1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // sanity checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/ADT/ilist.h" 62 #include "llvm/BinaryFormat/Dwarf.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstVisitor.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/ModuleSlotTracker.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/InitializePasses.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Debug.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <cstdint> 112 #include <memory> 113 #include <string> 114 #include <utility> 115 116 using namespace llvm; 117 118 static cl::opt<bool> VerifyNoAliasScopeDomination( 119 "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false), 120 cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical " 121 "scopes are not dominating")); 122 123 namespace llvm { 124 125 struct VerifierSupport { 126 raw_ostream *OS; 127 const Module &M; 128 ModuleSlotTracker MST; 129 Triple TT; 130 const DataLayout &DL; 131 LLVMContext &Context; 132 133 /// Track the brokenness of the module while recursively visiting. 134 bool Broken = false; 135 /// Broken debug info can be "recovered" from by stripping the debug info. 136 bool BrokenDebugInfo = false; 137 /// Whether to treat broken debug info as an error. 138 bool TreatBrokenDebugInfoAsError = true; 139 140 explicit VerifierSupport(raw_ostream *OS, const Module &M) 141 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 142 Context(M.getContext()) {} 143 144 private: 145 void Write(const Module *M) { 146 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 147 } 148 149 void Write(const Value *V) { 150 if (V) 151 Write(*V); 152 } 153 154 void Write(const Value &V) { 155 if (isa<Instruction>(V)) { 156 V.print(*OS, MST); 157 *OS << '\n'; 158 } else { 159 V.printAsOperand(*OS, true, MST); 160 *OS << '\n'; 161 } 162 } 163 164 void Write(const Metadata *MD) { 165 if (!MD) 166 return; 167 MD->print(*OS, MST, &M); 168 *OS << '\n'; 169 } 170 171 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 172 Write(MD.get()); 173 } 174 175 void Write(const NamedMDNode *NMD) { 176 if (!NMD) 177 return; 178 NMD->print(*OS, MST); 179 *OS << '\n'; 180 } 181 182 void Write(Type *T) { 183 if (!T) 184 return; 185 *OS << ' ' << *T; 186 } 187 188 void Write(const Comdat *C) { 189 if (!C) 190 return; 191 *OS << *C; 192 } 193 194 void Write(const APInt *AI) { 195 if (!AI) 196 return; 197 *OS << *AI << '\n'; 198 } 199 200 void Write(const unsigned i) { *OS << i << '\n'; } 201 202 // NOLINTNEXTLINE(readability-identifier-naming) 203 void Write(const Attribute *A) { 204 if (!A) 205 return; 206 *OS << A->getAsString() << '\n'; 207 } 208 209 // NOLINTNEXTLINE(readability-identifier-naming) 210 void Write(const AttributeSet *AS) { 211 if (!AS) 212 return; 213 *OS << AS->getAsString() << '\n'; 214 } 215 216 // NOLINTNEXTLINE(readability-identifier-naming) 217 void Write(const AttributeList *AL) { 218 if (!AL) 219 return; 220 AL->print(*OS); 221 } 222 223 template <typename T> void Write(ArrayRef<T> Vs) { 224 for (const T &V : Vs) 225 Write(V); 226 } 227 228 template <typename T1, typename... Ts> 229 void WriteTs(const T1 &V1, const Ts &... Vs) { 230 Write(V1); 231 WriteTs(Vs...); 232 } 233 234 template <typename... Ts> void WriteTs() {} 235 236 public: 237 /// A check failed, so printout out the condition and the message. 238 /// 239 /// This provides a nice place to put a breakpoint if you want to see why 240 /// something is not correct. 241 void CheckFailed(const Twine &Message) { 242 if (OS) 243 *OS << Message << '\n'; 244 Broken = true; 245 } 246 247 /// A check failed (with values to print). 248 /// 249 /// This calls the Message-only version so that the above is easier to set a 250 /// breakpoint on. 251 template <typename T1, typename... Ts> 252 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 253 CheckFailed(Message); 254 if (OS) 255 WriteTs(V1, Vs...); 256 } 257 258 /// A debug info check failed. 259 void DebugInfoCheckFailed(const Twine &Message) { 260 if (OS) 261 *OS << Message << '\n'; 262 Broken |= TreatBrokenDebugInfoAsError; 263 BrokenDebugInfo = true; 264 } 265 266 /// A debug info check failed (with values to print). 267 template <typename T1, typename... Ts> 268 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 269 const Ts &... Vs) { 270 DebugInfoCheckFailed(Message); 271 if (OS) 272 WriteTs(V1, Vs...); 273 } 274 }; 275 276 } // namespace llvm 277 278 namespace { 279 280 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 281 friend class InstVisitor<Verifier>; 282 283 DominatorTree DT; 284 285 /// When verifying a basic block, keep track of all of the 286 /// instructions we have seen so far. 287 /// 288 /// This allows us to do efficient dominance checks for the case when an 289 /// instruction has an operand that is an instruction in the same block. 290 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 291 292 /// Keep track of the metadata nodes that have been checked already. 293 SmallPtrSet<const Metadata *, 32> MDNodes; 294 295 /// Keep track which DISubprogram is attached to which function. 296 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 297 298 /// Track all DICompileUnits visited. 299 SmallPtrSet<const Metadata *, 2> CUVisited; 300 301 /// The result type for a landingpad. 302 Type *LandingPadResultTy; 303 304 /// Whether we've seen a call to @llvm.localescape in this function 305 /// already. 306 bool SawFrameEscape; 307 308 /// Whether the current function has a DISubprogram attached to it. 309 bool HasDebugInfo = false; 310 311 /// The current source language. 312 dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user; 313 314 /// Whether source was present on the first DIFile encountered in each CU. 315 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 316 317 /// Stores the count of how many objects were passed to llvm.localescape for a 318 /// given function and the largest index passed to llvm.localrecover. 319 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 320 321 // Maps catchswitches and cleanuppads that unwind to siblings to the 322 // terminators that indicate the unwind, used to detect cycles therein. 323 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 324 325 /// Cache of constants visited in search of ConstantExprs. 326 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 327 328 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 329 SmallVector<const Function *, 4> DeoptimizeDeclarations; 330 331 /// Cache of attribute lists verified. 332 SmallPtrSet<const void *, 32> AttributeListsVisited; 333 334 // Verify that this GlobalValue is only used in this module. 335 // This map is used to avoid visiting uses twice. We can arrive at a user 336 // twice, if they have multiple operands. In particular for very large 337 // constant expressions, we can arrive at a particular user many times. 338 SmallPtrSet<const Value *, 32> GlobalValueVisited; 339 340 // Keeps track of duplicate function argument debug info. 341 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 342 343 TBAAVerifier TBAAVerifyHelper; 344 345 SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls; 346 347 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 348 349 public: 350 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 351 const Module &M) 352 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 353 SawFrameEscape(false), TBAAVerifyHelper(this) { 354 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 355 } 356 357 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 358 359 bool verify(const Function &F) { 360 assert(F.getParent() == &M && 361 "An instance of this class only works with a specific module!"); 362 363 // First ensure the function is well-enough formed to compute dominance 364 // information, and directly compute a dominance tree. We don't rely on the 365 // pass manager to provide this as it isolates us from a potentially 366 // out-of-date dominator tree and makes it significantly more complex to run 367 // this code outside of a pass manager. 368 // FIXME: It's really gross that we have to cast away constness here. 369 if (!F.empty()) 370 DT.recalculate(const_cast<Function &>(F)); 371 372 for (const BasicBlock &BB : F) { 373 if (!BB.empty() && BB.back().isTerminator()) 374 continue; 375 376 if (OS) { 377 *OS << "Basic Block in function '" << F.getName() 378 << "' does not have terminator!\n"; 379 BB.printAsOperand(*OS, true, MST); 380 *OS << "\n"; 381 } 382 return false; 383 } 384 385 Broken = false; 386 // FIXME: We strip const here because the inst visitor strips const. 387 visit(const_cast<Function &>(F)); 388 verifySiblingFuncletUnwinds(); 389 InstsInThisBlock.clear(); 390 DebugFnArgs.clear(); 391 LandingPadResultTy = nullptr; 392 SawFrameEscape = false; 393 SiblingFuncletInfo.clear(); 394 verifyNoAliasScopeDecl(); 395 NoAliasScopeDecls.clear(); 396 397 return !Broken; 398 } 399 400 /// Verify the module that this instance of \c Verifier was initialized with. 401 bool verify() { 402 Broken = false; 403 404 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 405 for (const Function &F : M) 406 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 407 DeoptimizeDeclarations.push_back(&F); 408 409 // Now that we've visited every function, verify that we never asked to 410 // recover a frame index that wasn't escaped. 411 verifyFrameRecoverIndices(); 412 for (const GlobalVariable &GV : M.globals()) 413 visitGlobalVariable(GV); 414 415 for (const GlobalAlias &GA : M.aliases()) 416 visitGlobalAlias(GA); 417 418 for (const NamedMDNode &NMD : M.named_metadata()) 419 visitNamedMDNode(NMD); 420 421 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 422 visitComdat(SMEC.getValue()); 423 424 visitModuleFlags(M); 425 visitModuleIdents(M); 426 visitModuleCommandLines(M); 427 428 verifyCompileUnits(); 429 430 verifyDeoptimizeCallingConvs(); 431 DISubprogramAttachments.clear(); 432 return !Broken; 433 } 434 435 private: 436 /// Whether a metadata node is allowed to be, or contain, a DILocation. 437 enum class AreDebugLocsAllowed { No, Yes }; 438 439 // Verification methods... 440 void visitGlobalValue(const GlobalValue &GV); 441 void visitGlobalVariable(const GlobalVariable &GV); 442 void visitGlobalAlias(const GlobalAlias &GA); 443 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 444 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 445 const GlobalAlias &A, const Constant &C); 446 void visitNamedMDNode(const NamedMDNode &NMD); 447 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); 448 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 449 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 450 void visitComdat(const Comdat &C); 451 void visitModuleIdents(const Module &M); 452 void visitModuleCommandLines(const Module &M); 453 void visitModuleFlags(const Module &M); 454 void visitModuleFlag(const MDNode *Op, 455 DenseMap<const MDString *, const MDNode *> &SeenIDs, 456 SmallVectorImpl<const MDNode *> &Requirements); 457 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 458 void visitFunction(const Function &F); 459 void visitBasicBlock(BasicBlock &BB); 460 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 461 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 462 void visitProfMetadata(Instruction &I, MDNode *MD); 463 void visitAnnotationMetadata(MDNode *Annotation); 464 465 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 466 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 467 #include "llvm/IR/Metadata.def" 468 void visitDIScope(const DIScope &N); 469 void visitDIVariable(const DIVariable &N); 470 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 471 void visitDITemplateParameter(const DITemplateParameter &N); 472 473 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 474 475 // InstVisitor overrides... 476 using InstVisitor<Verifier>::visit; 477 void visit(Instruction &I); 478 479 void visitTruncInst(TruncInst &I); 480 void visitZExtInst(ZExtInst &I); 481 void visitSExtInst(SExtInst &I); 482 void visitFPTruncInst(FPTruncInst &I); 483 void visitFPExtInst(FPExtInst &I); 484 void visitFPToUIInst(FPToUIInst &I); 485 void visitFPToSIInst(FPToSIInst &I); 486 void visitUIToFPInst(UIToFPInst &I); 487 void visitSIToFPInst(SIToFPInst &I); 488 void visitIntToPtrInst(IntToPtrInst &I); 489 void visitPtrToIntInst(PtrToIntInst &I); 490 void visitBitCastInst(BitCastInst &I); 491 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 492 void visitPHINode(PHINode &PN); 493 void visitCallBase(CallBase &Call); 494 void visitUnaryOperator(UnaryOperator &U); 495 void visitBinaryOperator(BinaryOperator &B); 496 void visitICmpInst(ICmpInst &IC); 497 void visitFCmpInst(FCmpInst &FC); 498 void visitExtractElementInst(ExtractElementInst &EI); 499 void visitInsertElementInst(InsertElementInst &EI); 500 void visitShuffleVectorInst(ShuffleVectorInst &EI); 501 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 502 void visitCallInst(CallInst &CI); 503 void visitInvokeInst(InvokeInst &II); 504 void visitGetElementPtrInst(GetElementPtrInst &GEP); 505 void visitLoadInst(LoadInst &LI); 506 void visitStoreInst(StoreInst &SI); 507 void verifyDominatesUse(Instruction &I, unsigned i); 508 void visitInstruction(Instruction &I); 509 void visitTerminator(Instruction &I); 510 void visitBranchInst(BranchInst &BI); 511 void visitReturnInst(ReturnInst &RI); 512 void visitSwitchInst(SwitchInst &SI); 513 void visitIndirectBrInst(IndirectBrInst &BI); 514 void visitCallBrInst(CallBrInst &CBI); 515 void visitSelectInst(SelectInst &SI); 516 void visitUserOp1(Instruction &I); 517 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 518 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 519 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 520 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 521 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 522 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 523 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 524 void visitFenceInst(FenceInst &FI); 525 void visitAllocaInst(AllocaInst &AI); 526 void visitExtractValueInst(ExtractValueInst &EVI); 527 void visitInsertValueInst(InsertValueInst &IVI); 528 void visitEHPadPredecessors(Instruction &I); 529 void visitLandingPadInst(LandingPadInst &LPI); 530 void visitResumeInst(ResumeInst &RI); 531 void visitCatchPadInst(CatchPadInst &CPI); 532 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 533 void visitCleanupPadInst(CleanupPadInst &CPI); 534 void visitFuncletPadInst(FuncletPadInst &FPI); 535 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 536 void visitCleanupReturnInst(CleanupReturnInst &CRI); 537 538 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 539 void verifySwiftErrorValue(const Value *SwiftErrorVal); 540 void verifyTailCCMustTailAttrs(AttrBuilder Attrs, StringRef Context); 541 void verifyMustTailCall(CallInst &CI); 542 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 543 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 544 const Value *V); 545 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 546 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 547 const Value *V, bool IsIntrinsic); 548 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 549 550 void visitConstantExprsRecursively(const Constant *EntryC); 551 void visitConstantExpr(const ConstantExpr *CE); 552 void verifyStatepoint(const CallBase &Call); 553 void verifyFrameRecoverIndices(); 554 void verifySiblingFuncletUnwinds(); 555 556 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 557 template <typename ValueOrMetadata> 558 void verifyFragmentExpression(const DIVariable &V, 559 DIExpression::FragmentInfo Fragment, 560 ValueOrMetadata *Desc); 561 void verifyFnArgs(const DbgVariableIntrinsic &I); 562 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 563 564 /// Module-level debug info verification... 565 void verifyCompileUnits(); 566 567 /// Module-level verification that all @llvm.experimental.deoptimize 568 /// declarations share the same calling convention. 569 void verifyDeoptimizeCallingConvs(); 570 571 /// Verify all-or-nothing property of DIFile source attribute within a CU. 572 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 573 574 /// Verify the llvm.experimental.noalias.scope.decl declarations 575 void verifyNoAliasScopeDecl(); 576 }; 577 578 } // end anonymous namespace 579 580 /// We know that cond should be true, if not print an error message. 581 #define Assert(C, ...) \ 582 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 583 584 /// We know that a debug info condition should be true, if not print 585 /// an error message. 586 #define AssertDI(C, ...) \ 587 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 588 589 void Verifier::visit(Instruction &I) { 590 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 591 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 592 InstVisitor<Verifier>::visit(I); 593 } 594 595 // Helper to recursively iterate over indirect users. By 596 // returning false, the callback can ask to stop recursing 597 // further. 598 static void forEachUser(const Value *User, 599 SmallPtrSet<const Value *, 32> &Visited, 600 llvm::function_ref<bool(const Value *)> Callback) { 601 if (!Visited.insert(User).second) 602 return; 603 for (const Value *TheNextUser : User->materialized_users()) 604 if (Callback(TheNextUser)) 605 forEachUser(TheNextUser, Visited, Callback); 606 } 607 608 void Verifier::visitGlobalValue(const GlobalValue &GV) { 609 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 610 "Global is external, but doesn't have external or weak linkage!", &GV); 611 612 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) 613 Assert(GO->getAlignment() <= Value::MaximumAlignment, 614 "huge alignment values are unsupported", GO); 615 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 616 "Only global variables can have appending linkage!", &GV); 617 618 if (GV.hasAppendingLinkage()) { 619 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 620 Assert(GVar && GVar->getValueType()->isArrayTy(), 621 "Only global arrays can have appending linkage!", GVar); 622 } 623 624 if (GV.isDeclarationForLinker()) 625 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 626 627 if (GV.hasDLLImportStorageClass()) { 628 Assert(!GV.isDSOLocal(), 629 "GlobalValue with DLLImport Storage is dso_local!", &GV); 630 631 Assert((GV.isDeclaration() && 632 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) || 633 GV.hasAvailableExternallyLinkage(), 634 "Global is marked as dllimport, but not external", &GV); 635 } 636 637 if (GV.isImplicitDSOLocal()) 638 Assert(GV.isDSOLocal(), 639 "GlobalValue with local linkage or non-default " 640 "visibility must be dso_local!", 641 &GV); 642 643 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 644 if (const Instruction *I = dyn_cast<Instruction>(V)) { 645 if (!I->getParent() || !I->getParent()->getParent()) 646 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 647 I); 648 else if (I->getParent()->getParent()->getParent() != &M) 649 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 650 I->getParent()->getParent(), 651 I->getParent()->getParent()->getParent()); 652 return false; 653 } else if (const Function *F = dyn_cast<Function>(V)) { 654 if (F->getParent() != &M) 655 CheckFailed("Global is used by function in a different module", &GV, &M, 656 F, F->getParent()); 657 return false; 658 } 659 return true; 660 }); 661 } 662 663 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 664 if (GV.hasInitializer()) { 665 Assert(GV.getInitializer()->getType() == GV.getValueType(), 666 "Global variable initializer type does not match global " 667 "variable type!", 668 &GV); 669 // If the global has common linkage, it must have a zero initializer and 670 // cannot be constant. 671 if (GV.hasCommonLinkage()) { 672 Assert(GV.getInitializer()->isNullValue(), 673 "'common' global must have a zero initializer!", &GV); 674 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 675 &GV); 676 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 677 } 678 } 679 680 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 681 GV.getName() == "llvm.global_dtors")) { 682 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 683 "invalid linkage for intrinsic global variable", &GV); 684 // Don't worry about emitting an error for it not being an array, 685 // visitGlobalValue will complain on appending non-array. 686 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 687 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 688 PointerType *FuncPtrTy = 689 FunctionType::get(Type::getVoidTy(Context), false)-> 690 getPointerTo(DL.getProgramAddressSpace()); 691 Assert(STy && 692 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 693 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 694 STy->getTypeAtIndex(1) == FuncPtrTy, 695 "wrong type for intrinsic global variable", &GV); 696 Assert(STy->getNumElements() == 3, 697 "the third field of the element type is mandatory, " 698 "specify i8* null to migrate from the obsoleted 2-field form"); 699 Type *ETy = STy->getTypeAtIndex(2); 700 Assert(ETy->isPointerTy() && 701 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 702 "wrong type for intrinsic global variable", &GV); 703 } 704 } 705 706 if (GV.hasName() && (GV.getName() == "llvm.used" || 707 GV.getName() == "llvm.compiler.used")) { 708 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 709 "invalid linkage for intrinsic global variable", &GV); 710 Type *GVType = GV.getValueType(); 711 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 712 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 713 Assert(PTy, "wrong type for intrinsic global variable", &GV); 714 if (GV.hasInitializer()) { 715 const Constant *Init = GV.getInitializer(); 716 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 717 Assert(InitArray, "wrong initalizer for intrinsic global variable", 718 Init); 719 for (Value *Op : InitArray->operands()) { 720 Value *V = Op->stripPointerCasts(); 721 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 722 isa<GlobalAlias>(V), 723 "invalid llvm.used member", V); 724 Assert(V->hasName(), "members of llvm.used must be named", V); 725 } 726 } 727 } 728 } 729 730 // Visit any debug info attachments. 731 SmallVector<MDNode *, 1> MDs; 732 GV.getMetadata(LLVMContext::MD_dbg, MDs); 733 for (auto *MD : MDs) { 734 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 735 visitDIGlobalVariableExpression(*GVE); 736 else 737 AssertDI(false, "!dbg attachment of global variable must be a " 738 "DIGlobalVariableExpression"); 739 } 740 741 // Scalable vectors cannot be global variables, since we don't know 742 // the runtime size. If the global is an array containing scalable vectors, 743 // that will be caught by the isValidElementType methods in StructType or 744 // ArrayType instead. 745 Assert(!isa<ScalableVectorType>(GV.getValueType()), 746 "Globals cannot contain scalable vectors", &GV); 747 748 if (auto *STy = dyn_cast<StructType>(GV.getValueType())) 749 Assert(!STy->containsScalableVectorType(), 750 "Globals cannot contain scalable vectors", &GV); 751 752 if (!GV.hasInitializer()) { 753 visitGlobalValue(GV); 754 return; 755 } 756 757 // Walk any aggregate initializers looking for bitcasts between address spaces 758 visitConstantExprsRecursively(GV.getInitializer()); 759 760 visitGlobalValue(GV); 761 } 762 763 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 764 SmallPtrSet<const GlobalAlias*, 4> Visited; 765 Visited.insert(&GA); 766 visitAliaseeSubExpr(Visited, GA, C); 767 } 768 769 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 770 const GlobalAlias &GA, const Constant &C) { 771 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 772 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 773 &GA); 774 775 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 776 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 777 778 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 779 &GA); 780 } else { 781 // Only continue verifying subexpressions of GlobalAliases. 782 // Do not recurse into global initializers. 783 return; 784 } 785 } 786 787 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 788 visitConstantExprsRecursively(CE); 789 790 for (const Use &U : C.operands()) { 791 Value *V = &*U; 792 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 793 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 794 else if (const auto *C2 = dyn_cast<Constant>(V)) 795 visitAliaseeSubExpr(Visited, GA, *C2); 796 } 797 } 798 799 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 800 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 801 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 802 "weak_odr, or external linkage!", 803 &GA); 804 const Constant *Aliasee = GA.getAliasee(); 805 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 806 Assert(GA.getType() == Aliasee->getType(), 807 "Alias and aliasee types should match!", &GA); 808 809 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 810 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 811 812 visitAliaseeSubExpr(GA, *Aliasee); 813 814 visitGlobalValue(GA); 815 } 816 817 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 818 // There used to be various other llvm.dbg.* nodes, but we don't support 819 // upgrading them and we want to reserve the namespace for future uses. 820 if (NMD.getName().startswith("llvm.dbg.")) 821 AssertDI(NMD.getName() == "llvm.dbg.cu", 822 "unrecognized named metadata node in the llvm.dbg namespace", 823 &NMD); 824 for (const MDNode *MD : NMD.operands()) { 825 if (NMD.getName() == "llvm.dbg.cu") 826 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 827 828 if (!MD) 829 continue; 830 831 visitMDNode(*MD, AreDebugLocsAllowed::Yes); 832 } 833 } 834 835 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { 836 // Only visit each node once. Metadata can be mutually recursive, so this 837 // avoids infinite recursion here, as well as being an optimization. 838 if (!MDNodes.insert(&MD).second) 839 return; 840 841 Assert(&MD.getContext() == &Context, 842 "MDNode context does not match Module context!", &MD); 843 844 switch (MD.getMetadataID()) { 845 default: 846 llvm_unreachable("Invalid MDNode subclass"); 847 case Metadata::MDTupleKind: 848 break; 849 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 850 case Metadata::CLASS##Kind: \ 851 visit##CLASS(cast<CLASS>(MD)); \ 852 break; 853 #include "llvm/IR/Metadata.def" 854 } 855 856 for (const Metadata *Op : MD.operands()) { 857 if (!Op) 858 continue; 859 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 860 &MD, Op); 861 AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes, 862 "DILocation not allowed within this metadata node", &MD, Op); 863 if (auto *N = dyn_cast<MDNode>(Op)) { 864 visitMDNode(*N, AllowLocs); 865 continue; 866 } 867 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 868 visitValueAsMetadata(*V, nullptr); 869 continue; 870 } 871 } 872 873 // Check these last, so we diagnose problems in operands first. 874 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 875 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 876 } 877 878 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 879 Assert(MD.getValue(), "Expected valid value", &MD); 880 Assert(!MD.getValue()->getType()->isMetadataTy(), 881 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 882 883 auto *L = dyn_cast<LocalAsMetadata>(&MD); 884 if (!L) 885 return; 886 887 Assert(F, "function-local metadata used outside a function", L); 888 889 // If this was an instruction, bb, or argument, verify that it is in the 890 // function that we expect. 891 Function *ActualF = nullptr; 892 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 893 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 894 ActualF = I->getParent()->getParent(); 895 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 896 ActualF = BB->getParent(); 897 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 898 ActualF = A->getParent(); 899 assert(ActualF && "Unimplemented function local metadata case!"); 900 901 Assert(ActualF == F, "function-local metadata used in wrong function", L); 902 } 903 904 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 905 Metadata *MD = MDV.getMetadata(); 906 if (auto *N = dyn_cast<MDNode>(MD)) { 907 visitMDNode(*N, AreDebugLocsAllowed::No); 908 return; 909 } 910 911 // Only visit each node once. Metadata can be mutually recursive, so this 912 // avoids infinite recursion here, as well as being an optimization. 913 if (!MDNodes.insert(MD).second) 914 return; 915 916 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 917 visitValueAsMetadata(*V, F); 918 } 919 920 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 921 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 922 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 923 924 void Verifier::visitDILocation(const DILocation &N) { 925 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 926 "location requires a valid scope", &N, N.getRawScope()); 927 if (auto *IA = N.getRawInlinedAt()) 928 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 929 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 930 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 931 } 932 933 void Verifier::visitGenericDINode(const GenericDINode &N) { 934 AssertDI(N.getTag(), "invalid tag", &N); 935 } 936 937 void Verifier::visitDIScope(const DIScope &N) { 938 if (auto *F = N.getRawFile()) 939 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 940 } 941 942 void Verifier::visitDISubrange(const DISubrange &N) { 943 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 944 bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang); 945 AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() || 946 N.getRawUpperBound(), 947 "Subrange must contain count or upperBound", &N); 948 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 949 "Subrange can have any one of count or upperBound", &N); 950 auto *CBound = N.getRawCountNode(); 951 AssertDI(!CBound || isa<ConstantAsMetadata>(CBound) || 952 isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 953 "Count must be signed constant or DIVariable or DIExpression", &N); 954 auto Count = N.getCount(); 955 AssertDI(!Count || !Count.is<ConstantInt *>() || 956 Count.get<ConstantInt *>()->getSExtValue() >= -1, 957 "invalid subrange count", &N); 958 auto *LBound = N.getRawLowerBound(); 959 AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) || 960 isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 961 "LowerBound must be signed constant or DIVariable or DIExpression", 962 &N); 963 auto *UBound = N.getRawUpperBound(); 964 AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) || 965 isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 966 "UpperBound must be signed constant or DIVariable or DIExpression", 967 &N); 968 auto *Stride = N.getRawStride(); 969 AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) || 970 isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 971 "Stride must be signed constant or DIVariable or DIExpression", &N); 972 } 973 974 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) { 975 AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N); 976 AssertDI(N.getRawCountNode() || N.getRawUpperBound(), 977 "GenericSubrange must contain count or upperBound", &N); 978 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 979 "GenericSubrange can have any one of count or upperBound", &N); 980 auto *CBound = N.getRawCountNode(); 981 AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 982 "Count must be signed constant or DIVariable or DIExpression", &N); 983 auto *LBound = N.getRawLowerBound(); 984 AssertDI(LBound, "GenericSubrange must contain lowerBound", &N); 985 AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 986 "LowerBound must be signed constant or DIVariable or DIExpression", 987 &N); 988 auto *UBound = N.getRawUpperBound(); 989 AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 990 "UpperBound must be signed constant or DIVariable or DIExpression", 991 &N); 992 auto *Stride = N.getRawStride(); 993 AssertDI(Stride, "GenericSubrange must contain stride", &N); 994 AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 995 "Stride must be signed constant or DIVariable or DIExpression", &N); 996 } 997 998 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 999 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 1000 } 1001 1002 void Verifier::visitDIBasicType(const DIBasicType &N) { 1003 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 1004 N.getTag() == dwarf::DW_TAG_unspecified_type || 1005 N.getTag() == dwarf::DW_TAG_string_type, 1006 "invalid tag", &N); 1007 } 1008 1009 void Verifier::visitDIStringType(const DIStringType &N) { 1010 AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N); 1011 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 1012 "has conflicting flags", &N); 1013 } 1014 1015 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 1016 // Common scope checks. 1017 visitDIScope(N); 1018 1019 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 1020 N.getTag() == dwarf::DW_TAG_pointer_type || 1021 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 1022 N.getTag() == dwarf::DW_TAG_reference_type || 1023 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 1024 N.getTag() == dwarf::DW_TAG_const_type || 1025 N.getTag() == dwarf::DW_TAG_volatile_type || 1026 N.getTag() == dwarf::DW_TAG_restrict_type || 1027 N.getTag() == dwarf::DW_TAG_atomic_type || 1028 N.getTag() == dwarf::DW_TAG_member || 1029 N.getTag() == dwarf::DW_TAG_inheritance || 1030 N.getTag() == dwarf::DW_TAG_friend || 1031 N.getTag() == dwarf::DW_TAG_set_type, 1032 "invalid tag", &N); 1033 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 1034 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 1035 N.getRawExtraData()); 1036 } 1037 1038 if (N.getTag() == dwarf::DW_TAG_set_type) { 1039 if (auto *T = N.getRawBaseType()) { 1040 auto *Enum = dyn_cast_or_null<DICompositeType>(T); 1041 auto *Basic = dyn_cast_or_null<DIBasicType>(T); 1042 AssertDI( 1043 (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) || 1044 (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned || 1045 Basic->getEncoding() == dwarf::DW_ATE_signed || 1046 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char || 1047 Basic->getEncoding() == dwarf::DW_ATE_signed_char || 1048 Basic->getEncoding() == dwarf::DW_ATE_boolean)), 1049 "invalid set base type", &N, T); 1050 } 1051 } 1052 1053 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1054 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1055 N.getRawBaseType()); 1056 1057 if (N.getDWARFAddressSpace()) { 1058 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 1059 N.getTag() == dwarf::DW_TAG_reference_type || 1060 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 1061 "DWARF address space only applies to pointer or reference types", 1062 &N); 1063 } 1064 } 1065 1066 /// Detect mutually exclusive flags. 1067 static bool hasConflictingReferenceFlags(unsigned Flags) { 1068 return ((Flags & DINode::FlagLValueReference) && 1069 (Flags & DINode::FlagRValueReference)) || 1070 ((Flags & DINode::FlagTypePassByValue) && 1071 (Flags & DINode::FlagTypePassByReference)); 1072 } 1073 1074 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 1075 auto *Params = dyn_cast<MDTuple>(&RawParams); 1076 AssertDI(Params, "invalid template params", &N, &RawParams); 1077 for (Metadata *Op : Params->operands()) { 1078 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 1079 &N, Params, Op); 1080 } 1081 } 1082 1083 void Verifier::visitDICompositeType(const DICompositeType &N) { 1084 // Common scope checks. 1085 visitDIScope(N); 1086 1087 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 1088 N.getTag() == dwarf::DW_TAG_structure_type || 1089 N.getTag() == dwarf::DW_TAG_union_type || 1090 N.getTag() == dwarf::DW_TAG_enumeration_type || 1091 N.getTag() == dwarf::DW_TAG_class_type || 1092 N.getTag() == dwarf::DW_TAG_variant_part, 1093 "invalid tag", &N); 1094 1095 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1096 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1097 N.getRawBaseType()); 1098 1099 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 1100 "invalid composite elements", &N, N.getRawElements()); 1101 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 1102 N.getRawVTableHolder()); 1103 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1104 "invalid reference flags", &N); 1105 unsigned DIBlockByRefStruct = 1 << 4; 1106 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, 1107 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 1108 1109 if (N.isVector()) { 1110 const DINodeArray Elements = N.getElements(); 1111 AssertDI(Elements.size() == 1 && 1112 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 1113 "invalid vector, expected one element of type subrange", &N); 1114 } 1115 1116 if (auto *Params = N.getRawTemplateParams()) 1117 visitTemplateParams(N, *Params); 1118 1119 if (auto *D = N.getRawDiscriminator()) { 1120 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1121 "discriminator can only appear on variant part"); 1122 } 1123 1124 if (N.getRawDataLocation()) { 1125 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1126 "dataLocation can only appear in array type"); 1127 } 1128 1129 if (N.getRawAssociated()) { 1130 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1131 "associated can only appear in array type"); 1132 } 1133 1134 if (N.getRawAllocated()) { 1135 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1136 "allocated can only appear in array type"); 1137 } 1138 1139 if (N.getRawRank()) { 1140 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1141 "rank can only appear in array type"); 1142 } 1143 } 1144 1145 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1146 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1147 if (auto *Types = N.getRawTypeArray()) { 1148 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1149 for (Metadata *Ty : N.getTypeArray()->operands()) { 1150 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1151 } 1152 } 1153 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1154 "invalid reference flags", &N); 1155 } 1156 1157 void Verifier::visitDIFile(const DIFile &N) { 1158 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1159 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1160 if (Checksum) { 1161 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1162 "invalid checksum kind", &N); 1163 size_t Size; 1164 switch (Checksum->Kind) { 1165 case DIFile::CSK_MD5: 1166 Size = 32; 1167 break; 1168 case DIFile::CSK_SHA1: 1169 Size = 40; 1170 break; 1171 case DIFile::CSK_SHA256: 1172 Size = 64; 1173 break; 1174 } 1175 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1176 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1177 "invalid checksum", &N); 1178 } 1179 } 1180 1181 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1182 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1183 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1184 1185 // Don't bother verifying the compilation directory or producer string 1186 // as those could be empty. 1187 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1188 N.getRawFile()); 1189 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1190 N.getFile()); 1191 1192 CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage(); 1193 1194 verifySourceDebugInfo(N, *N.getFile()); 1195 1196 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1197 "invalid emission kind", &N); 1198 1199 if (auto *Array = N.getRawEnumTypes()) { 1200 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1201 for (Metadata *Op : N.getEnumTypes()->operands()) { 1202 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1203 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1204 "invalid enum type", &N, N.getEnumTypes(), Op); 1205 } 1206 } 1207 if (auto *Array = N.getRawRetainedTypes()) { 1208 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1209 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1210 AssertDI(Op && (isa<DIType>(Op) || 1211 (isa<DISubprogram>(Op) && 1212 !cast<DISubprogram>(Op)->isDefinition())), 1213 "invalid retained type", &N, Op); 1214 } 1215 } 1216 if (auto *Array = N.getRawGlobalVariables()) { 1217 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1218 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1219 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1220 "invalid global variable ref", &N, Op); 1221 } 1222 } 1223 if (auto *Array = N.getRawImportedEntities()) { 1224 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1225 for (Metadata *Op : N.getImportedEntities()->operands()) { 1226 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1227 &N, Op); 1228 } 1229 } 1230 if (auto *Array = N.getRawMacros()) { 1231 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1232 for (Metadata *Op : N.getMacros()->operands()) { 1233 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1234 } 1235 } 1236 CUVisited.insert(&N); 1237 } 1238 1239 void Verifier::visitDISubprogram(const DISubprogram &N) { 1240 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1241 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1242 if (auto *F = N.getRawFile()) 1243 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1244 else 1245 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1246 if (auto *T = N.getRawType()) 1247 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1248 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1249 N.getRawContainingType()); 1250 if (auto *Params = N.getRawTemplateParams()) 1251 visitTemplateParams(N, *Params); 1252 if (auto *S = N.getRawDeclaration()) 1253 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1254 "invalid subprogram declaration", &N, S); 1255 if (auto *RawNode = N.getRawRetainedNodes()) { 1256 auto *Node = dyn_cast<MDTuple>(RawNode); 1257 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1258 for (Metadata *Op : Node->operands()) { 1259 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1260 "invalid retained nodes, expected DILocalVariable or DILabel", 1261 &N, Node, Op); 1262 } 1263 } 1264 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1265 "invalid reference flags", &N); 1266 1267 auto *Unit = N.getRawUnit(); 1268 if (N.isDefinition()) { 1269 // Subprogram definitions (not part of the type hierarchy). 1270 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1271 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1272 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1273 if (N.getFile()) 1274 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1275 } else { 1276 // Subprogram declarations (part of the type hierarchy). 1277 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1278 } 1279 1280 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1281 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1282 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1283 for (Metadata *Op : ThrownTypes->operands()) 1284 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1285 Op); 1286 } 1287 1288 if (N.areAllCallsDescribed()) 1289 AssertDI(N.isDefinition(), 1290 "DIFlagAllCallsDescribed must be attached to a definition"); 1291 } 1292 1293 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1294 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1295 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1296 "invalid local scope", &N, N.getRawScope()); 1297 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1298 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1299 } 1300 1301 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1302 visitDILexicalBlockBase(N); 1303 1304 AssertDI(N.getLine() || !N.getColumn(), 1305 "cannot have column info without line info", &N); 1306 } 1307 1308 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1309 visitDILexicalBlockBase(N); 1310 } 1311 1312 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1313 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1314 if (auto *S = N.getRawScope()) 1315 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1316 if (auto *S = N.getRawDecl()) 1317 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1318 } 1319 1320 void Verifier::visitDINamespace(const DINamespace &N) { 1321 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1322 if (auto *S = N.getRawScope()) 1323 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1324 } 1325 1326 void Verifier::visitDIMacro(const DIMacro &N) { 1327 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1328 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1329 "invalid macinfo type", &N); 1330 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1331 if (!N.getValue().empty()) { 1332 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1333 } 1334 } 1335 1336 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1337 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1338 "invalid macinfo type", &N); 1339 if (auto *F = N.getRawFile()) 1340 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1341 1342 if (auto *Array = N.getRawElements()) { 1343 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1344 for (Metadata *Op : N.getElements()->operands()) { 1345 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1346 } 1347 } 1348 } 1349 1350 void Verifier::visitDIArgList(const DIArgList &N) { 1351 AssertDI(!N.getNumOperands(), 1352 "DIArgList should have no operands other than a list of " 1353 "ValueAsMetadata", 1354 &N); 1355 } 1356 1357 void Verifier::visitDIModule(const DIModule &N) { 1358 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1359 AssertDI(!N.getName().empty(), "anonymous module", &N); 1360 } 1361 1362 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1363 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1364 } 1365 1366 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1367 visitDITemplateParameter(N); 1368 1369 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1370 &N); 1371 } 1372 1373 void Verifier::visitDITemplateValueParameter( 1374 const DITemplateValueParameter &N) { 1375 visitDITemplateParameter(N); 1376 1377 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1378 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1379 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1380 "invalid tag", &N); 1381 } 1382 1383 void Verifier::visitDIVariable(const DIVariable &N) { 1384 if (auto *S = N.getRawScope()) 1385 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1386 if (auto *F = N.getRawFile()) 1387 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1388 } 1389 1390 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1391 // Checks common to all variables. 1392 visitDIVariable(N); 1393 1394 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1395 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1396 // Assert only if the global variable is not an extern 1397 if (N.isDefinition()) 1398 AssertDI(N.getType(), "missing global variable type", &N); 1399 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1400 AssertDI(isa<DIDerivedType>(Member), 1401 "invalid static data member declaration", &N, Member); 1402 } 1403 } 1404 1405 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1406 // Checks common to all variables. 1407 visitDIVariable(N); 1408 1409 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1410 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1411 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1412 "local variable requires a valid scope", &N, N.getRawScope()); 1413 if (auto Ty = N.getType()) 1414 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1415 } 1416 1417 void Verifier::visitDILabel(const DILabel &N) { 1418 if (auto *S = N.getRawScope()) 1419 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1420 if (auto *F = N.getRawFile()) 1421 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1422 1423 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1424 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1425 "label requires a valid scope", &N, N.getRawScope()); 1426 } 1427 1428 void Verifier::visitDIExpression(const DIExpression &N) { 1429 AssertDI(N.isValid(), "invalid expression", &N); 1430 } 1431 1432 void Verifier::visitDIGlobalVariableExpression( 1433 const DIGlobalVariableExpression &GVE) { 1434 AssertDI(GVE.getVariable(), "missing variable"); 1435 if (auto *Var = GVE.getVariable()) 1436 visitDIGlobalVariable(*Var); 1437 if (auto *Expr = GVE.getExpression()) { 1438 visitDIExpression(*Expr); 1439 if (auto Fragment = Expr->getFragmentInfo()) 1440 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1441 } 1442 } 1443 1444 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1445 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1446 if (auto *T = N.getRawType()) 1447 AssertDI(isType(T), "invalid type ref", &N, T); 1448 if (auto *F = N.getRawFile()) 1449 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1450 } 1451 1452 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1453 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1454 N.getTag() == dwarf::DW_TAG_imported_declaration, 1455 "invalid tag", &N); 1456 if (auto *S = N.getRawScope()) 1457 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1458 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1459 N.getRawEntity()); 1460 } 1461 1462 void Verifier::visitComdat(const Comdat &C) { 1463 // In COFF the Module is invalid if the GlobalValue has private linkage. 1464 // Entities with private linkage don't have entries in the symbol table. 1465 if (TT.isOSBinFormatCOFF()) 1466 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1467 Assert(!GV->hasPrivateLinkage(), 1468 "comdat global value has private linkage", GV); 1469 } 1470 1471 void Verifier::visitModuleIdents(const Module &M) { 1472 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1473 if (!Idents) 1474 return; 1475 1476 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1477 // Scan each llvm.ident entry and make sure that this requirement is met. 1478 for (const MDNode *N : Idents->operands()) { 1479 Assert(N->getNumOperands() == 1, 1480 "incorrect number of operands in llvm.ident metadata", N); 1481 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1482 ("invalid value for llvm.ident metadata entry operand" 1483 "(the operand should be a string)"), 1484 N->getOperand(0)); 1485 } 1486 } 1487 1488 void Verifier::visitModuleCommandLines(const Module &M) { 1489 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1490 if (!CommandLines) 1491 return; 1492 1493 // llvm.commandline takes a list of metadata entry. Each entry has only one 1494 // string. Scan each llvm.commandline entry and make sure that this 1495 // requirement is met. 1496 for (const MDNode *N : CommandLines->operands()) { 1497 Assert(N->getNumOperands() == 1, 1498 "incorrect number of operands in llvm.commandline metadata", N); 1499 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1500 ("invalid value for llvm.commandline metadata entry operand" 1501 "(the operand should be a string)"), 1502 N->getOperand(0)); 1503 } 1504 } 1505 1506 void Verifier::visitModuleFlags(const Module &M) { 1507 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1508 if (!Flags) return; 1509 1510 // Scan each flag, and track the flags and requirements. 1511 DenseMap<const MDString*, const MDNode*> SeenIDs; 1512 SmallVector<const MDNode*, 16> Requirements; 1513 for (const MDNode *MDN : Flags->operands()) 1514 visitModuleFlag(MDN, SeenIDs, Requirements); 1515 1516 // Validate that the requirements in the module are valid. 1517 for (const MDNode *Requirement : Requirements) { 1518 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1519 const Metadata *ReqValue = Requirement->getOperand(1); 1520 1521 const MDNode *Op = SeenIDs.lookup(Flag); 1522 if (!Op) { 1523 CheckFailed("invalid requirement on flag, flag is not present in module", 1524 Flag); 1525 continue; 1526 } 1527 1528 if (Op->getOperand(2) != ReqValue) { 1529 CheckFailed(("invalid requirement on flag, " 1530 "flag does not have the required value"), 1531 Flag); 1532 continue; 1533 } 1534 } 1535 } 1536 1537 void 1538 Verifier::visitModuleFlag(const MDNode *Op, 1539 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1540 SmallVectorImpl<const MDNode *> &Requirements) { 1541 // Each module flag should have three arguments, the merge behavior (a 1542 // constant int), the flag ID (an MDString), and the value. 1543 Assert(Op->getNumOperands() == 3, 1544 "incorrect number of operands in module flag", Op); 1545 Module::ModFlagBehavior MFB; 1546 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1547 Assert( 1548 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1549 "invalid behavior operand in module flag (expected constant integer)", 1550 Op->getOperand(0)); 1551 Assert(false, 1552 "invalid behavior operand in module flag (unexpected constant)", 1553 Op->getOperand(0)); 1554 } 1555 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1556 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1557 Op->getOperand(1)); 1558 1559 // Sanity check the values for behaviors with additional requirements. 1560 switch (MFB) { 1561 case Module::Error: 1562 case Module::Warning: 1563 case Module::Override: 1564 // These behavior types accept any value. 1565 break; 1566 1567 case Module::Max: { 1568 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1569 "invalid value for 'max' module flag (expected constant integer)", 1570 Op->getOperand(2)); 1571 break; 1572 } 1573 1574 case Module::Require: { 1575 // The value should itself be an MDNode with two operands, a flag ID (an 1576 // MDString), and a value. 1577 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1578 Assert(Value && Value->getNumOperands() == 2, 1579 "invalid value for 'require' module flag (expected metadata pair)", 1580 Op->getOperand(2)); 1581 Assert(isa<MDString>(Value->getOperand(0)), 1582 ("invalid value for 'require' module flag " 1583 "(first value operand should be a string)"), 1584 Value->getOperand(0)); 1585 1586 // Append it to the list of requirements, to check once all module flags are 1587 // scanned. 1588 Requirements.push_back(Value); 1589 break; 1590 } 1591 1592 case Module::Append: 1593 case Module::AppendUnique: { 1594 // These behavior types require the operand be an MDNode. 1595 Assert(isa<MDNode>(Op->getOperand(2)), 1596 "invalid value for 'append'-type module flag " 1597 "(expected a metadata node)", 1598 Op->getOperand(2)); 1599 break; 1600 } 1601 } 1602 1603 // Unless this is a "requires" flag, check the ID is unique. 1604 if (MFB != Module::Require) { 1605 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1606 Assert(Inserted, 1607 "module flag identifiers must be unique (or of 'require' type)", ID); 1608 } 1609 1610 if (ID->getString() == "wchar_size") { 1611 ConstantInt *Value 1612 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1613 Assert(Value, "wchar_size metadata requires constant integer argument"); 1614 } 1615 1616 if (ID->getString() == "Linker Options") { 1617 // If the llvm.linker.options named metadata exists, we assume that the 1618 // bitcode reader has upgraded the module flag. Otherwise the flag might 1619 // have been created by a client directly. 1620 Assert(M.getNamedMetadata("llvm.linker.options"), 1621 "'Linker Options' named metadata no longer supported"); 1622 } 1623 1624 if (ID->getString() == "SemanticInterposition") { 1625 ConstantInt *Value = 1626 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1627 Assert(Value, 1628 "SemanticInterposition metadata requires constant integer argument"); 1629 } 1630 1631 if (ID->getString() == "CG Profile") { 1632 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1633 visitModuleFlagCGProfileEntry(MDO); 1634 } 1635 } 1636 1637 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1638 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1639 if (!FuncMDO) 1640 return; 1641 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1642 Assert(F && isa<Function>(F->getValue()->stripPointerCasts()), 1643 "expected a Function or null", FuncMDO); 1644 }; 1645 auto Node = dyn_cast_or_null<MDNode>(MDO); 1646 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1647 CheckFunction(Node->getOperand(0)); 1648 CheckFunction(Node->getOperand(1)); 1649 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1650 Assert(Count && Count->getType()->isIntegerTy(), 1651 "expected an integer constant", Node->getOperand(2)); 1652 } 1653 1654 /// Return true if this attribute kind only applies to functions. 1655 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { 1656 switch (Kind) { 1657 case Attribute::NoMerge: 1658 case Attribute::NoReturn: 1659 case Attribute::NoSync: 1660 case Attribute::WillReturn: 1661 case Attribute::NoCallback: 1662 case Attribute::NoCfCheck: 1663 case Attribute::NoUnwind: 1664 case Attribute::NoInline: 1665 case Attribute::NoSanitizeCoverage: 1666 case Attribute::AlwaysInline: 1667 case Attribute::OptimizeForSize: 1668 case Attribute::StackProtect: 1669 case Attribute::StackProtectReq: 1670 case Attribute::StackProtectStrong: 1671 case Attribute::SafeStack: 1672 case Attribute::ShadowCallStack: 1673 case Attribute::NoRedZone: 1674 case Attribute::NoImplicitFloat: 1675 case Attribute::Naked: 1676 case Attribute::InlineHint: 1677 case Attribute::UWTable: 1678 case Attribute::VScaleRange: 1679 case Attribute::NonLazyBind: 1680 case Attribute::ReturnsTwice: 1681 case Attribute::SanitizeAddress: 1682 case Attribute::SanitizeHWAddress: 1683 case Attribute::SanitizeMemTag: 1684 case Attribute::SanitizeThread: 1685 case Attribute::SanitizeMemory: 1686 case Attribute::MinSize: 1687 case Attribute::NoDuplicate: 1688 case Attribute::Builtin: 1689 case Attribute::NoBuiltin: 1690 case Attribute::Cold: 1691 case Attribute::Hot: 1692 case Attribute::OptForFuzzing: 1693 case Attribute::OptimizeNone: 1694 case Attribute::JumpTable: 1695 case Attribute::Convergent: 1696 case Attribute::ArgMemOnly: 1697 case Attribute::NoRecurse: 1698 case Attribute::InaccessibleMemOnly: 1699 case Attribute::InaccessibleMemOrArgMemOnly: 1700 case Attribute::AllocSize: 1701 case Attribute::SpeculativeLoadHardening: 1702 case Attribute::Speculatable: 1703 case Attribute::StrictFP: 1704 case Attribute::NullPointerIsValid: 1705 case Attribute::MustProgress: 1706 case Attribute::NoProfile: 1707 return true; 1708 default: 1709 break; 1710 } 1711 return false; 1712 } 1713 1714 /// Return true if this is a function attribute that can also appear on 1715 /// arguments. 1716 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { 1717 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || 1718 Kind == Attribute::ReadNone || Kind == Attribute::NoFree || 1719 Kind == Attribute::Preallocated || Kind == Attribute::StackAlignment; 1720 } 1721 1722 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 1723 const Value *V) { 1724 for (Attribute A : Attrs) { 1725 1726 if (A.isStringAttribute()) { 1727 #define GET_ATTR_NAMES 1728 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) 1729 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \ 1730 if (A.getKindAsString() == #DISPLAY_NAME) { \ 1731 auto V = A.getValueAsString(); \ 1732 if (!(V.empty() || V == "true" || V == "false")) \ 1733 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \ 1734 ""); \ 1735 } 1736 1737 #include "llvm/IR/Attributes.inc" 1738 continue; 1739 } 1740 1741 if (A.isIntAttribute() != 1742 Attribute::doesAttrKindHaveArgument(A.getKindAsEnum())) { 1743 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", 1744 V); 1745 return; 1746 } 1747 1748 if (isFuncOnlyAttr(A.getKindAsEnum())) { 1749 if (!IsFunction) { 1750 CheckFailed("Attribute '" + A.getAsString() + 1751 "' only applies to functions!", 1752 V); 1753 return; 1754 } 1755 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { 1756 CheckFailed("Attribute '" + A.getAsString() + 1757 "' does not apply to functions!", 1758 V); 1759 return; 1760 } 1761 } 1762 } 1763 1764 // VerifyParameterAttrs - Check the given attributes for an argument or return 1765 // value of the specified type. The value V is printed in error messages. 1766 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1767 const Value *V) { 1768 if (!Attrs.hasAttributes()) 1769 return; 1770 1771 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); 1772 1773 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1774 Assert(Attrs.getNumAttributes() == 1, 1775 "Attribute 'immarg' is incompatible with other attributes", V); 1776 } 1777 1778 // Check for mutually incompatible attributes. Only inreg is compatible with 1779 // sret. 1780 unsigned AttrCount = 0; 1781 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1782 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1783 AttrCount += Attrs.hasAttribute(Attribute::Preallocated); 1784 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1785 Attrs.hasAttribute(Attribute::InReg); 1786 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1787 AttrCount += Attrs.hasAttribute(Attribute::ByRef); 1788 Assert(AttrCount <= 1, 1789 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " 1790 "'byref', and 'sret' are incompatible!", 1791 V); 1792 1793 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1794 Attrs.hasAttribute(Attribute::ReadOnly)), 1795 "Attributes " 1796 "'inalloca and readonly' are incompatible!", 1797 V); 1798 1799 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1800 Attrs.hasAttribute(Attribute::Returned)), 1801 "Attributes " 1802 "'sret and returned' are incompatible!", 1803 V); 1804 1805 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1806 Attrs.hasAttribute(Attribute::SExt)), 1807 "Attributes " 1808 "'zeroext and signext' are incompatible!", 1809 V); 1810 1811 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1812 Attrs.hasAttribute(Attribute::ReadOnly)), 1813 "Attributes " 1814 "'readnone and readonly' are incompatible!", 1815 V); 1816 1817 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1818 Attrs.hasAttribute(Attribute::WriteOnly)), 1819 "Attributes " 1820 "'readnone and writeonly' are incompatible!", 1821 V); 1822 1823 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1824 Attrs.hasAttribute(Attribute::WriteOnly)), 1825 "Attributes " 1826 "'readonly and writeonly' are incompatible!", 1827 V); 1828 1829 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1830 Attrs.hasAttribute(Attribute::AlwaysInline)), 1831 "Attributes " 1832 "'noinline and alwaysinline' are incompatible!", 1833 V); 1834 1835 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1836 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), 1837 "Wrong types for attribute: " + 1838 AttributeSet::get(Context, IncompatibleAttrs).getAsString(), 1839 V); 1840 1841 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1842 SmallPtrSet<Type*, 4> Visited; 1843 if (!PTy->getElementType()->isSized(&Visited)) { 1844 Assert(!Attrs.hasAttribute(Attribute::ByVal) && 1845 !Attrs.hasAttribute(Attribute::ByRef) && 1846 !Attrs.hasAttribute(Attribute::InAlloca) && 1847 !Attrs.hasAttribute(Attribute::Preallocated), 1848 "Attributes 'byval', 'byref', 'inalloca', and 'preallocated' do not " 1849 "support unsized types!", 1850 V); 1851 } 1852 if (!isa<PointerType>(PTy->getElementType())) 1853 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1854 "Attribute 'swifterror' only applies to parameters " 1855 "with pointer to pointer type!", 1856 V); 1857 1858 if (Attrs.hasAttribute(Attribute::ByRef)) { 1859 Assert(Attrs.getByRefType() == PTy->getElementType(), 1860 "Attribute 'byref' type does not match parameter!", V); 1861 } 1862 1863 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1864 Assert(Attrs.getByValType() == PTy->getElementType(), 1865 "Attribute 'byval' type does not match parameter!", V); 1866 } 1867 1868 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1869 Assert(Attrs.getPreallocatedType() == PTy->getElementType(), 1870 "Attribute 'preallocated' type does not match parameter!", V); 1871 } 1872 1873 if (Attrs.hasAttribute(Attribute::InAlloca)) { 1874 Assert(Attrs.getInAllocaType() == PTy->getElementType(), 1875 "Attribute 'inalloca' type does not match parameter!", V); 1876 } 1877 } else { 1878 Assert(!Attrs.hasAttribute(Attribute::ByVal), 1879 "Attribute 'byval' only applies to parameters with pointer type!", 1880 V); 1881 Assert(!Attrs.hasAttribute(Attribute::ByRef), 1882 "Attribute 'byref' only applies to parameters with pointer type!", 1883 V); 1884 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1885 "Attribute 'swifterror' only applies to parameters " 1886 "with pointer type!", 1887 V); 1888 } 1889 } 1890 1891 // Check parameter attributes against a function type. 1892 // The value V is printed in error messages. 1893 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1894 const Value *V, bool IsIntrinsic) { 1895 if (Attrs.isEmpty()) 1896 return; 1897 1898 if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) { 1899 Assert(Attrs.hasParentContext(Context), 1900 "Attribute list does not match Module context!", &Attrs, V); 1901 for (const auto &AttrSet : Attrs) { 1902 Assert(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context), 1903 "Attribute set does not match Module context!", &AttrSet, V); 1904 for (const auto &A : AttrSet) { 1905 Assert(A.hasParentContext(Context), 1906 "Attribute does not match Module context!", &A, V); 1907 } 1908 } 1909 } 1910 1911 bool SawNest = false; 1912 bool SawReturned = false; 1913 bool SawSRet = false; 1914 bool SawSwiftSelf = false; 1915 bool SawSwiftAsync = false; 1916 bool SawSwiftError = false; 1917 1918 // Verify return value attributes. 1919 AttributeSet RetAttrs = Attrs.getRetAttributes(); 1920 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && 1921 !RetAttrs.hasAttribute(Attribute::Nest) && 1922 !RetAttrs.hasAttribute(Attribute::StructRet) && 1923 !RetAttrs.hasAttribute(Attribute::NoCapture) && 1924 !RetAttrs.hasAttribute(Attribute::NoFree) && 1925 !RetAttrs.hasAttribute(Attribute::Returned) && 1926 !RetAttrs.hasAttribute(Attribute::InAlloca) && 1927 !RetAttrs.hasAttribute(Attribute::Preallocated) && 1928 !RetAttrs.hasAttribute(Attribute::ByRef) && 1929 !RetAttrs.hasAttribute(Attribute::SwiftSelf) && 1930 !RetAttrs.hasAttribute(Attribute::SwiftAsync) && 1931 !RetAttrs.hasAttribute(Attribute::SwiftError)), 1932 "Attributes 'byval', 'inalloca', 'preallocated', 'byref', " 1933 "'nest', 'sret', 'nocapture', 'nofree', " 1934 "'returned', 'swiftself', 'swiftasync', and 'swifterror'" 1935 " do not apply to return values!", 1936 V); 1937 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && 1938 !RetAttrs.hasAttribute(Attribute::WriteOnly) && 1939 !RetAttrs.hasAttribute(Attribute::ReadNone)), 1940 "Attribute '" + RetAttrs.getAsString() + 1941 "' does not apply to function returns", 1942 V); 1943 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1944 1945 // Verify parameter attributes. 1946 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1947 Type *Ty = FT->getParamType(i); 1948 AttributeSet ArgAttrs = Attrs.getParamAttributes(i); 1949 1950 if (!IsIntrinsic) { 1951 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1952 "immarg attribute only applies to intrinsics",V); 1953 } 1954 1955 verifyParameterAttrs(ArgAttrs, Ty, V); 1956 1957 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1958 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1959 SawNest = true; 1960 } 1961 1962 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1963 Assert(!SawReturned, "More than one parameter has attribute returned!", 1964 V); 1965 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1966 "Incompatible argument and return types for 'returned' attribute", 1967 V); 1968 SawReturned = true; 1969 } 1970 1971 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1972 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1973 Assert(i == 0 || i == 1, 1974 "Attribute 'sret' is not on first or second parameter!", V); 1975 SawSRet = true; 1976 } 1977 1978 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1979 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1980 SawSwiftSelf = true; 1981 } 1982 1983 if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) { 1984 Assert(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V); 1985 SawSwiftAsync = true; 1986 } 1987 1988 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1989 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1990 V); 1991 SawSwiftError = true; 1992 } 1993 1994 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1995 Assert(i == FT->getNumParams() - 1, 1996 "inalloca isn't on the last parameter!", V); 1997 } 1998 } 1999 2000 if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) 2001 return; 2002 2003 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); 2004 2005 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 2006 Attrs.hasFnAttribute(Attribute::ReadOnly)), 2007 "Attributes 'readnone and readonly' are incompatible!", V); 2008 2009 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 2010 Attrs.hasFnAttribute(Attribute::WriteOnly)), 2011 "Attributes 'readnone and writeonly' are incompatible!", V); 2012 2013 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && 2014 Attrs.hasFnAttribute(Attribute::WriteOnly)), 2015 "Attributes 'readonly and writeonly' are incompatible!", V); 2016 2017 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 2018 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), 2019 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 2020 "incompatible!", 2021 V); 2022 2023 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 2024 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), 2025 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 2026 2027 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && 2028 Attrs.hasFnAttribute(Attribute::AlwaysInline)), 2029 "Attributes 'noinline and alwaysinline' are incompatible!", V); 2030 2031 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { 2032 Assert(Attrs.hasFnAttribute(Attribute::NoInline), 2033 "Attribute 'optnone' requires 'noinline'!", V); 2034 2035 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), 2036 "Attributes 'optsize and optnone' are incompatible!", V); 2037 2038 Assert(!Attrs.hasFnAttribute(Attribute::MinSize), 2039 "Attributes 'minsize and optnone' are incompatible!", V); 2040 } 2041 2042 if (Attrs.hasFnAttribute(Attribute::JumpTable)) { 2043 const GlobalValue *GV = cast<GlobalValue>(V); 2044 Assert(GV->hasGlobalUnnamedAddr(), 2045 "Attribute 'jumptable' requires 'unnamed_addr'", V); 2046 } 2047 2048 if (Attrs.hasFnAttribute(Attribute::AllocSize)) { 2049 std::pair<unsigned, Optional<unsigned>> Args = 2050 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 2051 2052 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 2053 if (ParamNo >= FT->getNumParams()) { 2054 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 2055 return false; 2056 } 2057 2058 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 2059 CheckFailed("'allocsize' " + Name + 2060 " argument must refer to an integer parameter", 2061 V); 2062 return false; 2063 } 2064 2065 return true; 2066 }; 2067 2068 if (!CheckParam("element size", Args.first)) 2069 return; 2070 2071 if (Args.second && !CheckParam("number of elements", *Args.second)) 2072 return; 2073 } 2074 2075 if (Attrs.hasFnAttribute(Attribute::VScaleRange)) { 2076 std::pair<unsigned, unsigned> Args = 2077 Attrs.getVScaleRangeArgs(AttributeList::FunctionIndex); 2078 2079 if (Args.first > Args.second && Args.second != 0) 2080 CheckFailed("'vscale_range' minimum cannot be greater than maximum", V); 2081 } 2082 2083 if (Attrs.hasFnAttribute("frame-pointer")) { 2084 StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex, 2085 "frame-pointer").getValueAsString(); 2086 if (FP != "all" && FP != "non-leaf" && FP != "none") 2087 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 2088 } 2089 2090 if (Attrs.hasFnAttribute("patchable-function-prefix")) { 2091 StringRef S = Attrs 2092 .getAttribute(AttributeList::FunctionIndex, 2093 "patchable-function-prefix") 2094 .getValueAsString(); 2095 unsigned N; 2096 if (S.getAsInteger(10, N)) 2097 CheckFailed( 2098 "\"patchable-function-prefix\" takes an unsigned integer: " + S, V); 2099 } 2100 if (Attrs.hasFnAttribute("patchable-function-entry")) { 2101 StringRef S = Attrs 2102 .getAttribute(AttributeList::FunctionIndex, 2103 "patchable-function-entry") 2104 .getValueAsString(); 2105 unsigned N; 2106 if (S.getAsInteger(10, N)) 2107 CheckFailed( 2108 "\"patchable-function-entry\" takes an unsigned integer: " + S, V); 2109 } 2110 } 2111 2112 void Verifier::verifyFunctionMetadata( 2113 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 2114 for (const auto &Pair : MDs) { 2115 if (Pair.first == LLVMContext::MD_prof) { 2116 MDNode *MD = Pair.second; 2117 Assert(MD->getNumOperands() >= 2, 2118 "!prof annotations should have no less than 2 operands", MD); 2119 2120 // Check first operand. 2121 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 2122 MD); 2123 Assert(isa<MDString>(MD->getOperand(0)), 2124 "expected string with name of the !prof annotation", MD); 2125 MDString *MDS = cast<MDString>(MD->getOperand(0)); 2126 StringRef ProfName = MDS->getString(); 2127 Assert(ProfName.equals("function_entry_count") || 2128 ProfName.equals("synthetic_function_entry_count"), 2129 "first operand should be 'function_entry_count'" 2130 " or 'synthetic_function_entry_count'", 2131 MD); 2132 2133 // Check second operand. 2134 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 2135 MD); 2136 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 2137 "expected integer argument to function_entry_count", MD); 2138 } 2139 } 2140 } 2141 2142 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 2143 if (!ConstantExprVisited.insert(EntryC).second) 2144 return; 2145 2146 SmallVector<const Constant *, 16> Stack; 2147 Stack.push_back(EntryC); 2148 2149 while (!Stack.empty()) { 2150 const Constant *C = Stack.pop_back_val(); 2151 2152 // Check this constant expression. 2153 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 2154 visitConstantExpr(CE); 2155 2156 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 2157 // Global Values get visited separately, but we do need to make sure 2158 // that the global value is in the correct module 2159 Assert(GV->getParent() == &M, "Referencing global in another module!", 2160 EntryC, &M, GV, GV->getParent()); 2161 continue; 2162 } 2163 2164 // Visit all sub-expressions. 2165 for (const Use &U : C->operands()) { 2166 const auto *OpC = dyn_cast<Constant>(U); 2167 if (!OpC) 2168 continue; 2169 if (!ConstantExprVisited.insert(OpC).second) 2170 continue; 2171 Stack.push_back(OpC); 2172 } 2173 } 2174 } 2175 2176 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 2177 if (CE->getOpcode() == Instruction::BitCast) 2178 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 2179 CE->getType()), 2180 "Invalid bitcast", CE); 2181 2182 if (CE->getOpcode() == Instruction::IntToPtr || 2183 CE->getOpcode() == Instruction::PtrToInt) { 2184 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 2185 ? CE->getType() 2186 : CE->getOperand(0)->getType(); 2187 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 2188 ? "inttoptr not supported for non-integral pointers" 2189 : "ptrtoint not supported for non-integral pointers"; 2190 Assert( 2191 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 2192 Msg); 2193 } 2194 } 2195 2196 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 2197 // There shouldn't be more attribute sets than there are parameters plus the 2198 // function and return value. 2199 return Attrs.getNumAttrSets() <= Params + 2; 2200 } 2201 2202 /// Verify that statepoint intrinsic is well formed. 2203 void Verifier::verifyStatepoint(const CallBase &Call) { 2204 assert(Call.getCalledFunction() && 2205 Call.getCalledFunction()->getIntrinsicID() == 2206 Intrinsic::experimental_gc_statepoint); 2207 2208 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 2209 !Call.onlyAccessesArgMemory(), 2210 "gc.statepoint must read and write all memory to preserve " 2211 "reordering restrictions required by safepoint semantics", 2212 Call); 2213 2214 const int64_t NumPatchBytes = 2215 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 2216 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 2217 Assert(NumPatchBytes >= 0, 2218 "gc.statepoint number of patchable bytes must be " 2219 "positive", 2220 Call); 2221 2222 const Value *Target = Call.getArgOperand(2); 2223 auto *PT = dyn_cast<PointerType>(Target->getType()); 2224 Assert(PT && PT->getElementType()->isFunctionTy(), 2225 "gc.statepoint callee must be of function pointer type", Call, Target); 2226 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 2227 2228 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 2229 Assert(NumCallArgs >= 0, 2230 "gc.statepoint number of arguments to underlying call " 2231 "must be positive", 2232 Call); 2233 const int NumParams = (int)TargetFuncType->getNumParams(); 2234 if (TargetFuncType->isVarArg()) { 2235 Assert(NumCallArgs >= NumParams, 2236 "gc.statepoint mismatch in number of vararg call args", Call); 2237 2238 // TODO: Remove this limitation 2239 Assert(TargetFuncType->getReturnType()->isVoidTy(), 2240 "gc.statepoint doesn't support wrapping non-void " 2241 "vararg functions yet", 2242 Call); 2243 } else 2244 Assert(NumCallArgs == NumParams, 2245 "gc.statepoint mismatch in number of call args", Call); 2246 2247 const uint64_t Flags 2248 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 2249 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 2250 "unknown flag used in gc.statepoint flags argument", Call); 2251 2252 // Verify that the types of the call parameter arguments match 2253 // the type of the wrapped callee. 2254 AttributeList Attrs = Call.getAttributes(); 2255 for (int i = 0; i < NumParams; i++) { 2256 Type *ParamType = TargetFuncType->getParamType(i); 2257 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 2258 Assert(ArgType == ParamType, 2259 "gc.statepoint call argument does not match wrapped " 2260 "function type", 2261 Call); 2262 2263 if (TargetFuncType->isVarArg()) { 2264 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); 2265 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2266 "Attribute 'sret' cannot be used for vararg call arguments!", 2267 Call); 2268 } 2269 } 2270 2271 const int EndCallArgsInx = 4 + NumCallArgs; 2272 2273 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2274 Assert(isa<ConstantInt>(NumTransitionArgsV), 2275 "gc.statepoint number of transition arguments " 2276 "must be constant integer", 2277 Call); 2278 const int NumTransitionArgs = 2279 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2280 Assert(NumTransitionArgs == 0, 2281 "gc.statepoint w/inline transition bundle is deprecated", Call); 2282 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2283 2284 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2285 Assert(isa<ConstantInt>(NumDeoptArgsV), 2286 "gc.statepoint number of deoptimization arguments " 2287 "must be constant integer", 2288 Call); 2289 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2290 Assert(NumDeoptArgs == 0, 2291 "gc.statepoint w/inline deopt operands is deprecated", Call); 2292 2293 const int ExpectedNumArgs = 7 + NumCallArgs; 2294 Assert(ExpectedNumArgs == (int)Call.arg_size(), 2295 "gc.statepoint too many arguments", Call); 2296 2297 // Check that the only uses of this gc.statepoint are gc.result or 2298 // gc.relocate calls which are tied to this statepoint and thus part 2299 // of the same statepoint sequence 2300 for (const User *U : Call.users()) { 2301 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2302 Assert(UserCall, "illegal use of statepoint token", Call, U); 2303 if (!UserCall) 2304 continue; 2305 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2306 "gc.result or gc.relocate are the only value uses " 2307 "of a gc.statepoint", 2308 Call, U); 2309 if (isa<GCResultInst>(UserCall)) { 2310 Assert(UserCall->getArgOperand(0) == &Call, 2311 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2312 } else if (isa<GCRelocateInst>(Call)) { 2313 Assert(UserCall->getArgOperand(0) == &Call, 2314 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2315 } 2316 } 2317 2318 // Note: It is legal for a single derived pointer to be listed multiple 2319 // times. It's non-optimal, but it is legal. It can also happen after 2320 // insertion if we strip a bitcast away. 2321 // Note: It is really tempting to check that each base is relocated and 2322 // that a derived pointer is never reused as a base pointer. This turns 2323 // out to be problematic since optimizations run after safepoint insertion 2324 // can recognize equality properties that the insertion logic doesn't know 2325 // about. See example statepoint.ll in the verifier subdirectory 2326 } 2327 2328 void Verifier::verifyFrameRecoverIndices() { 2329 for (auto &Counts : FrameEscapeInfo) { 2330 Function *F = Counts.first; 2331 unsigned EscapedObjectCount = Counts.second.first; 2332 unsigned MaxRecoveredIndex = Counts.second.second; 2333 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2334 "all indices passed to llvm.localrecover must be less than the " 2335 "number of arguments passed to llvm.localescape in the parent " 2336 "function", 2337 F); 2338 } 2339 } 2340 2341 static Instruction *getSuccPad(Instruction *Terminator) { 2342 BasicBlock *UnwindDest; 2343 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2344 UnwindDest = II->getUnwindDest(); 2345 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2346 UnwindDest = CSI->getUnwindDest(); 2347 else 2348 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2349 return UnwindDest->getFirstNonPHI(); 2350 } 2351 2352 void Verifier::verifySiblingFuncletUnwinds() { 2353 SmallPtrSet<Instruction *, 8> Visited; 2354 SmallPtrSet<Instruction *, 8> Active; 2355 for (const auto &Pair : SiblingFuncletInfo) { 2356 Instruction *PredPad = Pair.first; 2357 if (Visited.count(PredPad)) 2358 continue; 2359 Active.insert(PredPad); 2360 Instruction *Terminator = Pair.second; 2361 do { 2362 Instruction *SuccPad = getSuccPad(Terminator); 2363 if (Active.count(SuccPad)) { 2364 // Found a cycle; report error 2365 Instruction *CyclePad = SuccPad; 2366 SmallVector<Instruction *, 8> CycleNodes; 2367 do { 2368 CycleNodes.push_back(CyclePad); 2369 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2370 if (CycleTerminator != CyclePad) 2371 CycleNodes.push_back(CycleTerminator); 2372 CyclePad = getSuccPad(CycleTerminator); 2373 } while (CyclePad != SuccPad); 2374 Assert(false, "EH pads can't handle each other's exceptions", 2375 ArrayRef<Instruction *>(CycleNodes)); 2376 } 2377 // Don't re-walk a node we've already checked 2378 if (!Visited.insert(SuccPad).second) 2379 break; 2380 // Walk to this successor if it has a map entry. 2381 PredPad = SuccPad; 2382 auto TermI = SiblingFuncletInfo.find(PredPad); 2383 if (TermI == SiblingFuncletInfo.end()) 2384 break; 2385 Terminator = TermI->second; 2386 Active.insert(PredPad); 2387 } while (true); 2388 // Each node only has one successor, so we've walked all the active 2389 // nodes' successors. 2390 Active.clear(); 2391 } 2392 } 2393 2394 // visitFunction - Verify that a function is ok. 2395 // 2396 void Verifier::visitFunction(const Function &F) { 2397 visitGlobalValue(F); 2398 2399 // Check function arguments. 2400 FunctionType *FT = F.getFunctionType(); 2401 unsigned NumArgs = F.arg_size(); 2402 2403 Assert(&Context == &F.getContext(), 2404 "Function context does not match Module context!", &F); 2405 2406 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2407 Assert(FT->getNumParams() == NumArgs, 2408 "# formal arguments must match # of arguments for function type!", &F, 2409 FT); 2410 Assert(F.getReturnType()->isFirstClassType() || 2411 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2412 "Functions cannot return aggregate values!", &F); 2413 2414 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2415 "Invalid struct return type!", &F); 2416 2417 AttributeList Attrs = F.getAttributes(); 2418 2419 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2420 "Attribute after last parameter!", &F); 2421 2422 bool isLLVMdotName = F.getName().size() >= 5 && 2423 F.getName().substr(0, 5) == "llvm."; 2424 2425 // Check function attributes. 2426 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName); 2427 2428 // On function declarations/definitions, we do not support the builtin 2429 // attribute. We do not check this in VerifyFunctionAttrs since that is 2430 // checking for Attributes that can/can not ever be on functions. 2431 Assert(!Attrs.hasFnAttribute(Attribute::Builtin), 2432 "Attribute 'builtin' can only be applied to a callsite.", &F); 2433 2434 // Check that this function meets the restrictions on this calling convention. 2435 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2436 // restrictions can be lifted. 2437 switch (F.getCallingConv()) { 2438 default: 2439 case CallingConv::C: 2440 break; 2441 case CallingConv::X86_INTR: { 2442 Assert(F.arg_empty() || Attrs.hasParamAttribute(0, Attribute::ByVal), 2443 "Calling convention parameter requires byval", &F); 2444 break; 2445 } 2446 case CallingConv::AMDGPU_KERNEL: 2447 case CallingConv::SPIR_KERNEL: 2448 Assert(F.getReturnType()->isVoidTy(), 2449 "Calling convention requires void return type", &F); 2450 LLVM_FALLTHROUGH; 2451 case CallingConv::AMDGPU_VS: 2452 case CallingConv::AMDGPU_HS: 2453 case CallingConv::AMDGPU_GS: 2454 case CallingConv::AMDGPU_PS: 2455 case CallingConv::AMDGPU_CS: 2456 Assert(!F.hasStructRetAttr(), 2457 "Calling convention does not allow sret", &F); 2458 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) { 2459 const unsigned StackAS = DL.getAllocaAddrSpace(); 2460 unsigned i = 0; 2461 for (const Argument &Arg : F.args()) { 2462 Assert(!Attrs.hasParamAttribute(i, Attribute::ByVal), 2463 "Calling convention disallows byval", &F); 2464 Assert(!Attrs.hasParamAttribute(i, Attribute::Preallocated), 2465 "Calling convention disallows preallocated", &F); 2466 Assert(!Attrs.hasParamAttribute(i, Attribute::InAlloca), 2467 "Calling convention disallows inalloca", &F); 2468 2469 if (Attrs.hasParamAttribute(i, Attribute::ByRef)) { 2470 // FIXME: Should also disallow LDS and GDS, but we don't have the enum 2471 // value here. 2472 Assert(Arg.getType()->getPointerAddressSpace() != StackAS, 2473 "Calling convention disallows stack byref", &F); 2474 } 2475 2476 ++i; 2477 } 2478 } 2479 2480 LLVM_FALLTHROUGH; 2481 case CallingConv::Fast: 2482 case CallingConv::Cold: 2483 case CallingConv::Intel_OCL_BI: 2484 case CallingConv::PTX_Kernel: 2485 case CallingConv::PTX_Device: 2486 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2487 "perfect forwarding!", 2488 &F); 2489 break; 2490 } 2491 2492 // Check that the argument values match the function type for this function... 2493 unsigned i = 0; 2494 for (const Argument &Arg : F.args()) { 2495 Assert(Arg.getType() == FT->getParamType(i), 2496 "Argument value does not match function argument type!", &Arg, 2497 FT->getParamType(i)); 2498 Assert(Arg.getType()->isFirstClassType(), 2499 "Function arguments must have first-class types!", &Arg); 2500 if (!isLLVMdotName) { 2501 Assert(!Arg.getType()->isMetadataTy(), 2502 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2503 Assert(!Arg.getType()->isTokenTy(), 2504 "Function takes token but isn't an intrinsic", &Arg, &F); 2505 Assert(!Arg.getType()->isX86_AMXTy(), 2506 "Function takes x86_amx but isn't an intrinsic", &Arg, &F); 2507 } 2508 2509 // Check that swifterror argument is only used by loads and stores. 2510 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { 2511 verifySwiftErrorValue(&Arg); 2512 } 2513 ++i; 2514 } 2515 2516 if (!isLLVMdotName) { 2517 Assert(!F.getReturnType()->isTokenTy(), 2518 "Function returns a token but isn't an intrinsic", &F); 2519 Assert(!F.getReturnType()->isX86_AMXTy(), 2520 "Function returns a x86_amx but isn't an intrinsic", &F); 2521 } 2522 2523 // Get the function metadata attachments. 2524 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2525 F.getAllMetadata(MDs); 2526 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2527 verifyFunctionMetadata(MDs); 2528 2529 // Check validity of the personality function 2530 if (F.hasPersonalityFn()) { 2531 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2532 if (Per) 2533 Assert(Per->getParent() == F.getParent(), 2534 "Referencing personality function in another module!", 2535 &F, F.getParent(), Per, Per->getParent()); 2536 } 2537 2538 if (F.isMaterializable()) { 2539 // Function has a body somewhere we can't see. 2540 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2541 MDs.empty() ? nullptr : MDs.front().second); 2542 } else if (F.isDeclaration()) { 2543 for (const auto &I : MDs) { 2544 // This is used for call site debug information. 2545 AssertDI(I.first != LLVMContext::MD_dbg || 2546 !cast<DISubprogram>(I.second)->isDistinct(), 2547 "function declaration may only have a unique !dbg attachment", 2548 &F); 2549 Assert(I.first != LLVMContext::MD_prof, 2550 "function declaration may not have a !prof attachment", &F); 2551 2552 // Verify the metadata itself. 2553 visitMDNode(*I.second, AreDebugLocsAllowed::Yes); 2554 } 2555 Assert(!F.hasPersonalityFn(), 2556 "Function declaration shouldn't have a personality routine", &F); 2557 } else { 2558 // Verify that this function (which has a body) is not named "llvm.*". It 2559 // is not legal to define intrinsics. 2560 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 2561 2562 // Check the entry node 2563 const BasicBlock *Entry = &F.getEntryBlock(); 2564 Assert(pred_empty(Entry), 2565 "Entry block to function must not have predecessors!", Entry); 2566 2567 // The address of the entry block cannot be taken, unless it is dead. 2568 if (Entry->hasAddressTaken()) { 2569 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2570 "blockaddress may not be used with the entry block!", Entry); 2571 } 2572 2573 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2574 // Visit metadata attachments. 2575 for (const auto &I : MDs) { 2576 // Verify that the attachment is legal. 2577 auto AllowLocs = AreDebugLocsAllowed::No; 2578 switch (I.first) { 2579 default: 2580 break; 2581 case LLVMContext::MD_dbg: { 2582 ++NumDebugAttachments; 2583 AssertDI(NumDebugAttachments == 1, 2584 "function must have a single !dbg attachment", &F, I.second); 2585 AssertDI(isa<DISubprogram>(I.second), 2586 "function !dbg attachment must be a subprogram", &F, I.second); 2587 AssertDI(cast<DISubprogram>(I.second)->isDistinct(), 2588 "function definition may only have a distinct !dbg attachment", 2589 &F); 2590 2591 auto *SP = cast<DISubprogram>(I.second); 2592 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2593 AssertDI(!AttachedTo || AttachedTo == &F, 2594 "DISubprogram attached to more than one function", SP, &F); 2595 AttachedTo = &F; 2596 AllowLocs = AreDebugLocsAllowed::Yes; 2597 break; 2598 } 2599 case LLVMContext::MD_prof: 2600 ++NumProfAttachments; 2601 Assert(NumProfAttachments == 1, 2602 "function must have a single !prof attachment", &F, I.second); 2603 break; 2604 } 2605 2606 // Verify the metadata itself. 2607 visitMDNode(*I.second, AllowLocs); 2608 } 2609 } 2610 2611 // If this function is actually an intrinsic, verify that it is only used in 2612 // direct call/invokes, never having its "address taken". 2613 // Only do this if the module is materialized, otherwise we don't have all the 2614 // uses. 2615 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2616 const User *U; 2617 if (F.hasAddressTaken(&U)) 2618 Assert(false, "Invalid user of intrinsic instruction!", U); 2619 } 2620 2621 // Check intrinsics' signatures. 2622 switch (F.getIntrinsicID()) { 2623 case Intrinsic::experimental_gc_get_pointer_base: { 2624 FunctionType *FT = F.getFunctionType(); 2625 Assert(FT->getNumParams() == 1, "wrong number of parameters", F); 2626 Assert(isa<PointerType>(F.getReturnType()), 2627 "gc.get.pointer.base must return a pointer", F); 2628 Assert(FT->getParamType(0) == F.getReturnType(), 2629 "gc.get.pointer.base operand and result must be of the same type", 2630 F); 2631 break; 2632 } 2633 case Intrinsic::experimental_gc_get_pointer_offset: { 2634 FunctionType *FT = F.getFunctionType(); 2635 Assert(FT->getNumParams() == 1, "wrong number of parameters", F); 2636 Assert(isa<PointerType>(FT->getParamType(0)), 2637 "gc.get.pointer.offset operand must be a pointer", F); 2638 Assert(F.getReturnType()->isIntegerTy(), 2639 "gc.get.pointer.offset must return integer", F); 2640 break; 2641 } 2642 } 2643 2644 auto *N = F.getSubprogram(); 2645 HasDebugInfo = (N != nullptr); 2646 if (!HasDebugInfo) 2647 return; 2648 2649 // Check that all !dbg attachments lead to back to N. 2650 // 2651 // FIXME: Check this incrementally while visiting !dbg attachments. 2652 // FIXME: Only check when N is the canonical subprogram for F. 2653 SmallPtrSet<const MDNode *, 32> Seen; 2654 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2655 // Be careful about using DILocation here since we might be dealing with 2656 // broken code (this is the Verifier after all). 2657 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2658 if (!DL) 2659 return; 2660 if (!Seen.insert(DL).second) 2661 return; 2662 2663 Metadata *Parent = DL->getRawScope(); 2664 AssertDI(Parent && isa<DILocalScope>(Parent), 2665 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2666 Parent); 2667 2668 DILocalScope *Scope = DL->getInlinedAtScope(); 2669 Assert(Scope, "Failed to find DILocalScope", DL); 2670 2671 if (!Seen.insert(Scope).second) 2672 return; 2673 2674 DISubprogram *SP = Scope->getSubprogram(); 2675 2676 // Scope and SP could be the same MDNode and we don't want to skip 2677 // validation in that case 2678 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2679 return; 2680 2681 AssertDI(SP->describes(&F), 2682 "!dbg attachment points at wrong subprogram for function", N, &F, 2683 &I, DL, Scope, SP); 2684 }; 2685 for (auto &BB : F) 2686 for (auto &I : BB) { 2687 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2688 // The llvm.loop annotations also contain two DILocations. 2689 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2690 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2691 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2692 if (BrokenDebugInfo) 2693 return; 2694 } 2695 } 2696 2697 // verifyBasicBlock - Verify that a basic block is well formed... 2698 // 2699 void Verifier::visitBasicBlock(BasicBlock &BB) { 2700 InstsInThisBlock.clear(); 2701 2702 // Ensure that basic blocks have terminators! 2703 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2704 2705 // Check constraints that this basic block imposes on all of the PHI nodes in 2706 // it. 2707 if (isa<PHINode>(BB.front())) { 2708 SmallVector<BasicBlock *, 8> Preds(predecessors(&BB)); 2709 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2710 llvm::sort(Preds); 2711 for (const PHINode &PN : BB.phis()) { 2712 Assert(PN.getNumIncomingValues() == Preds.size(), 2713 "PHINode should have one entry for each predecessor of its " 2714 "parent basic block!", 2715 &PN); 2716 2717 // Get and sort all incoming values in the PHI node... 2718 Values.clear(); 2719 Values.reserve(PN.getNumIncomingValues()); 2720 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2721 Values.push_back( 2722 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2723 llvm::sort(Values); 2724 2725 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2726 // Check to make sure that if there is more than one entry for a 2727 // particular basic block in this PHI node, that the incoming values are 2728 // all identical. 2729 // 2730 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2731 Values[i].second == Values[i - 1].second, 2732 "PHI node has multiple entries for the same basic block with " 2733 "different incoming values!", 2734 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2735 2736 // Check to make sure that the predecessors and PHI node entries are 2737 // matched up. 2738 Assert(Values[i].first == Preds[i], 2739 "PHI node entries do not match predecessors!", &PN, 2740 Values[i].first, Preds[i]); 2741 } 2742 } 2743 } 2744 2745 // Check that all instructions have their parent pointers set up correctly. 2746 for (auto &I : BB) 2747 { 2748 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2749 } 2750 } 2751 2752 void Verifier::visitTerminator(Instruction &I) { 2753 // Ensure that terminators only exist at the end of the basic block. 2754 Assert(&I == I.getParent()->getTerminator(), 2755 "Terminator found in the middle of a basic block!", I.getParent()); 2756 visitInstruction(I); 2757 } 2758 2759 void Verifier::visitBranchInst(BranchInst &BI) { 2760 if (BI.isConditional()) { 2761 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2762 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2763 } 2764 visitTerminator(BI); 2765 } 2766 2767 void Verifier::visitReturnInst(ReturnInst &RI) { 2768 Function *F = RI.getParent()->getParent(); 2769 unsigned N = RI.getNumOperands(); 2770 if (F->getReturnType()->isVoidTy()) 2771 Assert(N == 0, 2772 "Found return instr that returns non-void in Function of void " 2773 "return type!", 2774 &RI, F->getReturnType()); 2775 else 2776 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2777 "Function return type does not match operand " 2778 "type of return inst!", 2779 &RI, F->getReturnType()); 2780 2781 // Check to make sure that the return value has necessary properties for 2782 // terminators... 2783 visitTerminator(RI); 2784 } 2785 2786 void Verifier::visitSwitchInst(SwitchInst &SI) { 2787 // Check to make sure that all of the constants in the switch instruction 2788 // have the same type as the switched-on value. 2789 Type *SwitchTy = SI.getCondition()->getType(); 2790 SmallPtrSet<ConstantInt*, 32> Constants; 2791 for (auto &Case : SI.cases()) { 2792 Assert(Case.getCaseValue()->getType() == SwitchTy, 2793 "Switch constants must all be same type as switch value!", &SI); 2794 Assert(Constants.insert(Case.getCaseValue()).second, 2795 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2796 } 2797 2798 visitTerminator(SI); 2799 } 2800 2801 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2802 Assert(BI.getAddress()->getType()->isPointerTy(), 2803 "Indirectbr operand must have pointer type!", &BI); 2804 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2805 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2806 "Indirectbr destinations must all have pointer type!", &BI); 2807 2808 visitTerminator(BI); 2809 } 2810 2811 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2812 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2813 &CBI); 2814 const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand()); 2815 Assert(!IA->canThrow(), "Unwinding from Callbr is not allowed"); 2816 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2817 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2818 "Callbr successors must all have pointer type!", &CBI); 2819 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2820 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), 2821 "Using an unescaped label as a callbr argument!", &CBI); 2822 if (isa<BasicBlock>(CBI.getOperand(i))) 2823 for (unsigned j = i + 1; j != e; ++j) 2824 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2825 "Duplicate callbr destination!", &CBI); 2826 } 2827 { 2828 SmallPtrSet<BasicBlock *, 4> ArgBBs; 2829 for (Value *V : CBI.args()) 2830 if (auto *BA = dyn_cast<BlockAddress>(V)) 2831 ArgBBs.insert(BA->getBasicBlock()); 2832 for (BasicBlock *BB : CBI.getIndirectDests()) 2833 Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI); 2834 } 2835 2836 visitTerminator(CBI); 2837 } 2838 2839 void Verifier::visitSelectInst(SelectInst &SI) { 2840 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2841 SI.getOperand(2)), 2842 "Invalid operands for select instruction!", &SI); 2843 2844 Assert(SI.getTrueValue()->getType() == SI.getType(), 2845 "Select values must have same type as select instruction!", &SI); 2846 visitInstruction(SI); 2847 } 2848 2849 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2850 /// a pass, if any exist, it's an error. 2851 /// 2852 void Verifier::visitUserOp1(Instruction &I) { 2853 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2854 } 2855 2856 void Verifier::visitTruncInst(TruncInst &I) { 2857 // Get the source and destination types 2858 Type *SrcTy = I.getOperand(0)->getType(); 2859 Type *DestTy = I.getType(); 2860 2861 // Get the size of the types in bits, we'll need this later 2862 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2863 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2864 2865 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2866 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2867 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2868 "trunc source and destination must both be a vector or neither", &I); 2869 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2870 2871 visitInstruction(I); 2872 } 2873 2874 void Verifier::visitZExtInst(ZExtInst &I) { 2875 // Get the source and destination types 2876 Type *SrcTy = I.getOperand(0)->getType(); 2877 Type *DestTy = I.getType(); 2878 2879 // Get the size of the types in bits, we'll need this later 2880 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2881 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2882 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2883 "zext source and destination must both be a vector or neither", &I); 2884 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2885 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2886 2887 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2888 2889 visitInstruction(I); 2890 } 2891 2892 void Verifier::visitSExtInst(SExtInst &I) { 2893 // Get the source and destination types 2894 Type *SrcTy = I.getOperand(0)->getType(); 2895 Type *DestTy = I.getType(); 2896 2897 // Get the size of the types in bits, we'll need this later 2898 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2899 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2900 2901 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2902 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2903 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2904 "sext source and destination must both be a vector or neither", &I); 2905 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2906 2907 visitInstruction(I); 2908 } 2909 2910 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2911 // Get the source and destination types 2912 Type *SrcTy = I.getOperand(0)->getType(); 2913 Type *DestTy = I.getType(); 2914 // Get the size of the types in bits, we'll need this later 2915 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2916 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2917 2918 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2919 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2920 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2921 "fptrunc source and destination must both be a vector or neither", &I); 2922 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2923 2924 visitInstruction(I); 2925 } 2926 2927 void Verifier::visitFPExtInst(FPExtInst &I) { 2928 // Get the source and destination types 2929 Type *SrcTy = I.getOperand(0)->getType(); 2930 Type *DestTy = I.getType(); 2931 2932 // Get the size of the types in bits, we'll need this later 2933 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2934 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2935 2936 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2937 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2938 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2939 "fpext source and destination must both be a vector or neither", &I); 2940 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2941 2942 visitInstruction(I); 2943 } 2944 2945 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2946 // Get the source and destination types 2947 Type *SrcTy = I.getOperand(0)->getType(); 2948 Type *DestTy = I.getType(); 2949 2950 bool SrcVec = SrcTy->isVectorTy(); 2951 bool DstVec = DestTy->isVectorTy(); 2952 2953 Assert(SrcVec == DstVec, 2954 "UIToFP source and dest must both be vector or scalar", &I); 2955 Assert(SrcTy->isIntOrIntVectorTy(), 2956 "UIToFP source must be integer or integer vector", &I); 2957 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2958 &I); 2959 2960 if (SrcVec && DstVec) 2961 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2962 cast<VectorType>(DestTy)->getElementCount(), 2963 "UIToFP source and dest vector length mismatch", &I); 2964 2965 visitInstruction(I); 2966 } 2967 2968 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2969 // Get the source and destination types 2970 Type *SrcTy = I.getOperand(0)->getType(); 2971 Type *DestTy = I.getType(); 2972 2973 bool SrcVec = SrcTy->isVectorTy(); 2974 bool DstVec = DestTy->isVectorTy(); 2975 2976 Assert(SrcVec == DstVec, 2977 "SIToFP source and dest must both be vector or scalar", &I); 2978 Assert(SrcTy->isIntOrIntVectorTy(), 2979 "SIToFP source must be integer or integer vector", &I); 2980 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2981 &I); 2982 2983 if (SrcVec && DstVec) 2984 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2985 cast<VectorType>(DestTy)->getElementCount(), 2986 "SIToFP source and dest vector length mismatch", &I); 2987 2988 visitInstruction(I); 2989 } 2990 2991 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2992 // Get the source and destination types 2993 Type *SrcTy = I.getOperand(0)->getType(); 2994 Type *DestTy = I.getType(); 2995 2996 bool SrcVec = SrcTy->isVectorTy(); 2997 bool DstVec = DestTy->isVectorTy(); 2998 2999 Assert(SrcVec == DstVec, 3000 "FPToUI source and dest must both be vector or scalar", &I); 3001 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 3002 &I); 3003 Assert(DestTy->isIntOrIntVectorTy(), 3004 "FPToUI result must be integer or integer vector", &I); 3005 3006 if (SrcVec && DstVec) 3007 Assert(cast<VectorType>(SrcTy)->getElementCount() == 3008 cast<VectorType>(DestTy)->getElementCount(), 3009 "FPToUI source and dest vector length mismatch", &I); 3010 3011 visitInstruction(I); 3012 } 3013 3014 void Verifier::visitFPToSIInst(FPToSIInst &I) { 3015 // Get the source and destination types 3016 Type *SrcTy = I.getOperand(0)->getType(); 3017 Type *DestTy = I.getType(); 3018 3019 bool SrcVec = SrcTy->isVectorTy(); 3020 bool DstVec = DestTy->isVectorTy(); 3021 3022 Assert(SrcVec == DstVec, 3023 "FPToSI source and dest must both be vector or scalar", &I); 3024 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 3025 &I); 3026 Assert(DestTy->isIntOrIntVectorTy(), 3027 "FPToSI result must be integer or integer vector", &I); 3028 3029 if (SrcVec && DstVec) 3030 Assert(cast<VectorType>(SrcTy)->getElementCount() == 3031 cast<VectorType>(DestTy)->getElementCount(), 3032 "FPToSI source and dest vector length mismatch", &I); 3033 3034 visitInstruction(I); 3035 } 3036 3037 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 3038 // Get the source and destination types 3039 Type *SrcTy = I.getOperand(0)->getType(); 3040 Type *DestTy = I.getType(); 3041 3042 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 3043 3044 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 3045 Assert(!DL.isNonIntegralPointerType(PTy), 3046 "ptrtoint not supported for non-integral pointers"); 3047 3048 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 3049 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 3050 &I); 3051 3052 if (SrcTy->isVectorTy()) { 3053 auto *VSrc = cast<VectorType>(SrcTy); 3054 auto *VDest = cast<VectorType>(DestTy); 3055 Assert(VSrc->getElementCount() == VDest->getElementCount(), 3056 "PtrToInt Vector width mismatch", &I); 3057 } 3058 3059 visitInstruction(I); 3060 } 3061 3062 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 3063 // Get the source and destination types 3064 Type *SrcTy = I.getOperand(0)->getType(); 3065 Type *DestTy = I.getType(); 3066 3067 Assert(SrcTy->isIntOrIntVectorTy(), 3068 "IntToPtr source must be an integral", &I); 3069 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 3070 3071 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 3072 Assert(!DL.isNonIntegralPointerType(PTy), 3073 "inttoptr not supported for non-integral pointers"); 3074 3075 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 3076 &I); 3077 if (SrcTy->isVectorTy()) { 3078 auto *VSrc = cast<VectorType>(SrcTy); 3079 auto *VDest = cast<VectorType>(DestTy); 3080 Assert(VSrc->getElementCount() == VDest->getElementCount(), 3081 "IntToPtr Vector width mismatch", &I); 3082 } 3083 visitInstruction(I); 3084 } 3085 3086 void Verifier::visitBitCastInst(BitCastInst &I) { 3087 Assert( 3088 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 3089 "Invalid bitcast", &I); 3090 visitInstruction(I); 3091 } 3092 3093 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 3094 Type *SrcTy = I.getOperand(0)->getType(); 3095 Type *DestTy = I.getType(); 3096 3097 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 3098 &I); 3099 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 3100 &I); 3101 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 3102 "AddrSpaceCast must be between different address spaces", &I); 3103 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) 3104 Assert(SrcVTy->getElementCount() == 3105 cast<VectorType>(DestTy)->getElementCount(), 3106 "AddrSpaceCast vector pointer number of elements mismatch", &I); 3107 visitInstruction(I); 3108 } 3109 3110 /// visitPHINode - Ensure that a PHI node is well formed. 3111 /// 3112 void Verifier::visitPHINode(PHINode &PN) { 3113 // Ensure that the PHI nodes are all grouped together at the top of the block. 3114 // This can be tested by checking whether the instruction before this is 3115 // either nonexistent (because this is begin()) or is a PHI node. If not, 3116 // then there is some other instruction before a PHI. 3117 Assert(&PN == &PN.getParent()->front() || 3118 isa<PHINode>(--BasicBlock::iterator(&PN)), 3119 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 3120 3121 // Check that a PHI doesn't yield a Token. 3122 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 3123 3124 // Check that all of the values of the PHI node have the same type as the 3125 // result, and that the incoming blocks are really basic blocks. 3126 for (Value *IncValue : PN.incoming_values()) { 3127 Assert(PN.getType() == IncValue->getType(), 3128 "PHI node operands are not the same type as the result!", &PN); 3129 } 3130 3131 // All other PHI node constraints are checked in the visitBasicBlock method. 3132 3133 visitInstruction(PN); 3134 } 3135 3136 void Verifier::visitCallBase(CallBase &Call) { 3137 Assert(Call.getCalledOperand()->getType()->isPointerTy(), 3138 "Called function must be a pointer!", Call); 3139 PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType()); 3140 3141 Assert(FPTy->getElementType()->isFunctionTy(), 3142 "Called function is not pointer to function type!", Call); 3143 3144 Assert(FPTy->getElementType() == Call.getFunctionType(), 3145 "Called function is not the same type as the call!", Call); 3146 3147 FunctionType *FTy = Call.getFunctionType(); 3148 3149 // Verify that the correct number of arguments are being passed 3150 if (FTy->isVarArg()) 3151 Assert(Call.arg_size() >= FTy->getNumParams(), 3152 "Called function requires more parameters than were provided!", 3153 Call); 3154 else 3155 Assert(Call.arg_size() == FTy->getNumParams(), 3156 "Incorrect number of arguments passed to called function!", Call); 3157 3158 // Verify that all arguments to the call match the function type. 3159 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3160 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 3161 "Call parameter type does not match function signature!", 3162 Call.getArgOperand(i), FTy->getParamType(i), Call); 3163 3164 AttributeList Attrs = Call.getAttributes(); 3165 3166 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 3167 "Attribute after last parameter!", Call); 3168 3169 bool IsIntrinsic = Call.getCalledFunction() && 3170 Call.getCalledFunction()->getName().startswith("llvm."); 3171 3172 Function *Callee = 3173 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 3174 3175 if (Attrs.hasFnAttribute(Attribute::Speculatable)) { 3176 // Don't allow speculatable on call sites, unless the underlying function 3177 // declaration is also speculatable. 3178 Assert(Callee && Callee->isSpeculatable(), 3179 "speculatable attribute may not apply to call sites", Call); 3180 } 3181 3182 if (Attrs.hasFnAttribute(Attribute::Preallocated)) { 3183 Assert(Call.getCalledFunction()->getIntrinsicID() == 3184 Intrinsic::call_preallocated_arg, 3185 "preallocated as a call site attribute can only be on " 3186 "llvm.call.preallocated.arg"); 3187 } 3188 3189 // Verify call attributes. 3190 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 3191 3192 // Conservatively check the inalloca argument. 3193 // We have a bug if we can find that there is an underlying alloca without 3194 // inalloca. 3195 if (Call.hasInAllocaArgument()) { 3196 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 3197 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 3198 Assert(AI->isUsedWithInAlloca(), 3199 "inalloca argument for call has mismatched alloca", AI, Call); 3200 } 3201 3202 // For each argument of the callsite, if it has the swifterror argument, 3203 // make sure the underlying alloca/parameter it comes from has a swifterror as 3204 // well. 3205 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3206 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 3207 Value *SwiftErrorArg = Call.getArgOperand(i); 3208 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 3209 Assert(AI->isSwiftError(), 3210 "swifterror argument for call has mismatched alloca", AI, Call); 3211 continue; 3212 } 3213 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 3214 Assert(ArgI, 3215 "swifterror argument should come from an alloca or parameter", 3216 SwiftErrorArg, Call); 3217 Assert(ArgI->hasSwiftErrorAttr(), 3218 "swifterror argument for call has mismatched parameter", ArgI, 3219 Call); 3220 } 3221 3222 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) { 3223 // Don't allow immarg on call sites, unless the underlying declaration 3224 // also has the matching immarg. 3225 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 3226 "immarg may not apply only to call sites", 3227 Call.getArgOperand(i), Call); 3228 } 3229 3230 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 3231 Value *ArgVal = Call.getArgOperand(i); 3232 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 3233 "immarg operand has non-immediate parameter", ArgVal, Call); 3234 } 3235 3236 if (Call.paramHasAttr(i, Attribute::Preallocated)) { 3237 Value *ArgVal = Call.getArgOperand(i); 3238 bool hasOB = 3239 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0; 3240 bool isMustTail = Call.isMustTailCall(); 3241 Assert(hasOB != isMustTail, 3242 "preallocated operand either requires a preallocated bundle or " 3243 "the call to be musttail (but not both)", 3244 ArgVal, Call); 3245 } 3246 } 3247 3248 if (FTy->isVarArg()) { 3249 // FIXME? is 'nest' even legal here? 3250 bool SawNest = false; 3251 bool SawReturned = false; 3252 3253 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 3254 if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) 3255 SawNest = true; 3256 if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) 3257 SawReturned = true; 3258 } 3259 3260 // Check attributes on the varargs part. 3261 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 3262 Type *Ty = Call.getArgOperand(Idx)->getType(); 3263 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); 3264 verifyParameterAttrs(ArgAttrs, Ty, &Call); 3265 3266 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 3267 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 3268 SawNest = true; 3269 } 3270 3271 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 3272 Assert(!SawReturned, "More than one parameter has attribute returned!", 3273 Call); 3274 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 3275 "Incompatible argument and return types for 'returned' " 3276 "attribute", 3277 Call); 3278 SawReturned = true; 3279 } 3280 3281 // Statepoint intrinsic is vararg but the wrapped function may be not. 3282 // Allow sret here and check the wrapped function in verifyStatepoint. 3283 if (!Call.getCalledFunction() || 3284 Call.getCalledFunction()->getIntrinsicID() != 3285 Intrinsic::experimental_gc_statepoint) 3286 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 3287 "Attribute 'sret' cannot be used for vararg call arguments!", 3288 Call); 3289 3290 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 3291 Assert(Idx == Call.arg_size() - 1, 3292 "inalloca isn't on the last argument!", Call); 3293 } 3294 } 3295 3296 // Verify that there's no metadata unless it's a direct call to an intrinsic. 3297 if (!IsIntrinsic) { 3298 for (Type *ParamTy : FTy->params()) { 3299 Assert(!ParamTy->isMetadataTy(), 3300 "Function has metadata parameter but isn't an intrinsic", Call); 3301 Assert(!ParamTy->isTokenTy(), 3302 "Function has token parameter but isn't an intrinsic", Call); 3303 } 3304 } 3305 3306 // Verify that indirect calls don't return tokens. 3307 if (!Call.getCalledFunction()) { 3308 Assert(!FTy->getReturnType()->isTokenTy(), 3309 "Return type cannot be token for indirect call!"); 3310 Assert(!FTy->getReturnType()->isX86_AMXTy(), 3311 "Return type cannot be x86_amx for indirect call!"); 3312 } 3313 3314 if (Function *F = Call.getCalledFunction()) 3315 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 3316 visitIntrinsicCall(ID, Call); 3317 3318 // Verify that a callsite has at most one "deopt", at most one "funclet", at 3319 // most one "gc-transition", at most one "cfguardtarget", 3320 // and at most one "preallocated" operand bundle. 3321 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3322 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, 3323 FoundPreallocatedBundle = false, FoundGCLiveBundle = false, 3324 FoundAttachedCallBundle = false; 3325 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 3326 OperandBundleUse BU = Call.getOperandBundleAt(i); 3327 uint32_t Tag = BU.getTagID(); 3328 if (Tag == LLVMContext::OB_deopt) { 3329 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 3330 FoundDeoptBundle = true; 3331 } else if (Tag == LLVMContext::OB_gc_transition) { 3332 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 3333 Call); 3334 FoundGCTransitionBundle = true; 3335 } else if (Tag == LLVMContext::OB_funclet) { 3336 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 3337 FoundFuncletBundle = true; 3338 Assert(BU.Inputs.size() == 1, 3339 "Expected exactly one funclet bundle operand", Call); 3340 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 3341 "Funclet bundle operands should correspond to a FuncletPadInst", 3342 Call); 3343 } else if (Tag == LLVMContext::OB_cfguardtarget) { 3344 Assert(!FoundCFGuardTargetBundle, 3345 "Multiple CFGuardTarget operand bundles", Call); 3346 FoundCFGuardTargetBundle = true; 3347 Assert(BU.Inputs.size() == 1, 3348 "Expected exactly one cfguardtarget bundle operand", Call); 3349 } else if (Tag == LLVMContext::OB_preallocated) { 3350 Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles", 3351 Call); 3352 FoundPreallocatedBundle = true; 3353 Assert(BU.Inputs.size() == 1, 3354 "Expected exactly one preallocated bundle operand", Call); 3355 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); 3356 Assert(Input && 3357 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup, 3358 "\"preallocated\" argument must be a token from " 3359 "llvm.call.preallocated.setup", 3360 Call); 3361 } else if (Tag == LLVMContext::OB_gc_live) { 3362 Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles", 3363 Call); 3364 FoundGCLiveBundle = true; 3365 } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) { 3366 Assert(!FoundAttachedCallBundle, 3367 "Multiple \"clang.arc.attachedcall\" operand bundles", Call); 3368 FoundAttachedCallBundle = true; 3369 } 3370 } 3371 3372 if (FoundAttachedCallBundle) 3373 Assert(FTy->getReturnType()->isPointerTy(), 3374 "a call with operand bundle \"clang.arc.attachedcall\" must call a " 3375 "function returning a pointer", 3376 Call); 3377 3378 // Verify that each inlinable callsite of a debug-info-bearing function in a 3379 // debug-info-bearing function has a debug location attached to it. Failure to 3380 // do so causes assertion failures when the inliner sets up inline scope info. 3381 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3382 Call.getCalledFunction()->getSubprogram()) 3383 AssertDI(Call.getDebugLoc(), 3384 "inlinable function call in a function with " 3385 "debug info must have a !dbg location", 3386 Call); 3387 3388 visitInstruction(Call); 3389 } 3390 3391 void Verifier::verifyTailCCMustTailAttrs(AttrBuilder Attrs, 3392 StringRef Context) { 3393 Assert(!Attrs.contains(Attribute::InAlloca), 3394 Twine("inalloca attribute not allowed in ") + Context); 3395 Assert(!Attrs.contains(Attribute::InReg), 3396 Twine("inreg attribute not allowed in ") + Context); 3397 Assert(!Attrs.contains(Attribute::SwiftError), 3398 Twine("swifterror attribute not allowed in ") + Context); 3399 Assert(!Attrs.contains(Attribute::Preallocated), 3400 Twine("preallocated attribute not allowed in ") + Context); 3401 Assert(!Attrs.contains(Attribute::ByRef), 3402 Twine("byref attribute not allowed in ") + Context); 3403 } 3404 3405 /// Two types are "congruent" if they are identical, or if they are both pointer 3406 /// types with different pointee types and the same address space. 3407 static bool isTypeCongruent(Type *L, Type *R) { 3408 if (L == R) 3409 return true; 3410 PointerType *PL = dyn_cast<PointerType>(L); 3411 PointerType *PR = dyn_cast<PointerType>(R); 3412 if (!PL || !PR) 3413 return false; 3414 return PL->getAddressSpace() == PR->getAddressSpace(); 3415 } 3416 3417 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 3418 static const Attribute::AttrKind ABIAttrs[] = { 3419 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3420 Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf, 3421 Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated, 3422 Attribute::ByRef}; 3423 AttrBuilder Copy; 3424 for (auto AK : ABIAttrs) { 3425 if (Attrs.hasParamAttribute(I, AK)) 3426 Copy.addAttribute(AK); 3427 } 3428 3429 // `align` is ABI-affecting only in combination with `byval` or `byref`. 3430 if (Attrs.hasParamAttribute(I, Attribute::Alignment) && 3431 (Attrs.hasParamAttribute(I, Attribute::ByVal) || 3432 Attrs.hasParamAttribute(I, Attribute::ByRef))) 3433 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3434 return Copy; 3435 } 3436 3437 void Verifier::verifyMustTailCall(CallInst &CI) { 3438 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3439 3440 Function *F = CI.getParent()->getParent(); 3441 FunctionType *CallerTy = F->getFunctionType(); 3442 FunctionType *CalleeTy = CI.getFunctionType(); 3443 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3444 "cannot guarantee tail call due to mismatched varargs", &CI); 3445 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3446 "cannot guarantee tail call due to mismatched return types", &CI); 3447 3448 // - The calling conventions of the caller and callee must match. 3449 Assert(F->getCallingConv() == CI.getCallingConv(), 3450 "cannot guarantee tail call due to mismatched calling conv", &CI); 3451 3452 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3453 // or a pointer bitcast followed by a ret instruction. 3454 // - The ret instruction must return the (possibly bitcasted) value 3455 // produced by the call or void. 3456 Value *RetVal = &CI; 3457 Instruction *Next = CI.getNextNode(); 3458 3459 // Handle the optional bitcast. 3460 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3461 Assert(BI->getOperand(0) == RetVal, 3462 "bitcast following musttail call must use the call", BI); 3463 RetVal = BI; 3464 Next = BI->getNextNode(); 3465 } 3466 3467 // Check the return. 3468 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3469 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3470 &CI); 3471 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal || 3472 isa<UndefValue>(Ret->getReturnValue()), 3473 "musttail call result must be returned", Ret); 3474 3475 AttributeList CallerAttrs = F->getAttributes(); 3476 AttributeList CalleeAttrs = CI.getAttributes(); 3477 if (CI.getCallingConv() == CallingConv::SwiftTail || 3478 CI.getCallingConv() == CallingConv::Tail) { 3479 StringRef CCName = 3480 CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc"; 3481 3482 // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes 3483 // are allowed in swifttailcc call 3484 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3485 AttrBuilder ABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3486 SmallString<32> Context{CCName, StringRef(" musttail caller")}; 3487 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3488 } 3489 for (int I = 0, E = CalleeTy->getNumParams(); I != E; ++I) { 3490 AttrBuilder ABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3491 SmallString<32> Context{CCName, StringRef(" musttail callee")}; 3492 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3493 } 3494 // - Varargs functions are not allowed 3495 Assert(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName + 3496 " tail call for varargs function"); 3497 return; 3498 } 3499 3500 // - The caller and callee prototypes must match. Pointer types of 3501 // parameters or return types may differ in pointee type, but not 3502 // address space. 3503 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3504 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3505 "cannot guarantee tail call due to mismatched parameter counts", 3506 &CI); 3507 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3508 Assert( 3509 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3510 "cannot guarantee tail call due to mismatched parameter types", &CI); 3511 } 3512 } 3513 3514 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3515 // returned, preallocated, and inalloca, must match. 3516 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3517 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3518 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3519 Assert(CallerABIAttrs == CalleeABIAttrs, 3520 "cannot guarantee tail call due to mismatched ABI impacting " 3521 "function attributes", 3522 &CI, CI.getOperand(I)); 3523 } 3524 } 3525 3526 void Verifier::visitCallInst(CallInst &CI) { 3527 visitCallBase(CI); 3528 3529 if (CI.isMustTailCall()) 3530 verifyMustTailCall(CI); 3531 } 3532 3533 void Verifier::visitInvokeInst(InvokeInst &II) { 3534 visitCallBase(II); 3535 3536 // Verify that the first non-PHI instruction of the unwind destination is an 3537 // exception handling instruction. 3538 Assert( 3539 II.getUnwindDest()->isEHPad(), 3540 "The unwind destination does not have an exception handling instruction!", 3541 &II); 3542 3543 visitTerminator(II); 3544 } 3545 3546 /// visitUnaryOperator - Check the argument to the unary operator. 3547 /// 3548 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3549 Assert(U.getType() == U.getOperand(0)->getType(), 3550 "Unary operators must have same type for" 3551 "operands and result!", 3552 &U); 3553 3554 switch (U.getOpcode()) { 3555 // Check that floating-point arithmetic operators are only used with 3556 // floating-point operands. 3557 case Instruction::FNeg: 3558 Assert(U.getType()->isFPOrFPVectorTy(), 3559 "FNeg operator only works with float types!", &U); 3560 break; 3561 default: 3562 llvm_unreachable("Unknown UnaryOperator opcode!"); 3563 } 3564 3565 visitInstruction(U); 3566 } 3567 3568 /// visitBinaryOperator - Check that both arguments to the binary operator are 3569 /// of the same type! 3570 /// 3571 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3572 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3573 "Both operands to a binary operator are not of the same type!", &B); 3574 3575 switch (B.getOpcode()) { 3576 // Check that integer arithmetic operators are only used with 3577 // integral operands. 3578 case Instruction::Add: 3579 case Instruction::Sub: 3580 case Instruction::Mul: 3581 case Instruction::SDiv: 3582 case Instruction::UDiv: 3583 case Instruction::SRem: 3584 case Instruction::URem: 3585 Assert(B.getType()->isIntOrIntVectorTy(), 3586 "Integer arithmetic operators only work with integral types!", &B); 3587 Assert(B.getType() == B.getOperand(0)->getType(), 3588 "Integer arithmetic operators must have same type " 3589 "for operands and result!", 3590 &B); 3591 break; 3592 // Check that floating-point arithmetic operators are only used with 3593 // floating-point operands. 3594 case Instruction::FAdd: 3595 case Instruction::FSub: 3596 case Instruction::FMul: 3597 case Instruction::FDiv: 3598 case Instruction::FRem: 3599 Assert(B.getType()->isFPOrFPVectorTy(), 3600 "Floating-point arithmetic operators only work with " 3601 "floating-point types!", 3602 &B); 3603 Assert(B.getType() == B.getOperand(0)->getType(), 3604 "Floating-point arithmetic operators must have same type " 3605 "for operands and result!", 3606 &B); 3607 break; 3608 // Check that logical operators are only used with integral operands. 3609 case Instruction::And: 3610 case Instruction::Or: 3611 case Instruction::Xor: 3612 Assert(B.getType()->isIntOrIntVectorTy(), 3613 "Logical operators only work with integral types!", &B); 3614 Assert(B.getType() == B.getOperand(0)->getType(), 3615 "Logical operators must have same type for operands and result!", 3616 &B); 3617 break; 3618 case Instruction::Shl: 3619 case Instruction::LShr: 3620 case Instruction::AShr: 3621 Assert(B.getType()->isIntOrIntVectorTy(), 3622 "Shifts only work with integral types!", &B); 3623 Assert(B.getType() == B.getOperand(0)->getType(), 3624 "Shift return type must be same as operands!", &B); 3625 break; 3626 default: 3627 llvm_unreachable("Unknown BinaryOperator opcode!"); 3628 } 3629 3630 visitInstruction(B); 3631 } 3632 3633 void Verifier::visitICmpInst(ICmpInst &IC) { 3634 // Check that the operands are the same type 3635 Type *Op0Ty = IC.getOperand(0)->getType(); 3636 Type *Op1Ty = IC.getOperand(1)->getType(); 3637 Assert(Op0Ty == Op1Ty, 3638 "Both operands to ICmp instruction are not of the same type!", &IC); 3639 // Check that the operands are the right type 3640 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3641 "Invalid operand types for ICmp instruction", &IC); 3642 // Check that the predicate is valid. 3643 Assert(IC.isIntPredicate(), 3644 "Invalid predicate in ICmp instruction!", &IC); 3645 3646 visitInstruction(IC); 3647 } 3648 3649 void Verifier::visitFCmpInst(FCmpInst &FC) { 3650 // Check that the operands are the same type 3651 Type *Op0Ty = FC.getOperand(0)->getType(); 3652 Type *Op1Ty = FC.getOperand(1)->getType(); 3653 Assert(Op0Ty == Op1Ty, 3654 "Both operands to FCmp instruction are not of the same type!", &FC); 3655 // Check that the operands are the right type 3656 Assert(Op0Ty->isFPOrFPVectorTy(), 3657 "Invalid operand types for FCmp instruction", &FC); 3658 // Check that the predicate is valid. 3659 Assert(FC.isFPPredicate(), 3660 "Invalid predicate in FCmp instruction!", &FC); 3661 3662 visitInstruction(FC); 3663 } 3664 3665 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3666 Assert( 3667 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3668 "Invalid extractelement operands!", &EI); 3669 visitInstruction(EI); 3670 } 3671 3672 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3673 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3674 IE.getOperand(2)), 3675 "Invalid insertelement operands!", &IE); 3676 visitInstruction(IE); 3677 } 3678 3679 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3680 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3681 SV.getShuffleMask()), 3682 "Invalid shufflevector operands!", &SV); 3683 visitInstruction(SV); 3684 } 3685 3686 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3687 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3688 3689 Assert(isa<PointerType>(TargetTy), 3690 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3691 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3692 3693 SmallVector<Value *, 16> Idxs(GEP.indices()); 3694 Assert(all_of( 3695 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3696 "GEP indexes must be integers", &GEP); 3697 Type *ElTy = 3698 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3699 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3700 3701 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3702 GEP.getResultElementType() == ElTy, 3703 "GEP is not of right type for indices!", &GEP, ElTy); 3704 3705 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { 3706 // Additional checks for vector GEPs. 3707 ElementCount GEPWidth = GEPVTy->getElementCount(); 3708 if (GEP.getPointerOperandType()->isVectorTy()) 3709 Assert( 3710 GEPWidth == 3711 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(), 3712 "Vector GEP result width doesn't match operand's", &GEP); 3713 for (Value *Idx : Idxs) { 3714 Type *IndexTy = Idx->getType(); 3715 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { 3716 ElementCount IndexWidth = IndexVTy->getElementCount(); 3717 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3718 } 3719 Assert(IndexTy->isIntOrIntVectorTy(), 3720 "All GEP indices should be of integer type"); 3721 } 3722 } 3723 3724 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3725 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3726 "GEP address space doesn't match type", &GEP); 3727 } 3728 3729 visitInstruction(GEP); 3730 } 3731 3732 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3733 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3734 } 3735 3736 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3737 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3738 "precondition violation"); 3739 3740 unsigned NumOperands = Range->getNumOperands(); 3741 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3742 unsigned NumRanges = NumOperands / 2; 3743 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3744 3745 ConstantRange LastRange(1, true); // Dummy initial value 3746 for (unsigned i = 0; i < NumRanges; ++i) { 3747 ConstantInt *Low = 3748 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3749 Assert(Low, "The lower limit must be an integer!", Low); 3750 ConstantInt *High = 3751 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3752 Assert(High, "The upper limit must be an integer!", High); 3753 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3754 "Range types must match instruction type!", &I); 3755 3756 APInt HighV = High->getValue(); 3757 APInt LowV = Low->getValue(); 3758 ConstantRange CurRange(LowV, HighV); 3759 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3760 "Range must not be empty!", Range); 3761 if (i != 0) { 3762 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3763 "Intervals are overlapping", Range); 3764 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3765 Range); 3766 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3767 Range); 3768 } 3769 LastRange = ConstantRange(LowV, HighV); 3770 } 3771 if (NumRanges > 2) { 3772 APInt FirstLow = 3773 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3774 APInt FirstHigh = 3775 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3776 ConstantRange FirstRange(FirstLow, FirstHigh); 3777 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3778 "Intervals are overlapping", Range); 3779 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3780 Range); 3781 } 3782 } 3783 3784 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3785 unsigned Size = DL.getTypeSizeInBits(Ty); 3786 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3787 Assert(!(Size & (Size - 1)), 3788 "atomic memory access' operand must have a power-of-two size", Ty, I); 3789 } 3790 3791 void Verifier::visitLoadInst(LoadInst &LI) { 3792 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3793 Assert(PTy, "Load operand must be a pointer.", &LI); 3794 Type *ElTy = LI.getType(); 3795 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3796 "huge alignment values are unsupported", &LI); 3797 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3798 if (LI.isAtomic()) { 3799 Assert(LI.getOrdering() != AtomicOrdering::Release && 3800 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3801 "Load cannot have Release ordering", &LI); 3802 Assert(LI.getAlignment() != 0, 3803 "Atomic load must specify explicit alignment", &LI); 3804 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3805 "atomic load operand must have integer, pointer, or floating point " 3806 "type!", 3807 ElTy, &LI); 3808 checkAtomicMemAccessSize(ElTy, &LI); 3809 } else { 3810 Assert(LI.getSyncScopeID() == SyncScope::System, 3811 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3812 } 3813 3814 visitInstruction(LI); 3815 } 3816 3817 void Verifier::visitStoreInst(StoreInst &SI) { 3818 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3819 Assert(PTy, "Store operand must be a pointer.", &SI); 3820 Type *ElTy = SI.getOperand(0)->getType(); 3821 Assert(PTy->isOpaqueOrPointeeTypeMatches(ElTy), 3822 "Stored value type does not match pointer operand type!", &SI, ElTy); 3823 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3824 "huge alignment values are unsupported", &SI); 3825 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3826 if (SI.isAtomic()) { 3827 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3828 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3829 "Store cannot have Acquire ordering", &SI); 3830 Assert(SI.getAlignment() != 0, 3831 "Atomic store must specify explicit alignment", &SI); 3832 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3833 "atomic store operand must have integer, pointer, or floating point " 3834 "type!", 3835 ElTy, &SI); 3836 checkAtomicMemAccessSize(ElTy, &SI); 3837 } else { 3838 Assert(SI.getSyncScopeID() == SyncScope::System, 3839 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3840 } 3841 visitInstruction(SI); 3842 } 3843 3844 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3845 void Verifier::verifySwiftErrorCall(CallBase &Call, 3846 const Value *SwiftErrorVal) { 3847 for (const auto &I : llvm::enumerate(Call.args())) { 3848 if (I.value() == SwiftErrorVal) { 3849 Assert(Call.paramHasAttr(I.index(), Attribute::SwiftError), 3850 "swifterror value when used in a callsite should be marked " 3851 "with swifterror attribute", 3852 SwiftErrorVal, Call); 3853 } 3854 } 3855 } 3856 3857 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3858 // Check that swifterror value is only used by loads, stores, or as 3859 // a swifterror argument. 3860 for (const User *U : SwiftErrorVal->users()) { 3861 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3862 isa<InvokeInst>(U), 3863 "swifterror value can only be loaded and stored from, or " 3864 "as a swifterror argument!", 3865 SwiftErrorVal, U); 3866 // If it is used by a store, check it is the second operand. 3867 if (auto StoreI = dyn_cast<StoreInst>(U)) 3868 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3869 "swifterror value should be the second operand when used " 3870 "by stores", SwiftErrorVal, U); 3871 if (auto *Call = dyn_cast<CallBase>(U)) 3872 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3873 } 3874 } 3875 3876 void Verifier::visitAllocaInst(AllocaInst &AI) { 3877 SmallPtrSet<Type*, 4> Visited; 3878 Assert(AI.getAllocatedType()->isSized(&Visited), 3879 "Cannot allocate unsized type", &AI); 3880 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3881 "Alloca array size must have integer type", &AI); 3882 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3883 "huge alignment values are unsupported", &AI); 3884 3885 if (AI.isSwiftError()) { 3886 verifySwiftErrorValue(&AI); 3887 } 3888 3889 visitInstruction(AI); 3890 } 3891 3892 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3893 Type *ElTy = CXI.getOperand(1)->getType(); 3894 Assert(ElTy->isIntOrPtrTy(), 3895 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3896 checkAtomicMemAccessSize(ElTy, &CXI); 3897 visitInstruction(CXI); 3898 } 3899 3900 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3901 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3902 "atomicrmw instructions cannot be unordered.", &RMWI); 3903 auto Op = RMWI.getOperation(); 3904 Type *ElTy = RMWI.getOperand(1)->getType(); 3905 if (Op == AtomicRMWInst::Xchg) { 3906 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3907 AtomicRMWInst::getOperationName(Op) + 3908 " operand must have integer or floating point type!", 3909 &RMWI, ElTy); 3910 } else if (AtomicRMWInst::isFPOperation(Op)) { 3911 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3912 AtomicRMWInst::getOperationName(Op) + 3913 " operand must have floating point type!", 3914 &RMWI, ElTy); 3915 } else { 3916 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3917 AtomicRMWInst::getOperationName(Op) + 3918 " operand must have integer type!", 3919 &RMWI, ElTy); 3920 } 3921 checkAtomicMemAccessSize(ElTy, &RMWI); 3922 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3923 "Invalid binary operation!", &RMWI); 3924 visitInstruction(RMWI); 3925 } 3926 3927 void Verifier::visitFenceInst(FenceInst &FI) { 3928 const AtomicOrdering Ordering = FI.getOrdering(); 3929 Assert(Ordering == AtomicOrdering::Acquire || 3930 Ordering == AtomicOrdering::Release || 3931 Ordering == AtomicOrdering::AcquireRelease || 3932 Ordering == AtomicOrdering::SequentiallyConsistent, 3933 "fence instructions may only have acquire, release, acq_rel, or " 3934 "seq_cst ordering.", 3935 &FI); 3936 visitInstruction(FI); 3937 } 3938 3939 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3940 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3941 EVI.getIndices()) == EVI.getType(), 3942 "Invalid ExtractValueInst operands!", &EVI); 3943 3944 visitInstruction(EVI); 3945 } 3946 3947 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3948 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3949 IVI.getIndices()) == 3950 IVI.getOperand(1)->getType(), 3951 "Invalid InsertValueInst operands!", &IVI); 3952 3953 visitInstruction(IVI); 3954 } 3955 3956 static Value *getParentPad(Value *EHPad) { 3957 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3958 return FPI->getParentPad(); 3959 3960 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3961 } 3962 3963 void Verifier::visitEHPadPredecessors(Instruction &I) { 3964 assert(I.isEHPad()); 3965 3966 BasicBlock *BB = I.getParent(); 3967 Function *F = BB->getParent(); 3968 3969 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3970 3971 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3972 // The landingpad instruction defines its parent as a landing pad block. The 3973 // landing pad block may be branched to only by the unwind edge of an 3974 // invoke. 3975 for (BasicBlock *PredBB : predecessors(BB)) { 3976 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3977 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3978 "Block containing LandingPadInst must be jumped to " 3979 "only by the unwind edge of an invoke.", 3980 LPI); 3981 } 3982 return; 3983 } 3984 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3985 if (!pred_empty(BB)) 3986 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3987 "Block containg CatchPadInst must be jumped to " 3988 "only by its catchswitch.", 3989 CPI); 3990 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3991 "Catchswitch cannot unwind to one of its catchpads", 3992 CPI->getCatchSwitch(), CPI); 3993 return; 3994 } 3995 3996 // Verify that each pred has a legal terminator with a legal to/from EH 3997 // pad relationship. 3998 Instruction *ToPad = &I; 3999 Value *ToPadParent = getParentPad(ToPad); 4000 for (BasicBlock *PredBB : predecessors(BB)) { 4001 Instruction *TI = PredBB->getTerminator(); 4002 Value *FromPad; 4003 if (auto *II = dyn_cast<InvokeInst>(TI)) { 4004 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 4005 "EH pad must be jumped to via an unwind edge", ToPad, II); 4006 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 4007 FromPad = Bundle->Inputs[0]; 4008 else 4009 FromPad = ConstantTokenNone::get(II->getContext()); 4010 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4011 FromPad = CRI->getOperand(0); 4012 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 4013 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4014 FromPad = CSI; 4015 } else { 4016 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 4017 } 4018 4019 // The edge may exit from zero or more nested pads. 4020 SmallSet<Value *, 8> Seen; 4021 for (;; FromPad = getParentPad(FromPad)) { 4022 Assert(FromPad != ToPad, 4023 "EH pad cannot handle exceptions raised within it", FromPad, TI); 4024 if (FromPad == ToPadParent) { 4025 // This is a legal unwind edge. 4026 break; 4027 } 4028 Assert(!isa<ConstantTokenNone>(FromPad), 4029 "A single unwind edge may only enter one EH pad", TI); 4030 Assert(Seen.insert(FromPad).second, 4031 "EH pad jumps through a cycle of pads", FromPad); 4032 } 4033 } 4034 } 4035 4036 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 4037 // The landingpad instruction is ill-formed if it doesn't have any clauses and 4038 // isn't a cleanup. 4039 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 4040 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 4041 4042 visitEHPadPredecessors(LPI); 4043 4044 if (!LandingPadResultTy) 4045 LandingPadResultTy = LPI.getType(); 4046 else 4047 Assert(LandingPadResultTy == LPI.getType(), 4048 "The landingpad instruction should have a consistent result type " 4049 "inside a function.", 4050 &LPI); 4051 4052 Function *F = LPI.getParent()->getParent(); 4053 Assert(F->hasPersonalityFn(), 4054 "LandingPadInst needs to be in a function with a personality.", &LPI); 4055 4056 // The landingpad instruction must be the first non-PHI instruction in the 4057 // block. 4058 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 4059 "LandingPadInst not the first non-PHI instruction in the block.", 4060 &LPI); 4061 4062 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 4063 Constant *Clause = LPI.getClause(i); 4064 if (LPI.isCatch(i)) { 4065 Assert(isa<PointerType>(Clause->getType()), 4066 "Catch operand does not have pointer type!", &LPI); 4067 } else { 4068 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 4069 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 4070 "Filter operand is not an array of constants!", &LPI); 4071 } 4072 } 4073 4074 visitInstruction(LPI); 4075 } 4076 4077 void Verifier::visitResumeInst(ResumeInst &RI) { 4078 Assert(RI.getFunction()->hasPersonalityFn(), 4079 "ResumeInst needs to be in a function with a personality.", &RI); 4080 4081 if (!LandingPadResultTy) 4082 LandingPadResultTy = RI.getValue()->getType(); 4083 else 4084 Assert(LandingPadResultTy == RI.getValue()->getType(), 4085 "The resume instruction should have a consistent result type " 4086 "inside a function.", 4087 &RI); 4088 4089 visitTerminator(RI); 4090 } 4091 4092 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 4093 BasicBlock *BB = CPI.getParent(); 4094 4095 Function *F = BB->getParent(); 4096 Assert(F->hasPersonalityFn(), 4097 "CatchPadInst needs to be in a function with a personality.", &CPI); 4098 4099 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 4100 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 4101 CPI.getParentPad()); 4102 4103 // The catchpad instruction must be the first non-PHI instruction in the 4104 // block. 4105 Assert(BB->getFirstNonPHI() == &CPI, 4106 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 4107 4108 visitEHPadPredecessors(CPI); 4109 visitFuncletPadInst(CPI); 4110 } 4111 4112 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 4113 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 4114 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 4115 CatchReturn.getOperand(0)); 4116 4117 visitTerminator(CatchReturn); 4118 } 4119 4120 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 4121 BasicBlock *BB = CPI.getParent(); 4122 4123 Function *F = BB->getParent(); 4124 Assert(F->hasPersonalityFn(), 4125 "CleanupPadInst needs to be in a function with a personality.", &CPI); 4126 4127 // The cleanuppad instruction must be the first non-PHI instruction in the 4128 // block. 4129 Assert(BB->getFirstNonPHI() == &CPI, 4130 "CleanupPadInst not the first non-PHI instruction in the block.", 4131 &CPI); 4132 4133 auto *ParentPad = CPI.getParentPad(); 4134 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4135 "CleanupPadInst has an invalid parent.", &CPI); 4136 4137 visitEHPadPredecessors(CPI); 4138 visitFuncletPadInst(CPI); 4139 } 4140 4141 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 4142 User *FirstUser = nullptr; 4143 Value *FirstUnwindPad = nullptr; 4144 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 4145 SmallSet<FuncletPadInst *, 8> Seen; 4146 4147 while (!Worklist.empty()) { 4148 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 4149 Assert(Seen.insert(CurrentPad).second, 4150 "FuncletPadInst must not be nested within itself", CurrentPad); 4151 Value *UnresolvedAncestorPad = nullptr; 4152 for (User *U : CurrentPad->users()) { 4153 BasicBlock *UnwindDest; 4154 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 4155 UnwindDest = CRI->getUnwindDest(); 4156 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 4157 // We allow catchswitch unwind to caller to nest 4158 // within an outer pad that unwinds somewhere else, 4159 // because catchswitch doesn't have a nounwind variant. 4160 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 4161 if (CSI->unwindsToCaller()) 4162 continue; 4163 UnwindDest = CSI->getUnwindDest(); 4164 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 4165 UnwindDest = II->getUnwindDest(); 4166 } else if (isa<CallInst>(U)) { 4167 // Calls which don't unwind may be found inside funclet 4168 // pads that unwind somewhere else. We don't *require* 4169 // such calls to be annotated nounwind. 4170 continue; 4171 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 4172 // The unwind dest for a cleanup can only be found by 4173 // recursive search. Add it to the worklist, and we'll 4174 // search for its first use that determines where it unwinds. 4175 Worklist.push_back(CPI); 4176 continue; 4177 } else { 4178 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 4179 continue; 4180 } 4181 4182 Value *UnwindPad; 4183 bool ExitsFPI; 4184 if (UnwindDest) { 4185 UnwindPad = UnwindDest->getFirstNonPHI(); 4186 if (!cast<Instruction>(UnwindPad)->isEHPad()) 4187 continue; 4188 Value *UnwindParent = getParentPad(UnwindPad); 4189 // Ignore unwind edges that don't exit CurrentPad. 4190 if (UnwindParent == CurrentPad) 4191 continue; 4192 // Determine whether the original funclet pad is exited, 4193 // and if we are scanning nested pads determine how many 4194 // of them are exited so we can stop searching their 4195 // children. 4196 Value *ExitedPad = CurrentPad; 4197 ExitsFPI = false; 4198 do { 4199 if (ExitedPad == &FPI) { 4200 ExitsFPI = true; 4201 // Now we can resolve any ancestors of CurrentPad up to 4202 // FPI, but not including FPI since we need to make sure 4203 // to check all direct users of FPI for consistency. 4204 UnresolvedAncestorPad = &FPI; 4205 break; 4206 } 4207 Value *ExitedParent = getParentPad(ExitedPad); 4208 if (ExitedParent == UnwindParent) { 4209 // ExitedPad is the ancestor-most pad which this unwind 4210 // edge exits, so we can resolve up to it, meaning that 4211 // ExitedParent is the first ancestor still unresolved. 4212 UnresolvedAncestorPad = ExitedParent; 4213 break; 4214 } 4215 ExitedPad = ExitedParent; 4216 } while (!isa<ConstantTokenNone>(ExitedPad)); 4217 } else { 4218 // Unwinding to caller exits all pads. 4219 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 4220 ExitsFPI = true; 4221 UnresolvedAncestorPad = &FPI; 4222 } 4223 4224 if (ExitsFPI) { 4225 // This unwind edge exits FPI. Make sure it agrees with other 4226 // such edges. 4227 if (FirstUser) { 4228 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 4229 "pad must have the same unwind " 4230 "dest", 4231 &FPI, U, FirstUser); 4232 } else { 4233 FirstUser = U; 4234 FirstUnwindPad = UnwindPad; 4235 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 4236 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 4237 getParentPad(UnwindPad) == getParentPad(&FPI)) 4238 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 4239 } 4240 } 4241 // Make sure we visit all uses of FPI, but for nested pads stop as 4242 // soon as we know where they unwind to. 4243 if (CurrentPad != &FPI) 4244 break; 4245 } 4246 if (UnresolvedAncestorPad) { 4247 if (CurrentPad == UnresolvedAncestorPad) { 4248 // When CurrentPad is FPI itself, we don't mark it as resolved even if 4249 // we've found an unwind edge that exits it, because we need to verify 4250 // all direct uses of FPI. 4251 assert(CurrentPad == &FPI); 4252 continue; 4253 } 4254 // Pop off the worklist any nested pads that we've found an unwind 4255 // destination for. The pads on the worklist are the uncles, 4256 // great-uncles, etc. of CurrentPad. We've found an unwind destination 4257 // for all ancestors of CurrentPad up to but not including 4258 // UnresolvedAncestorPad. 4259 Value *ResolvedPad = CurrentPad; 4260 while (!Worklist.empty()) { 4261 Value *UnclePad = Worklist.back(); 4262 Value *AncestorPad = getParentPad(UnclePad); 4263 // Walk ResolvedPad up the ancestor list until we either find the 4264 // uncle's parent or the last resolved ancestor. 4265 while (ResolvedPad != AncestorPad) { 4266 Value *ResolvedParent = getParentPad(ResolvedPad); 4267 if (ResolvedParent == UnresolvedAncestorPad) { 4268 break; 4269 } 4270 ResolvedPad = ResolvedParent; 4271 } 4272 // If the resolved ancestor search didn't find the uncle's parent, 4273 // then the uncle is not yet resolved. 4274 if (ResolvedPad != AncestorPad) 4275 break; 4276 // This uncle is resolved, so pop it from the worklist. 4277 Worklist.pop_back(); 4278 } 4279 } 4280 } 4281 4282 if (FirstUnwindPad) { 4283 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 4284 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 4285 Value *SwitchUnwindPad; 4286 if (SwitchUnwindDest) 4287 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 4288 else 4289 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 4290 Assert(SwitchUnwindPad == FirstUnwindPad, 4291 "Unwind edges out of a catch must have the same unwind dest as " 4292 "the parent catchswitch", 4293 &FPI, FirstUser, CatchSwitch); 4294 } 4295 } 4296 4297 visitInstruction(FPI); 4298 } 4299 4300 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 4301 BasicBlock *BB = CatchSwitch.getParent(); 4302 4303 Function *F = BB->getParent(); 4304 Assert(F->hasPersonalityFn(), 4305 "CatchSwitchInst needs to be in a function with a personality.", 4306 &CatchSwitch); 4307 4308 // The catchswitch instruction must be the first non-PHI instruction in the 4309 // block. 4310 Assert(BB->getFirstNonPHI() == &CatchSwitch, 4311 "CatchSwitchInst not the first non-PHI instruction in the block.", 4312 &CatchSwitch); 4313 4314 auto *ParentPad = CatchSwitch.getParentPad(); 4315 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4316 "CatchSwitchInst has an invalid parent.", ParentPad); 4317 4318 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 4319 Instruction *I = UnwindDest->getFirstNonPHI(); 4320 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4321 "CatchSwitchInst must unwind to an EH block which is not a " 4322 "landingpad.", 4323 &CatchSwitch); 4324 4325 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 4326 if (getParentPad(I) == ParentPad) 4327 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 4328 } 4329 4330 Assert(CatchSwitch.getNumHandlers() != 0, 4331 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 4332 4333 for (BasicBlock *Handler : CatchSwitch.handlers()) { 4334 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 4335 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 4336 } 4337 4338 visitEHPadPredecessors(CatchSwitch); 4339 visitTerminator(CatchSwitch); 4340 } 4341 4342 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 4343 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 4344 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 4345 CRI.getOperand(0)); 4346 4347 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 4348 Instruction *I = UnwindDest->getFirstNonPHI(); 4349 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4350 "CleanupReturnInst must unwind to an EH block which is not a " 4351 "landingpad.", 4352 &CRI); 4353 } 4354 4355 visitTerminator(CRI); 4356 } 4357 4358 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 4359 Instruction *Op = cast<Instruction>(I.getOperand(i)); 4360 // If the we have an invalid invoke, don't try to compute the dominance. 4361 // We already reject it in the invoke specific checks and the dominance 4362 // computation doesn't handle multiple edges. 4363 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 4364 if (II->getNormalDest() == II->getUnwindDest()) 4365 return; 4366 } 4367 4368 // Quick check whether the def has already been encountered in the same block. 4369 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 4370 // uses are defined to happen on the incoming edge, not at the instruction. 4371 // 4372 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 4373 // wrapping an SSA value, assert that we've already encountered it. See 4374 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 4375 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 4376 return; 4377 4378 const Use &U = I.getOperandUse(i); 4379 Assert(DT.dominates(Op, U), 4380 "Instruction does not dominate all uses!", Op, &I); 4381 } 4382 4383 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4384 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 4385 "apply only to pointer types", &I); 4386 Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4387 "dereferenceable, dereferenceable_or_null apply only to load" 4388 " and inttoptr instructions, use attributes for calls or invokes", &I); 4389 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 4390 "take one operand!", &I); 4391 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4392 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 4393 "dereferenceable_or_null metadata value must be an i64!", &I); 4394 } 4395 4396 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4397 Assert(MD->getNumOperands() >= 2, 4398 "!prof annotations should have no less than 2 operands", MD); 4399 4400 // Check first operand. 4401 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4402 Assert(isa<MDString>(MD->getOperand(0)), 4403 "expected string with name of the !prof annotation", MD); 4404 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4405 StringRef ProfName = MDS->getString(); 4406 4407 // Check consistency of !prof branch_weights metadata. 4408 if (ProfName.equals("branch_weights")) { 4409 if (isa<InvokeInst>(&I)) { 4410 Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3, 4411 "Wrong number of InvokeInst branch_weights operands", MD); 4412 } else { 4413 unsigned ExpectedNumOperands = 0; 4414 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4415 ExpectedNumOperands = BI->getNumSuccessors(); 4416 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4417 ExpectedNumOperands = SI->getNumSuccessors(); 4418 else if (isa<CallInst>(&I)) 4419 ExpectedNumOperands = 1; 4420 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4421 ExpectedNumOperands = IBI->getNumDestinations(); 4422 else if (isa<SelectInst>(&I)) 4423 ExpectedNumOperands = 2; 4424 else 4425 CheckFailed("!prof branch_weights are not allowed for this instruction", 4426 MD); 4427 4428 Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, 4429 "Wrong number of operands", MD); 4430 } 4431 for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 4432 auto &MDO = MD->getOperand(i); 4433 Assert(MDO, "second operand should not be null", MD); 4434 Assert(mdconst::dyn_extract<ConstantInt>(MDO), 4435 "!prof brunch_weights operand is not a const int"); 4436 } 4437 } 4438 } 4439 4440 void Verifier::visitAnnotationMetadata(MDNode *Annotation) { 4441 Assert(isa<MDTuple>(Annotation), "annotation must be a tuple"); 4442 Assert(Annotation->getNumOperands() >= 1, 4443 "annotation must have at least one operand"); 4444 for (const MDOperand &Op : Annotation->operands()) 4445 Assert(isa<MDString>(Op.get()), "operands must be strings"); 4446 } 4447 4448 /// verifyInstruction - Verify that an instruction is well formed. 4449 /// 4450 void Verifier::visitInstruction(Instruction &I) { 4451 BasicBlock *BB = I.getParent(); 4452 Assert(BB, "Instruction not embedded in basic block!", &I); 4453 4454 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4455 for (User *U : I.users()) { 4456 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 4457 "Only PHI nodes may reference their own value!", &I); 4458 } 4459 } 4460 4461 // Check that void typed values don't have names 4462 Assert(!I.getType()->isVoidTy() || !I.hasName(), 4463 "Instruction has a name, but provides a void value!", &I); 4464 4465 // Check that the return value of the instruction is either void or a legal 4466 // value type. 4467 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4468 "Instruction returns a non-scalar type!", &I); 4469 4470 // Check that the instruction doesn't produce metadata. Calls are already 4471 // checked against the callee type. 4472 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4473 "Invalid use of metadata!", &I); 4474 4475 // Check that all uses of the instruction, if they are instructions 4476 // themselves, actually have parent basic blocks. If the use is not an 4477 // instruction, it is an error! 4478 for (Use &U : I.uses()) { 4479 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4480 Assert(Used->getParent() != nullptr, 4481 "Instruction referencing" 4482 " instruction not embedded in a basic block!", 4483 &I, Used); 4484 else { 4485 CheckFailed("Use of instruction is not an instruction!", U); 4486 return; 4487 } 4488 } 4489 4490 // Get a pointer to the call base of the instruction if it is some form of 4491 // call. 4492 const CallBase *CBI = dyn_cast<CallBase>(&I); 4493 4494 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4495 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4496 4497 // Check to make sure that only first-class-values are operands to 4498 // instructions. 4499 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4500 Assert(false, "Instruction operands must be first-class values!", &I); 4501 } 4502 4503 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4504 // Check to make sure that the "address of" an intrinsic function is never 4505 // taken. 4506 Assert(!F->isIntrinsic() || 4507 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), 4508 "Cannot take the address of an intrinsic!", &I); 4509 Assert( 4510 !F->isIntrinsic() || isa<CallInst>(I) || 4511 F->getIntrinsicID() == Intrinsic::donothing || 4512 F->getIntrinsicID() == Intrinsic::seh_try_begin || 4513 F->getIntrinsicID() == Intrinsic::seh_try_end || 4514 F->getIntrinsicID() == Intrinsic::seh_scope_begin || 4515 F->getIntrinsicID() == Intrinsic::seh_scope_end || 4516 F->getIntrinsicID() == Intrinsic::coro_resume || 4517 F->getIntrinsicID() == Intrinsic::coro_destroy || 4518 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4519 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4520 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4521 F->getIntrinsicID() == Intrinsic::wasm_rethrow, 4522 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4523 "statepoint, coro_resume or coro_destroy", 4524 &I); 4525 Assert(F->getParent() == &M, "Referencing function in another module!", 4526 &I, &M, F, F->getParent()); 4527 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4528 Assert(OpBB->getParent() == BB->getParent(), 4529 "Referring to a basic block in another function!", &I); 4530 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4531 Assert(OpArg->getParent() == BB->getParent(), 4532 "Referring to an argument in another function!", &I); 4533 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4534 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4535 &M, GV, GV->getParent()); 4536 } else if (isa<Instruction>(I.getOperand(i))) { 4537 verifyDominatesUse(I, i); 4538 } else if (isa<InlineAsm>(I.getOperand(i))) { 4539 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4540 "Cannot take the address of an inline asm!", &I); 4541 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4542 if (CE->getType()->isPtrOrPtrVectorTy() || 4543 !DL.getNonIntegralAddressSpaces().empty()) { 4544 // If we have a ConstantExpr pointer, we need to see if it came from an 4545 // illegal bitcast. If the datalayout string specifies non-integral 4546 // address spaces then we also need to check for illegal ptrtoint and 4547 // inttoptr expressions. 4548 visitConstantExprsRecursively(CE); 4549 } 4550 } 4551 } 4552 4553 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4554 Assert(I.getType()->isFPOrFPVectorTy(), 4555 "fpmath requires a floating point result!", &I); 4556 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4557 if (ConstantFP *CFP0 = 4558 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4559 const APFloat &Accuracy = CFP0->getValueAPF(); 4560 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4561 "fpmath accuracy must have float type", &I); 4562 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4563 "fpmath accuracy not a positive number!", &I); 4564 } else { 4565 Assert(false, "invalid fpmath accuracy!", &I); 4566 } 4567 } 4568 4569 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4570 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4571 "Ranges are only for loads, calls and invokes!", &I); 4572 visitRangeMetadata(I, Range, I.getType()); 4573 } 4574 4575 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4576 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4577 &I); 4578 Assert(isa<LoadInst>(I), 4579 "nonnull applies only to load instructions, use attributes" 4580 " for calls or invokes", 4581 &I); 4582 } 4583 4584 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4585 visitDereferenceableMetadata(I, MD); 4586 4587 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4588 visitDereferenceableMetadata(I, MD); 4589 4590 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4591 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4592 4593 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4594 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4595 &I); 4596 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4597 "use attributes for calls or invokes", &I); 4598 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4599 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4600 Assert(CI && CI->getType()->isIntegerTy(64), 4601 "align metadata value must be an i64!", &I); 4602 uint64_t Align = CI->getZExtValue(); 4603 Assert(isPowerOf2_64(Align), 4604 "align metadata value must be a power of 2!", &I); 4605 Assert(Align <= Value::MaximumAlignment, 4606 "alignment is larger that implementation defined limit", &I); 4607 } 4608 4609 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 4610 visitProfMetadata(I, MD); 4611 4612 if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation)) 4613 visitAnnotationMetadata(Annotation); 4614 4615 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4616 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4617 visitMDNode(*N, AreDebugLocsAllowed::Yes); 4618 } 4619 4620 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 4621 verifyFragmentExpression(*DII); 4622 verifyNotEntryValue(*DII); 4623 } 4624 4625 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 4626 I.getAllMetadata(MDs); 4627 for (auto Attachment : MDs) { 4628 unsigned Kind = Attachment.first; 4629 auto AllowLocs = 4630 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) 4631 ? AreDebugLocsAllowed::Yes 4632 : AreDebugLocsAllowed::No; 4633 visitMDNode(*Attachment.second, AllowLocs); 4634 } 4635 4636 InstsInThisBlock.insert(&I); 4637 } 4638 4639 /// Allow intrinsics to be verified in different ways. 4640 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4641 Function *IF = Call.getCalledFunction(); 4642 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4643 IF); 4644 4645 // Verify that the intrinsic prototype lines up with what the .td files 4646 // describe. 4647 FunctionType *IFTy = IF->getFunctionType(); 4648 bool IsVarArg = IFTy->isVarArg(); 4649 4650 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4651 getIntrinsicInfoTableEntries(ID, Table); 4652 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4653 4654 // Walk the descriptors to extract overloaded types. 4655 SmallVector<Type *, 4> ArgTys; 4656 Intrinsic::MatchIntrinsicTypesResult Res = 4657 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4658 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4659 "Intrinsic has incorrect return type!", IF); 4660 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4661 "Intrinsic has incorrect argument type!", IF); 4662 4663 // Verify if the intrinsic call matches the vararg property. 4664 if (IsVarArg) 4665 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4666 "Intrinsic was not defined with variable arguments!", IF); 4667 else 4668 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4669 "Callsite was not defined with variable arguments!", IF); 4670 4671 // All descriptors should be absorbed by now. 4672 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4673 4674 // Now that we have the intrinsic ID and the actual argument types (and we 4675 // know they are legal for the intrinsic!) get the intrinsic name through the 4676 // usual means. This allows us to verify the mangling of argument types into 4677 // the name. 4678 const std::string ExpectedName = 4679 Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy); 4680 Assert(ExpectedName == IF->getName(), 4681 "Intrinsic name not mangled correctly for type arguments! " 4682 "Should be: " + 4683 ExpectedName, 4684 IF); 4685 4686 // If the intrinsic takes MDNode arguments, verify that they are either global 4687 // or are local to *this* function. 4688 for (Value *V : Call.args()) { 4689 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4690 visitMetadataAsValue(*MD, Call.getCaller()); 4691 if (auto *Const = dyn_cast<Constant>(V)) 4692 Assert(!Const->getType()->isX86_AMXTy(), 4693 "const x86_amx is not allowed in argument!"); 4694 } 4695 4696 switch (ID) { 4697 default: 4698 break; 4699 case Intrinsic::assume: { 4700 for (auto &Elem : Call.bundle_op_infos()) { 4701 Assert(Elem.Tag->getKey() == "ignore" || 4702 Attribute::isExistingAttribute(Elem.Tag->getKey()), 4703 "tags must be valid attribute names"); 4704 Attribute::AttrKind Kind = 4705 Attribute::getAttrKindFromName(Elem.Tag->getKey()); 4706 unsigned ArgCount = Elem.End - Elem.Begin; 4707 if (Kind == Attribute::Alignment) { 4708 Assert(ArgCount <= 3 && ArgCount >= 2, 4709 "alignment assumptions should have 2 or 3 arguments"); 4710 Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(), 4711 "first argument should be a pointer"); 4712 Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(), 4713 "second argument should be an integer"); 4714 if (ArgCount == 3) 4715 Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(), 4716 "third argument should be an integer if present"); 4717 return; 4718 } 4719 Assert(ArgCount <= 2, "to many arguments"); 4720 if (Kind == Attribute::None) 4721 break; 4722 if (Attribute::doesAttrKindHaveArgument(Kind)) { 4723 Assert(ArgCount == 2, "this attribute should have 2 arguments"); 4724 Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), 4725 "the second argument should be a constant integral value"); 4726 } else if (isFuncOnlyAttr(Kind)) { 4727 Assert((ArgCount) == 0, "this attribute has no argument"); 4728 } else if (!isFuncOrArgAttr(Kind)) { 4729 Assert((ArgCount) == 1, "this attribute should have one argument"); 4730 } 4731 } 4732 break; 4733 } 4734 case Intrinsic::coro_id: { 4735 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4736 if (isa<ConstantPointerNull>(InfoArg)) 4737 break; 4738 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4739 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4740 "info argument of llvm.coro.id must refer to an initialized " 4741 "constant"); 4742 Constant *Init = GV->getInitializer(); 4743 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4744 "info argument of llvm.coro.id must refer to either a struct or " 4745 "an array"); 4746 break; 4747 } 4748 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ 4749 case Intrinsic::INTRINSIC: 4750 #include "llvm/IR/ConstrainedOps.def" 4751 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4752 break; 4753 case Intrinsic::dbg_declare: // llvm.dbg.declare 4754 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4755 "invalid llvm.dbg.declare intrinsic call 1", Call); 4756 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4757 break; 4758 case Intrinsic::dbg_addr: // llvm.dbg.addr 4759 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4760 break; 4761 case Intrinsic::dbg_value: // llvm.dbg.value 4762 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4763 break; 4764 case Intrinsic::dbg_label: // llvm.dbg.label 4765 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4766 break; 4767 case Intrinsic::memcpy: 4768 case Intrinsic::memcpy_inline: 4769 case Intrinsic::memmove: 4770 case Intrinsic::memset: { 4771 const auto *MI = cast<MemIntrinsic>(&Call); 4772 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4773 return Alignment == 0 || isPowerOf2_32(Alignment); 4774 }; 4775 Assert(IsValidAlignment(MI->getDestAlignment()), 4776 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4777 Call); 4778 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4779 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4780 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4781 Call); 4782 } 4783 4784 break; 4785 } 4786 case Intrinsic::memcpy_element_unordered_atomic: 4787 case Intrinsic::memmove_element_unordered_atomic: 4788 case Intrinsic::memset_element_unordered_atomic: { 4789 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4790 4791 ConstantInt *ElementSizeCI = 4792 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4793 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4794 Assert(ElementSizeVal.isPowerOf2(), 4795 "element size of the element-wise atomic memory intrinsic " 4796 "must be a power of 2", 4797 Call); 4798 4799 auto IsValidAlignment = [&](uint64_t Alignment) { 4800 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4801 }; 4802 uint64_t DstAlignment = AMI->getDestAlignment(); 4803 Assert(IsValidAlignment(DstAlignment), 4804 "incorrect alignment of the destination argument", Call); 4805 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4806 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4807 Assert(IsValidAlignment(SrcAlignment), 4808 "incorrect alignment of the source argument", Call); 4809 } 4810 break; 4811 } 4812 case Intrinsic::call_preallocated_setup: { 4813 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 4814 Assert(NumArgs != nullptr, 4815 "llvm.call.preallocated.setup argument must be a constant"); 4816 bool FoundCall = false; 4817 for (User *U : Call.users()) { 4818 auto *UseCall = dyn_cast<CallBase>(U); 4819 Assert(UseCall != nullptr, 4820 "Uses of llvm.call.preallocated.setup must be calls"); 4821 const Function *Fn = UseCall->getCalledFunction(); 4822 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { 4823 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); 4824 Assert(AllocArgIndex != nullptr, 4825 "llvm.call.preallocated.alloc arg index must be a constant"); 4826 auto AllocArgIndexInt = AllocArgIndex->getValue(); 4827 Assert(AllocArgIndexInt.sge(0) && 4828 AllocArgIndexInt.slt(NumArgs->getValue()), 4829 "llvm.call.preallocated.alloc arg index must be between 0 and " 4830 "corresponding " 4831 "llvm.call.preallocated.setup's argument count"); 4832 } else if (Fn && Fn->getIntrinsicID() == 4833 Intrinsic::call_preallocated_teardown) { 4834 // nothing to do 4835 } else { 4836 Assert(!FoundCall, "Can have at most one call corresponding to a " 4837 "llvm.call.preallocated.setup"); 4838 FoundCall = true; 4839 size_t NumPreallocatedArgs = 0; 4840 for (unsigned i = 0; i < UseCall->getNumArgOperands(); i++) { 4841 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { 4842 ++NumPreallocatedArgs; 4843 } 4844 } 4845 Assert(NumPreallocatedArgs != 0, 4846 "cannot use preallocated intrinsics on a call without " 4847 "preallocated arguments"); 4848 Assert(NumArgs->equalsInt(NumPreallocatedArgs), 4849 "llvm.call.preallocated.setup arg size must be equal to number " 4850 "of preallocated arguments " 4851 "at call site", 4852 Call, *UseCall); 4853 // getOperandBundle() cannot be called if more than one of the operand 4854 // bundle exists. There is already a check elsewhere for this, so skip 4855 // here if we see more than one. 4856 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > 4857 1) { 4858 return; 4859 } 4860 auto PreallocatedBundle = 4861 UseCall->getOperandBundle(LLVMContext::OB_preallocated); 4862 Assert(PreallocatedBundle, 4863 "Use of llvm.call.preallocated.setup outside intrinsics " 4864 "must be in \"preallocated\" operand bundle"); 4865 Assert(PreallocatedBundle->Inputs.front().get() == &Call, 4866 "preallocated bundle must have token from corresponding " 4867 "llvm.call.preallocated.setup"); 4868 } 4869 } 4870 break; 4871 } 4872 case Intrinsic::call_preallocated_arg: { 4873 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4874 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4875 Intrinsic::call_preallocated_setup, 4876 "llvm.call.preallocated.arg token argument must be a " 4877 "llvm.call.preallocated.setup"); 4878 Assert(Call.hasFnAttr(Attribute::Preallocated), 4879 "llvm.call.preallocated.arg must be called with a \"preallocated\" " 4880 "call site attribute"); 4881 break; 4882 } 4883 case Intrinsic::call_preallocated_teardown: { 4884 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4885 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4886 Intrinsic::call_preallocated_setup, 4887 "llvm.call.preallocated.teardown token argument must be a " 4888 "llvm.call.preallocated.setup"); 4889 break; 4890 } 4891 case Intrinsic::gcroot: 4892 case Intrinsic::gcwrite: 4893 case Intrinsic::gcread: 4894 if (ID == Intrinsic::gcroot) { 4895 AllocaInst *AI = 4896 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4897 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4898 Assert(isa<Constant>(Call.getArgOperand(1)), 4899 "llvm.gcroot parameter #2 must be a constant.", Call); 4900 if (!AI->getAllocatedType()->isPointerTy()) { 4901 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4902 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4903 "or argument #2 must be a non-null constant.", 4904 Call); 4905 } 4906 } 4907 4908 Assert(Call.getParent()->getParent()->hasGC(), 4909 "Enclosing function does not use GC.", Call); 4910 break; 4911 case Intrinsic::init_trampoline: 4912 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4913 "llvm.init_trampoline parameter #2 must resolve to a function.", 4914 Call); 4915 break; 4916 case Intrinsic::prefetch: 4917 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4918 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4919 "invalid arguments to llvm.prefetch", Call); 4920 break; 4921 case Intrinsic::stackprotector: 4922 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4923 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4924 break; 4925 case Intrinsic::localescape: { 4926 BasicBlock *BB = Call.getParent(); 4927 Assert(BB == &BB->getParent()->front(), 4928 "llvm.localescape used outside of entry block", Call); 4929 Assert(!SawFrameEscape, 4930 "multiple calls to llvm.localescape in one function", Call); 4931 for (Value *Arg : Call.args()) { 4932 if (isa<ConstantPointerNull>(Arg)) 4933 continue; // Null values are allowed as placeholders. 4934 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4935 Assert(AI && AI->isStaticAlloca(), 4936 "llvm.localescape only accepts static allocas", Call); 4937 } 4938 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); 4939 SawFrameEscape = true; 4940 break; 4941 } 4942 case Intrinsic::localrecover: { 4943 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4944 Function *Fn = dyn_cast<Function>(FnArg); 4945 Assert(Fn && !Fn->isDeclaration(), 4946 "llvm.localrecover first " 4947 "argument must be function defined in this module", 4948 Call); 4949 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 4950 auto &Entry = FrameEscapeInfo[Fn]; 4951 Entry.second = unsigned( 4952 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4953 break; 4954 } 4955 4956 case Intrinsic::experimental_gc_statepoint: 4957 if (auto *CI = dyn_cast<CallInst>(&Call)) 4958 Assert(!CI->isInlineAsm(), 4959 "gc.statepoint support for inline assembly unimplemented", CI); 4960 Assert(Call.getParent()->getParent()->hasGC(), 4961 "Enclosing function does not use GC.", Call); 4962 4963 verifyStatepoint(Call); 4964 break; 4965 case Intrinsic::experimental_gc_result: { 4966 Assert(Call.getParent()->getParent()->hasGC(), 4967 "Enclosing function does not use GC.", Call); 4968 // Are we tied to a statepoint properly? 4969 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4970 const Function *StatepointFn = 4971 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 4972 Assert(StatepointFn && StatepointFn->isDeclaration() && 4973 StatepointFn->getIntrinsicID() == 4974 Intrinsic::experimental_gc_statepoint, 4975 "gc.result operand #1 must be from a statepoint", Call, 4976 Call.getArgOperand(0)); 4977 4978 // Assert that result type matches wrapped callee. 4979 const Value *Target = StatepointCall->getArgOperand(2); 4980 auto *PT = cast<PointerType>(Target->getType()); 4981 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4982 Assert(Call.getType() == TargetFuncType->getReturnType(), 4983 "gc.result result type does not match wrapped callee", Call); 4984 break; 4985 } 4986 case Intrinsic::experimental_gc_relocate: { 4987 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); 4988 4989 Assert(isa<PointerType>(Call.getType()->getScalarType()), 4990 "gc.relocate must return a pointer or a vector of pointers", Call); 4991 4992 // Check that this relocate is correctly tied to the statepoint 4993 4994 // This is case for relocate on the unwinding path of an invoke statepoint 4995 if (LandingPadInst *LandingPad = 4996 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 4997 4998 const BasicBlock *InvokeBB = 4999 LandingPad->getParent()->getUniquePredecessor(); 5000 5001 // Landingpad relocates should have only one predecessor with invoke 5002 // statepoint terminator 5003 Assert(InvokeBB, "safepoints should have unique landingpads", 5004 LandingPad->getParent()); 5005 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 5006 InvokeBB); 5007 Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()), 5008 "gc relocate should be linked to a statepoint", InvokeBB); 5009 } else { 5010 // In all other cases relocate should be tied to the statepoint directly. 5011 // This covers relocates on a normal return path of invoke statepoint and 5012 // relocates of a call statepoint. 5013 auto Token = Call.getArgOperand(0); 5014 Assert(isa<GCStatepointInst>(Token), 5015 "gc relocate is incorrectly tied to the statepoint", Call, Token); 5016 } 5017 5018 // Verify rest of the relocate arguments. 5019 const CallBase &StatepointCall = 5020 *cast<GCRelocateInst>(Call).getStatepoint(); 5021 5022 // Both the base and derived must be piped through the safepoint. 5023 Value *Base = Call.getArgOperand(1); 5024 Assert(isa<ConstantInt>(Base), 5025 "gc.relocate operand #2 must be integer offset", Call); 5026 5027 Value *Derived = Call.getArgOperand(2); 5028 Assert(isa<ConstantInt>(Derived), 5029 "gc.relocate operand #3 must be integer offset", Call); 5030 5031 const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 5032 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 5033 5034 // Check the bounds 5035 if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) { 5036 Assert(BaseIndex < Opt->Inputs.size(), 5037 "gc.relocate: statepoint base index out of bounds", Call); 5038 Assert(DerivedIndex < Opt->Inputs.size(), 5039 "gc.relocate: statepoint derived index out of bounds", Call); 5040 } 5041 5042 // Relocated value must be either a pointer type or vector-of-pointer type, 5043 // but gc_relocate does not need to return the same pointer type as the 5044 // relocated pointer. It can be casted to the correct type later if it's 5045 // desired. However, they must have the same address space and 'vectorness' 5046 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 5047 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 5048 "gc.relocate: relocated value must be a gc pointer", Call); 5049 5050 auto ResultType = Call.getType(); 5051 auto DerivedType = Relocate.getDerivedPtr()->getType(); 5052 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 5053 "gc.relocate: vector relocates to vector and pointer to pointer", 5054 Call); 5055 Assert( 5056 ResultType->getPointerAddressSpace() == 5057 DerivedType->getPointerAddressSpace(), 5058 "gc.relocate: relocating a pointer shouldn't change its address space", 5059 Call); 5060 break; 5061 } 5062 case Intrinsic::eh_exceptioncode: 5063 case Intrinsic::eh_exceptionpointer: { 5064 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 5065 "eh.exceptionpointer argument must be a catchpad", Call); 5066 break; 5067 } 5068 case Intrinsic::get_active_lane_mask: { 5069 Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a " 5070 "vector", Call); 5071 auto *ElemTy = Call.getType()->getScalarType(); 5072 Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not " 5073 "i1", Call); 5074 break; 5075 } 5076 case Intrinsic::masked_load: { 5077 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 5078 Call); 5079 5080 Value *Ptr = Call.getArgOperand(0); 5081 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 5082 Value *Mask = Call.getArgOperand(2); 5083 Value *PassThru = Call.getArgOperand(3); 5084 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 5085 Call); 5086 Assert(Alignment->getValue().isPowerOf2(), 5087 "masked_load: alignment must be a power of 2", Call); 5088 5089 // DataTy is the overloaded type 5090 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 5091 Assert(DataTy == Call.getType(), 5092 "masked_load: return must match pointer type", Call); 5093 Assert(PassThru->getType() == DataTy, 5094 "masked_load: pass through and data type must match", Call); 5095 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 5096 cast<VectorType>(DataTy)->getElementCount(), 5097 "masked_load: vector mask must be same length as data", Call); 5098 break; 5099 } 5100 case Intrinsic::masked_store: { 5101 Value *Val = Call.getArgOperand(0); 5102 Value *Ptr = Call.getArgOperand(1); 5103 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 5104 Value *Mask = Call.getArgOperand(3); 5105 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 5106 Call); 5107 Assert(Alignment->getValue().isPowerOf2(), 5108 "masked_store: alignment must be a power of 2", Call); 5109 5110 // DataTy is the overloaded type 5111 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 5112 Assert(DataTy == Val->getType(), 5113 "masked_store: storee must match pointer type", Call); 5114 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 5115 cast<VectorType>(DataTy)->getElementCount(), 5116 "masked_store: vector mask must be same length as data", Call); 5117 break; 5118 } 5119 5120 case Intrinsic::masked_gather: { 5121 const APInt &Alignment = 5122 cast<ConstantInt>(Call.getArgOperand(1))->getValue(); 5123 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 5124 "masked_gather: alignment must be 0 or a power of 2", Call); 5125 break; 5126 } 5127 case Intrinsic::masked_scatter: { 5128 const APInt &Alignment = 5129 cast<ConstantInt>(Call.getArgOperand(2))->getValue(); 5130 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 5131 "masked_scatter: alignment must be 0 or a power of 2", Call); 5132 break; 5133 } 5134 5135 case Intrinsic::experimental_guard: { 5136 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 5137 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5138 "experimental_guard must have exactly one " 5139 "\"deopt\" operand bundle"); 5140 break; 5141 } 5142 5143 case Intrinsic::experimental_deoptimize: { 5144 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 5145 Call); 5146 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5147 "experimental_deoptimize must have exactly one " 5148 "\"deopt\" operand bundle"); 5149 Assert(Call.getType() == Call.getFunction()->getReturnType(), 5150 "experimental_deoptimize return type must match caller return type"); 5151 5152 if (isa<CallInst>(Call)) { 5153 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 5154 Assert(RI, 5155 "calls to experimental_deoptimize must be followed by a return"); 5156 5157 if (!Call.getType()->isVoidTy() && RI) 5158 Assert(RI->getReturnValue() == &Call, 5159 "calls to experimental_deoptimize must be followed by a return " 5160 "of the value computed by experimental_deoptimize"); 5161 } 5162 5163 break; 5164 } 5165 case Intrinsic::vector_reduce_and: 5166 case Intrinsic::vector_reduce_or: 5167 case Intrinsic::vector_reduce_xor: 5168 case Intrinsic::vector_reduce_add: 5169 case Intrinsic::vector_reduce_mul: 5170 case Intrinsic::vector_reduce_smax: 5171 case Intrinsic::vector_reduce_smin: 5172 case Intrinsic::vector_reduce_umax: 5173 case Intrinsic::vector_reduce_umin: { 5174 Type *ArgTy = Call.getArgOperand(0)->getType(); 5175 Assert(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(), 5176 "Intrinsic has incorrect argument type!"); 5177 break; 5178 } 5179 case Intrinsic::vector_reduce_fmax: 5180 case Intrinsic::vector_reduce_fmin: { 5181 Type *ArgTy = Call.getArgOperand(0)->getType(); 5182 Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5183 "Intrinsic has incorrect argument type!"); 5184 break; 5185 } 5186 case Intrinsic::vector_reduce_fadd: 5187 case Intrinsic::vector_reduce_fmul: { 5188 // Unlike the other reductions, the first argument is a start value. The 5189 // second argument is the vector to be reduced. 5190 Type *ArgTy = Call.getArgOperand(1)->getType(); 5191 Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5192 "Intrinsic has incorrect argument type!"); 5193 break; 5194 } 5195 case Intrinsic::smul_fix: 5196 case Intrinsic::smul_fix_sat: 5197 case Intrinsic::umul_fix: 5198 case Intrinsic::umul_fix_sat: 5199 case Intrinsic::sdiv_fix: 5200 case Intrinsic::sdiv_fix_sat: 5201 case Intrinsic::udiv_fix: 5202 case Intrinsic::udiv_fix_sat: { 5203 Value *Op1 = Call.getArgOperand(0); 5204 Value *Op2 = Call.getArgOperand(1); 5205 Assert(Op1->getType()->isIntOrIntVectorTy(), 5206 "first operand of [us][mul|div]_fix[_sat] must be an int type or " 5207 "vector of ints"); 5208 Assert(Op2->getType()->isIntOrIntVectorTy(), 5209 "second operand of [us][mul|div]_fix[_sat] must be an int type or " 5210 "vector of ints"); 5211 5212 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 5213 Assert(Op3->getType()->getBitWidth() <= 32, 5214 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); 5215 5216 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 5217 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { 5218 Assert( 5219 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 5220 "the scale of s[mul|div]_fix[_sat] must be less than the width of " 5221 "the operands"); 5222 } else { 5223 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 5224 "the scale of u[mul|div]_fix[_sat] must be less than or equal " 5225 "to the width of the operands"); 5226 } 5227 break; 5228 } 5229 case Intrinsic::lround: 5230 case Intrinsic::llround: 5231 case Intrinsic::lrint: 5232 case Intrinsic::llrint: { 5233 Type *ValTy = Call.getArgOperand(0)->getType(); 5234 Type *ResultTy = Call.getType(); 5235 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5236 "Intrinsic does not support vectors", &Call); 5237 break; 5238 } 5239 case Intrinsic::bswap: { 5240 Type *Ty = Call.getType(); 5241 unsigned Size = Ty->getScalarSizeInBits(); 5242 Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call); 5243 break; 5244 } 5245 case Intrinsic::invariant_start: { 5246 ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 5247 Assert(InvariantSize && 5248 (!InvariantSize->isNegative() || InvariantSize->isMinusOne()), 5249 "invariant_start parameter must be -1, 0 or a positive number", 5250 &Call); 5251 break; 5252 } 5253 case Intrinsic::matrix_multiply: 5254 case Intrinsic::matrix_transpose: 5255 case Intrinsic::matrix_column_major_load: 5256 case Intrinsic::matrix_column_major_store: { 5257 Function *IF = Call.getCalledFunction(); 5258 ConstantInt *Stride = nullptr; 5259 ConstantInt *NumRows; 5260 ConstantInt *NumColumns; 5261 VectorType *ResultTy; 5262 Type *Op0ElemTy = nullptr; 5263 Type *Op1ElemTy = nullptr; 5264 switch (ID) { 5265 case Intrinsic::matrix_multiply: 5266 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 5267 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5268 ResultTy = cast<VectorType>(Call.getType()); 5269 Op0ElemTy = 5270 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5271 Op1ElemTy = 5272 cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType(); 5273 break; 5274 case Intrinsic::matrix_transpose: 5275 NumRows = cast<ConstantInt>(Call.getArgOperand(1)); 5276 NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); 5277 ResultTy = cast<VectorType>(Call.getType()); 5278 Op0ElemTy = 5279 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5280 break; 5281 case Intrinsic::matrix_column_major_load: 5282 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1)); 5283 NumRows = cast<ConstantInt>(Call.getArgOperand(3)); 5284 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5285 ResultTy = cast<VectorType>(Call.getType()); 5286 Op0ElemTy = 5287 cast<PointerType>(Call.getArgOperand(0)->getType())->getElementType(); 5288 break; 5289 case Intrinsic::matrix_column_major_store: 5290 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2)); 5291 NumRows = cast<ConstantInt>(Call.getArgOperand(4)); 5292 NumColumns = cast<ConstantInt>(Call.getArgOperand(5)); 5293 ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 5294 Op0ElemTy = 5295 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5296 Op1ElemTy = 5297 cast<PointerType>(Call.getArgOperand(1)->getType())->getElementType(); 5298 break; 5299 default: 5300 llvm_unreachable("unexpected intrinsic"); 5301 } 5302 5303 Assert(ResultTy->getElementType()->isIntegerTy() || 5304 ResultTy->getElementType()->isFloatingPointTy(), 5305 "Result type must be an integer or floating-point type!", IF); 5306 5307 Assert(ResultTy->getElementType() == Op0ElemTy, 5308 "Vector element type mismatch of the result and first operand " 5309 "vector!", IF); 5310 5311 if (Op1ElemTy) 5312 Assert(ResultTy->getElementType() == Op1ElemTy, 5313 "Vector element type mismatch of the result and second operand " 5314 "vector!", IF); 5315 5316 Assert(cast<FixedVectorType>(ResultTy)->getNumElements() == 5317 NumRows->getZExtValue() * NumColumns->getZExtValue(), 5318 "Result of a matrix operation does not fit in the returned vector!"); 5319 5320 if (Stride) 5321 Assert(Stride->getZExtValue() >= NumRows->getZExtValue(), 5322 "Stride must be greater or equal than the number of rows!", IF); 5323 5324 break; 5325 } 5326 case Intrinsic::experimental_stepvector: { 5327 VectorType *VecTy = dyn_cast<VectorType>(Call.getType()); 5328 Assert(VecTy && VecTy->getScalarType()->isIntegerTy() && 5329 VecTy->getScalarSizeInBits() >= 8, 5330 "experimental_stepvector only supported for vectors of integers " 5331 "with a bitwidth of at least 8.", 5332 &Call); 5333 break; 5334 } 5335 case Intrinsic::experimental_vector_insert: { 5336 VectorType *VecTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 5337 VectorType *SubVecTy = cast<VectorType>(Call.getArgOperand(1)->getType()); 5338 5339 Assert(VecTy->getElementType() == SubVecTy->getElementType(), 5340 "experimental_vector_insert parameters must have the same element " 5341 "type.", 5342 &Call); 5343 break; 5344 } 5345 case Intrinsic::experimental_vector_extract: { 5346 VectorType *ResultTy = cast<VectorType>(Call.getType()); 5347 VectorType *VecTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 5348 5349 Assert(ResultTy->getElementType() == VecTy->getElementType(), 5350 "experimental_vector_extract result must have the same element " 5351 "type as the input vector.", 5352 &Call); 5353 break; 5354 } 5355 case Intrinsic::experimental_noalias_scope_decl: { 5356 NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call)); 5357 break; 5358 } 5359 }; 5360 } 5361 5362 /// Carefully grab the subprogram from a local scope. 5363 /// 5364 /// This carefully grabs the subprogram from a local scope, avoiding the 5365 /// built-in assertions that would typically fire. 5366 static DISubprogram *getSubprogram(Metadata *LocalScope) { 5367 if (!LocalScope) 5368 return nullptr; 5369 5370 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 5371 return SP; 5372 5373 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 5374 return getSubprogram(LB->getRawScope()); 5375 5376 // Just return null; broken scope chains are checked elsewhere. 5377 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 5378 return nullptr; 5379 } 5380 5381 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 5382 unsigned NumOperands; 5383 bool HasRoundingMD; 5384 switch (FPI.getIntrinsicID()) { 5385 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 5386 case Intrinsic::INTRINSIC: \ 5387 NumOperands = NARG; \ 5388 HasRoundingMD = ROUND_MODE; \ 5389 break; 5390 #include "llvm/IR/ConstrainedOps.def" 5391 default: 5392 llvm_unreachable("Invalid constrained FP intrinsic!"); 5393 } 5394 NumOperands += (1 + HasRoundingMD); 5395 // Compare intrinsics carry an extra predicate metadata operand. 5396 if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 5397 NumOperands += 1; 5398 Assert((FPI.getNumArgOperands() == NumOperands), 5399 "invalid arguments for constrained FP intrinsic", &FPI); 5400 5401 switch (FPI.getIntrinsicID()) { 5402 case Intrinsic::experimental_constrained_lrint: 5403 case Intrinsic::experimental_constrained_llrint: { 5404 Type *ValTy = FPI.getArgOperand(0)->getType(); 5405 Type *ResultTy = FPI.getType(); 5406 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5407 "Intrinsic does not support vectors", &FPI); 5408 } 5409 break; 5410 5411 case Intrinsic::experimental_constrained_lround: 5412 case Intrinsic::experimental_constrained_llround: { 5413 Type *ValTy = FPI.getArgOperand(0)->getType(); 5414 Type *ResultTy = FPI.getType(); 5415 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5416 "Intrinsic does not support vectors", &FPI); 5417 break; 5418 } 5419 5420 case Intrinsic::experimental_constrained_fcmp: 5421 case Intrinsic::experimental_constrained_fcmps: { 5422 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 5423 Assert(CmpInst::isFPPredicate(Pred), 5424 "invalid predicate for constrained FP comparison intrinsic", &FPI); 5425 break; 5426 } 5427 5428 case Intrinsic::experimental_constrained_fptosi: 5429 case Intrinsic::experimental_constrained_fptoui: { 5430 Value *Operand = FPI.getArgOperand(0); 5431 uint64_t NumSrcElem = 0; 5432 Assert(Operand->getType()->isFPOrFPVectorTy(), 5433 "Intrinsic first argument must be floating point", &FPI); 5434 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5435 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5436 } 5437 5438 Operand = &FPI; 5439 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5440 "Intrinsic first argument and result disagree on vector use", &FPI); 5441 Assert(Operand->getType()->isIntOrIntVectorTy(), 5442 "Intrinsic result must be an integer", &FPI); 5443 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5444 Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5445 "Intrinsic first argument and result vector lengths must be equal", 5446 &FPI); 5447 } 5448 } 5449 break; 5450 5451 case Intrinsic::experimental_constrained_sitofp: 5452 case Intrinsic::experimental_constrained_uitofp: { 5453 Value *Operand = FPI.getArgOperand(0); 5454 uint64_t NumSrcElem = 0; 5455 Assert(Operand->getType()->isIntOrIntVectorTy(), 5456 "Intrinsic first argument must be integer", &FPI); 5457 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5458 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5459 } 5460 5461 Operand = &FPI; 5462 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5463 "Intrinsic first argument and result disagree on vector use", &FPI); 5464 Assert(Operand->getType()->isFPOrFPVectorTy(), 5465 "Intrinsic result must be a floating point", &FPI); 5466 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5467 Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5468 "Intrinsic first argument and result vector lengths must be equal", 5469 &FPI); 5470 } 5471 } break; 5472 5473 case Intrinsic::experimental_constrained_fptrunc: 5474 case Intrinsic::experimental_constrained_fpext: { 5475 Value *Operand = FPI.getArgOperand(0); 5476 Type *OperandTy = Operand->getType(); 5477 Value *Result = &FPI; 5478 Type *ResultTy = Result->getType(); 5479 Assert(OperandTy->isFPOrFPVectorTy(), 5480 "Intrinsic first argument must be FP or FP vector", &FPI); 5481 Assert(ResultTy->isFPOrFPVectorTy(), 5482 "Intrinsic result must be FP or FP vector", &FPI); 5483 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 5484 "Intrinsic first argument and result disagree on vector use", &FPI); 5485 if (OperandTy->isVectorTy()) { 5486 Assert(cast<FixedVectorType>(OperandTy)->getNumElements() == 5487 cast<FixedVectorType>(ResultTy)->getNumElements(), 5488 "Intrinsic first argument and result vector lengths must be equal", 5489 &FPI); 5490 } 5491 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 5492 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 5493 "Intrinsic first argument's type must be larger than result type", 5494 &FPI); 5495 } else { 5496 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 5497 "Intrinsic first argument's type must be smaller than result type", 5498 &FPI); 5499 } 5500 } 5501 break; 5502 5503 default: 5504 break; 5505 } 5506 5507 // If a non-metadata argument is passed in a metadata slot then the 5508 // error will be caught earlier when the incorrect argument doesn't 5509 // match the specification in the intrinsic call table. Thus, no 5510 // argument type check is needed here. 5511 5512 Assert(FPI.getExceptionBehavior().hasValue(), 5513 "invalid exception behavior argument", &FPI); 5514 if (HasRoundingMD) { 5515 Assert(FPI.getRoundingMode().hasValue(), 5516 "invalid rounding mode argument", &FPI); 5517 } 5518 } 5519 5520 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 5521 auto *MD = DII.getRawLocation(); 5522 AssertDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) || 5523 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 5524 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 5525 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 5526 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 5527 DII.getRawVariable()); 5528 AssertDI(isa<DIExpression>(DII.getRawExpression()), 5529 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 5530 DII.getRawExpression()); 5531 5532 // Ignore broken !dbg attachments; they're checked elsewhere. 5533 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 5534 if (!isa<DILocation>(N)) 5535 return; 5536 5537 BasicBlock *BB = DII.getParent(); 5538 Function *F = BB ? BB->getParent() : nullptr; 5539 5540 // The scopes for variables and !dbg attachments must agree. 5541 DILocalVariable *Var = DII.getVariable(); 5542 DILocation *Loc = DII.getDebugLoc(); 5543 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5544 &DII, BB, F); 5545 5546 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 5547 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5548 if (!VarSP || !LocSP) 5549 return; // Broken scope chains are checked elsewhere. 5550 5551 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5552 " variable and !dbg attachment", 5553 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 5554 Loc->getScope()->getSubprogram()); 5555 5556 // This check is redundant with one in visitLocalVariable(). 5557 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 5558 Var->getRawType()); 5559 verifyFnArgs(DII); 5560 } 5561 5562 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 5563 AssertDI(isa<DILabel>(DLI.getRawLabel()), 5564 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 5565 DLI.getRawLabel()); 5566 5567 // Ignore broken !dbg attachments; they're checked elsewhere. 5568 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 5569 if (!isa<DILocation>(N)) 5570 return; 5571 5572 BasicBlock *BB = DLI.getParent(); 5573 Function *F = BB ? BB->getParent() : nullptr; 5574 5575 // The scopes for variables and !dbg attachments must agree. 5576 DILabel *Label = DLI.getLabel(); 5577 DILocation *Loc = DLI.getDebugLoc(); 5578 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5579 &DLI, BB, F); 5580 5581 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 5582 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5583 if (!LabelSP || !LocSP) 5584 return; 5585 5586 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5587 " label and !dbg attachment", 5588 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 5589 Loc->getScope()->getSubprogram()); 5590 } 5591 5592 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 5593 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 5594 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5595 5596 // We don't know whether this intrinsic verified correctly. 5597 if (!V || !E || !E->isValid()) 5598 return; 5599 5600 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 5601 auto Fragment = E->getFragmentInfo(); 5602 if (!Fragment) 5603 return; 5604 5605 // The frontend helps out GDB by emitting the members of local anonymous 5606 // unions as artificial local variables with shared storage. When SROA splits 5607 // the storage for artificial local variables that are smaller than the entire 5608 // union, the overhang piece will be outside of the allotted space for the 5609 // variable and this check fails. 5610 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 5611 if (V->isArtificial()) 5612 return; 5613 5614 verifyFragmentExpression(*V, *Fragment, &I); 5615 } 5616 5617 template <typename ValueOrMetadata> 5618 void Verifier::verifyFragmentExpression(const DIVariable &V, 5619 DIExpression::FragmentInfo Fragment, 5620 ValueOrMetadata *Desc) { 5621 // If there's no size, the type is broken, but that should be checked 5622 // elsewhere. 5623 auto VarSize = V.getSizeInBits(); 5624 if (!VarSize) 5625 return; 5626 5627 unsigned FragSize = Fragment.SizeInBits; 5628 unsigned FragOffset = Fragment.OffsetInBits; 5629 AssertDI(FragSize + FragOffset <= *VarSize, 5630 "fragment is larger than or outside of variable", Desc, &V); 5631 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 5632 } 5633 5634 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 5635 // This function does not take the scope of noninlined function arguments into 5636 // account. Don't run it if current function is nodebug, because it may 5637 // contain inlined debug intrinsics. 5638 if (!HasDebugInfo) 5639 return; 5640 5641 // For performance reasons only check non-inlined ones. 5642 if (I.getDebugLoc()->getInlinedAt()) 5643 return; 5644 5645 DILocalVariable *Var = I.getVariable(); 5646 AssertDI(Var, "dbg intrinsic without variable"); 5647 5648 unsigned ArgNo = Var->getArg(); 5649 if (!ArgNo) 5650 return; 5651 5652 // Verify there are no duplicate function argument debug info entries. 5653 // These will cause hard-to-debug assertions in the DWARF backend. 5654 if (DebugFnArgs.size() < ArgNo) 5655 DebugFnArgs.resize(ArgNo, nullptr); 5656 5657 auto *Prev = DebugFnArgs[ArgNo - 1]; 5658 DebugFnArgs[ArgNo - 1] = Var; 5659 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 5660 Prev, Var); 5661 } 5662 5663 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 5664 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5665 5666 // We don't know whether this intrinsic verified correctly. 5667 if (!E || !E->isValid()) 5668 return; 5669 5670 AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); 5671 } 5672 5673 void Verifier::verifyCompileUnits() { 5674 // When more than one Module is imported into the same context, such as during 5675 // an LTO build before linking the modules, ODR type uniquing may cause types 5676 // to point to a different CU. This check does not make sense in this case. 5677 if (M.getContext().isODRUniquingDebugTypes()) 5678 return; 5679 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 5680 SmallPtrSet<const Metadata *, 2> Listed; 5681 if (CUs) 5682 Listed.insert(CUs->op_begin(), CUs->op_end()); 5683 for (auto *CU : CUVisited) 5684 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 5685 CUVisited.clear(); 5686 } 5687 5688 void Verifier::verifyDeoptimizeCallingConvs() { 5689 if (DeoptimizeDeclarations.empty()) 5690 return; 5691 5692 const Function *First = DeoptimizeDeclarations[0]; 5693 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 5694 Assert(First->getCallingConv() == F->getCallingConv(), 5695 "All llvm.experimental.deoptimize declarations must have the same " 5696 "calling convention", 5697 First, F); 5698 } 5699 } 5700 5701 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 5702 bool HasSource = F.getSource().hasValue(); 5703 if (!HasSourceDebugInfo.count(&U)) 5704 HasSourceDebugInfo[&U] = HasSource; 5705 AssertDI(HasSource == HasSourceDebugInfo[&U], 5706 "inconsistent use of embedded source"); 5707 } 5708 5709 void Verifier::verifyNoAliasScopeDecl() { 5710 if (NoAliasScopeDecls.empty()) 5711 return; 5712 5713 // only a single scope must be declared at a time. 5714 for (auto *II : NoAliasScopeDecls) { 5715 assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl && 5716 "Not a llvm.experimental.noalias.scope.decl ?"); 5717 const auto *ScopeListMV = dyn_cast<MetadataAsValue>( 5718 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 5719 Assert(ScopeListMV != nullptr, 5720 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue " 5721 "argument", 5722 II); 5723 5724 const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata()); 5725 Assert(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", 5726 II); 5727 Assert(ScopeListMD->getNumOperands() == 1, 5728 "!id.scope.list must point to a list with a single scope", II); 5729 } 5730 5731 // Only check the domination rule when requested. Once all passes have been 5732 // adapted this option can go away. 5733 if (!VerifyNoAliasScopeDomination) 5734 return; 5735 5736 // Now sort the intrinsics based on the scope MDNode so that declarations of 5737 // the same scopes are next to each other. 5738 auto GetScope = [](IntrinsicInst *II) { 5739 const auto *ScopeListMV = cast<MetadataAsValue>( 5740 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 5741 return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0); 5742 }; 5743 5744 // We are sorting on MDNode pointers here. For valid input IR this is ok. 5745 // TODO: Sort on Metadata ID to avoid non-deterministic error messages. 5746 auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) { 5747 return GetScope(Lhs) < GetScope(Rhs); 5748 }; 5749 5750 llvm::sort(NoAliasScopeDecls, Compare); 5751 5752 // Go over the intrinsics and check that for the same scope, they are not 5753 // dominating each other. 5754 auto ItCurrent = NoAliasScopeDecls.begin(); 5755 while (ItCurrent != NoAliasScopeDecls.end()) { 5756 auto CurScope = GetScope(*ItCurrent); 5757 auto ItNext = ItCurrent; 5758 do { 5759 ++ItNext; 5760 } while (ItNext != NoAliasScopeDecls.end() && 5761 GetScope(*ItNext) == CurScope); 5762 5763 // [ItCurrent, ItNext) represents the declarations for the same scope. 5764 // Ensure they are not dominating each other.. but only if it is not too 5765 // expensive. 5766 if (ItNext - ItCurrent < 32) 5767 for (auto *I : llvm::make_range(ItCurrent, ItNext)) 5768 for (auto *J : llvm::make_range(ItCurrent, ItNext)) 5769 if (I != J) 5770 Assert(!DT.dominates(I, J), 5771 "llvm.experimental.noalias.scope.decl dominates another one " 5772 "with the same scope", 5773 I); 5774 ItCurrent = ItNext; 5775 } 5776 } 5777 5778 //===----------------------------------------------------------------------===// 5779 // Implement the public interfaces to this file... 5780 //===----------------------------------------------------------------------===// 5781 5782 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 5783 Function &F = const_cast<Function &>(f); 5784 5785 // Don't use a raw_null_ostream. Printing IR is expensive. 5786 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 5787 5788 // Note that this function's return value is inverted from what you would 5789 // expect of a function called "verify". 5790 return !V.verify(F); 5791 } 5792 5793 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 5794 bool *BrokenDebugInfo) { 5795 // Don't use a raw_null_ostream. Printing IR is expensive. 5796 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 5797 5798 bool Broken = false; 5799 for (const Function &F : M) 5800 Broken |= !V.verify(F); 5801 5802 Broken |= !V.verify(); 5803 if (BrokenDebugInfo) 5804 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 5805 // Note that this function's return value is inverted from what you would 5806 // expect of a function called "verify". 5807 return Broken; 5808 } 5809 5810 namespace { 5811 5812 struct VerifierLegacyPass : public FunctionPass { 5813 static char ID; 5814 5815 std::unique_ptr<Verifier> V; 5816 bool FatalErrors = true; 5817 5818 VerifierLegacyPass() : FunctionPass(ID) { 5819 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5820 } 5821 explicit VerifierLegacyPass(bool FatalErrors) 5822 : FunctionPass(ID), 5823 FatalErrors(FatalErrors) { 5824 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5825 } 5826 5827 bool doInitialization(Module &M) override { 5828 V = std::make_unique<Verifier>( 5829 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 5830 return false; 5831 } 5832 5833 bool runOnFunction(Function &F) override { 5834 if (!V->verify(F) && FatalErrors) { 5835 errs() << "in function " << F.getName() << '\n'; 5836 report_fatal_error("Broken function found, compilation aborted!"); 5837 } 5838 return false; 5839 } 5840 5841 bool doFinalization(Module &M) override { 5842 bool HasErrors = false; 5843 for (Function &F : M) 5844 if (F.isDeclaration()) 5845 HasErrors |= !V->verify(F); 5846 5847 HasErrors |= !V->verify(); 5848 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 5849 report_fatal_error("Broken module found, compilation aborted!"); 5850 return false; 5851 } 5852 5853 void getAnalysisUsage(AnalysisUsage &AU) const override { 5854 AU.setPreservesAll(); 5855 } 5856 }; 5857 5858 } // end anonymous namespace 5859 5860 /// Helper to issue failure from the TBAA verification 5861 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 5862 if (Diagnostic) 5863 return Diagnostic->CheckFailed(Args...); 5864 } 5865 5866 #define AssertTBAA(C, ...) \ 5867 do { \ 5868 if (!(C)) { \ 5869 CheckFailed(__VA_ARGS__); \ 5870 return false; \ 5871 } \ 5872 } while (false) 5873 5874 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 5875 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 5876 /// struct-type node describing an aggregate data structure (like a struct). 5877 TBAAVerifier::TBAABaseNodeSummary 5878 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 5879 bool IsNewFormat) { 5880 if (BaseNode->getNumOperands() < 2) { 5881 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 5882 return {true, ~0u}; 5883 } 5884 5885 auto Itr = TBAABaseNodes.find(BaseNode); 5886 if (Itr != TBAABaseNodes.end()) 5887 return Itr->second; 5888 5889 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 5890 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 5891 (void)InsertResult; 5892 assert(InsertResult.second && "We just checked!"); 5893 return Result; 5894 } 5895 5896 TBAAVerifier::TBAABaseNodeSummary 5897 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 5898 bool IsNewFormat) { 5899 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 5900 5901 if (BaseNode->getNumOperands() == 2) { 5902 // Scalar nodes can only be accessed at offset 0. 5903 return isValidScalarTBAANode(BaseNode) 5904 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 5905 : InvalidNode; 5906 } 5907 5908 if (IsNewFormat) { 5909 if (BaseNode->getNumOperands() % 3 != 0) { 5910 CheckFailed("Access tag nodes must have the number of operands that is a " 5911 "multiple of 3!", BaseNode); 5912 return InvalidNode; 5913 } 5914 } else { 5915 if (BaseNode->getNumOperands() % 2 != 1) { 5916 CheckFailed("Struct tag nodes must have an odd number of operands!", 5917 BaseNode); 5918 return InvalidNode; 5919 } 5920 } 5921 5922 // Check the type size field. 5923 if (IsNewFormat) { 5924 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5925 BaseNode->getOperand(1)); 5926 if (!TypeSizeNode) { 5927 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 5928 return InvalidNode; 5929 } 5930 } 5931 5932 // Check the type name field. In the new format it can be anything. 5933 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 5934 CheckFailed("Struct tag nodes have a string as their first operand", 5935 BaseNode); 5936 return InvalidNode; 5937 } 5938 5939 bool Failed = false; 5940 5941 Optional<APInt> PrevOffset; 5942 unsigned BitWidth = ~0u; 5943 5944 // We've already checked that BaseNode is not a degenerate root node with one 5945 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 5946 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5947 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5948 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5949 Idx += NumOpsPerField) { 5950 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 5951 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 5952 if (!isa<MDNode>(FieldTy)) { 5953 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 5954 Failed = true; 5955 continue; 5956 } 5957 5958 auto *OffsetEntryCI = 5959 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 5960 if (!OffsetEntryCI) { 5961 CheckFailed("Offset entries must be constants!", &I, BaseNode); 5962 Failed = true; 5963 continue; 5964 } 5965 5966 if (BitWidth == ~0u) 5967 BitWidth = OffsetEntryCI->getBitWidth(); 5968 5969 if (OffsetEntryCI->getBitWidth() != BitWidth) { 5970 CheckFailed( 5971 "Bitwidth between the offsets and struct type entries must match", &I, 5972 BaseNode); 5973 Failed = true; 5974 continue; 5975 } 5976 5977 // NB! As far as I can tell, we generate a non-strictly increasing offset 5978 // sequence only from structs that have zero size bit fields. When 5979 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 5980 // pick the field lexically the latest in struct type metadata node. This 5981 // mirrors the actual behavior of the alias analysis implementation. 5982 bool IsAscending = 5983 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 5984 5985 if (!IsAscending) { 5986 CheckFailed("Offsets must be increasing!", &I, BaseNode); 5987 Failed = true; 5988 } 5989 5990 PrevOffset = OffsetEntryCI->getValue(); 5991 5992 if (IsNewFormat) { 5993 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5994 BaseNode->getOperand(Idx + 2)); 5995 if (!MemberSizeNode) { 5996 CheckFailed("Member size entries must be constants!", &I, BaseNode); 5997 Failed = true; 5998 continue; 5999 } 6000 } 6001 } 6002 6003 return Failed ? InvalidNode 6004 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 6005 } 6006 6007 static bool IsRootTBAANode(const MDNode *MD) { 6008 return MD->getNumOperands() < 2; 6009 } 6010 6011 static bool IsScalarTBAANodeImpl(const MDNode *MD, 6012 SmallPtrSetImpl<const MDNode *> &Visited) { 6013 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 6014 return false; 6015 6016 if (!isa<MDString>(MD->getOperand(0))) 6017 return false; 6018 6019 if (MD->getNumOperands() == 3) { 6020 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 6021 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 6022 return false; 6023 } 6024 6025 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 6026 return Parent && Visited.insert(Parent).second && 6027 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 6028 } 6029 6030 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 6031 auto ResultIt = TBAAScalarNodes.find(MD); 6032 if (ResultIt != TBAAScalarNodes.end()) 6033 return ResultIt->second; 6034 6035 SmallPtrSet<const MDNode *, 4> Visited; 6036 bool Result = IsScalarTBAANodeImpl(MD, Visited); 6037 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 6038 (void)InsertResult; 6039 assert(InsertResult.second && "Just checked!"); 6040 6041 return Result; 6042 } 6043 6044 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 6045 /// Offset in place to be the offset within the field node returned. 6046 /// 6047 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 6048 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 6049 const MDNode *BaseNode, 6050 APInt &Offset, 6051 bool IsNewFormat) { 6052 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 6053 6054 // Scalar nodes have only one possible "field" -- their parent in the access 6055 // hierarchy. Offset must be zero at this point, but our caller is supposed 6056 // to Assert that. 6057 if (BaseNode->getNumOperands() == 2) 6058 return cast<MDNode>(BaseNode->getOperand(1)); 6059 6060 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 6061 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 6062 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 6063 Idx += NumOpsPerField) { 6064 auto *OffsetEntryCI = 6065 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 6066 if (OffsetEntryCI->getValue().ugt(Offset)) { 6067 if (Idx == FirstFieldOpNo) { 6068 CheckFailed("Could not find TBAA parent in struct type node", &I, 6069 BaseNode, &Offset); 6070 return nullptr; 6071 } 6072 6073 unsigned PrevIdx = Idx - NumOpsPerField; 6074 auto *PrevOffsetEntryCI = 6075 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 6076 Offset -= PrevOffsetEntryCI->getValue(); 6077 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 6078 } 6079 } 6080 6081 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 6082 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 6083 BaseNode->getOperand(LastIdx + 1)); 6084 Offset -= LastOffsetEntryCI->getValue(); 6085 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 6086 } 6087 6088 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 6089 if (!Type || Type->getNumOperands() < 3) 6090 return false; 6091 6092 // In the new format type nodes shall have a reference to the parent type as 6093 // its first operand. 6094 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 6095 if (!Parent) 6096 return false; 6097 6098 return true; 6099 } 6100 6101 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 6102 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 6103 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 6104 isa<AtomicCmpXchgInst>(I), 6105 "This instruction shall not have a TBAA access tag!", &I); 6106 6107 bool IsStructPathTBAA = 6108 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 6109 6110 AssertTBAA( 6111 IsStructPathTBAA, 6112 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 6113 6114 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 6115 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 6116 6117 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 6118 6119 if (IsNewFormat) { 6120 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 6121 "Access tag metadata must have either 4 or 5 operands", &I, MD); 6122 } else { 6123 AssertTBAA(MD->getNumOperands() < 5, 6124 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 6125 } 6126 6127 // Check the access size field. 6128 if (IsNewFormat) { 6129 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6130 MD->getOperand(3)); 6131 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 6132 } 6133 6134 // Check the immutability flag. 6135 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 6136 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 6137 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 6138 MD->getOperand(ImmutabilityFlagOpNo)); 6139 AssertTBAA(IsImmutableCI, 6140 "Immutability tag on struct tag metadata must be a constant", 6141 &I, MD); 6142 AssertTBAA( 6143 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 6144 "Immutability part of the struct tag metadata must be either 0 or 1", 6145 &I, MD); 6146 } 6147 6148 AssertTBAA(BaseNode && AccessType, 6149 "Malformed struct tag metadata: base and access-type " 6150 "should be non-null and point to Metadata nodes", 6151 &I, MD, BaseNode, AccessType); 6152 6153 if (!IsNewFormat) { 6154 AssertTBAA(isValidScalarTBAANode(AccessType), 6155 "Access type node must be a valid scalar type", &I, MD, 6156 AccessType); 6157 } 6158 6159 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 6160 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 6161 6162 APInt Offset = OffsetCI->getValue(); 6163 bool SeenAccessTypeInPath = false; 6164 6165 SmallPtrSet<MDNode *, 4> StructPath; 6166 6167 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 6168 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 6169 IsNewFormat)) { 6170 if (!StructPath.insert(BaseNode).second) { 6171 CheckFailed("Cycle detected in struct path", &I, MD); 6172 return false; 6173 } 6174 6175 bool Invalid; 6176 unsigned BaseNodeBitWidth; 6177 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 6178 IsNewFormat); 6179 6180 // If the base node is invalid in itself, then we've already printed all the 6181 // errors we wanted to print. 6182 if (Invalid) 6183 return false; 6184 6185 SeenAccessTypeInPath |= BaseNode == AccessType; 6186 6187 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 6188 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 6189 &I, MD, &Offset); 6190 6191 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 6192 (BaseNodeBitWidth == 0 && Offset == 0) || 6193 (IsNewFormat && BaseNodeBitWidth == ~0u), 6194 "Access bit-width not the same as description bit-width", &I, MD, 6195 BaseNodeBitWidth, Offset.getBitWidth()); 6196 6197 if (IsNewFormat && SeenAccessTypeInPath) 6198 break; 6199 } 6200 6201 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 6202 &I, MD); 6203 return true; 6204 } 6205 6206 char VerifierLegacyPass::ID = 0; 6207 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 6208 6209 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 6210 return new VerifierLegacyPass(FatalErrors); 6211 } 6212 6213 AnalysisKey VerifierAnalysis::Key; 6214 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 6215 ModuleAnalysisManager &) { 6216 Result Res; 6217 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 6218 return Res; 6219 } 6220 6221 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 6222 FunctionAnalysisManager &) { 6223 return { llvm::verifyFunction(F, &dbgs()), false }; 6224 } 6225 6226 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 6227 auto Res = AM.getResult<VerifierAnalysis>(M); 6228 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 6229 report_fatal_error("Broken module found, compilation aborted!"); 6230 6231 return PreservedAnalyses::all(); 6232 } 6233 6234 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 6235 auto res = AM.getResult<VerifierAnalysis>(F); 6236 if (res.IRBroken && FatalErrors) 6237 report_fatal_error("Broken function found, compilation aborted!"); 6238 6239 return PreservedAnalyses::all(); 6240 } 6241