1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
12 //
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
15 //
16 //  * Both of a binary operator's parameters are of the same type
17 //  * Verify that the indices of mem access instructions match other operands
18 //  * Verify that arithmetic and other things are only performed on first-class
19 //    types.  Verify that shifts & logicals only happen on integrals f.e.
20 //  * All of the constants in a switch statement are of the correct type
21 //  * The code is in valid SSA form
22 //  * It should be illegal to put a label into any other type (like a structure)
23 //    or to return one. [except constant arrays!]
24 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 //  * PHI nodes must have an entry for each predecessor, with no extras.
26 //  * PHI nodes must be the first thing in a basic block, all grouped together
27 //  * PHI nodes must have at least one entry
28 //  * All basic blocks should only end with terminator insts, not contain them
29 //  * The entry node to a function must not have predecessors
30 //  * All Instructions must be embedded into a basic block
31 //  * Functions cannot take a void-typed parameter
32 //  * Verify that a function's argument list agrees with it's declared type.
33 //  * It is illegal to specify a name for a void value.
34 //  * It is illegal to have a internal global value with no initializer
35 //  * It is illegal to have a ret instruction that returns a value that does not
36 //    agree with the function return value type.
37 //  * Function call argument types match the function prototype
38 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
39 //    only by the unwind edge of an invoke instruction.
40 //  * A landingpad instruction must be the first non-PHI instruction in the
41 //    block.
42 //  * Landingpad instructions must be in a function with a personality function.
43 //  * All other things that are tested by asserts spread about the code...
44 //
45 //===----------------------------------------------------------------------===//
46 
47 #include "llvm/IR/Verifier.h"
48 #include "llvm/ADT/APFloat.h"
49 #include "llvm/ADT/APInt.h"
50 #include "llvm/ADT/ArrayRef.h"
51 #include "llvm/ADT/DenseMap.h"
52 #include "llvm/ADT/MapVector.h"
53 #include "llvm/ADT/Optional.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/SmallPtrSet.h"
56 #include "llvm/ADT/SmallSet.h"
57 #include "llvm/ADT/SmallVector.h"
58 #include "llvm/ADT/StringExtras.h"
59 #include "llvm/ADT/StringMap.h"
60 #include "llvm/ADT/StringRef.h"
61 #include "llvm/ADT/Twine.h"
62 #include "llvm/ADT/ilist.h"
63 #include "llvm/BinaryFormat/Dwarf.h"
64 #include "llvm/IR/Argument.h"
65 #include "llvm/IR/Attributes.h"
66 #include "llvm/IR/BasicBlock.h"
67 #include "llvm/IR/CFG.h"
68 #include "llvm/IR/CallSite.h"
69 #include "llvm/IR/CallingConv.h"
70 #include "llvm/IR/Comdat.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfo.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Dominators.h"
80 #include "llvm/IR/Function.h"
81 #include "llvm/IR/GlobalAlias.h"
82 #include "llvm/IR/GlobalValue.h"
83 #include "llvm/IR/GlobalVariable.h"
84 #include "llvm/IR/InlineAsm.h"
85 #include "llvm/IR/InstVisitor.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/Metadata.h"
93 #include "llvm/IR/Module.h"
94 #include "llvm/IR/ModuleSlotTracker.h"
95 #include "llvm/IR/PassManager.h"
96 #include "llvm/IR/Statepoint.h"
97 #include "llvm/IR/Type.h"
98 #include "llvm/IR/Use.h"
99 #include "llvm/IR/User.h"
100 #include "llvm/IR/Value.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Debug.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include <algorithm>
110 #include <cassert>
111 #include <cstdint>
112 #include <memory>
113 #include <string>
114 #include <utility>
115 
116 using namespace llvm;
117 
118 namespace llvm {
119 
120 struct VerifierSupport {
121   raw_ostream *OS;
122   const Module &M;
123   ModuleSlotTracker MST;
124   const DataLayout &DL;
125   LLVMContext &Context;
126 
127   /// Track the brokenness of the module while recursively visiting.
128   bool Broken = false;
129   /// Broken debug info can be "recovered" from by stripping the debug info.
130   bool BrokenDebugInfo = false;
131   /// Whether to treat broken debug info as an error.
132   bool TreatBrokenDebugInfoAsError = true;
133 
134   explicit VerifierSupport(raw_ostream *OS, const Module &M)
135       : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
136 
137 private:
138   void Write(const Module *M) {
139     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
140   }
141 
142   void Write(const Value *V) {
143     if (!V)
144       return;
145     if (isa<Instruction>(V)) {
146       V->print(*OS, MST);
147       *OS << '\n';
148     } else {
149       V->printAsOperand(*OS, true, MST);
150       *OS << '\n';
151     }
152   }
153 
154   void Write(ImmutableCallSite CS) {
155     Write(CS.getInstruction());
156   }
157 
158   void Write(const Metadata *MD) {
159     if (!MD)
160       return;
161     MD->print(*OS, MST, &M);
162     *OS << '\n';
163   }
164 
165   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
166     Write(MD.get());
167   }
168 
169   void Write(const NamedMDNode *NMD) {
170     if (!NMD)
171       return;
172     NMD->print(*OS, MST);
173     *OS << '\n';
174   }
175 
176   void Write(Type *T) {
177     if (!T)
178       return;
179     *OS << ' ' << *T;
180   }
181 
182   void Write(const Comdat *C) {
183     if (!C)
184       return;
185     *OS << *C;
186   }
187 
188   void Write(const APInt *AI) {
189     if (!AI)
190       return;
191     *OS << *AI << '\n';
192   }
193 
194   void Write(const unsigned i) { *OS << i << '\n'; }
195 
196   template <typename T> void Write(ArrayRef<T> Vs) {
197     for (const T &V : Vs)
198       Write(V);
199   }
200 
201   template <typename T1, typename... Ts>
202   void WriteTs(const T1 &V1, const Ts &... Vs) {
203     Write(V1);
204     WriteTs(Vs...);
205   }
206 
207   template <typename... Ts> void WriteTs() {}
208 
209 public:
210   /// \brief A check failed, so printout out the condition and the message.
211   ///
212   /// This provides a nice place to put a breakpoint if you want to see why
213   /// something is not correct.
214   void CheckFailed(const Twine &Message) {
215     if (OS)
216       *OS << Message << '\n';
217     Broken = true;
218   }
219 
220   /// \brief A check failed (with values to print).
221   ///
222   /// This calls the Message-only version so that the above is easier to set a
223   /// breakpoint on.
224   template <typename T1, typename... Ts>
225   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
226     CheckFailed(Message);
227     if (OS)
228       WriteTs(V1, Vs...);
229   }
230 
231   /// A debug info check failed.
232   void DebugInfoCheckFailed(const Twine &Message) {
233     if (OS)
234       *OS << Message << '\n';
235     Broken |= TreatBrokenDebugInfoAsError;
236     BrokenDebugInfo = true;
237   }
238 
239   /// A debug info check failed (with values to print).
240   template <typename T1, typename... Ts>
241   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
242                             const Ts &... Vs) {
243     DebugInfoCheckFailed(Message);
244     if (OS)
245       WriteTs(V1, Vs...);
246   }
247 };
248 
249 } // namespace llvm
250 
251 namespace {
252 
253 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
254   friend class InstVisitor<Verifier>;
255 
256   DominatorTree DT;
257 
258   /// \brief When verifying a basic block, keep track of all of the
259   /// instructions we have seen so far.
260   ///
261   /// This allows us to do efficient dominance checks for the case when an
262   /// instruction has an operand that is an instruction in the same block.
263   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
264 
265   /// \brief Keep track of the metadata nodes that have been checked already.
266   SmallPtrSet<const Metadata *, 32> MDNodes;
267 
268   /// Keep track which DISubprogram is attached to which function.
269   DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
270 
271   /// Track all DICompileUnits visited.
272   SmallPtrSet<const Metadata *, 2> CUVisited;
273 
274   /// \brief The result type for a landingpad.
275   Type *LandingPadResultTy;
276 
277   /// \brief Whether we've seen a call to @llvm.localescape in this function
278   /// already.
279   bool SawFrameEscape;
280 
281   /// Whether the current function has a DISubprogram attached to it.
282   bool HasDebugInfo = false;
283 
284   /// Stores the count of how many objects were passed to llvm.localescape for a
285   /// given function and the largest index passed to llvm.localrecover.
286   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
287 
288   // Maps catchswitches and cleanuppads that unwind to siblings to the
289   // terminators that indicate the unwind, used to detect cycles therein.
290   MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo;
291 
292   /// Cache of constants visited in search of ConstantExprs.
293   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
294 
295   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
296   SmallVector<const Function *, 4> DeoptimizeDeclarations;
297 
298   // Verify that this GlobalValue is only used in this module.
299   // This map is used to avoid visiting uses twice. We can arrive at a user
300   // twice, if they have multiple operands. In particular for very large
301   // constant expressions, we can arrive at a particular user many times.
302   SmallPtrSet<const Value *, 32> GlobalValueVisited;
303 
304   // Keeps track of duplicate function argument debug info.
305   SmallVector<const DILocalVariable *, 16> DebugFnArgs;
306 
307   TBAAVerifier TBAAVerifyHelper;
308 
309   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
310 
311 public:
312   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
313                     const Module &M)
314       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
315         SawFrameEscape(false), TBAAVerifyHelper(this) {
316     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
317   }
318 
319   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
320 
321   bool verify(const Function &F) {
322     assert(F.getParent() == &M &&
323            "An instance of this class only works with a specific module!");
324 
325     // First ensure the function is well-enough formed to compute dominance
326     // information, and directly compute a dominance tree. We don't rely on the
327     // pass manager to provide this as it isolates us from a potentially
328     // out-of-date dominator tree and makes it significantly more complex to run
329     // this code outside of a pass manager.
330     // FIXME: It's really gross that we have to cast away constness here.
331     if (!F.empty())
332       DT.recalculate(const_cast<Function &>(F));
333 
334     for (const BasicBlock &BB : F) {
335       if (!BB.empty() && BB.back().isTerminator())
336         continue;
337 
338       if (OS) {
339         *OS << "Basic Block in function '" << F.getName()
340             << "' does not have terminator!\n";
341         BB.printAsOperand(*OS, true, MST);
342         *OS << "\n";
343       }
344       return false;
345     }
346 
347     Broken = false;
348     // FIXME: We strip const here because the inst visitor strips const.
349     visit(const_cast<Function &>(F));
350     verifySiblingFuncletUnwinds();
351     InstsInThisBlock.clear();
352     DebugFnArgs.clear();
353     LandingPadResultTy = nullptr;
354     SawFrameEscape = false;
355     SiblingFuncletInfo.clear();
356 
357     return !Broken;
358   }
359 
360   /// Verify the module that this instance of \c Verifier was initialized with.
361   bool verify() {
362     Broken = false;
363 
364     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
365     for (const Function &F : M)
366       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
367         DeoptimizeDeclarations.push_back(&F);
368 
369     // Now that we've visited every function, verify that we never asked to
370     // recover a frame index that wasn't escaped.
371     verifyFrameRecoverIndices();
372     for (const GlobalVariable &GV : M.globals())
373       visitGlobalVariable(GV);
374 
375     for (const GlobalAlias &GA : M.aliases())
376       visitGlobalAlias(GA);
377 
378     for (const NamedMDNode &NMD : M.named_metadata())
379       visitNamedMDNode(NMD);
380 
381     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
382       visitComdat(SMEC.getValue());
383 
384     visitModuleFlags(M);
385     visitModuleIdents(M);
386 
387     verifyCompileUnits();
388 
389     verifyDeoptimizeCallingConvs();
390     DISubprogramAttachments.clear();
391     return !Broken;
392   }
393 
394 private:
395   // Verification methods...
396   void visitGlobalValue(const GlobalValue &GV);
397   void visitGlobalVariable(const GlobalVariable &GV);
398   void visitGlobalAlias(const GlobalAlias &GA);
399   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
400   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
401                            const GlobalAlias &A, const Constant &C);
402   void visitNamedMDNode(const NamedMDNode &NMD);
403   void visitMDNode(const MDNode &MD);
404   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
405   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
406   void visitComdat(const Comdat &C);
407   void visitModuleIdents(const Module &M);
408   void visitModuleFlags(const Module &M);
409   void visitModuleFlag(const MDNode *Op,
410                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
411                        SmallVectorImpl<const MDNode *> &Requirements);
412   void visitFunction(const Function &F);
413   void visitBasicBlock(BasicBlock &BB);
414   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
415   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
416 
417   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
418 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
419 #include "llvm/IR/Metadata.def"
420   void visitDIScope(const DIScope &N);
421   void visitDIVariable(const DIVariable &N);
422   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
423   void visitDITemplateParameter(const DITemplateParameter &N);
424 
425   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
426 
427   // InstVisitor overrides...
428   using InstVisitor<Verifier>::visit;
429   void visit(Instruction &I);
430 
431   void visitTruncInst(TruncInst &I);
432   void visitZExtInst(ZExtInst &I);
433   void visitSExtInst(SExtInst &I);
434   void visitFPTruncInst(FPTruncInst &I);
435   void visitFPExtInst(FPExtInst &I);
436   void visitFPToUIInst(FPToUIInst &I);
437   void visitFPToSIInst(FPToSIInst &I);
438   void visitUIToFPInst(UIToFPInst &I);
439   void visitSIToFPInst(SIToFPInst &I);
440   void visitIntToPtrInst(IntToPtrInst &I);
441   void visitPtrToIntInst(PtrToIntInst &I);
442   void visitBitCastInst(BitCastInst &I);
443   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
444   void visitPHINode(PHINode &PN);
445   void visitBinaryOperator(BinaryOperator &B);
446   void visitICmpInst(ICmpInst &IC);
447   void visitFCmpInst(FCmpInst &FC);
448   void visitExtractElementInst(ExtractElementInst &EI);
449   void visitInsertElementInst(InsertElementInst &EI);
450   void visitShuffleVectorInst(ShuffleVectorInst &EI);
451   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
452   void visitCallInst(CallInst &CI);
453   void visitInvokeInst(InvokeInst &II);
454   void visitGetElementPtrInst(GetElementPtrInst &GEP);
455   void visitLoadInst(LoadInst &LI);
456   void visitStoreInst(StoreInst &SI);
457   void verifyDominatesUse(Instruction &I, unsigned i);
458   void visitInstruction(Instruction &I);
459   void visitTerminatorInst(TerminatorInst &I);
460   void visitBranchInst(BranchInst &BI);
461   void visitReturnInst(ReturnInst &RI);
462   void visitSwitchInst(SwitchInst &SI);
463   void visitIndirectBrInst(IndirectBrInst &BI);
464   void visitSelectInst(SelectInst &SI);
465   void visitUserOp1(Instruction &I);
466   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
467   void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
468   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
469   void visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII);
470   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
471   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
472   void visitFenceInst(FenceInst &FI);
473   void visitAllocaInst(AllocaInst &AI);
474   void visitExtractValueInst(ExtractValueInst &EVI);
475   void visitInsertValueInst(InsertValueInst &IVI);
476   void visitEHPadPredecessors(Instruction &I);
477   void visitLandingPadInst(LandingPadInst &LPI);
478   void visitResumeInst(ResumeInst &RI);
479   void visitCatchPadInst(CatchPadInst &CPI);
480   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
481   void visitCleanupPadInst(CleanupPadInst &CPI);
482   void visitFuncletPadInst(FuncletPadInst &FPI);
483   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
484   void visitCleanupReturnInst(CleanupReturnInst &CRI);
485 
486   void verifyCallSite(CallSite CS);
487   void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
488   void verifySwiftErrorValue(const Value *SwiftErrorVal);
489   void verifyMustTailCall(CallInst &CI);
490   bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
491                         unsigned ArgNo, std::string &Suffix);
492   bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
493   void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
494                             const Value *V);
495   void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
496   void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
497                            const Value *V);
498   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
499 
500   void visitConstantExprsRecursively(const Constant *EntryC);
501   void visitConstantExpr(const ConstantExpr *CE);
502   void verifyStatepoint(ImmutableCallSite CS);
503   void verifyFrameRecoverIndices();
504   void verifySiblingFuncletUnwinds();
505 
506   void verifyFragmentExpression(const DbgInfoIntrinsic &I);
507   template <typename ValueOrMetadata>
508   void verifyFragmentExpression(const DIVariable &V,
509                                 DIExpression::FragmentInfo Fragment,
510                                 ValueOrMetadata *Desc);
511   void verifyFnArgs(const DbgInfoIntrinsic &I);
512 
513   /// Module-level debug info verification...
514   void verifyCompileUnits();
515 
516   /// Module-level verification that all @llvm.experimental.deoptimize
517   /// declarations share the same calling convention.
518   void verifyDeoptimizeCallingConvs();
519 };
520 
521 } // end anonymous namespace
522 
523 /// We know that cond should be true, if not print an error message.
524 #define Assert(C, ...) \
525   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
526 
527 /// We know that a debug info condition should be true, if not print
528 /// an error message.
529 #define AssertDI(C, ...) \
530   do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
531 
532 void Verifier::visit(Instruction &I) {
533   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
534     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
535   InstVisitor<Verifier>::visit(I);
536 }
537 
538 // Helper to recursively iterate over indirect users. By
539 // returning false, the callback can ask to stop recursing
540 // further.
541 static void forEachUser(const Value *User,
542                         SmallPtrSet<const Value *, 32> &Visited,
543                         llvm::function_ref<bool(const Value *)> Callback) {
544   if (!Visited.insert(User).second)
545     return;
546   for (const Value *TheNextUser : User->materialized_users())
547     if (Callback(TheNextUser))
548       forEachUser(TheNextUser, Visited, Callback);
549 }
550 
551 void Verifier::visitGlobalValue(const GlobalValue &GV) {
552   Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
553          "Global is external, but doesn't have external or weak linkage!", &GV);
554 
555   Assert(GV.getAlignment() <= Value::MaximumAlignment,
556          "huge alignment values are unsupported", &GV);
557   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
558          "Only global variables can have appending linkage!", &GV);
559 
560   if (GV.hasAppendingLinkage()) {
561     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
562     Assert(GVar && GVar->getValueType()->isArrayTy(),
563            "Only global arrays can have appending linkage!", GVar);
564   }
565 
566   if (GV.isDeclarationForLinker())
567     Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
568 
569   if (GV.hasDLLImportStorageClass()) {
570     Assert(!GV.isDSOLocal(),
571            "GlobalValue with DLLImport Storage is dso_local!", &GV);
572 
573     Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||
574                GV.hasAvailableExternallyLinkage(),
575            "Global is marked as dllimport, but not external", &GV);
576   }
577 
578   if (GV.hasLocalLinkage())
579     Assert(GV.isDSOLocal(),
580            "GlobalValue with private or internal linkage must be dso_local!",
581            &GV);
582 
583   if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage())
584     Assert(GV.isDSOLocal(),
585            "GlobalValue with non default visibility must be dso_local!", &GV);
586 
587   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
588     if (const Instruction *I = dyn_cast<Instruction>(V)) {
589       if (!I->getParent() || !I->getParent()->getParent())
590         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
591                     I);
592       else if (I->getParent()->getParent()->getParent() != &M)
593         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
594                     I->getParent()->getParent(),
595                     I->getParent()->getParent()->getParent());
596       return false;
597     } else if (const Function *F = dyn_cast<Function>(V)) {
598       if (F->getParent() != &M)
599         CheckFailed("Global is used by function in a different module", &GV, &M,
600                     F, F->getParent());
601       return false;
602     }
603     return true;
604   });
605 }
606 
607 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
608   if (GV.hasInitializer()) {
609     Assert(GV.getInitializer()->getType() == GV.getValueType(),
610            "Global variable initializer type does not match global "
611            "variable type!",
612            &GV);
613     // If the global has common linkage, it must have a zero initializer and
614     // cannot be constant.
615     if (GV.hasCommonLinkage()) {
616       Assert(GV.getInitializer()->isNullValue(),
617              "'common' global must have a zero initializer!", &GV);
618       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
619              &GV);
620       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
621     }
622   }
623 
624   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
625                        GV.getName() == "llvm.global_dtors")) {
626     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
627            "invalid linkage for intrinsic global variable", &GV);
628     // Don't worry about emitting an error for it not being an array,
629     // visitGlobalValue will complain on appending non-array.
630     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
631       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
632       PointerType *FuncPtrTy =
633           FunctionType::get(Type::getVoidTy(Context), false)->getPointerTo();
634       // FIXME: Reject the 2-field form in LLVM 4.0.
635       Assert(STy &&
636                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
637                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
638                  STy->getTypeAtIndex(1) == FuncPtrTy,
639              "wrong type for intrinsic global variable", &GV);
640       if (STy->getNumElements() == 3) {
641         Type *ETy = STy->getTypeAtIndex(2);
642         Assert(ETy->isPointerTy() &&
643                    cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
644                "wrong type for intrinsic global variable", &GV);
645       }
646     }
647   }
648 
649   if (GV.hasName() && (GV.getName() == "llvm.used" ||
650                        GV.getName() == "llvm.compiler.used")) {
651     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
652            "invalid linkage for intrinsic global variable", &GV);
653     Type *GVType = GV.getValueType();
654     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
655       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
656       Assert(PTy, "wrong type for intrinsic global variable", &GV);
657       if (GV.hasInitializer()) {
658         const Constant *Init = GV.getInitializer();
659         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
660         Assert(InitArray, "wrong initalizer for intrinsic global variable",
661                Init);
662         for (Value *Op : InitArray->operands()) {
663           Value *V = Op->stripPointerCastsNoFollowAliases();
664           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
665                      isa<GlobalAlias>(V),
666                  "invalid llvm.used member", V);
667           Assert(V->hasName(), "members of llvm.used must be named", V);
668         }
669       }
670     }
671   }
672 
673   // Visit any debug info attachments.
674   SmallVector<MDNode *, 1> MDs;
675   GV.getMetadata(LLVMContext::MD_dbg, MDs);
676   for (auto *MD : MDs) {
677     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
678       visitDIGlobalVariableExpression(*GVE);
679     else
680       AssertDI(false, "!dbg attachment of global variable must be a "
681                       "DIGlobalVariableExpression");
682   }
683 
684   if (!GV.hasInitializer()) {
685     visitGlobalValue(GV);
686     return;
687   }
688 
689   // Walk any aggregate initializers looking for bitcasts between address spaces
690   visitConstantExprsRecursively(GV.getInitializer());
691 
692   visitGlobalValue(GV);
693 }
694 
695 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
696   SmallPtrSet<const GlobalAlias*, 4> Visited;
697   Visited.insert(&GA);
698   visitAliaseeSubExpr(Visited, GA, C);
699 }
700 
701 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
702                                    const GlobalAlias &GA, const Constant &C) {
703   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
704     Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
705            &GA);
706 
707     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
708       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
709 
710       Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
711              &GA);
712     } else {
713       // Only continue verifying subexpressions of GlobalAliases.
714       // Do not recurse into global initializers.
715       return;
716     }
717   }
718 
719   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
720     visitConstantExprsRecursively(CE);
721 
722   for (const Use &U : C.operands()) {
723     Value *V = &*U;
724     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
725       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
726     else if (const auto *C2 = dyn_cast<Constant>(V))
727       visitAliaseeSubExpr(Visited, GA, *C2);
728   }
729 }
730 
731 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
732   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
733          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
734          "weak_odr, or external linkage!",
735          &GA);
736   const Constant *Aliasee = GA.getAliasee();
737   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
738   Assert(GA.getType() == Aliasee->getType(),
739          "Alias and aliasee types should match!", &GA);
740 
741   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
742          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
743 
744   visitAliaseeSubExpr(GA, *Aliasee);
745 
746   visitGlobalValue(GA);
747 }
748 
749 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
750   // There used to be various other llvm.dbg.* nodes, but we don't support
751   // upgrading them and we want to reserve the namespace for future uses.
752   if (NMD.getName().startswith("llvm.dbg."))
753     AssertDI(NMD.getName() == "llvm.dbg.cu",
754              "unrecognized named metadata node in the llvm.dbg namespace",
755              &NMD);
756   for (const MDNode *MD : NMD.operands()) {
757     if (NMD.getName() == "llvm.dbg.cu")
758       AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
759 
760     if (!MD)
761       continue;
762 
763     visitMDNode(*MD);
764   }
765 }
766 
767 void Verifier::visitMDNode(const MDNode &MD) {
768   // Only visit each node once.  Metadata can be mutually recursive, so this
769   // avoids infinite recursion here, as well as being an optimization.
770   if (!MDNodes.insert(&MD).second)
771     return;
772 
773   switch (MD.getMetadataID()) {
774   default:
775     llvm_unreachable("Invalid MDNode subclass");
776   case Metadata::MDTupleKind:
777     break;
778 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
779   case Metadata::CLASS##Kind:                                                  \
780     visit##CLASS(cast<CLASS>(MD));                                             \
781     break;
782 #include "llvm/IR/Metadata.def"
783   }
784 
785   for (const Metadata *Op : MD.operands()) {
786     if (!Op)
787       continue;
788     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
789            &MD, Op);
790     if (auto *N = dyn_cast<MDNode>(Op)) {
791       visitMDNode(*N);
792       continue;
793     }
794     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
795       visitValueAsMetadata(*V, nullptr);
796       continue;
797     }
798   }
799 
800   // Check these last, so we diagnose problems in operands first.
801   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
802   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
803 }
804 
805 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
806   Assert(MD.getValue(), "Expected valid value", &MD);
807   Assert(!MD.getValue()->getType()->isMetadataTy(),
808          "Unexpected metadata round-trip through values", &MD, MD.getValue());
809 
810   auto *L = dyn_cast<LocalAsMetadata>(&MD);
811   if (!L)
812     return;
813 
814   Assert(F, "function-local metadata used outside a function", L);
815 
816   // If this was an instruction, bb, or argument, verify that it is in the
817   // function that we expect.
818   Function *ActualF = nullptr;
819   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
820     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
821     ActualF = I->getParent()->getParent();
822   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
823     ActualF = BB->getParent();
824   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
825     ActualF = A->getParent();
826   assert(ActualF && "Unimplemented function local metadata case!");
827 
828   Assert(ActualF == F, "function-local metadata used in wrong function", L);
829 }
830 
831 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
832   Metadata *MD = MDV.getMetadata();
833   if (auto *N = dyn_cast<MDNode>(MD)) {
834     visitMDNode(*N);
835     return;
836   }
837 
838   // Only visit each node once.  Metadata can be mutually recursive, so this
839   // avoids infinite recursion here, as well as being an optimization.
840   if (!MDNodes.insert(MD).second)
841     return;
842 
843   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
844     visitValueAsMetadata(*V, F);
845 }
846 
847 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
848 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
849 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
850 
851 void Verifier::visitDILocation(const DILocation &N) {
852   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
853            "location requires a valid scope", &N, N.getRawScope());
854   if (auto *IA = N.getRawInlinedAt())
855     AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
856   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
857     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
858 }
859 
860 void Verifier::visitGenericDINode(const GenericDINode &N) {
861   AssertDI(N.getTag(), "invalid tag", &N);
862 }
863 
864 void Verifier::visitDIScope(const DIScope &N) {
865   if (auto *F = N.getRawFile())
866     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
867 }
868 
869 void Verifier::visitDISubrange(const DISubrange &N) {
870   AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
871   auto Count = N.getCount();
872   AssertDI(Count, "Count must either be a signed constant or a DIVariable",
873            &N);
874   AssertDI(!Count.is<ConstantInt*>() ||
875                Count.get<ConstantInt*>()->getSExtValue() >= -1,
876            "invalid subrange count", &N);
877 }
878 
879 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
880   AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
881 }
882 
883 void Verifier::visitDIBasicType(const DIBasicType &N) {
884   AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
885                N.getTag() == dwarf::DW_TAG_unspecified_type,
886            "invalid tag", &N);
887 }
888 
889 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
890   // Common scope checks.
891   visitDIScope(N);
892 
893   AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
894                N.getTag() == dwarf::DW_TAG_pointer_type ||
895                N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
896                N.getTag() == dwarf::DW_TAG_reference_type ||
897                N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
898                N.getTag() == dwarf::DW_TAG_const_type ||
899                N.getTag() == dwarf::DW_TAG_volatile_type ||
900                N.getTag() == dwarf::DW_TAG_restrict_type ||
901                N.getTag() == dwarf::DW_TAG_atomic_type ||
902                N.getTag() == dwarf::DW_TAG_member ||
903                N.getTag() == dwarf::DW_TAG_inheritance ||
904                N.getTag() == dwarf::DW_TAG_friend,
905            "invalid tag", &N);
906   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
907     AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
908              N.getRawExtraData());
909   }
910 
911   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
912   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
913            N.getRawBaseType());
914 
915   if (N.getDWARFAddressSpace()) {
916     AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
917                  N.getTag() == dwarf::DW_TAG_reference_type,
918              "DWARF address space only applies to pointer or reference types",
919              &N);
920   }
921 }
922 
923 /// Detect mutually exclusive flags.
924 static bool hasConflictingReferenceFlags(unsigned Flags) {
925   return ((Flags & DINode::FlagLValueReference) &&
926           (Flags & DINode::FlagRValueReference)) ||
927          ((Flags & DINode::FlagTypePassByValue) &&
928           (Flags & DINode::FlagTypePassByReference));
929 }
930 
931 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
932   auto *Params = dyn_cast<MDTuple>(&RawParams);
933   AssertDI(Params, "invalid template params", &N, &RawParams);
934   for (Metadata *Op : Params->operands()) {
935     AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
936              &N, Params, Op);
937   }
938 }
939 
940 void Verifier::visitDICompositeType(const DICompositeType &N) {
941   // Common scope checks.
942   visitDIScope(N);
943 
944   AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
945                N.getTag() == dwarf::DW_TAG_structure_type ||
946                N.getTag() == dwarf::DW_TAG_union_type ||
947                N.getTag() == dwarf::DW_TAG_enumeration_type ||
948                N.getTag() == dwarf::DW_TAG_class_type ||
949                N.getTag() == dwarf::DW_TAG_variant_part,
950            "invalid tag", &N);
951 
952   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
953   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
954            N.getRawBaseType());
955 
956   AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
957            "invalid composite elements", &N, N.getRawElements());
958   AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
959            N.getRawVTableHolder());
960   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
961            "invalid reference flags", &N);
962 
963   if (N.isVector()) {
964     const DINodeArray Elements = N.getElements();
965     AssertDI(Elements.size() == 1 &&
966              Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
967              "invalid vector, expected one element of type subrange", &N);
968   }
969 
970   if (auto *Params = N.getRawTemplateParams())
971     visitTemplateParams(N, *Params);
972 
973   if (N.getTag() == dwarf::DW_TAG_class_type ||
974       N.getTag() == dwarf::DW_TAG_union_type) {
975     AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
976              "class/union requires a filename", &N, N.getFile());
977   }
978 
979   if (auto *D = N.getRawDiscriminator()) {
980     AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
981              "discriminator can only appear on variant part");
982   }
983 }
984 
985 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
986   AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
987   if (auto *Types = N.getRawTypeArray()) {
988     AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
989     for (Metadata *Ty : N.getTypeArray()->operands()) {
990       AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
991     }
992   }
993   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
994            "invalid reference flags", &N);
995 }
996 
997 void Verifier::visitDIFile(const DIFile &N) {
998   AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
999   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1000   if (Checksum) {
1001     AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1002              "invalid checksum kind", &N);
1003     size_t Size;
1004     switch (Checksum->Kind) {
1005     case DIFile::CSK_MD5:
1006       Size = 32;
1007       break;
1008     case DIFile::CSK_SHA1:
1009       Size = 40;
1010       break;
1011     }
1012     AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1013     AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1014              "invalid checksum", &N);
1015   }
1016 }
1017 
1018 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1019   AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1020   AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1021 
1022   // Don't bother verifying the compilation directory or producer string
1023   // as those could be empty.
1024   AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1025            N.getRawFile());
1026   AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1027            N.getFile());
1028 
1029   AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1030            "invalid emission kind", &N);
1031 
1032   if (auto *Array = N.getRawEnumTypes()) {
1033     AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1034     for (Metadata *Op : N.getEnumTypes()->operands()) {
1035       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1036       AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1037                "invalid enum type", &N, N.getEnumTypes(), Op);
1038     }
1039   }
1040   if (auto *Array = N.getRawRetainedTypes()) {
1041     AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1042     for (Metadata *Op : N.getRetainedTypes()->operands()) {
1043       AssertDI(Op && (isa<DIType>(Op) ||
1044                       (isa<DISubprogram>(Op) &&
1045                        !cast<DISubprogram>(Op)->isDefinition())),
1046                "invalid retained type", &N, Op);
1047     }
1048   }
1049   if (auto *Array = N.getRawGlobalVariables()) {
1050     AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1051     for (Metadata *Op : N.getGlobalVariables()->operands()) {
1052       AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1053                "invalid global variable ref", &N, Op);
1054     }
1055   }
1056   if (auto *Array = N.getRawImportedEntities()) {
1057     AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1058     for (Metadata *Op : N.getImportedEntities()->operands()) {
1059       AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1060                &N, Op);
1061     }
1062   }
1063   if (auto *Array = N.getRawMacros()) {
1064     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1065     for (Metadata *Op : N.getMacros()->operands()) {
1066       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1067     }
1068   }
1069   CUVisited.insert(&N);
1070 }
1071 
1072 void Verifier::visitDISubprogram(const DISubprogram &N) {
1073   AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1074   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1075   if (auto *F = N.getRawFile())
1076     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1077   else
1078     AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1079   if (auto *T = N.getRawType())
1080     AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1081   AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1082            N.getRawContainingType());
1083   if (auto *Params = N.getRawTemplateParams())
1084     visitTemplateParams(N, *Params);
1085   if (auto *S = N.getRawDeclaration())
1086     AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1087              "invalid subprogram declaration", &N, S);
1088   if (auto *RawVars = N.getRawVariables()) {
1089     auto *Vars = dyn_cast<MDTuple>(RawVars);
1090     AssertDI(Vars, "invalid variable list", &N, RawVars);
1091     for (Metadata *Op : Vars->operands()) {
1092       AssertDI(Op && isa<DILocalVariable>(Op), "invalid local variable", &N,
1093                Vars, Op);
1094     }
1095   }
1096   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1097            "invalid reference flags", &N);
1098 
1099   auto *Unit = N.getRawUnit();
1100   if (N.isDefinition()) {
1101     // Subprogram definitions (not part of the type hierarchy).
1102     AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1103     AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1104     AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1105   } else {
1106     // Subprogram declarations (part of the type hierarchy).
1107     AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1108   }
1109 
1110   if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1111     auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1112     AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1113     for (Metadata *Op : ThrownTypes->operands())
1114       AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1115                Op);
1116   }
1117 }
1118 
1119 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1120   AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1121   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1122            "invalid local scope", &N, N.getRawScope());
1123   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1124     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1125 }
1126 
1127 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1128   visitDILexicalBlockBase(N);
1129 
1130   AssertDI(N.getLine() || !N.getColumn(),
1131            "cannot have column info without line info", &N);
1132 }
1133 
1134 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1135   visitDILexicalBlockBase(N);
1136 }
1137 
1138 void Verifier::visitDINamespace(const DINamespace &N) {
1139   AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1140   if (auto *S = N.getRawScope())
1141     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1142 }
1143 
1144 void Verifier::visitDIMacro(const DIMacro &N) {
1145   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1146                N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1147            "invalid macinfo type", &N);
1148   AssertDI(!N.getName().empty(), "anonymous macro", &N);
1149   if (!N.getValue().empty()) {
1150     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1151   }
1152 }
1153 
1154 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1155   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1156            "invalid macinfo type", &N);
1157   if (auto *F = N.getRawFile())
1158     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1159 
1160   if (auto *Array = N.getRawElements()) {
1161     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1162     for (Metadata *Op : N.getElements()->operands()) {
1163       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1164     }
1165   }
1166 }
1167 
1168 void Verifier::visitDIModule(const DIModule &N) {
1169   AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1170   AssertDI(!N.getName().empty(), "anonymous module", &N);
1171 }
1172 
1173 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1174   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1175 }
1176 
1177 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1178   visitDITemplateParameter(N);
1179 
1180   AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1181            &N);
1182 }
1183 
1184 void Verifier::visitDITemplateValueParameter(
1185     const DITemplateValueParameter &N) {
1186   visitDITemplateParameter(N);
1187 
1188   AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1189                N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1190                N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1191            "invalid tag", &N);
1192 }
1193 
1194 void Verifier::visitDIVariable(const DIVariable &N) {
1195   if (auto *S = N.getRawScope())
1196     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1197   if (auto *F = N.getRawFile())
1198     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1199 }
1200 
1201 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1202   // Checks common to all variables.
1203   visitDIVariable(N);
1204 
1205   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1206   AssertDI(!N.getName().empty(), "missing global variable name", &N);
1207   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1208   AssertDI(N.getType(), "missing global variable type", &N);
1209   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1210     AssertDI(isa<DIDerivedType>(Member),
1211              "invalid static data member declaration", &N, Member);
1212   }
1213 }
1214 
1215 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1216   // Checks common to all variables.
1217   visitDIVariable(N);
1218 
1219   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1220   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1221   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1222            "local variable requires a valid scope", &N, N.getRawScope());
1223 }
1224 
1225 void Verifier::visitDIExpression(const DIExpression &N) {
1226   AssertDI(N.isValid(), "invalid expression", &N);
1227 }
1228 
1229 void Verifier::visitDIGlobalVariableExpression(
1230     const DIGlobalVariableExpression &GVE) {
1231   AssertDI(GVE.getVariable(), "missing variable");
1232   if (auto *Var = GVE.getVariable())
1233     visitDIGlobalVariable(*Var);
1234   if (auto *Expr = GVE.getExpression()) {
1235     visitDIExpression(*Expr);
1236     if (auto Fragment = Expr->getFragmentInfo())
1237       verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1238   }
1239 }
1240 
1241 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1242   AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1243   if (auto *T = N.getRawType())
1244     AssertDI(isType(T), "invalid type ref", &N, T);
1245   if (auto *F = N.getRawFile())
1246     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1247 }
1248 
1249 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1250   AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1251                N.getTag() == dwarf::DW_TAG_imported_declaration,
1252            "invalid tag", &N);
1253   if (auto *S = N.getRawScope())
1254     AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1255   AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1256            N.getRawEntity());
1257 }
1258 
1259 void Verifier::visitComdat(const Comdat &C) {
1260   // The Module is invalid if the GlobalValue has private linkage.  Entities
1261   // with private linkage don't have entries in the symbol table.
1262   if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1263     Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1264            GV);
1265 }
1266 
1267 void Verifier::visitModuleIdents(const Module &M) {
1268   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1269   if (!Idents)
1270     return;
1271 
1272   // llvm.ident takes a list of metadata entry. Each entry has only one string.
1273   // Scan each llvm.ident entry and make sure that this requirement is met.
1274   for (const MDNode *N : Idents->operands()) {
1275     Assert(N->getNumOperands() == 1,
1276            "incorrect number of operands in llvm.ident metadata", N);
1277     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1278            ("invalid value for llvm.ident metadata entry operand"
1279             "(the operand should be a string)"),
1280            N->getOperand(0));
1281   }
1282 }
1283 
1284 void Verifier::visitModuleFlags(const Module &M) {
1285   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1286   if (!Flags) return;
1287 
1288   // Scan each flag, and track the flags and requirements.
1289   DenseMap<const MDString*, const MDNode*> SeenIDs;
1290   SmallVector<const MDNode*, 16> Requirements;
1291   for (const MDNode *MDN : Flags->operands())
1292     visitModuleFlag(MDN, SeenIDs, Requirements);
1293 
1294   // Validate that the requirements in the module are valid.
1295   for (const MDNode *Requirement : Requirements) {
1296     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1297     const Metadata *ReqValue = Requirement->getOperand(1);
1298 
1299     const MDNode *Op = SeenIDs.lookup(Flag);
1300     if (!Op) {
1301       CheckFailed("invalid requirement on flag, flag is not present in module",
1302                   Flag);
1303       continue;
1304     }
1305 
1306     if (Op->getOperand(2) != ReqValue) {
1307       CheckFailed(("invalid requirement on flag, "
1308                    "flag does not have the required value"),
1309                   Flag);
1310       continue;
1311     }
1312   }
1313 }
1314 
1315 void
1316 Verifier::visitModuleFlag(const MDNode *Op,
1317                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
1318                           SmallVectorImpl<const MDNode *> &Requirements) {
1319   // Each module flag should have three arguments, the merge behavior (a
1320   // constant int), the flag ID (an MDString), and the value.
1321   Assert(Op->getNumOperands() == 3,
1322          "incorrect number of operands in module flag", Op);
1323   Module::ModFlagBehavior MFB;
1324   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1325     Assert(
1326         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1327         "invalid behavior operand in module flag (expected constant integer)",
1328         Op->getOperand(0));
1329     Assert(false,
1330            "invalid behavior operand in module flag (unexpected constant)",
1331            Op->getOperand(0));
1332   }
1333   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1334   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1335          Op->getOperand(1));
1336 
1337   // Sanity check the values for behaviors with additional requirements.
1338   switch (MFB) {
1339   case Module::Error:
1340   case Module::Warning:
1341   case Module::Override:
1342     // These behavior types accept any value.
1343     break;
1344 
1345   case Module::Max: {
1346     Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1347            "invalid value for 'max' module flag (expected constant integer)",
1348            Op->getOperand(2));
1349     break;
1350   }
1351 
1352   case Module::Require: {
1353     // The value should itself be an MDNode with two operands, a flag ID (an
1354     // MDString), and a value.
1355     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1356     Assert(Value && Value->getNumOperands() == 2,
1357            "invalid value for 'require' module flag (expected metadata pair)",
1358            Op->getOperand(2));
1359     Assert(isa<MDString>(Value->getOperand(0)),
1360            ("invalid value for 'require' module flag "
1361             "(first value operand should be a string)"),
1362            Value->getOperand(0));
1363 
1364     // Append it to the list of requirements, to check once all module flags are
1365     // scanned.
1366     Requirements.push_back(Value);
1367     break;
1368   }
1369 
1370   case Module::Append:
1371   case Module::AppendUnique: {
1372     // These behavior types require the operand be an MDNode.
1373     Assert(isa<MDNode>(Op->getOperand(2)),
1374            "invalid value for 'append'-type module flag "
1375            "(expected a metadata node)",
1376            Op->getOperand(2));
1377     break;
1378   }
1379   }
1380 
1381   // Unless this is a "requires" flag, check the ID is unique.
1382   if (MFB != Module::Require) {
1383     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1384     Assert(Inserted,
1385            "module flag identifiers must be unique (or of 'require' type)", ID);
1386   }
1387 
1388   if (ID->getString() == "wchar_size") {
1389     ConstantInt *Value
1390       = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1391     Assert(Value, "wchar_size metadata requires constant integer argument");
1392   }
1393 
1394   if (ID->getString() == "Linker Options") {
1395     // If the llvm.linker.options named metadata exists, we assume that the
1396     // bitcode reader has upgraded the module flag. Otherwise the flag might
1397     // have been created by a client directly.
1398     Assert(M.getNamedMetadata("llvm.linker.options"),
1399            "'Linker Options' named metadata no longer supported");
1400   }
1401 }
1402 
1403 /// Return true if this attribute kind only applies to functions.
1404 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1405   switch (Kind) {
1406   case Attribute::NoReturn:
1407   case Attribute::NoCfCheck:
1408   case Attribute::NoUnwind:
1409   case Attribute::NoInline:
1410   case Attribute::AlwaysInline:
1411   case Attribute::OptimizeForSize:
1412   case Attribute::StackProtect:
1413   case Attribute::StackProtectReq:
1414   case Attribute::StackProtectStrong:
1415   case Attribute::SafeStack:
1416   case Attribute::ShadowCallStack:
1417   case Attribute::NoRedZone:
1418   case Attribute::NoImplicitFloat:
1419   case Attribute::Naked:
1420   case Attribute::InlineHint:
1421   case Attribute::StackAlignment:
1422   case Attribute::UWTable:
1423   case Attribute::NonLazyBind:
1424   case Attribute::ReturnsTwice:
1425   case Attribute::SanitizeAddress:
1426   case Attribute::SanitizeHWAddress:
1427   case Attribute::SanitizeThread:
1428   case Attribute::SanitizeMemory:
1429   case Attribute::MinSize:
1430   case Attribute::NoDuplicate:
1431   case Attribute::Builtin:
1432   case Attribute::NoBuiltin:
1433   case Attribute::Cold:
1434   case Attribute::OptForFuzzing:
1435   case Attribute::OptimizeNone:
1436   case Attribute::JumpTable:
1437   case Attribute::Convergent:
1438   case Attribute::ArgMemOnly:
1439   case Attribute::NoRecurse:
1440   case Attribute::InaccessibleMemOnly:
1441   case Attribute::InaccessibleMemOrArgMemOnly:
1442   case Attribute::AllocSize:
1443   case Attribute::Speculatable:
1444   case Attribute::StrictFP:
1445     return true;
1446   default:
1447     break;
1448   }
1449   return false;
1450 }
1451 
1452 /// Return true if this is a function attribute that can also appear on
1453 /// arguments.
1454 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1455   return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1456          Kind == Attribute::ReadNone;
1457 }
1458 
1459 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1460                                     const Value *V) {
1461   for (Attribute A : Attrs) {
1462     if (A.isStringAttribute())
1463       continue;
1464 
1465     if (isFuncOnlyAttr(A.getKindAsEnum())) {
1466       if (!IsFunction) {
1467         CheckFailed("Attribute '" + A.getAsString() +
1468                         "' only applies to functions!",
1469                     V);
1470         return;
1471       }
1472     } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1473       CheckFailed("Attribute '" + A.getAsString() +
1474                       "' does not apply to functions!",
1475                   V);
1476       return;
1477     }
1478   }
1479 }
1480 
1481 // VerifyParameterAttrs - Check the given attributes for an argument or return
1482 // value of the specified type.  The value V is printed in error messages.
1483 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1484                                     const Value *V) {
1485   if (!Attrs.hasAttributes())
1486     return;
1487 
1488   verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1489 
1490   // Check for mutually incompatible attributes.  Only inreg is compatible with
1491   // sret.
1492   unsigned AttrCount = 0;
1493   AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1494   AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1495   AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1496                Attrs.hasAttribute(Attribute::InReg);
1497   AttrCount += Attrs.hasAttribute(Attribute::Nest);
1498   Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1499                          "and 'sret' are incompatible!",
1500          V);
1501 
1502   Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1503            Attrs.hasAttribute(Attribute::ReadOnly)),
1504          "Attributes "
1505          "'inalloca and readonly' are incompatible!",
1506          V);
1507 
1508   Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1509            Attrs.hasAttribute(Attribute::Returned)),
1510          "Attributes "
1511          "'sret and returned' are incompatible!",
1512          V);
1513 
1514   Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1515            Attrs.hasAttribute(Attribute::SExt)),
1516          "Attributes "
1517          "'zeroext and signext' are incompatible!",
1518          V);
1519 
1520   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1521            Attrs.hasAttribute(Attribute::ReadOnly)),
1522          "Attributes "
1523          "'readnone and readonly' are incompatible!",
1524          V);
1525 
1526   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1527            Attrs.hasAttribute(Attribute::WriteOnly)),
1528          "Attributes "
1529          "'readnone and writeonly' are incompatible!",
1530          V);
1531 
1532   Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1533            Attrs.hasAttribute(Attribute::WriteOnly)),
1534          "Attributes "
1535          "'readonly and writeonly' are incompatible!",
1536          V);
1537 
1538   Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1539            Attrs.hasAttribute(Attribute::AlwaysInline)),
1540          "Attributes "
1541          "'noinline and alwaysinline' are incompatible!",
1542          V);
1543 
1544   AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1545   Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1546          "Wrong types for attribute: " +
1547              AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1548          V);
1549 
1550   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1551     SmallPtrSet<Type*, 4> Visited;
1552     if (!PTy->getElementType()->isSized(&Visited)) {
1553       Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1554                  !Attrs.hasAttribute(Attribute::InAlloca),
1555              "Attributes 'byval' and 'inalloca' do not support unsized types!",
1556              V);
1557     }
1558     if (!isa<PointerType>(PTy->getElementType()))
1559       Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1560              "Attribute 'swifterror' only applies to parameters "
1561              "with pointer to pointer type!",
1562              V);
1563   } else {
1564     Assert(!Attrs.hasAttribute(Attribute::ByVal),
1565            "Attribute 'byval' only applies to parameters with pointer type!",
1566            V);
1567     Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1568            "Attribute 'swifterror' only applies to parameters "
1569            "with pointer type!",
1570            V);
1571   }
1572 }
1573 
1574 // Check parameter attributes against a function type.
1575 // The value V is printed in error messages.
1576 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1577                                    const Value *V) {
1578   if (Attrs.isEmpty())
1579     return;
1580 
1581   bool SawNest = false;
1582   bool SawReturned = false;
1583   bool SawSRet = false;
1584   bool SawSwiftSelf = false;
1585   bool SawSwiftError = false;
1586 
1587   // Verify return value attributes.
1588   AttributeSet RetAttrs = Attrs.getRetAttributes();
1589   Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1590           !RetAttrs.hasAttribute(Attribute::Nest) &&
1591           !RetAttrs.hasAttribute(Attribute::StructRet) &&
1592           !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1593           !RetAttrs.hasAttribute(Attribute::Returned) &&
1594           !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1595           !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1596           !RetAttrs.hasAttribute(Attribute::SwiftError)),
1597          "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1598          "'returned', 'swiftself', and 'swifterror' do not apply to return "
1599          "values!",
1600          V);
1601   Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1602           !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1603           !RetAttrs.hasAttribute(Attribute::ReadNone)),
1604          "Attribute '" + RetAttrs.getAsString() +
1605              "' does not apply to function returns",
1606          V);
1607   verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1608 
1609   // Verify parameter attributes.
1610   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1611     Type *Ty = FT->getParamType(i);
1612     AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1613 
1614     verifyParameterAttrs(ArgAttrs, Ty, V);
1615 
1616     if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1617       Assert(!SawNest, "More than one parameter has attribute nest!", V);
1618       SawNest = true;
1619     }
1620 
1621     if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1622       Assert(!SawReturned, "More than one parameter has attribute returned!",
1623              V);
1624       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1625              "Incompatible argument and return types for 'returned' attribute",
1626              V);
1627       SawReturned = true;
1628     }
1629 
1630     if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1631       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1632       Assert(i == 0 || i == 1,
1633              "Attribute 'sret' is not on first or second parameter!", V);
1634       SawSRet = true;
1635     }
1636 
1637     if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1638       Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1639       SawSwiftSelf = true;
1640     }
1641 
1642     if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1643       Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1644              V);
1645       SawSwiftError = true;
1646     }
1647 
1648     if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1649       Assert(i == FT->getNumParams() - 1,
1650              "inalloca isn't on the last parameter!", V);
1651     }
1652   }
1653 
1654   if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1655     return;
1656 
1657   verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1658 
1659   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1660            Attrs.hasFnAttribute(Attribute::ReadOnly)),
1661          "Attributes 'readnone and readonly' are incompatible!", V);
1662 
1663   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1664            Attrs.hasFnAttribute(Attribute::WriteOnly)),
1665          "Attributes 'readnone and writeonly' are incompatible!", V);
1666 
1667   Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1668            Attrs.hasFnAttribute(Attribute::WriteOnly)),
1669          "Attributes 'readonly and writeonly' are incompatible!", V);
1670 
1671   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1672            Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1673          "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1674          "incompatible!",
1675          V);
1676 
1677   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1678            Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1679          "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1680 
1681   Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1682            Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1683          "Attributes 'noinline and alwaysinline' are incompatible!", V);
1684 
1685   if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1686     Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1687            "Attribute 'optnone' requires 'noinline'!", V);
1688 
1689     Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1690            "Attributes 'optsize and optnone' are incompatible!", V);
1691 
1692     Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1693            "Attributes 'minsize and optnone' are incompatible!", V);
1694   }
1695 
1696   if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1697     const GlobalValue *GV = cast<GlobalValue>(V);
1698     Assert(GV->hasGlobalUnnamedAddr(),
1699            "Attribute 'jumptable' requires 'unnamed_addr'", V);
1700   }
1701 
1702   if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1703     std::pair<unsigned, Optional<unsigned>> Args =
1704         Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1705 
1706     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1707       if (ParamNo >= FT->getNumParams()) {
1708         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1709         return false;
1710       }
1711 
1712       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1713         CheckFailed("'allocsize' " + Name +
1714                         " argument must refer to an integer parameter",
1715                     V);
1716         return false;
1717       }
1718 
1719       return true;
1720     };
1721 
1722     if (!CheckParam("element size", Args.first))
1723       return;
1724 
1725     if (Args.second && !CheckParam("number of elements", *Args.second))
1726       return;
1727   }
1728 }
1729 
1730 void Verifier::verifyFunctionMetadata(
1731     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1732   for (const auto &Pair : MDs) {
1733     if (Pair.first == LLVMContext::MD_prof) {
1734       MDNode *MD = Pair.second;
1735       Assert(MD->getNumOperands() >= 2,
1736              "!prof annotations should have no less than 2 operands", MD);
1737 
1738       // Check first operand.
1739       Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1740              MD);
1741       Assert(isa<MDString>(MD->getOperand(0)),
1742              "expected string with name of the !prof annotation", MD);
1743       MDString *MDS = cast<MDString>(MD->getOperand(0));
1744       StringRef ProfName = MDS->getString();
1745       Assert(ProfName.equals("function_entry_count") ||
1746                  ProfName.equals("synthetic_function_entry_count"),
1747              "first operand should be 'function_entry_count'"
1748              " or 'synthetic_function_entry_count'",
1749              MD);
1750 
1751       // Check second operand.
1752       Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1753              MD);
1754       Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1755              "expected integer argument to function_entry_count", MD);
1756     }
1757   }
1758 }
1759 
1760 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1761   if (!ConstantExprVisited.insert(EntryC).second)
1762     return;
1763 
1764   SmallVector<const Constant *, 16> Stack;
1765   Stack.push_back(EntryC);
1766 
1767   while (!Stack.empty()) {
1768     const Constant *C = Stack.pop_back_val();
1769 
1770     // Check this constant expression.
1771     if (const auto *CE = dyn_cast<ConstantExpr>(C))
1772       visitConstantExpr(CE);
1773 
1774     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1775       // Global Values get visited separately, but we do need to make sure
1776       // that the global value is in the correct module
1777       Assert(GV->getParent() == &M, "Referencing global in another module!",
1778              EntryC, &M, GV, GV->getParent());
1779       continue;
1780     }
1781 
1782     // Visit all sub-expressions.
1783     for (const Use &U : C->operands()) {
1784       const auto *OpC = dyn_cast<Constant>(U);
1785       if (!OpC)
1786         continue;
1787       if (!ConstantExprVisited.insert(OpC).second)
1788         continue;
1789       Stack.push_back(OpC);
1790     }
1791   }
1792 }
1793 
1794 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1795   if (CE->getOpcode() == Instruction::BitCast)
1796     Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1797                                  CE->getType()),
1798            "Invalid bitcast", CE);
1799 
1800   if (CE->getOpcode() == Instruction::IntToPtr ||
1801       CE->getOpcode() == Instruction::PtrToInt) {
1802     auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1803                       ? CE->getType()
1804                       : CE->getOperand(0)->getType();
1805     StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1806                         ? "inttoptr not supported for non-integral pointers"
1807                         : "ptrtoint not supported for non-integral pointers";
1808     Assert(
1809         !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
1810         Msg);
1811   }
1812 }
1813 
1814 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1815   // There shouldn't be more attribute sets than there are parameters plus the
1816   // function and return value.
1817   return Attrs.getNumAttrSets() <= Params + 2;
1818 }
1819 
1820 /// Verify that statepoint intrinsic is well formed.
1821 void Verifier::verifyStatepoint(ImmutableCallSite CS) {
1822   assert(CS.getCalledFunction() &&
1823          CS.getCalledFunction()->getIntrinsicID() ==
1824            Intrinsic::experimental_gc_statepoint);
1825 
1826   const Instruction &CI = *CS.getInstruction();
1827 
1828   Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
1829          !CS.onlyAccessesArgMemory(),
1830          "gc.statepoint must read and write all memory to preserve "
1831          "reordering restrictions required by safepoint semantics",
1832          &CI);
1833 
1834   const Value *IDV = CS.getArgument(0);
1835   Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
1836          &CI);
1837 
1838   const Value *NumPatchBytesV = CS.getArgument(1);
1839   Assert(isa<ConstantInt>(NumPatchBytesV),
1840          "gc.statepoint number of patchable bytes must be a constant integer",
1841          &CI);
1842   const int64_t NumPatchBytes =
1843       cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1844   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1845   Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
1846                              "positive",
1847          &CI);
1848 
1849   const Value *Target = CS.getArgument(2);
1850   auto *PT = dyn_cast<PointerType>(Target->getType());
1851   Assert(PT && PT->getElementType()->isFunctionTy(),
1852          "gc.statepoint callee must be of function pointer type", &CI, Target);
1853   FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1854 
1855   const Value *NumCallArgsV = CS.getArgument(3);
1856   Assert(isa<ConstantInt>(NumCallArgsV),
1857          "gc.statepoint number of arguments to underlying call "
1858          "must be constant integer",
1859          &CI);
1860   const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1861   Assert(NumCallArgs >= 0,
1862          "gc.statepoint number of arguments to underlying call "
1863          "must be positive",
1864          &CI);
1865   const int NumParams = (int)TargetFuncType->getNumParams();
1866   if (TargetFuncType->isVarArg()) {
1867     Assert(NumCallArgs >= NumParams,
1868            "gc.statepoint mismatch in number of vararg call args", &CI);
1869 
1870     // TODO: Remove this limitation
1871     Assert(TargetFuncType->getReturnType()->isVoidTy(),
1872            "gc.statepoint doesn't support wrapping non-void "
1873            "vararg functions yet",
1874            &CI);
1875   } else
1876     Assert(NumCallArgs == NumParams,
1877            "gc.statepoint mismatch in number of call args", &CI);
1878 
1879   const Value *FlagsV = CS.getArgument(4);
1880   Assert(isa<ConstantInt>(FlagsV),
1881          "gc.statepoint flags must be constant integer", &CI);
1882   const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1883   Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1884          "unknown flag used in gc.statepoint flags argument", &CI);
1885 
1886   // Verify that the types of the call parameter arguments match
1887   // the type of the wrapped callee.
1888   for (int i = 0; i < NumParams; i++) {
1889     Type *ParamType = TargetFuncType->getParamType(i);
1890     Type *ArgType = CS.getArgument(5 + i)->getType();
1891     Assert(ArgType == ParamType,
1892            "gc.statepoint call argument does not match wrapped "
1893            "function type",
1894            &CI);
1895   }
1896 
1897   const int EndCallArgsInx = 4 + NumCallArgs;
1898 
1899   const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1900   Assert(isa<ConstantInt>(NumTransitionArgsV),
1901          "gc.statepoint number of transition arguments "
1902          "must be constant integer",
1903          &CI);
1904   const int NumTransitionArgs =
1905       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1906   Assert(NumTransitionArgs >= 0,
1907          "gc.statepoint number of transition arguments must be positive", &CI);
1908   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1909 
1910   const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1911   Assert(isa<ConstantInt>(NumDeoptArgsV),
1912          "gc.statepoint number of deoptimization arguments "
1913          "must be constant integer",
1914          &CI);
1915   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1916   Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
1917                             "must be positive",
1918          &CI);
1919 
1920   const int ExpectedNumArgs =
1921       7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1922   Assert(ExpectedNumArgs <= (int)CS.arg_size(),
1923          "gc.statepoint too few arguments according to length fields", &CI);
1924 
1925   // Check that the only uses of this gc.statepoint are gc.result or
1926   // gc.relocate calls which are tied to this statepoint and thus part
1927   // of the same statepoint sequence
1928   for (const User *U : CI.users()) {
1929     const CallInst *Call = dyn_cast<const CallInst>(U);
1930     Assert(Call, "illegal use of statepoint token", &CI, U);
1931     if (!Call) continue;
1932     Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),
1933            "gc.result or gc.relocate are the only value uses "
1934            "of a gc.statepoint",
1935            &CI, U);
1936     if (isa<GCResultInst>(Call)) {
1937       Assert(Call->getArgOperand(0) == &CI,
1938              "gc.result connected to wrong gc.statepoint", &CI, Call);
1939     } else if (isa<GCRelocateInst>(Call)) {
1940       Assert(Call->getArgOperand(0) == &CI,
1941              "gc.relocate connected to wrong gc.statepoint", &CI, Call);
1942     }
1943   }
1944 
1945   // Note: It is legal for a single derived pointer to be listed multiple
1946   // times.  It's non-optimal, but it is legal.  It can also happen after
1947   // insertion if we strip a bitcast away.
1948   // Note: It is really tempting to check that each base is relocated and
1949   // that a derived pointer is never reused as a base pointer.  This turns
1950   // out to be problematic since optimizations run after safepoint insertion
1951   // can recognize equality properties that the insertion logic doesn't know
1952   // about.  See example statepoint.ll in the verifier subdirectory
1953 }
1954 
1955 void Verifier::verifyFrameRecoverIndices() {
1956   for (auto &Counts : FrameEscapeInfo) {
1957     Function *F = Counts.first;
1958     unsigned EscapedObjectCount = Counts.second.first;
1959     unsigned MaxRecoveredIndex = Counts.second.second;
1960     Assert(MaxRecoveredIndex <= EscapedObjectCount,
1961            "all indices passed to llvm.localrecover must be less than the "
1962            "number of arguments passed ot llvm.localescape in the parent "
1963            "function",
1964            F);
1965   }
1966 }
1967 
1968 static Instruction *getSuccPad(TerminatorInst *Terminator) {
1969   BasicBlock *UnwindDest;
1970   if (auto *II = dyn_cast<InvokeInst>(Terminator))
1971     UnwindDest = II->getUnwindDest();
1972   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
1973     UnwindDest = CSI->getUnwindDest();
1974   else
1975     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
1976   return UnwindDest->getFirstNonPHI();
1977 }
1978 
1979 void Verifier::verifySiblingFuncletUnwinds() {
1980   SmallPtrSet<Instruction *, 8> Visited;
1981   SmallPtrSet<Instruction *, 8> Active;
1982   for (const auto &Pair : SiblingFuncletInfo) {
1983     Instruction *PredPad = Pair.first;
1984     if (Visited.count(PredPad))
1985       continue;
1986     Active.insert(PredPad);
1987     TerminatorInst *Terminator = Pair.second;
1988     do {
1989       Instruction *SuccPad = getSuccPad(Terminator);
1990       if (Active.count(SuccPad)) {
1991         // Found a cycle; report error
1992         Instruction *CyclePad = SuccPad;
1993         SmallVector<Instruction *, 8> CycleNodes;
1994         do {
1995           CycleNodes.push_back(CyclePad);
1996           TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
1997           if (CycleTerminator != CyclePad)
1998             CycleNodes.push_back(CycleTerminator);
1999           CyclePad = getSuccPad(CycleTerminator);
2000         } while (CyclePad != SuccPad);
2001         Assert(false, "EH pads can't handle each other's exceptions",
2002                ArrayRef<Instruction *>(CycleNodes));
2003       }
2004       // Don't re-walk a node we've already checked
2005       if (!Visited.insert(SuccPad).second)
2006         break;
2007       // Walk to this successor if it has a map entry.
2008       PredPad = SuccPad;
2009       auto TermI = SiblingFuncletInfo.find(PredPad);
2010       if (TermI == SiblingFuncletInfo.end())
2011         break;
2012       Terminator = TermI->second;
2013       Active.insert(PredPad);
2014     } while (true);
2015     // Each node only has one successor, so we've walked all the active
2016     // nodes' successors.
2017     Active.clear();
2018   }
2019 }
2020 
2021 // visitFunction - Verify that a function is ok.
2022 //
2023 void Verifier::visitFunction(const Function &F) {
2024   visitGlobalValue(F);
2025 
2026   // Check function arguments.
2027   FunctionType *FT = F.getFunctionType();
2028   unsigned NumArgs = F.arg_size();
2029 
2030   Assert(&Context == &F.getContext(),
2031          "Function context does not match Module context!", &F);
2032 
2033   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2034   Assert(FT->getNumParams() == NumArgs,
2035          "# formal arguments must match # of arguments for function type!", &F,
2036          FT);
2037   Assert(F.getReturnType()->isFirstClassType() ||
2038              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2039          "Functions cannot return aggregate values!", &F);
2040 
2041   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2042          "Invalid struct return type!", &F);
2043 
2044   AttributeList Attrs = F.getAttributes();
2045 
2046   Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2047          "Attribute after last parameter!", &F);
2048 
2049   // Check function attributes.
2050   verifyFunctionAttrs(FT, Attrs, &F);
2051 
2052   // On function declarations/definitions, we do not support the builtin
2053   // attribute. We do not check this in VerifyFunctionAttrs since that is
2054   // checking for Attributes that can/can not ever be on functions.
2055   Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2056          "Attribute 'builtin' can only be applied to a callsite.", &F);
2057 
2058   // Check that this function meets the restrictions on this calling convention.
2059   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2060   // restrictions can be lifted.
2061   switch (F.getCallingConv()) {
2062   default:
2063   case CallingConv::C:
2064     break;
2065   case CallingConv::AMDGPU_KERNEL:
2066   case CallingConv::SPIR_KERNEL:
2067     Assert(F.getReturnType()->isVoidTy(),
2068            "Calling convention requires void return type", &F);
2069     LLVM_FALLTHROUGH;
2070   case CallingConv::AMDGPU_VS:
2071   case CallingConv::AMDGPU_HS:
2072   case CallingConv::AMDGPU_GS:
2073   case CallingConv::AMDGPU_PS:
2074   case CallingConv::AMDGPU_CS:
2075     Assert(!F.hasStructRetAttr(),
2076            "Calling convention does not allow sret", &F);
2077     LLVM_FALLTHROUGH;
2078   case CallingConv::Fast:
2079   case CallingConv::Cold:
2080   case CallingConv::Intel_OCL_BI:
2081   case CallingConv::PTX_Kernel:
2082   case CallingConv::PTX_Device:
2083     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2084                           "perfect forwarding!",
2085            &F);
2086     break;
2087   }
2088 
2089   bool isLLVMdotName = F.getName().size() >= 5 &&
2090                        F.getName().substr(0, 5) == "llvm.";
2091 
2092   // Check that the argument values match the function type for this function...
2093   unsigned i = 0;
2094   for (const Argument &Arg : F.args()) {
2095     Assert(Arg.getType() == FT->getParamType(i),
2096            "Argument value does not match function argument type!", &Arg,
2097            FT->getParamType(i));
2098     Assert(Arg.getType()->isFirstClassType(),
2099            "Function arguments must have first-class types!", &Arg);
2100     if (!isLLVMdotName) {
2101       Assert(!Arg.getType()->isMetadataTy(),
2102              "Function takes metadata but isn't an intrinsic", &Arg, &F);
2103       Assert(!Arg.getType()->isTokenTy(),
2104              "Function takes token but isn't an intrinsic", &Arg, &F);
2105     }
2106 
2107     // Check that swifterror argument is only used by loads and stores.
2108     if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2109       verifySwiftErrorValue(&Arg);
2110     }
2111     ++i;
2112   }
2113 
2114   if (!isLLVMdotName)
2115     Assert(!F.getReturnType()->isTokenTy(),
2116            "Functions returns a token but isn't an intrinsic", &F);
2117 
2118   // Get the function metadata attachments.
2119   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2120   F.getAllMetadata(MDs);
2121   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2122   verifyFunctionMetadata(MDs);
2123 
2124   // Check validity of the personality function
2125   if (F.hasPersonalityFn()) {
2126     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2127     if (Per)
2128       Assert(Per->getParent() == F.getParent(),
2129              "Referencing personality function in another module!",
2130              &F, F.getParent(), Per, Per->getParent());
2131   }
2132 
2133   if (F.isMaterializable()) {
2134     // Function has a body somewhere we can't see.
2135     Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2136            MDs.empty() ? nullptr : MDs.front().second);
2137   } else if (F.isDeclaration()) {
2138     for (const auto &I : MDs) {
2139       AssertDI(I.first != LLVMContext::MD_dbg,
2140                "function declaration may not have a !dbg attachment", &F);
2141       Assert(I.first != LLVMContext::MD_prof,
2142              "function declaration may not have a !prof attachment", &F);
2143 
2144       // Verify the metadata itself.
2145       visitMDNode(*I.second);
2146     }
2147     Assert(!F.hasPersonalityFn(),
2148            "Function declaration shouldn't have a personality routine", &F);
2149   } else {
2150     // Verify that this function (which has a body) is not named "llvm.*".  It
2151     // is not legal to define intrinsics.
2152     Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2153 
2154     // Check the entry node
2155     const BasicBlock *Entry = &F.getEntryBlock();
2156     Assert(pred_empty(Entry),
2157            "Entry block to function must not have predecessors!", Entry);
2158 
2159     // The address of the entry block cannot be taken, unless it is dead.
2160     if (Entry->hasAddressTaken()) {
2161       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2162              "blockaddress may not be used with the entry block!", Entry);
2163     }
2164 
2165     unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2166     // Visit metadata attachments.
2167     for (const auto &I : MDs) {
2168       // Verify that the attachment is legal.
2169       switch (I.first) {
2170       default:
2171         break;
2172       case LLVMContext::MD_dbg: {
2173         ++NumDebugAttachments;
2174         AssertDI(NumDebugAttachments == 1,
2175                  "function must have a single !dbg attachment", &F, I.second);
2176         AssertDI(isa<DISubprogram>(I.second),
2177                  "function !dbg attachment must be a subprogram", &F, I.second);
2178         auto *SP = cast<DISubprogram>(I.second);
2179         const Function *&AttachedTo = DISubprogramAttachments[SP];
2180         AssertDI(!AttachedTo || AttachedTo == &F,
2181                  "DISubprogram attached to more than one function", SP, &F);
2182         AttachedTo = &F;
2183         break;
2184       }
2185       case LLVMContext::MD_prof:
2186         ++NumProfAttachments;
2187         Assert(NumProfAttachments == 1,
2188                "function must have a single !prof attachment", &F, I.second);
2189         break;
2190       }
2191 
2192       // Verify the metadata itself.
2193       visitMDNode(*I.second);
2194     }
2195   }
2196 
2197   // If this function is actually an intrinsic, verify that it is only used in
2198   // direct call/invokes, never having its "address taken".
2199   // Only do this if the module is materialized, otherwise we don't have all the
2200   // uses.
2201   if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2202     const User *U;
2203     if (F.hasAddressTaken(&U))
2204       Assert(false, "Invalid user of intrinsic instruction!", U);
2205   }
2206 
2207   auto *N = F.getSubprogram();
2208   HasDebugInfo = (N != nullptr);
2209   if (!HasDebugInfo)
2210     return;
2211 
2212   // Check that all !dbg attachments lead to back to N (or, at least, another
2213   // subprogram that describes the same function).
2214   //
2215   // FIXME: Check this incrementally while visiting !dbg attachments.
2216   // FIXME: Only check when N is the canonical subprogram for F.
2217   SmallPtrSet<const MDNode *, 32> Seen;
2218   for (auto &BB : F)
2219     for (auto &I : BB) {
2220       // Be careful about using DILocation here since we might be dealing with
2221       // broken code (this is the Verifier after all).
2222       DILocation *DL =
2223           dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2224       if (!DL)
2225         continue;
2226       if (!Seen.insert(DL).second)
2227         continue;
2228 
2229       DILocalScope *Scope = DL->getInlinedAtScope();
2230       if (Scope && !Seen.insert(Scope).second)
2231         continue;
2232 
2233       DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2234 
2235       // Scope and SP could be the same MDNode and we don't want to skip
2236       // validation in that case
2237       if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2238         continue;
2239 
2240       // FIXME: Once N is canonical, check "SP == &N".
2241       AssertDI(SP->describes(&F),
2242                "!dbg attachment points at wrong subprogram for function", N, &F,
2243                &I, DL, Scope, SP);
2244     }
2245 }
2246 
2247 // verifyBasicBlock - Verify that a basic block is well formed...
2248 //
2249 void Verifier::visitBasicBlock(BasicBlock &BB) {
2250   InstsInThisBlock.clear();
2251 
2252   // Ensure that basic blocks have terminators!
2253   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2254 
2255   // Check constraints that this basic block imposes on all of the PHI nodes in
2256   // it.
2257   if (isa<PHINode>(BB.front())) {
2258     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2259     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2260     llvm::sort(Preds.begin(), Preds.end());
2261     for (const PHINode &PN : BB.phis()) {
2262       // Ensure that PHI nodes have at least one entry!
2263       Assert(PN.getNumIncomingValues() != 0,
2264              "PHI nodes must have at least one entry.  If the block is dead, "
2265              "the PHI should be removed!",
2266              &PN);
2267       Assert(PN.getNumIncomingValues() == Preds.size(),
2268              "PHINode should have one entry for each predecessor of its "
2269              "parent basic block!",
2270              &PN);
2271 
2272       // Get and sort all incoming values in the PHI node...
2273       Values.clear();
2274       Values.reserve(PN.getNumIncomingValues());
2275       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2276         Values.push_back(
2277             std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2278       llvm::sort(Values.begin(), Values.end());
2279 
2280       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2281         // Check to make sure that if there is more than one entry for a
2282         // particular basic block in this PHI node, that the incoming values are
2283         // all identical.
2284         //
2285         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2286                    Values[i].second == Values[i - 1].second,
2287                "PHI node has multiple entries for the same basic block with "
2288                "different incoming values!",
2289                &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2290 
2291         // Check to make sure that the predecessors and PHI node entries are
2292         // matched up.
2293         Assert(Values[i].first == Preds[i],
2294                "PHI node entries do not match predecessors!", &PN,
2295                Values[i].first, Preds[i]);
2296       }
2297     }
2298   }
2299 
2300   // Check that all instructions have their parent pointers set up correctly.
2301   for (auto &I : BB)
2302   {
2303     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2304   }
2305 }
2306 
2307 void Verifier::visitTerminatorInst(TerminatorInst &I) {
2308   // Ensure that terminators only exist at the end of the basic block.
2309   Assert(&I == I.getParent()->getTerminator(),
2310          "Terminator found in the middle of a basic block!", I.getParent());
2311   visitInstruction(I);
2312 }
2313 
2314 void Verifier::visitBranchInst(BranchInst &BI) {
2315   if (BI.isConditional()) {
2316     Assert(BI.getCondition()->getType()->isIntegerTy(1),
2317            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2318   }
2319   visitTerminatorInst(BI);
2320 }
2321 
2322 void Verifier::visitReturnInst(ReturnInst &RI) {
2323   Function *F = RI.getParent()->getParent();
2324   unsigned N = RI.getNumOperands();
2325   if (F->getReturnType()->isVoidTy())
2326     Assert(N == 0,
2327            "Found return instr that returns non-void in Function of void "
2328            "return type!",
2329            &RI, F->getReturnType());
2330   else
2331     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2332            "Function return type does not match operand "
2333            "type of return inst!",
2334            &RI, F->getReturnType());
2335 
2336   // Check to make sure that the return value has necessary properties for
2337   // terminators...
2338   visitTerminatorInst(RI);
2339 }
2340 
2341 void Verifier::visitSwitchInst(SwitchInst &SI) {
2342   // Check to make sure that all of the constants in the switch instruction
2343   // have the same type as the switched-on value.
2344   Type *SwitchTy = SI.getCondition()->getType();
2345   SmallPtrSet<ConstantInt*, 32> Constants;
2346   for (auto &Case : SI.cases()) {
2347     Assert(Case.getCaseValue()->getType() == SwitchTy,
2348            "Switch constants must all be same type as switch value!", &SI);
2349     Assert(Constants.insert(Case.getCaseValue()).second,
2350            "Duplicate integer as switch case", &SI, Case.getCaseValue());
2351   }
2352 
2353   visitTerminatorInst(SI);
2354 }
2355 
2356 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2357   Assert(BI.getAddress()->getType()->isPointerTy(),
2358          "Indirectbr operand must have pointer type!", &BI);
2359   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2360     Assert(BI.getDestination(i)->getType()->isLabelTy(),
2361            "Indirectbr destinations must all have pointer type!", &BI);
2362 
2363   visitTerminatorInst(BI);
2364 }
2365 
2366 void Verifier::visitSelectInst(SelectInst &SI) {
2367   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2368                                          SI.getOperand(2)),
2369          "Invalid operands for select instruction!", &SI);
2370 
2371   Assert(SI.getTrueValue()->getType() == SI.getType(),
2372          "Select values must have same type as select instruction!", &SI);
2373   visitInstruction(SI);
2374 }
2375 
2376 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2377 /// a pass, if any exist, it's an error.
2378 ///
2379 void Verifier::visitUserOp1(Instruction &I) {
2380   Assert(false, "User-defined operators should not live outside of a pass!", &I);
2381 }
2382 
2383 void Verifier::visitTruncInst(TruncInst &I) {
2384   // Get the source and destination types
2385   Type *SrcTy = I.getOperand(0)->getType();
2386   Type *DestTy = I.getType();
2387 
2388   // Get the size of the types in bits, we'll need this later
2389   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2390   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2391 
2392   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2393   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2394   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2395          "trunc source and destination must both be a vector or neither", &I);
2396   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2397 
2398   visitInstruction(I);
2399 }
2400 
2401 void Verifier::visitZExtInst(ZExtInst &I) {
2402   // Get the source and destination types
2403   Type *SrcTy = I.getOperand(0)->getType();
2404   Type *DestTy = I.getType();
2405 
2406   // Get the size of the types in bits, we'll need this later
2407   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2408   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2409   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2410          "zext source and destination must both be a vector or neither", &I);
2411   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2412   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2413 
2414   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2415 
2416   visitInstruction(I);
2417 }
2418 
2419 void Verifier::visitSExtInst(SExtInst &I) {
2420   // Get the source and destination types
2421   Type *SrcTy = I.getOperand(0)->getType();
2422   Type *DestTy = I.getType();
2423 
2424   // Get the size of the types in bits, we'll need this later
2425   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2426   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2427 
2428   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2429   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2430   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2431          "sext source and destination must both be a vector or neither", &I);
2432   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2433 
2434   visitInstruction(I);
2435 }
2436 
2437 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2438   // Get the source and destination types
2439   Type *SrcTy = I.getOperand(0)->getType();
2440   Type *DestTy = I.getType();
2441   // Get the size of the types in bits, we'll need this later
2442   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2443   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2444 
2445   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2446   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2447   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2448          "fptrunc source and destination must both be a vector or neither", &I);
2449   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2450 
2451   visitInstruction(I);
2452 }
2453 
2454 void Verifier::visitFPExtInst(FPExtInst &I) {
2455   // Get the source and destination types
2456   Type *SrcTy = I.getOperand(0)->getType();
2457   Type *DestTy = I.getType();
2458 
2459   // Get the size of the types in bits, we'll need this later
2460   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2461   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2462 
2463   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2464   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2465   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2466          "fpext source and destination must both be a vector or neither", &I);
2467   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2468 
2469   visitInstruction(I);
2470 }
2471 
2472 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2473   // Get the source and destination types
2474   Type *SrcTy = I.getOperand(0)->getType();
2475   Type *DestTy = I.getType();
2476 
2477   bool SrcVec = SrcTy->isVectorTy();
2478   bool DstVec = DestTy->isVectorTy();
2479 
2480   Assert(SrcVec == DstVec,
2481          "UIToFP source and dest must both be vector or scalar", &I);
2482   Assert(SrcTy->isIntOrIntVectorTy(),
2483          "UIToFP source must be integer or integer vector", &I);
2484   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2485          &I);
2486 
2487   if (SrcVec && DstVec)
2488     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2489                cast<VectorType>(DestTy)->getNumElements(),
2490            "UIToFP source and dest vector length mismatch", &I);
2491 
2492   visitInstruction(I);
2493 }
2494 
2495 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2496   // Get the source and destination types
2497   Type *SrcTy = I.getOperand(0)->getType();
2498   Type *DestTy = I.getType();
2499 
2500   bool SrcVec = SrcTy->isVectorTy();
2501   bool DstVec = DestTy->isVectorTy();
2502 
2503   Assert(SrcVec == DstVec,
2504          "SIToFP source and dest must both be vector or scalar", &I);
2505   Assert(SrcTy->isIntOrIntVectorTy(),
2506          "SIToFP source must be integer or integer vector", &I);
2507   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2508          &I);
2509 
2510   if (SrcVec && DstVec)
2511     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2512                cast<VectorType>(DestTy)->getNumElements(),
2513            "SIToFP source and dest vector length mismatch", &I);
2514 
2515   visitInstruction(I);
2516 }
2517 
2518 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2519   // Get the source and destination types
2520   Type *SrcTy = I.getOperand(0)->getType();
2521   Type *DestTy = I.getType();
2522 
2523   bool SrcVec = SrcTy->isVectorTy();
2524   bool DstVec = DestTy->isVectorTy();
2525 
2526   Assert(SrcVec == DstVec,
2527          "FPToUI source and dest must both be vector or scalar", &I);
2528   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2529          &I);
2530   Assert(DestTy->isIntOrIntVectorTy(),
2531          "FPToUI result must be integer or integer vector", &I);
2532 
2533   if (SrcVec && DstVec)
2534     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2535                cast<VectorType>(DestTy)->getNumElements(),
2536            "FPToUI source and dest vector length mismatch", &I);
2537 
2538   visitInstruction(I);
2539 }
2540 
2541 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2542   // Get the source and destination types
2543   Type *SrcTy = I.getOperand(0)->getType();
2544   Type *DestTy = I.getType();
2545 
2546   bool SrcVec = SrcTy->isVectorTy();
2547   bool DstVec = DestTy->isVectorTy();
2548 
2549   Assert(SrcVec == DstVec,
2550          "FPToSI source and dest must both be vector or scalar", &I);
2551   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2552          &I);
2553   Assert(DestTy->isIntOrIntVectorTy(),
2554          "FPToSI result must be integer or integer vector", &I);
2555 
2556   if (SrcVec && DstVec)
2557     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2558                cast<VectorType>(DestTy)->getNumElements(),
2559            "FPToSI source and dest vector length mismatch", &I);
2560 
2561   visitInstruction(I);
2562 }
2563 
2564 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2565   // Get the source and destination types
2566   Type *SrcTy = I.getOperand(0)->getType();
2567   Type *DestTy = I.getType();
2568 
2569   Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2570 
2571   if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2572     Assert(!DL.isNonIntegralPointerType(PTy),
2573            "ptrtoint not supported for non-integral pointers");
2574 
2575   Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2576   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2577          &I);
2578 
2579   if (SrcTy->isVectorTy()) {
2580     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2581     VectorType *VDest = dyn_cast<VectorType>(DestTy);
2582     Assert(VSrc->getNumElements() == VDest->getNumElements(),
2583            "PtrToInt Vector width mismatch", &I);
2584   }
2585 
2586   visitInstruction(I);
2587 }
2588 
2589 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2590   // Get the source and destination types
2591   Type *SrcTy = I.getOperand(0)->getType();
2592   Type *DestTy = I.getType();
2593 
2594   Assert(SrcTy->isIntOrIntVectorTy(),
2595          "IntToPtr source must be an integral", &I);
2596   Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2597 
2598   if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2599     Assert(!DL.isNonIntegralPointerType(PTy),
2600            "inttoptr not supported for non-integral pointers");
2601 
2602   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2603          &I);
2604   if (SrcTy->isVectorTy()) {
2605     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2606     VectorType *VDest = dyn_cast<VectorType>(DestTy);
2607     Assert(VSrc->getNumElements() == VDest->getNumElements(),
2608            "IntToPtr Vector width mismatch", &I);
2609   }
2610   visitInstruction(I);
2611 }
2612 
2613 void Verifier::visitBitCastInst(BitCastInst &I) {
2614   Assert(
2615       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2616       "Invalid bitcast", &I);
2617   visitInstruction(I);
2618 }
2619 
2620 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2621   Type *SrcTy = I.getOperand(0)->getType();
2622   Type *DestTy = I.getType();
2623 
2624   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2625          &I);
2626   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2627          &I);
2628   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2629          "AddrSpaceCast must be between different address spaces", &I);
2630   if (SrcTy->isVectorTy())
2631     Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2632            "AddrSpaceCast vector pointer number of elements mismatch", &I);
2633   visitInstruction(I);
2634 }
2635 
2636 /// visitPHINode - Ensure that a PHI node is well formed.
2637 ///
2638 void Verifier::visitPHINode(PHINode &PN) {
2639   // Ensure that the PHI nodes are all grouped together at the top of the block.
2640   // This can be tested by checking whether the instruction before this is
2641   // either nonexistent (because this is begin()) or is a PHI node.  If not,
2642   // then there is some other instruction before a PHI.
2643   Assert(&PN == &PN.getParent()->front() ||
2644              isa<PHINode>(--BasicBlock::iterator(&PN)),
2645          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2646 
2647   // Check that a PHI doesn't yield a Token.
2648   Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2649 
2650   // Check that all of the values of the PHI node have the same type as the
2651   // result, and that the incoming blocks are really basic blocks.
2652   for (Value *IncValue : PN.incoming_values()) {
2653     Assert(PN.getType() == IncValue->getType(),
2654            "PHI node operands are not the same type as the result!", &PN);
2655   }
2656 
2657   // All other PHI node constraints are checked in the visitBasicBlock method.
2658 
2659   visitInstruction(PN);
2660 }
2661 
2662 void Verifier::verifyCallSite(CallSite CS) {
2663   Instruction *I = CS.getInstruction();
2664 
2665   Assert(CS.getCalledValue()->getType()->isPointerTy(),
2666          "Called function must be a pointer!", I);
2667   PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2668 
2669   Assert(FPTy->getElementType()->isFunctionTy(),
2670          "Called function is not pointer to function type!", I);
2671 
2672   Assert(FPTy->getElementType() == CS.getFunctionType(),
2673          "Called function is not the same type as the call!", I);
2674 
2675   FunctionType *FTy = CS.getFunctionType();
2676 
2677   // Verify that the correct number of arguments are being passed
2678   if (FTy->isVarArg())
2679     Assert(CS.arg_size() >= FTy->getNumParams(),
2680            "Called function requires more parameters than were provided!", I);
2681   else
2682     Assert(CS.arg_size() == FTy->getNumParams(),
2683            "Incorrect number of arguments passed to called function!", I);
2684 
2685   // Verify that all arguments to the call match the function type.
2686   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2687     Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
2688            "Call parameter type does not match function signature!",
2689            CS.getArgument(i), FTy->getParamType(i), I);
2690 
2691   AttributeList Attrs = CS.getAttributes();
2692 
2693   Assert(verifyAttributeCount(Attrs, CS.arg_size()),
2694          "Attribute after last parameter!", I);
2695 
2696   if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2697     // Don't allow speculatable on call sites, unless the underlying function
2698     // declaration is also speculatable.
2699     Function *Callee
2700       = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
2701     Assert(Callee && Callee->isSpeculatable(),
2702            "speculatable attribute may not apply to call sites", I);
2703   }
2704 
2705   // Verify call attributes.
2706   verifyFunctionAttrs(FTy, Attrs, I);
2707 
2708   // Conservatively check the inalloca argument.
2709   // We have a bug if we can find that there is an underlying alloca without
2710   // inalloca.
2711   if (CS.hasInAllocaArgument()) {
2712     Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2713     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2714       Assert(AI->isUsedWithInAlloca(),
2715              "inalloca argument for call has mismatched alloca", AI, I);
2716   }
2717 
2718   // For each argument of the callsite, if it has the swifterror argument,
2719   // make sure the underlying alloca/parameter it comes from has a swifterror as
2720   // well.
2721   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2722     if (CS.paramHasAttr(i, Attribute::SwiftError)) {
2723       Value *SwiftErrorArg = CS.getArgument(i);
2724       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2725         Assert(AI->isSwiftError(),
2726                "swifterror argument for call has mismatched alloca", AI, I);
2727         continue;
2728       }
2729       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2730       Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I);
2731       Assert(ArgI->hasSwiftErrorAttr(),
2732              "swifterror argument for call has mismatched parameter", ArgI, I);
2733     }
2734 
2735   if (FTy->isVarArg()) {
2736     // FIXME? is 'nest' even legal here?
2737     bool SawNest = false;
2738     bool SawReturned = false;
2739 
2740     for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2741       if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2742         SawNest = true;
2743       if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2744         SawReturned = true;
2745     }
2746 
2747     // Check attributes on the varargs part.
2748     for (unsigned Idx = FTy->getNumParams(); Idx < CS.arg_size(); ++Idx) {
2749       Type *Ty = CS.getArgument(Idx)->getType();
2750       AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2751       verifyParameterAttrs(ArgAttrs, Ty, I);
2752 
2753       if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2754         Assert(!SawNest, "More than one parameter has attribute nest!", I);
2755         SawNest = true;
2756       }
2757 
2758       if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2759         Assert(!SawReturned, "More than one parameter has attribute returned!",
2760                I);
2761         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2762                "Incompatible argument and return types for 'returned' "
2763                "attribute",
2764                I);
2765         SawReturned = true;
2766       }
2767 
2768       Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2769              "Attribute 'sret' cannot be used for vararg call arguments!", I);
2770 
2771       if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2772         Assert(Idx == CS.arg_size() - 1, "inalloca isn't on the last argument!",
2773                I);
2774     }
2775   }
2776 
2777   // Verify that there's no metadata unless it's a direct call to an intrinsic.
2778   if (CS.getCalledFunction() == nullptr ||
2779       !CS.getCalledFunction()->getName().startswith("llvm.")) {
2780     for (Type *ParamTy : FTy->params()) {
2781       Assert(!ParamTy->isMetadataTy(),
2782              "Function has metadata parameter but isn't an intrinsic", I);
2783       Assert(!ParamTy->isTokenTy(),
2784              "Function has token parameter but isn't an intrinsic", I);
2785     }
2786   }
2787 
2788   // Verify that indirect calls don't return tokens.
2789   if (CS.getCalledFunction() == nullptr)
2790     Assert(!FTy->getReturnType()->isTokenTy(),
2791            "Return type cannot be token for indirect call!");
2792 
2793   if (Function *F = CS.getCalledFunction())
2794     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2795       visitIntrinsicCallSite(ID, CS);
2796 
2797   // Verify that a callsite has at most one "deopt", at most one "funclet" and
2798   // at most one "gc-transition" operand bundle.
2799   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2800        FoundGCTransitionBundle = false;
2801   for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2802     OperandBundleUse BU = CS.getOperandBundleAt(i);
2803     uint32_t Tag = BU.getTagID();
2804     if (Tag == LLVMContext::OB_deopt) {
2805       Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I);
2806       FoundDeoptBundle = true;
2807     } else if (Tag == LLVMContext::OB_gc_transition) {
2808       Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
2809              I);
2810       FoundGCTransitionBundle = true;
2811     } else if (Tag == LLVMContext::OB_funclet) {
2812       Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I);
2813       FoundFuncletBundle = true;
2814       Assert(BU.Inputs.size() == 1,
2815              "Expected exactly one funclet bundle operand", I);
2816       Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2817              "Funclet bundle operands should correspond to a FuncletPadInst",
2818              I);
2819     }
2820   }
2821 
2822   // Verify that each inlinable callsite of a debug-info-bearing function in a
2823   // debug-info-bearing function has a debug location attached to it. Failure to
2824   // do so causes assertion failures when the inliner sets up inline scope info.
2825   if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
2826       CS.getCalledFunction()->getSubprogram())
2827     AssertDI(I->getDebugLoc(), "inlinable function call in a function with "
2828                                "debug info must have a !dbg location",
2829              I);
2830 
2831   visitInstruction(*I);
2832 }
2833 
2834 /// Two types are "congruent" if they are identical, or if they are both pointer
2835 /// types with different pointee types and the same address space.
2836 static bool isTypeCongruent(Type *L, Type *R) {
2837   if (L == R)
2838     return true;
2839   PointerType *PL = dyn_cast<PointerType>(L);
2840   PointerType *PR = dyn_cast<PointerType>(R);
2841   if (!PL || !PR)
2842     return false;
2843   return PL->getAddressSpace() == PR->getAddressSpace();
2844 }
2845 
2846 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
2847   static const Attribute::AttrKind ABIAttrs[] = {
2848       Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2849       Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2850       Attribute::SwiftError};
2851   AttrBuilder Copy;
2852   for (auto AK : ABIAttrs) {
2853     if (Attrs.hasParamAttribute(I, AK))
2854       Copy.addAttribute(AK);
2855   }
2856   if (Attrs.hasParamAttribute(I, Attribute::Alignment))
2857     Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
2858   return Copy;
2859 }
2860 
2861 void Verifier::verifyMustTailCall(CallInst &CI) {
2862   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
2863 
2864   // - The caller and callee prototypes must match.  Pointer types of
2865   //   parameters or return types may differ in pointee type, but not
2866   //   address space.
2867   Function *F = CI.getParent()->getParent();
2868   FunctionType *CallerTy = F->getFunctionType();
2869   FunctionType *CalleeTy = CI.getFunctionType();
2870   if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
2871     Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
2872            "cannot guarantee tail call due to mismatched parameter counts",
2873            &CI);
2874     for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2875       Assert(
2876           isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
2877           "cannot guarantee tail call due to mismatched parameter types", &CI);
2878     }
2879   }
2880   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
2881          "cannot guarantee tail call due to mismatched varargs", &CI);
2882   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
2883          "cannot guarantee tail call due to mismatched return types", &CI);
2884 
2885   // - The calling conventions of the caller and callee must match.
2886   Assert(F->getCallingConv() == CI.getCallingConv(),
2887          "cannot guarantee tail call due to mismatched calling conv", &CI);
2888 
2889   // - All ABI-impacting function attributes, such as sret, byval, inreg,
2890   //   returned, and inalloca, must match.
2891   AttributeList CallerAttrs = F->getAttributes();
2892   AttributeList CalleeAttrs = CI.getAttributes();
2893   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2894     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2895     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2896     Assert(CallerABIAttrs == CalleeABIAttrs,
2897            "cannot guarantee tail call due to mismatched ABI impacting "
2898            "function attributes",
2899            &CI, CI.getOperand(I));
2900   }
2901 
2902   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2903   //   or a pointer bitcast followed by a ret instruction.
2904   // - The ret instruction must return the (possibly bitcasted) value
2905   //   produced by the call or void.
2906   Value *RetVal = &CI;
2907   Instruction *Next = CI.getNextNode();
2908 
2909   // Handle the optional bitcast.
2910   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2911     Assert(BI->getOperand(0) == RetVal,
2912            "bitcast following musttail call must use the call", BI);
2913     RetVal = BI;
2914     Next = BI->getNextNode();
2915   }
2916 
2917   // Check the return.
2918   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2919   Assert(Ret, "musttail call must precede a ret with an optional bitcast",
2920          &CI);
2921   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
2922          "musttail call result must be returned", Ret);
2923 }
2924 
2925 void Verifier::visitCallInst(CallInst &CI) {
2926   verifyCallSite(&CI);
2927 
2928   if (CI.isMustTailCall())
2929     verifyMustTailCall(CI);
2930 }
2931 
2932 void Verifier::visitInvokeInst(InvokeInst &II) {
2933   verifyCallSite(&II);
2934 
2935   // Verify that the first non-PHI instruction of the unwind destination is an
2936   // exception handling instruction.
2937   Assert(
2938       II.getUnwindDest()->isEHPad(),
2939       "The unwind destination does not have an exception handling instruction!",
2940       &II);
2941 
2942   visitTerminatorInst(II);
2943 }
2944 
2945 /// visitBinaryOperator - Check that both arguments to the binary operator are
2946 /// of the same type!
2947 ///
2948 void Verifier::visitBinaryOperator(BinaryOperator &B) {
2949   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
2950          "Both operands to a binary operator are not of the same type!", &B);
2951 
2952   switch (B.getOpcode()) {
2953   // Check that integer arithmetic operators are only used with
2954   // integral operands.
2955   case Instruction::Add:
2956   case Instruction::Sub:
2957   case Instruction::Mul:
2958   case Instruction::SDiv:
2959   case Instruction::UDiv:
2960   case Instruction::SRem:
2961   case Instruction::URem:
2962     Assert(B.getType()->isIntOrIntVectorTy(),
2963            "Integer arithmetic operators only work with integral types!", &B);
2964     Assert(B.getType() == B.getOperand(0)->getType(),
2965            "Integer arithmetic operators must have same type "
2966            "for operands and result!",
2967            &B);
2968     break;
2969   // Check that floating-point arithmetic operators are only used with
2970   // floating-point operands.
2971   case Instruction::FAdd:
2972   case Instruction::FSub:
2973   case Instruction::FMul:
2974   case Instruction::FDiv:
2975   case Instruction::FRem:
2976     Assert(B.getType()->isFPOrFPVectorTy(),
2977            "Floating-point arithmetic operators only work with "
2978            "floating-point types!",
2979            &B);
2980     Assert(B.getType() == B.getOperand(0)->getType(),
2981            "Floating-point arithmetic operators must have same type "
2982            "for operands and result!",
2983            &B);
2984     break;
2985   // Check that logical operators are only used with integral operands.
2986   case Instruction::And:
2987   case Instruction::Or:
2988   case Instruction::Xor:
2989     Assert(B.getType()->isIntOrIntVectorTy(),
2990            "Logical operators only work with integral types!", &B);
2991     Assert(B.getType() == B.getOperand(0)->getType(),
2992            "Logical operators must have same type for operands and result!",
2993            &B);
2994     break;
2995   case Instruction::Shl:
2996   case Instruction::LShr:
2997   case Instruction::AShr:
2998     Assert(B.getType()->isIntOrIntVectorTy(),
2999            "Shifts only work with integral types!", &B);
3000     Assert(B.getType() == B.getOperand(0)->getType(),
3001            "Shift return type must be same as operands!", &B);
3002     break;
3003   default:
3004     llvm_unreachable("Unknown BinaryOperator opcode!");
3005   }
3006 
3007   visitInstruction(B);
3008 }
3009 
3010 void Verifier::visitICmpInst(ICmpInst &IC) {
3011   // Check that the operands are the same type
3012   Type *Op0Ty = IC.getOperand(0)->getType();
3013   Type *Op1Ty = IC.getOperand(1)->getType();
3014   Assert(Op0Ty == Op1Ty,
3015          "Both operands to ICmp instruction are not of the same type!", &IC);
3016   // Check that the operands are the right type
3017   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3018          "Invalid operand types for ICmp instruction", &IC);
3019   // Check that the predicate is valid.
3020   Assert(IC.isIntPredicate(),
3021          "Invalid predicate in ICmp instruction!", &IC);
3022 
3023   visitInstruction(IC);
3024 }
3025 
3026 void Verifier::visitFCmpInst(FCmpInst &FC) {
3027   // Check that the operands are the same type
3028   Type *Op0Ty = FC.getOperand(0)->getType();
3029   Type *Op1Ty = FC.getOperand(1)->getType();
3030   Assert(Op0Ty == Op1Ty,
3031          "Both operands to FCmp instruction are not of the same type!", &FC);
3032   // Check that the operands are the right type
3033   Assert(Op0Ty->isFPOrFPVectorTy(),
3034          "Invalid operand types for FCmp instruction", &FC);
3035   // Check that the predicate is valid.
3036   Assert(FC.isFPPredicate(),
3037          "Invalid predicate in FCmp instruction!", &FC);
3038 
3039   visitInstruction(FC);
3040 }
3041 
3042 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3043   Assert(
3044       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3045       "Invalid extractelement operands!", &EI);
3046   visitInstruction(EI);
3047 }
3048 
3049 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3050   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3051                                             IE.getOperand(2)),
3052          "Invalid insertelement operands!", &IE);
3053   visitInstruction(IE);
3054 }
3055 
3056 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3057   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3058                                             SV.getOperand(2)),
3059          "Invalid shufflevector operands!", &SV);
3060   visitInstruction(SV);
3061 }
3062 
3063 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3064   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3065 
3066   Assert(isa<PointerType>(TargetTy),
3067          "GEP base pointer is not a vector or a vector of pointers", &GEP);
3068   Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3069 
3070   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3071   Assert(all_of(
3072       Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3073       "GEP indexes must be integers", &GEP);
3074   Type *ElTy =
3075       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3076   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3077 
3078   Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3079              GEP.getResultElementType() == ElTy,
3080          "GEP is not of right type for indices!", &GEP, ElTy);
3081 
3082   if (GEP.getType()->isVectorTy()) {
3083     // Additional checks for vector GEPs.
3084     unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3085     if (GEP.getPointerOperandType()->isVectorTy())
3086       Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
3087              "Vector GEP result width doesn't match operand's", &GEP);
3088     for (Value *Idx : Idxs) {
3089       Type *IndexTy = Idx->getType();
3090       if (IndexTy->isVectorTy()) {
3091         unsigned IndexWidth = IndexTy->getVectorNumElements();
3092         Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3093       }
3094       Assert(IndexTy->isIntOrIntVectorTy(),
3095              "All GEP indices should be of integer type");
3096     }
3097   }
3098   visitInstruction(GEP);
3099 }
3100 
3101 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3102   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3103 }
3104 
3105 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3106   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3107          "precondition violation");
3108 
3109   unsigned NumOperands = Range->getNumOperands();
3110   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3111   unsigned NumRanges = NumOperands / 2;
3112   Assert(NumRanges >= 1, "It should have at least one range!", Range);
3113 
3114   ConstantRange LastRange(1); // Dummy initial value
3115   for (unsigned i = 0; i < NumRanges; ++i) {
3116     ConstantInt *Low =
3117         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3118     Assert(Low, "The lower limit must be an integer!", Low);
3119     ConstantInt *High =
3120         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3121     Assert(High, "The upper limit must be an integer!", High);
3122     Assert(High->getType() == Low->getType() && High->getType() == Ty,
3123            "Range types must match instruction type!", &I);
3124 
3125     APInt HighV = High->getValue();
3126     APInt LowV = Low->getValue();
3127     ConstantRange CurRange(LowV, HighV);
3128     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3129            "Range must not be empty!", Range);
3130     if (i != 0) {
3131       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3132              "Intervals are overlapping", Range);
3133       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3134              Range);
3135       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3136              Range);
3137     }
3138     LastRange = ConstantRange(LowV, HighV);
3139   }
3140   if (NumRanges > 2) {
3141     APInt FirstLow =
3142         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3143     APInt FirstHigh =
3144         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3145     ConstantRange FirstRange(FirstLow, FirstHigh);
3146     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3147            "Intervals are overlapping", Range);
3148     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3149            Range);
3150   }
3151 }
3152 
3153 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3154   unsigned Size = DL.getTypeSizeInBits(Ty);
3155   Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3156   Assert(!(Size & (Size - 1)),
3157          "atomic memory access' operand must have a power-of-two size", Ty, I);
3158 }
3159 
3160 void Verifier::visitLoadInst(LoadInst &LI) {
3161   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3162   Assert(PTy, "Load operand must be a pointer.", &LI);
3163   Type *ElTy = LI.getType();
3164   Assert(LI.getAlignment() <= Value::MaximumAlignment,
3165          "huge alignment values are unsupported", &LI);
3166   Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3167   if (LI.isAtomic()) {
3168     Assert(LI.getOrdering() != AtomicOrdering::Release &&
3169                LI.getOrdering() != AtomicOrdering::AcquireRelease,
3170            "Load cannot have Release ordering", &LI);
3171     Assert(LI.getAlignment() != 0,
3172            "Atomic load must specify explicit alignment", &LI);
3173     Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
3174                ElTy->isFloatingPointTy(),
3175            "atomic load operand must have integer, pointer, or floating point "
3176            "type!",
3177            ElTy, &LI);
3178     checkAtomicMemAccessSize(ElTy, &LI);
3179   } else {
3180     Assert(LI.getSyncScopeID() == SyncScope::System,
3181            "Non-atomic load cannot have SynchronizationScope specified", &LI);
3182   }
3183 
3184   visitInstruction(LI);
3185 }
3186 
3187 void Verifier::visitStoreInst(StoreInst &SI) {
3188   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3189   Assert(PTy, "Store operand must be a pointer.", &SI);
3190   Type *ElTy = PTy->getElementType();
3191   Assert(ElTy == SI.getOperand(0)->getType(),
3192          "Stored value type does not match pointer operand type!", &SI, ElTy);
3193   Assert(SI.getAlignment() <= Value::MaximumAlignment,
3194          "huge alignment values are unsupported", &SI);
3195   Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3196   if (SI.isAtomic()) {
3197     Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3198                SI.getOrdering() != AtomicOrdering::AcquireRelease,
3199            "Store cannot have Acquire ordering", &SI);
3200     Assert(SI.getAlignment() != 0,
3201            "Atomic store must specify explicit alignment", &SI);
3202     Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
3203                ElTy->isFloatingPointTy(),
3204            "atomic store operand must have integer, pointer, or floating point "
3205            "type!",
3206            ElTy, &SI);
3207     checkAtomicMemAccessSize(ElTy, &SI);
3208   } else {
3209     Assert(SI.getSyncScopeID() == SyncScope::System,
3210            "Non-atomic store cannot have SynchronizationScope specified", &SI);
3211   }
3212   visitInstruction(SI);
3213 }
3214 
3215 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3216 void Verifier::verifySwiftErrorCallSite(CallSite CS,
3217                                         const Value *SwiftErrorVal) {
3218   unsigned Idx = 0;
3219   for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
3220        I != E; ++I, ++Idx) {
3221     if (*I == SwiftErrorVal) {
3222       Assert(CS.paramHasAttr(Idx, Attribute::SwiftError),
3223              "swifterror value when used in a callsite should be marked "
3224              "with swifterror attribute",
3225               SwiftErrorVal, CS);
3226     }
3227   }
3228 }
3229 
3230 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3231   // Check that swifterror value is only used by loads, stores, or as
3232   // a swifterror argument.
3233   for (const User *U : SwiftErrorVal->users()) {
3234     Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3235            isa<InvokeInst>(U),
3236            "swifterror value can only be loaded and stored from, or "
3237            "as a swifterror argument!",
3238            SwiftErrorVal, U);
3239     // If it is used by a store, check it is the second operand.
3240     if (auto StoreI = dyn_cast<StoreInst>(U))
3241       Assert(StoreI->getOperand(1) == SwiftErrorVal,
3242              "swifterror value should be the second operand when used "
3243              "by stores", SwiftErrorVal, U);
3244     if (auto CallI = dyn_cast<CallInst>(U))
3245       verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
3246     if (auto II = dyn_cast<InvokeInst>(U))
3247       verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
3248   }
3249 }
3250 
3251 void Verifier::visitAllocaInst(AllocaInst &AI) {
3252   SmallPtrSet<Type*, 4> Visited;
3253   PointerType *PTy = AI.getType();
3254   // TODO: Relax this restriction?
3255   Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),
3256          "Allocation instruction pointer not in the stack address space!",
3257          &AI);
3258   Assert(AI.getAllocatedType()->isSized(&Visited),
3259          "Cannot allocate unsized type", &AI);
3260   Assert(AI.getArraySize()->getType()->isIntegerTy(),
3261          "Alloca array size must have integer type", &AI);
3262   Assert(AI.getAlignment() <= Value::MaximumAlignment,
3263          "huge alignment values are unsupported", &AI);
3264 
3265   if (AI.isSwiftError()) {
3266     verifySwiftErrorValue(&AI);
3267   }
3268 
3269   visitInstruction(AI);
3270 }
3271 
3272 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3273 
3274   // FIXME: more conditions???
3275   Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
3276          "cmpxchg instructions must be atomic.", &CXI);
3277   Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
3278          "cmpxchg instructions must be atomic.", &CXI);
3279   Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
3280          "cmpxchg instructions cannot be unordered.", &CXI);
3281   Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
3282          "cmpxchg instructions cannot be unordered.", &CXI);
3283   Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
3284          "cmpxchg instructions failure argument shall be no stronger than the "
3285          "success argument",
3286          &CXI);
3287   Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
3288              CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
3289          "cmpxchg failure ordering cannot include release semantics", &CXI);
3290 
3291   PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3292   Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3293   Type *ElTy = PTy->getElementType();
3294   Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(),
3295         "cmpxchg operand must have integer or pointer type",
3296          ElTy, &CXI);
3297   checkAtomicMemAccessSize(ElTy, &CXI);
3298   Assert(ElTy == CXI.getOperand(1)->getType(),
3299          "Expected value type does not match pointer operand type!", &CXI,
3300          ElTy);
3301   Assert(ElTy == CXI.getOperand(2)->getType(),
3302          "Stored value type does not match pointer operand type!", &CXI, ElTy);
3303   visitInstruction(CXI);
3304 }
3305 
3306 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3307   Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
3308          "atomicrmw instructions must be atomic.", &RMWI);
3309   Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3310          "atomicrmw instructions cannot be unordered.", &RMWI);
3311   PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3312   Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3313   Type *ElTy = PTy->getElementType();
3314   Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
3315          &RMWI, ElTy);
3316   checkAtomicMemAccessSize(ElTy, &RMWI);
3317   Assert(ElTy == RMWI.getOperand(1)->getType(),
3318          "Argument value type does not match pointer operand type!", &RMWI,
3319          ElTy);
3320   Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
3321              RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
3322          "Invalid binary operation!", &RMWI);
3323   visitInstruction(RMWI);
3324 }
3325 
3326 void Verifier::visitFenceInst(FenceInst &FI) {
3327   const AtomicOrdering Ordering = FI.getOrdering();
3328   Assert(Ordering == AtomicOrdering::Acquire ||
3329              Ordering == AtomicOrdering::Release ||
3330              Ordering == AtomicOrdering::AcquireRelease ||
3331              Ordering == AtomicOrdering::SequentiallyConsistent,
3332          "fence instructions may only have acquire, release, acq_rel, or "
3333          "seq_cst ordering.",
3334          &FI);
3335   visitInstruction(FI);
3336 }
3337 
3338 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3339   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3340                                           EVI.getIndices()) == EVI.getType(),
3341          "Invalid ExtractValueInst operands!", &EVI);
3342 
3343   visitInstruction(EVI);
3344 }
3345 
3346 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3347   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3348                                           IVI.getIndices()) ==
3349              IVI.getOperand(1)->getType(),
3350          "Invalid InsertValueInst operands!", &IVI);
3351 
3352   visitInstruction(IVI);
3353 }
3354 
3355 static Value *getParentPad(Value *EHPad) {
3356   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3357     return FPI->getParentPad();
3358 
3359   return cast<CatchSwitchInst>(EHPad)->getParentPad();
3360 }
3361 
3362 void Verifier::visitEHPadPredecessors(Instruction &I) {
3363   assert(I.isEHPad());
3364 
3365   BasicBlock *BB = I.getParent();
3366   Function *F = BB->getParent();
3367 
3368   Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3369 
3370   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3371     // The landingpad instruction defines its parent as a landing pad block. The
3372     // landing pad block may be branched to only by the unwind edge of an
3373     // invoke.
3374     for (BasicBlock *PredBB : predecessors(BB)) {
3375       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3376       Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3377              "Block containing LandingPadInst must be jumped to "
3378              "only by the unwind edge of an invoke.",
3379              LPI);
3380     }
3381     return;
3382   }
3383   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3384     if (!pred_empty(BB))
3385       Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3386              "Block containg CatchPadInst must be jumped to "
3387              "only by its catchswitch.",
3388              CPI);
3389     Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3390            "Catchswitch cannot unwind to one of its catchpads",
3391            CPI->getCatchSwitch(), CPI);
3392     return;
3393   }
3394 
3395   // Verify that each pred has a legal terminator with a legal to/from EH
3396   // pad relationship.
3397   Instruction *ToPad = &I;
3398   Value *ToPadParent = getParentPad(ToPad);
3399   for (BasicBlock *PredBB : predecessors(BB)) {
3400     TerminatorInst *TI = PredBB->getTerminator();
3401     Value *FromPad;
3402     if (auto *II = dyn_cast<InvokeInst>(TI)) {
3403       Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3404              "EH pad must be jumped to via an unwind edge", ToPad, II);
3405       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3406         FromPad = Bundle->Inputs[0];
3407       else
3408         FromPad = ConstantTokenNone::get(II->getContext());
3409     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3410       FromPad = CRI->getOperand(0);
3411       Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3412     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3413       FromPad = CSI;
3414     } else {
3415       Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3416     }
3417 
3418     // The edge may exit from zero or more nested pads.
3419     SmallSet<Value *, 8> Seen;
3420     for (;; FromPad = getParentPad(FromPad)) {
3421       Assert(FromPad != ToPad,
3422              "EH pad cannot handle exceptions raised within it", FromPad, TI);
3423       if (FromPad == ToPadParent) {
3424         // This is a legal unwind edge.
3425         break;
3426       }
3427       Assert(!isa<ConstantTokenNone>(FromPad),
3428              "A single unwind edge may only enter one EH pad", TI);
3429       Assert(Seen.insert(FromPad).second,
3430              "EH pad jumps through a cycle of pads", FromPad);
3431     }
3432   }
3433 }
3434 
3435 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3436   // The landingpad instruction is ill-formed if it doesn't have any clauses and
3437   // isn't a cleanup.
3438   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3439          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3440 
3441   visitEHPadPredecessors(LPI);
3442 
3443   if (!LandingPadResultTy)
3444     LandingPadResultTy = LPI.getType();
3445   else
3446     Assert(LandingPadResultTy == LPI.getType(),
3447            "The landingpad instruction should have a consistent result type "
3448            "inside a function.",
3449            &LPI);
3450 
3451   Function *F = LPI.getParent()->getParent();
3452   Assert(F->hasPersonalityFn(),
3453          "LandingPadInst needs to be in a function with a personality.", &LPI);
3454 
3455   // The landingpad instruction must be the first non-PHI instruction in the
3456   // block.
3457   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3458          "LandingPadInst not the first non-PHI instruction in the block.",
3459          &LPI);
3460 
3461   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3462     Constant *Clause = LPI.getClause(i);
3463     if (LPI.isCatch(i)) {
3464       Assert(isa<PointerType>(Clause->getType()),
3465              "Catch operand does not have pointer type!", &LPI);
3466     } else {
3467       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3468       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3469              "Filter operand is not an array of constants!", &LPI);
3470     }
3471   }
3472 
3473   visitInstruction(LPI);
3474 }
3475 
3476 void Verifier::visitResumeInst(ResumeInst &RI) {
3477   Assert(RI.getFunction()->hasPersonalityFn(),
3478          "ResumeInst needs to be in a function with a personality.", &RI);
3479 
3480   if (!LandingPadResultTy)
3481     LandingPadResultTy = RI.getValue()->getType();
3482   else
3483     Assert(LandingPadResultTy == RI.getValue()->getType(),
3484            "The resume instruction should have a consistent result type "
3485            "inside a function.",
3486            &RI);
3487 
3488   visitTerminatorInst(RI);
3489 }
3490 
3491 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3492   BasicBlock *BB = CPI.getParent();
3493 
3494   Function *F = BB->getParent();
3495   Assert(F->hasPersonalityFn(),
3496          "CatchPadInst needs to be in a function with a personality.", &CPI);
3497 
3498   Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3499          "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3500          CPI.getParentPad());
3501 
3502   // The catchpad instruction must be the first non-PHI instruction in the
3503   // block.
3504   Assert(BB->getFirstNonPHI() == &CPI,
3505          "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3506 
3507   visitEHPadPredecessors(CPI);
3508   visitFuncletPadInst(CPI);
3509 }
3510 
3511 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3512   Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3513          "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3514          CatchReturn.getOperand(0));
3515 
3516   visitTerminatorInst(CatchReturn);
3517 }
3518 
3519 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3520   BasicBlock *BB = CPI.getParent();
3521 
3522   Function *F = BB->getParent();
3523   Assert(F->hasPersonalityFn(),
3524          "CleanupPadInst needs to be in a function with a personality.", &CPI);
3525 
3526   // The cleanuppad instruction must be the first non-PHI instruction in the
3527   // block.
3528   Assert(BB->getFirstNonPHI() == &CPI,
3529          "CleanupPadInst not the first non-PHI instruction in the block.",
3530          &CPI);
3531 
3532   auto *ParentPad = CPI.getParentPad();
3533   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3534          "CleanupPadInst has an invalid parent.", &CPI);
3535 
3536   visitEHPadPredecessors(CPI);
3537   visitFuncletPadInst(CPI);
3538 }
3539 
3540 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3541   User *FirstUser = nullptr;
3542   Value *FirstUnwindPad = nullptr;
3543   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3544   SmallSet<FuncletPadInst *, 8> Seen;
3545 
3546   while (!Worklist.empty()) {
3547     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3548     Assert(Seen.insert(CurrentPad).second,
3549            "FuncletPadInst must not be nested within itself", CurrentPad);
3550     Value *UnresolvedAncestorPad = nullptr;
3551     for (User *U : CurrentPad->users()) {
3552       BasicBlock *UnwindDest;
3553       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3554         UnwindDest = CRI->getUnwindDest();
3555       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3556         // We allow catchswitch unwind to caller to nest
3557         // within an outer pad that unwinds somewhere else,
3558         // because catchswitch doesn't have a nounwind variant.
3559         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3560         if (CSI->unwindsToCaller())
3561           continue;
3562         UnwindDest = CSI->getUnwindDest();
3563       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3564         UnwindDest = II->getUnwindDest();
3565       } else if (isa<CallInst>(U)) {
3566         // Calls which don't unwind may be found inside funclet
3567         // pads that unwind somewhere else.  We don't *require*
3568         // such calls to be annotated nounwind.
3569         continue;
3570       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3571         // The unwind dest for a cleanup can only be found by
3572         // recursive search.  Add it to the worklist, and we'll
3573         // search for its first use that determines where it unwinds.
3574         Worklist.push_back(CPI);
3575         continue;
3576       } else {
3577         Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3578         continue;
3579       }
3580 
3581       Value *UnwindPad;
3582       bool ExitsFPI;
3583       if (UnwindDest) {
3584         UnwindPad = UnwindDest->getFirstNonPHI();
3585         if (!cast<Instruction>(UnwindPad)->isEHPad())
3586           continue;
3587         Value *UnwindParent = getParentPad(UnwindPad);
3588         // Ignore unwind edges that don't exit CurrentPad.
3589         if (UnwindParent == CurrentPad)
3590           continue;
3591         // Determine whether the original funclet pad is exited,
3592         // and if we are scanning nested pads determine how many
3593         // of them are exited so we can stop searching their
3594         // children.
3595         Value *ExitedPad = CurrentPad;
3596         ExitsFPI = false;
3597         do {
3598           if (ExitedPad == &FPI) {
3599             ExitsFPI = true;
3600             // Now we can resolve any ancestors of CurrentPad up to
3601             // FPI, but not including FPI since we need to make sure
3602             // to check all direct users of FPI for consistency.
3603             UnresolvedAncestorPad = &FPI;
3604             break;
3605           }
3606           Value *ExitedParent = getParentPad(ExitedPad);
3607           if (ExitedParent == UnwindParent) {
3608             // ExitedPad is the ancestor-most pad which this unwind
3609             // edge exits, so we can resolve up to it, meaning that
3610             // ExitedParent is the first ancestor still unresolved.
3611             UnresolvedAncestorPad = ExitedParent;
3612             break;
3613           }
3614           ExitedPad = ExitedParent;
3615         } while (!isa<ConstantTokenNone>(ExitedPad));
3616       } else {
3617         // Unwinding to caller exits all pads.
3618         UnwindPad = ConstantTokenNone::get(FPI.getContext());
3619         ExitsFPI = true;
3620         UnresolvedAncestorPad = &FPI;
3621       }
3622 
3623       if (ExitsFPI) {
3624         // This unwind edge exits FPI.  Make sure it agrees with other
3625         // such edges.
3626         if (FirstUser) {
3627           Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3628                                               "pad must have the same unwind "
3629                                               "dest",
3630                  &FPI, U, FirstUser);
3631         } else {
3632           FirstUser = U;
3633           FirstUnwindPad = UnwindPad;
3634           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3635           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3636               getParentPad(UnwindPad) == getParentPad(&FPI))
3637             SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3638         }
3639       }
3640       // Make sure we visit all uses of FPI, but for nested pads stop as
3641       // soon as we know where they unwind to.
3642       if (CurrentPad != &FPI)
3643         break;
3644     }
3645     if (UnresolvedAncestorPad) {
3646       if (CurrentPad == UnresolvedAncestorPad) {
3647         // When CurrentPad is FPI itself, we don't mark it as resolved even if
3648         // we've found an unwind edge that exits it, because we need to verify
3649         // all direct uses of FPI.
3650         assert(CurrentPad == &FPI);
3651         continue;
3652       }
3653       // Pop off the worklist any nested pads that we've found an unwind
3654       // destination for.  The pads on the worklist are the uncles,
3655       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
3656       // for all ancestors of CurrentPad up to but not including
3657       // UnresolvedAncestorPad.
3658       Value *ResolvedPad = CurrentPad;
3659       while (!Worklist.empty()) {
3660         Value *UnclePad = Worklist.back();
3661         Value *AncestorPad = getParentPad(UnclePad);
3662         // Walk ResolvedPad up the ancestor list until we either find the
3663         // uncle's parent or the last resolved ancestor.
3664         while (ResolvedPad != AncestorPad) {
3665           Value *ResolvedParent = getParentPad(ResolvedPad);
3666           if (ResolvedParent == UnresolvedAncestorPad) {
3667             break;
3668           }
3669           ResolvedPad = ResolvedParent;
3670         }
3671         // If the resolved ancestor search didn't find the uncle's parent,
3672         // then the uncle is not yet resolved.
3673         if (ResolvedPad != AncestorPad)
3674           break;
3675         // This uncle is resolved, so pop it from the worklist.
3676         Worklist.pop_back();
3677       }
3678     }
3679   }
3680 
3681   if (FirstUnwindPad) {
3682     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3683       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3684       Value *SwitchUnwindPad;
3685       if (SwitchUnwindDest)
3686         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3687       else
3688         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3689       Assert(SwitchUnwindPad == FirstUnwindPad,
3690              "Unwind edges out of a catch must have the same unwind dest as "
3691              "the parent catchswitch",
3692              &FPI, FirstUser, CatchSwitch);
3693     }
3694   }
3695 
3696   visitInstruction(FPI);
3697 }
3698 
3699 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3700   BasicBlock *BB = CatchSwitch.getParent();
3701 
3702   Function *F = BB->getParent();
3703   Assert(F->hasPersonalityFn(),
3704          "CatchSwitchInst needs to be in a function with a personality.",
3705          &CatchSwitch);
3706 
3707   // The catchswitch instruction must be the first non-PHI instruction in the
3708   // block.
3709   Assert(BB->getFirstNonPHI() == &CatchSwitch,
3710          "CatchSwitchInst not the first non-PHI instruction in the block.",
3711          &CatchSwitch);
3712 
3713   auto *ParentPad = CatchSwitch.getParentPad();
3714   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3715          "CatchSwitchInst has an invalid parent.", ParentPad);
3716 
3717   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3718     Instruction *I = UnwindDest->getFirstNonPHI();
3719     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3720            "CatchSwitchInst must unwind to an EH block which is not a "
3721            "landingpad.",
3722            &CatchSwitch);
3723 
3724     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3725     if (getParentPad(I) == ParentPad)
3726       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3727   }
3728 
3729   Assert(CatchSwitch.getNumHandlers() != 0,
3730          "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3731 
3732   for (BasicBlock *Handler : CatchSwitch.handlers()) {
3733     Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3734            "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3735   }
3736 
3737   visitEHPadPredecessors(CatchSwitch);
3738   visitTerminatorInst(CatchSwitch);
3739 }
3740 
3741 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3742   Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3743          "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3744          CRI.getOperand(0));
3745 
3746   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3747     Instruction *I = UnwindDest->getFirstNonPHI();
3748     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3749            "CleanupReturnInst must unwind to an EH block which is not a "
3750            "landingpad.",
3751            &CRI);
3752   }
3753 
3754   visitTerminatorInst(CRI);
3755 }
3756 
3757 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3758   Instruction *Op = cast<Instruction>(I.getOperand(i));
3759   // If the we have an invalid invoke, don't try to compute the dominance.
3760   // We already reject it in the invoke specific checks and the dominance
3761   // computation doesn't handle multiple edges.
3762   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3763     if (II->getNormalDest() == II->getUnwindDest())
3764       return;
3765   }
3766 
3767   // Quick check whether the def has already been encountered in the same block.
3768   // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
3769   // uses are defined to happen on the incoming edge, not at the instruction.
3770   //
3771   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3772   // wrapping an SSA value, assert that we've already encountered it.  See
3773   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3774   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3775     return;
3776 
3777   const Use &U = I.getOperandUse(i);
3778   Assert(DT.dominates(Op, U),
3779          "Instruction does not dominate all uses!", Op, &I);
3780 }
3781 
3782 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3783   Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3784          "apply only to pointer types", &I);
3785   Assert(isa<LoadInst>(I),
3786          "dereferenceable, dereferenceable_or_null apply only to load"
3787          " instructions, use attributes for calls or invokes", &I);
3788   Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3789          "take one operand!", &I);
3790   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3791   Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3792          "dereferenceable_or_null metadata value must be an i64!", &I);
3793 }
3794 
3795 /// verifyInstruction - Verify that an instruction is well formed.
3796 ///
3797 void Verifier::visitInstruction(Instruction &I) {
3798   BasicBlock *BB = I.getParent();
3799   Assert(BB, "Instruction not embedded in basic block!", &I);
3800 
3801   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
3802     for (User *U : I.users()) {
3803       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
3804              "Only PHI nodes may reference their own value!", &I);
3805     }
3806   }
3807 
3808   // Check that void typed values don't have names
3809   Assert(!I.getType()->isVoidTy() || !I.hasName(),
3810          "Instruction has a name, but provides a void value!", &I);
3811 
3812   // Check that the return value of the instruction is either void or a legal
3813   // value type.
3814   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
3815          "Instruction returns a non-scalar type!", &I);
3816 
3817   // Check that the instruction doesn't produce metadata. Calls are already
3818   // checked against the callee type.
3819   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
3820          "Invalid use of metadata!", &I);
3821 
3822   // Check that all uses of the instruction, if they are instructions
3823   // themselves, actually have parent basic blocks.  If the use is not an
3824   // instruction, it is an error!
3825   for (Use &U : I.uses()) {
3826     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3827       Assert(Used->getParent() != nullptr,
3828              "Instruction referencing"
3829              " instruction not embedded in a basic block!",
3830              &I, Used);
3831     else {
3832       CheckFailed("Use of instruction is not an instruction!", U);
3833       return;
3834     }
3835   }
3836 
3837   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3838     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
3839 
3840     // Check to make sure that only first-class-values are operands to
3841     // instructions.
3842     if (!I.getOperand(i)->getType()->isFirstClassType()) {
3843       Assert(false, "Instruction operands must be first-class values!", &I);
3844     }
3845 
3846     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3847       // Check to make sure that the "address of" an intrinsic function is never
3848       // taken.
3849       Assert(
3850           !F->isIntrinsic() ||
3851               i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
3852           "Cannot take the address of an intrinsic!", &I);
3853       Assert(
3854           !F->isIntrinsic() || isa<CallInst>(I) ||
3855               F->getIntrinsicID() == Intrinsic::donothing ||
3856               F->getIntrinsicID() == Intrinsic::coro_resume ||
3857               F->getIntrinsicID() == Intrinsic::coro_destroy ||
3858               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
3859               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
3860               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
3861           "Cannot invoke an intrinsic other than donothing, patchpoint, "
3862           "statepoint, coro_resume or coro_destroy",
3863           &I);
3864       Assert(F->getParent() == &M, "Referencing function in another module!",
3865              &I, &M, F, F->getParent());
3866     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3867       Assert(OpBB->getParent() == BB->getParent(),
3868              "Referring to a basic block in another function!", &I);
3869     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3870       Assert(OpArg->getParent() == BB->getParent(),
3871              "Referring to an argument in another function!", &I);
3872     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3873       Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
3874              &M, GV, GV->getParent());
3875     } else if (isa<Instruction>(I.getOperand(i))) {
3876       verifyDominatesUse(I, i);
3877     } else if (isa<InlineAsm>(I.getOperand(i))) {
3878       Assert((i + 1 == e && isa<CallInst>(I)) ||
3879                  (i + 3 == e && isa<InvokeInst>(I)),
3880              "Cannot take the address of an inline asm!", &I);
3881     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3882       if (CE->getType()->isPtrOrPtrVectorTy() ||
3883           !DL.getNonIntegralAddressSpaces().empty()) {
3884         // If we have a ConstantExpr pointer, we need to see if it came from an
3885         // illegal bitcast.  If the datalayout string specifies non-integral
3886         // address spaces then we also need to check for illegal ptrtoint and
3887         // inttoptr expressions.
3888         visitConstantExprsRecursively(CE);
3889       }
3890     }
3891   }
3892 
3893   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3894     Assert(I.getType()->isFPOrFPVectorTy(),
3895            "fpmath requires a floating point result!", &I);
3896     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
3897     if (ConstantFP *CFP0 =
3898             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3899       const APFloat &Accuracy = CFP0->getValueAPF();
3900       Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
3901              "fpmath accuracy must have float type", &I);
3902       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
3903              "fpmath accuracy not a positive number!", &I);
3904     } else {
3905       Assert(false, "invalid fpmath accuracy!", &I);
3906     }
3907   }
3908 
3909   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3910     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
3911            "Ranges are only for loads, calls and invokes!", &I);
3912     visitRangeMetadata(I, Range, I.getType());
3913   }
3914 
3915   if (I.getMetadata(LLVMContext::MD_nonnull)) {
3916     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
3917            &I);
3918     Assert(isa<LoadInst>(I),
3919            "nonnull applies only to load instructions, use attributes"
3920            " for calls or invokes",
3921            &I);
3922   }
3923 
3924   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
3925     visitDereferenceableMetadata(I, MD);
3926 
3927   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
3928     visitDereferenceableMetadata(I, MD);
3929 
3930   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
3931     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
3932 
3933   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3934     Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
3935            &I);
3936     Assert(isa<LoadInst>(I), "align applies only to load instructions, "
3937            "use attributes for calls or invokes", &I);
3938     Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
3939     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3940     Assert(CI && CI->getType()->isIntegerTy(64),
3941            "align metadata value must be an i64!", &I);
3942     uint64_t Align = CI->getZExtValue();
3943     Assert(isPowerOf2_64(Align),
3944            "align metadata value must be a power of 2!", &I);
3945     Assert(Align <= Value::MaximumAlignment,
3946            "alignment is larger that implementation defined limit", &I);
3947   }
3948 
3949   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3950     AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
3951     visitMDNode(*N);
3952   }
3953 
3954   if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3955     verifyFragmentExpression(*DII);
3956 
3957   InstsInThisBlock.insert(&I);
3958 }
3959 
3960 /// Allow intrinsics to be verified in different ways.
3961 void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3962   Function *IF = CS.getCalledFunction();
3963   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
3964          IF);
3965 
3966   // Verify that the intrinsic prototype lines up with what the .td files
3967   // describe.
3968   FunctionType *IFTy = IF->getFunctionType();
3969   bool IsVarArg = IFTy->isVarArg();
3970 
3971   SmallVector<Intrinsic::IITDescriptor, 8> Table;
3972   getIntrinsicInfoTableEntries(ID, Table);
3973   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
3974 
3975   SmallVector<Type *, 4> ArgTys;
3976   Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),
3977                                         TableRef, ArgTys),
3978          "Intrinsic has incorrect return type!", IF);
3979   for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3980     Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),
3981                                           TableRef, ArgTys),
3982            "Intrinsic has incorrect argument type!", IF);
3983 
3984   // Verify if the intrinsic call matches the vararg property.
3985   if (IsVarArg)
3986     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
3987            "Intrinsic was not defined with variable arguments!", IF);
3988   else
3989     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
3990            "Callsite was not defined with variable arguments!", IF);
3991 
3992   // All descriptors should be absorbed by now.
3993   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
3994 
3995   // Now that we have the intrinsic ID and the actual argument types (and we
3996   // know they are legal for the intrinsic!) get the intrinsic name through the
3997   // usual means.  This allows us to verify the mangling of argument types into
3998   // the name.
3999   const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
4000   Assert(ExpectedName == IF->getName(),
4001          "Intrinsic name not mangled correctly for type arguments! "
4002          "Should be: " +
4003              ExpectedName,
4004          IF);
4005 
4006   // If the intrinsic takes MDNode arguments, verify that they are either global
4007   // or are local to *this* function.
4008   for (Value *V : CS.args())
4009     if (auto *MD = dyn_cast<MetadataAsValue>(V))
4010       visitMetadataAsValue(*MD, CS.getCaller());
4011 
4012   switch (ID) {
4013   default:
4014     break;
4015   case Intrinsic::coro_id: {
4016     auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts();
4017     if (isa<ConstantPointerNull>(InfoArg))
4018       break;
4019     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4020     Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4021       "info argument of llvm.coro.begin must refer to an initialized "
4022       "constant");
4023     Constant *Init = GV->getInitializer();
4024     Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4025       "info argument of llvm.coro.begin must refer to either a struct or "
4026       "an array");
4027     break;
4028   }
4029   case Intrinsic::ctlz:  // llvm.ctlz
4030   case Intrinsic::cttz:  // llvm.cttz
4031     Assert(isa<ConstantInt>(CS.getArgOperand(1)),
4032            "is_zero_undef argument of bit counting intrinsics must be a "
4033            "constant int",
4034            CS);
4035     break;
4036   case Intrinsic::experimental_constrained_fadd:
4037   case Intrinsic::experimental_constrained_fsub:
4038   case Intrinsic::experimental_constrained_fmul:
4039   case Intrinsic::experimental_constrained_fdiv:
4040   case Intrinsic::experimental_constrained_frem:
4041   case Intrinsic::experimental_constrained_fma:
4042   case Intrinsic::experimental_constrained_sqrt:
4043   case Intrinsic::experimental_constrained_pow:
4044   case Intrinsic::experimental_constrained_powi:
4045   case Intrinsic::experimental_constrained_sin:
4046   case Intrinsic::experimental_constrained_cos:
4047   case Intrinsic::experimental_constrained_exp:
4048   case Intrinsic::experimental_constrained_exp2:
4049   case Intrinsic::experimental_constrained_log:
4050   case Intrinsic::experimental_constrained_log10:
4051   case Intrinsic::experimental_constrained_log2:
4052   case Intrinsic::experimental_constrained_rint:
4053   case Intrinsic::experimental_constrained_nearbyint:
4054     visitConstrainedFPIntrinsic(
4055         cast<ConstrainedFPIntrinsic>(*CS.getInstruction()));
4056     break;
4057   case Intrinsic::dbg_declare: // llvm.dbg.declare
4058     Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
4059            "invalid llvm.dbg.declare intrinsic call 1", CS);
4060     visitDbgIntrinsic("declare", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4061     break;
4062   case Intrinsic::dbg_addr: // llvm.dbg.addr
4063     visitDbgIntrinsic("addr", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4064     break;
4065   case Intrinsic::dbg_value: // llvm.dbg.value
4066     visitDbgIntrinsic("value", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4067     break;
4068   case Intrinsic::memcpy:
4069   case Intrinsic::memmove:
4070   case Intrinsic::memset: {
4071     const auto *MI = cast<MemIntrinsic>(CS.getInstruction());
4072     auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4073       return Alignment == 0 || isPowerOf2_32(Alignment);
4074     };
4075     Assert(IsValidAlignment(MI->getDestAlignment()),
4076            "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4077            CS);
4078     if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4079       Assert(IsValidAlignment(MTI->getSourceAlignment()),
4080              "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4081              CS);
4082     }
4083     Assert(isa<ConstantInt>(CS.getArgOperand(3)),
4084            "isvolatile argument of memory intrinsics must be a constant int",
4085            CS);
4086     break;
4087   }
4088   case Intrinsic::memcpy_element_unordered_atomic:
4089   case Intrinsic::memmove_element_unordered_atomic:
4090   case Intrinsic::memset_element_unordered_atomic: {
4091     const auto *AMI = cast<AtomicMemIntrinsic>(CS.getInstruction());
4092 
4093     ConstantInt *ElementSizeCI =
4094         dyn_cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4095     Assert(ElementSizeCI,
4096            "element size of the element-wise unordered atomic memory "
4097            "intrinsic must be a constant int",
4098            CS);
4099     const APInt &ElementSizeVal = ElementSizeCI->getValue();
4100     Assert(ElementSizeVal.isPowerOf2(),
4101            "element size of the element-wise atomic memory intrinsic "
4102            "must be a power of 2",
4103            CS);
4104 
4105     if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) {
4106       uint64_t Length = LengthCI->getZExtValue();
4107       uint64_t ElementSize = AMI->getElementSizeInBytes();
4108       Assert((Length % ElementSize) == 0,
4109              "constant length must be a multiple of the element size in the "
4110              "element-wise atomic memory intrinsic",
4111              CS);
4112     }
4113 
4114     auto IsValidAlignment = [&](uint64_t Alignment) {
4115       return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4116     };
4117     uint64_t DstAlignment = AMI->getDestAlignment();
4118     Assert(IsValidAlignment(DstAlignment),
4119            "incorrect alignment of the destination argument", CS);
4120     if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4121       uint64_t SrcAlignment = AMT->getSourceAlignment();
4122       Assert(IsValidAlignment(SrcAlignment),
4123              "incorrect alignment of the source argument", CS);
4124     }
4125     break;
4126   }
4127   case Intrinsic::gcroot:
4128   case Intrinsic::gcwrite:
4129   case Intrinsic::gcread:
4130     if (ID == Intrinsic::gcroot) {
4131       AllocaInst *AI =
4132         dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
4133       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
4134       Assert(isa<Constant>(CS.getArgOperand(1)),
4135              "llvm.gcroot parameter #2 must be a constant.", CS);
4136       if (!AI->getAllocatedType()->isPointerTy()) {
4137         Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
4138                "llvm.gcroot parameter #1 must either be a pointer alloca, "
4139                "or argument #2 must be a non-null constant.",
4140                CS);
4141       }
4142     }
4143 
4144     Assert(CS.getParent()->getParent()->hasGC(),
4145            "Enclosing function does not use GC.", CS);
4146     break;
4147   case Intrinsic::init_trampoline:
4148     Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
4149            "llvm.init_trampoline parameter #2 must resolve to a function.",
4150            CS);
4151     break;
4152   case Intrinsic::prefetch:
4153     Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
4154                isa<ConstantInt>(CS.getArgOperand(2)) &&
4155                cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
4156                cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
4157            "invalid arguments to llvm.prefetch", CS);
4158     break;
4159   case Intrinsic::stackprotector:
4160     Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
4161            "llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
4162     break;
4163   case Intrinsic::lifetime_start:
4164   case Intrinsic::lifetime_end:
4165   case Intrinsic::invariant_start:
4166     Assert(isa<ConstantInt>(CS.getArgOperand(0)),
4167            "size argument of memory use markers must be a constant integer",
4168            CS);
4169     break;
4170   case Intrinsic::invariant_end:
4171     Assert(isa<ConstantInt>(CS.getArgOperand(1)),
4172            "llvm.invariant.end parameter #2 must be a constant integer", CS);
4173     break;
4174 
4175   case Intrinsic::localescape: {
4176     BasicBlock *BB = CS.getParent();
4177     Assert(BB == &BB->getParent()->front(),
4178            "llvm.localescape used outside of entry block", CS);
4179     Assert(!SawFrameEscape,
4180            "multiple calls to llvm.localescape in one function", CS);
4181     for (Value *Arg : CS.args()) {
4182       if (isa<ConstantPointerNull>(Arg))
4183         continue; // Null values are allowed as placeholders.
4184       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4185       Assert(AI && AI->isStaticAlloca(),
4186              "llvm.localescape only accepts static allocas", CS);
4187     }
4188     FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
4189     SawFrameEscape = true;
4190     break;
4191   }
4192   case Intrinsic::localrecover: {
4193     Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
4194     Function *Fn = dyn_cast<Function>(FnArg);
4195     Assert(Fn && !Fn->isDeclaration(),
4196            "llvm.localrecover first "
4197            "argument must be function defined in this module",
4198            CS);
4199     auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
4200     Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
4201            CS);
4202     auto &Entry = FrameEscapeInfo[Fn];
4203     Entry.second = unsigned(
4204         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4205     break;
4206   }
4207 
4208   case Intrinsic::experimental_gc_statepoint:
4209     Assert(!CS.isInlineAsm(),
4210            "gc.statepoint support for inline assembly unimplemented", CS);
4211     Assert(CS.getParent()->getParent()->hasGC(),
4212            "Enclosing function does not use GC.", CS);
4213 
4214     verifyStatepoint(CS);
4215     break;
4216   case Intrinsic::experimental_gc_result: {
4217     Assert(CS.getParent()->getParent()->hasGC(),
4218            "Enclosing function does not use GC.", CS);
4219     // Are we tied to a statepoint properly?
4220     CallSite StatepointCS(CS.getArgOperand(0));
4221     const Function *StatepointFn =
4222       StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
4223     Assert(StatepointFn && StatepointFn->isDeclaration() &&
4224                StatepointFn->getIntrinsicID() ==
4225                    Intrinsic::experimental_gc_statepoint,
4226            "gc.result operand #1 must be from a statepoint", CS,
4227            CS.getArgOperand(0));
4228 
4229     // Assert that result type matches wrapped callee.
4230     const Value *Target = StatepointCS.getArgument(2);
4231     auto *PT = cast<PointerType>(Target->getType());
4232     auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4233     Assert(CS.getType() == TargetFuncType->getReturnType(),
4234            "gc.result result type does not match wrapped callee", CS);
4235     break;
4236   }
4237   case Intrinsic::experimental_gc_relocate: {
4238     Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
4239 
4240     Assert(isa<PointerType>(CS.getType()->getScalarType()),
4241            "gc.relocate must return a pointer or a vector of pointers", CS);
4242 
4243     // Check that this relocate is correctly tied to the statepoint
4244 
4245     // This is case for relocate on the unwinding path of an invoke statepoint
4246     if (LandingPadInst *LandingPad =
4247           dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
4248 
4249       const BasicBlock *InvokeBB =
4250           LandingPad->getParent()->getUniquePredecessor();
4251 
4252       // Landingpad relocates should have only one predecessor with invoke
4253       // statepoint terminator
4254       Assert(InvokeBB, "safepoints should have unique landingpads",
4255              LandingPad->getParent());
4256       Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4257              InvokeBB);
4258       Assert(isStatepoint(InvokeBB->getTerminator()),
4259              "gc relocate should be linked to a statepoint", InvokeBB);
4260     }
4261     else {
4262       // In all other cases relocate should be tied to the statepoint directly.
4263       // This covers relocates on a normal return path of invoke statepoint and
4264       // relocates of a call statepoint.
4265       auto Token = CS.getArgOperand(0);
4266       Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
4267              "gc relocate is incorrectly tied to the statepoint", CS, Token);
4268     }
4269 
4270     // Verify rest of the relocate arguments.
4271 
4272     ImmutableCallSite StatepointCS(
4273         cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
4274 
4275     // Both the base and derived must be piped through the safepoint.
4276     Value* Base = CS.getArgOperand(1);
4277     Assert(isa<ConstantInt>(Base),
4278            "gc.relocate operand #2 must be integer offset", CS);
4279 
4280     Value* Derived = CS.getArgOperand(2);
4281     Assert(isa<ConstantInt>(Derived),
4282            "gc.relocate operand #3 must be integer offset", CS);
4283 
4284     const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4285     const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4286     // Check the bounds
4287     Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
4288            "gc.relocate: statepoint base index out of bounds", CS);
4289     Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
4290            "gc.relocate: statepoint derived index out of bounds", CS);
4291 
4292     // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4293     // section of the statepoint's argument.
4294     Assert(StatepointCS.arg_size() > 0,
4295            "gc.statepoint: insufficient arguments");
4296     Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
4297            "gc.statement: number of call arguments must be constant integer");
4298     const unsigned NumCallArgs =
4299         cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
4300     Assert(StatepointCS.arg_size() > NumCallArgs + 5,
4301            "gc.statepoint: mismatch in number of call arguments");
4302     Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
4303            "gc.statepoint: number of transition arguments must be "
4304            "a constant integer");
4305     const int NumTransitionArgs =
4306         cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
4307             ->getZExtValue();
4308     const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4309     Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
4310            "gc.statepoint: number of deoptimization arguments must be "
4311            "a constant integer");
4312     const int NumDeoptArgs =
4313         cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
4314             ->getZExtValue();
4315     const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4316     const int GCParamArgsEnd = StatepointCS.arg_size();
4317     Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4318            "gc.relocate: statepoint base index doesn't fall within the "
4319            "'gc parameters' section of the statepoint call",
4320            CS);
4321     Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4322            "gc.relocate: statepoint derived index doesn't fall within the "
4323            "'gc parameters' section of the statepoint call",
4324            CS);
4325 
4326     // Relocated value must be either a pointer type or vector-of-pointer type,
4327     // but gc_relocate does not need to return the same pointer type as the
4328     // relocated pointer. It can be casted to the correct type later if it's
4329     // desired. However, they must have the same address space and 'vectorness'
4330     GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
4331     Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
4332            "gc.relocate: relocated value must be a gc pointer", CS);
4333 
4334     auto ResultType = CS.getType();
4335     auto DerivedType = Relocate.getDerivedPtr()->getType();
4336     Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4337            "gc.relocate: vector relocates to vector and pointer to pointer",
4338            CS);
4339     Assert(
4340         ResultType->getPointerAddressSpace() ==
4341             DerivedType->getPointerAddressSpace(),
4342         "gc.relocate: relocating a pointer shouldn't change its address space",
4343         CS);
4344     break;
4345   }
4346   case Intrinsic::eh_exceptioncode:
4347   case Intrinsic::eh_exceptionpointer: {
4348     Assert(isa<CatchPadInst>(CS.getArgOperand(0)),
4349            "eh.exceptionpointer argument must be a catchpad", CS);
4350     break;
4351   }
4352   case Intrinsic::masked_load: {
4353     Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS);
4354 
4355     Value *Ptr = CS.getArgOperand(0);
4356     //Value *Alignment = CS.getArgOperand(1);
4357     Value *Mask = CS.getArgOperand(2);
4358     Value *PassThru = CS.getArgOperand(3);
4359     Assert(Mask->getType()->isVectorTy(),
4360            "masked_load: mask must be vector", CS);
4361 
4362     // DataTy is the overloaded type
4363     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4364     Assert(DataTy == CS.getType(),
4365            "masked_load: return must match pointer type", CS);
4366     Assert(PassThru->getType() == DataTy,
4367            "masked_load: pass through and data type must match", CS);
4368     Assert(Mask->getType()->getVectorNumElements() ==
4369            DataTy->getVectorNumElements(),
4370            "masked_load: vector mask must be same length as data", CS);
4371     break;
4372   }
4373   case Intrinsic::masked_store: {
4374     Value *Val = CS.getArgOperand(0);
4375     Value *Ptr = CS.getArgOperand(1);
4376     //Value *Alignment = CS.getArgOperand(2);
4377     Value *Mask = CS.getArgOperand(3);
4378     Assert(Mask->getType()->isVectorTy(),
4379            "masked_store: mask must be vector", CS);
4380 
4381     // DataTy is the overloaded type
4382     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4383     Assert(DataTy == Val->getType(),
4384            "masked_store: storee must match pointer type", CS);
4385     Assert(Mask->getType()->getVectorNumElements() ==
4386            DataTy->getVectorNumElements(),
4387            "masked_store: vector mask must be same length as data", CS);
4388     break;
4389   }
4390 
4391   case Intrinsic::experimental_guard: {
4392     Assert(CS.isCall(), "experimental_guard cannot be invoked", CS);
4393     Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4394            "experimental_guard must have exactly one "
4395            "\"deopt\" operand bundle");
4396     break;
4397   }
4398 
4399   case Intrinsic::experimental_deoptimize: {
4400     Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS);
4401     Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4402            "experimental_deoptimize must have exactly one "
4403            "\"deopt\" operand bundle");
4404     Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(),
4405            "experimental_deoptimize return type must match caller return type");
4406 
4407     if (CS.isCall()) {
4408       auto *DeoptCI = CS.getInstruction();
4409       auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
4410       Assert(RI,
4411              "calls to experimental_deoptimize must be followed by a return");
4412 
4413       if (!CS.getType()->isVoidTy() && RI)
4414         Assert(RI->getReturnValue() == DeoptCI,
4415                "calls to experimental_deoptimize must be followed by a return "
4416                "of the value computed by experimental_deoptimize");
4417     }
4418 
4419     break;
4420   }
4421   };
4422 }
4423 
4424 /// \brief Carefully grab the subprogram from a local scope.
4425 ///
4426 /// This carefully grabs the subprogram from a local scope, avoiding the
4427 /// built-in assertions that would typically fire.
4428 static DISubprogram *getSubprogram(Metadata *LocalScope) {
4429   if (!LocalScope)
4430     return nullptr;
4431 
4432   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4433     return SP;
4434 
4435   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4436     return getSubprogram(LB->getRawScope());
4437 
4438   // Just return null; broken scope chains are checked elsewhere.
4439   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4440   return nullptr;
4441 }
4442 
4443 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4444   unsigned NumOperands = FPI.getNumArgOperands();
4445   Assert(((NumOperands == 5 && FPI.isTernaryOp()) ||
4446           (NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands == 4)),
4447            "invalid arguments for constrained FP intrinsic", &FPI);
4448   Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-1)),
4449          "invalid exception behavior argument", &FPI);
4450   Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-2)),
4451          "invalid rounding mode argument", &FPI);
4452   Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid,
4453          "invalid rounding mode argument", &FPI);
4454   Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid,
4455          "invalid exception behavior argument", &FPI);
4456 }
4457 
4458 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII) {
4459   auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4460   AssertDI(isa<ValueAsMetadata>(MD) ||
4461              (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4462          "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4463   AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4464          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4465          DII.getRawVariable());
4466   AssertDI(isa<DIExpression>(DII.getRawExpression()),
4467          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4468          DII.getRawExpression());
4469 
4470   // Ignore broken !dbg attachments; they're checked elsewhere.
4471   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4472     if (!isa<DILocation>(N))
4473       return;
4474 
4475   BasicBlock *BB = DII.getParent();
4476   Function *F = BB ? BB->getParent() : nullptr;
4477 
4478   // The scopes for variables and !dbg attachments must agree.
4479   DILocalVariable *Var = DII.getVariable();
4480   DILocation *Loc = DII.getDebugLoc();
4481   AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4482            &DII, BB, F);
4483 
4484   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4485   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4486   if (!VarSP || !LocSP)
4487     return; // Broken scope chains are checked elsewhere.
4488 
4489   AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4490                                " variable and !dbg attachment",
4491            &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4492            Loc->getScope()->getSubprogram());
4493 
4494   verifyFnArgs(DII);
4495 }
4496 
4497 void Verifier::verifyFragmentExpression(const DbgInfoIntrinsic &I) {
4498   DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
4499   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
4500 
4501   // We don't know whether this intrinsic verified correctly.
4502   if (!V || !E || !E->isValid())
4503     return;
4504 
4505   // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4506   auto Fragment = E->getFragmentInfo();
4507   if (!Fragment)
4508     return;
4509 
4510   // The frontend helps out GDB by emitting the members of local anonymous
4511   // unions as artificial local variables with shared storage. When SROA splits
4512   // the storage for artificial local variables that are smaller than the entire
4513   // union, the overhang piece will be outside of the allotted space for the
4514   // variable and this check fails.
4515   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4516   if (V->isArtificial())
4517     return;
4518 
4519   verifyFragmentExpression(*V, *Fragment, &I);
4520 }
4521 
4522 template <typename ValueOrMetadata>
4523 void Verifier::verifyFragmentExpression(const DIVariable &V,
4524                                         DIExpression::FragmentInfo Fragment,
4525                                         ValueOrMetadata *Desc) {
4526   // If there's no size, the type is broken, but that should be checked
4527   // elsewhere.
4528   auto VarSize = V.getSizeInBits();
4529   if (!VarSize)
4530     return;
4531 
4532   unsigned FragSize = Fragment.SizeInBits;
4533   unsigned FragOffset = Fragment.OffsetInBits;
4534   AssertDI(FragSize + FragOffset <= *VarSize,
4535          "fragment is larger than or outside of variable", Desc, &V);
4536   AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
4537 }
4538 
4539 void Verifier::verifyFnArgs(const DbgInfoIntrinsic &I) {
4540   // This function does not take the scope of noninlined function arguments into
4541   // account. Don't run it if current function is nodebug, because it may
4542   // contain inlined debug intrinsics.
4543   if (!HasDebugInfo)
4544     return;
4545 
4546   // For performance reasons only check non-inlined ones.
4547   if (I.getDebugLoc()->getInlinedAt())
4548     return;
4549 
4550   DILocalVariable *Var = I.getVariable();
4551   AssertDI(Var, "dbg intrinsic without variable");
4552 
4553   unsigned ArgNo = Var->getArg();
4554   if (!ArgNo)
4555     return;
4556 
4557   // Verify there are no duplicate function argument debug info entries.
4558   // These will cause hard-to-debug assertions in the DWARF backend.
4559   if (DebugFnArgs.size() < ArgNo)
4560     DebugFnArgs.resize(ArgNo, nullptr);
4561 
4562   auto *Prev = DebugFnArgs[ArgNo - 1];
4563   DebugFnArgs[ArgNo - 1] = Var;
4564   AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
4565            Prev, Var);
4566 }
4567 
4568 void Verifier::verifyCompileUnits() {
4569   // When more than one Module is imported into the same context, such as during
4570   // an LTO build before linking the modules, ODR type uniquing may cause types
4571   // to point to a different CU. This check does not make sense in this case.
4572   if (M.getContext().isODRUniquingDebugTypes())
4573     return;
4574   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4575   SmallPtrSet<const Metadata *, 2> Listed;
4576   if (CUs)
4577     Listed.insert(CUs->op_begin(), CUs->op_end());
4578   for (auto *CU : CUVisited)
4579     AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
4580   CUVisited.clear();
4581 }
4582 
4583 void Verifier::verifyDeoptimizeCallingConvs() {
4584   if (DeoptimizeDeclarations.empty())
4585     return;
4586 
4587   const Function *First = DeoptimizeDeclarations[0];
4588   for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4589     Assert(First->getCallingConv() == F->getCallingConv(),
4590            "All llvm.experimental.deoptimize declarations must have the same "
4591            "calling convention",
4592            First, F);
4593   }
4594 }
4595 
4596 //===----------------------------------------------------------------------===//
4597 //  Implement the public interfaces to this file...
4598 //===----------------------------------------------------------------------===//
4599 
4600 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4601   Function &F = const_cast<Function &>(f);
4602 
4603   // Don't use a raw_null_ostream.  Printing IR is expensive.
4604   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4605 
4606   // Note that this function's return value is inverted from what you would
4607   // expect of a function called "verify".
4608   return !V.verify(F);
4609 }
4610 
4611 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
4612                         bool *BrokenDebugInfo) {
4613   // Don't use a raw_null_ostream.  Printing IR is expensive.
4614   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4615 
4616   bool Broken = false;
4617   for (const Function &F : M)
4618     Broken |= !V.verify(F);
4619 
4620   Broken |= !V.verify();
4621   if (BrokenDebugInfo)
4622     *BrokenDebugInfo = V.hasBrokenDebugInfo();
4623   // Note that this function's return value is inverted from what you would
4624   // expect of a function called "verify".
4625   return Broken;
4626 }
4627 
4628 namespace {
4629 
4630 struct VerifierLegacyPass : public FunctionPass {
4631   static char ID;
4632 
4633   std::unique_ptr<Verifier> V;
4634   bool FatalErrors = true;
4635 
4636   VerifierLegacyPass() : FunctionPass(ID) {
4637     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4638   }
4639   explicit VerifierLegacyPass(bool FatalErrors)
4640       : FunctionPass(ID),
4641         FatalErrors(FatalErrors) {
4642     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4643   }
4644 
4645   bool doInitialization(Module &M) override {
4646     V = llvm::make_unique<Verifier>(
4647         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
4648     return false;
4649   }
4650 
4651   bool runOnFunction(Function &F) override {
4652     if (!V->verify(F) && FatalErrors)
4653       report_fatal_error("Broken function found, compilation aborted!");
4654 
4655     return false;
4656   }
4657 
4658   bool doFinalization(Module &M) override {
4659     bool HasErrors = false;
4660     for (Function &F : M)
4661       if (F.isDeclaration())
4662         HasErrors |= !V->verify(F);
4663 
4664     HasErrors |= !V->verify();
4665     if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
4666       report_fatal_error("Broken module found, compilation aborted!");
4667     return false;
4668   }
4669 
4670   void getAnalysisUsage(AnalysisUsage &AU) const override {
4671     AU.setPreservesAll();
4672   }
4673 };
4674 
4675 } // end anonymous namespace
4676 
4677 /// Helper to issue failure from the TBAA verification
4678 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
4679   if (Diagnostic)
4680     return Diagnostic->CheckFailed(Args...);
4681 }
4682 
4683 #define AssertTBAA(C, ...)                                                     \
4684   do {                                                                         \
4685     if (!(C)) {                                                                \
4686       CheckFailed(__VA_ARGS__);                                                \
4687       return false;                                                            \
4688     }                                                                          \
4689   } while (false)
4690 
4691 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
4692 /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
4693 /// struct-type node describing an aggregate data structure (like a struct).
4694 TBAAVerifier::TBAABaseNodeSummary
4695 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
4696                                  bool IsNewFormat) {
4697   if (BaseNode->getNumOperands() < 2) {
4698     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
4699     return {true, ~0u};
4700   }
4701 
4702   auto Itr = TBAABaseNodes.find(BaseNode);
4703   if (Itr != TBAABaseNodes.end())
4704     return Itr->second;
4705 
4706   auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
4707   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
4708   (void)InsertResult;
4709   assert(InsertResult.second && "We just checked!");
4710   return Result;
4711 }
4712 
4713 TBAAVerifier::TBAABaseNodeSummary
4714 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
4715                                      bool IsNewFormat) {
4716   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
4717 
4718   if (BaseNode->getNumOperands() == 2) {
4719     // Scalar nodes can only be accessed at offset 0.
4720     return isValidScalarTBAANode(BaseNode)
4721                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
4722                : InvalidNode;
4723   }
4724 
4725   if (IsNewFormat) {
4726     if (BaseNode->getNumOperands() % 3 != 0) {
4727       CheckFailed("Access tag nodes must have the number of operands that is a "
4728                   "multiple of 3!", BaseNode);
4729       return InvalidNode;
4730     }
4731   } else {
4732     if (BaseNode->getNumOperands() % 2 != 1) {
4733       CheckFailed("Struct tag nodes must have an odd number of operands!",
4734                   BaseNode);
4735       return InvalidNode;
4736     }
4737   }
4738 
4739   // Check the type size field.
4740   if (IsNewFormat) {
4741     auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
4742         BaseNode->getOperand(1));
4743     if (!TypeSizeNode) {
4744       CheckFailed("Type size nodes must be constants!", &I, BaseNode);
4745       return InvalidNode;
4746     }
4747   }
4748 
4749   // Check the type name field. In the new format it can be anything.
4750   if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
4751     CheckFailed("Struct tag nodes have a string as their first operand",
4752                 BaseNode);
4753     return InvalidNode;
4754   }
4755 
4756   bool Failed = false;
4757 
4758   Optional<APInt> PrevOffset;
4759   unsigned BitWidth = ~0u;
4760 
4761   // We've already checked that BaseNode is not a degenerate root node with one
4762   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
4763   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
4764   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
4765   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
4766            Idx += NumOpsPerField) {
4767     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
4768     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
4769     if (!isa<MDNode>(FieldTy)) {
4770       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
4771       Failed = true;
4772       continue;
4773     }
4774 
4775     auto *OffsetEntryCI =
4776         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
4777     if (!OffsetEntryCI) {
4778       CheckFailed("Offset entries must be constants!", &I, BaseNode);
4779       Failed = true;
4780       continue;
4781     }
4782 
4783     if (BitWidth == ~0u)
4784       BitWidth = OffsetEntryCI->getBitWidth();
4785 
4786     if (OffsetEntryCI->getBitWidth() != BitWidth) {
4787       CheckFailed(
4788           "Bitwidth between the offsets and struct type entries must match", &I,
4789           BaseNode);
4790       Failed = true;
4791       continue;
4792     }
4793 
4794     // NB! As far as I can tell, we generate a non-strictly increasing offset
4795     // sequence only from structs that have zero size bit fields.  When
4796     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
4797     // pick the field lexically the latest in struct type metadata node.  This
4798     // mirrors the actual behavior of the alias analysis implementation.
4799     bool IsAscending =
4800         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
4801 
4802     if (!IsAscending) {
4803       CheckFailed("Offsets must be increasing!", &I, BaseNode);
4804       Failed = true;
4805     }
4806 
4807     PrevOffset = OffsetEntryCI->getValue();
4808 
4809     if (IsNewFormat) {
4810       auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
4811           BaseNode->getOperand(Idx + 2));
4812       if (!MemberSizeNode) {
4813         CheckFailed("Member size entries must be constants!", &I, BaseNode);
4814         Failed = true;
4815         continue;
4816       }
4817     }
4818   }
4819 
4820   return Failed ? InvalidNode
4821                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
4822 }
4823 
4824 static bool IsRootTBAANode(const MDNode *MD) {
4825   return MD->getNumOperands() < 2;
4826 }
4827 
4828 static bool IsScalarTBAANodeImpl(const MDNode *MD,
4829                                  SmallPtrSetImpl<const MDNode *> &Visited) {
4830   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
4831     return false;
4832 
4833   if (!isa<MDString>(MD->getOperand(0)))
4834     return false;
4835 
4836   if (MD->getNumOperands() == 3) {
4837     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
4838     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
4839       return false;
4840   }
4841 
4842   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4843   return Parent && Visited.insert(Parent).second &&
4844          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
4845 }
4846 
4847 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
4848   auto ResultIt = TBAAScalarNodes.find(MD);
4849   if (ResultIt != TBAAScalarNodes.end())
4850     return ResultIt->second;
4851 
4852   SmallPtrSet<const MDNode *, 4> Visited;
4853   bool Result = IsScalarTBAANodeImpl(MD, Visited);
4854   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
4855   (void)InsertResult;
4856   assert(InsertResult.second && "Just checked!");
4857 
4858   return Result;
4859 }
4860 
4861 /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
4862 /// Offset in place to be the offset within the field node returned.
4863 ///
4864 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
4865 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
4866                                                    const MDNode *BaseNode,
4867                                                    APInt &Offset,
4868                                                    bool IsNewFormat) {
4869   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
4870 
4871   // Scalar nodes have only one possible "field" -- their parent in the access
4872   // hierarchy.  Offset must be zero at this point, but our caller is supposed
4873   // to Assert that.
4874   if (BaseNode->getNumOperands() == 2)
4875     return cast<MDNode>(BaseNode->getOperand(1));
4876 
4877   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
4878   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
4879   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
4880            Idx += NumOpsPerField) {
4881     auto *OffsetEntryCI =
4882         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
4883     if (OffsetEntryCI->getValue().ugt(Offset)) {
4884       if (Idx == FirstFieldOpNo) {
4885         CheckFailed("Could not find TBAA parent in struct type node", &I,
4886                     BaseNode, &Offset);
4887         return nullptr;
4888       }
4889 
4890       unsigned PrevIdx = Idx - NumOpsPerField;
4891       auto *PrevOffsetEntryCI =
4892           mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
4893       Offset -= PrevOffsetEntryCI->getValue();
4894       return cast<MDNode>(BaseNode->getOperand(PrevIdx));
4895     }
4896   }
4897 
4898   unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
4899   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
4900       BaseNode->getOperand(LastIdx + 1));
4901   Offset -= LastOffsetEntryCI->getValue();
4902   return cast<MDNode>(BaseNode->getOperand(LastIdx));
4903 }
4904 
4905 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
4906   if (!Type || Type->getNumOperands() < 3)
4907     return false;
4908 
4909   // In the new format type nodes shall have a reference to the parent type as
4910   // its first operand.
4911   MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
4912   if (!Parent)
4913     return false;
4914 
4915   return true;
4916 }
4917 
4918 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
4919   AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
4920                  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
4921                  isa<AtomicCmpXchgInst>(I),
4922              "This instruction shall not have a TBAA access tag!", &I);
4923 
4924   bool IsStructPathTBAA =
4925       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
4926 
4927   AssertTBAA(
4928       IsStructPathTBAA,
4929       "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
4930 
4931   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
4932   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4933 
4934   bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
4935 
4936   if (IsNewFormat) {
4937     AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
4938                "Access tag metadata must have either 4 or 5 operands", &I, MD);
4939   } else {
4940     AssertTBAA(MD->getNumOperands() < 5,
4941                "Struct tag metadata must have either 3 or 4 operands", &I, MD);
4942   }
4943 
4944   // Check the access size field.
4945   if (IsNewFormat) {
4946     auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
4947         MD->getOperand(3));
4948     AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
4949   }
4950 
4951   // Check the immutability flag.
4952   unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
4953   if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
4954     auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
4955         MD->getOperand(ImmutabilityFlagOpNo));
4956     AssertTBAA(IsImmutableCI,
4957                "Immutability tag on struct tag metadata must be a constant",
4958                &I, MD);
4959     AssertTBAA(
4960         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
4961         "Immutability part of the struct tag metadata must be either 0 or 1",
4962         &I, MD);
4963   }
4964 
4965   AssertTBAA(BaseNode && AccessType,
4966              "Malformed struct tag metadata: base and access-type "
4967              "should be non-null and point to Metadata nodes",
4968              &I, MD, BaseNode, AccessType);
4969 
4970   if (!IsNewFormat) {
4971     AssertTBAA(isValidScalarTBAANode(AccessType),
4972                "Access type node must be a valid scalar type", &I, MD,
4973                AccessType);
4974   }
4975 
4976   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
4977   AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
4978 
4979   APInt Offset = OffsetCI->getValue();
4980   bool SeenAccessTypeInPath = false;
4981 
4982   SmallPtrSet<MDNode *, 4> StructPath;
4983 
4984   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
4985        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
4986                                                IsNewFormat)) {
4987     if (!StructPath.insert(BaseNode).second) {
4988       CheckFailed("Cycle detected in struct path", &I, MD);
4989       return false;
4990     }
4991 
4992     bool Invalid;
4993     unsigned BaseNodeBitWidth;
4994     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
4995                                                              IsNewFormat);
4996 
4997     // If the base node is invalid in itself, then we've already printed all the
4998     // errors we wanted to print.
4999     if (Invalid)
5000       return false;
5001 
5002     SeenAccessTypeInPath |= BaseNode == AccessType;
5003 
5004     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
5005       AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
5006                  &I, MD, &Offset);
5007 
5008     AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
5009                    (BaseNodeBitWidth == 0 && Offset == 0) ||
5010                    (IsNewFormat && BaseNodeBitWidth == ~0u),
5011                "Access bit-width not the same as description bit-width", &I, MD,
5012                BaseNodeBitWidth, Offset.getBitWidth());
5013 
5014     if (IsNewFormat && SeenAccessTypeInPath)
5015       break;
5016   }
5017 
5018   AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
5019              &I, MD);
5020   return true;
5021 }
5022 
5023 char VerifierLegacyPass::ID = 0;
5024 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
5025 
5026 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
5027   return new VerifierLegacyPass(FatalErrors);
5028 }
5029 
5030 AnalysisKey VerifierAnalysis::Key;
5031 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
5032                                                ModuleAnalysisManager &) {
5033   Result Res;
5034   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
5035   return Res;
5036 }
5037 
5038 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
5039                                                FunctionAnalysisManager &) {
5040   return { llvm::verifyFunction(F, &dbgs()), false };
5041 }
5042 
5043 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
5044   auto Res = AM.getResult<VerifierAnalysis>(M);
5045   if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
5046     report_fatal_error("Broken module found, compilation aborted!");
5047 
5048   return PreservedAnalyses::all();
5049 }
5050 
5051 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
5052   auto res = AM.getResult<VerifierAnalysis>(F);
5053   if (res.IRBroken && FatalErrors)
5054     report_fatal_error("Broken function found, compilation aborted!");
5055 
5056   return PreservedAnalyses::all();
5057 }
5058