 if (GV.hasInitializer()) { 658 const Constant *Init = GV.getInitializer(); 659 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 660 Assert(InitArray, "wrong initalizer for intrinsic global variable", 661 Init); 662 for (Value *Op : InitArray->operands()) { 663 Value *V = Op->stripPointerCastsNoFollowAliases(); 664 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 665 isa<GlobalAlias>(V), 666 "invalid llvm.used member", V); 667 Assert(V->hasName(), "members of llvm.used must be named", V); 668 } 669 } 670 } 671 } 672 673 // Visit any debug info attachments. 674 SmallVector<MDNode *, 1> MDs; 675 GV.getMetadata(LLVMContext::MD_dbg, MDs); 676 for (auto *MD : MDs) { 677 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 678 visitDIGlobalVariableExpression(*GVE); 679 else 680 AssertDI(false, "!dbg attachment of global variable must be a " 681 "DIGlobalVariableExpression"); 682 } 683 684 if (!GV.hasInitializer()) { 685 visitGlobalValue(GV); 686 return; 687 } 688 689 // Walk any aggregate initializers looking for bitcasts between address spaces 690 visitConstantExprsRecursively(GV.getInitializer()); 691 692 visitGlobalValue(GV); 693 } 694 695 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 696 SmallPtrSet<const GlobalAlias*, 4> Visited; 697 Visited.insert(&GA); 698 visitAliaseeSubExpr(Visited, GA, C); 699 } 700 701 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 702 const GlobalAlias &GA, const Constant &C) { 703 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 704 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 705 &GA); 706 707 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 708 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 709 710 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 711 &GA); 712 } else { 713 // Only continue verifying subexpressions of GlobalAliases. 714 // Do not recurse into global initializers. 715 return; 716 } 717 } 718 719 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 720 visitConstantExprsRecursively(CE); 721 722 for (const Use &U : C.operands()) { 723 Value *V = &*U; 724 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 725 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 726 else if (const auto *C2 = dyn_cast<Constant>(V)) 727 visitAliaseeSubExpr(Visited, GA, *C2); 728 } 729 } 730 731 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 732 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 733 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 734 "weak_odr, or external linkage!", 735 &GA); 736 const Constant *Aliasee = GA.getAliasee(); 737 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 738 Assert(GA.getType() == Aliasee->getType(), 739 "Alias and aliasee types should match!", &GA); 740 741 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 742 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 743 744 visitAliaseeSubExpr(GA, *Aliasee); 745 746 visitGlobalValue(GA); 747 } 748 749 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 750 // There used to be various other llvm.dbg.* nodes, but we don't support 751 // upgrading them and we want to reserve the namespace for future uses. 752 if (NMD.getName().startswith("llvm.dbg.")) 753 AssertDI(NMD.getName() == "llvm.dbg.cu", 754 "unrecognized named metadata node in the llvm.dbg namespace", 755 &NMD); 756 for (const MDNode *MD : NMD.operands()) { 757 if (NMD.getName() == "llvm.dbg.cu") 758 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 759 760 if (!MD) 761 continue; 762 763 visitMDNode(*MD); 764 } 765 } 766 767 void Verifier::visitMDNode(const MDNode &MD) { 768 // Only visit each node once. Metadata can be mutually recursive, so this 769 // avoids infinite recursion here, as well as being an optimization. 770 if (!MDNodes.insert(&MD).second) 771 return; 772 773 switch (MD.getMetadataID()) { 774 default: 775 llvm_unreachable("Invalid MDNode subclass"); 776 case Metadata::MDTupleKind: 777 break; 778 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 779 case Metadata::CLASS##Kind: \ 780 visit##CLASS(cast<CLASS>(MD)); \ 781 break; 782 #include "llvm/IR/Metadata.def" 783 } 784 785 for (const Metadata *Op : MD.operands()) { 786 if (!Op) 787 continue; 788 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 789 &MD, Op); 790 if (auto *N = dyn_cast<MDNode>(Op)) { 791 visitMDNode(*N); 792 continue; 793 } 794 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 795 visitValueAsMetadata(*V, nullptr); 796 continue; 797 } 798 } 799 800 // Check these last, so we diagnose problems in operands first. 801 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 802 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 803 } 804 805 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 806 Assert(MD.getValue(), "Expected valid value", &MD); 807 Assert(!MD.getValue()->getType()->isMetadataTy(), 808 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 809 810 auto *L = dyn_cast<LocalAsMetadata>(&MD); 811 if (!L) 812 return; 813 814 Assert(F, "function-local metadata used outside a function", L); 815 816 // If this was an instruction, bb, or argument, verify that it is in the 817 // function that we expect. 818 Function *ActualF = nullptr; 819 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 820 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 821 ActualF = I->getParent()->getParent(); 822 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 823 ActualF = BB->getParent(); 824 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 825 ActualF = A->getParent(); 826 assert(ActualF && "Unimplemented function local metadata case!"); 827 828 Assert(ActualF == F, "function-local metadata used in wrong function", L); 829 } 830 831 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 832 Metadata *MD = MDV.getMetadata(); 833 if (auto *N = dyn_cast<MDNode>(MD)) { 834 visitMDNode(*N); 835 return; 836 } 837 838 // Only visit each node once. Metadata can be mutually recursive, so this 839 // avoids infinite recursion here, as well as being an optimization. 840 if (!MDNodes.insert(MD).second) 841 return; 842 843 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 844 visitValueAsMetadata(*V, F); 845 } 846 847 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 848 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 849 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 850 851 void Verifier::visitDILocation(const DILocation &N) { 852 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 853 "location requires a valid scope", &N, N.getRawScope()); 854 if (auto *IA = N.getRawInlinedAt()) 855 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 856 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 857 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 858 } 859 860 void Verifier::visitGenericDINode(const GenericDINode &N) { 861 AssertDI(N.getTag(), "invalid tag", &N); 862 } 863 864 void Verifier::visitDIScope(const DIScope &N) { 865 if (auto *F = N.getRawFile()) 866 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 867 } 868 869 void Verifier::visitDISubrange(const DISubrange &N) { 870 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 871 auto Count = N.getCount(); 872 AssertDI(Count, "Count must either be a signed constant or a DIVariable", 873 &N); 874 AssertDI(!Count.is<ConstantInt*>() || 875 Count.get<ConstantInt*>()->getSExtValue() >= -1, 876 "invalid subrange count", &N); 877 } 878 879 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 880 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 881 } 882 883 void Verifier::visitDIBasicType(const DIBasicType &N) { 884 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 885 N.getTag() == dwarf::DW_TAG_unspecified_type, 886 "invalid tag", &N); 887 } 888 889 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 890 // Common scope checks. 891 visitDIScope(N); 892 893 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 894 N.getTag() == dwarf::DW_TAG_pointer_type || 895 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 896 N.getTag() == dwarf::DW_TAG_reference_type || 897 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 898 N.getTag() == dwarf::DW_TAG_const_type || 899 N.getTag() == dwarf::DW_TAG_volatile_type || 900 N.getTag() == dwarf::DW_TAG_restrict_type || 901 N.getTag() == dwarf::DW_TAG_atomic_type || 902 N.getTag() == dwarf::DW_TAG_member || 903 N.getTag() == dwarf::DW_TAG_inheritance || 904 N.getTag() == dwarf::DW_TAG_friend, 905 "invalid tag", &N); 906 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 907 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 908 N.getRawExtraData()); 909 } 910 911 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 912 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 913 N.getRawBaseType()); 914 915 if (N.getDWARFAddressSpace()) { 916 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 917 N.getTag() == dwarf::DW_TAG_reference_type, 918 "DWARF address space only applies to pointer or reference types", 919 &N); 920 } 921 } 922 923 /// Detect mutually exclusive flags. 924 static bool hasConflictingReferenceFlags(unsigned Flags) { 925 return ((Flags & DINode::FlagLValueReference) && 926 (Flags & DINode::FlagRValueReference)) || 927 ((Flags & DINode::FlagTypePassByValue) && 928 (Flags & DINode::FlagTypePassByReference)); 929 } 930 931 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 932 auto *Params = dyn_cast<MDTuple>(&RawParams); 933 AssertDI(Params, "invalid template params", &N, &RawParams); 934 for (Metadata *Op : Params->operands()) { 935 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 936 &N, Params, Op); 937 } 938 } 939 940 void Verifier::visitDICompositeType(const DICompositeType &N) { 941 // Common scope checks. 942 visitDIScope(N); 943 944 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 945 N.getTag() == dwarf::DW_TAG_structure_type || 946 N.getTag() == dwarf::DW_TAG_union_type || 947 N.getTag() == dwarf::DW_TAG_enumeration_type || 948 N.getTag() == dwarf::DW_TAG_class_type || 949 N.getTag() == dwarf::DW_TAG_variant_part, 950 "invalid tag", &N); 951 952 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 953 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 954 N.getRawBaseType()); 955 956 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 957 "invalid composite elements", &N, N.getRawElements()); 958 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 959 N.getRawVTableHolder()); 960 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 961 "invalid reference flags", &N); 962 963 if (N.isVector()) { 964 const DINodeArray Elements = N.getElements(); 965 AssertDI(Elements.size() == 1 && 966 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 967 "invalid vector, expected one element of type subrange", &N); 968 } 969 970 if (auto *Params = N.getRawTemplateParams()) 971 visitTemplateParams(N, *Params); 972 973 if (N.getTag() == dwarf::DW_TAG_class_type || 974 N.getTag() == dwarf::DW_TAG_union_type) { 975 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), 976 "class/union requires a filename", &N, N.getFile()); 977 } 978 979 if (auto *D = N.getRawDiscriminator()) { 980 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 981 "discriminator can only appear on variant part"); 982 } 983 } 984 985 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 986 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 987 if (auto *Types = N.getRawTypeArray()) { 988 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 989 for (Metadata *Ty : N.getTypeArray()->operands()) { 990 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 991 } 992 } 993 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 994 "invalid reference flags", &N); 995 } 996 997 void Verifier::visitDIFile(const DIFile &N) { 998 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 999 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1000 if (Checksum) { 1001 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1002 "invalid checksum kind", &N); 1003 size_t Size; 1004 switch (Checksum->Kind) { 1005 case DIFile::CSK_MD5: 1006 Size = 32; 1007 break; 1008 case DIFile::CSK_SHA1: 1009 Size = 40; 1010 break; 1011 } 1012 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1013 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1014 "invalid checksum", &N); 1015 } 1016 } 1017 1018 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1019 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1020 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1021 1022 // Don't bother verifying the compilation directory or producer string 1023 // as those could be empty. 1024 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1025 N.getRawFile()); 1026 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1027 N.getFile()); 1028 1029 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1030 "invalid emission kind", &N); 1031 1032 if (auto *Array = N.getRawEnumTypes()) { 1033 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1034 for (Metadata *Op : N.getEnumTypes()->operands()) { 1035 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1036 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1037 "invalid enum type", &N, N.getEnumTypes(), Op); 1038 } 1039 } 1040 if (auto *Array = N.getRawRetainedTypes()) { 1041 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1042 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1043 AssertDI(Op && (isa<DIType>(Op) || 1044 (isa<DISubprogram>(Op) && 1045 !cast<DISubprogram>(Op)->isDefinition())), 1046 "invalid retained type", &N, Op); 1047 } 1048 } 1049 if (auto *Array = N.getRawGlobalVariables()) { 1050 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1051 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1052 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1053 "invalid global variable ref", &N, Op); 1054 } 1055 } 1056 if (auto *Array = N.getRawImportedEntities()) { 1057 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1058 for (Metadata *Op : N.getImportedEntities()->operands()) { 1059 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1060 &N, Op); 1061 } 1062 } 1063 if (auto *Array = N.getRawMacros()) { 1064 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1065 for (Metadata *Op : N.getMacros()->operands()) { 1066 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1067 } 1068 } 1069 CUVisited.insert(&N); 1070 } 1071 1072 void Verifier::visitDISubprogram(const DISubprogram &N) { 1073 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1074 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1075 if (auto *F = N.getRawFile()) 1076 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1077 else 1078 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1079 if (auto *T = N.getRawType()) 1080 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1081 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1082 N.getRawContainingType()); 1083 if (auto *Params = N.getRawTemplateParams()) 1084 visitTemplateParams(N, *Params); 1085 if (auto *S = N.getRawDeclaration()) 1086 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1087 "invalid subprogram declaration", &N, S); 1088 if (auto *RawVars = N.getRawVariables()) { 1089 auto *Vars = dyn_cast<MDTuple>(RawVars); 1090 AssertDI(Vars, "invalid variable list", &N, RawVars); 1091 for (Metadata *Op : Vars->operands()) { 1092 AssertDI(Op && isa<DILocalVariable>(Op), "invalid local variable", &N, 1093 Vars, Op); 1094 } 1095 } 1096 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1097 "invalid reference flags", &N); 1098 1099 auto *Unit = N.getRawUnit(); 1100 if (N.isDefinition()) { 1101 // Subprogram definitions (not part of the type hierarchy). 1102 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1103 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1104 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1105 } else { 1106 // Subprogram declarations (part of the type hierarchy). 1107 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1108 } 1109 1110 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1111 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1112 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1113 for (Metadata *Op : ThrownTypes->operands()) 1114 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1115 Op); 1116 } 1117 } 1118 1119 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1120 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1121 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1122 "invalid local scope", &N, N.getRawScope()); 1123 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1124 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1125 } 1126 1127 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1128 visitDILexicalBlockBase(N); 1129 1130 AssertDI(N.getLine() || !N.getColumn(), 1131 "cannot have column info without line info", &N); 1132 } 1133 1134 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1135 visitDILexicalBlockBase(N); 1136 } 1137 1138 void Verifier::visitDINamespace(const DINamespace &N) { 1139 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1140 if (auto *S = N.getRawScope()) 1141 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1142 } 1143 1144 void Verifier::visitDIMacro(const DIMacro &N) { 1145 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1146 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1147 "invalid macinfo type", &N); 1148 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1149 if (!N.getValue().empty()) { 1150 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1151 } 1152 } 1153 1154 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1155 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1156 "invalid macinfo type", &N); 1157 if (auto *F = N.getRawFile()) 1158 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1159 1160 if (auto *Array = N.getRawElements()) { 1161 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1162 for (Metadata *Op : N.getElements()->operands()) { 1163 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1164 } 1165 } 1166 } 1167 1168 void Verifier::visitDIModule(const DIModule &N) { 1169 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1170 AssertDI(!N.getName().empty(), "anonymous module", &N); 1171 } 1172 1173 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1174 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1175 } 1176 1177 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1178 visitDITemplateParameter(N); 1179 1180 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1181 &N); 1182 } 1183 1184 void Verifier::visitDITemplateValueParameter( 1185 const DITemplateValueParameter &N) { 1186 visitDITemplateParameter(N); 1187 1188 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1189 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1190 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1191 "invalid tag", &N); 1192 } 1193 1194 void Verifier::visitDIVariable(const DIVariable &N) { 1195 if (auto *S = N.getRawScope()) 1196 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1197 if (auto *F = N.getRawFile()) 1198 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1199 } 1200 1201 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1202 // Checks common to all variables. 1203 visitDIVariable(N); 1204 1205 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1206 AssertDI(!N.getName().empty(), "missing global variable name", &N); 1207 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1208 AssertDI(N.getType(), "missing global variable type", &N); 1209 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1210 AssertDI(isa<DIDerivedType>(Member), 1211 "invalid static data member declaration", &N, Member); 1212 } 1213 } 1214 1215 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1216 // Checks common to all variables. 1217 visitDIVariable(N); 1218 1219 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1220 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1221 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1222 "local variable requires a valid scope", &N, N.getRawScope()); 1223 } 1224 1225 void Verifier::visitDIExpression(const DIExpression &N) { 1226 AssertDI(N.isValid(), "invalid expression", &N); 1227 } 1228 1229 void Verifier::visitDIGlobalVariableExpression( 1230 const DIGlobalVariableExpression &GVE) { 1231 AssertDI(GVE.getVariable(), "missing variable"); 1232 if (auto *Var = GVE.getVariable()) 1233 visitDIGlobalVariable(*Var); 1234 if (auto *Expr = GVE.getExpression()) { 1235 visitDIExpression(*Expr); 1236 if (auto Fragment = Expr->getFragmentInfo()) 1237 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1238 } 1239 } 1240 1241 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1242 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1243 if (auto *T = N.getRawType()) 1244 AssertDI(isType(T), "invalid type ref", &N, T); 1245 if (auto *F = N.getRawFile()) 1246 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1247 } 1248 1249 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1250 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1251 N.getTag() == dwarf::DW_TAG_imported_declaration, 1252 "invalid tag", &N); 1253 if (auto *S = N.getRawScope()) 1254 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1255 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1256 N.getRawEntity()); 1257 } 1258 1259 void Verifier::visitComdat(const Comdat &C) { 1260 // The Module is invalid if the GlobalValue has private linkage. Entities 1261 // with private linkage don't have entries in the symbol table. 1262 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1263 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage", 1264 GV); 1265 } 1266 1267 void Verifier::visitModuleIdents(const Module &M) { 1268 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1269 if (!Idents) 1270 return; 1271 1272 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1273 // Scan each llvm.ident entry and make sure that this requirement is met. 1274 for (const MDNode *N : Idents->operands()) { 1275 Assert(N->getNumOperands() == 1, 1276 "incorrect number of operands in llvm.ident metadata", N); 1277 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1278 ("invalid value for llvm.ident metadata entry operand" 1279 "(the operand should be a string)"), 1280 N->getOperand(0)); 1281 } 1282 } 1283 1284 void Verifier::visitModuleFlags(const Module &M) { 1285 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1286 if (!Flags) return; 1287 1288 // Scan each flag, and track the flags and requirements. 1289 DenseMap<const MDString*, const MDNode*> SeenIDs; 1290 SmallVector<const MDNode*, 16> Requirements; 1291 for (const MDNode *MDN : Flags->operands()) 1292 visitModuleFlag(MDN, SeenIDs, Requirements); 1293 1294 // Validate that the requirements in the module are valid. 1295 for (const MDNode *Requirement : Requirements) { 1296 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1297 const Metadata *ReqValue = Requirement->getOperand(1); 1298 1299 const MDNode *Op = SeenIDs.lookup(Flag); 1300 if (!Op) { 1301 CheckFailed("invalid requirement on flag, flag is not present in module", 1302 Flag); 1303 continue; 1304 } 1305 1306 if (Op->getOperand(2) != ReqValue) { 1307 CheckFailed(("invalid requirement on flag, " 1308 "flag does not have the required value"), 1309 Flag); 1310 continue; 1311 } 1312 } 1313 } 1314 1315 void 1316 Verifier::visitModuleFlag(const MDNode *Op, 1317 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1318 SmallVectorImpl<const MDNode *> &Requirements) { 1319 // Each module flag should have three arguments, the merge behavior (a 1320 // constant int), the flag ID (an MDString), and the value. 1321 Assert(Op->getNumOperands() == 3, 1322 "incorrect number of operands in module flag", Op); 1323 Module::ModFlagBehavior MFB; 1324 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1325 Assert( 1326 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1327 "invalid behavior operand in module flag (expected constant integer)", 1328 Op->getOperand(0)); 1329 Assert(false, 1330 "invalid behavior operand in module flag (unexpected constant)", 1331 Op->getOperand(0)); 1332 } 1333 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1334 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1335 Op->getOperand(1)); 1336 1337 // Sanity check the values for behaviors with additional requirements. 1338 switch (MFB) { 1339 case Module::Error: 1340 case Module::Warning: 1341 case Module::Override: 1342 // These behavior types accept any value. 1343 break; 1344 1345 case Module::Max: { 1346 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1347 "invalid value for 'max' module flag (expected constant integer)", 1348 Op->getOperand(2)); 1349 break; 1350 } 1351 1352 case Module::Require: { 1353 // The value should itself be an MDNode with two operands, a flag ID (an 1354 // MDString), and a value. 1355 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1356 Assert(Value && Value->getNumOperands() == 2, 1357 "invalid value for 'require' module flag (expected metadata pair)", 1358 Op->getOperand(2)); 1359 Assert(isa<MDString>(Value->getOperand(0)), 1360 ("invalid value for 'require' module flag " 1361 "(first value operand should be a string)"), 1362 Value->getOperand(0)); 1363 1364 // Append it to the list of requirements, to check once all module flags are 1365 // scanned. 1366 Requirements.push_back(Value); 1367 break; 1368 } 1369 1370 case Module::Append: 1371 case Module::AppendUnique: { 1372 // These behavior types require the operand be an MDNode. 1373 Assert(isa<MDNode>(Op->getOperand(2)), 1374 "invalid value for 'append'-type module flag " 1375 "(expected a metadata node)", 1376 Op->getOperand(2)); 1377 break; 1378 } 1379 } 1380 1381 // Unless this is a "requires" flag, check the ID is unique. 1382 if (MFB != Module::Require) { 1383 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1384 Assert(Inserted, 1385 "module flag identifiers must be unique (or of 'require' type)", ID); 1386 } 1387 1388 if (ID->getString() == "wchar_size") { 1389 ConstantInt *Value 1390 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1391 Assert(Value, "wchar_size metadata requires constant integer argument"); 1392 } 1393 1394 if (ID->getString() == "Linker Options") { 1395 // If the llvm.linker.options named metadata exists, we assume that the 1396 // bitcode reader has upgraded the module flag. Otherwise the flag might 1397 // have been created by a client directly. 1398 Assert(M.getNamedMetadata("llvm.linker.options"), 1399 "'Linker Options' named metadata no longer supported"); 1400 } 1401 } 1402 1403 /// Return true if this attribute kind only applies to functions. 1404 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { 1405 switch (Kind) { 1406 case Attribute::NoReturn: 1407 case Attribute::NoCfCheck: 1408 case Attribute::NoUnwind: 1409 case Attribute::NoInline: 1410 case Attribute::AlwaysInline: 1411 case Attribute::OptimizeForSize: 1412 case Attribute::StackProtect: 1413 case Attribute::StackProtectReq: 1414 case Attribute::StackProtectStrong: 1415 case Attribute::SafeStack: 1416 case Attribute::ShadowCallStack: 1417 case Attribute::NoRedZone: 1418 case Attribute::NoImplicitFloat: 1419 case Attribute::Naked: 1420 case Attribute::InlineHint: 1421 case Attribute::StackAlignment: 1422 case Attribute::UWTable: 1423 case Attribute::NonLazyBind: 1424 case Attribute::ReturnsTwice: 1425 case Attribute::SanitizeAddress: 1426 case Attribute::SanitizeHWAddress: 1427 case Attribute::SanitizeThread: 1428 case Attribute::SanitizeMemory: 1429 case Attribute::MinSize: 1430 case Attribute::NoDuplicate: 1431 case Attribute::Builtin: 1432 case Attribute::NoBuiltin: 1433 case Attribute::Cold: 1434 case Attribute::OptForFuzzing: 1435 case Attribute::OptimizeNone: 1436 case Attribute::JumpTable: 1437 case Attribute::Convergent: 1438 case Attribute::ArgMemOnly: 1439 case Attribute::NoRecurse: 1440 case Attribute::InaccessibleMemOnly: 1441 case Attribute::InaccessibleMemOrArgMemOnly: 1442 case Attribute::AllocSize: 1443 case Attribute::Speculatable: 1444 case Attribute::StrictFP: 1445 return true; 1446 default: 1447 break; 1448 } 1449 return false; 1450 } 1451 1452 /// Return true if this is a function attribute that can also appear on 1453 /// arguments. 1454 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { 1455 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || 1456 Kind == Attribute::ReadNone; 1457 } 1458 1459 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 1460 const Value *V) { 1461 for (Attribute A : Attrs) { 1462 if (A.isStringAttribute()) 1463 continue; 1464 1465 if (isFuncOnlyAttr(A.getKindAsEnum())) { 1466 if (!IsFunction) { 1467 CheckFailed("Attribute '" + A.getAsString() + 1468 "' only applies to functions!", 1469 V); 1470 return; 1471 } 1472 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { 1473 CheckFailed("Attribute '" + A.getAsString() + 1474 "' does not apply to functions!", 1475 V); 1476 return; 1477 } 1478 } 1479 } 1480 1481 // VerifyParameterAttrs - Check the given attributes for an argument or return 1482 // value of the specified type. The value V is printed in error messages. 1483 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1484 const Value *V) { 1485 if (!Attrs.hasAttributes()) 1486 return; 1487 1488 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); 1489 1490 // Check for mutually incompatible attributes. Only inreg is compatible with 1491 // sret. 1492 unsigned AttrCount = 0; 1493 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1494 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1495 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1496 Attrs.hasAttribute(Attribute::InReg); 1497 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1498 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " 1499 "and 'sret' are incompatible!", 1500 V); 1501 1502 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1503 Attrs.hasAttribute(Attribute::ReadOnly)), 1504 "Attributes " 1505 "'inalloca and readonly' are incompatible!", 1506 V); 1507 1508 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1509 Attrs.hasAttribute(Attribute::Returned)), 1510 "Attributes " 1511 "'sret and returned' are incompatible!", 1512 V); 1513 1514 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1515 Attrs.hasAttribute(Attribute::SExt)), 1516 "Attributes " 1517 "'zeroext and signext' are incompatible!", 1518 V); 1519 1520 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1521 Attrs.hasAttribute(Attribute::ReadOnly)), 1522 "Attributes " 1523 "'readnone and readonly' are incompatible!", 1524 V); 1525 1526 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1527 Attrs.hasAttribute(Attribute::WriteOnly)), 1528 "Attributes " 1529 "'readnone and writeonly' are incompatible!", 1530 V); 1531 1532 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1533 Attrs.hasAttribute(Attribute::WriteOnly)), 1534 "Attributes " 1535 "'readonly and writeonly' are incompatible!", 1536 V); 1537 1538 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1539 Attrs.hasAttribute(Attribute::AlwaysInline)), 1540 "Attributes " 1541 "'noinline and alwaysinline' are incompatible!", 1542 V); 1543 1544 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1545 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), 1546 "Wrong types for attribute: " + 1547 AttributeSet::get(Context, IncompatibleAttrs).getAsString(), 1548 V); 1549 1550 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1551 SmallPtrSet<Type*, 4> Visited; 1552 if (!PTy->getElementType()->isSized(&Visited)) { 1553 Assert(!Attrs.hasAttribute(Attribute::ByVal) && 1554 !Attrs.hasAttribute(Attribute::InAlloca), 1555 "Attributes 'byval' and 'inalloca' do not support unsized types!", 1556 V); 1557 } 1558 if (!isa<PointerType>(PTy->getElementType())) 1559 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1560 "Attribute 'swifterror' only applies to parameters " 1561 "with pointer to pointer type!", 1562 V); 1563 } else { 1564 Assert(!Attrs.hasAttribute(Attribute::ByVal), 1565 "Attribute 'byval' only applies to parameters with pointer type!", 1566 V); 1567 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1568 "Attribute 'swifterror' only applies to parameters " 1569 "with pointer type!", 1570 V); 1571 } 1572 } 1573 1574 // Check parameter attributes against a function type. 1575 // The value V is printed in error messages. 1576 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1577 const Value *V) { 1578 if (Attrs.isEmpty()) 1579 return; 1580 1581 bool SawNest = false; 1582 bool SawReturned = false; 1583 bool SawSRet = false; 1584 bool SawSwiftSelf = false; 1585 bool SawSwiftError = false; 1586 1587 // Verify return value attributes. 1588 AttributeSet RetAttrs = Attrs.getRetAttributes(); 1589 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && 1590 !RetAttrs.hasAttribute(Attribute::Nest) && 1591 !RetAttrs.hasAttribute(Attribute::StructRet) && 1592 !RetAttrs.hasAttribute(Attribute::NoCapture) && 1593 !RetAttrs.hasAttribute(Attribute::Returned) && 1594 !RetAttrs.hasAttribute(Attribute::InAlloca) && 1595 !RetAttrs.hasAttribute(Attribute::SwiftSelf) && 1596 !RetAttrs.hasAttribute(Attribute::SwiftError)), 1597 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', " 1598 "'returned', 'swiftself', and 'swifterror' do not apply to return " 1599 "values!", 1600 V); 1601 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && 1602 !RetAttrs.hasAttribute(Attribute::WriteOnly) && 1603 !RetAttrs.hasAttribute(Attribute::ReadNone)), 1604 "Attribute '" + RetAttrs.getAsString() + 1605 "' does not apply to function returns", 1606 V); 1607 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1608 1609 // Verify parameter attributes. 1610 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1611 Type *Ty = FT->getParamType(i); 1612 AttributeSet ArgAttrs = Attrs.getParamAttributes(i); 1613 1614 verifyParameterAttrs(ArgAttrs, Ty, V); 1615 1616 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1617 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1618 SawNest = true; 1619 } 1620 1621 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1622 Assert(!SawReturned, "More than one parameter has attribute returned!", 1623 V); 1624 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1625 "Incompatible argument and return types for 'returned' attribute", 1626 V); 1627 SawReturned = true; 1628 } 1629 1630 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1631 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1632 Assert(i == 0 || i == 1, 1633 "Attribute 'sret' is not on first or second parameter!", V); 1634 SawSRet = true; 1635 } 1636 1637 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1638 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1639 SawSwiftSelf = true; 1640 } 1641 1642 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1643 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1644 V); 1645 SawSwiftError = true; 1646 } 1647 1648 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1649 Assert(i == FT->getNumParams() - 1, 1650 "inalloca isn't on the last parameter!", V); 1651 } 1652 } 1653 1654 if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) 1655 return; 1656 1657 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); 1658 1659 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1660 Attrs.hasFnAttribute(Attribute::ReadOnly)), 1661 "Attributes 'readnone and readonly' are incompatible!", V); 1662 1663 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1664 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1665 "Attributes 'readnone and writeonly' are incompatible!", V); 1666 1667 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && 1668 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1669 "Attributes 'readonly and writeonly' are incompatible!", V); 1670 1671 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1672 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), 1673 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1674 "incompatible!", 1675 V); 1676 1677 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1678 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), 1679 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1680 1681 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && 1682 Attrs.hasFnAttribute(Attribute::AlwaysInline)), 1683 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1684 1685 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { 1686 Assert(Attrs.hasFnAttribute(Attribute::NoInline), 1687 "Attribute 'optnone' requires 'noinline'!", V); 1688 1689 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), 1690 "Attributes 'optsize and optnone' are incompatible!", V); 1691 1692 Assert(!Attrs.hasFnAttribute(Attribute::MinSize), 1693 "Attributes 'minsize and optnone' are incompatible!", V); 1694 } 1695 1696 if (Attrs.hasFnAttribute(Attribute::JumpTable)) { 1697 const GlobalValue *GV = cast<GlobalValue>(V); 1698 Assert(GV->hasGlobalUnnamedAddr(), 1699 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1700 } 1701 1702 if (Attrs.hasFnAttribute(Attribute::AllocSize)) { 1703 std::pair<unsigned, Optional<unsigned>> Args = 1704 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 1705 1706 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1707 if (ParamNo >= FT->getNumParams()) { 1708 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1709 return false; 1710 } 1711 1712 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1713 CheckFailed("'allocsize' " + Name + 1714 " argument must refer to an integer parameter", 1715 V); 1716 return false; 1717 } 1718 1719 return true; 1720 }; 1721 1722 if (!CheckParam("element size", Args.first)) 1723 return; 1724 1725 if (Args.second && !CheckParam("number of elements", *Args.second)) 1726 return; 1727 } 1728 } 1729 1730 void Verifier::verifyFunctionMetadata( 1731 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 1732 for (const auto &Pair : MDs) { 1733 if (Pair.first == LLVMContext::MD_prof) { 1734 MDNode *MD = Pair.second; 1735 Assert(MD->getNumOperands() >= 2, 1736 "!prof annotations should have no less than 2 operands", MD); 1737 1738 // Check first operand. 1739 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 1740 MD); 1741 Assert(isa<MDString>(MD->getOperand(0)), 1742 "expected string with name of the !prof annotation", MD); 1743 MDString *MDS = cast<MDString>(MD->getOperand(0)); 1744 StringRef ProfName = MDS->getString(); 1745 Assert(ProfName.equals("function_entry_count") || 1746 ProfName.equals("synthetic_function_entry_count"), 1747 "first operand should be 'function_entry_count'" 1748 " or 'synthetic_function_entry_count'", 1749 MD); 1750 1751 // Check second operand. 1752 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 1753 MD); 1754 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 1755 "expected integer argument to function_entry_count", MD); 1756 } 1757 } 1758 } 1759 1760 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 1761 if (!ConstantExprVisited.insert(EntryC).second) 1762 return; 1763 1764 SmallVector<const Constant *, 16> Stack; 1765 Stack.push_back(EntryC); 1766 1767 while (!Stack.empty()) { 1768 const Constant *C = Stack.pop_back_val(); 1769 1770 // Check this constant expression. 1771 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 1772 visitConstantExpr(CE); 1773 1774 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 1775 // Global Values get visited separately, but we do need to make sure 1776 // that the global value is in the correct module 1777 Assert(GV->getParent() == &M, "Referencing global in another module!", 1778 EntryC, &M, GV, GV->getParent()); 1779 continue; 1780 } 1781 1782 // Visit all sub-expressions. 1783 for (const Use &U : C->operands()) { 1784 const auto *OpC = dyn_cast<Constant>(U); 1785 if (!OpC) 1786 continue; 1787 if (!ConstantExprVisited.insert(OpC).second) 1788 continue; 1789 Stack.push_back(OpC); 1790 } 1791 } 1792 } 1793 1794 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 1795 if (CE->getOpcode() == Instruction::BitCast) 1796 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 1797 CE->getType()), 1798 "Invalid bitcast", CE); 1799 1800 if (CE->getOpcode() == Instruction::IntToPtr || 1801 CE->getOpcode() == Instruction::PtrToInt) { 1802 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 1803 ? CE->getType() 1804 : CE->getOperand(0)->getType(); 1805 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 1806 ? "inttoptr not supported for non-integral pointers" 1807 : "ptrtoint not supported for non-integral pointers"; 1808 Assert( 1809 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 1810 Msg); 1811 } 1812 } 1813 1814 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 1815 // There shouldn't be more attribute sets than there are parameters plus the 1816 // function and return value. 1817 return Attrs.getNumAttrSets() <= Params + 2; 1818 } 1819 1820 /// Verify that statepoint intrinsic is well formed. 1821 void Verifier::verifyStatepoint(ImmutableCallSite CS) { 1822 assert(CS.getCalledFunction() && 1823 CS.getCalledFunction()->getIntrinsicID() == 1824 Intrinsic::experimental_gc_statepoint); 1825 1826 const Instruction &CI = *CS.getInstruction(); 1827 1828 Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() && 1829 !CS.onlyAccessesArgMemory(), 1830 "gc.statepoint must read and write all memory to preserve " 1831 "reordering restrictions required by safepoint semantics", 1832 &CI); 1833 1834 const Value *IDV = CS.getArgument(0); 1835 Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer", 1836 &CI); 1837 1838 const Value *NumPatchBytesV = CS.getArgument(1); 1839 Assert(isa<ConstantInt>(NumPatchBytesV), 1840 "gc.statepoint number of patchable bytes must be a constant integer", 1841 &CI); 1842 const int64_t NumPatchBytes = 1843 cast<ConstantInt>(NumPatchBytesV)->getSExtValue(); 1844 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 1845 Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be " 1846 "positive", 1847 &CI); 1848 1849 const Value *Target = CS.getArgument(2); 1850 auto *PT = dyn_cast<PointerType>(Target->getType()); 1851 Assert(PT && PT->getElementType()->isFunctionTy(), 1852 "gc.statepoint callee must be of function pointer type", &CI, Target); 1853 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 1854 1855 const Value *NumCallArgsV = CS.getArgument(3); 1856 Assert(isa<ConstantInt>(NumCallArgsV), 1857 "gc.statepoint number of arguments to underlying call " 1858 "must be constant integer", 1859 &CI); 1860 const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue(); 1861 Assert(NumCallArgs >= 0, 1862 "gc.statepoint number of arguments to underlying call " 1863 "must be positive", 1864 &CI); 1865 const int NumParams = (int)TargetFuncType->getNumParams(); 1866 if (TargetFuncType->isVarArg()) { 1867 Assert(NumCallArgs >= NumParams, 1868 "gc.statepoint mismatch in number of vararg call args", &CI); 1869 1870 // TODO: Remove this limitation 1871 Assert(TargetFuncType->getReturnType()->isVoidTy(), 1872 "gc.statepoint doesn't support wrapping non-void " 1873 "vararg functions yet", 1874 &CI); 1875 } else 1876 Assert(NumCallArgs == NumParams, 1877 "gc.statepoint mismatch in number of call args", &CI); 1878 1879 const Value *FlagsV = CS.getArgument(4); 1880 Assert(isa<ConstantInt>(FlagsV), 1881 "gc.statepoint flags must be constant integer", &CI); 1882 const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue(); 1883 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 1884 "unknown flag used in gc.statepoint flags argument", &CI); 1885 1886 // Verify that the types of the call parameter arguments match 1887 // the type of the wrapped callee. 1888 for (int i = 0; i < NumParams; i++) { 1889 Type *ParamType = TargetFuncType->getParamType(i); 1890 Type *ArgType = CS.getArgument(5 + i)->getType(); 1891 Assert(ArgType == ParamType, 1892 "gc.statepoint call argument does not match wrapped " 1893 "function type", 1894 &CI); 1895 } 1896 1897 const int EndCallArgsInx = 4 + NumCallArgs; 1898 1899 const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1); 1900 Assert(isa<ConstantInt>(NumTransitionArgsV), 1901 "gc.statepoint number of transition arguments " 1902 "must be constant integer", 1903 &CI); 1904 const int NumTransitionArgs = 1905 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 1906 Assert(NumTransitionArgs >= 0, 1907 "gc.statepoint number of transition arguments must be positive", &CI); 1908 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 1909 1910 const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1); 1911 Assert(isa<ConstantInt>(NumDeoptArgsV), 1912 "gc.statepoint number of deoptimization arguments " 1913 "must be constant integer", 1914 &CI); 1915 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 1916 Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments " 1917 "must be positive", 1918 &CI); 1919 1920 const int ExpectedNumArgs = 1921 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; 1922 Assert(ExpectedNumArgs <= (int)CS.arg_size(), 1923 "gc.statepoint too few arguments according to length fields", &CI); 1924 1925 // Check that the only uses of this gc.statepoint are gc.result or 1926 // gc.relocate calls which are tied to this statepoint and thus part 1927 // of the same statepoint sequence 1928 for (const User *U : CI.users()) { 1929 const CallInst *Call = dyn_cast<const CallInst>(U); 1930 Assert(Call, "illegal use of statepoint token", &CI, U); 1931 if (!Call) continue; 1932 Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call), 1933 "gc.result or gc.relocate are the only value uses " 1934 "of a gc.statepoint", 1935 &CI, U); 1936 if (isa<GCResultInst>(Call)) { 1937 Assert(Call->getArgOperand(0) == &CI, 1938 "gc.result connected to wrong gc.statepoint", &CI, Call); 1939 } else if (isa<GCRelocateInst>(Call)) { 1940 Assert(Call->getArgOperand(0) == &CI, 1941 "gc.relocate connected to wrong gc.statepoint", &CI, Call); 1942 } 1943 } 1944 1945 // Note: It is legal for a single derived pointer to be listed multiple 1946 // times. It's non-optimal, but it is legal. It can also happen after 1947 // insertion if we strip a bitcast away. 1948 // Note: It is really tempting to check that each base is relocated and 1949 // that a derived pointer is never reused as a base pointer. This turns 1950 // out to be problematic since optimizations run after safepoint insertion 1951 // can recognize equality properties that the insertion logic doesn't know 1952 // about. See example statepoint.ll in the verifier subdirectory 1953 } 1954 1955 void Verifier::verifyFrameRecoverIndices() { 1956 for (auto &Counts : FrameEscapeInfo) { 1957 Function *F = Counts.first; 1958 unsigned EscapedObjectCount = Counts.second.first; 1959 unsigned MaxRecoveredIndex = Counts.second.second; 1960 Assert(MaxRecoveredIndex <= EscapedObjectCount, 1961 "all indices passed to llvm.localrecover must be less than the " 1962 "number of arguments passed ot llvm.localescape in the parent " 1963 "function", 1964 F); 1965 } 1966 } 1967 1968 static Instruction *getSuccPad(TerminatorInst *Terminator) { 1969 BasicBlock *UnwindDest; 1970 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 1971 UnwindDest = II->getUnwindDest(); 1972 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 1973 UnwindDest = CSI->getUnwindDest(); 1974 else 1975 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 1976 return UnwindDest->getFirstNonPHI(); 1977 } 1978 1979 void Verifier::verifySiblingFuncletUnwinds() { 1980 SmallPtrSet<Instruction *, 8> Visited; 1981 SmallPtrSet<Instruction *, 8> Active; 1982 for (const auto &Pair : SiblingFuncletInfo) { 1983 Instruction *PredPad = Pair.first; 1984 if (Visited.count(PredPad)) 1985 continue; 1986 Active.insert(PredPad); 1987 TerminatorInst *Terminator = Pair.second; 1988 do { 1989 Instruction *SuccPad = getSuccPad(Terminator); 1990 if (Active.count(SuccPad)) { 1991 // Found a cycle; report error 1992 Instruction *CyclePad = SuccPad; 1993 SmallVector<Instruction *, 8> CycleNodes; 1994 do { 1995 CycleNodes.push_back(CyclePad); 1996 TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad]; 1997 if (CycleTerminator != CyclePad) 1998 CycleNodes.push_back(CycleTerminator); 1999 CyclePad = getSuccPad(CycleTerminator); 2000 } while (CyclePad != SuccPad); 2001 Assert(false, "EH pads can't handle each other's exceptions", 2002 ArrayRef<Instruction *>(CycleNodes)); 2003 } 2004 // Don't re-walk a node we've already checked 2005 if (!Visited.insert(SuccPad).second) 2006 break; 2007 // Walk to this successor if it has a map entry. 2008 PredPad = SuccPad; 2009 auto TermI = SiblingFuncletInfo.find(PredPad); 2010 if (TermI == SiblingFuncletInfo.end()) 2011 break; 2012 Terminator = TermI->second; 2013 Active.insert(PredPad); 2014 } while (true); 2015 // Each node only has one successor, so we've walked all the active 2016 // nodes' successors. 2017 Active.clear(); 2018 } 2019 } 2020 2021 // visitFunction - Verify that a function is ok. 2022 // 2023 void Verifier::visitFunction(const Function &F) { 2024 visitGlobalValue(F); 2025 2026 // Check function arguments. 2027 FunctionType *FT = F.getFunctionType(); 2028 unsigned NumArgs = F.arg_size(); 2029 2030 Assert(&Context == &F.getContext(), 2031 "Function context does not match Module context!", &F); 2032 2033 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2034 Assert(FT->getNumParams() == NumArgs, 2035 "# formal arguments must match # of arguments for function type!", &F, 2036 FT); 2037 Assert(F.getReturnType()->isFirstClassType() || 2038 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2039 "Functions cannot return aggregate values!", &F); 2040 2041 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2042 "Invalid struct return type!", &F); 2043 2044 AttributeList Attrs = F.getAttributes(); 2045 2046 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2047 "Attribute after last parameter!", &F); 2048 2049 // Check function attributes. 2050 verifyFunctionAttrs(FT, Attrs, &F); 2051 2052 // On function declarations/definitions, we do not support the builtin 2053 // attribute. We do not check this in VerifyFunctionAttrs since that is 2054 // checking for Attributes that can/can not ever be on functions. 2055 Assert(!Attrs.hasFnAttribute(Attribute::Builtin), 2056 "Attribute 'builtin' can only be applied to a callsite.", &F); 2057 2058 // Check that this function meets the restrictions on this calling convention. 2059 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2060 // restrictions can be lifted. 2061 switch (F.getCallingConv()) { 2062 default: 2063 case CallingConv::C: 2064 break; 2065 case CallingConv::AMDGPU_KERNEL: 2066 case CallingConv::SPIR_KERNEL: 2067 Assert(F.getReturnType()->isVoidTy(), 2068 "Calling convention requires void return type", &F); 2069 LLVM_FALLTHROUGH; 2070 case CallingConv::AMDGPU_VS: 2071 case CallingConv::AMDGPU_HS: 2072 case CallingConv::AMDGPU_GS: 2073 case CallingConv::AMDGPU_PS: 2074 case CallingConv::AMDGPU_CS: 2075 Assert(!F.hasStructRetAttr(), 2076 "Calling convention does not allow sret", &F); 2077 LLVM_FALLTHROUGH; 2078 case CallingConv::Fast: 2079 case CallingConv::Cold: 2080 case CallingConv::Intel_OCL_BI: 2081 case CallingConv::PTX_Kernel: 2082 case CallingConv::PTX_Device: 2083 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2084 "perfect forwarding!", 2085 &F); 2086 break; 2087 } 2088 2089 bool isLLVMdotName = F.getName().size() >= 5 && 2090 F.getName().substr(0, 5) == "llvm."; 2091 2092 // Check that the argument values match the function type for this function... 2093 unsigned i = 0; 2094 for (const Argument &Arg : F.args()) { 2095 Assert(Arg.getType() == FT->getParamType(i), 2096 "Argument value does not match function argument type!", &Arg, 2097 FT->getParamType(i)); 2098 Assert(Arg.getType()->isFirstClassType(), 2099 "Function arguments must have first-class types!", &Arg); 2100 if (!isLLVMdotName) { 2101 Assert(!Arg.getType()->isMetadataTy(), 2102 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2103 Assert(!Arg.getType()->isTokenTy(), 2104 "Function takes token but isn't an intrinsic", &Arg, &F); 2105 } 2106 2107 // Check that swifterror argument is only used by loads and stores. 2108 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { 2109 verifySwiftErrorValue(&Arg); 2110 } 2111 ++i; 2112 } 2113 2114 if (!isLLVMdotName) 2115 Assert(!F.getReturnType()->isTokenTy(), 2116 "Functions returns a token but isn't an intrinsic", &F); 2117 2118 // Get the function metadata attachments. 2119 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2120 F.getAllMetadata(MDs); 2121 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2122 verifyFunctionMetadata(MDs); 2123 2124 // Check validity of the personality function 2125 if (F.hasPersonalityFn()) { 2126 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2127 if (Per) 2128 Assert(Per->getParent() == F.getParent(), 2129 "Referencing personality function in another module!", 2130 &F, F.getParent(), Per, Per->getParent()); 2131 } 2132 2133 if (F.isMaterializable()) { 2134 // Function has a body somewhere we can't see. 2135 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2136 MDs.empty() ? nullptr : MDs.front().second); 2137 } else if (F.isDeclaration()) { 2138 for (const auto &I : MDs) { 2139 AssertDI(I.first != LLVMContext::MD_dbg, 2140 "function declaration may not have a !dbg attachment", &F); 2141 Assert(I.first != LLVMContext::MD_prof, 2142 "function declaration may not have a !prof attachment", &F); 2143 2144 // Verify the metadata itself. 2145 visitMDNode(*I.second); 2146 } 2147 Assert(!F.hasPersonalityFn(), 2148 "Function declaration shouldn't have a personality routine", &F); 2149 } else { 2150 // Verify that this function (which has a body) is not named "llvm.*". It 2151 // is not legal to define intrinsics. 2152 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 2153 2154 // Check the entry node 2155 const BasicBlock *Entry = &F.getEntryBlock(); 2156 Assert(pred_empty(Entry), 2157 "Entry block to function must not have predecessors!", Entry); 2158 2159 // The address of the entry block cannot be taken, unless it is dead. 2160 if (Entry->hasAddressTaken()) { 2161 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2162 "blockaddress may not be used with the entry block!", Entry); 2163 } 2164 2165 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2166 // Visit metadata attachments. 2167 for (const auto &I : MDs) { 2168 // Verify that the attachment is legal. 2169 switch (I.first) { 2170 default: 2171 break; 2172 case LLVMContext::MD_dbg: { 2173 ++NumDebugAttachments; 2174 AssertDI(NumDebugAttachments == 1, 2175 "function must have a single !dbg attachment", &F, I.second); 2176 AssertDI(isa<DISubprogram>(I.second), 2177 "function !dbg attachment must be a subprogram", &F, I.second); 2178 auto *SP = cast<DISubprogram>(I.second); 2179 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2180 AssertDI(!AttachedTo || AttachedTo == &F, 2181 "DISubprogram attached to more than one function", SP, &F); 2182 AttachedTo = &F; 2183 break; 2184 } 2185 case LLVMContext::MD_prof: 2186 ++NumProfAttachments; 2187 Assert(NumProfAttachments == 1, 2188 "function must have a single !prof attachment", &F, I.second); 2189 break; 2190 } 2191 2192 // Verify the metadata itself. 2193 visitMDNode(*I.second); 2194 } 2195 } 2196 2197 // If this function is actually an intrinsic, verify that it is only used in 2198 // direct call/invokes, never having its "address taken". 2199 // Only do this if the module is materialized, otherwise we don't have all the 2200 // uses. 2201 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2202 const User *U; 2203 if (F.hasAddressTaken(&U)) 2204 Assert(false, "Invalid user of intrinsic instruction!", U); 2205 } 2206 2207 auto *N = F.getSubprogram(); 2208 HasDebugInfo = (N != nullptr); 2209 if (!HasDebugInfo) 2210 return; 2211 2212 // Check that all !dbg attachments lead to back to N (or, at least, another 2213 // subprogram that describes the same function). 2214 // 2215 // FIXME: Check this incrementally while visiting !dbg attachments. 2216 // FIXME: Only check when N is the canonical subprogram for F. 2217 SmallPtrSet<const MDNode *, 32> Seen; 2218 for (auto &BB : F) 2219 for (auto &I : BB) { 2220 // Be careful about using DILocation here since we might be dealing with 2221 // broken code (this is the Verifier after all). 2222 DILocation *DL = 2223 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode()); 2224 if (!DL) 2225 continue; 2226 if (!Seen.insert(DL).second) 2227 continue; 2228 2229 DILocalScope *Scope = DL->getInlinedAtScope(); 2230 if (Scope && !Seen.insert(Scope).second) 2231 continue; 2232 2233 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr; 2234 2235 // Scope and SP could be the same MDNode and we don't want to skip 2236 // validation in that case 2237 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2238 continue; 2239 2240 // FIXME: Once N is canonical, check "SP == &N". 2241 AssertDI(SP->describes(&F), 2242 "!dbg attachment points at wrong subprogram for function", N, &F, 2243 &I, DL, Scope, SP); 2244 } 2245 } 2246 2247 // verifyBasicBlock - Verify that a basic block is well formed... 2248 // 2249 void Verifier::visitBasicBlock(BasicBlock &BB) { 2250 InstsInThisBlock.clear(); 2251 2252 // Ensure that basic blocks have terminators! 2253 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2254 2255 // Check constraints that this basic block imposes on all of the PHI nodes in 2256 // it. 2257 if (isa<PHINode>(BB.front())) { 2258 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 2259 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2260 llvm::sort(Preds.begin(), Preds.end()); 2261 for (const PHINode &PN : BB.phis()) { 2262 // Ensure that PHI nodes have at least one entry! 2263 Assert(PN.getNumIncomingValues() != 0, 2264 "PHI nodes must have at least one entry. If the block is dead, " 2265 "the PHI should be removed!", 2266 &PN); 2267 Assert(PN.getNumIncomingValues() == Preds.size(), 2268 "PHINode should have one entry for each predecessor of its " 2269 "parent basic block!", 2270 &PN); 2271 2272 // Get and sort all incoming values in the PHI node... 2273 Values.clear(); 2274 Values.reserve(PN.getNumIncomingValues()); 2275 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2276 Values.push_back( 2277 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2278 llvm::sort(Values.begin(), Values.end()); 2279 2280 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2281 // Check to make sure that if there is more than one entry for a 2282 // particular basic block in this PHI node, that the incoming values are 2283 // all identical. 2284 // 2285 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2286 Values[i].second == Values[i - 1].second, 2287 "PHI node has multiple entries for the same basic block with " 2288 "different incoming values!", 2289 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2290 2291 // Check to make sure that the predecessors and PHI node entries are 2292 // matched up. 2293 Assert(Values[i].first == Preds[i], 2294 "PHI node entries do not match predecessors!", &PN, 2295 Values[i].first, Preds[i]); 2296 } 2297 } 2298 } 2299 2300 // Check that all instructions have their parent pointers set up correctly. 2301 for (auto &I : BB) 2302 { 2303 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2304 } 2305 } 2306 2307 void Verifier::visitTerminatorInst(TerminatorInst &I) { 2308 // Ensure that terminators only exist at the end of the basic block. 2309 Assert(&I == I.getParent()->getTerminator(), 2310 "Terminator found in the middle of a basic block!", I.getParent()); 2311 visitInstruction(I); 2312 } 2313 2314 void Verifier::visitBranchInst(BranchInst &BI) { 2315 if (BI.isConditional()) { 2316 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2317 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2318 } 2319 visitTerminatorInst(BI); 2320 } 2321 2322 void Verifier::visitReturnInst(ReturnInst &RI) { 2323 Function *F = RI.getParent()->getParent(); 2324 unsigned N = RI.getNumOperands(); 2325 if (F->getReturnType()->isVoidTy()) 2326 Assert(N == 0, 2327 "Found return instr that returns non-void in Function of void " 2328 "return type!", 2329 &RI, F->getReturnType()); 2330 else 2331 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2332 "Function return type does not match operand " 2333 "type of return inst!", 2334 &RI, F->getReturnType()); 2335 2336 // Check to make sure that the return value has necessary properties for 2337 // terminators... 2338 visitTerminatorInst(RI); 2339 } 2340 2341 void Verifier::visitSwitchInst(SwitchInst &SI) { 2342 // Check to make sure that all of the constants in the switch instruction 2343 // have the same type as the switched-on value. 2344 Type *SwitchTy = SI.getCondition()->getType(); 2345 SmallPtrSet<ConstantInt*, 32> Constants; 2346 for (auto &Case : SI.cases()) { 2347 Assert(Case.getCaseValue()->getType() == SwitchTy, 2348 "Switch constants must all be same type as switch value!", &SI); 2349 Assert(Constants.insert(Case.getCaseValue()).second, 2350 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2351 } 2352 2353 visitTerminatorInst(SI); 2354 } 2355 2356 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2357 Assert(BI.getAddress()->getType()->isPointerTy(), 2358 "Indirectbr operand must have pointer type!", &BI); 2359 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2360 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2361 "Indirectbr destinations must all have pointer type!", &BI); 2362 2363 visitTerminatorInst(BI); 2364 } 2365 2366 void Verifier::visitSelectInst(SelectInst &SI) { 2367 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2368 SI.getOperand(2)), 2369 "Invalid operands for select instruction!", &SI); 2370 2371 Assert(SI.getTrueValue()->getType() == SI.getType(), 2372 "Select values must have same type as select instruction!", &SI); 2373 visitInstruction(SI); 2374 } 2375 2376 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2377 /// a pass, if any exist, it's an error. 2378 /// 2379 void Verifier::visitUserOp1(Instruction &I) { 2380 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2381 } 2382 2383 void Verifier::visitTruncInst(TruncInst &I) { 2384 // Get the source and destination types 2385 Type *SrcTy = I.getOperand(0)->getType(); 2386 Type *DestTy = I.getType(); 2387 2388 // Get the size of the types in bits, we'll need this later 2389 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2390 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2391 2392 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2393 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2394 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2395 "trunc source and destination must both be a vector or neither", &I); 2396 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2397 2398 visitInstruction(I); 2399 } 2400 2401 void Verifier::visitZExtInst(ZExtInst &I) { 2402 // Get the source and destination types 2403 Type *SrcTy = I.getOperand(0)->getType(); 2404 Type *DestTy = I.getType(); 2405 2406 // Get the size of the types in bits, we'll need this later 2407 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2408 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2409 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2410 "zext source and destination must both be a vector or neither", &I); 2411 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2412 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2413 2414 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2415 2416 visitInstruction(I); 2417 } 2418 2419 void Verifier::visitSExtInst(SExtInst &I) { 2420 // Get the source and destination types 2421 Type *SrcTy = I.getOperand(0)->getType(); 2422 Type *DestTy = I.getType(); 2423 2424 // Get the size of the types in bits, we'll need this later 2425 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2426 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2427 2428 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2429 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2430 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2431 "sext source and destination must both be a vector or neither", &I); 2432 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2433 2434 visitInstruction(I); 2435 } 2436 2437 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2438 // Get the source and destination types 2439 Type *SrcTy = I.getOperand(0)->getType(); 2440 Type *DestTy = I.getType(); 2441 // Get the size of the types in bits, we'll need this later 2442 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2443 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2444 2445 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2446 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2447 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2448 "fptrunc source and destination must both be a vector or neither", &I); 2449 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2450 2451 visitInstruction(I); 2452 } 2453 2454 void Verifier::visitFPExtInst(FPExtInst &I) { 2455 // Get the source and destination types 2456 Type *SrcTy = I.getOperand(0)->getType(); 2457 Type *DestTy = I.getType(); 2458 2459 // Get the size of the types in bits, we'll need this later 2460 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2461 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2462 2463 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2464 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2465 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2466 "fpext source and destination must both be a vector or neither", &I); 2467 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2468 2469 visitInstruction(I); 2470 } 2471 2472 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2473 // Get the source and destination types 2474 Type *SrcTy = I.getOperand(0)->getType(); 2475 Type *DestTy = I.getType(); 2476 2477 bool SrcVec = SrcTy->isVectorTy(); 2478 bool DstVec = DestTy->isVectorTy(); 2479 2480 Assert(SrcVec == DstVec, 2481 "UIToFP source and dest must both be vector or scalar", &I); 2482 Assert(SrcTy->isIntOrIntVectorTy(), 2483 "UIToFP source must be integer or integer vector", &I); 2484 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2485 &I); 2486 2487 if (SrcVec && DstVec) 2488 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2489 cast<VectorType>(DestTy)->getNumElements(), 2490 "UIToFP source and dest vector length mismatch", &I); 2491 2492 visitInstruction(I); 2493 } 2494 2495 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2496 // Get the source and destination types 2497 Type *SrcTy = I.getOperand(0)->getType(); 2498 Type *DestTy = I.getType(); 2499 2500 bool SrcVec = SrcTy->isVectorTy(); 2501 bool DstVec = DestTy->isVectorTy(); 2502 2503 Assert(SrcVec == DstVec, 2504 "SIToFP source and dest must both be vector or scalar", &I); 2505 Assert(SrcTy->isIntOrIntVectorTy(), 2506 "SIToFP source must be integer or integer vector", &I); 2507 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2508 &I); 2509 2510 if (SrcVec && DstVec) 2511 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2512 cast<VectorType>(DestTy)->getNumElements(), 2513 "SIToFP source and dest vector length mismatch", &I); 2514 2515 visitInstruction(I); 2516 } 2517 2518 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2519 // Get the source and destination types 2520 Type *SrcTy = I.getOperand(0)->getType(); 2521 Type *DestTy = I.getType(); 2522 2523 bool SrcVec = SrcTy->isVectorTy(); 2524 bool DstVec = DestTy->isVectorTy(); 2525 2526 Assert(SrcVec == DstVec, 2527 "FPToUI source and dest must both be vector or scalar", &I); 2528 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2529 &I); 2530 Assert(DestTy->isIntOrIntVectorTy(), 2531 "FPToUI result must be integer or integer vector", &I); 2532 2533 if (SrcVec && DstVec) 2534 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2535 cast<VectorType>(DestTy)->getNumElements(), 2536 "FPToUI source and dest vector length mismatch", &I); 2537 2538 visitInstruction(I); 2539 } 2540 2541 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2542 // Get the source and destination types 2543 Type *SrcTy = I.getOperand(0)->getType(); 2544 Type *DestTy = I.getType(); 2545 2546 bool SrcVec = SrcTy->isVectorTy(); 2547 bool DstVec = DestTy->isVectorTy(); 2548 2549 Assert(SrcVec == DstVec, 2550 "FPToSI source and dest must both be vector or scalar", &I); 2551 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2552 &I); 2553 Assert(DestTy->isIntOrIntVectorTy(), 2554 "FPToSI result must be integer or integer vector", &I); 2555 2556 if (SrcVec && DstVec) 2557 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2558 cast<VectorType>(DestTy)->getNumElements(), 2559 "FPToSI source and dest vector length mismatch", &I); 2560 2561 visitInstruction(I); 2562 } 2563 2564 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2565 // Get the source and destination types 2566 Type *SrcTy = I.getOperand(0)->getType(); 2567 Type *DestTy = I.getType(); 2568 2569 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2570 2571 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 2572 Assert(!DL.isNonIntegralPointerType(PTy), 2573 "ptrtoint not supported for non-integral pointers"); 2574 2575 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 2576 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2577 &I); 2578 2579 if (SrcTy->isVectorTy()) { 2580 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 2581 VectorType *VDest = dyn_cast<VectorType>(DestTy); 2582 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2583 "PtrToInt Vector width mismatch", &I); 2584 } 2585 2586 visitInstruction(I); 2587 } 2588 2589 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2590 // Get the source and destination types 2591 Type *SrcTy = I.getOperand(0)->getType(); 2592 Type *DestTy = I.getType(); 2593 2594 Assert(SrcTy->isIntOrIntVectorTy(), 2595 "IntToPtr source must be an integral", &I); 2596 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 2597 2598 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 2599 Assert(!DL.isNonIntegralPointerType(PTy), 2600 "inttoptr not supported for non-integral pointers"); 2601 2602 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2603 &I); 2604 if (SrcTy->isVectorTy()) { 2605 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 2606 VectorType *VDest = dyn_cast<VectorType>(DestTy); 2607 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2608 "IntToPtr Vector width mismatch", &I); 2609 } 2610 visitInstruction(I); 2611 } 2612 2613 void Verifier::visitBitCastInst(BitCastInst &I) { 2614 Assert( 2615 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2616 "Invalid bitcast", &I); 2617 visitInstruction(I); 2618 } 2619 2620 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2621 Type *SrcTy = I.getOperand(0)->getType(); 2622 Type *DestTy = I.getType(); 2623 2624 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2625 &I); 2626 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 2627 &I); 2628 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 2629 "AddrSpaceCast must be between different address spaces", &I); 2630 if (SrcTy->isVectorTy()) 2631 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), 2632 "AddrSpaceCast vector pointer number of elements mismatch", &I); 2633 visitInstruction(I); 2634 } 2635 2636 /// visitPHINode - Ensure that a PHI node is well formed. 2637 /// 2638 void Verifier::visitPHINode(PHINode &PN) { 2639 // Ensure that the PHI nodes are all grouped together at the top of the block. 2640 // This can be tested by checking whether the instruction before this is 2641 // either nonexistent (because this is begin()) or is a PHI node. If not, 2642 // then there is some other instruction before a PHI. 2643 Assert(&PN == &PN.getParent()->front() || 2644 isa<PHINode>(--BasicBlock::iterator(&PN)), 2645 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 2646 2647 // Check that a PHI doesn't yield a Token. 2648 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 2649 2650 // Check that all of the values of the PHI node have the same type as the 2651 // result, and that the incoming blocks are really basic blocks. 2652 for (Value *IncValue : PN.incoming_values()) { 2653 Assert(PN.getType() == IncValue->getType(), 2654 "PHI node operands are not the same type as the result!", &PN); 2655 } 2656 2657 // All other PHI node constraints are checked in the visitBasicBlock method. 2658 2659 visitInstruction(PN); 2660 } 2661 2662 void Verifier::verifyCallSite(CallSite CS) { 2663 Instruction *I = CS.getInstruction(); 2664 2665 Assert(CS.getCalledValue()->getType()->isPointerTy(), 2666 "Called function must be a pointer!", I); 2667 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType()); 2668 2669 Assert(FPTy->getElementType()->isFunctionTy(), 2670 "Called function is not pointer to function type!", I); 2671 2672 Assert(FPTy->getElementType() == CS.getFunctionType(), 2673 "Called function is not the same type as the call!", I); 2674 2675 FunctionType *FTy = CS.getFunctionType(); 2676 2677 // Verify that the correct number of arguments are being passed 2678 if (FTy->isVarArg()) 2679 Assert(CS.arg_size() >= FTy->getNumParams(), 2680 "Called function requires more parameters than were provided!", I); 2681 else 2682 Assert(CS.arg_size() == FTy->getNumParams(), 2683 "Incorrect number of arguments passed to called function!", I); 2684 2685 // Verify that all arguments to the call match the function type. 2686 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2687 Assert(CS.getArgument(i)->getType() == FTy->getParamType(i), 2688 "Call parameter type does not match function signature!", 2689 CS.getArgument(i), FTy->getParamType(i), I); 2690 2691 AttributeList Attrs = CS.getAttributes(); 2692 2693 Assert(verifyAttributeCount(Attrs, CS.arg_size()), 2694 "Attribute after last parameter!", I); 2695 2696 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) { 2697 // Don't allow speculatable on call sites, unless the underlying function 2698 // declaration is also speculatable. 2699 Function *Callee 2700 = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts()); 2701 Assert(Callee && Callee->isSpeculatable(), 2702 "speculatable attribute may not apply to call sites", I); 2703 } 2704 2705 // Verify call attributes. 2706 verifyFunctionAttrs(FTy, Attrs, I); 2707 2708 // Conservatively check the inalloca argument. 2709 // We have a bug if we can find that there is an underlying alloca without 2710 // inalloca. 2711 if (CS.hasInAllocaArgument()) { 2712 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1); 2713 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 2714 Assert(AI->isUsedWithInAlloca(), 2715 "inalloca argument for call has mismatched alloca", AI, I); 2716 } 2717 2718 // For each argument of the callsite, if it has the swifterror argument, 2719 // make sure the underlying alloca/parameter it comes from has a swifterror as 2720 // well. 2721 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2722 if (CS.paramHasAttr(i, Attribute::SwiftError)) { 2723 Value *SwiftErrorArg = CS.getArgument(i); 2724 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 2725 Assert(AI->isSwiftError(), 2726 "swifterror argument for call has mismatched alloca", AI, I); 2727 continue; 2728 } 2729 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 2730 Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I); 2731 Assert(ArgI->hasSwiftErrorAttr(), 2732 "swifterror argument for call has mismatched parameter", ArgI, I); 2733 } 2734 2735 if (FTy->isVarArg()) { 2736 // FIXME? is 'nest' even legal here? 2737 bool SawNest = false; 2738 bool SawReturned = false; 2739 2740 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 2741 if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) 2742 SawNest = true; 2743 if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) 2744 SawReturned = true; 2745 } 2746 2747 // Check attributes on the varargs part. 2748 for (unsigned Idx = FTy->getNumParams(); Idx < CS.arg_size(); ++Idx) { 2749 Type *Ty = CS.getArgument(Idx)->getType(); 2750 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); 2751 verifyParameterAttrs(ArgAttrs, Ty, I); 2752 2753 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 2754 Assert(!SawNest, "More than one parameter has attribute nest!", I); 2755 SawNest = true; 2756 } 2757 2758 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 2759 Assert(!SawReturned, "More than one parameter has attribute returned!", 2760 I); 2761 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 2762 "Incompatible argument and return types for 'returned' " 2763 "attribute", 2764 I); 2765 SawReturned = true; 2766 } 2767 2768 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2769 "Attribute 'sret' cannot be used for vararg call arguments!", I); 2770 2771 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 2772 Assert(Idx == CS.arg_size() - 1, "inalloca isn't on the last argument!", 2773 I); 2774 } 2775 } 2776 2777 // Verify that there's no metadata unless it's a direct call to an intrinsic. 2778 if (CS.getCalledFunction() == nullptr || 2779 !CS.getCalledFunction()->getName().startswith("llvm.")) { 2780 for (Type *ParamTy : FTy->params()) { 2781 Assert(!ParamTy->isMetadataTy(), 2782 "Function has metadata parameter but isn't an intrinsic", I); 2783 Assert(!ParamTy->isTokenTy(), 2784 "Function has token parameter but isn't an intrinsic", I); 2785 } 2786 } 2787 2788 // Verify that indirect calls don't return tokens. 2789 if (CS.getCalledFunction() == nullptr) 2790 Assert(!FTy->getReturnType()->isTokenTy(), 2791 "Return type cannot be token for indirect call!"); 2792 2793 if (Function *F = CS.getCalledFunction()) 2794 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 2795 visitIntrinsicCallSite(ID, CS); 2796 2797 // Verify that a callsite has at most one "deopt", at most one "funclet" and 2798 // at most one "gc-transition" operand bundle. 2799 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 2800 FoundGCTransitionBundle = false; 2801 for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) { 2802 OperandBundleUse BU = CS.getOperandBundleAt(i); 2803 uint32_t Tag = BU.getTagID(); 2804 if (Tag == LLVMContext::OB_deopt) { 2805 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I); 2806 FoundDeoptBundle = true; 2807 } else if (Tag == LLVMContext::OB_gc_transition) { 2808 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 2809 I); 2810 FoundGCTransitionBundle = true; 2811 } else if (Tag == LLVMContext::OB_funclet) { 2812 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I); 2813 FoundFuncletBundle = true; 2814 Assert(BU.Inputs.size() == 1, 2815 "Expected exactly one funclet bundle operand", I); 2816 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 2817 "Funclet bundle operands should correspond to a FuncletPadInst", 2818 I); 2819 } 2820 } 2821 2822 // Verify that each inlinable callsite of a debug-info-bearing function in a 2823 // debug-info-bearing function has a debug location attached to it. Failure to 2824 // do so causes assertion failures when the inliner sets up inline scope info. 2825 if (I->getFunction()->getSubprogram() && CS.getCalledFunction() && 2826 CS.getCalledFunction()->getSubprogram()) 2827 AssertDI(I->getDebugLoc(), "inlinable function call in a function with " 2828 "debug info must have a !dbg location", 2829 I); 2830 2831 visitInstruction(*I); 2832 } 2833 2834 /// Two types are "congruent" if they are identical, or if they are both pointer 2835 /// types with different pointee types and the same address space. 2836 static bool isTypeCongruent(Type *L, Type *R) { 2837 if (L == R) 2838 return true; 2839 PointerType *PL = dyn_cast<PointerType>(L); 2840 PointerType *PR = dyn_cast<PointerType>(R); 2841 if (!PL || !PR) 2842 return false; 2843 return PL->getAddressSpace() == PR->getAddressSpace(); 2844 } 2845 2846 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 2847 static const Attribute::AttrKind ABIAttrs[] = { 2848 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 2849 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf, 2850 Attribute::SwiftError}; 2851 AttrBuilder Copy; 2852 for (auto AK : ABIAttrs) { 2853 if (Attrs.hasParamAttribute(I, AK)) 2854 Copy.addAttribute(AK); 2855 } 2856 if (Attrs.hasParamAttribute(I, Attribute::Alignment)) 2857 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 2858 return Copy; 2859 } 2860 2861 void Verifier::verifyMustTailCall(CallInst &CI) { 2862 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 2863 2864 // - The caller and callee prototypes must match. Pointer types of 2865 // parameters or return types may differ in pointee type, but not 2866 // address space. 2867 Function *F = CI.getParent()->getParent(); 2868 FunctionType *CallerTy = F->getFunctionType(); 2869 FunctionType *CalleeTy = CI.getFunctionType(); 2870 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 2871 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 2872 "cannot guarantee tail call due to mismatched parameter counts", 2873 &CI); 2874 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 2875 Assert( 2876 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 2877 "cannot guarantee tail call due to mismatched parameter types", &CI); 2878 } 2879 } 2880 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 2881 "cannot guarantee tail call due to mismatched varargs", &CI); 2882 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 2883 "cannot guarantee tail call due to mismatched return types", &CI); 2884 2885 // - The calling conventions of the caller and callee must match. 2886 Assert(F->getCallingConv() == CI.getCallingConv(), 2887 "cannot guarantee tail call due to mismatched calling conv", &CI); 2888 2889 // - All ABI-impacting function attributes, such as sret, byval, inreg, 2890 // returned, and inalloca, must match. 2891 AttributeList CallerAttrs = F->getAttributes(); 2892 AttributeList CalleeAttrs = CI.getAttributes(); 2893 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 2894 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 2895 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 2896 Assert(CallerABIAttrs == CalleeABIAttrs, 2897 "cannot guarantee tail call due to mismatched ABI impacting " 2898 "function attributes", 2899 &CI, CI.getOperand(I)); 2900 } 2901 2902 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 2903 // or a pointer bitcast followed by a ret instruction. 2904 // - The ret instruction must return the (possibly bitcasted) value 2905 // produced by the call or void. 2906 Value *RetVal = &CI; 2907 Instruction *Next = CI.getNextNode(); 2908 2909 // Handle the optional bitcast. 2910 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 2911 Assert(BI->getOperand(0) == RetVal, 2912 "bitcast following musttail call must use the call", BI); 2913 RetVal = BI; 2914 Next = BI->getNextNode(); 2915 } 2916 2917 // Check the return. 2918 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 2919 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 2920 &CI); 2921 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 2922 "musttail call result must be returned", Ret); 2923 } 2924 2925 void Verifier::visitCallInst(CallInst &CI) { 2926 verifyCallSite(&CI); 2927 2928 if (CI.isMustTailCall()) 2929 verifyMustTailCall(CI); 2930 } 2931 2932 void Verifier::visitInvokeInst(InvokeInst &II) { 2933 verifyCallSite(&II); 2934 2935 // Verify that the first non-PHI instruction of the unwind destination is an 2936 // exception handling instruction. 2937 Assert( 2938 II.getUnwindDest()->isEHPad(), 2939 "The unwind destination does not have an exception handling instruction!", 2940 &II); 2941 2942 visitTerminatorInst(II); 2943 } 2944 2945 /// visitBinaryOperator - Check that both arguments to the binary operator are 2946 /// of the same type! 2947 /// 2948 void Verifier::visitBinaryOperator(BinaryOperator &B) { 2949 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 2950 "Both operands to a binary operator are not of the same type!", &B); 2951 2952 switch (B.getOpcode()) { 2953 // Check that integer arithmetic operators are only used with 2954 // integral operands. 2955 case Instruction::Add: 2956 case Instruction::Sub: 2957 case Instruction::Mul: 2958 case Instruction::SDiv: 2959 case Instruction::UDiv: 2960 case Instruction::SRem: 2961 case Instruction::URem: 2962 Assert(B.getType()->isIntOrIntVectorTy(), 2963 "Integer arithmetic operators only work with integral types!", &B); 2964 Assert(B.getType() == B.getOperand(0)->getType(), 2965 "Integer arithmetic operators must have same type " 2966 "for operands and result!", 2967 &B); 2968 break; 2969 // Check that floating-point arithmetic operators are only used with 2970 // floating-point operands. 2971 case Instruction::FAdd: 2972 case Instruction::FSub: 2973 case Instruction::FMul: 2974 case Instruction::FDiv: 2975 case Instruction::FRem: 2976 Assert(B.getType()->isFPOrFPVectorTy(), 2977 "Floating-point arithmetic operators only work with " 2978 "floating-point types!", 2979 &B); 2980 Assert(B.getType() == B.getOperand(0)->getType(), 2981 "Floating-point arithmetic operators must have same type " 2982 "for operands and result!", 2983 &B); 2984 break; 2985 // Check that logical operators are only used with integral operands. 2986 case Instruction::And: 2987 case Instruction::Or: 2988 case Instruction::Xor: 2989 Assert(B.getType()->isIntOrIntVectorTy(), 2990 "Logical operators only work with integral types!", &B); 2991 Assert(B.getType() == B.getOperand(0)->getType(), 2992 "Logical operators must have same type for operands and result!", 2993 &B); 2994 break; 2995 case Instruction::Shl: 2996 case Instruction::LShr: 2997 case Instruction::AShr: 2998 Assert(B.getType()->isIntOrIntVectorTy(), 2999 "Shifts only work with integral types!", &B); 3000 Assert(B.getType() == B.getOperand(0)->getType(), 3001 "Shift return type must be same as operands!", &B); 3002 break; 3003 default: 3004 llvm_unreachable("Unknown BinaryOperator opcode!"); 3005 } 3006 3007 visitInstruction(B); 3008 } 3009 3010 void Verifier::visitICmpInst(ICmpInst &IC) { 3011 // Check that the operands are the same type 3012 Type *Op0Ty = IC.getOperand(0)->getType(); 3013 Type *Op1Ty = IC.getOperand(1)->getType(); 3014 Assert(Op0Ty == Op1Ty, 3015 "Both operands to ICmp instruction are not of the same type!", &IC); 3016 // Check that the operands are the right type 3017 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3018 "Invalid operand types for ICmp instruction", &IC); 3019 // Check that the predicate is valid. 3020 Assert(IC.isIntPredicate(), 3021 "Invalid predicate in ICmp instruction!", &IC); 3022 3023 visitInstruction(IC); 3024 } 3025 3026 void Verifier::visitFCmpInst(FCmpInst &FC) { 3027 // Check that the operands are the same type 3028 Type *Op0Ty = FC.getOperand(0)->getType(); 3029 Type *Op1Ty = FC.getOperand(1)->getType(); 3030 Assert(Op0Ty == Op1Ty, 3031 "Both operands to FCmp instruction are not of the same type!", &FC); 3032 // Check that the operands are the right type 3033 Assert(Op0Ty->isFPOrFPVectorTy(), 3034 "Invalid operand types for FCmp instruction", &FC); 3035 // Check that the predicate is valid. 3036 Assert(FC.isFPPredicate(), 3037 "Invalid predicate in FCmp instruction!", &FC); 3038 3039 visitInstruction(FC); 3040 } 3041 3042 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3043 Assert( 3044 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3045 "Invalid extractelement operands!", &EI); 3046 visitInstruction(EI); 3047 } 3048 3049 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3050 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3051 IE.getOperand(2)), 3052 "Invalid insertelement operands!", &IE); 3053 visitInstruction(IE); 3054 } 3055 3056 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3057 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3058 SV.getOperand(2)), 3059 "Invalid shufflevector operands!", &SV); 3060 visitInstruction(SV); 3061 } 3062 3063 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3064 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3065 3066 Assert(isa<PointerType>(TargetTy), 3067 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3068 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3069 3070 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 3071 Assert(all_of( 3072 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3073 "GEP indexes must be integers", &GEP); 3074 Type *ElTy = 3075 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3076 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3077 3078 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3079 GEP.getResultElementType() == ElTy, 3080 "GEP is not of right type for indices!", &GEP, ElTy); 3081 3082 if (GEP.getType()->isVectorTy()) { 3083 // Additional checks for vector GEPs. 3084 unsigned GEPWidth = GEP.getType()->getVectorNumElements(); 3085 if (GEP.getPointerOperandType()->isVectorTy()) 3086 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(), 3087 "Vector GEP result width doesn't match operand's", &GEP); 3088 for (Value *Idx : Idxs) { 3089 Type *IndexTy = Idx->getType(); 3090 if (IndexTy->isVectorTy()) { 3091 unsigned IndexWidth = IndexTy->getVectorNumElements(); 3092 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3093 } 3094 Assert(IndexTy->isIntOrIntVectorTy(), 3095 "All GEP indices should be of integer type"); 3096 } 3097 } 3098 visitInstruction(GEP); 3099 } 3100 3101 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3102 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3103 } 3104 3105 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3106 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3107 "precondition violation"); 3108 3109 unsigned NumOperands = Range->getNumOperands(); 3110 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3111 unsigned NumRanges = NumOperands / 2; 3112 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3113 3114 ConstantRange LastRange(1); // Dummy initial value 3115 for (unsigned i = 0; i < NumRanges; ++i) { 3116 ConstantInt *Low = 3117 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3118 Assert(Low, "The lower limit must be an integer!", Low); 3119 ConstantInt *High = 3120 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3121 Assert(High, "The upper limit must be an integer!", High); 3122 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3123 "Range types must match instruction type!", &I); 3124 3125 APInt HighV = High->getValue(); 3126 APInt LowV = Low->getValue(); 3127 ConstantRange CurRange(LowV, HighV); 3128 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3129 "Range must not be empty!", Range); 3130 if (i != 0) { 3131 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3132 "Intervals are overlapping", Range); 3133 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3134 Range); 3135 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3136 Range); 3137 } 3138 LastRange = ConstantRange(LowV, HighV); 3139 } 3140 if (NumRanges > 2) { 3141 APInt FirstLow = 3142 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3143 APInt FirstHigh = 3144 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3145 ConstantRange FirstRange(FirstLow, FirstHigh); 3146 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3147 "Intervals are overlapping", Range); 3148 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3149 Range); 3150 } 3151 } 3152 3153 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3154 unsigned Size = DL.getTypeSizeInBits(Ty); 3155 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3156 Assert(!(Size & (Size - 1)), 3157 "atomic memory access' operand must have a power-of-two size", Ty, I); 3158 } 3159 3160 void Verifier::visitLoadInst(LoadInst &LI) { 3161 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3162 Assert(PTy, "Load operand must be a pointer.", &LI); 3163 Type *ElTy = LI.getType(); 3164 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3165 "huge alignment values are unsupported", &LI); 3166 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3167 if (LI.isAtomic()) { 3168 Assert(LI.getOrdering() != AtomicOrdering::Release && 3169 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3170 "Load cannot have Release ordering", &LI); 3171 Assert(LI.getAlignment() != 0, 3172 "Atomic load must specify explicit alignment", &LI); 3173 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() || 3174 ElTy->isFloatingPointTy(), 3175 "atomic load operand must have integer, pointer, or floating point " 3176 "type!", 3177 ElTy, &LI); 3178 checkAtomicMemAccessSize(ElTy, &LI); 3179 } else { 3180 Assert(LI.getSyncScopeID() == SyncScope::System, 3181 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3182 } 3183 3184 visitInstruction(LI); 3185 } 3186 3187 void Verifier::visitStoreInst(StoreInst &SI) { 3188 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3189 Assert(PTy, "Store operand must be a pointer.", &SI); 3190 Type *ElTy = PTy->getElementType(); 3191 Assert(ElTy == SI.getOperand(0)->getType(), 3192 "Stored value type does not match pointer operand type!", &SI, ElTy); 3193 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3194 "huge alignment values are unsupported", &SI); 3195 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3196 if (SI.isAtomic()) { 3197 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3198 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3199 "Store cannot have Acquire ordering", &SI); 3200 Assert(SI.getAlignment() != 0, 3201 "Atomic store must specify explicit alignment", &SI); 3202 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() || 3203 ElTy->isFloatingPointTy(), 3204 "atomic store operand must have integer, pointer, or floating point " 3205 "type!", 3206 ElTy, &SI); 3207 checkAtomicMemAccessSize(ElTy, &SI); 3208 } else { 3209 Assert(SI.getSyncScopeID() == SyncScope::System, 3210 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3211 } 3212 visitInstruction(SI); 3213 } 3214 3215 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3216 void Verifier::verifySwiftErrorCallSite(CallSite CS, 3217 const Value *SwiftErrorVal) { 3218 unsigned Idx = 0; 3219 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); 3220 I != E; ++I, ++Idx) { 3221 if (*I == SwiftErrorVal) { 3222 Assert(CS.paramHasAttr(Idx, Attribute::SwiftError), 3223 "swifterror value when used in a callsite should be marked " 3224 "with swifterror attribute", 3225 SwiftErrorVal, CS); 3226 } 3227 } 3228 } 3229 3230 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3231 // Check that swifterror value is only used by loads, stores, or as 3232 // a swifterror argument. 3233 for (const User *U : SwiftErrorVal->users()) { 3234 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3235 isa<InvokeInst>(U), 3236 "swifterror value can only be loaded and stored from, or " 3237 "as a swifterror argument!", 3238 SwiftErrorVal, U); 3239 // If it is used by a store, check it is the second operand. 3240 if (auto StoreI = dyn_cast<StoreInst>(U)) 3241 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3242 "swifterror value should be the second operand when used " 3243 "by stores", SwiftErrorVal, U); 3244 if (auto CallI = dyn_cast<CallInst>(U)) 3245 verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal); 3246 if (auto II = dyn_cast<InvokeInst>(U)) 3247 verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal); 3248 } 3249 } 3250 3251 void Verifier::visitAllocaInst(AllocaInst &AI) { 3252 SmallPtrSet<Type*, 4> Visited; 3253 PointerType *PTy = AI.getType(); 3254 // TODO: Relax this restriction? 3255 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), 3256 "Allocation instruction pointer not in the stack address space!", 3257 &AI); 3258 Assert(AI.getAllocatedType()->isSized(&Visited), 3259 "Cannot allocate unsized type", &AI); 3260 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3261 "Alloca array size must have integer type", &AI); 3262 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3263 "huge alignment values are unsupported", &AI); 3264 3265 if (AI.isSwiftError()) { 3266 verifySwiftErrorValue(&AI); 3267 } 3268 3269 visitInstruction(AI); 3270 } 3271 3272 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3273 3274 // FIXME: more conditions??? 3275 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 3276 "cmpxchg instructions must be atomic.", &CXI); 3277 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 3278 "cmpxchg instructions must be atomic.", &CXI); 3279 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 3280 "cmpxchg instructions cannot be unordered.", &CXI); 3281 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 3282 "cmpxchg instructions cannot be unordered.", &CXI); 3283 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 3284 "cmpxchg instructions failure argument shall be no stronger than the " 3285 "success argument", 3286 &CXI); 3287 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 3288 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 3289 "cmpxchg failure ordering cannot include release semantics", &CXI); 3290 3291 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 3292 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 3293 Type *ElTy = PTy->getElementType(); 3294 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(), 3295 "cmpxchg operand must have integer or pointer type", 3296 ElTy, &CXI); 3297 checkAtomicMemAccessSize(ElTy, &CXI); 3298 Assert(ElTy == CXI.getOperand(1)->getType(), 3299 "Expected value type does not match pointer operand type!", &CXI, 3300 ElTy); 3301 Assert(ElTy == CXI.getOperand(2)->getType(), 3302 "Stored value type does not match pointer operand type!", &CXI, ElTy); 3303 visitInstruction(CXI); 3304 } 3305 3306 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3307 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 3308 "atomicrmw instructions must be atomic.", &RMWI); 3309 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3310 "atomicrmw instructions cannot be unordered.", &RMWI); 3311 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 3312 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 3313 Type *ElTy = PTy->getElementType(); 3314 Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!", 3315 &RMWI, ElTy); 3316 checkAtomicMemAccessSize(ElTy, &RMWI); 3317 Assert(ElTy == RMWI.getOperand(1)->getType(), 3318 "Argument value type does not match pointer operand type!", &RMWI, 3319 ElTy); 3320 Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() && 3321 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP, 3322 "Invalid binary operation!", &RMWI); 3323 visitInstruction(RMWI); 3324 } 3325 3326 void Verifier::visitFenceInst(FenceInst &FI) { 3327 const AtomicOrdering Ordering = FI.getOrdering(); 3328 Assert(Ordering == AtomicOrdering::Acquire || 3329 Ordering == AtomicOrdering::Release || 3330 Ordering == AtomicOrdering::AcquireRelease || 3331 Ordering == AtomicOrdering::SequentiallyConsistent, 3332 "fence instructions may only have acquire, release, acq_rel, or " 3333 "seq_cst ordering.", 3334 &FI); 3335 visitInstruction(FI); 3336 } 3337 3338 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3339 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3340 EVI.getIndices()) == EVI.getType(), 3341 "Invalid ExtractValueInst operands!", &EVI); 3342 3343 visitInstruction(EVI); 3344 } 3345 3346 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3347 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3348 IVI.getIndices()) == 3349 IVI.getOperand(1)->getType(), 3350 "Invalid InsertValueInst operands!", &IVI); 3351 3352 visitInstruction(IVI); 3353 } 3354 3355 static Value *getParentPad(Value *EHPad) { 3356 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3357 return FPI->getParentPad(); 3358 3359 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3360 } 3361 3362 void Verifier::visitEHPadPredecessors(Instruction &I) { 3363 assert(I.isEHPad()); 3364 3365 BasicBlock *BB = I.getParent(); 3366 Function *F = BB->getParent(); 3367 3368 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3369 3370 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3371 // The landingpad instruction defines its parent as a landing pad block. The 3372 // landing pad block may be branched to only by the unwind edge of an 3373 // invoke. 3374 for (BasicBlock *PredBB : predecessors(BB)) { 3375 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3376 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3377 "Block containing LandingPadInst must be jumped to " 3378 "only by the unwind edge of an invoke.", 3379 LPI); 3380 } 3381 return; 3382 } 3383 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3384 if (!pred_empty(BB)) 3385 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3386 "Block containg CatchPadInst must be jumped to " 3387 "only by its catchswitch.", 3388 CPI); 3389 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3390 "Catchswitch cannot unwind to one of its catchpads", 3391 CPI->getCatchSwitch(), CPI); 3392 return; 3393 } 3394 3395 // Verify that each pred has a legal terminator with a legal to/from EH 3396 // pad relationship. 3397 Instruction *ToPad = &I; 3398 Value *ToPadParent = getParentPad(ToPad); 3399 for (BasicBlock *PredBB : predecessors(BB)) { 3400 TerminatorInst *TI = PredBB->getTerminator(); 3401 Value *FromPad; 3402 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3403 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3404 "EH pad must be jumped to via an unwind edge", ToPad, II); 3405 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3406 FromPad = Bundle->Inputs[0]; 3407 else 3408 FromPad = ConstantTokenNone::get(II->getContext()); 3409 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3410 FromPad = CRI->getOperand(0); 3411 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3412 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3413 FromPad = CSI; 3414 } else { 3415 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3416 } 3417 3418 // The edge may exit from zero or more nested pads. 3419 SmallSet<Value *, 8> Seen; 3420 for (;; FromPad = getParentPad(FromPad)) { 3421 Assert(FromPad != ToPad, 3422 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3423 if (FromPad == ToPadParent) { 3424 // This is a legal unwind edge. 3425 break; 3426 } 3427 Assert(!isa<ConstantTokenNone>(FromPad), 3428 "A single unwind edge may only enter one EH pad", TI); 3429 Assert(Seen.insert(FromPad).second, 3430 "EH pad jumps through a cycle of pads", FromPad); 3431 } 3432 } 3433 } 3434 3435 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3436 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3437 // isn't a cleanup. 3438 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3439 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3440 3441 visitEHPadPredecessors(LPI); 3442 3443 if (!LandingPadResultTy) 3444 LandingPadResultTy = LPI.getType(); 3445 else 3446 Assert(LandingPadResultTy == LPI.getType(), 3447 "The landingpad instruction should have a consistent result type " 3448 "inside a function.", 3449 &LPI); 3450 3451 Function *F = LPI.getParent()->getParent(); 3452 Assert(F->hasPersonalityFn(), 3453 "LandingPadInst needs to be in a function with a personality.", &LPI); 3454 3455 // The landingpad instruction must be the first non-PHI instruction in the 3456 // block. 3457 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3458 "LandingPadInst not the first non-PHI instruction in the block.", 3459 &LPI); 3460 3461 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3462 Constant *Clause = LPI.getClause(i); 3463 if (LPI.isCatch(i)) { 3464 Assert(isa<PointerType>(Clause->getType()), 3465 "Catch operand does not have pointer type!", &LPI); 3466 } else { 3467 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3468 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3469 "Filter operand is not an array of constants!", &LPI); 3470 } 3471 } 3472 3473 visitInstruction(LPI); 3474 } 3475 3476 void Verifier::visitResumeInst(ResumeInst &RI) { 3477 Assert(RI.getFunction()->hasPersonalityFn(), 3478 "ResumeInst needs to be in a function with a personality.", &RI); 3479 3480 if (!LandingPadResultTy) 3481 LandingPadResultTy = RI.getValue()->getType(); 3482 else 3483 Assert(LandingPadResultTy == RI.getValue()->getType(), 3484 "The resume instruction should have a consistent result type " 3485 "inside a function.", 3486 &RI); 3487 3488 visitTerminatorInst(RI); 3489 } 3490 3491 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3492 BasicBlock *BB = CPI.getParent(); 3493 3494 Function *F = BB->getParent(); 3495 Assert(F->hasPersonalityFn(), 3496 "CatchPadInst needs to be in a function with a personality.", &CPI); 3497 3498 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 3499 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 3500 CPI.getParentPad()); 3501 3502 // The catchpad instruction must be the first non-PHI instruction in the 3503 // block. 3504 Assert(BB->getFirstNonPHI() == &CPI, 3505 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 3506 3507 visitEHPadPredecessors(CPI); 3508 visitFuncletPadInst(CPI); 3509 } 3510 3511 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 3512 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 3513 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 3514 CatchReturn.getOperand(0)); 3515 3516 visitTerminatorInst(CatchReturn); 3517 } 3518 3519 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 3520 BasicBlock *BB = CPI.getParent(); 3521 3522 Function *F = BB->getParent(); 3523 Assert(F->hasPersonalityFn(), 3524 "CleanupPadInst needs to be in a function with a personality.", &CPI); 3525 3526 // The cleanuppad instruction must be the first non-PHI instruction in the 3527 // block. 3528 Assert(BB->getFirstNonPHI() == &CPI, 3529 "CleanupPadInst not the first non-PHI instruction in the block.", 3530 &CPI); 3531 3532 auto *ParentPad = CPI.getParentPad(); 3533 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3534 "CleanupPadInst has an invalid parent.", &CPI); 3535 3536 visitEHPadPredecessors(CPI); 3537 visitFuncletPadInst(CPI); 3538 } 3539 3540 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 3541 User *FirstUser = nullptr; 3542 Value *FirstUnwindPad = nullptr; 3543 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 3544 SmallSet<FuncletPadInst *, 8> Seen; 3545 3546 while (!Worklist.empty()) { 3547 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 3548 Assert(Seen.insert(CurrentPad).second, 3549 "FuncletPadInst must not be nested within itself", CurrentPad); 3550 Value *UnresolvedAncestorPad = nullptr; 3551 for (User *U : CurrentPad->users()) { 3552 BasicBlock *UnwindDest; 3553 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 3554 UnwindDest = CRI->getUnwindDest(); 3555 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 3556 // We allow catchswitch unwind to caller to nest 3557 // within an outer pad that unwinds somewhere else, 3558 // because catchswitch doesn't have a nounwind variant. 3559 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 3560 if (CSI->unwindsToCaller()) 3561 continue; 3562 UnwindDest = CSI->getUnwindDest(); 3563 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 3564 UnwindDest = II->getUnwindDest(); 3565 } else if (isa<CallInst>(U)) { 3566 // Calls which don't unwind may be found inside funclet 3567 // pads that unwind somewhere else. We don't *require* 3568 // such calls to be annotated nounwind. 3569 continue; 3570 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 3571 // The unwind dest for a cleanup can only be found by 3572 // recursive search. Add it to the worklist, and we'll 3573 // search for its first use that determines where it unwinds. 3574 Worklist.push_back(CPI); 3575 continue; 3576 } else { 3577 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 3578 continue; 3579 } 3580 3581 Value *UnwindPad; 3582 bool ExitsFPI; 3583 if (UnwindDest) { 3584 UnwindPad = UnwindDest->getFirstNonPHI(); 3585 if (!cast<Instruction>(UnwindPad)->isEHPad()) 3586 continue; 3587 Value *UnwindParent = getParentPad(UnwindPad); 3588 // Ignore unwind edges that don't exit CurrentPad. 3589 if (UnwindParent == CurrentPad) 3590 continue; 3591 // Determine whether the original funclet pad is exited, 3592 // and if we are scanning nested pads determine how many 3593 // of them are exited so we can stop searching their 3594 // children. 3595 Value *ExitedPad = CurrentPad; 3596 ExitsFPI = false; 3597 do { 3598 if (ExitedPad == &FPI) { 3599 ExitsFPI = true; 3600 // Now we can resolve any ancestors of CurrentPad up to 3601 // FPI, but not including FPI since we need to make sure 3602 // to check all direct users of FPI for consistency. 3603 UnresolvedAncestorPad = &FPI; 3604 break; 3605 } 3606 Value *ExitedParent = getParentPad(ExitedPad); 3607 if (ExitedParent == UnwindParent) { 3608 // ExitedPad is the ancestor-most pad which this unwind 3609 // edge exits, so we can resolve up to it, meaning that 3610 // ExitedParent is the first ancestor still unresolved. 3611 UnresolvedAncestorPad = ExitedParent; 3612 break; 3613 } 3614 ExitedPad = ExitedParent; 3615 } while (!isa<ConstantTokenNone>(ExitedPad)); 3616 } else { 3617 // Unwinding to caller exits all pads. 3618 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 3619 ExitsFPI = true; 3620 UnresolvedAncestorPad = &FPI; 3621 } 3622 3623 if (ExitsFPI) { 3624 // This unwind edge exits FPI. Make sure it agrees with other 3625 // such edges. 3626 if (FirstUser) { 3627 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 3628 "pad must have the same unwind " 3629 "dest", 3630 &FPI, U, FirstUser); 3631 } else { 3632 FirstUser = U; 3633 FirstUnwindPad = UnwindPad; 3634 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 3635 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 3636 getParentPad(UnwindPad) == getParentPad(&FPI)) 3637 SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U); 3638 } 3639 } 3640 // Make sure we visit all uses of FPI, but for nested pads stop as 3641 // soon as we know where they unwind to. 3642 if (CurrentPad != &FPI) 3643 break; 3644 } 3645 if (UnresolvedAncestorPad) { 3646 if (CurrentPad == UnresolvedAncestorPad) { 3647 // When CurrentPad is FPI itself, we don't mark it as resolved even if 3648 // we've found an unwind edge that exits it, because we need to verify 3649 // all direct uses of FPI. 3650 assert(CurrentPad == &FPI); 3651 continue; 3652 } 3653 // Pop off the worklist any nested pads that we've found an unwind 3654 // destination for. The pads on the worklist are the uncles, 3655 // great-uncles, etc. of CurrentPad. We've found an unwind destination 3656 // for all ancestors of CurrentPad up to but not including 3657 // UnresolvedAncestorPad. 3658 Value *ResolvedPad = CurrentPad; 3659 while (!Worklist.empty()) { 3660 Value *UnclePad = Worklist.back(); 3661 Value *AncestorPad = getParentPad(UnclePad); 3662 // Walk ResolvedPad up the ancestor list until we either find the 3663 // uncle's parent or the last resolved ancestor. 3664 while (ResolvedPad != AncestorPad) { 3665 Value *ResolvedParent = getParentPad(ResolvedPad); 3666 if (ResolvedParent == UnresolvedAncestorPad) { 3667 break; 3668 } 3669 ResolvedPad = ResolvedParent; 3670 } 3671 // If the resolved ancestor search didn't find the uncle's parent, 3672 // then the uncle is not yet resolved. 3673 if (ResolvedPad != AncestorPad) 3674 break; 3675 // This uncle is resolved, so pop it from the worklist. 3676 Worklist.pop_back(); 3677 } 3678 } 3679 } 3680 3681 if (FirstUnwindPad) { 3682 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 3683 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 3684 Value *SwitchUnwindPad; 3685 if (SwitchUnwindDest) 3686 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 3687 else 3688 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 3689 Assert(SwitchUnwindPad == FirstUnwindPad, 3690 "Unwind edges out of a catch must have the same unwind dest as " 3691 "the parent catchswitch", 3692 &FPI, FirstUser, CatchSwitch); 3693 } 3694 } 3695 3696 visitInstruction(FPI); 3697 } 3698 3699 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 3700 BasicBlock *BB = CatchSwitch.getParent(); 3701 3702 Function *F = BB->getParent(); 3703 Assert(F->hasPersonalityFn(), 3704 "CatchSwitchInst needs to be in a function with a personality.", 3705 &CatchSwitch); 3706 3707 // The catchswitch instruction must be the first non-PHI instruction in the 3708 // block. 3709 Assert(BB->getFirstNonPHI() == &CatchSwitch, 3710 "CatchSwitchInst not the first non-PHI instruction in the block.", 3711 &CatchSwitch); 3712 3713 auto *ParentPad = CatchSwitch.getParentPad(); 3714 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3715 "CatchSwitchInst has an invalid parent.", ParentPad); 3716 3717 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 3718 Instruction *I = UnwindDest->getFirstNonPHI(); 3719 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3720 "CatchSwitchInst must unwind to an EH block which is not a " 3721 "landingpad.", 3722 &CatchSwitch); 3723 3724 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 3725 if (getParentPad(I) == ParentPad) 3726 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 3727 } 3728 3729 Assert(CatchSwitch.getNumHandlers() != 0, 3730 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 3731 3732 for (BasicBlock *Handler : CatchSwitch.handlers()) { 3733 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 3734 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 3735 } 3736 3737 visitEHPadPredecessors(CatchSwitch); 3738 visitTerminatorInst(CatchSwitch); 3739 } 3740 3741 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 3742 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 3743 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 3744 CRI.getOperand(0)); 3745 3746 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 3747 Instruction *I = UnwindDest->getFirstNonPHI(); 3748 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3749 "CleanupReturnInst must unwind to an EH block which is not a " 3750 "landingpad.", 3751 &CRI); 3752 } 3753 3754 visitTerminatorInst(CRI); 3755 } 3756 3757 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 3758 Instruction *Op = cast<Instruction>(I.getOperand(i)); 3759 // If the we have an invalid invoke, don't try to compute the dominance. 3760 // We already reject it in the invoke specific checks and the dominance 3761 // computation doesn't handle multiple edges. 3762 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 3763 if (II->getNormalDest() == II->getUnwindDest()) 3764 return; 3765 } 3766 3767 // Quick check whether the def has already been encountered in the same block. 3768 // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI 3769 // uses are defined to happen on the incoming edge, not at the instruction. 3770 // 3771 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 3772 // wrapping an SSA value, assert that we've already encountered it. See 3773 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 3774 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 3775 return; 3776 3777 const Use &U = I.getOperandUse(i); 3778 Assert(DT.dominates(Op, U), 3779 "Instruction does not dominate all uses!", Op, &I); 3780 } 3781 3782 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 3783 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 3784 "apply only to pointer types", &I); 3785 Assert(isa<LoadInst>(I), 3786 "dereferenceable, dereferenceable_or_null apply only to load" 3787 " instructions, use attributes for calls or invokes", &I); 3788 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 3789 "take one operand!", &I); 3790 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 3791 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 3792 "dereferenceable_or_null metadata value must be an i64!", &I); 3793 } 3794 3795 /// verifyInstruction - Verify that an instruction is well formed. 3796 /// 3797 void Verifier::visitInstruction(Instruction &I) { 3798 BasicBlock *BB = I.getParent(); 3799 Assert(BB, "Instruction not embedded in basic block!", &I); 3800 3801 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 3802 for (User *U : I.users()) { 3803 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 3804 "Only PHI nodes may reference their own value!", &I); 3805 } 3806 } 3807 3808 // Check that void typed values don't have names 3809 Assert(!I.getType()->isVoidTy() || !I.hasName(), 3810 "Instruction has a name, but provides a void value!", &I); 3811 3812 // Check that the return value of the instruction is either void or a legal 3813 // value type. 3814 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 3815 "Instruction returns a non-scalar type!", &I); 3816 3817 // Check that the instruction doesn't produce metadata. Calls are already 3818 // checked against the callee type. 3819 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 3820 "Invalid use of metadata!", &I); 3821 3822 // Check that all uses of the instruction, if they are instructions 3823 // themselves, actually have parent basic blocks. If the use is not an 3824 // instruction, it is an error! 3825 for (Use &U : I.uses()) { 3826 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 3827 Assert(Used->getParent() != nullptr, 3828 "Instruction referencing" 3829 " instruction not embedded in a basic block!", 3830 &I, Used); 3831 else { 3832 CheckFailed("Use of instruction is not an instruction!", U); 3833 return; 3834 } 3835 } 3836 3837 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 3838 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 3839 3840 // Check to make sure that only first-class-values are operands to 3841 // instructions. 3842 if (!I.getOperand(i)->getType()->isFirstClassType()) { 3843 Assert(false, "Instruction operands must be first-class values!", &I); 3844 } 3845 3846 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 3847 // Check to make sure that the "address of" an intrinsic function is never 3848 // taken. 3849 Assert( 3850 !F->isIntrinsic() || 3851 i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0), 3852 "Cannot take the address of an intrinsic!", &I); 3853 Assert( 3854 !F->isIntrinsic() || isa<CallInst>(I) || 3855 F->getIntrinsicID() == Intrinsic::donothing || 3856 F->getIntrinsicID() == Intrinsic::coro_resume || 3857 F->getIntrinsicID() == Intrinsic::coro_destroy || 3858 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 3859 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 3860 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint, 3861 "Cannot invoke an intrinsic other than donothing, patchpoint, " 3862 "statepoint, coro_resume or coro_destroy", 3863 &I); 3864 Assert(F->getParent() == &M, "Referencing function in another module!", 3865 &I, &M, F, F->getParent()); 3866 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 3867 Assert(OpBB->getParent() == BB->getParent(), 3868 "Referring to a basic block in another function!", &I); 3869 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 3870 Assert(OpArg->getParent() == BB->getParent(), 3871 "Referring to an argument in another function!", &I); 3872 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 3873 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 3874 &M, GV, GV->getParent()); 3875 } else if (isa<Instruction>(I.getOperand(i))) { 3876 verifyDominatesUse(I, i); 3877 } else if (isa<InlineAsm>(I.getOperand(i))) { 3878 Assert((i + 1 == e && isa<CallInst>(I)) || 3879 (i + 3 == e && isa<InvokeInst>(I)), 3880 "Cannot take the address of an inline asm!", &I); 3881 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 3882 if (CE->getType()->isPtrOrPtrVectorTy() || 3883 !DL.getNonIntegralAddressSpaces().empty()) { 3884 // If we have a ConstantExpr pointer, we need to see if it came from an 3885 // illegal bitcast. If the datalayout string specifies non-integral 3886 // address spaces then we also need to check for illegal ptrtoint and 3887 // inttoptr expressions. 3888 visitConstantExprsRecursively(CE); 3889 } 3890 } 3891 } 3892 3893 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 3894 Assert(I.getType()->isFPOrFPVectorTy(), 3895 "fpmath requires a floating point result!", &I); 3896 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 3897 if (ConstantFP *CFP0 = 3898 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 3899 const APFloat &Accuracy = CFP0->getValueAPF(); 3900 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 3901 "fpmath accuracy must have float type", &I); 3902 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 3903 "fpmath accuracy not a positive number!", &I); 3904 } else { 3905 Assert(false, "invalid fpmath accuracy!", &I); 3906 } 3907 } 3908 3909 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 3910 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 3911 "Ranges are only for loads, calls and invokes!", &I); 3912 visitRangeMetadata(I, Range, I.getType()); 3913 } 3914 3915 if (I.getMetadata(LLVMContext::MD_nonnull)) { 3916 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 3917 &I); 3918 Assert(isa<LoadInst>(I), 3919 "nonnull applies only to load instructions, use attributes" 3920 " for calls or invokes", 3921 &I); 3922 } 3923 3924 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 3925 visitDereferenceableMetadata(I, MD); 3926 3927 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 3928 visitDereferenceableMetadata(I, MD); 3929 3930 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 3931 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 3932 3933 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 3934 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 3935 &I); 3936 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 3937 "use attributes for calls or invokes", &I); 3938 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 3939 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 3940 Assert(CI && CI->getType()->isIntegerTy(64), 3941 "align metadata value must be an i64!", &I); 3942 uint64_t Align = CI->getZExtValue(); 3943 Assert(isPowerOf2_64(Align), 3944 "align metadata value must be a power of 2!", &I); 3945 Assert(Align <= Value::MaximumAlignment, 3946 "alignment is larger that implementation defined limit", &I); 3947 } 3948 3949 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 3950 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 3951 visitMDNode(*N); 3952 } 3953 3954 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) 3955 verifyFragmentExpression(*DII); 3956 3957 InstsInThisBlock.insert(&I); 3958 } 3959 3960 /// Allow intrinsics to be verified in different ways. 3961 void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) { 3962 Function *IF = CS.getCalledFunction(); 3963 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 3964 IF); 3965 3966 // Verify that the intrinsic prototype lines up with what the .td files 3967 // describe. 3968 FunctionType *IFTy = IF->getFunctionType(); 3969 bool IsVarArg = IFTy->isVarArg(); 3970 3971 SmallVector<Intrinsic::IITDescriptor, 8> Table; 3972 getIntrinsicInfoTableEntries(ID, Table); 3973 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 3974 3975 SmallVector<Type *, 4> ArgTys; 3976 Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(), 3977 TableRef, ArgTys), 3978 "Intrinsic has incorrect return type!", IF); 3979 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i) 3980 Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i), 3981 TableRef, ArgTys), 3982 "Intrinsic has incorrect argument type!", IF); 3983 3984 // Verify if the intrinsic call matches the vararg property. 3985 if (IsVarArg) 3986 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 3987 "Intrinsic was not defined with variable arguments!", IF); 3988 else 3989 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 3990 "Callsite was not defined with variable arguments!", IF); 3991 3992 // All descriptors should be absorbed by now. 3993 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 3994 3995 // Now that we have the intrinsic ID and the actual argument types (and we 3996 // know they are legal for the intrinsic!) get the intrinsic name through the 3997 // usual means. This allows us to verify the mangling of argument types into 3998 // the name. 3999 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 4000 Assert(ExpectedName == IF->getName(), 4001 "Intrinsic name not mangled correctly for type arguments! " 4002 "Should be: " + 4003 ExpectedName, 4004 IF); 4005 4006 // If the intrinsic takes MDNode arguments, verify that they are either global 4007 // or are local to *this* function. 4008 for (Value *V : CS.args()) 4009 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4010 visitMetadataAsValue(*MD, CS.getCaller()); 4011 4012 switch (ID) { 4013 default: 4014 break; 4015 case Intrinsic::coro_id: { 4016 auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts(); 4017 if (isa<ConstantPointerNull>(InfoArg)) 4018 break; 4019 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4020 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4021 "info argument of llvm.coro.begin must refer to an initialized " 4022 "constant"); 4023 Constant *Init = GV->getInitializer(); 4024 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4025 "info argument of llvm.coro.begin must refer to either a struct or " 4026 "an array"); 4027 break; 4028 } 4029 case Intrinsic::ctlz: // llvm.ctlz 4030 case Intrinsic::cttz: // llvm.cttz 4031 Assert(isa<ConstantInt>(CS.getArgOperand(1)), 4032 "is_zero_undef argument of bit counting intrinsics must be a " 4033 "constant int", 4034 CS); 4035 break; 4036 case Intrinsic::experimental_constrained_fadd: 4037 case Intrinsic::experimental_constrained_fsub: 4038 case Intrinsic::experimental_constrained_fmul: 4039 case Intrinsic::experimental_constrained_fdiv: 4040 case Intrinsic::experimental_constrained_frem: 4041 case Intrinsic::experimental_constrained_fma: 4042 case Intrinsic::experimental_constrained_sqrt: 4043 case Intrinsic::experimental_constrained_pow: 4044 case Intrinsic::experimental_constrained_powi: 4045 case Intrinsic::experimental_constrained_sin: 4046 case Intrinsic::experimental_constrained_cos: 4047 case Intrinsic::experimental_constrained_exp: 4048 case Intrinsic::experimental_constrained_exp2: 4049 case Intrinsic::experimental_constrained_log: 4050 case Intrinsic::experimental_constrained_log10: 4051 case Intrinsic::experimental_constrained_log2: 4052 case Intrinsic::experimental_constrained_rint: 4053 case Intrinsic::experimental_constrained_nearbyint: 4054 visitConstrainedFPIntrinsic( 4055 cast<ConstrainedFPIntrinsic>(*CS.getInstruction())); 4056 break; 4057 case Intrinsic::dbg_declare: // llvm.dbg.declare 4058 Assert(isa<MetadataAsValue>(CS.getArgOperand(0)), 4059 "invalid llvm.dbg.declare intrinsic call 1", CS); 4060 visitDbgIntrinsic("declare", cast<DbgInfoIntrinsic>(*CS.getInstruction())); 4061 break; 4062 case Intrinsic::dbg_addr: // llvm.dbg.addr 4063 visitDbgIntrinsic("addr", cast<DbgInfoIntrinsic>(*CS.getInstruction())); 4064 break; 4065 case Intrinsic::dbg_value: // llvm.dbg.value 4066 visitDbgIntrinsic("value", cast<DbgInfoIntrinsic>(*CS.getInstruction())); 4067 break; 4068 case Intrinsic::memcpy: 4069 case Intrinsic::memmove: 4070 case Intrinsic::memset: { 4071 const auto *MI = cast<MemIntrinsic>(CS.getInstruction()); 4072 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4073 return Alignment == 0 || isPowerOf2_32(Alignment); 4074 }; 4075 Assert(IsValidAlignment(MI->getDestAlignment()), 4076 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4077 CS); 4078 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4079 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4080 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4081 CS); 4082 } 4083 Assert(isa<ConstantInt>(CS.getArgOperand(3)), 4084 "isvolatile argument of memory intrinsics must be a constant int", 4085 CS); 4086 break; 4087 } 4088 case Intrinsic::memcpy_element_unordered_atomic: 4089 case Intrinsic::memmove_element_unordered_atomic: 4090 case Intrinsic::memset_element_unordered_atomic: { 4091 const auto *AMI = cast<AtomicMemIntrinsic>(CS.getInstruction()); 4092 4093 ConstantInt *ElementSizeCI = 4094 dyn_cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4095 Assert(ElementSizeCI, 4096 "element size of the element-wise unordered atomic memory " 4097 "intrinsic must be a constant int", 4098 CS); 4099 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4100 Assert(ElementSizeVal.isPowerOf2(), 4101 "element size of the element-wise atomic memory intrinsic " 4102 "must be a power of 2", 4103 CS); 4104 4105 if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) { 4106 uint64_t Length = LengthCI->getZExtValue(); 4107 uint64_t ElementSize = AMI->getElementSizeInBytes(); 4108 Assert((Length % ElementSize) == 0, 4109 "constant length must be a multiple of the element size in the " 4110 "element-wise atomic memory intrinsic", 4111 CS); 4112 } 4113 4114 auto IsValidAlignment = [&](uint64_t Alignment) { 4115 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4116 }; 4117 uint64_t DstAlignment = AMI->getDestAlignment(); 4118 Assert(IsValidAlignment(DstAlignment), 4119 "incorrect alignment of the destination argument", CS); 4120 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4121 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4122 Assert(IsValidAlignment(SrcAlignment), 4123 "incorrect alignment of the source argument", CS); 4124 } 4125 break; 4126 } 4127 case Intrinsic::gcroot: 4128 case Intrinsic::gcwrite: 4129 case Intrinsic::gcread: 4130 if (ID == Intrinsic::gcroot) { 4131 AllocaInst *AI = 4132 dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts()); 4133 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS); 4134 Assert(isa<Constant>(CS.getArgOperand(1)), 4135 "llvm.gcroot parameter #2 must be a constant.", CS); 4136 if (!AI->getAllocatedType()->isPointerTy()) { 4137 Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)), 4138 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4139 "or argument #2 must be a non-null constant.", 4140 CS); 4141 } 4142 } 4143 4144 Assert(CS.getParent()->getParent()->hasGC(), 4145 "Enclosing function does not use GC.", CS); 4146 break; 4147 case Intrinsic::init_trampoline: 4148 Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()), 4149 "llvm.init_trampoline parameter #2 must resolve to a function.", 4150 CS); 4151 break; 4152 case Intrinsic::prefetch: 4153 Assert(isa<ConstantInt>(CS.getArgOperand(1)) && 4154 isa<ConstantInt>(CS.getArgOperand(2)) && 4155 cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 && 4156 cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4, 4157 "invalid arguments to llvm.prefetch", CS); 4158 break; 4159 case Intrinsic::stackprotector: 4160 Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()), 4161 "llvm.stackprotector parameter #2 must resolve to an alloca.", CS); 4162 break; 4163 case Intrinsic::lifetime_start: 4164 case Intrinsic::lifetime_end: 4165 case Intrinsic::invariant_start: 4166 Assert(isa<ConstantInt>(CS.getArgOperand(0)), 4167 "size argument of memory use markers must be a constant integer", 4168 CS); 4169 break; 4170 case Intrinsic::invariant_end: 4171 Assert(isa<ConstantInt>(CS.getArgOperand(1)), 4172 "llvm.invariant.end parameter #2 must be a constant integer", CS); 4173 break; 4174 4175 case Intrinsic::localescape: { 4176 BasicBlock *BB = CS.getParent(); 4177 Assert(BB == &BB->getParent()->front(), 4178 "llvm.localescape used outside of entry block", CS); 4179 Assert(!SawFrameEscape, 4180 "multiple calls to llvm.localescape in one function", CS); 4181 for (Value *Arg : CS.args()) { 4182 if (isa<ConstantPointerNull>(Arg)) 4183 continue; // Null values are allowed as placeholders. 4184 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4185 Assert(AI && AI->isStaticAlloca(), 4186 "llvm.localescape only accepts static allocas", CS); 4187 } 4188 FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands(); 4189 SawFrameEscape = true; 4190 break; 4191 } 4192 case Intrinsic::localrecover: { 4193 Value *FnArg = CS.getArgOperand(0)->stripPointerCasts(); 4194 Function *Fn = dyn_cast<Function>(FnArg); 4195 Assert(Fn && !Fn->isDeclaration(), 4196 "llvm.localrecover first " 4197 "argument must be function defined in this module", 4198 CS); 4199 auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2)); 4200 Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int", 4201 CS); 4202 auto &Entry = FrameEscapeInfo[Fn]; 4203 Entry.second = unsigned( 4204 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4205 break; 4206 } 4207 4208 case Intrinsic::experimental_gc_statepoint: 4209 Assert(!CS.isInlineAsm(), 4210 "gc.statepoint support for inline assembly unimplemented", CS); 4211 Assert(CS.getParent()->getParent()->hasGC(), 4212 "Enclosing function does not use GC.", CS); 4213 4214 verifyStatepoint(CS); 4215 break; 4216 case Intrinsic::experimental_gc_result: { 4217 Assert(CS.getParent()->getParent()->hasGC(), 4218 "Enclosing function does not use GC.", CS); 4219 // Are we tied to a statepoint properly? 4220 CallSite StatepointCS(CS.getArgOperand(0)); 4221 const Function *StatepointFn = 4222 StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr; 4223 Assert(StatepointFn && StatepointFn->isDeclaration() && 4224 StatepointFn->getIntrinsicID() == 4225 Intrinsic::experimental_gc_statepoint, 4226 "gc.result operand #1 must be from a statepoint", CS, 4227 CS.getArgOperand(0)); 4228 4229 // Assert that result type matches wrapped callee. 4230 const Value *Target = StatepointCS.getArgument(2); 4231 auto *PT = cast<PointerType>(Target->getType()); 4232 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4233 Assert(CS.getType() == TargetFuncType->getReturnType(), 4234 "gc.result result type does not match wrapped callee", CS); 4235 break; 4236 } 4237 case Intrinsic::experimental_gc_relocate: { 4238 Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS); 4239 4240 Assert(isa<PointerType>(CS.getType()->getScalarType()), 4241 "gc.relocate must return a pointer or a vector of pointers", CS); 4242 4243 // Check that this relocate is correctly tied to the statepoint 4244 4245 // This is case for relocate on the unwinding path of an invoke statepoint 4246 if (LandingPadInst *LandingPad = 4247 dyn_cast<LandingPadInst>(CS.getArgOperand(0))) { 4248 4249 const BasicBlock *InvokeBB = 4250 LandingPad->getParent()->getUniquePredecessor(); 4251 4252 // Landingpad relocates should have only one predecessor with invoke 4253 // statepoint terminator 4254 Assert(InvokeBB, "safepoints should have unique landingpads", 4255 LandingPad->getParent()); 4256 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4257 InvokeBB); 4258 Assert(isStatepoint(InvokeBB->getTerminator()), 4259 "gc relocate should be linked to a statepoint", InvokeBB); 4260 } 4261 else { 4262 // In all other cases relocate should be tied to the statepoint directly. 4263 // This covers relocates on a normal return path of invoke statepoint and 4264 // relocates of a call statepoint. 4265 auto Token = CS.getArgOperand(0); 4266 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)), 4267 "gc relocate is incorrectly tied to the statepoint", CS, Token); 4268 } 4269 4270 // Verify rest of the relocate arguments. 4271 4272 ImmutableCallSite StatepointCS( 4273 cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint()); 4274 4275 // Both the base and derived must be piped through the safepoint. 4276 Value* Base = CS.getArgOperand(1); 4277 Assert(isa<ConstantInt>(Base), 4278 "gc.relocate operand #2 must be integer offset", CS); 4279 4280 Value* Derived = CS.getArgOperand(2); 4281 Assert(isa<ConstantInt>(Derived), 4282 "gc.relocate operand #3 must be integer offset", CS); 4283 4284 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4285 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4286 // Check the bounds 4287 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(), 4288 "gc.relocate: statepoint base index out of bounds", CS); 4289 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(), 4290 "gc.relocate: statepoint derived index out of bounds", CS); 4291 4292 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' 4293 // section of the statepoint's argument. 4294 Assert(StatepointCS.arg_size() > 0, 4295 "gc.statepoint: insufficient arguments"); 4296 Assert(isa<ConstantInt>(StatepointCS.getArgument(3)), 4297 "gc.statement: number of call arguments must be constant integer"); 4298 const unsigned NumCallArgs = 4299 cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue(); 4300 Assert(StatepointCS.arg_size() > NumCallArgs + 5, 4301 "gc.statepoint: mismatch in number of call arguments"); 4302 Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)), 4303 "gc.statepoint: number of transition arguments must be " 4304 "a constant integer"); 4305 const int NumTransitionArgs = 4306 cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)) 4307 ->getZExtValue(); 4308 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; 4309 Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)), 4310 "gc.statepoint: number of deoptimization arguments must be " 4311 "a constant integer"); 4312 const int NumDeoptArgs = 4313 cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)) 4314 ->getZExtValue(); 4315 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; 4316 const int GCParamArgsEnd = StatepointCS.arg_size(); 4317 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, 4318 "gc.relocate: statepoint base index doesn't fall within the " 4319 "'gc parameters' section of the statepoint call", 4320 CS); 4321 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, 4322 "gc.relocate: statepoint derived index doesn't fall within the " 4323 "'gc parameters' section of the statepoint call", 4324 CS); 4325 4326 // Relocated value must be either a pointer type or vector-of-pointer type, 4327 // but gc_relocate does not need to return the same pointer type as the 4328 // relocated pointer. It can be casted to the correct type later if it's 4329 // desired. However, they must have the same address space and 'vectorness' 4330 GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction()); 4331 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 4332 "gc.relocate: relocated value must be a gc pointer", CS); 4333 4334 auto ResultType = CS.getType(); 4335 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4336 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4337 "gc.relocate: vector relocates to vector and pointer to pointer", 4338 CS); 4339 Assert( 4340 ResultType->getPointerAddressSpace() == 4341 DerivedType->getPointerAddressSpace(), 4342 "gc.relocate: relocating a pointer shouldn't change its address space", 4343 CS); 4344 break; 4345 } 4346 case Intrinsic::eh_exceptioncode: 4347 case Intrinsic::eh_exceptionpointer: { 4348 Assert(isa<CatchPadInst>(CS.getArgOperand(0)), 4349 "eh.exceptionpointer argument must be a catchpad", CS); 4350 break; 4351 } 4352 case Intrinsic::masked_load: { 4353 Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS); 4354 4355 Value *Ptr = CS.getArgOperand(0); 4356 //Value *Alignment = CS.getArgOperand(1); 4357 Value *Mask = CS.getArgOperand(2); 4358 Value *PassThru = CS.getArgOperand(3); 4359 Assert(Mask->getType()->isVectorTy(), 4360 "masked_load: mask must be vector", CS); 4361 4362 // DataTy is the overloaded type 4363 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4364 Assert(DataTy == CS.getType(), 4365 "masked_load: return must match pointer type", CS); 4366 Assert(PassThru->getType() == DataTy, 4367 "masked_load: pass through and data type must match", CS); 4368 Assert(Mask->getType()->getVectorNumElements() == 4369 DataTy->getVectorNumElements(), 4370 "masked_load: vector mask must be same length as data", CS); 4371 break; 4372 } 4373 case Intrinsic::masked_store: { 4374 Value *Val = CS.getArgOperand(0); 4375 Value *Ptr = CS.getArgOperand(1); 4376 //Value *Alignment = CS.getArgOperand(2); 4377 Value *Mask = CS.getArgOperand(3); 4378 Assert(Mask->getType()->isVectorTy(), 4379 "masked_store: mask must be vector", CS); 4380 4381 // DataTy is the overloaded type 4382 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4383 Assert(DataTy == Val->getType(), 4384 "masked_store: storee must match pointer type", CS); 4385 Assert(Mask->getType()->getVectorNumElements() == 4386 DataTy->getVectorNumElements(), 4387 "masked_store: vector mask must be same length as data", CS); 4388 break; 4389 } 4390 4391 case Intrinsic::experimental_guard: { 4392 Assert(CS.isCall(), "experimental_guard cannot be invoked", CS); 4393 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4394 "experimental_guard must have exactly one " 4395 "\"deopt\" operand bundle"); 4396 break; 4397 } 4398 4399 case Intrinsic::experimental_deoptimize: { 4400 Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS); 4401 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4402 "experimental_deoptimize must have exactly one " 4403 "\"deopt\" operand bundle"); 4404 Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(), 4405 "experimental_deoptimize return type must match caller return type"); 4406 4407 if (CS.isCall()) { 4408 auto *DeoptCI = CS.getInstruction(); 4409 auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode()); 4410 Assert(RI, 4411 "calls to experimental_deoptimize must be followed by a return"); 4412 4413 if (!CS.getType()->isVoidTy() && RI) 4414 Assert(RI->getReturnValue() == DeoptCI, 4415 "calls to experimental_deoptimize must be followed by a return " 4416 "of the value computed by experimental_deoptimize"); 4417 } 4418 4419 break; 4420 } 4421 }; 4422 } 4423 4424 /// \brief Carefully grab the subprogram from a local scope. 4425 /// 4426 /// This carefully grabs the subprogram from a local scope, avoiding the 4427 /// built-in assertions that would typically fire. 4428 static DISubprogram *getSubprogram(Metadata *LocalScope) { 4429 if (!LocalScope) 4430 return nullptr; 4431 4432 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 4433 return SP; 4434 4435 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 4436 return getSubprogram(LB->getRawScope()); 4437 4438 // Just return null; broken scope chains are checked elsewhere. 4439 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 4440 return nullptr; 4441 } 4442 4443 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 4444 unsigned NumOperands = FPI.getNumArgOperands(); 4445 Assert(((NumOperands == 5 && FPI.isTernaryOp()) || 4446 (NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands == 4)), 4447 "invalid arguments for constrained FP intrinsic", &FPI); 4448 Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-1)), 4449 "invalid exception behavior argument", &FPI); 4450 Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-2)), 4451 "invalid rounding mode argument", &FPI); 4452 Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid, 4453 "invalid rounding mode argument", &FPI); 4454 Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid, 4455 "invalid exception behavior argument", &FPI); 4456 } 4457 4458 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII) { 4459 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); 4460 AssertDI(isa<ValueAsMetadata>(MD) || 4461 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 4462 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 4463 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 4464 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 4465 DII.getRawVariable()); 4466 AssertDI(isa<DIExpression>(DII.getRawExpression()), 4467 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 4468 DII.getRawExpression()); 4469 4470 // Ignore broken !dbg attachments; they're checked elsewhere. 4471 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 4472 if (!isa<DILocation>(N)) 4473 return; 4474 4475 BasicBlock *BB = DII.getParent(); 4476 Function *F = BB ? BB->getParent() : nullptr; 4477 4478 // The scopes for variables and !dbg attachments must agree. 4479 DILocalVariable *Var = DII.getVariable(); 4480 DILocation *Loc = DII.getDebugLoc(); 4481 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4482 &DII, BB, F); 4483 4484 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 4485 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4486 if (!VarSP || !LocSP) 4487 return; // Broken scope chains are checked elsewhere. 4488 4489 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4490 " variable and !dbg attachment", 4491 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 4492 Loc->getScope()->getSubprogram()); 4493 4494 verifyFnArgs(DII); 4495 } 4496 4497 void Verifier::verifyFragmentExpression(const DbgInfoIntrinsic &I) { 4498 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 4499 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 4500 4501 // We don't know whether this intrinsic verified correctly. 4502 if (!V || !E || !E->isValid()) 4503 return; 4504 4505 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 4506 auto Fragment = E->getFragmentInfo(); 4507 if (!Fragment) 4508 return; 4509 4510 // The frontend helps out GDB by emitting the members of local anonymous 4511 // unions as artificial local variables with shared storage. When SROA splits 4512 // the storage for artificial local variables that are smaller than the entire 4513 // union, the overhang piece will be outside of the allotted space for the 4514 // variable and this check fails. 4515 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 4516 if (V->isArtificial()) 4517 return; 4518 4519 verifyFragmentExpression(*V, *Fragment, &I); 4520 } 4521 4522 template <typename ValueOrMetadata> 4523 void Verifier::verifyFragmentExpression(const DIVariable &V, 4524 DIExpression::FragmentInfo Fragment, 4525 ValueOrMetadata *Desc) { 4526 // If there's no size, the type is broken, but that should be checked 4527 // elsewhere. 4528 auto VarSize = V.getSizeInBits(); 4529 if (!VarSize) 4530 return; 4531 4532 unsigned FragSize = Fragment.SizeInBits; 4533 unsigned FragOffset = Fragment.OffsetInBits; 4534 AssertDI(FragSize + FragOffset <= *VarSize, 4535 "fragment is larger than or outside of variable", Desc, &V); 4536 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 4537 } 4538 4539 void Verifier::verifyFnArgs(const DbgInfoIntrinsic &I) { 4540 // This function does not take the scope of noninlined function arguments into 4541 // account. Don't run it if current function is nodebug, because it may 4542 // contain inlined debug intrinsics. 4543 if (!HasDebugInfo) 4544 return; 4545 4546 // For performance reasons only check non-inlined ones. 4547 if (I.getDebugLoc()->getInlinedAt()) 4548 return; 4549 4550 DILocalVariable *Var = I.getVariable(); 4551 AssertDI(Var, "dbg intrinsic without variable"); 4552 4553 unsigned ArgNo = Var->getArg(); 4554 if (!ArgNo) 4555 return; 4556 4557 // Verify there are no duplicate function argument debug info entries. 4558 // These will cause hard-to-debug assertions in the DWARF backend. 4559 if (DebugFnArgs.size() < ArgNo) 4560 DebugFnArgs.resize(ArgNo, nullptr); 4561 4562 auto *Prev = DebugFnArgs[ArgNo - 1]; 4563 DebugFnArgs[ArgNo - 1] = Var; 4564 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 4565 Prev, Var); 4566 } 4567 4568 void Verifier::verifyCompileUnits() { 4569 // When more than one Module is imported into the same context, such as during 4570 // an LTO build before linking the modules, ODR type uniquing may cause types 4571 // to point to a different CU. This check does not make sense in this case. 4572 if (M.getContext().isODRUniquingDebugTypes()) 4573 return; 4574 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 4575 SmallPtrSet<const Metadata *, 2> Listed; 4576 if (CUs) 4577 Listed.insert(CUs->op_begin(), CUs->op_end()); 4578 for (auto *CU : CUVisited) 4579 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 4580 CUVisited.clear(); 4581 } 4582 4583 void Verifier::verifyDeoptimizeCallingConvs() { 4584 if (DeoptimizeDeclarations.empty()) 4585 return; 4586 4587 const Function *First = DeoptimizeDeclarations[0]; 4588 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 4589 Assert(First->getCallingConv() == F->getCallingConv(), 4590 "All llvm.experimental.deoptimize declarations must have the same " 4591 "calling convention", 4592 First, F); 4593 } 4594 } 4595 4596 //===----------------------------------------------------------------------===// 4597 // Implement the public interfaces to this file... 4598 //===----------------------------------------------------------------------===// 4599 4600 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 4601 Function &F = const_cast<Function &>(f); 4602 4603 // Don't use a raw_null_ostream. Printing IR is expensive. 4604 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 4605 4606 // Note that this function's return value is inverted from what you would 4607 // expect of a function called "verify". 4608 return !V.verify(F); 4609 } 4610 4611 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 4612 bool *BrokenDebugInfo) { 4613 // Don't use a raw_null_ostream. Printing IR is expensive. 4614 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 4615 4616 bool Broken = false; 4617 for (const Function &F : M) 4618 Broken |= !V.verify(F); 4619 4620 Broken |= !V.verify(); 4621 if (BrokenDebugInfo) 4622 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 4623 // Note that this function's return value is inverted from what you would 4624 // expect of a function called "verify". 4625 return Broken; 4626 } 4627 4628 namespace { 4629 4630 struct VerifierLegacyPass : public FunctionPass { 4631 static char ID; 4632 4633 std::unique_ptr<Verifier> V; 4634 bool FatalErrors = true; 4635 4636 VerifierLegacyPass() : FunctionPass(ID) { 4637 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 4638 } 4639 explicit VerifierLegacyPass(bool FatalErrors) 4640 : FunctionPass(ID), 4641 FatalErrors(FatalErrors) { 4642 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 4643 } 4644 4645 bool doInitialization(Module &M) override { 4646 V = llvm::make_unique<Verifier>( 4647 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 4648 return false; 4649 } 4650 4651 bool runOnFunction(Function &F) override { 4652 if (!V->verify(F) && FatalErrors) 4653 report_fatal_error("Broken function found, compilation aborted!"); 4654 4655 return false; 4656 } 4657 4658 bool doFinalization(Module &M) override { 4659 bool HasErrors = false; 4660 for (Function &F : M) 4661 if (F.isDeclaration()) 4662 HasErrors |= !V->verify(F); 4663 4664 HasErrors |= !V->verify(); 4665 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 4666 report_fatal_error("Broken module found, compilation aborted!"); 4667 return false; 4668 } 4669 4670 void getAnalysisUsage(AnalysisUsage &AU) const override { 4671 AU.setPreservesAll(); 4672 } 4673 }; 4674 4675 } // end anonymous namespace 4676 4677 /// Helper to issue failure from the TBAA verification 4678 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 4679 if (Diagnostic) 4680 return Diagnostic->CheckFailed(Args...); 4681 } 4682 4683 #define AssertTBAA(C, ...) \ 4684 do { \ 4685 if (!(C)) { \ 4686 CheckFailed(__VA_ARGS__); \ 4687 return false; \ 4688 } \ 4689 } while (false) 4690 4691 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 4692 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 4693 /// struct-type node describing an aggregate data structure (like a struct). 4694 TBAAVerifier::TBAABaseNodeSummary 4695 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 4696 bool IsNewFormat) { 4697 if (BaseNode->getNumOperands() < 2) { 4698 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 4699 return {true, ~0u}; 4700 } 4701 4702 auto Itr = TBAABaseNodes.find(BaseNode); 4703 if (Itr != TBAABaseNodes.end()) 4704 return Itr->second; 4705 4706 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 4707 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 4708 (void)InsertResult; 4709 assert(InsertResult.second && "We just checked!"); 4710 return Result; 4711 } 4712 4713 TBAAVerifier::TBAABaseNodeSummary 4714 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 4715 bool IsNewFormat) { 4716 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 4717 4718 if (BaseNode->getNumOperands() == 2) { 4719 // Scalar nodes can only be accessed at offset 0. 4720 return isValidScalarTBAANode(BaseNode) 4721 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 4722 : InvalidNode; 4723 } 4724 4725 if (IsNewFormat) { 4726 if (BaseNode->getNumOperands() % 3 != 0) { 4727 CheckFailed("Access tag nodes must have the number of operands that is a " 4728 "multiple of 3!", BaseNode); 4729 return InvalidNode; 4730 } 4731 } else { 4732 if (BaseNode->getNumOperands() % 2 != 1) { 4733 CheckFailed("Struct tag nodes must have an odd number of operands!", 4734 BaseNode); 4735 return InvalidNode; 4736 } 4737 } 4738 4739 // Check the type size field. 4740 if (IsNewFormat) { 4741 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 4742 BaseNode->getOperand(1)); 4743 if (!TypeSizeNode) { 4744 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 4745 return InvalidNode; 4746 } 4747 } 4748 4749 // Check the type name field. In the new format it can be anything. 4750 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 4751 CheckFailed("Struct tag nodes have a string as their first operand", 4752 BaseNode); 4753 return InvalidNode; 4754 } 4755 4756 bool Failed = false; 4757 4758 Optional<APInt> PrevOffset; 4759 unsigned BitWidth = ~0u; 4760 4761 // We've already checked that BaseNode is not a degenerate root node with one 4762 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 4763 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 4764 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 4765 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 4766 Idx += NumOpsPerField) { 4767 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 4768 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 4769 if (!isa<MDNode>(FieldTy)) { 4770 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 4771 Failed = true; 4772 continue; 4773 } 4774 4775 auto *OffsetEntryCI = 4776 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 4777 if (!OffsetEntryCI) { 4778 CheckFailed("Offset entries must be constants!", &I, BaseNode); 4779 Failed = true; 4780 continue; 4781 } 4782 4783 if (BitWidth == ~0u) 4784 BitWidth = OffsetEntryCI->getBitWidth(); 4785 4786 if (OffsetEntryCI->getBitWidth() != BitWidth) { 4787 CheckFailed( 4788 "Bitwidth between the offsets and struct type entries must match", &I, 4789 BaseNode); 4790 Failed = true; 4791 continue; 4792 } 4793 4794 // NB! As far as I can tell, we generate a non-strictly increasing offset 4795 // sequence only from structs that have zero size bit fields. When 4796 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 4797 // pick the field lexically the latest in struct type metadata node. This 4798 // mirrors the actual behavior of the alias analysis implementation. 4799 bool IsAscending = 4800 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 4801 4802 if (!IsAscending) { 4803 CheckFailed("Offsets must be increasing!", &I, BaseNode); 4804 Failed = true; 4805 } 4806 4807 PrevOffset = OffsetEntryCI->getValue(); 4808 4809 if (IsNewFormat) { 4810 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 4811 BaseNode->getOperand(Idx + 2)); 4812 if (!MemberSizeNode) { 4813 CheckFailed("Member size entries must be constants!", &I, BaseNode); 4814 Failed = true; 4815 continue; 4816 } 4817 } 4818 } 4819 4820 return Failed ? InvalidNode 4821 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 4822 } 4823 4824 static bool IsRootTBAANode(const MDNode *MD) { 4825 return MD->getNumOperands() < 2; 4826 } 4827 4828 static bool IsScalarTBAANodeImpl(const MDNode *MD, 4829 SmallPtrSetImpl<const MDNode *> &Visited) { 4830 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 4831 return false; 4832 4833 if (!isa<MDString>(MD->getOperand(0))) 4834 return false; 4835 4836 if (MD->getNumOperands() == 3) { 4837 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 4838 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 4839 return false; 4840 } 4841 4842 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 4843 return Parent && Visited.insert(Parent).second && 4844 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 4845 } 4846 4847 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 4848 auto ResultIt = TBAAScalarNodes.find(MD); 4849 if (ResultIt != TBAAScalarNodes.end()) 4850 return ResultIt->second; 4851 4852 SmallPtrSet<const MDNode *, 4> Visited; 4853 bool Result = IsScalarTBAANodeImpl(MD, Visited); 4854 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 4855 (void)InsertResult; 4856 assert(InsertResult.second && "Just checked!"); 4857 4858 return Result; 4859 } 4860 4861 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 4862 /// Offset in place to be the offset within the field node returned. 4863 /// 4864 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 4865 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 4866 const MDNode *BaseNode, 4867 APInt &Offset, 4868 bool IsNewFormat) { 4869 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 4870 4871 // Scalar nodes have only one possible "field" -- their parent in the access 4872 // hierarchy. Offset must be zero at this point, but our caller is supposed 4873 // to Assert that. 4874 if (BaseNode->getNumOperands() == 2) 4875 return cast<MDNode>(BaseNode->getOperand(1)); 4876 4877 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 4878 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 4879 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 4880 Idx += NumOpsPerField) { 4881 auto *OffsetEntryCI = 4882 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 4883 if (OffsetEntryCI->getValue().ugt(Offset)) { 4884 if (Idx == FirstFieldOpNo) { 4885 CheckFailed("Could not find TBAA parent in struct type node", &I, 4886 BaseNode, &Offset); 4887 return nullptr; 4888 } 4889 4890 unsigned PrevIdx = Idx - NumOpsPerField; 4891 auto *PrevOffsetEntryCI = 4892 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 4893 Offset -= PrevOffsetEntryCI->getValue(); 4894 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 4895 } 4896 } 4897 4898 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 4899 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 4900 BaseNode->getOperand(LastIdx + 1)); 4901 Offset -= LastOffsetEntryCI->getValue(); 4902 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 4903 } 4904 4905 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 4906 if (!Type || Type->getNumOperands() < 3) 4907 return false; 4908 4909 // In the new format type nodes shall have a reference to the parent type as 4910 // its first operand. 4911 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 4912 if (!Parent) 4913 return false; 4914 4915 return true; 4916 } 4917 4918 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 4919 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 4920 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 4921 isa<AtomicCmpXchgInst>(I), 4922 "This instruction shall not have a TBAA access tag!", &I); 4923 4924 bool IsStructPathTBAA = 4925 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 4926 4927 AssertTBAA( 4928 IsStructPathTBAA, 4929 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 4930 4931 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 4932 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 4933 4934 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 4935 4936 if (IsNewFormat) { 4937 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 4938 "Access tag metadata must have either 4 or 5 operands", &I, MD); 4939 } else { 4940 AssertTBAA(MD->getNumOperands() < 5, 4941 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 4942 } 4943 4944 // Check the access size field. 4945 if (IsNewFormat) { 4946 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 4947 MD->getOperand(3)); 4948 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 4949 } 4950 4951 // Check the immutability flag. 4952 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 4953 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 4954 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 4955 MD->getOperand(ImmutabilityFlagOpNo)); 4956 AssertTBAA(IsImmutableCI, 4957 "Immutability tag on struct tag metadata must be a constant", 4958 &I, MD); 4959 AssertTBAA( 4960 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 4961 "Immutability part of the struct tag metadata must be either 0 or 1", 4962 &I, MD); 4963 } 4964 4965 AssertTBAA(BaseNode && AccessType, 4966 "Malformed struct tag metadata: base and access-type " 4967 "should be non-null and point to Metadata nodes", 4968 &I, MD, BaseNode, AccessType); 4969 4970 if (!IsNewFormat) { 4971 AssertTBAA(isValidScalarTBAANode(AccessType), 4972 "Access type node must be a valid scalar type", &I, MD, 4973 AccessType); 4974 } 4975 4976 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 4977 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 4978 4979 APInt Offset = OffsetCI->getValue(); 4980 bool SeenAccessTypeInPath = false; 4981 4982 SmallPtrSet<MDNode *, 4> StructPath; 4983 4984 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 4985 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 4986 IsNewFormat)) { 4987 if (!StructPath.insert(BaseNode).second) { 4988 CheckFailed("Cycle detected in struct path", &I, MD); 4989 return false; 4990 } 4991 4992 bool Invalid; 4993 unsigned BaseNodeBitWidth; 4994 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 4995 IsNewFormat); 4996 4997 // If the base node is invalid in itself, then we've already printed all the 4998 // errors we wanted to print. 4999 if (Invalid) 5000 return false; 5001 5002 SeenAccessTypeInPath |= BaseNode == AccessType; 5003 5004 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 5005 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 5006 &I, MD, &Offset); 5007 5008 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 5009 (BaseNodeBitWidth == 0 && Offset == 0) || 5010 (IsNewFormat && BaseNodeBitWidth == ~0u), 5011 "Access bit-width not the same as description bit-width", &I, MD, 5012 BaseNodeBitWidth, Offset.getBitWidth()); 5013 5014 if (IsNewFormat && SeenAccessTypeInPath) 5015 break; 5016 } 5017 5018 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 5019 &I, MD); 5020 return true; 5021 } 5022 5023 char VerifierLegacyPass::ID = 0; 5024 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 5025 5026 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 5027 return new VerifierLegacyPass(FatalErrors); 5028 } 5029 5030 AnalysisKey VerifierAnalysis::Key; 5031 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 5032 ModuleAnalysisManager &) { 5033 Result Res; 5034 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 5035 return Res; 5036 } 5037 5038 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 5039 FunctionAnalysisManager &) { 5040 return { llvm::verifyFunction(F, &dbgs()), false }; 5041 } 5042 5043 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 5044 auto Res = AM.getResult<VerifierAnalysis>(M); 5045 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 5046 report_fatal_error("Broken module found, compilation aborted!"); 5047 5048 return PreservedAnalyses::all(); 5049 } 5050 5051 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 5052 auto res = AM.getResult<VerifierAnalysis>(F); 5053 if (res.IRBroken && FatalErrors) 5054 report_fatal_error("Broken function found, compilation aborted!"); 5055 5056 return PreservedAnalyses::all(); 5057 } 5058