1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the function verifier interface, that can be used for some 11 // sanity checking of input to the system. 12 // 13 // Note that this does not provide full `Java style' security and verifications, 14 // instead it just tries to ensure that code is well-formed. 15 // 16 // * Both of a binary operator's parameters are of the same type 17 // * Verify that the indices of mem access instructions match other operands 18 // * Verify that arithmetic and other things are only performed on first-class 19 // types. Verify that shifts & logicals only happen on integrals f.e. 20 // * All of the constants in a switch statement are of the correct type 21 // * The code is in valid SSA form 22 // * It should be illegal to put a label into any other type (like a structure) 23 // or to return one. [except constant arrays!] 24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 25 // * PHI nodes must have an entry for each predecessor, with no extras. 26 // * PHI nodes must be the first thing in a basic block, all grouped together 27 // * PHI nodes must have at least one entry 28 // * All basic blocks should only end with terminator insts, not contain them 29 // * The entry node to a function must not have predecessors 30 // * All Instructions must be embedded into a basic block 31 // * Functions cannot take a void-typed parameter 32 // * Verify that a function's argument list agrees with it's declared type. 33 // * It is illegal to specify a name for a void value. 34 // * It is illegal to have a internal global value with no initializer 35 // * It is illegal to have a ret instruction that returns a value that does not 36 // agree with the function return value type. 37 // * Function call argument types match the function prototype 38 // * A landing pad is defined by a landingpad instruction, and can be jumped to 39 // only by the unwind edge of an invoke instruction. 40 // * A landingpad instruction must be the first non-PHI instruction in the 41 // block. 42 // * Landingpad instructions must be in a function with a personality function. 43 // * All other things that are tested by asserts spread about the code... 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "llvm/IR/Verifier.h" 48 #include "llvm/ADT/APFloat.h" 49 #include "llvm/ADT/APInt.h" 50 #include "llvm/ADT/ArrayRef.h" 51 #include "llvm/ADT/DenseMap.h" 52 #include "llvm/ADT/ilist.h" 53 #include "llvm/ADT/MapVector.h" 54 #include "llvm/ADT/Optional.h" 55 #include "llvm/ADT/STLExtras.h" 56 #include "llvm/ADT/SmallPtrSet.h" 57 #include "llvm/ADT/SmallSet.h" 58 #include "llvm/ADT/SmallVector.h" 59 #include "llvm/ADT/StringMap.h" 60 #include "llvm/ADT/StringRef.h" 61 #include "llvm/ADT/Twine.h" 62 #include "llvm/IR/Argument.h" 63 #include "llvm/IR/Attributes.h" 64 #include "llvm/IR/BasicBlock.h" 65 #include "llvm/IR/CFG.h" 66 #include "llvm/IR/CallSite.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/DiagnosticInfo.h" 78 #include "llvm/IR/Dominators.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GlobalAlias.h" 81 #include "llvm/IR/GlobalValue.h" 82 #include "llvm/IR/GlobalVariable.h" 83 #include "llvm/IR/InlineAsm.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/InstVisitor.h" 88 #include "llvm/IR/IntrinsicInst.h" 89 #include "llvm/IR/Intrinsics.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/ModuleSlotTracker.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/Pass.h" 101 #include "llvm/Support/AtomicOrdering.h" 102 #include "llvm/Support/Casting.h" 103 #include "llvm/Support/CommandLine.h" 104 #include "llvm/Support/Debug.h" 105 #include "llvm/Support/Dwarf.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <cstdint> 112 #include <memory> 113 #include <string> 114 #include <utility> 115 116 using namespace llvm; 117 118 static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true)); 119 120 namespace llvm { 121 122 struct VerifierSupport { 123 raw_ostream *OS; 124 const Module &M; 125 ModuleSlotTracker MST; 126 const DataLayout &DL; 127 LLVMContext &Context; 128 129 /// Track the brokenness of the module while recursively visiting. 130 bool Broken = false; 131 /// Broken debug info can be "recovered" from by stripping the debug info. 132 bool BrokenDebugInfo = false; 133 /// Whether to treat broken debug info as an error. 134 bool TreatBrokenDebugInfoAsError = true; 135 136 explicit VerifierSupport(raw_ostream *OS, const Module &M) 137 : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {} 138 139 private: 140 void Write(const Module *M) { 141 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 142 } 143 144 void Write(const Value *V) { 145 if (!V) 146 return; 147 if (isa<Instruction>(V)) { 148 V->print(*OS, MST); 149 *OS << '\n'; 150 } else { 151 V->printAsOperand(*OS, true, MST); 152 *OS << '\n'; 153 } 154 } 155 156 void Write(ImmutableCallSite CS) { 157 Write(CS.getInstruction()); 158 } 159 160 void Write(const Metadata *MD) { 161 if (!MD) 162 return; 163 MD->print(*OS, MST, &M); 164 *OS << '\n'; 165 } 166 167 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 168 Write(MD.get()); 169 } 170 171 void Write(const NamedMDNode *NMD) { 172 if (!NMD) 173 return; 174 NMD->print(*OS, MST); 175 *OS << '\n'; 176 } 177 178 void Write(Type *T) { 179 if (!T) 180 return; 181 *OS << ' ' << *T; 182 } 183 184 void Write(const Comdat *C) { 185 if (!C) 186 return; 187 *OS << *C; 188 } 189 190 void Write(const APInt *AI) { 191 if (!AI) 192 return; 193 *OS << *AI << '\n'; 194 } 195 196 void Write(const unsigned i) { *OS << i << '\n'; } 197 198 template <typename T> void Write(ArrayRef<T> Vs) { 199 for (const T &V : Vs) 200 Write(V); 201 } 202 203 template <typename T1, typename... Ts> 204 void WriteTs(const T1 &V1, const Ts &... Vs) { 205 Write(V1); 206 WriteTs(Vs...); 207 } 208 209 template <typename... Ts> void WriteTs() {} 210 211 public: 212 /// \brief A check failed, so printout out the condition and the message. 213 /// 214 /// This provides a nice place to put a breakpoint if you want to see why 215 /// something is not correct. 216 void CheckFailed(const Twine &Message) { 217 if (OS) 218 *OS << Message << '\n'; 219 Broken = true; 220 } 221 222 /// \brief A check failed (with values to print). 223 /// 224 /// This calls the Message-only version so that the above is easier to set a 225 /// breakpoint on. 226 template <typename T1, typename... Ts> 227 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 228 CheckFailed(Message); 229 if (OS) 230 WriteTs(V1, Vs...); 231 } 232 233 /// A debug info check failed. 234 void DebugInfoCheckFailed(const Twine &Message) { 235 if (OS) 236 *OS << Message << '\n'; 237 Broken |= TreatBrokenDebugInfoAsError; 238 BrokenDebugInfo = true; 239 } 240 241 /// A debug info check failed (with values to print). 242 template <typename T1, typename... Ts> 243 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 244 const Ts &... Vs) { 245 DebugInfoCheckFailed(Message); 246 if (OS) 247 WriteTs(V1, Vs...); 248 } 249 }; 250 251 } // namespace llvm 252 253 namespace { 254 255 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 256 friend class InstVisitor<Verifier>; 257 258 DominatorTree DT; 259 260 /// \brief When verifying a basic block, keep track of all of the 261 /// instructions we have seen so far. 262 /// 263 /// This allows us to do efficient dominance checks for the case when an 264 /// instruction has an operand that is an instruction in the same block. 265 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 266 267 /// \brief Keep track of the metadata nodes that have been checked already. 268 SmallPtrSet<const Metadata *, 32> MDNodes; 269 270 /// Track all DICompileUnits visited. 271 SmallPtrSet<const Metadata *, 2> CUVisited; 272 273 /// \brief The result type for a landingpad. 274 Type *LandingPadResultTy; 275 276 /// \brief Whether we've seen a call to @llvm.localescape in this function 277 /// already. 278 bool SawFrameEscape; 279 280 /// Stores the count of how many objects were passed to llvm.localescape for a 281 /// given function and the largest index passed to llvm.localrecover. 282 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 283 284 // Maps catchswitches and cleanuppads that unwind to siblings to the 285 // terminators that indicate the unwind, used to detect cycles therein. 286 MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo; 287 288 /// Cache of constants visited in search of ConstantExprs. 289 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 290 291 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 292 SmallVector<const Function *, 4> DeoptimizeDeclarations; 293 294 // Verify that this GlobalValue is only used in this module. 295 // This map is used to avoid visiting uses twice. We can arrive at a user 296 // twice, if they have multiple operands. In particular for very large 297 // constant expressions, we can arrive at a particular user many times. 298 SmallPtrSet<const Value *, 32> GlobalValueVisited; 299 300 TBAAVerifier TBAAVerifyHelper; 301 302 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 303 304 public: 305 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 306 const Module &M) 307 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 308 SawFrameEscape(false), TBAAVerifyHelper(this) { 309 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 310 } 311 312 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 313 314 bool verify(const Function &F) { 315 assert(F.getParent() == &M && 316 "An instance of this class only works with a specific module!"); 317 318 // First ensure the function is well-enough formed to compute dominance 319 // information, and directly compute a dominance tree. We don't rely on the 320 // pass manager to provide this as it isolates us from a potentially 321 // out-of-date dominator tree and makes it significantly more complex to run 322 // this code outside of a pass manager. 323 // FIXME: It's really gross that we have to cast away constness here. 324 if (!F.empty()) 325 DT.recalculate(const_cast<Function &>(F)); 326 327 for (const BasicBlock &BB : F) { 328 if (!BB.empty() && BB.back().isTerminator()) 329 continue; 330 331 if (OS) { 332 *OS << "Basic Block in function '" << F.getName() 333 << "' does not have terminator!\n"; 334 BB.printAsOperand(*OS, true, MST); 335 *OS << "\n"; 336 } 337 return false; 338 } 339 340 Broken = false; 341 // FIXME: We strip const here because the inst visitor strips const. 342 visit(const_cast<Function &>(F)); 343 verifySiblingFuncletUnwinds(); 344 InstsInThisBlock.clear(); 345 LandingPadResultTy = nullptr; 346 SawFrameEscape = false; 347 SiblingFuncletInfo.clear(); 348 349 return !Broken; 350 } 351 352 /// Verify the module that this instance of \c Verifier was initialized with. 353 bool verify() { 354 Broken = false; 355 356 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 357 for (const Function &F : M) 358 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 359 DeoptimizeDeclarations.push_back(&F); 360 361 // Now that we've visited every function, verify that we never asked to 362 // recover a frame index that wasn't escaped. 363 verifyFrameRecoverIndices(); 364 for (const GlobalVariable &GV : M.globals()) 365 visitGlobalVariable(GV); 366 367 for (const GlobalAlias &GA : M.aliases()) 368 visitGlobalAlias(GA); 369 370 for (const NamedMDNode &NMD : M.named_metadata()) 371 visitNamedMDNode(NMD); 372 373 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 374 visitComdat(SMEC.getValue()); 375 376 visitModuleFlags(M); 377 visitModuleIdents(M); 378 379 verifyCompileUnits(); 380 381 verifyDeoptimizeCallingConvs(); 382 383 return !Broken; 384 } 385 386 private: 387 // Verification methods... 388 void visitGlobalValue(const GlobalValue &GV); 389 void visitGlobalVariable(const GlobalVariable &GV); 390 void visitGlobalAlias(const GlobalAlias &GA); 391 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 392 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 393 const GlobalAlias &A, const Constant &C); 394 void visitNamedMDNode(const NamedMDNode &NMD); 395 void visitMDNode(const MDNode &MD); 396 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 397 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 398 void visitComdat(const Comdat &C); 399 void visitModuleIdents(const Module &M); 400 void visitModuleFlags(const Module &M); 401 void visitModuleFlag(const MDNode *Op, 402 DenseMap<const MDString *, const MDNode *> &SeenIDs, 403 SmallVectorImpl<const MDNode *> &Requirements); 404 void visitFunction(const Function &F); 405 void visitBasicBlock(BasicBlock &BB); 406 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 407 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 408 409 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 410 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 411 #include "llvm/IR/Metadata.def" 412 void visitDIScope(const DIScope &N); 413 void visitDIVariable(const DIVariable &N); 414 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 415 void visitDITemplateParameter(const DITemplateParameter &N); 416 417 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 418 419 // InstVisitor overrides... 420 using InstVisitor<Verifier>::visit; 421 void visit(Instruction &I); 422 423 void visitTruncInst(TruncInst &I); 424 void visitZExtInst(ZExtInst &I); 425 void visitSExtInst(SExtInst &I); 426 void visitFPTruncInst(FPTruncInst &I); 427 void visitFPExtInst(FPExtInst &I); 428 void visitFPToUIInst(FPToUIInst &I); 429 void visitFPToSIInst(FPToSIInst &I); 430 void visitUIToFPInst(UIToFPInst &I); 431 void visitSIToFPInst(SIToFPInst &I); 432 void visitIntToPtrInst(IntToPtrInst &I); 433 void visitPtrToIntInst(PtrToIntInst &I); 434 void visitBitCastInst(BitCastInst &I); 435 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 436 void visitPHINode(PHINode &PN); 437 void visitBinaryOperator(BinaryOperator &B); 438 void visitICmpInst(ICmpInst &IC); 439 void visitFCmpInst(FCmpInst &FC); 440 void visitExtractElementInst(ExtractElementInst &EI); 441 void visitInsertElementInst(InsertElementInst &EI); 442 void visitShuffleVectorInst(ShuffleVectorInst &EI); 443 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 444 void visitCallInst(CallInst &CI); 445 void visitInvokeInst(InvokeInst &II); 446 void visitGetElementPtrInst(GetElementPtrInst &GEP); 447 void visitLoadInst(LoadInst &LI); 448 void visitStoreInst(StoreInst &SI); 449 void verifyDominatesUse(Instruction &I, unsigned i); 450 void visitInstruction(Instruction &I); 451 void visitTerminatorInst(TerminatorInst &I); 452 void visitBranchInst(BranchInst &BI); 453 void visitReturnInst(ReturnInst &RI); 454 void visitSwitchInst(SwitchInst &SI); 455 void visitIndirectBrInst(IndirectBrInst &BI); 456 void visitSelectInst(SelectInst &SI); 457 void visitUserOp1(Instruction &I); 458 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 459 void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS); 460 template <class DbgIntrinsicTy> 461 void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII); 462 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 463 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 464 void visitFenceInst(FenceInst &FI); 465 void visitAllocaInst(AllocaInst &AI); 466 void visitExtractValueInst(ExtractValueInst &EVI); 467 void visitInsertValueInst(InsertValueInst &IVI); 468 void visitEHPadPredecessors(Instruction &I); 469 void visitLandingPadInst(LandingPadInst &LPI); 470 void visitResumeInst(ResumeInst &RI); 471 void visitCatchPadInst(CatchPadInst &CPI); 472 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 473 void visitCleanupPadInst(CleanupPadInst &CPI); 474 void visitFuncletPadInst(FuncletPadInst &FPI); 475 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 476 void visitCleanupReturnInst(CleanupReturnInst &CRI); 477 478 void verifyCallSite(CallSite CS); 479 void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal); 480 void verifySwiftErrorValue(const Value *SwiftErrorVal); 481 void verifyMustTailCall(CallInst &CI); 482 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, 483 unsigned ArgNo, std::string &Suffix); 484 bool verifyAttributeCount(AttributeSet Attrs, unsigned Params); 485 void verifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction, 486 const Value *V); 487 void verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty, 488 bool isReturnValue, const Value *V); 489 void verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs, 490 const Value *V); 491 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 492 493 void visitConstantExprsRecursively(const Constant *EntryC); 494 void visitConstantExpr(const ConstantExpr *CE); 495 void verifyStatepoint(ImmutableCallSite CS); 496 void verifyFrameRecoverIndices(); 497 void verifySiblingFuncletUnwinds(); 498 499 void verifyFragmentExpression(const DbgInfoIntrinsic &I); 500 501 /// Module-level debug info verification... 502 void verifyCompileUnits(); 503 504 /// Module-level verification that all @llvm.experimental.deoptimize 505 /// declarations share the same calling convention. 506 void verifyDeoptimizeCallingConvs(); 507 }; 508 509 } // end anonymous namespace 510 511 /// We know that cond should be true, if not print an error message. 512 #define Assert(C, ...) \ 513 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 514 515 /// We know that a debug info condition should be true, if not print 516 /// an error message. 517 #define AssertDI(C, ...) \ 518 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 519 520 void Verifier::visit(Instruction &I) { 521 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 522 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 523 InstVisitor<Verifier>::visit(I); 524 } 525 526 // Helper to recursively iterate over indirect users. By 527 // returning false, the callback can ask to stop recursing 528 // further. 529 static void forEachUser(const Value *User, 530 SmallPtrSet<const Value *, 32> &Visited, 531 llvm::function_ref<bool(const Value *)> Callback) { 532 if (!Visited.insert(User).second) 533 return; 534 for (const Value *TheNextUser : User->materialized_users()) 535 if (Callback(TheNextUser)) 536 forEachUser(TheNextUser, Visited, Callback); 537 } 538 539 void Verifier::visitGlobalValue(const GlobalValue &GV) { 540 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 541 "Global is external, but doesn't have external or weak linkage!", &GV); 542 543 Assert(GV.getAlignment() <= Value::MaximumAlignment, 544 "huge alignment values are unsupported", &GV); 545 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 546 "Only global variables can have appending linkage!", &GV); 547 548 if (GV.hasAppendingLinkage()) { 549 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 550 Assert(GVar && GVar->getValueType()->isArrayTy(), 551 "Only global arrays can have appending linkage!", GVar); 552 } 553 554 if (GV.isDeclarationForLinker()) 555 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 556 557 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 558 if (const Instruction *I = dyn_cast<Instruction>(V)) { 559 if (!I->getParent() || !I->getParent()->getParent()) 560 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 561 I); 562 else if (I->getParent()->getParent()->getParent() != &M) 563 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 564 I->getParent()->getParent(), 565 I->getParent()->getParent()->getParent()); 566 return false; 567 } else if (const Function *F = dyn_cast<Function>(V)) { 568 if (F->getParent() != &M) 569 CheckFailed("Global is used by function in a different module", &GV, &M, 570 F, F->getParent()); 571 return false; 572 } 573 return true; 574 }); 575 } 576 577 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 578 if (GV.hasInitializer()) { 579 Assert(GV.getInitializer()->getType() == GV.getValueType(), 580 "Global variable initializer type does not match global " 581 "variable type!", 582 &GV); 583 // If the global has common linkage, it must have a zero initializer and 584 // cannot be constant. 585 if (GV.hasCommonLinkage()) { 586 Assert(GV.getInitializer()->isNullValue(), 587 "'common' global must have a zero initializer!", &GV); 588 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 589 &GV); 590 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 591 } 592 } 593 594 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 595 GV.getName() == "llvm.global_dtors")) { 596 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 597 "invalid linkage for intrinsic global variable", &GV); 598 // Don't worry about emitting an error for it not being an array, 599 // visitGlobalValue will complain on appending non-array. 600 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 601 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 602 PointerType *FuncPtrTy = 603 FunctionType::get(Type::getVoidTy(Context), false)->getPointerTo(); 604 // FIXME: Reject the 2-field form in LLVM 4.0. 605 Assert(STy && 606 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 607 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 608 STy->getTypeAtIndex(1) == FuncPtrTy, 609 "wrong type for intrinsic global variable", &GV); 610 if (STy->getNumElements() == 3) { 611 Type *ETy = STy->getTypeAtIndex(2); 612 Assert(ETy->isPointerTy() && 613 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 614 "wrong type for intrinsic global variable", &GV); 615 } 616 } 617 } 618 619 if (GV.hasName() && (GV.getName() == "llvm.used" || 620 GV.getName() == "llvm.compiler.used")) { 621 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 622 "invalid linkage for intrinsic global variable", &GV); 623 Type *GVType = GV.getValueType(); 624 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 625 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 626 Assert(PTy, "wrong type for intrinsic global variable", &GV); 627 if (GV.hasInitializer()) { 628 const Constant *Init = GV.getInitializer(); 629 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 630 Assert(InitArray, "wrong initalizer for intrinsic global variable", 631 Init); 632 for (Value *Op : InitArray->operands()) { 633 Value *V = Op->stripPointerCastsNoFollowAliases(); 634 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 635 isa<GlobalAlias>(V), 636 "invalid llvm.used member", V); 637 Assert(V->hasName(), "members of llvm.used must be named", V); 638 } 639 } 640 } 641 } 642 643 Assert(!GV.hasDLLImportStorageClass() || 644 (GV.isDeclaration() && GV.hasExternalLinkage()) || 645 GV.hasAvailableExternallyLinkage(), 646 "Global is marked as dllimport, but not external", &GV); 647 648 // Visit any debug info attachments. 649 SmallVector<MDNode *, 1> MDs; 650 GV.getMetadata(LLVMContext::MD_dbg, MDs); 651 for (auto *MD : MDs) { 652 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 653 visitDIGlobalVariableExpression(*GVE); 654 else 655 AssertDI(false, "!dbg attachment of global variable must be a DIGlobalVariableExpression"); 656 } 657 658 if (!GV.hasInitializer()) { 659 visitGlobalValue(GV); 660 return; 661 } 662 663 // Walk any aggregate initializers looking for bitcasts between address spaces 664 visitConstantExprsRecursively(GV.getInitializer()); 665 666 visitGlobalValue(GV); 667 } 668 669 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 670 SmallPtrSet<const GlobalAlias*, 4> Visited; 671 Visited.insert(&GA); 672 visitAliaseeSubExpr(Visited, GA, C); 673 } 674 675 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 676 const GlobalAlias &GA, const Constant &C) { 677 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 678 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 679 &GA); 680 681 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 682 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 683 684 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 685 &GA); 686 } else { 687 // Only continue verifying subexpressions of GlobalAliases. 688 // Do not recurse into global initializers. 689 return; 690 } 691 } 692 693 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 694 visitConstantExprsRecursively(CE); 695 696 for (const Use &U : C.operands()) { 697 Value *V = &*U; 698 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 699 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 700 else if (const auto *C2 = dyn_cast<Constant>(V)) 701 visitAliaseeSubExpr(Visited, GA, *C2); 702 } 703 } 704 705 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 706 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 707 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 708 "weak_odr, or external linkage!", 709 &GA); 710 const Constant *Aliasee = GA.getAliasee(); 711 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 712 Assert(GA.getType() == Aliasee->getType(), 713 "Alias and aliasee types should match!", &GA); 714 715 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 716 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 717 718 visitAliaseeSubExpr(GA, *Aliasee); 719 720 visitGlobalValue(GA); 721 } 722 723 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 724 // There used to be various other llvm.dbg.* nodes, but we don't support 725 // upgrading them and we want to reserve the namespace for future uses. 726 if (NMD.getName().startswith("llvm.dbg.")) 727 AssertDI(NMD.getName() == "llvm.dbg.cu", 728 "unrecognized named metadata node in the llvm.dbg namespace", 729 &NMD); 730 for (const MDNode *MD : NMD.operands()) { 731 if (NMD.getName() == "llvm.dbg.cu") 732 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 733 734 if (!MD) 735 continue; 736 737 visitMDNode(*MD); 738 } 739 } 740 741 void Verifier::visitMDNode(const MDNode &MD) { 742 // Only visit each node once. Metadata can be mutually recursive, so this 743 // avoids infinite recursion here, as well as being an optimization. 744 if (!MDNodes.insert(&MD).second) 745 return; 746 747 switch (MD.getMetadataID()) { 748 default: 749 llvm_unreachable("Invalid MDNode subclass"); 750 case Metadata::MDTupleKind: 751 break; 752 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 753 case Metadata::CLASS##Kind: \ 754 visit##CLASS(cast<CLASS>(MD)); \ 755 break; 756 #include "llvm/IR/Metadata.def" 757 } 758 759 for (const Metadata *Op : MD.operands()) { 760 if (!Op) 761 continue; 762 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 763 &MD, Op); 764 if (auto *N = dyn_cast<MDNode>(Op)) { 765 visitMDNode(*N); 766 continue; 767 } 768 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 769 visitValueAsMetadata(*V, nullptr); 770 continue; 771 } 772 } 773 774 // Check these last, so we diagnose problems in operands first. 775 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 776 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 777 } 778 779 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 780 Assert(MD.getValue(), "Expected valid value", &MD); 781 Assert(!MD.getValue()->getType()->isMetadataTy(), 782 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 783 784 auto *L = dyn_cast<LocalAsMetadata>(&MD); 785 if (!L) 786 return; 787 788 Assert(F, "function-local metadata used outside a function", L); 789 790 // If this was an instruction, bb, or argument, verify that it is in the 791 // function that we expect. 792 Function *ActualF = nullptr; 793 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 794 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 795 ActualF = I->getParent()->getParent(); 796 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 797 ActualF = BB->getParent(); 798 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 799 ActualF = A->getParent(); 800 assert(ActualF && "Unimplemented function local metadata case!"); 801 802 Assert(ActualF == F, "function-local metadata used in wrong function", L); 803 } 804 805 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 806 Metadata *MD = MDV.getMetadata(); 807 if (auto *N = dyn_cast<MDNode>(MD)) { 808 visitMDNode(*N); 809 return; 810 } 811 812 // Only visit each node once. Metadata can be mutually recursive, so this 813 // avoids infinite recursion here, as well as being an optimization. 814 if (!MDNodes.insert(MD).second) 815 return; 816 817 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 818 visitValueAsMetadata(*V, F); 819 } 820 821 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 822 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 823 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 824 825 template <class Ty> 826 static bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) { 827 for (Metadata *MD : N.operands()) { 828 if (MD) { 829 if (!isa<Ty>(MD)) 830 return false; 831 } else { 832 if (!AllowNull) 833 return false; 834 } 835 } 836 return true; 837 } 838 839 template <class Ty> static bool isValidMetadataArray(const MDTuple &N) { 840 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false); 841 } 842 843 template <class Ty> static bool isValidMetadataNullArray(const MDTuple &N) { 844 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true); 845 } 846 847 void Verifier::visitDILocation(const DILocation &N) { 848 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 849 "location requires a valid scope", &N, N.getRawScope()); 850 if (auto *IA = N.getRawInlinedAt()) 851 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 852 } 853 854 void Verifier::visitGenericDINode(const GenericDINode &N) { 855 AssertDI(N.getTag(), "invalid tag", &N); 856 } 857 858 void Verifier::visitDIScope(const DIScope &N) { 859 if (auto *F = N.getRawFile()) 860 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 861 } 862 863 void Verifier::visitDISubrange(const DISubrange &N) { 864 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 865 AssertDI(N.getCount() >= -1, "invalid subrange count", &N); 866 } 867 868 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 869 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 870 } 871 872 void Verifier::visitDIBasicType(const DIBasicType &N) { 873 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 874 N.getTag() == dwarf::DW_TAG_unspecified_type, 875 "invalid tag", &N); 876 } 877 878 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 879 // Common scope checks. 880 visitDIScope(N); 881 882 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 883 N.getTag() == dwarf::DW_TAG_pointer_type || 884 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 885 N.getTag() == dwarf::DW_TAG_reference_type || 886 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 887 N.getTag() == dwarf::DW_TAG_const_type || 888 N.getTag() == dwarf::DW_TAG_volatile_type || 889 N.getTag() == dwarf::DW_TAG_restrict_type || 890 N.getTag() == dwarf::DW_TAG_atomic_type || 891 N.getTag() == dwarf::DW_TAG_member || 892 N.getTag() == dwarf::DW_TAG_inheritance || 893 N.getTag() == dwarf::DW_TAG_friend, 894 "invalid tag", &N); 895 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 896 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 897 N.getRawExtraData()); 898 } 899 900 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 901 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 902 N.getRawBaseType()); 903 } 904 905 static bool hasConflictingReferenceFlags(unsigned Flags) { 906 return (Flags & DINode::FlagLValueReference) && 907 (Flags & DINode::FlagRValueReference); 908 } 909 910 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 911 auto *Params = dyn_cast<MDTuple>(&RawParams); 912 AssertDI(Params, "invalid template params", &N, &RawParams); 913 for (Metadata *Op : Params->operands()) { 914 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 915 &N, Params, Op); 916 } 917 } 918 919 void Verifier::visitDICompositeType(const DICompositeType &N) { 920 // Common scope checks. 921 visitDIScope(N); 922 923 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 924 N.getTag() == dwarf::DW_TAG_structure_type || 925 N.getTag() == dwarf::DW_TAG_union_type || 926 N.getTag() == dwarf::DW_TAG_enumeration_type || 927 N.getTag() == dwarf::DW_TAG_class_type, 928 "invalid tag", &N); 929 930 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 931 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 932 N.getRawBaseType()); 933 934 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 935 "invalid composite elements", &N, N.getRawElements()); 936 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 937 N.getRawVTableHolder()); 938 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 939 "invalid reference flags", &N); 940 if (auto *Params = N.getRawTemplateParams()) 941 visitTemplateParams(N, *Params); 942 943 if (N.getTag() == dwarf::DW_TAG_class_type || 944 N.getTag() == dwarf::DW_TAG_union_type) { 945 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), 946 "class/union requires a filename", &N, N.getFile()); 947 } 948 } 949 950 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 951 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 952 if (auto *Types = N.getRawTypeArray()) { 953 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 954 for (Metadata *Ty : N.getTypeArray()->operands()) { 955 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 956 } 957 } 958 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 959 "invalid reference flags", &N); 960 } 961 962 void Verifier::visitDIFile(const DIFile &N) { 963 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 964 AssertDI((N.getChecksumKind() != DIFile::CSK_None || 965 N.getChecksum().empty()), "invalid checksum kind", &N); 966 } 967 968 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 969 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 970 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 971 972 // Don't bother verifying the compilation directory or producer string 973 // as those could be empty. 974 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 975 N.getRawFile()); 976 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 977 N.getFile()); 978 979 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 980 "invalid emission kind", &N); 981 982 if (auto *Array = N.getRawEnumTypes()) { 983 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 984 for (Metadata *Op : N.getEnumTypes()->operands()) { 985 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 986 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 987 "invalid enum type", &N, N.getEnumTypes(), Op); 988 } 989 } 990 if (auto *Array = N.getRawRetainedTypes()) { 991 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 992 for (Metadata *Op : N.getRetainedTypes()->operands()) { 993 AssertDI(Op && (isa<DIType>(Op) || 994 (isa<DISubprogram>(Op) && 995 !cast<DISubprogram>(Op)->isDefinition())), 996 "invalid retained type", &N, Op); 997 } 998 } 999 if (auto *Array = N.getRawGlobalVariables()) { 1000 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1001 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1002 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1003 "invalid global variable ref", &N, Op); 1004 } 1005 } 1006 if (auto *Array = N.getRawImportedEntities()) { 1007 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1008 for (Metadata *Op : N.getImportedEntities()->operands()) { 1009 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1010 &N, Op); 1011 } 1012 } 1013 if (auto *Array = N.getRawMacros()) { 1014 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1015 for (Metadata *Op : N.getMacros()->operands()) { 1016 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1017 } 1018 } 1019 CUVisited.insert(&N); 1020 } 1021 1022 void Verifier::visitDISubprogram(const DISubprogram &N) { 1023 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1024 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1025 if (auto *F = N.getRawFile()) 1026 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1027 if (auto *T = N.getRawType()) 1028 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1029 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1030 N.getRawContainingType()); 1031 if (auto *Params = N.getRawTemplateParams()) 1032 visitTemplateParams(N, *Params); 1033 if (auto *S = N.getRawDeclaration()) 1034 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1035 "invalid subprogram declaration", &N, S); 1036 if (auto *RawVars = N.getRawVariables()) { 1037 auto *Vars = dyn_cast<MDTuple>(RawVars); 1038 AssertDI(Vars, "invalid variable list", &N, RawVars); 1039 for (Metadata *Op : Vars->operands()) { 1040 AssertDI(Op && isa<DILocalVariable>(Op), "invalid local variable", &N, 1041 Vars, Op); 1042 } 1043 } 1044 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1045 "invalid reference flags", &N); 1046 1047 auto *Unit = N.getRawUnit(); 1048 if (N.isDefinition()) { 1049 // Subprogram definitions (not part of the type hierarchy). 1050 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1051 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1052 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1053 } else { 1054 // Subprogram declarations (part of the type hierarchy). 1055 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1056 } 1057 } 1058 1059 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1060 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1061 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1062 "invalid local scope", &N, N.getRawScope()); 1063 } 1064 1065 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1066 visitDILexicalBlockBase(N); 1067 1068 AssertDI(N.getLine() || !N.getColumn(), 1069 "cannot have column info without line info", &N); 1070 } 1071 1072 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1073 visitDILexicalBlockBase(N); 1074 } 1075 1076 void Verifier::visitDINamespace(const DINamespace &N) { 1077 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1078 if (auto *S = N.getRawScope()) 1079 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1080 } 1081 1082 void Verifier::visitDIMacro(const DIMacro &N) { 1083 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1084 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1085 "invalid macinfo type", &N); 1086 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1087 if (!N.getValue().empty()) { 1088 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1089 } 1090 } 1091 1092 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1093 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1094 "invalid macinfo type", &N); 1095 if (auto *F = N.getRawFile()) 1096 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1097 1098 if (auto *Array = N.getRawElements()) { 1099 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1100 for (Metadata *Op : N.getElements()->operands()) { 1101 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1102 } 1103 } 1104 } 1105 1106 void Verifier::visitDIModule(const DIModule &N) { 1107 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1108 AssertDI(!N.getName().empty(), "anonymous module", &N); 1109 } 1110 1111 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1112 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1113 } 1114 1115 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1116 visitDITemplateParameter(N); 1117 1118 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1119 &N); 1120 } 1121 1122 void Verifier::visitDITemplateValueParameter( 1123 const DITemplateValueParameter &N) { 1124 visitDITemplateParameter(N); 1125 1126 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1127 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1128 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1129 "invalid tag", &N); 1130 } 1131 1132 void Verifier::visitDIVariable(const DIVariable &N) { 1133 if (auto *S = N.getRawScope()) 1134 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1135 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1136 if (auto *F = N.getRawFile()) 1137 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1138 } 1139 1140 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1141 // Checks common to all variables. 1142 visitDIVariable(N); 1143 1144 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1145 AssertDI(!N.getName().empty(), "missing global variable name", &N); 1146 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1147 AssertDI(isa<DIDerivedType>(Member), 1148 "invalid static data member declaration", &N, Member); 1149 } 1150 } 1151 1152 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1153 // Checks common to all variables. 1154 visitDIVariable(N); 1155 1156 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1157 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1158 "local variable requires a valid scope", &N, N.getRawScope()); 1159 } 1160 1161 void Verifier::visitDIExpression(const DIExpression &N) { 1162 AssertDI(N.isValid(), "invalid expression", &N); 1163 } 1164 1165 void Verifier::visitDIGlobalVariableExpression( 1166 const DIGlobalVariableExpression &GVE) { 1167 AssertDI(GVE.getVariable(), "missing variable"); 1168 if (auto *Var = GVE.getVariable()) 1169 visitDIGlobalVariable(*Var); 1170 if (auto *Expr = GVE.getExpression()) 1171 visitDIExpression(*Expr); 1172 } 1173 1174 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1175 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1176 if (auto *T = N.getRawType()) 1177 AssertDI(isType(T), "invalid type ref", &N, T); 1178 if (auto *F = N.getRawFile()) 1179 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1180 } 1181 1182 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1183 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1184 N.getTag() == dwarf::DW_TAG_imported_declaration, 1185 "invalid tag", &N); 1186 if (auto *S = N.getRawScope()) 1187 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1188 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1189 N.getRawEntity()); 1190 } 1191 1192 void Verifier::visitComdat(const Comdat &C) { 1193 // The Module is invalid if the GlobalValue has private linkage. Entities 1194 // with private linkage don't have entries in the symbol table. 1195 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1196 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage", 1197 GV); 1198 } 1199 1200 void Verifier::visitModuleIdents(const Module &M) { 1201 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1202 if (!Idents) 1203 return; 1204 1205 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1206 // Scan each llvm.ident entry and make sure that this requirement is met. 1207 for (const MDNode *N : Idents->operands()) { 1208 Assert(N->getNumOperands() == 1, 1209 "incorrect number of operands in llvm.ident metadata", N); 1210 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1211 ("invalid value for llvm.ident metadata entry operand" 1212 "(the operand should be a string)"), 1213 N->getOperand(0)); 1214 } 1215 } 1216 1217 void Verifier::visitModuleFlags(const Module &M) { 1218 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1219 if (!Flags) return; 1220 1221 // Scan each flag, and track the flags and requirements. 1222 DenseMap<const MDString*, const MDNode*> SeenIDs; 1223 SmallVector<const MDNode*, 16> Requirements; 1224 for (const MDNode *MDN : Flags->operands()) 1225 visitModuleFlag(MDN, SeenIDs, Requirements); 1226 1227 // Validate that the requirements in the module are valid. 1228 for (const MDNode *Requirement : Requirements) { 1229 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1230 const Metadata *ReqValue = Requirement->getOperand(1); 1231 1232 const MDNode *Op = SeenIDs.lookup(Flag); 1233 if (!Op) { 1234 CheckFailed("invalid requirement on flag, flag is not present in module", 1235 Flag); 1236 continue; 1237 } 1238 1239 if (Op->getOperand(2) != ReqValue) { 1240 CheckFailed(("invalid requirement on flag, " 1241 "flag does not have the required value"), 1242 Flag); 1243 continue; 1244 } 1245 } 1246 } 1247 1248 void 1249 Verifier::visitModuleFlag(const MDNode *Op, 1250 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1251 SmallVectorImpl<const MDNode *> &Requirements) { 1252 // Each module flag should have three arguments, the merge behavior (a 1253 // constant int), the flag ID (an MDString), and the value. 1254 Assert(Op->getNumOperands() == 3, 1255 "incorrect number of operands in module flag", Op); 1256 Module::ModFlagBehavior MFB; 1257 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1258 Assert( 1259 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1260 "invalid behavior operand in module flag (expected constant integer)", 1261 Op->getOperand(0)); 1262 Assert(false, 1263 "invalid behavior operand in module flag (unexpected constant)", 1264 Op->getOperand(0)); 1265 } 1266 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1267 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1268 Op->getOperand(1)); 1269 1270 // Sanity check the values for behaviors with additional requirements. 1271 switch (MFB) { 1272 case Module::Error: 1273 case Module::Warning: 1274 case Module::Override: 1275 // These behavior types accept any value. 1276 break; 1277 1278 case Module::Require: { 1279 // The value should itself be an MDNode with two operands, a flag ID (an 1280 // MDString), and a value. 1281 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1282 Assert(Value && Value->getNumOperands() == 2, 1283 "invalid value for 'require' module flag (expected metadata pair)", 1284 Op->getOperand(2)); 1285 Assert(isa<MDString>(Value->getOperand(0)), 1286 ("invalid value for 'require' module flag " 1287 "(first value operand should be a string)"), 1288 Value->getOperand(0)); 1289 1290 // Append it to the list of requirements, to check once all module flags are 1291 // scanned. 1292 Requirements.push_back(Value); 1293 break; 1294 } 1295 1296 case Module::Append: 1297 case Module::AppendUnique: { 1298 // These behavior types require the operand be an MDNode. 1299 Assert(isa<MDNode>(Op->getOperand(2)), 1300 "invalid value for 'append'-type module flag " 1301 "(expected a metadata node)", 1302 Op->getOperand(2)); 1303 break; 1304 } 1305 } 1306 1307 // Unless this is a "requires" flag, check the ID is unique. 1308 if (MFB != Module::Require) { 1309 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1310 Assert(Inserted, 1311 "module flag identifiers must be unique (or of 'require' type)", ID); 1312 } 1313 } 1314 1315 void Verifier::verifyAttributeTypes(AttributeSet Attrs, unsigned Idx, 1316 bool isFunction, const Value *V) { 1317 unsigned Slot = ~0U; 1318 for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I) 1319 if (Attrs.getSlotIndex(I) == Idx) { 1320 Slot = I; 1321 break; 1322 } 1323 1324 assert(Slot != ~0U && "Attribute set inconsistency!"); 1325 1326 for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot); 1327 I != E; ++I) { 1328 if (I->isStringAttribute()) 1329 continue; 1330 1331 if (I->getKindAsEnum() == Attribute::NoReturn || 1332 I->getKindAsEnum() == Attribute::NoUnwind || 1333 I->getKindAsEnum() == Attribute::NoInline || 1334 I->getKindAsEnum() == Attribute::AlwaysInline || 1335 I->getKindAsEnum() == Attribute::OptimizeForSize || 1336 I->getKindAsEnum() == Attribute::StackProtect || 1337 I->getKindAsEnum() == Attribute::StackProtectReq || 1338 I->getKindAsEnum() == Attribute::StackProtectStrong || 1339 I->getKindAsEnum() == Attribute::SafeStack || 1340 I->getKindAsEnum() == Attribute::NoRedZone || 1341 I->getKindAsEnum() == Attribute::NoImplicitFloat || 1342 I->getKindAsEnum() == Attribute::Naked || 1343 I->getKindAsEnum() == Attribute::InlineHint || 1344 I->getKindAsEnum() == Attribute::StackAlignment || 1345 I->getKindAsEnum() == Attribute::UWTable || 1346 I->getKindAsEnum() == Attribute::NonLazyBind || 1347 I->getKindAsEnum() == Attribute::ReturnsTwice || 1348 I->getKindAsEnum() == Attribute::SanitizeAddress || 1349 I->getKindAsEnum() == Attribute::SanitizeThread || 1350 I->getKindAsEnum() == Attribute::SanitizeMemory || 1351 I->getKindAsEnum() == Attribute::MinSize || 1352 I->getKindAsEnum() == Attribute::NoDuplicate || 1353 I->getKindAsEnum() == Attribute::Builtin || 1354 I->getKindAsEnum() == Attribute::NoBuiltin || 1355 I->getKindAsEnum() == Attribute::Cold || 1356 I->getKindAsEnum() == Attribute::OptimizeNone || 1357 I->getKindAsEnum() == Attribute::JumpTable || 1358 I->getKindAsEnum() == Attribute::Convergent || 1359 I->getKindAsEnum() == Attribute::ArgMemOnly || 1360 I->getKindAsEnum() == Attribute::NoRecurse || 1361 I->getKindAsEnum() == Attribute::InaccessibleMemOnly || 1362 I->getKindAsEnum() == Attribute::InaccessibleMemOrArgMemOnly || 1363 I->getKindAsEnum() == Attribute::AllocSize) { 1364 if (!isFunction) { 1365 CheckFailed("Attribute '" + I->getAsString() + 1366 "' only applies to functions!", V); 1367 return; 1368 } 1369 } else if (I->getKindAsEnum() == Attribute::ReadOnly || 1370 I->getKindAsEnum() == Attribute::WriteOnly || 1371 I->getKindAsEnum() == Attribute::ReadNone) { 1372 if (Idx == 0) { 1373 CheckFailed("Attribute '" + I->getAsString() + 1374 "' does not apply to function returns"); 1375 return; 1376 } 1377 } else if (isFunction) { 1378 CheckFailed("Attribute '" + I->getAsString() + 1379 "' does not apply to functions!", V); 1380 return; 1381 } 1382 } 1383 } 1384 1385 // VerifyParameterAttrs - Check the given attributes for an argument or return 1386 // value of the specified type. The value V is printed in error messages. 1387 void Verifier::verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty, 1388 bool isReturnValue, const Value *V) { 1389 if (!Attrs.hasAttributes(Idx)) 1390 return; 1391 1392 verifyAttributeTypes(Attrs, Idx, false, V); 1393 1394 if (isReturnValue) 1395 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) && 1396 !Attrs.hasAttribute(Idx, Attribute::Nest) && 1397 !Attrs.hasAttribute(Idx, Attribute::StructRet) && 1398 !Attrs.hasAttribute(Idx, Attribute::NoCapture) && 1399 !Attrs.hasAttribute(Idx, Attribute::Returned) && 1400 !Attrs.hasAttribute(Idx, Attribute::InAlloca) && 1401 !Attrs.hasAttribute(Idx, Attribute::SwiftSelf) && 1402 !Attrs.hasAttribute(Idx, Attribute::SwiftError), 1403 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', " 1404 "'returned', 'swiftself', and 'swifterror' do not apply to return " 1405 "values!", 1406 V); 1407 1408 // Check for mutually incompatible attributes. Only inreg is compatible with 1409 // sret. 1410 unsigned AttrCount = 0; 1411 AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal); 1412 AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca); 1413 AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) || 1414 Attrs.hasAttribute(Idx, Attribute::InReg); 1415 AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest); 1416 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " 1417 "and 'sret' are incompatible!", 1418 V); 1419 1420 Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) && 1421 Attrs.hasAttribute(Idx, Attribute::ReadOnly)), 1422 "Attributes " 1423 "'inalloca and readonly' are incompatible!", 1424 V); 1425 1426 Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) && 1427 Attrs.hasAttribute(Idx, Attribute::Returned)), 1428 "Attributes " 1429 "'sret and returned' are incompatible!", 1430 V); 1431 1432 Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) && 1433 Attrs.hasAttribute(Idx, Attribute::SExt)), 1434 "Attributes " 1435 "'zeroext and signext' are incompatible!", 1436 V); 1437 1438 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) && 1439 Attrs.hasAttribute(Idx, Attribute::ReadOnly)), 1440 "Attributes " 1441 "'readnone and readonly' are incompatible!", 1442 V); 1443 1444 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) && 1445 Attrs.hasAttribute(Idx, Attribute::WriteOnly)), 1446 "Attributes " 1447 "'readnone and writeonly' are incompatible!", 1448 V); 1449 1450 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) && 1451 Attrs.hasAttribute(Idx, Attribute::WriteOnly)), 1452 "Attributes " 1453 "'readonly and writeonly' are incompatible!", 1454 V); 1455 1456 Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) && 1457 Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), 1458 "Attributes " 1459 "'noinline and alwaysinline' are incompatible!", 1460 V); 1461 1462 Assert( 1463 !AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::typeIncompatible(Ty)), 1464 "Wrong types for attribute: " + 1465 AttributeSet::get(Context, Idx, AttributeFuncs::typeIncompatible(Ty)) 1466 .getAsString(Idx), 1467 V); 1468 1469 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1470 SmallPtrSet<Type*, 4> Visited; 1471 if (!PTy->getElementType()->isSized(&Visited)) { 1472 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) && 1473 !Attrs.hasAttribute(Idx, Attribute::InAlloca), 1474 "Attributes 'byval' and 'inalloca' do not support unsized types!", 1475 V); 1476 } 1477 if (!isa<PointerType>(PTy->getElementType())) 1478 Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError), 1479 "Attribute 'swifterror' only applies to parameters " 1480 "with pointer to pointer type!", 1481 V); 1482 } else { 1483 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal), 1484 "Attribute 'byval' only applies to parameters with pointer type!", 1485 V); 1486 Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError), 1487 "Attribute 'swifterror' only applies to parameters " 1488 "with pointer type!", 1489 V); 1490 } 1491 } 1492 1493 // Check parameter attributes against a function type. 1494 // The value V is printed in error messages. 1495 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs, 1496 const Value *V) { 1497 if (Attrs.isEmpty()) 1498 return; 1499 1500 bool SawNest = false; 1501 bool SawReturned = false; 1502 bool SawSRet = false; 1503 bool SawSwiftSelf = false; 1504 bool SawSwiftError = false; 1505 1506 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { 1507 unsigned Idx = Attrs.getSlotIndex(i); 1508 1509 Type *Ty; 1510 if (Idx == 0) 1511 Ty = FT->getReturnType(); 1512 else if (Idx-1 < FT->getNumParams()) 1513 Ty = FT->getParamType(Idx-1); 1514 else 1515 break; // VarArgs attributes, verified elsewhere. 1516 1517 verifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V); 1518 1519 if (Idx == 0) 1520 continue; 1521 1522 if (Attrs.hasAttribute(Idx, Attribute::Nest)) { 1523 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1524 SawNest = true; 1525 } 1526 1527 if (Attrs.hasAttribute(Idx, Attribute::Returned)) { 1528 Assert(!SawReturned, "More than one parameter has attribute returned!", 1529 V); 1530 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1531 "Incompatible " 1532 "argument and return types for 'returned' attribute", 1533 V); 1534 SawReturned = true; 1535 } 1536 1537 if (Attrs.hasAttribute(Idx, Attribute::StructRet)) { 1538 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1539 Assert(Idx == 1 || Idx == 2, 1540 "Attribute 'sret' is not on first or second parameter!", V); 1541 SawSRet = true; 1542 } 1543 1544 if (Attrs.hasAttribute(Idx, Attribute::SwiftSelf)) { 1545 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1546 SawSwiftSelf = true; 1547 } 1548 1549 if (Attrs.hasAttribute(Idx, Attribute::SwiftError)) { 1550 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1551 V); 1552 SawSwiftError = true; 1553 } 1554 1555 if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) { 1556 Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!", 1557 V); 1558 } 1559 } 1560 1561 if (!Attrs.hasAttributes(AttributeSet::FunctionIndex)) 1562 return; 1563 1564 verifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V); 1565 1566 Assert( 1567 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) && 1568 Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)), 1569 "Attributes 'readnone and readonly' are incompatible!", V); 1570 1571 Assert( 1572 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) && 1573 Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::WriteOnly)), 1574 "Attributes 'readnone and writeonly' are incompatible!", V); 1575 1576 Assert( 1577 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly) && 1578 Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::WriteOnly)), 1579 "Attributes 'readonly and writeonly' are incompatible!", V); 1580 1581 Assert( 1582 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) && 1583 Attrs.hasAttribute(AttributeSet::FunctionIndex, 1584 Attribute::InaccessibleMemOrArgMemOnly)), 1585 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!", V); 1586 1587 Assert( 1588 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) && 1589 Attrs.hasAttribute(AttributeSet::FunctionIndex, 1590 Attribute::InaccessibleMemOnly)), 1591 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1592 1593 Assert( 1594 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) && 1595 Attrs.hasAttribute(AttributeSet::FunctionIndex, 1596 Attribute::AlwaysInline)), 1597 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1598 1599 if (Attrs.hasAttribute(AttributeSet::FunctionIndex, 1600 Attribute::OptimizeNone)) { 1601 Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline), 1602 "Attribute 'optnone' requires 'noinline'!", V); 1603 1604 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, 1605 Attribute::OptimizeForSize), 1606 "Attributes 'optsize and optnone' are incompatible!", V); 1607 1608 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize), 1609 "Attributes 'minsize and optnone' are incompatible!", V); 1610 } 1611 1612 if (Attrs.hasAttribute(AttributeSet::FunctionIndex, 1613 Attribute::JumpTable)) { 1614 const GlobalValue *GV = cast<GlobalValue>(V); 1615 Assert(GV->hasGlobalUnnamedAddr(), 1616 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1617 } 1618 1619 if (Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::AllocSize)) { 1620 std::pair<unsigned, Optional<unsigned>> Args = 1621 Attrs.getAllocSizeArgs(AttributeSet::FunctionIndex); 1622 1623 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1624 if (ParamNo >= FT->getNumParams()) { 1625 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1626 return false; 1627 } 1628 1629 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1630 CheckFailed("'allocsize' " + Name + 1631 " argument must refer to an integer parameter", 1632 V); 1633 return false; 1634 } 1635 1636 return true; 1637 }; 1638 1639 if (!CheckParam("element size", Args.first)) 1640 return; 1641 1642 if (Args.second && !CheckParam("number of elements", *Args.second)) 1643 return; 1644 } 1645 } 1646 1647 void Verifier::verifyFunctionMetadata( 1648 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 1649 for (const auto &Pair : MDs) { 1650 if (Pair.first == LLVMContext::MD_prof) { 1651 MDNode *MD = Pair.second; 1652 Assert(MD->getNumOperands() == 2, 1653 "!prof annotations should have exactly 2 operands", MD); 1654 1655 // Check first operand. 1656 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 1657 MD); 1658 Assert(isa<MDString>(MD->getOperand(0)), 1659 "expected string with name of the !prof annotation", MD); 1660 MDString *MDS = cast<MDString>(MD->getOperand(0)); 1661 StringRef ProfName = MDS->getString(); 1662 Assert(ProfName.equals("function_entry_count"), 1663 "first operand should be 'function_entry_count'", MD); 1664 1665 // Check second operand. 1666 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 1667 MD); 1668 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 1669 "expected integer argument to function_entry_count", MD); 1670 } 1671 } 1672 } 1673 1674 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 1675 if (!ConstantExprVisited.insert(EntryC).second) 1676 return; 1677 1678 SmallVector<const Constant *, 16> Stack; 1679 Stack.push_back(EntryC); 1680 1681 while (!Stack.empty()) { 1682 const Constant *C = Stack.pop_back_val(); 1683 1684 // Check this constant expression. 1685 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 1686 visitConstantExpr(CE); 1687 1688 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 1689 // Global Values get visited separately, but we do need to make sure 1690 // that the global value is in the correct module 1691 Assert(GV->getParent() == &M, "Referencing global in another module!", 1692 EntryC, &M, GV, GV->getParent()); 1693 continue; 1694 } 1695 1696 // Visit all sub-expressions. 1697 for (const Use &U : C->operands()) { 1698 const auto *OpC = dyn_cast<Constant>(U); 1699 if (!OpC) 1700 continue; 1701 if (!ConstantExprVisited.insert(OpC).second) 1702 continue; 1703 Stack.push_back(OpC); 1704 } 1705 } 1706 } 1707 1708 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 1709 if (CE->getOpcode() == Instruction::BitCast) 1710 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 1711 CE->getType()), 1712 "Invalid bitcast", CE); 1713 1714 if (CE->getOpcode() == Instruction::IntToPtr || 1715 CE->getOpcode() == Instruction::PtrToInt) { 1716 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 1717 ? CE->getType() 1718 : CE->getOperand(0)->getType(); 1719 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 1720 ? "inttoptr not supported for non-integral pointers" 1721 : "ptrtoint not supported for non-integral pointers"; 1722 Assert( 1723 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 1724 Msg); 1725 } 1726 } 1727 1728 bool Verifier::verifyAttributeCount(AttributeSet Attrs, unsigned Params) { 1729 if (Attrs.getNumSlots() == 0) 1730 return true; 1731 1732 unsigned LastSlot = Attrs.getNumSlots() - 1; 1733 unsigned LastIndex = Attrs.getSlotIndex(LastSlot); 1734 if (LastIndex <= Params 1735 || (LastIndex == AttributeSet::FunctionIndex 1736 && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params))) 1737 return true; 1738 1739 return false; 1740 } 1741 1742 /// Verify that statepoint intrinsic is well formed. 1743 void Verifier::verifyStatepoint(ImmutableCallSite CS) { 1744 assert(CS.getCalledFunction() && 1745 CS.getCalledFunction()->getIntrinsicID() == 1746 Intrinsic::experimental_gc_statepoint); 1747 1748 const Instruction &CI = *CS.getInstruction(); 1749 1750 Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() && 1751 !CS.onlyAccessesArgMemory(), 1752 "gc.statepoint must read and write all memory to preserve " 1753 "reordering restrictions required by safepoint semantics", 1754 &CI); 1755 1756 const Value *IDV = CS.getArgument(0); 1757 Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer", 1758 &CI); 1759 1760 const Value *NumPatchBytesV = CS.getArgument(1); 1761 Assert(isa<ConstantInt>(NumPatchBytesV), 1762 "gc.statepoint number of patchable bytes must be a constant integer", 1763 &CI); 1764 const int64_t NumPatchBytes = 1765 cast<ConstantInt>(NumPatchBytesV)->getSExtValue(); 1766 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 1767 Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be " 1768 "positive", 1769 &CI); 1770 1771 const Value *Target = CS.getArgument(2); 1772 auto *PT = dyn_cast<PointerType>(Target->getType()); 1773 Assert(PT && PT->getElementType()->isFunctionTy(), 1774 "gc.statepoint callee must be of function pointer type", &CI, Target); 1775 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 1776 1777 const Value *NumCallArgsV = CS.getArgument(3); 1778 Assert(isa<ConstantInt>(NumCallArgsV), 1779 "gc.statepoint number of arguments to underlying call " 1780 "must be constant integer", 1781 &CI); 1782 const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue(); 1783 Assert(NumCallArgs >= 0, 1784 "gc.statepoint number of arguments to underlying call " 1785 "must be positive", 1786 &CI); 1787 const int NumParams = (int)TargetFuncType->getNumParams(); 1788 if (TargetFuncType->isVarArg()) { 1789 Assert(NumCallArgs >= NumParams, 1790 "gc.statepoint mismatch in number of vararg call args", &CI); 1791 1792 // TODO: Remove this limitation 1793 Assert(TargetFuncType->getReturnType()->isVoidTy(), 1794 "gc.statepoint doesn't support wrapping non-void " 1795 "vararg functions yet", 1796 &CI); 1797 } else 1798 Assert(NumCallArgs == NumParams, 1799 "gc.statepoint mismatch in number of call args", &CI); 1800 1801 const Value *FlagsV = CS.getArgument(4); 1802 Assert(isa<ConstantInt>(FlagsV), 1803 "gc.statepoint flags must be constant integer", &CI); 1804 const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue(); 1805 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 1806 "unknown flag used in gc.statepoint flags argument", &CI); 1807 1808 // Verify that the types of the call parameter arguments match 1809 // the type of the wrapped callee. 1810 for (int i = 0; i < NumParams; i++) { 1811 Type *ParamType = TargetFuncType->getParamType(i); 1812 Type *ArgType = CS.getArgument(5 + i)->getType(); 1813 Assert(ArgType == ParamType, 1814 "gc.statepoint call argument does not match wrapped " 1815 "function type", 1816 &CI); 1817 } 1818 1819 const int EndCallArgsInx = 4 + NumCallArgs; 1820 1821 const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1); 1822 Assert(isa<ConstantInt>(NumTransitionArgsV), 1823 "gc.statepoint number of transition arguments " 1824 "must be constant integer", 1825 &CI); 1826 const int NumTransitionArgs = 1827 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 1828 Assert(NumTransitionArgs >= 0, 1829 "gc.statepoint number of transition arguments must be positive", &CI); 1830 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 1831 1832 const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1); 1833 Assert(isa<ConstantInt>(NumDeoptArgsV), 1834 "gc.statepoint number of deoptimization arguments " 1835 "must be constant integer", 1836 &CI); 1837 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 1838 Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments " 1839 "must be positive", 1840 &CI); 1841 1842 const int ExpectedNumArgs = 1843 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; 1844 Assert(ExpectedNumArgs <= (int)CS.arg_size(), 1845 "gc.statepoint too few arguments according to length fields", &CI); 1846 1847 // Check that the only uses of this gc.statepoint are gc.result or 1848 // gc.relocate calls which are tied to this statepoint and thus part 1849 // of the same statepoint sequence 1850 for (const User *U : CI.users()) { 1851 const CallInst *Call = dyn_cast<const CallInst>(U); 1852 Assert(Call, "illegal use of statepoint token", &CI, U); 1853 if (!Call) continue; 1854 Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call), 1855 "gc.result or gc.relocate are the only value uses " 1856 "of a gc.statepoint", 1857 &CI, U); 1858 if (isa<GCResultInst>(Call)) { 1859 Assert(Call->getArgOperand(0) == &CI, 1860 "gc.result connected to wrong gc.statepoint", &CI, Call); 1861 } else if (isa<GCRelocateInst>(Call)) { 1862 Assert(Call->getArgOperand(0) == &CI, 1863 "gc.relocate connected to wrong gc.statepoint", &CI, Call); 1864 } 1865 } 1866 1867 // Note: It is legal for a single derived pointer to be listed multiple 1868 // times. It's non-optimal, but it is legal. It can also happen after 1869 // insertion if we strip a bitcast away. 1870 // Note: It is really tempting to check that each base is relocated and 1871 // that a derived pointer is never reused as a base pointer. This turns 1872 // out to be problematic since optimizations run after safepoint insertion 1873 // can recognize equality properties that the insertion logic doesn't know 1874 // about. See example statepoint.ll in the verifier subdirectory 1875 } 1876 1877 void Verifier::verifyFrameRecoverIndices() { 1878 for (auto &Counts : FrameEscapeInfo) { 1879 Function *F = Counts.first; 1880 unsigned EscapedObjectCount = Counts.second.first; 1881 unsigned MaxRecoveredIndex = Counts.second.second; 1882 Assert(MaxRecoveredIndex <= EscapedObjectCount, 1883 "all indices passed to llvm.localrecover must be less than the " 1884 "number of arguments passed ot llvm.localescape in the parent " 1885 "function", 1886 F); 1887 } 1888 } 1889 1890 static Instruction *getSuccPad(TerminatorInst *Terminator) { 1891 BasicBlock *UnwindDest; 1892 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 1893 UnwindDest = II->getUnwindDest(); 1894 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 1895 UnwindDest = CSI->getUnwindDest(); 1896 else 1897 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 1898 return UnwindDest->getFirstNonPHI(); 1899 } 1900 1901 void Verifier::verifySiblingFuncletUnwinds() { 1902 SmallPtrSet<Instruction *, 8> Visited; 1903 SmallPtrSet<Instruction *, 8> Active; 1904 for (const auto &Pair : SiblingFuncletInfo) { 1905 Instruction *PredPad = Pair.first; 1906 if (Visited.count(PredPad)) 1907 continue; 1908 Active.insert(PredPad); 1909 TerminatorInst *Terminator = Pair.second; 1910 do { 1911 Instruction *SuccPad = getSuccPad(Terminator); 1912 if (Active.count(SuccPad)) { 1913 // Found a cycle; report error 1914 Instruction *CyclePad = SuccPad; 1915 SmallVector<Instruction *, 8> CycleNodes; 1916 do { 1917 CycleNodes.push_back(CyclePad); 1918 TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad]; 1919 if (CycleTerminator != CyclePad) 1920 CycleNodes.push_back(CycleTerminator); 1921 CyclePad = getSuccPad(CycleTerminator); 1922 } while (CyclePad != SuccPad); 1923 Assert(false, "EH pads can't handle each other's exceptions", 1924 ArrayRef<Instruction *>(CycleNodes)); 1925 } 1926 // Don't re-walk a node we've already checked 1927 if (!Visited.insert(SuccPad).second) 1928 break; 1929 // Walk to this successor if it has a map entry. 1930 PredPad = SuccPad; 1931 auto TermI = SiblingFuncletInfo.find(PredPad); 1932 if (TermI == SiblingFuncletInfo.end()) 1933 break; 1934 Terminator = TermI->second; 1935 Active.insert(PredPad); 1936 } while (true); 1937 // Each node only has one successor, so we've walked all the active 1938 // nodes' successors. 1939 Active.clear(); 1940 } 1941 } 1942 1943 // visitFunction - Verify that a function is ok. 1944 // 1945 void Verifier::visitFunction(const Function &F) { 1946 visitGlobalValue(F); 1947 1948 // Check function arguments. 1949 FunctionType *FT = F.getFunctionType(); 1950 unsigned NumArgs = F.arg_size(); 1951 1952 Assert(&Context == &F.getContext(), 1953 "Function context does not match Module context!", &F); 1954 1955 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 1956 Assert(FT->getNumParams() == NumArgs, 1957 "# formal arguments must match # of arguments for function type!", &F, 1958 FT); 1959 Assert(F.getReturnType()->isFirstClassType() || 1960 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 1961 "Functions cannot return aggregate values!", &F); 1962 1963 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 1964 "Invalid struct return type!", &F); 1965 1966 AttributeSet Attrs = F.getAttributes(); 1967 1968 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 1969 "Attribute after last parameter!", &F); 1970 1971 // Check function attributes. 1972 verifyFunctionAttrs(FT, Attrs, &F); 1973 1974 // On function declarations/definitions, we do not support the builtin 1975 // attribute. We do not check this in VerifyFunctionAttrs since that is 1976 // checking for Attributes that can/can not ever be on functions. 1977 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin), 1978 "Attribute 'builtin' can only be applied to a callsite.", &F); 1979 1980 // Check that this function meets the restrictions on this calling convention. 1981 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 1982 // restrictions can be lifted. 1983 switch (F.getCallingConv()) { 1984 default: 1985 case CallingConv::C: 1986 break; 1987 case CallingConv::Fast: 1988 case CallingConv::Cold: 1989 case CallingConv::Intel_OCL_BI: 1990 case CallingConv::PTX_Kernel: 1991 case CallingConv::PTX_Device: 1992 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 1993 "perfect forwarding!", 1994 &F); 1995 break; 1996 } 1997 1998 bool isLLVMdotName = F.getName().size() >= 5 && 1999 F.getName().substr(0, 5) == "llvm."; 2000 2001 // Check that the argument values match the function type for this function... 2002 unsigned i = 0; 2003 for (const Argument &Arg : F.args()) { 2004 Assert(Arg.getType() == FT->getParamType(i), 2005 "Argument value does not match function argument type!", &Arg, 2006 FT->getParamType(i)); 2007 Assert(Arg.getType()->isFirstClassType(), 2008 "Function arguments must have first-class types!", &Arg); 2009 if (!isLLVMdotName) { 2010 Assert(!Arg.getType()->isMetadataTy(), 2011 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2012 Assert(!Arg.getType()->isTokenTy(), 2013 "Function takes token but isn't an intrinsic", &Arg, &F); 2014 } 2015 2016 // Check that swifterror argument is only used by loads and stores. 2017 if (Attrs.hasAttribute(i+1, Attribute::SwiftError)) { 2018 verifySwiftErrorValue(&Arg); 2019 } 2020 ++i; 2021 } 2022 2023 if (!isLLVMdotName) 2024 Assert(!F.getReturnType()->isTokenTy(), 2025 "Functions returns a token but isn't an intrinsic", &F); 2026 2027 // Get the function metadata attachments. 2028 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2029 F.getAllMetadata(MDs); 2030 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2031 verifyFunctionMetadata(MDs); 2032 2033 // Check validity of the personality function 2034 if (F.hasPersonalityFn()) { 2035 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2036 if (Per) 2037 Assert(Per->getParent() == F.getParent(), 2038 "Referencing personality function in another module!", 2039 &F, F.getParent(), Per, Per->getParent()); 2040 } 2041 2042 if (F.isMaterializable()) { 2043 // Function has a body somewhere we can't see. 2044 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2045 MDs.empty() ? nullptr : MDs.front().second); 2046 } else if (F.isDeclaration()) { 2047 for (const auto &I : MDs) { 2048 AssertDI(I.first != LLVMContext::MD_dbg, 2049 "function declaration may not have a !dbg attachment", &F); 2050 Assert(I.first != LLVMContext::MD_prof, 2051 "function declaration may not have a !prof attachment", &F); 2052 2053 // Verify the metadata itself. 2054 visitMDNode(*I.second); 2055 } 2056 Assert(!F.hasPersonalityFn(), 2057 "Function declaration shouldn't have a personality routine", &F); 2058 } else { 2059 // Verify that this function (which has a body) is not named "llvm.*". It 2060 // is not legal to define intrinsics. 2061 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 2062 2063 // Check the entry node 2064 const BasicBlock *Entry = &F.getEntryBlock(); 2065 Assert(pred_empty(Entry), 2066 "Entry block to function must not have predecessors!", Entry); 2067 2068 // The address of the entry block cannot be taken, unless it is dead. 2069 if (Entry->hasAddressTaken()) { 2070 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2071 "blockaddress may not be used with the entry block!", Entry); 2072 } 2073 2074 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2075 // Visit metadata attachments. 2076 for (const auto &I : MDs) { 2077 // Verify that the attachment is legal. 2078 switch (I.first) { 2079 default: 2080 break; 2081 case LLVMContext::MD_dbg: 2082 ++NumDebugAttachments; 2083 AssertDI(NumDebugAttachments == 1, 2084 "function must have a single !dbg attachment", &F, I.second); 2085 AssertDI(isa<DISubprogram>(I.second), 2086 "function !dbg attachment must be a subprogram", &F, I.second); 2087 break; 2088 case LLVMContext::MD_prof: 2089 ++NumProfAttachments; 2090 Assert(NumProfAttachments == 1, 2091 "function must have a single !prof attachment", &F, I.second); 2092 break; 2093 } 2094 2095 // Verify the metadata itself. 2096 visitMDNode(*I.second); 2097 } 2098 } 2099 2100 // If this function is actually an intrinsic, verify that it is only used in 2101 // direct call/invokes, never having its "address taken". 2102 // Only do this if the module is materialized, otherwise we don't have all the 2103 // uses. 2104 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2105 const User *U; 2106 if (F.hasAddressTaken(&U)) 2107 Assert(false, "Invalid user of intrinsic instruction!", U); 2108 } 2109 2110 Assert(!F.hasDLLImportStorageClass() || 2111 (F.isDeclaration() && F.hasExternalLinkage()) || 2112 F.hasAvailableExternallyLinkage(), 2113 "Function is marked as dllimport, but not external.", &F); 2114 2115 auto *N = F.getSubprogram(); 2116 if (!N) 2117 return; 2118 2119 visitDISubprogram(*N); 2120 2121 // Check that all !dbg attachments lead to back to N (or, at least, another 2122 // subprogram that describes the same function). 2123 // 2124 // FIXME: Check this incrementally while visiting !dbg attachments. 2125 // FIXME: Only check when N is the canonical subprogram for F. 2126 SmallPtrSet<const MDNode *, 32> Seen; 2127 for (auto &BB : F) 2128 for (auto &I : BB) { 2129 // Be careful about using DILocation here since we might be dealing with 2130 // broken code (this is the Verifier after all). 2131 DILocation *DL = 2132 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode()); 2133 if (!DL) 2134 continue; 2135 if (!Seen.insert(DL).second) 2136 continue; 2137 2138 DILocalScope *Scope = DL->getInlinedAtScope(); 2139 if (Scope && !Seen.insert(Scope).second) 2140 continue; 2141 2142 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr; 2143 2144 // Scope and SP could be the same MDNode and we don't want to skip 2145 // validation in that case 2146 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2147 continue; 2148 2149 // FIXME: Once N is canonical, check "SP == &N". 2150 AssertDI(SP->describes(&F), 2151 "!dbg attachment points at wrong subprogram for function", N, &F, 2152 &I, DL, Scope, SP); 2153 } 2154 } 2155 2156 // verifyBasicBlock - Verify that a basic block is well formed... 2157 // 2158 void Verifier::visitBasicBlock(BasicBlock &BB) { 2159 InstsInThisBlock.clear(); 2160 2161 // Ensure that basic blocks have terminators! 2162 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2163 2164 // Check constraints that this basic block imposes on all of the PHI nodes in 2165 // it. 2166 if (isa<PHINode>(BB.front())) { 2167 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 2168 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2169 std::sort(Preds.begin(), Preds.end()); 2170 PHINode *PN; 2171 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) { 2172 // Ensure that PHI nodes have at least one entry! 2173 Assert(PN->getNumIncomingValues() != 0, 2174 "PHI nodes must have at least one entry. If the block is dead, " 2175 "the PHI should be removed!", 2176 PN); 2177 Assert(PN->getNumIncomingValues() == Preds.size(), 2178 "PHINode should have one entry for each predecessor of its " 2179 "parent basic block!", 2180 PN); 2181 2182 // Get and sort all incoming values in the PHI node... 2183 Values.clear(); 2184 Values.reserve(PN->getNumIncomingValues()); 2185 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 2186 Values.push_back(std::make_pair(PN->getIncomingBlock(i), 2187 PN->getIncomingValue(i))); 2188 std::sort(Values.begin(), Values.end()); 2189 2190 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2191 // Check to make sure that if there is more than one entry for a 2192 // particular basic block in this PHI node, that the incoming values are 2193 // all identical. 2194 // 2195 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2196 Values[i].second == Values[i - 1].second, 2197 "PHI node has multiple entries for the same basic block with " 2198 "different incoming values!", 2199 PN, Values[i].first, Values[i].second, Values[i - 1].second); 2200 2201 // Check to make sure that the predecessors and PHI node entries are 2202 // matched up. 2203 Assert(Values[i].first == Preds[i], 2204 "PHI node entries do not match predecessors!", PN, 2205 Values[i].first, Preds[i]); 2206 } 2207 } 2208 } 2209 2210 // Check that all instructions have their parent pointers set up correctly. 2211 for (auto &I : BB) 2212 { 2213 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2214 } 2215 } 2216 2217 void Verifier::visitTerminatorInst(TerminatorInst &I) { 2218 // Ensure that terminators only exist at the end of the basic block. 2219 Assert(&I == I.getParent()->getTerminator(), 2220 "Terminator found in the middle of a basic block!", I.getParent()); 2221 visitInstruction(I); 2222 } 2223 2224 void Verifier::visitBranchInst(BranchInst &BI) { 2225 if (BI.isConditional()) { 2226 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2227 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2228 } 2229 visitTerminatorInst(BI); 2230 } 2231 2232 void Verifier::visitReturnInst(ReturnInst &RI) { 2233 Function *F = RI.getParent()->getParent(); 2234 unsigned N = RI.getNumOperands(); 2235 if (F->getReturnType()->isVoidTy()) 2236 Assert(N == 0, 2237 "Found return instr that returns non-void in Function of void " 2238 "return type!", 2239 &RI, F->getReturnType()); 2240 else 2241 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2242 "Function return type does not match operand " 2243 "type of return inst!", 2244 &RI, F->getReturnType()); 2245 2246 // Check to make sure that the return value has necessary properties for 2247 // terminators... 2248 visitTerminatorInst(RI); 2249 } 2250 2251 void Verifier::visitSwitchInst(SwitchInst &SI) { 2252 // Check to make sure that all of the constants in the switch instruction 2253 // have the same type as the switched-on value. 2254 Type *SwitchTy = SI.getCondition()->getType(); 2255 SmallPtrSet<ConstantInt*, 32> Constants; 2256 for (auto &Case : SI.cases()) { 2257 Assert(Case.getCaseValue()->getType() == SwitchTy, 2258 "Switch constants must all be same type as switch value!", &SI); 2259 Assert(Constants.insert(Case.getCaseValue()).second, 2260 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2261 } 2262 2263 visitTerminatorInst(SI); 2264 } 2265 2266 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2267 Assert(BI.getAddress()->getType()->isPointerTy(), 2268 "Indirectbr operand must have pointer type!", &BI); 2269 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2270 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2271 "Indirectbr destinations must all have pointer type!", &BI); 2272 2273 visitTerminatorInst(BI); 2274 } 2275 2276 void Verifier::visitSelectInst(SelectInst &SI) { 2277 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2278 SI.getOperand(2)), 2279 "Invalid operands for select instruction!", &SI); 2280 2281 Assert(SI.getTrueValue()->getType() == SI.getType(), 2282 "Select values must have same type as select instruction!", &SI); 2283 visitInstruction(SI); 2284 } 2285 2286 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2287 /// a pass, if any exist, it's an error. 2288 /// 2289 void Verifier::visitUserOp1(Instruction &I) { 2290 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2291 } 2292 2293 void Verifier::visitTruncInst(TruncInst &I) { 2294 // Get the source and destination types 2295 Type *SrcTy = I.getOperand(0)->getType(); 2296 Type *DestTy = I.getType(); 2297 2298 // Get the size of the types in bits, we'll need this later 2299 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2300 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2301 2302 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2303 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2304 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2305 "trunc source and destination must both be a vector or neither", &I); 2306 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2307 2308 visitInstruction(I); 2309 } 2310 2311 void Verifier::visitZExtInst(ZExtInst &I) { 2312 // Get the source and destination types 2313 Type *SrcTy = I.getOperand(0)->getType(); 2314 Type *DestTy = I.getType(); 2315 2316 // Get the size of the types in bits, we'll need this later 2317 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2318 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2319 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2320 "zext source and destination must both be a vector or neither", &I); 2321 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2322 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2323 2324 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2325 2326 visitInstruction(I); 2327 } 2328 2329 void Verifier::visitSExtInst(SExtInst &I) { 2330 // Get the source and destination types 2331 Type *SrcTy = I.getOperand(0)->getType(); 2332 Type *DestTy = I.getType(); 2333 2334 // Get the size of the types in bits, we'll need this later 2335 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2336 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2337 2338 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2339 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2340 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2341 "sext source and destination must both be a vector or neither", &I); 2342 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2343 2344 visitInstruction(I); 2345 } 2346 2347 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2348 // Get the source and destination types 2349 Type *SrcTy = I.getOperand(0)->getType(); 2350 Type *DestTy = I.getType(); 2351 // Get the size of the types in bits, we'll need this later 2352 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2353 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2354 2355 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2356 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2357 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2358 "fptrunc source and destination must both be a vector or neither", &I); 2359 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2360 2361 visitInstruction(I); 2362 } 2363 2364 void Verifier::visitFPExtInst(FPExtInst &I) { 2365 // Get the source and destination types 2366 Type *SrcTy = I.getOperand(0)->getType(); 2367 Type *DestTy = I.getType(); 2368 2369 // Get the size of the types in bits, we'll need this later 2370 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2371 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2372 2373 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2374 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2375 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2376 "fpext source and destination must both be a vector or neither", &I); 2377 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2378 2379 visitInstruction(I); 2380 } 2381 2382 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2383 // Get the source and destination types 2384 Type *SrcTy = I.getOperand(0)->getType(); 2385 Type *DestTy = I.getType(); 2386 2387 bool SrcVec = SrcTy->isVectorTy(); 2388 bool DstVec = DestTy->isVectorTy(); 2389 2390 Assert(SrcVec == DstVec, 2391 "UIToFP source and dest must both be vector or scalar", &I); 2392 Assert(SrcTy->isIntOrIntVectorTy(), 2393 "UIToFP source must be integer or integer vector", &I); 2394 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2395 &I); 2396 2397 if (SrcVec && DstVec) 2398 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2399 cast<VectorType>(DestTy)->getNumElements(), 2400 "UIToFP source and dest vector length mismatch", &I); 2401 2402 visitInstruction(I); 2403 } 2404 2405 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2406 // Get the source and destination types 2407 Type *SrcTy = I.getOperand(0)->getType(); 2408 Type *DestTy = I.getType(); 2409 2410 bool SrcVec = SrcTy->isVectorTy(); 2411 bool DstVec = DestTy->isVectorTy(); 2412 2413 Assert(SrcVec == DstVec, 2414 "SIToFP source and dest must both be vector or scalar", &I); 2415 Assert(SrcTy->isIntOrIntVectorTy(), 2416 "SIToFP source must be integer or integer vector", &I); 2417 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2418 &I); 2419 2420 if (SrcVec && DstVec) 2421 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2422 cast<VectorType>(DestTy)->getNumElements(), 2423 "SIToFP source and dest vector length mismatch", &I); 2424 2425 visitInstruction(I); 2426 } 2427 2428 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2429 // Get the source and destination types 2430 Type *SrcTy = I.getOperand(0)->getType(); 2431 Type *DestTy = I.getType(); 2432 2433 bool SrcVec = SrcTy->isVectorTy(); 2434 bool DstVec = DestTy->isVectorTy(); 2435 2436 Assert(SrcVec == DstVec, 2437 "FPToUI source and dest must both be vector or scalar", &I); 2438 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2439 &I); 2440 Assert(DestTy->isIntOrIntVectorTy(), 2441 "FPToUI result must be integer or integer vector", &I); 2442 2443 if (SrcVec && DstVec) 2444 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2445 cast<VectorType>(DestTy)->getNumElements(), 2446 "FPToUI source and dest vector length mismatch", &I); 2447 2448 visitInstruction(I); 2449 } 2450 2451 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2452 // Get the source and destination types 2453 Type *SrcTy = I.getOperand(0)->getType(); 2454 Type *DestTy = I.getType(); 2455 2456 bool SrcVec = SrcTy->isVectorTy(); 2457 bool DstVec = DestTy->isVectorTy(); 2458 2459 Assert(SrcVec == DstVec, 2460 "FPToSI source and dest must both be vector or scalar", &I); 2461 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2462 &I); 2463 Assert(DestTy->isIntOrIntVectorTy(), 2464 "FPToSI result must be integer or integer vector", &I); 2465 2466 if (SrcVec && DstVec) 2467 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2468 cast<VectorType>(DestTy)->getNumElements(), 2469 "FPToSI source and dest vector length mismatch", &I); 2470 2471 visitInstruction(I); 2472 } 2473 2474 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2475 // Get the source and destination types 2476 Type *SrcTy = I.getOperand(0)->getType(); 2477 Type *DestTy = I.getType(); 2478 2479 Assert(SrcTy->getScalarType()->isPointerTy(), 2480 "PtrToInt source must be pointer", &I); 2481 2482 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 2483 Assert(!DL.isNonIntegralPointerType(PTy), 2484 "ptrtoint not supported for non-integral pointers"); 2485 2486 Assert(DestTy->getScalarType()->isIntegerTy(), 2487 "PtrToInt result must be integral", &I); 2488 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2489 &I); 2490 2491 if (SrcTy->isVectorTy()) { 2492 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 2493 VectorType *VDest = dyn_cast<VectorType>(DestTy); 2494 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2495 "PtrToInt Vector width mismatch", &I); 2496 } 2497 2498 visitInstruction(I); 2499 } 2500 2501 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2502 // Get the source and destination types 2503 Type *SrcTy = I.getOperand(0)->getType(); 2504 Type *DestTy = I.getType(); 2505 2506 Assert(SrcTy->getScalarType()->isIntegerTy(), 2507 "IntToPtr source must be an integral", &I); 2508 Assert(DestTy->getScalarType()->isPointerTy(), 2509 "IntToPtr result must be a pointer", &I); 2510 2511 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 2512 Assert(!DL.isNonIntegralPointerType(PTy), 2513 "inttoptr not supported for non-integral pointers"); 2514 2515 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2516 &I); 2517 if (SrcTy->isVectorTy()) { 2518 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 2519 VectorType *VDest = dyn_cast<VectorType>(DestTy); 2520 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2521 "IntToPtr Vector width mismatch", &I); 2522 } 2523 visitInstruction(I); 2524 } 2525 2526 void Verifier::visitBitCastInst(BitCastInst &I) { 2527 Assert( 2528 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2529 "Invalid bitcast", &I); 2530 visitInstruction(I); 2531 } 2532 2533 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2534 Type *SrcTy = I.getOperand(0)->getType(); 2535 Type *DestTy = I.getType(); 2536 2537 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2538 &I); 2539 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 2540 &I); 2541 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 2542 "AddrSpaceCast must be between different address spaces", &I); 2543 if (SrcTy->isVectorTy()) 2544 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), 2545 "AddrSpaceCast vector pointer number of elements mismatch", &I); 2546 visitInstruction(I); 2547 } 2548 2549 /// visitPHINode - Ensure that a PHI node is well formed. 2550 /// 2551 void Verifier::visitPHINode(PHINode &PN) { 2552 // Ensure that the PHI nodes are all grouped together at the top of the block. 2553 // This can be tested by checking whether the instruction before this is 2554 // either nonexistent (because this is begin()) or is a PHI node. If not, 2555 // then there is some other instruction before a PHI. 2556 Assert(&PN == &PN.getParent()->front() || 2557 isa<PHINode>(--BasicBlock::iterator(&PN)), 2558 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 2559 2560 // Check that a PHI doesn't yield a Token. 2561 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 2562 2563 // Check that all of the values of the PHI node have the same type as the 2564 // result, and that the incoming blocks are really basic blocks. 2565 for (Value *IncValue : PN.incoming_values()) { 2566 Assert(PN.getType() == IncValue->getType(), 2567 "PHI node operands are not the same type as the result!", &PN); 2568 } 2569 2570 // All other PHI node constraints are checked in the visitBasicBlock method. 2571 2572 visitInstruction(PN); 2573 } 2574 2575 void Verifier::verifyCallSite(CallSite CS) { 2576 Instruction *I = CS.getInstruction(); 2577 2578 Assert(CS.getCalledValue()->getType()->isPointerTy(), 2579 "Called function must be a pointer!", I); 2580 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType()); 2581 2582 Assert(FPTy->getElementType()->isFunctionTy(), 2583 "Called function is not pointer to function type!", I); 2584 2585 Assert(FPTy->getElementType() == CS.getFunctionType(), 2586 "Called function is not the same type as the call!", I); 2587 2588 FunctionType *FTy = CS.getFunctionType(); 2589 2590 // Verify that the correct number of arguments are being passed 2591 if (FTy->isVarArg()) 2592 Assert(CS.arg_size() >= FTy->getNumParams(), 2593 "Called function requires more parameters than were provided!", I); 2594 else 2595 Assert(CS.arg_size() == FTy->getNumParams(), 2596 "Incorrect number of arguments passed to called function!", I); 2597 2598 // Verify that all arguments to the call match the function type. 2599 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2600 Assert(CS.getArgument(i)->getType() == FTy->getParamType(i), 2601 "Call parameter type does not match function signature!", 2602 CS.getArgument(i), FTy->getParamType(i), I); 2603 2604 AttributeSet Attrs = CS.getAttributes(); 2605 2606 Assert(verifyAttributeCount(Attrs, CS.arg_size()), 2607 "Attribute after last parameter!", I); 2608 2609 // Verify call attributes. 2610 verifyFunctionAttrs(FTy, Attrs, I); 2611 2612 // Conservatively check the inalloca argument. 2613 // We have a bug if we can find that there is an underlying alloca without 2614 // inalloca. 2615 if (CS.hasInAllocaArgument()) { 2616 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1); 2617 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 2618 Assert(AI->isUsedWithInAlloca(), 2619 "inalloca argument for call has mismatched alloca", AI, I); 2620 } 2621 2622 // For each argument of the callsite, if it has the swifterror argument, 2623 // make sure the underlying alloca/parameter it comes from has a swifterror as 2624 // well. 2625 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2626 if (CS.paramHasAttr(i+1, Attribute::SwiftError)) { 2627 Value *SwiftErrorArg = CS.getArgument(i); 2628 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 2629 Assert(AI->isSwiftError(), 2630 "swifterror argument for call has mismatched alloca", AI, I); 2631 continue; 2632 } 2633 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 2634 Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I); 2635 Assert(ArgI->hasSwiftErrorAttr(), 2636 "swifterror argument for call has mismatched parameter", ArgI, I); 2637 } 2638 2639 if (FTy->isVarArg()) { 2640 // FIXME? is 'nest' even legal here? 2641 bool SawNest = false; 2642 bool SawReturned = false; 2643 2644 for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) { 2645 if (Attrs.hasAttribute(Idx, Attribute::Nest)) 2646 SawNest = true; 2647 if (Attrs.hasAttribute(Idx, Attribute::Returned)) 2648 SawReturned = true; 2649 } 2650 2651 // Check attributes on the varargs part. 2652 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) { 2653 Type *Ty = CS.getArgument(Idx-1)->getType(); 2654 verifyParameterAttrs(Attrs, Idx, Ty, false, I); 2655 2656 if (Attrs.hasAttribute(Idx, Attribute::Nest)) { 2657 Assert(!SawNest, "More than one parameter has attribute nest!", I); 2658 SawNest = true; 2659 } 2660 2661 if (Attrs.hasAttribute(Idx, Attribute::Returned)) { 2662 Assert(!SawReturned, "More than one parameter has attribute returned!", 2663 I); 2664 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 2665 "Incompatible argument and return types for 'returned' " 2666 "attribute", 2667 I); 2668 SawReturned = true; 2669 } 2670 2671 Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet), 2672 "Attribute 'sret' cannot be used for vararg call arguments!", I); 2673 2674 if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) 2675 Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I); 2676 } 2677 } 2678 2679 // Verify that there's no metadata unless it's a direct call to an intrinsic. 2680 if (CS.getCalledFunction() == nullptr || 2681 !CS.getCalledFunction()->getName().startswith("llvm.")) { 2682 for (Type *ParamTy : FTy->params()) { 2683 Assert(!ParamTy->isMetadataTy(), 2684 "Function has metadata parameter but isn't an intrinsic", I); 2685 Assert(!ParamTy->isTokenTy(), 2686 "Function has token parameter but isn't an intrinsic", I); 2687 } 2688 } 2689 2690 // Verify that indirect calls don't return tokens. 2691 if (CS.getCalledFunction() == nullptr) 2692 Assert(!FTy->getReturnType()->isTokenTy(), 2693 "Return type cannot be token for indirect call!"); 2694 2695 if (Function *F = CS.getCalledFunction()) 2696 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 2697 visitIntrinsicCallSite(ID, CS); 2698 2699 // Verify that a callsite has at most one "deopt", at most one "funclet" and 2700 // at most one "gc-transition" operand bundle. 2701 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 2702 FoundGCTransitionBundle = false; 2703 for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) { 2704 OperandBundleUse BU = CS.getOperandBundleAt(i); 2705 uint32_t Tag = BU.getTagID(); 2706 if (Tag == LLVMContext::OB_deopt) { 2707 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I); 2708 FoundDeoptBundle = true; 2709 } else if (Tag == LLVMContext::OB_gc_transition) { 2710 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 2711 I); 2712 FoundGCTransitionBundle = true; 2713 } else if (Tag == LLVMContext::OB_funclet) { 2714 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I); 2715 FoundFuncletBundle = true; 2716 Assert(BU.Inputs.size() == 1, 2717 "Expected exactly one funclet bundle operand", I); 2718 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 2719 "Funclet bundle operands should correspond to a FuncletPadInst", 2720 I); 2721 } 2722 } 2723 2724 // Verify that each inlinable callsite of a debug-info-bearing function in a 2725 // debug-info-bearing function has a debug location attached to it. Failure to 2726 // do so causes assertion failures when the inliner sets up inline scope info. 2727 if (I->getFunction()->getSubprogram() && CS.getCalledFunction() && 2728 CS.getCalledFunction()->getSubprogram()) 2729 Assert(I->getDebugLoc(), "inlinable function call in a function with debug " 2730 "info must have a !dbg location", 2731 I); 2732 2733 visitInstruction(*I); 2734 } 2735 2736 /// Two types are "congruent" if they are identical, or if they are both pointer 2737 /// types with different pointee types and the same address space. 2738 static bool isTypeCongruent(Type *L, Type *R) { 2739 if (L == R) 2740 return true; 2741 PointerType *PL = dyn_cast<PointerType>(L); 2742 PointerType *PR = dyn_cast<PointerType>(R); 2743 if (!PL || !PR) 2744 return false; 2745 return PL->getAddressSpace() == PR->getAddressSpace(); 2746 } 2747 2748 static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) { 2749 static const Attribute::AttrKind ABIAttrs[] = { 2750 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 2751 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf, 2752 Attribute::SwiftError}; 2753 AttrBuilder Copy; 2754 for (auto AK : ABIAttrs) { 2755 if (Attrs.hasAttribute(I + 1, AK)) 2756 Copy.addAttribute(AK); 2757 } 2758 if (Attrs.hasAttribute(I + 1, Attribute::Alignment)) 2759 Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1)); 2760 return Copy; 2761 } 2762 2763 void Verifier::verifyMustTailCall(CallInst &CI) { 2764 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 2765 2766 // - The caller and callee prototypes must match. Pointer types of 2767 // parameters or return types may differ in pointee type, but not 2768 // address space. 2769 Function *F = CI.getParent()->getParent(); 2770 FunctionType *CallerTy = F->getFunctionType(); 2771 FunctionType *CalleeTy = CI.getFunctionType(); 2772 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 2773 "cannot guarantee tail call due to mismatched parameter counts", &CI); 2774 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 2775 "cannot guarantee tail call due to mismatched varargs", &CI); 2776 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 2777 "cannot guarantee tail call due to mismatched return types", &CI); 2778 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 2779 Assert( 2780 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 2781 "cannot guarantee tail call due to mismatched parameter types", &CI); 2782 } 2783 2784 // - The calling conventions of the caller and callee must match. 2785 Assert(F->getCallingConv() == CI.getCallingConv(), 2786 "cannot guarantee tail call due to mismatched calling conv", &CI); 2787 2788 // - All ABI-impacting function attributes, such as sret, byval, inreg, 2789 // returned, and inalloca, must match. 2790 AttributeSet CallerAttrs = F->getAttributes(); 2791 AttributeSet CalleeAttrs = CI.getAttributes(); 2792 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 2793 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 2794 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 2795 Assert(CallerABIAttrs == CalleeABIAttrs, 2796 "cannot guarantee tail call due to mismatched ABI impacting " 2797 "function attributes", 2798 &CI, CI.getOperand(I)); 2799 } 2800 2801 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 2802 // or a pointer bitcast followed by a ret instruction. 2803 // - The ret instruction must return the (possibly bitcasted) value 2804 // produced by the call or void. 2805 Value *RetVal = &CI; 2806 Instruction *Next = CI.getNextNode(); 2807 2808 // Handle the optional bitcast. 2809 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 2810 Assert(BI->getOperand(0) == RetVal, 2811 "bitcast following musttail call must use the call", BI); 2812 RetVal = BI; 2813 Next = BI->getNextNode(); 2814 } 2815 2816 // Check the return. 2817 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 2818 Assert(Ret, "musttail call must be precede a ret with an optional bitcast", 2819 &CI); 2820 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 2821 "musttail call result must be returned", Ret); 2822 } 2823 2824 void Verifier::visitCallInst(CallInst &CI) { 2825 verifyCallSite(&CI); 2826 2827 if (CI.isMustTailCall()) 2828 verifyMustTailCall(CI); 2829 } 2830 2831 void Verifier::visitInvokeInst(InvokeInst &II) { 2832 verifyCallSite(&II); 2833 2834 // Verify that the first non-PHI instruction of the unwind destination is an 2835 // exception handling instruction. 2836 Assert( 2837 II.getUnwindDest()->isEHPad(), 2838 "The unwind destination does not have an exception handling instruction!", 2839 &II); 2840 2841 visitTerminatorInst(II); 2842 } 2843 2844 /// visitBinaryOperator - Check that both arguments to the binary operator are 2845 /// of the same type! 2846 /// 2847 void Verifier::visitBinaryOperator(BinaryOperator &B) { 2848 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 2849 "Both operands to a binary operator are not of the same type!", &B); 2850 2851 switch (B.getOpcode()) { 2852 // Check that integer arithmetic operators are only used with 2853 // integral operands. 2854 case Instruction::Add: 2855 case Instruction::Sub: 2856 case Instruction::Mul: 2857 case Instruction::SDiv: 2858 case Instruction::UDiv: 2859 case Instruction::SRem: 2860 case Instruction::URem: 2861 Assert(B.getType()->isIntOrIntVectorTy(), 2862 "Integer arithmetic operators only work with integral types!", &B); 2863 Assert(B.getType() == B.getOperand(0)->getType(), 2864 "Integer arithmetic operators must have same type " 2865 "for operands and result!", 2866 &B); 2867 break; 2868 // Check that floating-point arithmetic operators are only used with 2869 // floating-point operands. 2870 case Instruction::FAdd: 2871 case Instruction::FSub: 2872 case Instruction::FMul: 2873 case Instruction::FDiv: 2874 case Instruction::FRem: 2875 Assert(B.getType()->isFPOrFPVectorTy(), 2876 "Floating-point arithmetic operators only work with " 2877 "floating-point types!", 2878 &B); 2879 Assert(B.getType() == B.getOperand(0)->getType(), 2880 "Floating-point arithmetic operators must have same type " 2881 "for operands and result!", 2882 &B); 2883 break; 2884 // Check that logical operators are only used with integral operands. 2885 case Instruction::And: 2886 case Instruction::Or: 2887 case Instruction::Xor: 2888 Assert(B.getType()->isIntOrIntVectorTy(), 2889 "Logical operators only work with integral types!", &B); 2890 Assert(B.getType() == B.getOperand(0)->getType(), 2891 "Logical operators must have same type for operands and result!", 2892 &B); 2893 break; 2894 case Instruction::Shl: 2895 case Instruction::LShr: 2896 case Instruction::AShr: 2897 Assert(B.getType()->isIntOrIntVectorTy(), 2898 "Shifts only work with integral types!", &B); 2899 Assert(B.getType() == B.getOperand(0)->getType(), 2900 "Shift return type must be same as operands!", &B); 2901 break; 2902 default: 2903 llvm_unreachable("Unknown BinaryOperator opcode!"); 2904 } 2905 2906 visitInstruction(B); 2907 } 2908 2909 void Verifier::visitICmpInst(ICmpInst &IC) { 2910 // Check that the operands are the same type 2911 Type *Op0Ty = IC.getOperand(0)->getType(); 2912 Type *Op1Ty = IC.getOperand(1)->getType(); 2913 Assert(Op0Ty == Op1Ty, 2914 "Both operands to ICmp instruction are not of the same type!", &IC); 2915 // Check that the operands are the right type 2916 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(), 2917 "Invalid operand types for ICmp instruction", &IC); 2918 // Check that the predicate is valid. 2919 Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE && 2920 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE, 2921 "Invalid predicate in ICmp instruction!", &IC); 2922 2923 visitInstruction(IC); 2924 } 2925 2926 void Verifier::visitFCmpInst(FCmpInst &FC) { 2927 // Check that the operands are the same type 2928 Type *Op0Ty = FC.getOperand(0)->getType(); 2929 Type *Op1Ty = FC.getOperand(1)->getType(); 2930 Assert(Op0Ty == Op1Ty, 2931 "Both operands to FCmp instruction are not of the same type!", &FC); 2932 // Check that the operands are the right type 2933 Assert(Op0Ty->isFPOrFPVectorTy(), 2934 "Invalid operand types for FCmp instruction", &FC); 2935 // Check that the predicate is valid. 2936 Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE && 2937 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE, 2938 "Invalid predicate in FCmp instruction!", &FC); 2939 2940 visitInstruction(FC); 2941 } 2942 2943 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 2944 Assert( 2945 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 2946 "Invalid extractelement operands!", &EI); 2947 visitInstruction(EI); 2948 } 2949 2950 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 2951 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 2952 IE.getOperand(2)), 2953 "Invalid insertelement operands!", &IE); 2954 visitInstruction(IE); 2955 } 2956 2957 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 2958 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 2959 SV.getOperand(2)), 2960 "Invalid shufflevector operands!", &SV); 2961 visitInstruction(SV); 2962 } 2963 2964 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 2965 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 2966 2967 Assert(isa<PointerType>(TargetTy), 2968 "GEP base pointer is not a vector or a vector of pointers", &GEP); 2969 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 2970 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 2971 Type *ElTy = 2972 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 2973 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 2974 2975 Assert(GEP.getType()->getScalarType()->isPointerTy() && 2976 GEP.getResultElementType() == ElTy, 2977 "GEP is not of right type for indices!", &GEP, ElTy); 2978 2979 if (GEP.getType()->isVectorTy()) { 2980 // Additional checks for vector GEPs. 2981 unsigned GEPWidth = GEP.getType()->getVectorNumElements(); 2982 if (GEP.getPointerOperandType()->isVectorTy()) 2983 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(), 2984 "Vector GEP result width doesn't match operand's", &GEP); 2985 for (Value *Idx : Idxs) { 2986 Type *IndexTy = Idx->getType(); 2987 if (IndexTy->isVectorTy()) { 2988 unsigned IndexWidth = IndexTy->getVectorNumElements(); 2989 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 2990 } 2991 Assert(IndexTy->getScalarType()->isIntegerTy(), 2992 "All GEP indices should be of integer type"); 2993 } 2994 } 2995 visitInstruction(GEP); 2996 } 2997 2998 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 2999 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3000 } 3001 3002 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3003 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3004 "precondition violation"); 3005 3006 unsigned NumOperands = Range->getNumOperands(); 3007 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3008 unsigned NumRanges = NumOperands / 2; 3009 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3010 3011 ConstantRange LastRange(1); // Dummy initial value 3012 for (unsigned i = 0; i < NumRanges; ++i) { 3013 ConstantInt *Low = 3014 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3015 Assert(Low, "The lower limit must be an integer!", Low); 3016 ConstantInt *High = 3017 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3018 Assert(High, "The upper limit must be an integer!", High); 3019 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3020 "Range types must match instruction type!", &I); 3021 3022 APInt HighV = High->getValue(); 3023 APInt LowV = Low->getValue(); 3024 ConstantRange CurRange(LowV, HighV); 3025 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3026 "Range must not be empty!", Range); 3027 if (i != 0) { 3028 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3029 "Intervals are overlapping", Range); 3030 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3031 Range); 3032 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3033 Range); 3034 } 3035 LastRange = ConstantRange(LowV, HighV); 3036 } 3037 if (NumRanges > 2) { 3038 APInt FirstLow = 3039 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3040 APInt FirstHigh = 3041 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3042 ConstantRange FirstRange(FirstLow, FirstHigh); 3043 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3044 "Intervals are overlapping", Range); 3045 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3046 Range); 3047 } 3048 } 3049 3050 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3051 unsigned Size = DL.getTypeSizeInBits(Ty); 3052 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3053 Assert(!(Size & (Size - 1)), 3054 "atomic memory access' operand must have a power-of-two size", Ty, I); 3055 } 3056 3057 void Verifier::visitLoadInst(LoadInst &LI) { 3058 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3059 Assert(PTy, "Load operand must be a pointer.", &LI); 3060 Type *ElTy = LI.getType(); 3061 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3062 "huge alignment values are unsupported", &LI); 3063 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3064 if (LI.isAtomic()) { 3065 Assert(LI.getOrdering() != AtomicOrdering::Release && 3066 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3067 "Load cannot have Release ordering", &LI); 3068 Assert(LI.getAlignment() != 0, 3069 "Atomic load must specify explicit alignment", &LI); 3070 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() || 3071 ElTy->isFloatingPointTy(), 3072 "atomic load operand must have integer, pointer, or floating point " 3073 "type!", 3074 ElTy, &LI); 3075 checkAtomicMemAccessSize(ElTy, &LI); 3076 } else { 3077 Assert(LI.getSynchScope() == CrossThread, 3078 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3079 } 3080 3081 visitInstruction(LI); 3082 } 3083 3084 void Verifier::visitStoreInst(StoreInst &SI) { 3085 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3086 Assert(PTy, "Store operand must be a pointer.", &SI); 3087 Type *ElTy = PTy->getElementType(); 3088 Assert(ElTy == SI.getOperand(0)->getType(), 3089 "Stored value type does not match pointer operand type!", &SI, ElTy); 3090 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3091 "huge alignment values are unsupported", &SI); 3092 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3093 if (SI.isAtomic()) { 3094 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3095 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3096 "Store cannot have Acquire ordering", &SI); 3097 Assert(SI.getAlignment() != 0, 3098 "Atomic store must specify explicit alignment", &SI); 3099 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() || 3100 ElTy->isFloatingPointTy(), 3101 "atomic store operand must have integer, pointer, or floating point " 3102 "type!", 3103 ElTy, &SI); 3104 checkAtomicMemAccessSize(ElTy, &SI); 3105 } else { 3106 Assert(SI.getSynchScope() == CrossThread, 3107 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3108 } 3109 visitInstruction(SI); 3110 } 3111 3112 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3113 void Verifier::verifySwiftErrorCallSite(CallSite CS, 3114 const Value *SwiftErrorVal) { 3115 unsigned Idx = 0; 3116 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); 3117 I != E; ++I, ++Idx) { 3118 if (*I == SwiftErrorVal) { 3119 Assert(CS.paramHasAttr(Idx+1, Attribute::SwiftError), 3120 "swifterror value when used in a callsite should be marked " 3121 "with swifterror attribute", 3122 SwiftErrorVal, CS); 3123 } 3124 } 3125 } 3126 3127 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3128 // Check that swifterror value is only used by loads, stores, or as 3129 // a swifterror argument. 3130 for (const User *U : SwiftErrorVal->users()) { 3131 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3132 isa<InvokeInst>(U), 3133 "swifterror value can only be loaded and stored from, or " 3134 "as a swifterror argument!", 3135 SwiftErrorVal, U); 3136 // If it is used by a store, check it is the second operand. 3137 if (auto StoreI = dyn_cast<StoreInst>(U)) 3138 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3139 "swifterror value should be the second operand when used " 3140 "by stores", SwiftErrorVal, U); 3141 if (auto CallI = dyn_cast<CallInst>(U)) 3142 verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal); 3143 if (auto II = dyn_cast<InvokeInst>(U)) 3144 verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal); 3145 } 3146 } 3147 3148 void Verifier::visitAllocaInst(AllocaInst &AI) { 3149 SmallPtrSet<Type*, 4> Visited; 3150 PointerType *PTy = AI.getType(); 3151 Assert(PTy->getAddressSpace() == 0, 3152 "Allocation instruction pointer not in the generic address space!", 3153 &AI); 3154 Assert(AI.getAllocatedType()->isSized(&Visited), 3155 "Cannot allocate unsized type", &AI); 3156 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3157 "Alloca array size must have integer type", &AI); 3158 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3159 "huge alignment values are unsupported", &AI); 3160 3161 if (AI.isSwiftError()) { 3162 verifySwiftErrorValue(&AI); 3163 } 3164 3165 visitInstruction(AI); 3166 } 3167 3168 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3169 3170 // FIXME: more conditions??? 3171 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 3172 "cmpxchg instructions must be atomic.", &CXI); 3173 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 3174 "cmpxchg instructions must be atomic.", &CXI); 3175 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 3176 "cmpxchg instructions cannot be unordered.", &CXI); 3177 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 3178 "cmpxchg instructions cannot be unordered.", &CXI); 3179 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 3180 "cmpxchg instructions failure argument shall be no stronger than the " 3181 "success argument", 3182 &CXI); 3183 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 3184 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 3185 "cmpxchg failure ordering cannot include release semantics", &CXI); 3186 3187 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 3188 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 3189 Type *ElTy = PTy->getElementType(); 3190 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(), 3191 "cmpxchg operand must have integer or pointer type", 3192 ElTy, &CXI); 3193 checkAtomicMemAccessSize(ElTy, &CXI); 3194 Assert(ElTy == CXI.getOperand(1)->getType(), 3195 "Expected value type does not match pointer operand type!", &CXI, 3196 ElTy); 3197 Assert(ElTy == CXI.getOperand(2)->getType(), 3198 "Stored value type does not match pointer operand type!", &CXI, ElTy); 3199 visitInstruction(CXI); 3200 } 3201 3202 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3203 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 3204 "atomicrmw instructions must be atomic.", &RMWI); 3205 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3206 "atomicrmw instructions cannot be unordered.", &RMWI); 3207 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 3208 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 3209 Type *ElTy = PTy->getElementType(); 3210 Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!", 3211 &RMWI, ElTy); 3212 checkAtomicMemAccessSize(ElTy, &RMWI); 3213 Assert(ElTy == RMWI.getOperand(1)->getType(), 3214 "Argument value type does not match pointer operand type!", &RMWI, 3215 ElTy); 3216 Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() && 3217 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP, 3218 "Invalid binary operation!", &RMWI); 3219 visitInstruction(RMWI); 3220 } 3221 3222 void Verifier::visitFenceInst(FenceInst &FI) { 3223 const AtomicOrdering Ordering = FI.getOrdering(); 3224 Assert(Ordering == AtomicOrdering::Acquire || 3225 Ordering == AtomicOrdering::Release || 3226 Ordering == AtomicOrdering::AcquireRelease || 3227 Ordering == AtomicOrdering::SequentiallyConsistent, 3228 "fence instructions may only have acquire, release, acq_rel, or " 3229 "seq_cst ordering.", 3230 &FI); 3231 visitInstruction(FI); 3232 } 3233 3234 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3235 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3236 EVI.getIndices()) == EVI.getType(), 3237 "Invalid ExtractValueInst operands!", &EVI); 3238 3239 visitInstruction(EVI); 3240 } 3241 3242 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3243 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3244 IVI.getIndices()) == 3245 IVI.getOperand(1)->getType(), 3246 "Invalid InsertValueInst operands!", &IVI); 3247 3248 visitInstruction(IVI); 3249 } 3250 3251 static Value *getParentPad(Value *EHPad) { 3252 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3253 return FPI->getParentPad(); 3254 3255 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3256 } 3257 3258 void Verifier::visitEHPadPredecessors(Instruction &I) { 3259 assert(I.isEHPad()); 3260 3261 BasicBlock *BB = I.getParent(); 3262 Function *F = BB->getParent(); 3263 3264 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3265 3266 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3267 // The landingpad instruction defines its parent as a landing pad block. The 3268 // landing pad block may be branched to only by the unwind edge of an 3269 // invoke. 3270 for (BasicBlock *PredBB : predecessors(BB)) { 3271 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3272 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3273 "Block containing LandingPadInst must be jumped to " 3274 "only by the unwind edge of an invoke.", 3275 LPI); 3276 } 3277 return; 3278 } 3279 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3280 if (!pred_empty(BB)) 3281 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3282 "Block containg CatchPadInst must be jumped to " 3283 "only by its catchswitch.", 3284 CPI); 3285 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3286 "Catchswitch cannot unwind to one of its catchpads", 3287 CPI->getCatchSwitch(), CPI); 3288 return; 3289 } 3290 3291 // Verify that each pred has a legal terminator with a legal to/from EH 3292 // pad relationship. 3293 Instruction *ToPad = &I; 3294 Value *ToPadParent = getParentPad(ToPad); 3295 for (BasicBlock *PredBB : predecessors(BB)) { 3296 TerminatorInst *TI = PredBB->getTerminator(); 3297 Value *FromPad; 3298 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3299 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3300 "EH pad must be jumped to via an unwind edge", ToPad, II); 3301 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3302 FromPad = Bundle->Inputs[0]; 3303 else 3304 FromPad = ConstantTokenNone::get(II->getContext()); 3305 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3306 FromPad = CRI->getOperand(0); 3307 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3308 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3309 FromPad = CSI; 3310 } else { 3311 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3312 } 3313 3314 // The edge may exit from zero or more nested pads. 3315 SmallSet<Value *, 8> Seen; 3316 for (;; FromPad = getParentPad(FromPad)) { 3317 Assert(FromPad != ToPad, 3318 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3319 if (FromPad == ToPadParent) { 3320 // This is a legal unwind edge. 3321 break; 3322 } 3323 Assert(!isa<ConstantTokenNone>(FromPad), 3324 "A single unwind edge may only enter one EH pad", TI); 3325 Assert(Seen.insert(FromPad).second, 3326 "EH pad jumps through a cycle of pads", FromPad); 3327 } 3328 } 3329 } 3330 3331 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3332 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3333 // isn't a cleanup. 3334 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3335 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3336 3337 visitEHPadPredecessors(LPI); 3338 3339 if (!LandingPadResultTy) 3340 LandingPadResultTy = LPI.getType(); 3341 else 3342 Assert(LandingPadResultTy == LPI.getType(), 3343 "The landingpad instruction should have a consistent result type " 3344 "inside a function.", 3345 &LPI); 3346 3347 Function *F = LPI.getParent()->getParent(); 3348 Assert(F->hasPersonalityFn(), 3349 "LandingPadInst needs to be in a function with a personality.", &LPI); 3350 3351 // The landingpad instruction must be the first non-PHI instruction in the 3352 // block. 3353 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3354 "LandingPadInst not the first non-PHI instruction in the block.", 3355 &LPI); 3356 3357 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3358 Constant *Clause = LPI.getClause(i); 3359 if (LPI.isCatch(i)) { 3360 Assert(isa<PointerType>(Clause->getType()), 3361 "Catch operand does not have pointer type!", &LPI); 3362 } else { 3363 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3364 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3365 "Filter operand is not an array of constants!", &LPI); 3366 } 3367 } 3368 3369 visitInstruction(LPI); 3370 } 3371 3372 void Verifier::visitResumeInst(ResumeInst &RI) { 3373 Assert(RI.getFunction()->hasPersonalityFn(), 3374 "ResumeInst needs to be in a function with a personality.", &RI); 3375 3376 if (!LandingPadResultTy) 3377 LandingPadResultTy = RI.getValue()->getType(); 3378 else 3379 Assert(LandingPadResultTy == RI.getValue()->getType(), 3380 "The resume instruction should have a consistent result type " 3381 "inside a function.", 3382 &RI); 3383 3384 visitTerminatorInst(RI); 3385 } 3386 3387 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3388 BasicBlock *BB = CPI.getParent(); 3389 3390 Function *F = BB->getParent(); 3391 Assert(F->hasPersonalityFn(), 3392 "CatchPadInst needs to be in a function with a personality.", &CPI); 3393 3394 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 3395 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 3396 CPI.getParentPad()); 3397 3398 // The catchpad instruction must be the first non-PHI instruction in the 3399 // block. 3400 Assert(BB->getFirstNonPHI() == &CPI, 3401 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 3402 3403 visitEHPadPredecessors(CPI); 3404 visitFuncletPadInst(CPI); 3405 } 3406 3407 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 3408 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 3409 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 3410 CatchReturn.getOperand(0)); 3411 3412 visitTerminatorInst(CatchReturn); 3413 } 3414 3415 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 3416 BasicBlock *BB = CPI.getParent(); 3417 3418 Function *F = BB->getParent(); 3419 Assert(F->hasPersonalityFn(), 3420 "CleanupPadInst needs to be in a function with a personality.", &CPI); 3421 3422 // The cleanuppad instruction must be the first non-PHI instruction in the 3423 // block. 3424 Assert(BB->getFirstNonPHI() == &CPI, 3425 "CleanupPadInst not the first non-PHI instruction in the block.", 3426 &CPI); 3427 3428 auto *ParentPad = CPI.getParentPad(); 3429 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3430 "CleanupPadInst has an invalid parent.", &CPI); 3431 3432 visitEHPadPredecessors(CPI); 3433 visitFuncletPadInst(CPI); 3434 } 3435 3436 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 3437 User *FirstUser = nullptr; 3438 Value *FirstUnwindPad = nullptr; 3439 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 3440 SmallSet<FuncletPadInst *, 8> Seen; 3441 3442 while (!Worklist.empty()) { 3443 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 3444 Assert(Seen.insert(CurrentPad).second, 3445 "FuncletPadInst must not be nested within itself", CurrentPad); 3446 Value *UnresolvedAncestorPad = nullptr; 3447 for (User *U : CurrentPad->users()) { 3448 BasicBlock *UnwindDest; 3449 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 3450 UnwindDest = CRI->getUnwindDest(); 3451 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 3452 // We allow catchswitch unwind to caller to nest 3453 // within an outer pad that unwinds somewhere else, 3454 // because catchswitch doesn't have a nounwind variant. 3455 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 3456 if (CSI->unwindsToCaller()) 3457 continue; 3458 UnwindDest = CSI->getUnwindDest(); 3459 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 3460 UnwindDest = II->getUnwindDest(); 3461 } else if (isa<CallInst>(U)) { 3462 // Calls which don't unwind may be found inside funclet 3463 // pads that unwind somewhere else. We don't *require* 3464 // such calls to be annotated nounwind. 3465 continue; 3466 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 3467 // The unwind dest for a cleanup can only be found by 3468 // recursive search. Add it to the worklist, and we'll 3469 // search for its first use that determines where it unwinds. 3470 Worklist.push_back(CPI); 3471 continue; 3472 } else { 3473 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 3474 continue; 3475 } 3476 3477 Value *UnwindPad; 3478 bool ExitsFPI; 3479 if (UnwindDest) { 3480 UnwindPad = UnwindDest->getFirstNonPHI(); 3481 if (!cast<Instruction>(UnwindPad)->isEHPad()) 3482 continue; 3483 Value *UnwindParent = getParentPad(UnwindPad); 3484 // Ignore unwind edges that don't exit CurrentPad. 3485 if (UnwindParent == CurrentPad) 3486 continue; 3487 // Determine whether the original funclet pad is exited, 3488 // and if we are scanning nested pads determine how many 3489 // of them are exited so we can stop searching their 3490 // children. 3491 Value *ExitedPad = CurrentPad; 3492 ExitsFPI = false; 3493 do { 3494 if (ExitedPad == &FPI) { 3495 ExitsFPI = true; 3496 // Now we can resolve any ancestors of CurrentPad up to 3497 // FPI, but not including FPI since we need to make sure 3498 // to check all direct users of FPI for consistency. 3499 UnresolvedAncestorPad = &FPI; 3500 break; 3501 } 3502 Value *ExitedParent = getParentPad(ExitedPad); 3503 if (ExitedParent == UnwindParent) { 3504 // ExitedPad is the ancestor-most pad which this unwind 3505 // edge exits, so we can resolve up to it, meaning that 3506 // ExitedParent is the first ancestor still unresolved. 3507 UnresolvedAncestorPad = ExitedParent; 3508 break; 3509 } 3510 ExitedPad = ExitedParent; 3511 } while (!isa<ConstantTokenNone>(ExitedPad)); 3512 } else { 3513 // Unwinding to caller exits all pads. 3514 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 3515 ExitsFPI = true; 3516 UnresolvedAncestorPad = &FPI; 3517 } 3518 3519 if (ExitsFPI) { 3520 // This unwind edge exits FPI. Make sure it agrees with other 3521 // such edges. 3522 if (FirstUser) { 3523 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 3524 "pad must have the same unwind " 3525 "dest", 3526 &FPI, U, FirstUser); 3527 } else { 3528 FirstUser = U; 3529 FirstUnwindPad = UnwindPad; 3530 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 3531 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 3532 getParentPad(UnwindPad) == getParentPad(&FPI)) 3533 SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U); 3534 } 3535 } 3536 // Make sure we visit all uses of FPI, but for nested pads stop as 3537 // soon as we know where they unwind to. 3538 if (CurrentPad != &FPI) 3539 break; 3540 } 3541 if (UnresolvedAncestorPad) { 3542 if (CurrentPad == UnresolvedAncestorPad) { 3543 // When CurrentPad is FPI itself, we don't mark it as resolved even if 3544 // we've found an unwind edge that exits it, because we need to verify 3545 // all direct uses of FPI. 3546 assert(CurrentPad == &FPI); 3547 continue; 3548 } 3549 // Pop off the worklist any nested pads that we've found an unwind 3550 // destination for. The pads on the worklist are the uncles, 3551 // great-uncles, etc. of CurrentPad. We've found an unwind destination 3552 // for all ancestors of CurrentPad up to but not including 3553 // UnresolvedAncestorPad. 3554 Value *ResolvedPad = CurrentPad; 3555 while (!Worklist.empty()) { 3556 Value *UnclePad = Worklist.back(); 3557 Value *AncestorPad = getParentPad(UnclePad); 3558 // Walk ResolvedPad up the ancestor list until we either find the 3559 // uncle's parent or the last resolved ancestor. 3560 while (ResolvedPad != AncestorPad) { 3561 Value *ResolvedParent = getParentPad(ResolvedPad); 3562 if (ResolvedParent == UnresolvedAncestorPad) { 3563 break; 3564 } 3565 ResolvedPad = ResolvedParent; 3566 } 3567 // If the resolved ancestor search didn't find the uncle's parent, 3568 // then the uncle is not yet resolved. 3569 if (ResolvedPad != AncestorPad) 3570 break; 3571 // This uncle is resolved, so pop it from the worklist. 3572 Worklist.pop_back(); 3573 } 3574 } 3575 } 3576 3577 if (FirstUnwindPad) { 3578 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 3579 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 3580 Value *SwitchUnwindPad; 3581 if (SwitchUnwindDest) 3582 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 3583 else 3584 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 3585 Assert(SwitchUnwindPad == FirstUnwindPad, 3586 "Unwind edges out of a catch must have the same unwind dest as " 3587 "the parent catchswitch", 3588 &FPI, FirstUser, CatchSwitch); 3589 } 3590 } 3591 3592 visitInstruction(FPI); 3593 } 3594 3595 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 3596 BasicBlock *BB = CatchSwitch.getParent(); 3597 3598 Function *F = BB->getParent(); 3599 Assert(F->hasPersonalityFn(), 3600 "CatchSwitchInst needs to be in a function with a personality.", 3601 &CatchSwitch); 3602 3603 // The catchswitch instruction must be the first non-PHI instruction in the 3604 // block. 3605 Assert(BB->getFirstNonPHI() == &CatchSwitch, 3606 "CatchSwitchInst not the first non-PHI instruction in the block.", 3607 &CatchSwitch); 3608 3609 auto *ParentPad = CatchSwitch.getParentPad(); 3610 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3611 "CatchSwitchInst has an invalid parent.", ParentPad); 3612 3613 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 3614 Instruction *I = UnwindDest->getFirstNonPHI(); 3615 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3616 "CatchSwitchInst must unwind to an EH block which is not a " 3617 "landingpad.", 3618 &CatchSwitch); 3619 3620 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 3621 if (getParentPad(I) == ParentPad) 3622 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 3623 } 3624 3625 Assert(CatchSwitch.getNumHandlers() != 0, 3626 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 3627 3628 for (BasicBlock *Handler : CatchSwitch.handlers()) { 3629 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 3630 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 3631 } 3632 3633 visitEHPadPredecessors(CatchSwitch); 3634 visitTerminatorInst(CatchSwitch); 3635 } 3636 3637 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 3638 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 3639 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 3640 CRI.getOperand(0)); 3641 3642 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 3643 Instruction *I = UnwindDest->getFirstNonPHI(); 3644 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3645 "CleanupReturnInst must unwind to an EH block which is not a " 3646 "landingpad.", 3647 &CRI); 3648 } 3649 3650 visitTerminatorInst(CRI); 3651 } 3652 3653 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 3654 Instruction *Op = cast<Instruction>(I.getOperand(i)); 3655 // If the we have an invalid invoke, don't try to compute the dominance. 3656 // We already reject it in the invoke specific checks and the dominance 3657 // computation doesn't handle multiple edges. 3658 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 3659 if (II->getNormalDest() == II->getUnwindDest()) 3660 return; 3661 } 3662 3663 // Quick check whether the def has already been encountered in the same block. 3664 // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI 3665 // uses are defined to happen on the incoming edge, not at the instruction. 3666 // 3667 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 3668 // wrapping an SSA value, assert that we've already encountered it. See 3669 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 3670 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 3671 return; 3672 3673 const Use &U = I.getOperandUse(i); 3674 Assert(DT.dominates(Op, U), 3675 "Instruction does not dominate all uses!", Op, &I); 3676 } 3677 3678 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 3679 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 3680 "apply only to pointer types", &I); 3681 Assert(isa<LoadInst>(I), 3682 "dereferenceable, dereferenceable_or_null apply only to load" 3683 " instructions, use attributes for calls or invokes", &I); 3684 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 3685 "take one operand!", &I); 3686 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 3687 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 3688 "dereferenceable_or_null metadata value must be an i64!", &I); 3689 } 3690 3691 /// verifyInstruction - Verify that an instruction is well formed. 3692 /// 3693 void Verifier::visitInstruction(Instruction &I) { 3694 BasicBlock *BB = I.getParent(); 3695 Assert(BB, "Instruction not embedded in basic block!", &I); 3696 3697 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 3698 for (User *U : I.users()) { 3699 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 3700 "Only PHI nodes may reference their own value!", &I); 3701 } 3702 } 3703 3704 // Check that void typed values don't have names 3705 Assert(!I.getType()->isVoidTy() || !I.hasName(), 3706 "Instruction has a name, but provides a void value!", &I); 3707 3708 // Check that the return value of the instruction is either void or a legal 3709 // value type. 3710 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 3711 "Instruction returns a non-scalar type!", &I); 3712 3713 // Check that the instruction doesn't produce metadata. Calls are already 3714 // checked against the callee type. 3715 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 3716 "Invalid use of metadata!", &I); 3717 3718 // Check that all uses of the instruction, if they are instructions 3719 // themselves, actually have parent basic blocks. If the use is not an 3720 // instruction, it is an error! 3721 for (Use &U : I.uses()) { 3722 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 3723 Assert(Used->getParent() != nullptr, 3724 "Instruction referencing" 3725 " instruction not embedded in a basic block!", 3726 &I, Used); 3727 else { 3728 CheckFailed("Use of instruction is not an instruction!", U); 3729 return; 3730 } 3731 } 3732 3733 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 3734 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 3735 3736 // Check to make sure that only first-class-values are operands to 3737 // instructions. 3738 if (!I.getOperand(i)->getType()->isFirstClassType()) { 3739 Assert(false, "Instruction operands must be first-class values!", &I); 3740 } 3741 3742 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 3743 // Check to make sure that the "address of" an intrinsic function is never 3744 // taken. 3745 Assert( 3746 !F->isIntrinsic() || 3747 i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0), 3748 "Cannot take the address of an intrinsic!", &I); 3749 Assert( 3750 !F->isIntrinsic() || isa<CallInst>(I) || 3751 F->getIntrinsicID() == Intrinsic::donothing || 3752 F->getIntrinsicID() == Intrinsic::coro_resume || 3753 F->getIntrinsicID() == Intrinsic::coro_destroy || 3754 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 3755 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 3756 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint, 3757 "Cannot invoke an intrinsic other than donothing, patchpoint, " 3758 "statepoint, coro_resume or coro_destroy", 3759 &I); 3760 Assert(F->getParent() == &M, "Referencing function in another module!", 3761 &I, &M, F, F->getParent()); 3762 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 3763 Assert(OpBB->getParent() == BB->getParent(), 3764 "Referring to a basic block in another function!", &I); 3765 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 3766 Assert(OpArg->getParent() == BB->getParent(), 3767 "Referring to an argument in another function!", &I); 3768 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 3769 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 3770 &M, GV, GV->getParent()); 3771 } else if (isa<Instruction>(I.getOperand(i))) { 3772 verifyDominatesUse(I, i); 3773 } else if (isa<InlineAsm>(I.getOperand(i))) { 3774 Assert((i + 1 == e && isa<CallInst>(I)) || 3775 (i + 3 == e && isa<InvokeInst>(I)), 3776 "Cannot take the address of an inline asm!", &I); 3777 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 3778 if (CE->getType()->isPtrOrPtrVectorTy() || 3779 !DL.getNonIntegralAddressSpaces().empty()) { 3780 // If we have a ConstantExpr pointer, we need to see if it came from an 3781 // illegal bitcast. If the datalayout string specifies non-integral 3782 // address spaces then we also need to check for illegal ptrtoint and 3783 // inttoptr expressions. 3784 visitConstantExprsRecursively(CE); 3785 } 3786 } 3787 } 3788 3789 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 3790 Assert(I.getType()->isFPOrFPVectorTy(), 3791 "fpmath requires a floating point result!", &I); 3792 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 3793 if (ConstantFP *CFP0 = 3794 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 3795 const APFloat &Accuracy = CFP0->getValueAPF(); 3796 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 3797 "fpmath accuracy must have float type", &I); 3798 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 3799 "fpmath accuracy not a positive number!", &I); 3800 } else { 3801 Assert(false, "invalid fpmath accuracy!", &I); 3802 } 3803 } 3804 3805 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 3806 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 3807 "Ranges are only for loads, calls and invokes!", &I); 3808 visitRangeMetadata(I, Range, I.getType()); 3809 } 3810 3811 if (I.getMetadata(LLVMContext::MD_nonnull)) { 3812 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 3813 &I); 3814 Assert(isa<LoadInst>(I), 3815 "nonnull applies only to load instructions, use attributes" 3816 " for calls or invokes", 3817 &I); 3818 } 3819 3820 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 3821 visitDereferenceableMetadata(I, MD); 3822 3823 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 3824 visitDereferenceableMetadata(I, MD); 3825 3826 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 3827 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 3828 3829 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 3830 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 3831 &I); 3832 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 3833 "use attributes for calls or invokes", &I); 3834 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 3835 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 3836 Assert(CI && CI->getType()->isIntegerTy(64), 3837 "align metadata value must be an i64!", &I); 3838 uint64_t Align = CI->getZExtValue(); 3839 Assert(isPowerOf2_64(Align), 3840 "align metadata value must be a power of 2!", &I); 3841 Assert(Align <= Value::MaximumAlignment, 3842 "alignment is larger that implementation defined limit", &I); 3843 } 3844 3845 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 3846 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 3847 visitMDNode(*N); 3848 } 3849 3850 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) 3851 verifyFragmentExpression(*DII); 3852 3853 InstsInThisBlock.insert(&I); 3854 } 3855 3856 /// Allow intrinsics to be verified in different ways. 3857 void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) { 3858 Function *IF = CS.getCalledFunction(); 3859 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 3860 IF); 3861 3862 // Verify that the intrinsic prototype lines up with what the .td files 3863 // describe. 3864 FunctionType *IFTy = IF->getFunctionType(); 3865 bool IsVarArg = IFTy->isVarArg(); 3866 3867 SmallVector<Intrinsic::IITDescriptor, 8> Table; 3868 getIntrinsicInfoTableEntries(ID, Table); 3869 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 3870 3871 SmallVector<Type *, 4> ArgTys; 3872 Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(), 3873 TableRef, ArgTys), 3874 "Intrinsic has incorrect return type!", IF); 3875 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i) 3876 Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i), 3877 TableRef, ArgTys), 3878 "Intrinsic has incorrect argument type!", IF); 3879 3880 // Verify if the intrinsic call matches the vararg property. 3881 if (IsVarArg) 3882 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 3883 "Intrinsic was not defined with variable arguments!", IF); 3884 else 3885 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 3886 "Callsite was not defined with variable arguments!", IF); 3887 3888 // All descriptors should be absorbed by now. 3889 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 3890 3891 // Now that we have the intrinsic ID and the actual argument types (and we 3892 // know they are legal for the intrinsic!) get the intrinsic name through the 3893 // usual means. This allows us to verify the mangling of argument types into 3894 // the name. 3895 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 3896 Assert(ExpectedName == IF->getName(), 3897 "Intrinsic name not mangled correctly for type arguments! " 3898 "Should be: " + 3899 ExpectedName, 3900 IF); 3901 3902 // If the intrinsic takes MDNode arguments, verify that they are either global 3903 // or are local to *this* function. 3904 for (Value *V : CS.args()) 3905 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 3906 visitMetadataAsValue(*MD, CS.getCaller()); 3907 3908 switch (ID) { 3909 default: 3910 break; 3911 case Intrinsic::coro_id: { 3912 auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts(); 3913 if (isa<ConstantPointerNull>(InfoArg)) 3914 break; 3915 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 3916 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 3917 "info argument of llvm.coro.begin must refer to an initialized " 3918 "constant"); 3919 Constant *Init = GV->getInitializer(); 3920 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 3921 "info argument of llvm.coro.begin must refer to either a struct or " 3922 "an array"); 3923 break; 3924 } 3925 case Intrinsic::ctlz: // llvm.ctlz 3926 case Intrinsic::cttz: // llvm.cttz 3927 Assert(isa<ConstantInt>(CS.getArgOperand(1)), 3928 "is_zero_undef argument of bit counting intrinsics must be a " 3929 "constant int", 3930 CS); 3931 break; 3932 case Intrinsic::dbg_declare: // llvm.dbg.declare 3933 Assert(isa<MetadataAsValue>(CS.getArgOperand(0)), 3934 "invalid llvm.dbg.declare intrinsic call 1", CS); 3935 visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction())); 3936 break; 3937 case Intrinsic::dbg_value: // llvm.dbg.value 3938 visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction())); 3939 break; 3940 case Intrinsic::memcpy: 3941 case Intrinsic::memmove: 3942 case Intrinsic::memset: { 3943 ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3)); 3944 Assert(AlignCI, 3945 "alignment argument of memory intrinsics must be a constant int", 3946 CS); 3947 const APInt &AlignVal = AlignCI->getValue(); 3948 Assert(AlignCI->isZero() || AlignVal.isPowerOf2(), 3949 "alignment argument of memory intrinsics must be a power of 2", CS); 3950 Assert(isa<ConstantInt>(CS.getArgOperand(4)), 3951 "isvolatile argument of memory intrinsics must be a constant int", 3952 CS); 3953 break; 3954 } 3955 case Intrinsic::memcpy_element_atomic: { 3956 ConstantInt *ElementSizeCI = dyn_cast<ConstantInt>(CS.getArgOperand(3)); 3957 Assert(ElementSizeCI, "element size of the element-wise atomic memory " 3958 "intrinsic must be a constant int", 3959 CS); 3960 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 3961 Assert(ElementSizeVal.isPowerOf2(), 3962 "element size of the element-wise atomic memory intrinsic " 3963 "must be a power of 2", 3964 CS); 3965 3966 auto IsValidAlignment = [&](uint64_t Alignment) { 3967 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 3968 }; 3969 3970 uint64_t DstAlignment = CS.getParamAlignment(1), 3971 SrcAlignment = CS.getParamAlignment(2); 3972 3973 Assert(IsValidAlignment(DstAlignment), 3974 "incorrect alignment of the destination argument", 3975 CS); 3976 Assert(IsValidAlignment(SrcAlignment), 3977 "incorrect alignment of the source argument", 3978 CS); 3979 break; 3980 } 3981 case Intrinsic::gcroot: 3982 case Intrinsic::gcwrite: 3983 case Intrinsic::gcread: 3984 if (ID == Intrinsic::gcroot) { 3985 AllocaInst *AI = 3986 dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts()); 3987 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS); 3988 Assert(isa<Constant>(CS.getArgOperand(1)), 3989 "llvm.gcroot parameter #2 must be a constant.", CS); 3990 if (!AI->getAllocatedType()->isPointerTy()) { 3991 Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)), 3992 "llvm.gcroot parameter #1 must either be a pointer alloca, " 3993 "or argument #2 must be a non-null constant.", 3994 CS); 3995 } 3996 } 3997 3998 Assert(CS.getParent()->getParent()->hasGC(), 3999 "Enclosing function does not use GC.", CS); 4000 break; 4001 case Intrinsic::init_trampoline: 4002 Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()), 4003 "llvm.init_trampoline parameter #2 must resolve to a function.", 4004 CS); 4005 break; 4006 case Intrinsic::prefetch: 4007 Assert(isa<ConstantInt>(CS.getArgOperand(1)) && 4008 isa<ConstantInt>(CS.getArgOperand(2)) && 4009 cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 && 4010 cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4, 4011 "invalid arguments to llvm.prefetch", CS); 4012 break; 4013 case Intrinsic::stackprotector: 4014 Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()), 4015 "llvm.stackprotector parameter #2 must resolve to an alloca.", CS); 4016 break; 4017 case Intrinsic::lifetime_start: 4018 case Intrinsic::lifetime_end: 4019 case Intrinsic::invariant_start: 4020 Assert(isa<ConstantInt>(CS.getArgOperand(0)), 4021 "size argument of memory use markers must be a constant integer", 4022 CS); 4023 break; 4024 case Intrinsic::invariant_end: 4025 Assert(isa<ConstantInt>(CS.getArgOperand(1)), 4026 "llvm.invariant.end parameter #2 must be a constant integer", CS); 4027 break; 4028 4029 case Intrinsic::localescape: { 4030 BasicBlock *BB = CS.getParent(); 4031 Assert(BB == &BB->getParent()->front(), 4032 "llvm.localescape used outside of entry block", CS); 4033 Assert(!SawFrameEscape, 4034 "multiple calls to llvm.localescape in one function", CS); 4035 for (Value *Arg : CS.args()) { 4036 if (isa<ConstantPointerNull>(Arg)) 4037 continue; // Null values are allowed as placeholders. 4038 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4039 Assert(AI && AI->isStaticAlloca(), 4040 "llvm.localescape only accepts static allocas", CS); 4041 } 4042 FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands(); 4043 SawFrameEscape = true; 4044 break; 4045 } 4046 case Intrinsic::localrecover: { 4047 Value *FnArg = CS.getArgOperand(0)->stripPointerCasts(); 4048 Function *Fn = dyn_cast<Function>(FnArg); 4049 Assert(Fn && !Fn->isDeclaration(), 4050 "llvm.localrecover first " 4051 "argument must be function defined in this module", 4052 CS); 4053 auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2)); 4054 Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int", 4055 CS); 4056 auto &Entry = FrameEscapeInfo[Fn]; 4057 Entry.second = unsigned( 4058 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4059 break; 4060 } 4061 4062 case Intrinsic::experimental_gc_statepoint: 4063 Assert(!CS.isInlineAsm(), 4064 "gc.statepoint support for inline assembly unimplemented", CS); 4065 Assert(CS.getParent()->getParent()->hasGC(), 4066 "Enclosing function does not use GC.", CS); 4067 4068 verifyStatepoint(CS); 4069 break; 4070 case Intrinsic::experimental_gc_result: { 4071 Assert(CS.getParent()->getParent()->hasGC(), 4072 "Enclosing function does not use GC.", CS); 4073 // Are we tied to a statepoint properly? 4074 CallSite StatepointCS(CS.getArgOperand(0)); 4075 const Function *StatepointFn = 4076 StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr; 4077 Assert(StatepointFn && StatepointFn->isDeclaration() && 4078 StatepointFn->getIntrinsicID() == 4079 Intrinsic::experimental_gc_statepoint, 4080 "gc.result operand #1 must be from a statepoint", CS, 4081 CS.getArgOperand(0)); 4082 4083 // Assert that result type matches wrapped callee. 4084 const Value *Target = StatepointCS.getArgument(2); 4085 auto *PT = cast<PointerType>(Target->getType()); 4086 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4087 Assert(CS.getType() == TargetFuncType->getReturnType(), 4088 "gc.result result type does not match wrapped callee", CS); 4089 break; 4090 } 4091 case Intrinsic::experimental_gc_relocate: { 4092 Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS); 4093 4094 Assert(isa<PointerType>(CS.getType()->getScalarType()), 4095 "gc.relocate must return a pointer or a vector of pointers", CS); 4096 4097 // Check that this relocate is correctly tied to the statepoint 4098 4099 // This is case for relocate on the unwinding path of an invoke statepoint 4100 if (LandingPadInst *LandingPad = 4101 dyn_cast<LandingPadInst>(CS.getArgOperand(0))) { 4102 4103 const BasicBlock *InvokeBB = 4104 LandingPad->getParent()->getUniquePredecessor(); 4105 4106 // Landingpad relocates should have only one predecessor with invoke 4107 // statepoint terminator 4108 Assert(InvokeBB, "safepoints should have unique landingpads", 4109 LandingPad->getParent()); 4110 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4111 InvokeBB); 4112 Assert(isStatepoint(InvokeBB->getTerminator()), 4113 "gc relocate should be linked to a statepoint", InvokeBB); 4114 } 4115 else { 4116 // In all other cases relocate should be tied to the statepoint directly. 4117 // This covers relocates on a normal return path of invoke statepoint and 4118 // relocates of a call statepoint. 4119 auto Token = CS.getArgOperand(0); 4120 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)), 4121 "gc relocate is incorrectly tied to the statepoint", CS, Token); 4122 } 4123 4124 // Verify rest of the relocate arguments. 4125 4126 ImmutableCallSite StatepointCS( 4127 cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint()); 4128 4129 // Both the base and derived must be piped through the safepoint. 4130 Value* Base = CS.getArgOperand(1); 4131 Assert(isa<ConstantInt>(Base), 4132 "gc.relocate operand #2 must be integer offset", CS); 4133 4134 Value* Derived = CS.getArgOperand(2); 4135 Assert(isa<ConstantInt>(Derived), 4136 "gc.relocate operand #3 must be integer offset", CS); 4137 4138 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4139 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4140 // Check the bounds 4141 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(), 4142 "gc.relocate: statepoint base index out of bounds", CS); 4143 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(), 4144 "gc.relocate: statepoint derived index out of bounds", CS); 4145 4146 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' 4147 // section of the statepoint's argument. 4148 Assert(StatepointCS.arg_size() > 0, 4149 "gc.statepoint: insufficient arguments"); 4150 Assert(isa<ConstantInt>(StatepointCS.getArgument(3)), 4151 "gc.statement: number of call arguments must be constant integer"); 4152 const unsigned NumCallArgs = 4153 cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue(); 4154 Assert(StatepointCS.arg_size() > NumCallArgs + 5, 4155 "gc.statepoint: mismatch in number of call arguments"); 4156 Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)), 4157 "gc.statepoint: number of transition arguments must be " 4158 "a constant integer"); 4159 const int NumTransitionArgs = 4160 cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)) 4161 ->getZExtValue(); 4162 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; 4163 Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)), 4164 "gc.statepoint: number of deoptimization arguments must be " 4165 "a constant integer"); 4166 const int NumDeoptArgs = 4167 cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)) 4168 ->getZExtValue(); 4169 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; 4170 const int GCParamArgsEnd = StatepointCS.arg_size(); 4171 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, 4172 "gc.relocate: statepoint base index doesn't fall within the " 4173 "'gc parameters' section of the statepoint call", 4174 CS); 4175 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, 4176 "gc.relocate: statepoint derived index doesn't fall within the " 4177 "'gc parameters' section of the statepoint call", 4178 CS); 4179 4180 // Relocated value must be either a pointer type or vector-of-pointer type, 4181 // but gc_relocate does not need to return the same pointer type as the 4182 // relocated pointer. It can be casted to the correct type later if it's 4183 // desired. However, they must have the same address space and 'vectorness' 4184 GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction()); 4185 Assert(Relocate.getDerivedPtr()->getType()->getScalarType()->isPointerTy(), 4186 "gc.relocate: relocated value must be a gc pointer", CS); 4187 4188 auto ResultType = CS.getType(); 4189 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4190 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4191 "gc.relocate: vector relocates to vector and pointer to pointer", 4192 CS); 4193 Assert( 4194 ResultType->getPointerAddressSpace() == 4195 DerivedType->getPointerAddressSpace(), 4196 "gc.relocate: relocating a pointer shouldn't change its address space", 4197 CS); 4198 break; 4199 } 4200 case Intrinsic::eh_exceptioncode: 4201 case Intrinsic::eh_exceptionpointer: { 4202 Assert(isa<CatchPadInst>(CS.getArgOperand(0)), 4203 "eh.exceptionpointer argument must be a catchpad", CS); 4204 break; 4205 } 4206 case Intrinsic::masked_load: { 4207 Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS); 4208 4209 Value *Ptr = CS.getArgOperand(0); 4210 //Value *Alignment = CS.getArgOperand(1); 4211 Value *Mask = CS.getArgOperand(2); 4212 Value *PassThru = CS.getArgOperand(3); 4213 Assert(Mask->getType()->isVectorTy(), 4214 "masked_load: mask must be vector", CS); 4215 4216 // DataTy is the overloaded type 4217 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4218 Assert(DataTy == CS.getType(), 4219 "masked_load: return must match pointer type", CS); 4220 Assert(PassThru->getType() == DataTy, 4221 "masked_load: pass through and data type must match", CS); 4222 Assert(Mask->getType()->getVectorNumElements() == 4223 DataTy->getVectorNumElements(), 4224 "masked_load: vector mask must be same length as data", CS); 4225 break; 4226 } 4227 case Intrinsic::masked_store: { 4228 Value *Val = CS.getArgOperand(0); 4229 Value *Ptr = CS.getArgOperand(1); 4230 //Value *Alignment = CS.getArgOperand(2); 4231 Value *Mask = CS.getArgOperand(3); 4232 Assert(Mask->getType()->isVectorTy(), 4233 "masked_store: mask must be vector", CS); 4234 4235 // DataTy is the overloaded type 4236 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4237 Assert(DataTy == Val->getType(), 4238 "masked_store: storee must match pointer type", CS); 4239 Assert(Mask->getType()->getVectorNumElements() == 4240 DataTy->getVectorNumElements(), 4241 "masked_store: vector mask must be same length as data", CS); 4242 break; 4243 } 4244 4245 case Intrinsic::experimental_guard: { 4246 Assert(CS.isCall(), "experimental_guard cannot be invoked", CS); 4247 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4248 "experimental_guard must have exactly one " 4249 "\"deopt\" operand bundle"); 4250 break; 4251 } 4252 4253 case Intrinsic::experimental_deoptimize: { 4254 Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS); 4255 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4256 "experimental_deoptimize must have exactly one " 4257 "\"deopt\" operand bundle"); 4258 Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(), 4259 "experimental_deoptimize return type must match caller return type"); 4260 4261 if (CS.isCall()) { 4262 auto *DeoptCI = CS.getInstruction(); 4263 auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode()); 4264 Assert(RI, 4265 "calls to experimental_deoptimize must be followed by a return"); 4266 4267 if (!CS.getType()->isVoidTy() && RI) 4268 Assert(RI->getReturnValue() == DeoptCI, 4269 "calls to experimental_deoptimize must be followed by a return " 4270 "of the value computed by experimental_deoptimize"); 4271 } 4272 4273 break; 4274 } 4275 }; 4276 } 4277 4278 /// \brief Carefully grab the subprogram from a local scope. 4279 /// 4280 /// This carefully grabs the subprogram from a local scope, avoiding the 4281 /// built-in assertions that would typically fire. 4282 static DISubprogram *getSubprogram(Metadata *LocalScope) { 4283 if (!LocalScope) 4284 return nullptr; 4285 4286 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 4287 return SP; 4288 4289 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 4290 return getSubprogram(LB->getRawScope()); 4291 4292 // Just return null; broken scope chains are checked elsewhere. 4293 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 4294 return nullptr; 4295 } 4296 4297 template <class DbgIntrinsicTy> 4298 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) { 4299 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); 4300 AssertDI(isa<ValueAsMetadata>(MD) || 4301 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 4302 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 4303 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 4304 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 4305 DII.getRawVariable()); 4306 AssertDI(isa<DIExpression>(DII.getRawExpression()), 4307 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 4308 DII.getRawExpression()); 4309 4310 // Ignore broken !dbg attachments; they're checked elsewhere. 4311 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 4312 if (!isa<DILocation>(N)) 4313 return; 4314 4315 BasicBlock *BB = DII.getParent(); 4316 Function *F = BB ? BB->getParent() : nullptr; 4317 4318 // The scopes for variables and !dbg attachments must agree. 4319 DILocalVariable *Var = DII.getVariable(); 4320 DILocation *Loc = DII.getDebugLoc(); 4321 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4322 &DII, BB, F); 4323 4324 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 4325 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4326 if (!VarSP || !LocSP) 4327 return; // Broken scope chains are checked elsewhere. 4328 4329 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4330 " variable and !dbg attachment", 4331 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 4332 Loc->getScope()->getSubprogram()); 4333 } 4334 4335 static uint64_t getVariableSize(const DILocalVariable &V) { 4336 // Be careful of broken types (checked elsewhere). 4337 const Metadata *RawType = V.getRawType(); 4338 while (RawType) { 4339 // Try to get the size directly. 4340 if (auto *T = dyn_cast<DIType>(RawType)) 4341 if (uint64_t Size = T->getSizeInBits()) 4342 return Size; 4343 4344 if (auto *DT = dyn_cast<DIDerivedType>(RawType)) { 4345 // Look at the base type. 4346 RawType = DT->getRawBaseType(); 4347 continue; 4348 } 4349 4350 // Missing type or size. 4351 break; 4352 } 4353 4354 // Fail gracefully. 4355 return 0; 4356 } 4357 4358 void Verifier::verifyFragmentExpression(const DbgInfoIntrinsic &I) { 4359 DILocalVariable *V; 4360 DIExpression *E; 4361 if (auto *DVI = dyn_cast<DbgValueInst>(&I)) { 4362 V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable()); 4363 E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression()); 4364 } else { 4365 auto *DDI = cast<DbgDeclareInst>(&I); 4366 V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable()); 4367 E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression()); 4368 } 4369 4370 // We don't know whether this intrinsic verified correctly. 4371 if (!V || !E || !E->isValid()) 4372 return; 4373 4374 // Nothing to do if this isn't a bit piece expression. 4375 auto Fragment = E->getFragmentInfo(); 4376 if (!Fragment) 4377 return; 4378 4379 // The frontend helps out GDB by emitting the members of local anonymous 4380 // unions as artificial local variables with shared storage. When SROA splits 4381 // the storage for artificial local variables that are smaller than the entire 4382 // union, the overhang piece will be outside of the allotted space for the 4383 // variable and this check fails. 4384 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 4385 if (V->isArtificial()) 4386 return; 4387 4388 // If there's no size, the type is broken, but that should be checked 4389 // elsewhere. 4390 uint64_t VarSize = getVariableSize(*V); 4391 if (!VarSize) 4392 return; 4393 4394 unsigned FragSize = Fragment->SizeInBits; 4395 unsigned FragOffset = Fragment->OffsetInBits; 4396 AssertDI(FragSize + FragOffset <= VarSize, 4397 "fragment is larger than or outside of variable", &I, V, E); 4398 AssertDI(FragSize != VarSize, "fragment covers entire variable", &I, V, E); 4399 } 4400 4401 void Verifier::verifyCompileUnits() { 4402 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 4403 SmallPtrSet<const Metadata *, 2> Listed; 4404 if (CUs) 4405 Listed.insert(CUs->op_begin(), CUs->op_end()); 4406 AssertDI( 4407 all_of(CUVisited, 4408 [&Listed](const Metadata *CU) { return Listed.count(CU); }), 4409 "All DICompileUnits must be listed in llvm.dbg.cu"); 4410 CUVisited.clear(); 4411 } 4412 4413 void Verifier::verifyDeoptimizeCallingConvs() { 4414 if (DeoptimizeDeclarations.empty()) 4415 return; 4416 4417 const Function *First = DeoptimizeDeclarations[0]; 4418 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 4419 Assert(First->getCallingConv() == F->getCallingConv(), 4420 "All llvm.experimental.deoptimize declarations must have the same " 4421 "calling convention", 4422 First, F); 4423 } 4424 } 4425 4426 //===----------------------------------------------------------------------===// 4427 // Implement the public interfaces to this file... 4428 //===----------------------------------------------------------------------===// 4429 4430 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 4431 Function &F = const_cast<Function &>(f); 4432 4433 // Don't use a raw_null_ostream. Printing IR is expensive. 4434 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 4435 4436 // Note that this function's return value is inverted from what you would 4437 // expect of a function called "verify". 4438 return !V.verify(F); 4439 } 4440 4441 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 4442 bool *BrokenDebugInfo) { 4443 // Don't use a raw_null_ostream. Printing IR is expensive. 4444 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 4445 4446 bool Broken = false; 4447 for (const Function &F : M) 4448 Broken |= !V.verify(F); 4449 4450 Broken |= !V.verify(); 4451 if (BrokenDebugInfo) 4452 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 4453 // Note that this function's return value is inverted from what you would 4454 // expect of a function called "verify". 4455 return Broken; 4456 } 4457 4458 namespace { 4459 4460 struct VerifierLegacyPass : public FunctionPass { 4461 static char ID; 4462 4463 std::unique_ptr<Verifier> V; 4464 bool FatalErrors = true; 4465 4466 VerifierLegacyPass() : FunctionPass(ID) { 4467 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 4468 } 4469 explicit VerifierLegacyPass(bool FatalErrors) 4470 : FunctionPass(ID), 4471 FatalErrors(FatalErrors) { 4472 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 4473 } 4474 4475 bool doInitialization(Module &M) override { 4476 V = llvm::make_unique<Verifier>( 4477 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 4478 return false; 4479 } 4480 4481 bool runOnFunction(Function &F) override { 4482 if (!V->verify(F) && FatalErrors) 4483 report_fatal_error("Broken function found, compilation aborted!"); 4484 4485 return false; 4486 } 4487 4488 bool doFinalization(Module &M) override { 4489 bool HasErrors = false; 4490 for (Function &F : M) 4491 if (F.isDeclaration()) 4492 HasErrors |= !V->verify(F); 4493 4494 HasErrors |= !V->verify(); 4495 if (FatalErrors) { 4496 if (HasErrors) 4497 report_fatal_error("Broken module found, compilation aborted!"); 4498 assert(!V->hasBrokenDebugInfo() && "Module contains invalid debug info"); 4499 } 4500 4501 // Strip broken debug info. 4502 if (V->hasBrokenDebugInfo()) { 4503 DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M); 4504 M.getContext().diagnose(DiagInvalid); 4505 if (!StripDebugInfo(M)) 4506 report_fatal_error("Failed to strip malformed debug info"); 4507 } 4508 return false; 4509 } 4510 4511 void getAnalysisUsage(AnalysisUsage &AU) const override { 4512 AU.setPreservesAll(); 4513 } 4514 }; 4515 4516 } // end anonymous namespace 4517 4518 /// Helper to issue failure from the TBAA verification 4519 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 4520 if (Diagnostic) 4521 return Diagnostic->CheckFailed(Args...); 4522 } 4523 4524 #define AssertTBAA(C, ...) \ 4525 do { \ 4526 if (!(C)) { \ 4527 CheckFailed(__VA_ARGS__); \ 4528 return false; \ 4529 } \ 4530 } while (false) 4531 4532 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 4533 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 4534 /// struct-type node describing an aggregate data structure (like a struct). 4535 TBAAVerifier::TBAABaseNodeSummary 4536 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode) { 4537 if (BaseNode->getNumOperands() < 2) { 4538 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 4539 return {true, ~0u}; 4540 } 4541 4542 auto Itr = TBAABaseNodes.find(BaseNode); 4543 if (Itr != TBAABaseNodes.end()) 4544 return Itr->second; 4545 4546 auto Result = verifyTBAABaseNodeImpl(I, BaseNode); 4547 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 4548 (void)InsertResult; 4549 assert(InsertResult.second && "We just checked!"); 4550 return Result; 4551 } 4552 4553 TBAAVerifier::TBAABaseNodeSummary 4554 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode) { 4555 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 4556 4557 if (BaseNode->getNumOperands() == 2) { 4558 // Scalar nodes can only be accessed at offset 0. 4559 return isValidScalarTBAANode(BaseNode) 4560 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 4561 : InvalidNode; 4562 } 4563 4564 if (BaseNode->getNumOperands() % 2 != 1) { 4565 CheckFailed("Struct tag nodes must have an odd number of operands!", 4566 BaseNode); 4567 return InvalidNode; 4568 } 4569 4570 if (!isa<MDString>(BaseNode->getOperand(0))) { 4571 CheckFailed("Struct tag nodes have a string as their first operand", 4572 BaseNode); 4573 return InvalidNode; 4574 } 4575 4576 bool Failed = false; 4577 4578 Optional<APInt> PrevOffset; 4579 unsigned BitWidth = ~0u; 4580 4581 // We've already checked that BaseNode is not a degenerate root node with one 4582 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 4583 for (unsigned Idx = 1; Idx < BaseNode->getNumOperands(); Idx += 2) { 4584 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 4585 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 4586 if (!isa<MDNode>(FieldTy)) { 4587 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 4588 Failed = true; 4589 continue; 4590 } 4591 4592 auto *OffsetEntryCI = 4593 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 4594 if (!OffsetEntryCI) { 4595 CheckFailed("Offset entries must be constants!", &I, BaseNode); 4596 Failed = true; 4597 continue; 4598 } 4599 4600 if (BitWidth == ~0u) 4601 BitWidth = OffsetEntryCI->getBitWidth(); 4602 4603 if (OffsetEntryCI->getBitWidth() != BitWidth) { 4604 CheckFailed( 4605 "Bitwidth between the offsets and struct type entries must match", &I, 4606 BaseNode); 4607 Failed = true; 4608 continue; 4609 } 4610 4611 // NB! As far as I can tell, we generate a non-strictly increasing offset 4612 // sequence only from structs that have zero size bit fields. When 4613 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 4614 // pick the field lexically the latest in struct type metadata node. This 4615 // mirrors the actual behavior of the alias analysis implementation. 4616 bool IsAscending = 4617 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 4618 4619 if (!IsAscending) { 4620 CheckFailed("Offsets must be increasing!", &I, BaseNode); 4621 Failed = true; 4622 } 4623 4624 PrevOffset = OffsetEntryCI->getValue(); 4625 } 4626 4627 return Failed ? InvalidNode 4628 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 4629 } 4630 4631 static bool IsRootTBAANode(const MDNode *MD) { 4632 return MD->getNumOperands() < 2; 4633 } 4634 4635 static bool IsScalarTBAANodeImpl(const MDNode *MD, 4636 SmallPtrSetImpl<const MDNode *> &Visited) { 4637 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 4638 return false; 4639 4640 if (!isa<MDString>(MD->getOperand(0))) 4641 return false; 4642 4643 if (MD->getNumOperands() == 3) { 4644 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 4645 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 4646 return false; 4647 } 4648 4649 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 4650 return Parent && Visited.insert(Parent).second && 4651 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 4652 } 4653 4654 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 4655 auto ResultIt = TBAAScalarNodes.find(MD); 4656 if (ResultIt != TBAAScalarNodes.end()) 4657 return ResultIt->second; 4658 4659 SmallPtrSet<const MDNode *, 4> Visited; 4660 bool Result = IsScalarTBAANodeImpl(MD, Visited); 4661 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 4662 (void)InsertResult; 4663 assert(InsertResult.second && "Just checked!"); 4664 4665 return Result; 4666 } 4667 4668 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 4669 /// Offset in place to be the offset within the field node returned. 4670 /// 4671 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 4672 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 4673 const MDNode *BaseNode, 4674 APInt &Offset) { 4675 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 4676 4677 // Scalar nodes have only one possible "field" -- their parent in the access 4678 // hierarchy. Offset must be zero at this point, but our caller is supposed 4679 // to Assert that. 4680 if (BaseNode->getNumOperands() == 2) 4681 return cast<MDNode>(BaseNode->getOperand(1)); 4682 4683 for (unsigned Idx = 1; Idx < BaseNode->getNumOperands(); Idx += 2) { 4684 auto *OffsetEntryCI = 4685 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 4686 if (OffsetEntryCI->getValue().ugt(Offset)) { 4687 if (Idx == 1) { 4688 CheckFailed("Could not find TBAA parent in struct type node", &I, 4689 BaseNode, &Offset); 4690 return nullptr; 4691 } 4692 4693 auto *PrevOffsetEntryCI = 4694 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx - 1)); 4695 Offset -= PrevOffsetEntryCI->getValue(); 4696 return cast<MDNode>(BaseNode->getOperand(Idx - 2)); 4697 } 4698 } 4699 4700 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 4701 BaseNode->getOperand(BaseNode->getNumOperands() - 1)); 4702 4703 Offset -= LastOffsetEntryCI->getValue(); 4704 return cast<MDNode>(BaseNode->getOperand(BaseNode->getNumOperands() - 2)); 4705 } 4706 4707 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 4708 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 4709 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 4710 isa<AtomicCmpXchgInst>(I), 4711 "TBAA is only for loads, stores and calls!", &I); 4712 4713 bool IsStructPathTBAA = 4714 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 4715 4716 AssertTBAA( 4717 IsStructPathTBAA, 4718 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 4719 4720 AssertTBAA(MD->getNumOperands() < 5, 4721 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 4722 4723 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 4724 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 4725 4726 if (MD->getNumOperands() == 4) { 4727 auto *IsImmutableCI = 4728 mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(3)); 4729 AssertTBAA(IsImmutableCI, 4730 "Immutability tag on struct tag metadata must be a constant", &I, 4731 MD); 4732 AssertTBAA( 4733 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 4734 "Immutability part of the struct tag metadata must be either 0 or 1", 4735 &I, MD); 4736 } 4737 4738 AssertTBAA(BaseNode && AccessType, 4739 "Malformed struct tag metadata: base and access-type " 4740 "should be non-null and point to Metadata nodes", 4741 &I, MD, BaseNode, AccessType); 4742 4743 AssertTBAA(isValidScalarTBAANode(AccessType), 4744 "Access type node must be a valid scalar type", &I, MD, 4745 AccessType); 4746 4747 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 4748 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 4749 4750 APInt Offset = OffsetCI->getValue(); 4751 bool SeenAccessTypeInPath = false; 4752 4753 SmallPtrSet<MDNode *, 4> StructPath; 4754 4755 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 4756 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset)) { 4757 if (!StructPath.insert(BaseNode).second) { 4758 CheckFailed("Cycle detected in struct path", &I, MD); 4759 return false; 4760 } 4761 4762 bool Invalid; 4763 unsigned BaseNodeBitWidth; 4764 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode); 4765 4766 // If the base node is invalid in itself, then we've already printed all the 4767 // errors we wanted to print. 4768 if (Invalid) 4769 return false; 4770 4771 SeenAccessTypeInPath |= BaseNode == AccessType; 4772 4773 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 4774 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 4775 &I, MD, &Offset); 4776 4777 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 4778 (BaseNodeBitWidth == 0 && Offset == 0), 4779 "Access bit-width not the same as description bit-width", &I, MD, 4780 BaseNodeBitWidth, Offset.getBitWidth()); 4781 } 4782 4783 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 4784 &I, MD); 4785 return true; 4786 } 4787 4788 char VerifierLegacyPass::ID = 0; 4789 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 4790 4791 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 4792 return new VerifierLegacyPass(FatalErrors); 4793 } 4794 4795 AnalysisKey VerifierAnalysis::Key; 4796 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 4797 ModuleAnalysisManager &) { 4798 Result Res; 4799 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 4800 return Res; 4801 } 4802 4803 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 4804 FunctionAnalysisManager &) { 4805 return { llvm::verifyFunction(F, &dbgs()), false }; 4806 } 4807 4808 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 4809 auto Res = AM.getResult<VerifierAnalysis>(M); 4810 if (FatalErrors) { 4811 if (Res.IRBroken) 4812 report_fatal_error("Broken module found, compilation aborted!"); 4813 assert(!Res.DebugInfoBroken && "Module contains invalid debug info"); 4814 } 4815 4816 // Strip broken debug info. 4817 if (Res.DebugInfoBroken) { 4818 DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M); 4819 M.getContext().diagnose(DiagInvalid); 4820 if (!StripDebugInfo(M)) 4821 report_fatal_error("Failed to strip malformed debug info"); 4822 } 4823 return PreservedAnalyses::all(); 4824 } 4825 4826 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 4827 auto res = AM.getResult<VerifierAnalysis>(F); 4828 if (res.IRBroken && FatalErrors) 4829 report_fatal_error("Broken function found, compilation aborted!"); 4830 4831 return PreservedAnalyses::all(); 4832 } 4833