1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // sanity checking of input to the system.
11 //
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
14 //
15 //  * Both of a binary operator's parameters are of the same type
16 //  * Verify that the indices of mem access instructions match other operands
17 //  * Verify that arithmetic and other things are only performed on first-class
18 //    types.  Verify that shifts & logicals only happen on integrals f.e.
19 //  * All of the constants in a switch statement are of the correct type
20 //  * The code is in valid SSA form
21 //  * It should be illegal to put a label into any other type (like a structure)
22 //    or to return one. [except constant arrays!]
23 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 //  * PHI nodes must have an entry for each predecessor, with no extras.
25 //  * PHI nodes must be the first thing in a basic block, all grouped together
26 //  * PHI nodes must have at least one entry
27 //  * All basic blocks should only end with terminator insts, not contain them
28 //  * The entry node to a function must not have predecessors
29 //  * All Instructions must be embedded into a basic block
30 //  * Functions cannot take a void-typed parameter
31 //  * Verify that a function's argument list agrees with it's declared type.
32 //  * It is illegal to specify a name for a void value.
33 //  * It is illegal to have a internal global value with no initializer
34 //  * It is illegal to have a ret instruction that returns a value that does not
35 //    agree with the function return value type.
36 //  * Function call argument types match the function prototype
37 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
38 //    only by the unwind edge of an invoke instruction.
39 //  * A landingpad instruction must be the first non-PHI instruction in the
40 //    block.
41 //  * Landingpad instructions must be in a function with a personality function.
42 //  * All other things that are tested by asserts spread about the code...
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/ilist.h"
62 #include "llvm/BinaryFormat/Dwarf.h"
63 #include "llvm/IR/Argument.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Comdat.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DebugInfo.h"
74 #include "llvm/IR/DebugInfoMetadata.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstVisitor.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/IntrinsicsWebAssembly.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/Metadata.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/ModuleSlotTracker.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Statepoint.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/Use.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/InitializePasses.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Debug.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include <algorithm>
110 #include <cassert>
111 #include <cstdint>
112 #include <memory>
113 #include <string>
114 #include <utility>
115 
116 using namespace llvm;
117 
118 static cl::opt<bool> VerifyNoAliasScopeDomination(
119     "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
120     cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
121              "scopes are not dominating"));
122 
123 namespace llvm {
124 
125 struct VerifierSupport {
126   raw_ostream *OS;
127   const Module &M;
128   ModuleSlotTracker MST;
129   Triple TT;
130   const DataLayout &DL;
131   LLVMContext &Context;
132 
133   /// Track the brokenness of the module while recursively visiting.
134   bool Broken = false;
135   /// Broken debug info can be "recovered" from by stripping the debug info.
136   bool BrokenDebugInfo = false;
137   /// Whether to treat broken debug info as an error.
138   bool TreatBrokenDebugInfoAsError = true;
139 
140   explicit VerifierSupport(raw_ostream *OS, const Module &M)
141       : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
142         Context(M.getContext()) {}
143 
144 private:
145   void Write(const Module *M) {
146     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
147   }
148 
149   void Write(const Value *V) {
150     if (V)
151       Write(*V);
152   }
153 
154   void Write(const Value &V) {
155     if (isa<Instruction>(V)) {
156       V.print(*OS, MST);
157       *OS << '\n';
158     } else {
159       V.printAsOperand(*OS, true, MST);
160       *OS << '\n';
161     }
162   }
163 
164   void Write(const Metadata *MD) {
165     if (!MD)
166       return;
167     MD->print(*OS, MST, &M);
168     *OS << '\n';
169   }
170 
171   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
172     Write(MD.get());
173   }
174 
175   void Write(const NamedMDNode *NMD) {
176     if (!NMD)
177       return;
178     NMD->print(*OS, MST);
179     *OS << '\n';
180   }
181 
182   void Write(Type *T) {
183     if (!T)
184       return;
185     *OS << ' ' << *T;
186   }
187 
188   void Write(const Comdat *C) {
189     if (!C)
190       return;
191     *OS << *C;
192   }
193 
194   void Write(const APInt *AI) {
195     if (!AI)
196       return;
197     *OS << *AI << '\n';
198   }
199 
200   void Write(const unsigned i) { *OS << i << '\n'; }
201 
202   // NOLINTNEXTLINE(readability-identifier-naming)
203   void Write(const Attribute *A) {
204     if (!A)
205       return;
206     *OS << A->getAsString() << '\n';
207   }
208 
209   // NOLINTNEXTLINE(readability-identifier-naming)
210   void Write(const AttributeSet *AS) {
211     if (!AS)
212       return;
213     *OS << AS->getAsString() << '\n';
214   }
215 
216   // NOLINTNEXTLINE(readability-identifier-naming)
217   void Write(const AttributeList *AL) {
218     if (!AL)
219       return;
220     AL->print(*OS);
221   }
222 
223   template <typename T> void Write(ArrayRef<T> Vs) {
224     for (const T &V : Vs)
225       Write(V);
226   }
227 
228   template <typename T1, typename... Ts>
229   void WriteTs(const T1 &V1, const Ts &... Vs) {
230     Write(V1);
231     WriteTs(Vs...);
232   }
233 
234   template <typename... Ts> void WriteTs() {}
235 
236 public:
237   /// A check failed, so printout out the condition and the message.
238   ///
239   /// This provides a nice place to put a breakpoint if you want to see why
240   /// something is not correct.
241   void CheckFailed(const Twine &Message) {
242     if (OS)
243       *OS << Message << '\n';
244     Broken = true;
245   }
246 
247   /// A check failed (with values to print).
248   ///
249   /// This calls the Message-only version so that the above is easier to set a
250   /// breakpoint on.
251   template <typename T1, typename... Ts>
252   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
253     CheckFailed(Message);
254     if (OS)
255       WriteTs(V1, Vs...);
256   }
257 
258   /// A debug info check failed.
259   void DebugInfoCheckFailed(const Twine &Message) {
260     if (OS)
261       *OS << Message << '\n';
262     Broken |= TreatBrokenDebugInfoAsError;
263     BrokenDebugInfo = true;
264   }
265 
266   /// A debug info check failed (with values to print).
267   template <typename T1, typename... Ts>
268   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
269                             const Ts &... Vs) {
270     DebugInfoCheckFailed(Message);
271     if (OS)
272       WriteTs(V1, Vs...);
273   }
274 };
275 
276 } // namespace llvm
277 
278 namespace {
279 
280 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
281   friend class InstVisitor<Verifier>;
282 
283   DominatorTree DT;
284 
285   /// When verifying a basic block, keep track of all of the
286   /// instructions we have seen so far.
287   ///
288   /// This allows us to do efficient dominance checks for the case when an
289   /// instruction has an operand that is an instruction in the same block.
290   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
291 
292   /// Keep track of the metadata nodes that have been checked already.
293   SmallPtrSet<const Metadata *, 32> MDNodes;
294 
295   /// Keep track which DISubprogram is attached to which function.
296   DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
297 
298   /// Track all DICompileUnits visited.
299   SmallPtrSet<const Metadata *, 2> CUVisited;
300 
301   /// The result type for a landingpad.
302   Type *LandingPadResultTy;
303 
304   /// Whether we've seen a call to @llvm.localescape in this function
305   /// already.
306   bool SawFrameEscape;
307 
308   /// Whether the current function has a DISubprogram attached to it.
309   bool HasDebugInfo = false;
310 
311   /// The current source language.
312   dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;
313 
314   /// Whether source was present on the first DIFile encountered in each CU.
315   DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
316 
317   /// Stores the count of how many objects were passed to llvm.localescape for a
318   /// given function and the largest index passed to llvm.localrecover.
319   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
320 
321   // Maps catchswitches and cleanuppads that unwind to siblings to the
322   // terminators that indicate the unwind, used to detect cycles therein.
323   MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
324 
325   /// Cache of constants visited in search of ConstantExprs.
326   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
327 
328   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
329   SmallVector<const Function *, 4> DeoptimizeDeclarations;
330 
331   /// Cache of attribute lists verified.
332   SmallPtrSet<const void *, 32> AttributeListsVisited;
333 
334   // Verify that this GlobalValue is only used in this module.
335   // This map is used to avoid visiting uses twice. We can arrive at a user
336   // twice, if they have multiple operands. In particular for very large
337   // constant expressions, we can arrive at a particular user many times.
338   SmallPtrSet<const Value *, 32> GlobalValueVisited;
339 
340   // Keeps track of duplicate function argument debug info.
341   SmallVector<const DILocalVariable *, 16> DebugFnArgs;
342 
343   TBAAVerifier TBAAVerifyHelper;
344 
345   SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
346 
347   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
348 
349 public:
350   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
351                     const Module &M)
352       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
353         SawFrameEscape(false), TBAAVerifyHelper(this) {
354     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
355   }
356 
357   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
358 
359   bool verify(const Function &F) {
360     assert(F.getParent() == &M &&
361            "An instance of this class only works with a specific module!");
362 
363     // First ensure the function is well-enough formed to compute dominance
364     // information, and directly compute a dominance tree. We don't rely on the
365     // pass manager to provide this as it isolates us from a potentially
366     // out-of-date dominator tree and makes it significantly more complex to run
367     // this code outside of a pass manager.
368     // FIXME: It's really gross that we have to cast away constness here.
369     if (!F.empty())
370       DT.recalculate(const_cast<Function &>(F));
371 
372     for (const BasicBlock &BB : F) {
373       if (!BB.empty() && BB.back().isTerminator())
374         continue;
375 
376       if (OS) {
377         *OS << "Basic Block in function '" << F.getName()
378             << "' does not have terminator!\n";
379         BB.printAsOperand(*OS, true, MST);
380         *OS << "\n";
381       }
382       return false;
383     }
384 
385     Broken = false;
386     // FIXME: We strip const here because the inst visitor strips const.
387     visit(const_cast<Function &>(F));
388     verifySiblingFuncletUnwinds();
389     InstsInThisBlock.clear();
390     DebugFnArgs.clear();
391     LandingPadResultTy = nullptr;
392     SawFrameEscape = false;
393     SiblingFuncletInfo.clear();
394     verifyNoAliasScopeDecl();
395     NoAliasScopeDecls.clear();
396 
397     return !Broken;
398   }
399 
400   /// Verify the module that this instance of \c Verifier was initialized with.
401   bool verify() {
402     Broken = false;
403 
404     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
405     for (const Function &F : M)
406       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
407         DeoptimizeDeclarations.push_back(&F);
408 
409     // Now that we've visited every function, verify that we never asked to
410     // recover a frame index that wasn't escaped.
411     verifyFrameRecoverIndices();
412     for (const GlobalVariable &GV : M.globals())
413       visitGlobalVariable(GV);
414 
415     for (const GlobalAlias &GA : M.aliases())
416       visitGlobalAlias(GA);
417 
418     for (const NamedMDNode &NMD : M.named_metadata())
419       visitNamedMDNode(NMD);
420 
421     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
422       visitComdat(SMEC.getValue());
423 
424     visitModuleFlags(M);
425     visitModuleIdents(M);
426     visitModuleCommandLines(M);
427 
428     verifyCompileUnits();
429 
430     verifyDeoptimizeCallingConvs();
431     DISubprogramAttachments.clear();
432     return !Broken;
433   }
434 
435 private:
436   /// Whether a metadata node is allowed to be, or contain, a DILocation.
437   enum class AreDebugLocsAllowed { No, Yes };
438 
439   // Verification methods...
440   void visitGlobalValue(const GlobalValue &GV);
441   void visitGlobalVariable(const GlobalVariable &GV);
442   void visitGlobalAlias(const GlobalAlias &GA);
443   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
444   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
445                            const GlobalAlias &A, const Constant &C);
446   void visitNamedMDNode(const NamedMDNode &NMD);
447   void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
448   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
449   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
450   void visitComdat(const Comdat &C);
451   void visitModuleIdents(const Module &M);
452   void visitModuleCommandLines(const Module &M);
453   void visitModuleFlags(const Module &M);
454   void visitModuleFlag(const MDNode *Op,
455                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
456                        SmallVectorImpl<const MDNode *> &Requirements);
457   void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
458   void visitFunction(const Function &F);
459   void visitBasicBlock(BasicBlock &BB);
460   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
461   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
462   void visitProfMetadata(Instruction &I, MDNode *MD);
463   void visitAnnotationMetadata(MDNode *Annotation);
464   void visitAliasScopeMetadata(const MDNode *MD);
465   void visitAliasScopeListMetadata(const MDNode *MD);
466 
467   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
468 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
469 #include "llvm/IR/Metadata.def"
470   void visitDIScope(const DIScope &N);
471   void visitDIVariable(const DIVariable &N);
472   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
473   void visitDITemplateParameter(const DITemplateParameter &N);
474 
475   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
476 
477   // InstVisitor overrides...
478   using InstVisitor<Verifier>::visit;
479   void visit(Instruction &I);
480 
481   void visitTruncInst(TruncInst &I);
482   void visitZExtInst(ZExtInst &I);
483   void visitSExtInst(SExtInst &I);
484   void visitFPTruncInst(FPTruncInst &I);
485   void visitFPExtInst(FPExtInst &I);
486   void visitFPToUIInst(FPToUIInst &I);
487   void visitFPToSIInst(FPToSIInst &I);
488   void visitUIToFPInst(UIToFPInst &I);
489   void visitSIToFPInst(SIToFPInst &I);
490   void visitIntToPtrInst(IntToPtrInst &I);
491   void visitPtrToIntInst(PtrToIntInst &I);
492   void visitBitCastInst(BitCastInst &I);
493   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
494   void visitPHINode(PHINode &PN);
495   void visitCallBase(CallBase &Call);
496   void visitUnaryOperator(UnaryOperator &U);
497   void visitBinaryOperator(BinaryOperator &B);
498   void visitICmpInst(ICmpInst &IC);
499   void visitFCmpInst(FCmpInst &FC);
500   void visitExtractElementInst(ExtractElementInst &EI);
501   void visitInsertElementInst(InsertElementInst &EI);
502   void visitShuffleVectorInst(ShuffleVectorInst &EI);
503   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
504   void visitCallInst(CallInst &CI);
505   void visitInvokeInst(InvokeInst &II);
506   void visitGetElementPtrInst(GetElementPtrInst &GEP);
507   void visitLoadInst(LoadInst &LI);
508   void visitStoreInst(StoreInst &SI);
509   void verifyDominatesUse(Instruction &I, unsigned i);
510   void visitInstruction(Instruction &I);
511   void visitTerminator(Instruction &I);
512   void visitBranchInst(BranchInst &BI);
513   void visitReturnInst(ReturnInst &RI);
514   void visitSwitchInst(SwitchInst &SI);
515   void visitIndirectBrInst(IndirectBrInst &BI);
516   void visitCallBrInst(CallBrInst &CBI);
517   void visitSelectInst(SelectInst &SI);
518   void visitUserOp1(Instruction &I);
519   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
520   void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
521   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
522   void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
523   void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
524   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
525   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
526   void visitFenceInst(FenceInst &FI);
527   void visitAllocaInst(AllocaInst &AI);
528   void visitExtractValueInst(ExtractValueInst &EVI);
529   void visitInsertValueInst(InsertValueInst &IVI);
530   void visitEHPadPredecessors(Instruction &I);
531   void visitLandingPadInst(LandingPadInst &LPI);
532   void visitResumeInst(ResumeInst &RI);
533   void visitCatchPadInst(CatchPadInst &CPI);
534   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
535   void visitCleanupPadInst(CleanupPadInst &CPI);
536   void visitFuncletPadInst(FuncletPadInst &FPI);
537   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
538   void visitCleanupReturnInst(CleanupReturnInst &CRI);
539 
540   void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
541   void verifySwiftErrorValue(const Value *SwiftErrorVal);
542   void verifyTailCCMustTailAttrs(AttrBuilder Attrs, StringRef Context);
543   void verifyMustTailCall(CallInst &CI);
544   bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
545   void verifyAttributeTypes(AttributeSet Attrs, const Value *V);
546   void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
547   void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
548                                     const Value *V);
549   void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
550                            const Value *V, bool IsIntrinsic);
551   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
552 
553   void visitConstantExprsRecursively(const Constant *EntryC);
554   void visitConstantExpr(const ConstantExpr *CE);
555   void verifyStatepoint(const CallBase &Call);
556   void verifyFrameRecoverIndices();
557   void verifySiblingFuncletUnwinds();
558 
559   void verifyFragmentExpression(const DbgVariableIntrinsic &I);
560   template <typename ValueOrMetadata>
561   void verifyFragmentExpression(const DIVariable &V,
562                                 DIExpression::FragmentInfo Fragment,
563                                 ValueOrMetadata *Desc);
564   void verifyFnArgs(const DbgVariableIntrinsic &I);
565   void verifyNotEntryValue(const DbgVariableIntrinsic &I);
566 
567   /// Module-level debug info verification...
568   void verifyCompileUnits();
569 
570   /// Module-level verification that all @llvm.experimental.deoptimize
571   /// declarations share the same calling convention.
572   void verifyDeoptimizeCallingConvs();
573 
574   void verifyAttachedCallBundle(const CallBase &Call,
575                                 const OperandBundleUse &BU);
576 
577   /// Verify all-or-nothing property of DIFile source attribute within a CU.
578   void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
579 
580   /// Verify the llvm.experimental.noalias.scope.decl declarations
581   void verifyNoAliasScopeDecl();
582 };
583 
584 } // end anonymous namespace
585 
586 /// We know that cond should be true, if not print an error message.
587 #define Assert(C, ...) \
588   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
589 
590 /// We know that a debug info condition should be true, if not print
591 /// an error message.
592 #define AssertDI(C, ...) \
593   do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
594 
595 void Verifier::visit(Instruction &I) {
596   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
597     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
598   InstVisitor<Verifier>::visit(I);
599 }
600 
601 // Helper to recursively iterate over indirect users. By
602 // returning false, the callback can ask to stop recursing
603 // further.
604 static void forEachUser(const Value *User,
605                         SmallPtrSet<const Value *, 32> &Visited,
606                         llvm::function_ref<bool(const Value *)> Callback) {
607   if (!Visited.insert(User).second)
608     return;
609   for (const Value *TheNextUser : User->materialized_users())
610     if (Callback(TheNextUser))
611       forEachUser(TheNextUser, Visited, Callback);
612 }
613 
614 void Verifier::visitGlobalValue(const GlobalValue &GV) {
615   Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
616          "Global is external, but doesn't have external or weak linkage!", &GV);
617 
618   if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV))
619     Assert(GO->getAlignment() <= Value::MaximumAlignment,
620            "huge alignment values are unsupported", GO);
621   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
622          "Only global variables can have appending linkage!", &GV);
623 
624   if (GV.hasAppendingLinkage()) {
625     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
626     Assert(GVar && GVar->getValueType()->isArrayTy(),
627            "Only global arrays can have appending linkage!", GVar);
628   }
629 
630   if (GV.isDeclarationForLinker())
631     Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
632 
633   if (GV.hasDLLImportStorageClass()) {
634     Assert(!GV.isDSOLocal(),
635            "GlobalValue with DLLImport Storage is dso_local!", &GV);
636 
637     Assert((GV.isDeclaration() &&
638             (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
639                GV.hasAvailableExternallyLinkage(),
640            "Global is marked as dllimport, but not external", &GV);
641   }
642 
643   if (GV.isImplicitDSOLocal())
644     Assert(GV.isDSOLocal(),
645            "GlobalValue with local linkage or non-default "
646            "visibility must be dso_local!",
647            &GV);
648 
649   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
650     if (const Instruction *I = dyn_cast<Instruction>(V)) {
651       if (!I->getParent() || !I->getParent()->getParent())
652         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
653                     I);
654       else if (I->getParent()->getParent()->getParent() != &M)
655         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
656                     I->getParent()->getParent(),
657                     I->getParent()->getParent()->getParent());
658       return false;
659     } else if (const Function *F = dyn_cast<Function>(V)) {
660       if (F->getParent() != &M)
661         CheckFailed("Global is used by function in a different module", &GV, &M,
662                     F, F->getParent());
663       return false;
664     }
665     return true;
666   });
667 }
668 
669 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
670   if (GV.hasInitializer()) {
671     Assert(GV.getInitializer()->getType() == GV.getValueType(),
672            "Global variable initializer type does not match global "
673            "variable type!",
674            &GV);
675     // If the global has common linkage, it must have a zero initializer and
676     // cannot be constant.
677     if (GV.hasCommonLinkage()) {
678       Assert(GV.getInitializer()->isNullValue(),
679              "'common' global must have a zero initializer!", &GV);
680       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
681              &GV);
682       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
683     }
684   }
685 
686   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
687                        GV.getName() == "llvm.global_dtors")) {
688     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
689            "invalid linkage for intrinsic global variable", &GV);
690     // Don't worry about emitting an error for it not being an array,
691     // visitGlobalValue will complain on appending non-array.
692     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
693       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
694       PointerType *FuncPtrTy =
695           FunctionType::get(Type::getVoidTy(Context), false)->
696           getPointerTo(DL.getProgramAddressSpace());
697       Assert(STy &&
698                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
699                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
700                  STy->getTypeAtIndex(1) == FuncPtrTy,
701              "wrong type for intrinsic global variable", &GV);
702       Assert(STy->getNumElements() == 3,
703              "the third field of the element type is mandatory, "
704              "specify i8* null to migrate from the obsoleted 2-field form");
705       Type *ETy = STy->getTypeAtIndex(2);
706       Type *Int8Ty = Type::getInt8Ty(ETy->getContext());
707       Assert(ETy->isPointerTy() &&
708                  cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty),
709              "wrong type for intrinsic global variable", &GV);
710     }
711   }
712 
713   if (GV.hasName() && (GV.getName() == "llvm.used" ||
714                        GV.getName() == "llvm.compiler.used")) {
715     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
716            "invalid linkage for intrinsic global variable", &GV);
717     Type *GVType = GV.getValueType();
718     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
719       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
720       Assert(PTy, "wrong type for intrinsic global variable", &GV);
721       if (GV.hasInitializer()) {
722         const Constant *Init = GV.getInitializer();
723         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
724         Assert(InitArray, "wrong initalizer for intrinsic global variable",
725                Init);
726         for (Value *Op : InitArray->operands()) {
727           Value *V = Op->stripPointerCasts();
728           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
729                      isa<GlobalAlias>(V),
730                  "invalid llvm.used member", V);
731           Assert(V->hasName(), "members of llvm.used must be named", V);
732         }
733       }
734     }
735   }
736 
737   // Visit any debug info attachments.
738   SmallVector<MDNode *, 1> MDs;
739   GV.getMetadata(LLVMContext::MD_dbg, MDs);
740   for (auto *MD : MDs) {
741     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
742       visitDIGlobalVariableExpression(*GVE);
743     else
744       AssertDI(false, "!dbg attachment of global variable must be a "
745                       "DIGlobalVariableExpression");
746   }
747 
748   // Scalable vectors cannot be global variables, since we don't know
749   // the runtime size. If the global is an array containing scalable vectors,
750   // that will be caught by the isValidElementType methods in StructType or
751   // ArrayType instead.
752   Assert(!isa<ScalableVectorType>(GV.getValueType()),
753          "Globals cannot contain scalable vectors", &GV);
754 
755   if (auto *STy = dyn_cast<StructType>(GV.getValueType()))
756     Assert(!STy->containsScalableVectorType(),
757            "Globals cannot contain scalable vectors", &GV);
758 
759   if (!GV.hasInitializer()) {
760     visitGlobalValue(GV);
761     return;
762   }
763 
764   // Walk any aggregate initializers looking for bitcasts between address spaces
765   visitConstantExprsRecursively(GV.getInitializer());
766 
767   visitGlobalValue(GV);
768 }
769 
770 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
771   SmallPtrSet<const GlobalAlias*, 4> Visited;
772   Visited.insert(&GA);
773   visitAliaseeSubExpr(Visited, GA, C);
774 }
775 
776 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
777                                    const GlobalAlias &GA, const Constant &C) {
778   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
779     Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
780            &GA);
781 
782     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
783       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
784 
785       Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
786              &GA);
787     } else {
788       // Only continue verifying subexpressions of GlobalAliases.
789       // Do not recurse into global initializers.
790       return;
791     }
792   }
793 
794   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
795     visitConstantExprsRecursively(CE);
796 
797   for (const Use &U : C.operands()) {
798     Value *V = &*U;
799     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
800       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
801     else if (const auto *C2 = dyn_cast<Constant>(V))
802       visitAliaseeSubExpr(Visited, GA, *C2);
803   }
804 }
805 
806 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
807   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
808          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
809          "weak_odr, or external linkage!",
810          &GA);
811   const Constant *Aliasee = GA.getAliasee();
812   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
813   Assert(GA.getType() == Aliasee->getType(),
814          "Alias and aliasee types should match!", &GA);
815 
816   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
817          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
818 
819   visitAliaseeSubExpr(GA, *Aliasee);
820 
821   visitGlobalValue(GA);
822 }
823 
824 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
825   // There used to be various other llvm.dbg.* nodes, but we don't support
826   // upgrading them and we want to reserve the namespace for future uses.
827   if (NMD.getName().startswith("llvm.dbg."))
828     AssertDI(NMD.getName() == "llvm.dbg.cu",
829              "unrecognized named metadata node in the llvm.dbg namespace",
830              &NMD);
831   for (const MDNode *MD : NMD.operands()) {
832     if (NMD.getName() == "llvm.dbg.cu")
833       AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
834 
835     if (!MD)
836       continue;
837 
838     visitMDNode(*MD, AreDebugLocsAllowed::Yes);
839   }
840 }
841 
842 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
843   // Only visit each node once.  Metadata can be mutually recursive, so this
844   // avoids infinite recursion here, as well as being an optimization.
845   if (!MDNodes.insert(&MD).second)
846     return;
847 
848   Assert(&MD.getContext() == &Context,
849          "MDNode context does not match Module context!", &MD);
850 
851   switch (MD.getMetadataID()) {
852   default:
853     llvm_unreachable("Invalid MDNode subclass");
854   case Metadata::MDTupleKind:
855     break;
856 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
857   case Metadata::CLASS##Kind:                                                  \
858     visit##CLASS(cast<CLASS>(MD));                                             \
859     break;
860 #include "llvm/IR/Metadata.def"
861   }
862 
863   for (const Metadata *Op : MD.operands()) {
864     if (!Op)
865       continue;
866     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
867            &MD, Op);
868     AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
869              "DILocation not allowed within this metadata node", &MD, Op);
870     if (auto *N = dyn_cast<MDNode>(Op)) {
871       visitMDNode(*N, AllowLocs);
872       continue;
873     }
874     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
875       visitValueAsMetadata(*V, nullptr);
876       continue;
877     }
878   }
879 
880   // Check these last, so we diagnose problems in operands first.
881   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
882   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
883 }
884 
885 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
886   Assert(MD.getValue(), "Expected valid value", &MD);
887   Assert(!MD.getValue()->getType()->isMetadataTy(),
888          "Unexpected metadata round-trip through values", &MD, MD.getValue());
889 
890   auto *L = dyn_cast<LocalAsMetadata>(&MD);
891   if (!L)
892     return;
893 
894   Assert(F, "function-local metadata used outside a function", L);
895 
896   // If this was an instruction, bb, or argument, verify that it is in the
897   // function that we expect.
898   Function *ActualF = nullptr;
899   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
900     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
901     ActualF = I->getParent()->getParent();
902   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
903     ActualF = BB->getParent();
904   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
905     ActualF = A->getParent();
906   assert(ActualF && "Unimplemented function local metadata case!");
907 
908   Assert(ActualF == F, "function-local metadata used in wrong function", L);
909 }
910 
911 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
912   Metadata *MD = MDV.getMetadata();
913   if (auto *N = dyn_cast<MDNode>(MD)) {
914     visitMDNode(*N, AreDebugLocsAllowed::No);
915     return;
916   }
917 
918   // Only visit each node once.  Metadata can be mutually recursive, so this
919   // avoids infinite recursion here, as well as being an optimization.
920   if (!MDNodes.insert(MD).second)
921     return;
922 
923   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
924     visitValueAsMetadata(*V, F);
925 }
926 
927 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
928 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
929 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
930 
931 void Verifier::visitDILocation(const DILocation &N) {
932   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
933            "location requires a valid scope", &N, N.getRawScope());
934   if (auto *IA = N.getRawInlinedAt())
935     AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
936   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
937     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
938 }
939 
940 void Verifier::visitGenericDINode(const GenericDINode &N) {
941   AssertDI(N.getTag(), "invalid tag", &N);
942 }
943 
944 void Verifier::visitDIScope(const DIScope &N) {
945   if (auto *F = N.getRawFile())
946     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
947 }
948 
949 void Verifier::visitDISubrange(const DISubrange &N) {
950   AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
951   bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang);
952   AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||
953                N.getRawUpperBound(),
954            "Subrange must contain count or upperBound", &N);
955   AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
956            "Subrange can have any one of count or upperBound", &N);
957   auto *CBound = N.getRawCountNode();
958   AssertDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
959                isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
960            "Count must be signed constant or DIVariable or DIExpression", &N);
961   auto Count = N.getCount();
962   AssertDI(!Count || !Count.is<ConstantInt *>() ||
963                Count.get<ConstantInt *>()->getSExtValue() >= -1,
964            "invalid subrange count", &N);
965   auto *LBound = N.getRawLowerBound();
966   AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
967                isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
968            "LowerBound must be signed constant or DIVariable or DIExpression",
969            &N);
970   auto *UBound = N.getRawUpperBound();
971   AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
972                isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
973            "UpperBound must be signed constant or DIVariable or DIExpression",
974            &N);
975   auto *Stride = N.getRawStride();
976   AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
977                isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
978            "Stride must be signed constant or DIVariable or DIExpression", &N);
979 }
980 
981 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
982   AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
983   AssertDI(N.getRawCountNode() || N.getRawUpperBound(),
984            "GenericSubrange must contain count or upperBound", &N);
985   AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
986            "GenericSubrange can have any one of count or upperBound", &N);
987   auto *CBound = N.getRawCountNode();
988   AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
989            "Count must be signed constant or DIVariable or DIExpression", &N);
990   auto *LBound = N.getRawLowerBound();
991   AssertDI(LBound, "GenericSubrange must contain lowerBound", &N);
992   AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
993            "LowerBound must be signed constant or DIVariable or DIExpression",
994            &N);
995   auto *UBound = N.getRawUpperBound();
996   AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
997            "UpperBound must be signed constant or DIVariable or DIExpression",
998            &N);
999   auto *Stride = N.getRawStride();
1000   AssertDI(Stride, "GenericSubrange must contain stride", &N);
1001   AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1002            "Stride must be signed constant or DIVariable or DIExpression", &N);
1003 }
1004 
1005 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
1006   AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
1007 }
1008 
1009 void Verifier::visitDIBasicType(const DIBasicType &N) {
1010   AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
1011                N.getTag() == dwarf::DW_TAG_unspecified_type ||
1012                N.getTag() == dwarf::DW_TAG_string_type,
1013            "invalid tag", &N);
1014 }
1015 
1016 void Verifier::visitDIStringType(const DIStringType &N) {
1017   AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
1018   AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
1019             "has conflicting flags", &N);
1020 }
1021 
1022 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
1023   // Common scope checks.
1024   visitDIScope(N);
1025 
1026   AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
1027                N.getTag() == dwarf::DW_TAG_pointer_type ||
1028                N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1029                N.getTag() == dwarf::DW_TAG_reference_type ||
1030                N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1031                N.getTag() == dwarf::DW_TAG_const_type ||
1032                N.getTag() == dwarf::DW_TAG_volatile_type ||
1033                N.getTag() == dwarf::DW_TAG_restrict_type ||
1034                N.getTag() == dwarf::DW_TAG_atomic_type ||
1035                N.getTag() == dwarf::DW_TAG_member ||
1036                N.getTag() == dwarf::DW_TAG_inheritance ||
1037                N.getTag() == dwarf::DW_TAG_friend ||
1038                N.getTag() == dwarf::DW_TAG_set_type,
1039            "invalid tag", &N);
1040   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1041     AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
1042              N.getRawExtraData());
1043   }
1044 
1045   if (N.getTag() == dwarf::DW_TAG_set_type) {
1046     if (auto *T = N.getRawBaseType()) {
1047       auto *Enum = dyn_cast_or_null<DICompositeType>(T);
1048       auto *Basic = dyn_cast_or_null<DIBasicType>(T);
1049       AssertDI(
1050           (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1051               (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1052                          Basic->getEncoding() == dwarf::DW_ATE_signed ||
1053                          Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1054                          Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1055                          Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1056           "invalid set base type", &N, T);
1057     }
1058   }
1059 
1060   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1061   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
1062            N.getRawBaseType());
1063 
1064   if (N.getDWARFAddressSpace()) {
1065     AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
1066                  N.getTag() == dwarf::DW_TAG_reference_type ||
1067                  N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1068              "DWARF address space only applies to pointer or reference types",
1069              &N);
1070   }
1071 }
1072 
1073 /// Detect mutually exclusive flags.
1074 static bool hasConflictingReferenceFlags(unsigned Flags) {
1075   return ((Flags & DINode::FlagLValueReference) &&
1076           (Flags & DINode::FlagRValueReference)) ||
1077          ((Flags & DINode::FlagTypePassByValue) &&
1078           (Flags & DINode::FlagTypePassByReference));
1079 }
1080 
1081 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
1082   auto *Params = dyn_cast<MDTuple>(&RawParams);
1083   AssertDI(Params, "invalid template params", &N, &RawParams);
1084   for (Metadata *Op : Params->operands()) {
1085     AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
1086              &N, Params, Op);
1087   }
1088 }
1089 
1090 void Verifier::visitDICompositeType(const DICompositeType &N) {
1091   // Common scope checks.
1092   visitDIScope(N);
1093 
1094   AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
1095                N.getTag() == dwarf::DW_TAG_structure_type ||
1096                N.getTag() == dwarf::DW_TAG_union_type ||
1097                N.getTag() == dwarf::DW_TAG_enumeration_type ||
1098                N.getTag() == dwarf::DW_TAG_class_type ||
1099                N.getTag() == dwarf::DW_TAG_variant_part ||
1100                N.getTag() == dwarf::DW_TAG_namelist,
1101            "invalid tag", &N);
1102 
1103   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1104   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
1105            N.getRawBaseType());
1106 
1107   AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
1108            "invalid composite elements", &N, N.getRawElements());
1109   AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
1110            N.getRawVTableHolder());
1111   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1112            "invalid reference flags", &N);
1113   unsigned DIBlockByRefStruct = 1 << 4;
1114   AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,
1115            "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
1116 
1117   if (N.isVector()) {
1118     const DINodeArray Elements = N.getElements();
1119     AssertDI(Elements.size() == 1 &&
1120              Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1121              "invalid vector, expected one element of type subrange", &N);
1122   }
1123 
1124   if (auto *Params = N.getRawTemplateParams())
1125     visitTemplateParams(N, *Params);
1126 
1127   if (auto *D = N.getRawDiscriminator()) {
1128     AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1129              "discriminator can only appear on variant part");
1130   }
1131 
1132   if (N.getRawDataLocation()) {
1133     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1134              "dataLocation can only appear in array type");
1135   }
1136 
1137   if (N.getRawAssociated()) {
1138     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1139              "associated can only appear in array type");
1140   }
1141 
1142   if (N.getRawAllocated()) {
1143     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1144              "allocated can only appear in array type");
1145   }
1146 
1147   if (N.getRawRank()) {
1148     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1149              "rank can only appear in array type");
1150   }
1151 }
1152 
1153 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1154   AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1155   if (auto *Types = N.getRawTypeArray()) {
1156     AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1157     for (Metadata *Ty : N.getTypeArray()->operands()) {
1158       AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1159     }
1160   }
1161   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1162            "invalid reference flags", &N);
1163 }
1164 
1165 void Verifier::visitDIFile(const DIFile &N) {
1166   AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1167   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1168   if (Checksum) {
1169     AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1170              "invalid checksum kind", &N);
1171     size_t Size;
1172     switch (Checksum->Kind) {
1173     case DIFile::CSK_MD5:
1174       Size = 32;
1175       break;
1176     case DIFile::CSK_SHA1:
1177       Size = 40;
1178       break;
1179     case DIFile::CSK_SHA256:
1180       Size = 64;
1181       break;
1182     }
1183     AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1184     AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1185              "invalid checksum", &N);
1186   }
1187 }
1188 
1189 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1190   AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1191   AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1192 
1193   // Don't bother verifying the compilation directory or producer string
1194   // as those could be empty.
1195   AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1196            N.getRawFile());
1197   AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1198            N.getFile());
1199 
1200   CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();
1201 
1202   verifySourceDebugInfo(N, *N.getFile());
1203 
1204   AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1205            "invalid emission kind", &N);
1206 
1207   if (auto *Array = N.getRawEnumTypes()) {
1208     AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1209     for (Metadata *Op : N.getEnumTypes()->operands()) {
1210       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1211       AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1212                "invalid enum type", &N, N.getEnumTypes(), Op);
1213     }
1214   }
1215   if (auto *Array = N.getRawRetainedTypes()) {
1216     AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1217     for (Metadata *Op : N.getRetainedTypes()->operands()) {
1218       AssertDI(Op && (isa<DIType>(Op) ||
1219                       (isa<DISubprogram>(Op) &&
1220                        !cast<DISubprogram>(Op)->isDefinition())),
1221                "invalid retained type", &N, Op);
1222     }
1223   }
1224   if (auto *Array = N.getRawGlobalVariables()) {
1225     AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1226     for (Metadata *Op : N.getGlobalVariables()->operands()) {
1227       AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1228                "invalid global variable ref", &N, Op);
1229     }
1230   }
1231   if (auto *Array = N.getRawImportedEntities()) {
1232     AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1233     for (Metadata *Op : N.getImportedEntities()->operands()) {
1234       AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1235                &N, Op);
1236     }
1237   }
1238   if (auto *Array = N.getRawMacros()) {
1239     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1240     for (Metadata *Op : N.getMacros()->operands()) {
1241       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1242     }
1243   }
1244   CUVisited.insert(&N);
1245 }
1246 
1247 void Verifier::visitDISubprogram(const DISubprogram &N) {
1248   AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1249   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1250   if (auto *F = N.getRawFile())
1251     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1252   else
1253     AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1254   if (auto *T = N.getRawType())
1255     AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1256   AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1257            N.getRawContainingType());
1258   if (auto *Params = N.getRawTemplateParams())
1259     visitTemplateParams(N, *Params);
1260   if (auto *S = N.getRawDeclaration())
1261     AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1262              "invalid subprogram declaration", &N, S);
1263   if (auto *RawNode = N.getRawRetainedNodes()) {
1264     auto *Node = dyn_cast<MDTuple>(RawNode);
1265     AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1266     for (Metadata *Op : Node->operands()) {
1267       AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1268                "invalid retained nodes, expected DILocalVariable or DILabel",
1269                &N, Node, Op);
1270     }
1271   }
1272   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1273            "invalid reference flags", &N);
1274 
1275   auto *Unit = N.getRawUnit();
1276   if (N.isDefinition()) {
1277     // Subprogram definitions (not part of the type hierarchy).
1278     AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1279     AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1280     AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1281     if (N.getFile())
1282       verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1283   } else {
1284     // Subprogram declarations (part of the type hierarchy).
1285     AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1286   }
1287 
1288   if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1289     auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1290     AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1291     for (Metadata *Op : ThrownTypes->operands())
1292       AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1293                Op);
1294   }
1295 
1296   if (N.areAllCallsDescribed())
1297     AssertDI(N.isDefinition(),
1298              "DIFlagAllCallsDescribed must be attached to a definition");
1299 }
1300 
1301 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1302   AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1303   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1304            "invalid local scope", &N, N.getRawScope());
1305   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1306     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1307 }
1308 
1309 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1310   visitDILexicalBlockBase(N);
1311 
1312   AssertDI(N.getLine() || !N.getColumn(),
1313            "cannot have column info without line info", &N);
1314 }
1315 
1316 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1317   visitDILexicalBlockBase(N);
1318 }
1319 
1320 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1321   AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1322   if (auto *S = N.getRawScope())
1323     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1324   if (auto *S = N.getRawDecl())
1325     AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1326 }
1327 
1328 void Verifier::visitDINamespace(const DINamespace &N) {
1329   AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1330   if (auto *S = N.getRawScope())
1331     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1332 }
1333 
1334 void Verifier::visitDIMacro(const DIMacro &N) {
1335   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1336                N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1337            "invalid macinfo type", &N);
1338   AssertDI(!N.getName().empty(), "anonymous macro", &N);
1339   if (!N.getValue().empty()) {
1340     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1341   }
1342 }
1343 
1344 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1345   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1346            "invalid macinfo type", &N);
1347   if (auto *F = N.getRawFile())
1348     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1349 
1350   if (auto *Array = N.getRawElements()) {
1351     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1352     for (Metadata *Op : N.getElements()->operands()) {
1353       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1354     }
1355   }
1356 }
1357 
1358 void Verifier::visitDIArgList(const DIArgList &N) {
1359   AssertDI(!N.getNumOperands(),
1360            "DIArgList should have no operands other than a list of "
1361            "ValueAsMetadata",
1362            &N);
1363 }
1364 
1365 void Verifier::visitDIModule(const DIModule &N) {
1366   AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1367   AssertDI(!N.getName().empty(), "anonymous module", &N);
1368 }
1369 
1370 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1371   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1372 }
1373 
1374 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1375   visitDITemplateParameter(N);
1376 
1377   AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1378            &N);
1379 }
1380 
1381 void Verifier::visitDITemplateValueParameter(
1382     const DITemplateValueParameter &N) {
1383   visitDITemplateParameter(N);
1384 
1385   AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1386                N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1387                N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1388            "invalid tag", &N);
1389 }
1390 
1391 void Verifier::visitDIVariable(const DIVariable &N) {
1392   if (auto *S = N.getRawScope())
1393     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1394   if (auto *F = N.getRawFile())
1395     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1396 }
1397 
1398 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1399   // Checks common to all variables.
1400   visitDIVariable(N);
1401 
1402   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1403   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1404   // Assert only if the global variable is not an extern
1405   if (N.isDefinition())
1406     AssertDI(N.getType(), "missing global variable type", &N);
1407   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1408     AssertDI(isa<DIDerivedType>(Member),
1409              "invalid static data member declaration", &N, Member);
1410   }
1411 }
1412 
1413 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1414   // Checks common to all variables.
1415   visitDIVariable(N);
1416 
1417   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1418   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1419   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1420            "local variable requires a valid scope", &N, N.getRawScope());
1421   if (auto Ty = N.getType())
1422     AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1423 }
1424 
1425 void Verifier::visitDILabel(const DILabel &N) {
1426   if (auto *S = N.getRawScope())
1427     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1428   if (auto *F = N.getRawFile())
1429     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1430 
1431   AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1432   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1433            "label requires a valid scope", &N, N.getRawScope());
1434 }
1435 
1436 void Verifier::visitDIExpression(const DIExpression &N) {
1437   AssertDI(N.isValid(), "invalid expression", &N);
1438 }
1439 
1440 void Verifier::visitDIGlobalVariableExpression(
1441     const DIGlobalVariableExpression &GVE) {
1442   AssertDI(GVE.getVariable(), "missing variable");
1443   if (auto *Var = GVE.getVariable())
1444     visitDIGlobalVariable(*Var);
1445   if (auto *Expr = GVE.getExpression()) {
1446     visitDIExpression(*Expr);
1447     if (auto Fragment = Expr->getFragmentInfo())
1448       verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1449   }
1450 }
1451 
1452 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1453   AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1454   if (auto *T = N.getRawType())
1455     AssertDI(isType(T), "invalid type ref", &N, T);
1456   if (auto *F = N.getRawFile())
1457     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1458 }
1459 
1460 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1461   AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1462                N.getTag() == dwarf::DW_TAG_imported_declaration,
1463            "invalid tag", &N);
1464   if (auto *S = N.getRawScope())
1465     AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1466   AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1467            N.getRawEntity());
1468 }
1469 
1470 void Verifier::visitComdat(const Comdat &C) {
1471   // In COFF the Module is invalid if the GlobalValue has private linkage.
1472   // Entities with private linkage don't have entries in the symbol table.
1473   if (TT.isOSBinFormatCOFF())
1474     if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1475       Assert(!GV->hasPrivateLinkage(),
1476              "comdat global value has private linkage", GV);
1477 }
1478 
1479 void Verifier::visitModuleIdents(const Module &M) {
1480   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1481   if (!Idents)
1482     return;
1483 
1484   // llvm.ident takes a list of metadata entry. Each entry has only one string.
1485   // Scan each llvm.ident entry and make sure that this requirement is met.
1486   for (const MDNode *N : Idents->operands()) {
1487     Assert(N->getNumOperands() == 1,
1488            "incorrect number of operands in llvm.ident metadata", N);
1489     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1490            ("invalid value for llvm.ident metadata entry operand"
1491             "(the operand should be a string)"),
1492            N->getOperand(0));
1493   }
1494 }
1495 
1496 void Verifier::visitModuleCommandLines(const Module &M) {
1497   const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1498   if (!CommandLines)
1499     return;
1500 
1501   // llvm.commandline takes a list of metadata entry. Each entry has only one
1502   // string. Scan each llvm.commandline entry and make sure that this
1503   // requirement is met.
1504   for (const MDNode *N : CommandLines->operands()) {
1505     Assert(N->getNumOperands() == 1,
1506            "incorrect number of operands in llvm.commandline metadata", N);
1507     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1508            ("invalid value for llvm.commandline metadata entry operand"
1509             "(the operand should be a string)"),
1510            N->getOperand(0));
1511   }
1512 }
1513 
1514 void Verifier::visitModuleFlags(const Module &M) {
1515   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1516   if (!Flags) return;
1517 
1518   // Scan each flag, and track the flags and requirements.
1519   DenseMap<const MDString*, const MDNode*> SeenIDs;
1520   SmallVector<const MDNode*, 16> Requirements;
1521   for (const MDNode *MDN : Flags->operands())
1522     visitModuleFlag(MDN, SeenIDs, Requirements);
1523 
1524   // Validate that the requirements in the module are valid.
1525   for (const MDNode *Requirement : Requirements) {
1526     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1527     const Metadata *ReqValue = Requirement->getOperand(1);
1528 
1529     const MDNode *Op = SeenIDs.lookup(Flag);
1530     if (!Op) {
1531       CheckFailed("invalid requirement on flag, flag is not present in module",
1532                   Flag);
1533       continue;
1534     }
1535 
1536     if (Op->getOperand(2) != ReqValue) {
1537       CheckFailed(("invalid requirement on flag, "
1538                    "flag does not have the required value"),
1539                   Flag);
1540       continue;
1541     }
1542   }
1543 }
1544 
1545 void
1546 Verifier::visitModuleFlag(const MDNode *Op,
1547                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
1548                           SmallVectorImpl<const MDNode *> &Requirements) {
1549   // Each module flag should have three arguments, the merge behavior (a
1550   // constant int), the flag ID (an MDString), and the value.
1551   Assert(Op->getNumOperands() == 3,
1552          "incorrect number of operands in module flag", Op);
1553   Module::ModFlagBehavior MFB;
1554   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1555     Assert(
1556         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1557         "invalid behavior operand in module flag (expected constant integer)",
1558         Op->getOperand(0));
1559     Assert(false,
1560            "invalid behavior operand in module flag (unexpected constant)",
1561            Op->getOperand(0));
1562   }
1563   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1564   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1565          Op->getOperand(1));
1566 
1567   // Sanity check the values for behaviors with additional requirements.
1568   switch (MFB) {
1569   case Module::Error:
1570   case Module::Warning:
1571   case Module::Override:
1572     // These behavior types accept any value.
1573     break;
1574 
1575   case Module::Max: {
1576     Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1577            "invalid value for 'max' module flag (expected constant integer)",
1578            Op->getOperand(2));
1579     break;
1580   }
1581 
1582   case Module::Require: {
1583     // The value should itself be an MDNode with two operands, a flag ID (an
1584     // MDString), and a value.
1585     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1586     Assert(Value && Value->getNumOperands() == 2,
1587            "invalid value for 'require' module flag (expected metadata pair)",
1588            Op->getOperand(2));
1589     Assert(isa<MDString>(Value->getOperand(0)),
1590            ("invalid value for 'require' module flag "
1591             "(first value operand should be a string)"),
1592            Value->getOperand(0));
1593 
1594     // Append it to the list of requirements, to check once all module flags are
1595     // scanned.
1596     Requirements.push_back(Value);
1597     break;
1598   }
1599 
1600   case Module::Append:
1601   case Module::AppendUnique: {
1602     // These behavior types require the operand be an MDNode.
1603     Assert(isa<MDNode>(Op->getOperand(2)),
1604            "invalid value for 'append'-type module flag "
1605            "(expected a metadata node)",
1606            Op->getOperand(2));
1607     break;
1608   }
1609   }
1610 
1611   // Unless this is a "requires" flag, check the ID is unique.
1612   if (MFB != Module::Require) {
1613     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1614     Assert(Inserted,
1615            "module flag identifiers must be unique (or of 'require' type)", ID);
1616   }
1617 
1618   if (ID->getString() == "wchar_size") {
1619     ConstantInt *Value
1620       = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1621     Assert(Value, "wchar_size metadata requires constant integer argument");
1622   }
1623 
1624   if (ID->getString() == "Linker Options") {
1625     // If the llvm.linker.options named metadata exists, we assume that the
1626     // bitcode reader has upgraded the module flag. Otherwise the flag might
1627     // have been created by a client directly.
1628     Assert(M.getNamedMetadata("llvm.linker.options"),
1629            "'Linker Options' named metadata no longer supported");
1630   }
1631 
1632   if (ID->getString() == "SemanticInterposition") {
1633     ConstantInt *Value =
1634         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1635     Assert(Value,
1636            "SemanticInterposition metadata requires constant integer argument");
1637   }
1638 
1639   if (ID->getString() == "CG Profile") {
1640     for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1641       visitModuleFlagCGProfileEntry(MDO);
1642   }
1643 }
1644 
1645 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1646   auto CheckFunction = [&](const MDOperand &FuncMDO) {
1647     if (!FuncMDO)
1648       return;
1649     auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1650     Assert(F && isa<Function>(F->getValue()->stripPointerCasts()),
1651            "expected a Function or null", FuncMDO);
1652   };
1653   auto Node = dyn_cast_or_null<MDNode>(MDO);
1654   Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1655   CheckFunction(Node->getOperand(0));
1656   CheckFunction(Node->getOperand(1));
1657   auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1658   Assert(Count && Count->getType()->isIntegerTy(),
1659          "expected an integer constant", Node->getOperand(2));
1660 }
1661 
1662 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) {
1663   for (Attribute A : Attrs) {
1664 
1665     if (A.isStringAttribute()) {
1666 #define GET_ATTR_NAMES
1667 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1668 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME)                             \
1669   if (A.getKindAsString() == #DISPLAY_NAME) {                                  \
1670     auto V = A.getValueAsString();                                             \
1671     if (!(V.empty() || V == "true" || V == "false"))                           \
1672       CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V +    \
1673                   "");                                                         \
1674   }
1675 
1676 #include "llvm/IR/Attributes.inc"
1677       continue;
1678     }
1679 
1680     if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) {
1681       CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1682                   V);
1683       return;
1684     }
1685   }
1686 }
1687 
1688 // VerifyParameterAttrs - Check the given attributes for an argument or return
1689 // value of the specified type.  The value V is printed in error messages.
1690 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1691                                     const Value *V) {
1692   if (!Attrs.hasAttributes())
1693     return;
1694 
1695   verifyAttributeTypes(Attrs, V);
1696 
1697   for (Attribute Attr : Attrs)
1698     Assert(Attr.isStringAttribute() ||
1699            Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
1700            "Attribute '" + Attr.getAsString() +
1701                "' does not apply to parameters",
1702            V);
1703 
1704   if (Attrs.hasAttribute(Attribute::ImmArg)) {
1705     Assert(Attrs.getNumAttributes() == 1,
1706            "Attribute 'immarg' is incompatible with other attributes", V);
1707   }
1708 
1709   // Check for mutually incompatible attributes.  Only inreg is compatible with
1710   // sret.
1711   unsigned AttrCount = 0;
1712   AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1713   AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1714   AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1715   AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1716                Attrs.hasAttribute(Attribute::InReg);
1717   AttrCount += Attrs.hasAttribute(Attribute::Nest);
1718   AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1719   Assert(AttrCount <= 1,
1720          "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1721          "'byref', and 'sret' are incompatible!",
1722          V);
1723 
1724   Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1725            Attrs.hasAttribute(Attribute::ReadOnly)),
1726          "Attributes "
1727          "'inalloca and readonly' are incompatible!",
1728          V);
1729 
1730   Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1731            Attrs.hasAttribute(Attribute::Returned)),
1732          "Attributes "
1733          "'sret and returned' are incompatible!",
1734          V);
1735 
1736   Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1737            Attrs.hasAttribute(Attribute::SExt)),
1738          "Attributes "
1739          "'zeroext and signext' are incompatible!",
1740          V);
1741 
1742   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1743            Attrs.hasAttribute(Attribute::ReadOnly)),
1744          "Attributes "
1745          "'readnone and readonly' are incompatible!",
1746          V);
1747 
1748   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1749            Attrs.hasAttribute(Attribute::WriteOnly)),
1750          "Attributes "
1751          "'readnone and writeonly' are incompatible!",
1752          V);
1753 
1754   Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1755            Attrs.hasAttribute(Attribute::WriteOnly)),
1756          "Attributes "
1757          "'readonly and writeonly' are incompatible!",
1758          V);
1759 
1760   Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1761            Attrs.hasAttribute(Attribute::AlwaysInline)),
1762          "Attributes "
1763          "'noinline and alwaysinline' are incompatible!",
1764          V);
1765 
1766   AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1767   for (Attribute Attr : Attrs) {
1768     if (!Attr.isStringAttribute() &&
1769         IncompatibleAttrs.contains(Attr.getKindAsEnum())) {
1770       CheckFailed("Attribute '" + Attr.getAsString() +
1771                   "' applied to incompatible type!", V);
1772       return;
1773     }
1774   }
1775 
1776   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1777     if (Attrs.hasAttribute(Attribute::ByVal)) {
1778       SmallPtrSet<Type *, 4> Visited;
1779       Assert(Attrs.getByValType()->isSized(&Visited),
1780              "Attribute 'byval' does not support unsized types!", V);
1781     }
1782     if (Attrs.hasAttribute(Attribute::ByRef)) {
1783       SmallPtrSet<Type *, 4> Visited;
1784       Assert(Attrs.getByRefType()->isSized(&Visited),
1785              "Attribute 'byref' does not support unsized types!", V);
1786     }
1787     if (Attrs.hasAttribute(Attribute::InAlloca)) {
1788       SmallPtrSet<Type *, 4> Visited;
1789       Assert(Attrs.getInAllocaType()->isSized(&Visited),
1790              "Attribute 'inalloca' does not support unsized types!", V);
1791     }
1792     if (Attrs.hasAttribute(Attribute::Preallocated)) {
1793       SmallPtrSet<Type *, 4> Visited;
1794       Assert(Attrs.getPreallocatedType()->isSized(&Visited),
1795              "Attribute 'preallocated' does not support unsized types!", V);
1796     }
1797     if (!PTy->isOpaque()) {
1798       if (!isa<PointerType>(PTy->getElementType()))
1799         Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1800                "Attribute 'swifterror' only applies to parameters "
1801                "with pointer to pointer type!",
1802                V);
1803       if (Attrs.hasAttribute(Attribute::ByRef)) {
1804         Assert(Attrs.getByRefType() == PTy->getElementType(),
1805                "Attribute 'byref' type does not match parameter!", V);
1806       }
1807 
1808       if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1809         Assert(Attrs.getByValType() == PTy->getElementType(),
1810                "Attribute 'byval' type does not match parameter!", V);
1811       }
1812 
1813       if (Attrs.hasAttribute(Attribute::Preallocated)) {
1814         Assert(Attrs.getPreallocatedType() == PTy->getElementType(),
1815                "Attribute 'preallocated' type does not match parameter!", V);
1816       }
1817 
1818       if (Attrs.hasAttribute(Attribute::InAlloca)) {
1819         Assert(Attrs.getInAllocaType() == PTy->getElementType(),
1820                "Attribute 'inalloca' type does not match parameter!", V);
1821       }
1822 
1823       if (Attrs.hasAttribute(Attribute::ElementType)) {
1824         Assert(Attrs.getElementType() == PTy->getElementType(),
1825                "Attribute 'elementtype' type does not match parameter!", V);
1826       }
1827     }
1828   }
1829 }
1830 
1831 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
1832                                             const Value *V) {
1833   if (Attrs.hasFnAttr(Attr)) {
1834     StringRef S = Attrs.getFnAttr(Attr).getValueAsString();
1835     unsigned N;
1836     if (S.getAsInteger(10, N))
1837       CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V);
1838   }
1839 }
1840 
1841 // Check parameter attributes against a function type.
1842 // The value V is printed in error messages.
1843 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1844                                    const Value *V, bool IsIntrinsic) {
1845   if (Attrs.isEmpty())
1846     return;
1847 
1848   if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
1849     Assert(Attrs.hasParentContext(Context),
1850            "Attribute list does not match Module context!", &Attrs, V);
1851     for (const auto &AttrSet : Attrs) {
1852       Assert(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
1853              "Attribute set does not match Module context!", &AttrSet, V);
1854       for (const auto &A : AttrSet) {
1855         Assert(A.hasParentContext(Context),
1856                "Attribute does not match Module context!", &A, V);
1857       }
1858     }
1859   }
1860 
1861   bool SawNest = false;
1862   bool SawReturned = false;
1863   bool SawSRet = false;
1864   bool SawSwiftSelf = false;
1865   bool SawSwiftAsync = false;
1866   bool SawSwiftError = false;
1867 
1868   // Verify return value attributes.
1869   AttributeSet RetAttrs = Attrs.getRetAttrs();
1870   for (Attribute RetAttr : RetAttrs)
1871     Assert(RetAttr.isStringAttribute() ||
1872            Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),
1873            "Attribute '" + RetAttr.getAsString() +
1874                "' does not apply to function return values",
1875            V);
1876 
1877   verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1878 
1879   // Verify parameter attributes.
1880   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1881     Type *Ty = FT->getParamType(i);
1882     AttributeSet ArgAttrs = Attrs.getParamAttrs(i);
1883 
1884     if (!IsIntrinsic) {
1885       Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1886              "immarg attribute only applies to intrinsics",V);
1887       Assert(!ArgAttrs.hasAttribute(Attribute::ElementType),
1888              "Attribute 'elementtype' can only be applied to intrinsics.", V);
1889     }
1890 
1891     verifyParameterAttrs(ArgAttrs, Ty, V);
1892 
1893     if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1894       Assert(!SawNest, "More than one parameter has attribute nest!", V);
1895       SawNest = true;
1896     }
1897 
1898     if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1899       Assert(!SawReturned, "More than one parameter has attribute returned!",
1900              V);
1901       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1902              "Incompatible argument and return types for 'returned' attribute",
1903              V);
1904       SawReturned = true;
1905     }
1906 
1907     if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1908       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1909       Assert(i == 0 || i == 1,
1910              "Attribute 'sret' is not on first or second parameter!", V);
1911       SawSRet = true;
1912     }
1913 
1914     if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1915       Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1916       SawSwiftSelf = true;
1917     }
1918 
1919     if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
1920       Assert(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
1921       SawSwiftAsync = true;
1922     }
1923 
1924     if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1925       Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1926              V);
1927       SawSwiftError = true;
1928     }
1929 
1930     if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1931       Assert(i == FT->getNumParams() - 1,
1932              "inalloca isn't on the last parameter!", V);
1933     }
1934   }
1935 
1936   if (!Attrs.hasFnAttrs())
1937     return;
1938 
1939   verifyAttributeTypes(Attrs.getFnAttrs(), V);
1940   for (Attribute FnAttr : Attrs.getFnAttrs())
1941     Assert(FnAttr.isStringAttribute() ||
1942            Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),
1943            "Attribute '" + FnAttr.getAsString() +
1944                "' does not apply to functions!",
1945            V);
1946 
1947   Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
1948            Attrs.hasFnAttr(Attribute::ReadOnly)),
1949          "Attributes 'readnone and readonly' are incompatible!", V);
1950 
1951   Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
1952            Attrs.hasFnAttr(Attribute::WriteOnly)),
1953          "Attributes 'readnone and writeonly' are incompatible!", V);
1954 
1955   Assert(!(Attrs.hasFnAttr(Attribute::ReadOnly) &&
1956            Attrs.hasFnAttr(Attribute::WriteOnly)),
1957          "Attributes 'readonly and writeonly' are incompatible!", V);
1958 
1959   Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
1960            Attrs.hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly)),
1961          "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1962          "incompatible!",
1963          V);
1964 
1965   Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
1966            Attrs.hasFnAttr(Attribute::InaccessibleMemOnly)),
1967          "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1968 
1969   Assert(!(Attrs.hasFnAttr(Attribute::NoInline) &&
1970            Attrs.hasFnAttr(Attribute::AlwaysInline)),
1971          "Attributes 'noinline and alwaysinline' are incompatible!", V);
1972 
1973   if (Attrs.hasFnAttr(Attribute::OptimizeNone)) {
1974     Assert(Attrs.hasFnAttr(Attribute::NoInline),
1975            "Attribute 'optnone' requires 'noinline'!", V);
1976 
1977     Assert(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
1978            "Attributes 'optsize and optnone' are incompatible!", V);
1979 
1980     Assert(!Attrs.hasFnAttr(Attribute::MinSize),
1981            "Attributes 'minsize and optnone' are incompatible!", V);
1982   }
1983 
1984   if (Attrs.hasFnAttr(Attribute::JumpTable)) {
1985     const GlobalValue *GV = cast<GlobalValue>(V);
1986     Assert(GV->hasGlobalUnnamedAddr(),
1987            "Attribute 'jumptable' requires 'unnamed_addr'", V);
1988   }
1989 
1990   if (Attrs.hasFnAttr(Attribute::AllocSize)) {
1991     std::pair<unsigned, Optional<unsigned>> Args =
1992         Attrs.getFnAttrs().getAllocSizeArgs();
1993 
1994     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1995       if (ParamNo >= FT->getNumParams()) {
1996         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1997         return false;
1998       }
1999 
2000       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
2001         CheckFailed("'allocsize' " + Name +
2002                         " argument must refer to an integer parameter",
2003                     V);
2004         return false;
2005       }
2006 
2007       return true;
2008     };
2009 
2010     if (!CheckParam("element size", Args.first))
2011       return;
2012 
2013     if (Args.second && !CheckParam("number of elements", *Args.second))
2014       return;
2015   }
2016 
2017   if (Attrs.hasFnAttr(Attribute::VScaleRange)) {
2018     std::pair<unsigned, unsigned> Args =
2019         Attrs.getFnAttrs().getVScaleRangeArgs();
2020 
2021     if (Args.first > Args.second && Args.second != 0)
2022       CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
2023   }
2024 
2025   if (Attrs.hasFnAttr("frame-pointer")) {
2026     StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString();
2027     if (FP != "all" && FP != "non-leaf" && FP != "none")
2028       CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
2029   }
2030 
2031   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V);
2032   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V);
2033   checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V);
2034 }
2035 
2036 void Verifier::verifyFunctionMetadata(
2037     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2038   for (const auto &Pair : MDs) {
2039     if (Pair.first == LLVMContext::MD_prof) {
2040       MDNode *MD = Pair.second;
2041       Assert(MD->getNumOperands() >= 2,
2042              "!prof annotations should have no less than 2 operands", MD);
2043 
2044       // Check first operand.
2045       Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
2046              MD);
2047       Assert(isa<MDString>(MD->getOperand(0)),
2048              "expected string with name of the !prof annotation", MD);
2049       MDString *MDS = cast<MDString>(MD->getOperand(0));
2050       StringRef ProfName = MDS->getString();
2051       Assert(ProfName.equals("function_entry_count") ||
2052                  ProfName.equals("synthetic_function_entry_count"),
2053              "first operand should be 'function_entry_count'"
2054              " or 'synthetic_function_entry_count'",
2055              MD);
2056 
2057       // Check second operand.
2058       Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
2059              MD);
2060       Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
2061              "expected integer argument to function_entry_count", MD);
2062     }
2063   }
2064 }
2065 
2066 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2067   if (!ConstantExprVisited.insert(EntryC).second)
2068     return;
2069 
2070   SmallVector<const Constant *, 16> Stack;
2071   Stack.push_back(EntryC);
2072 
2073   while (!Stack.empty()) {
2074     const Constant *C = Stack.pop_back_val();
2075 
2076     // Check this constant expression.
2077     if (const auto *CE = dyn_cast<ConstantExpr>(C))
2078       visitConstantExpr(CE);
2079 
2080     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
2081       // Global Values get visited separately, but we do need to make sure
2082       // that the global value is in the correct module
2083       Assert(GV->getParent() == &M, "Referencing global in another module!",
2084              EntryC, &M, GV, GV->getParent());
2085       continue;
2086     }
2087 
2088     // Visit all sub-expressions.
2089     for (const Use &U : C->operands()) {
2090       const auto *OpC = dyn_cast<Constant>(U);
2091       if (!OpC)
2092         continue;
2093       if (!ConstantExprVisited.insert(OpC).second)
2094         continue;
2095       Stack.push_back(OpC);
2096     }
2097   }
2098 }
2099 
2100 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2101   if (CE->getOpcode() == Instruction::BitCast)
2102     Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
2103                                  CE->getType()),
2104            "Invalid bitcast", CE);
2105 }
2106 
2107 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2108   // There shouldn't be more attribute sets than there are parameters plus the
2109   // function and return value.
2110   return Attrs.getNumAttrSets() <= Params + 2;
2111 }
2112 
2113 /// Verify that statepoint intrinsic is well formed.
2114 void Verifier::verifyStatepoint(const CallBase &Call) {
2115   assert(Call.getCalledFunction() &&
2116          Call.getCalledFunction()->getIntrinsicID() ==
2117              Intrinsic::experimental_gc_statepoint);
2118 
2119   Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
2120              !Call.onlyAccessesArgMemory(),
2121          "gc.statepoint must read and write all memory to preserve "
2122          "reordering restrictions required by safepoint semantics",
2123          Call);
2124 
2125   const int64_t NumPatchBytes =
2126       cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2127   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
2128   Assert(NumPatchBytes >= 0,
2129          "gc.statepoint number of patchable bytes must be "
2130          "positive",
2131          Call);
2132 
2133   const Value *Target = Call.getArgOperand(2);
2134   auto *PT = dyn_cast<PointerType>(Target->getType());
2135   Assert(PT && PT->getElementType()->isFunctionTy(),
2136          "gc.statepoint callee must be of function pointer type", Call, Target);
2137   FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
2138 
2139   const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2140   Assert(NumCallArgs >= 0,
2141          "gc.statepoint number of arguments to underlying call "
2142          "must be positive",
2143          Call);
2144   const int NumParams = (int)TargetFuncType->getNumParams();
2145   if (TargetFuncType->isVarArg()) {
2146     Assert(NumCallArgs >= NumParams,
2147            "gc.statepoint mismatch in number of vararg call args", Call);
2148 
2149     // TODO: Remove this limitation
2150     Assert(TargetFuncType->getReturnType()->isVoidTy(),
2151            "gc.statepoint doesn't support wrapping non-void "
2152            "vararg functions yet",
2153            Call);
2154   } else
2155     Assert(NumCallArgs == NumParams,
2156            "gc.statepoint mismatch in number of call args", Call);
2157 
2158   const uint64_t Flags
2159     = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2160   Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2161          "unknown flag used in gc.statepoint flags argument", Call);
2162 
2163   // Verify that the types of the call parameter arguments match
2164   // the type of the wrapped callee.
2165   AttributeList Attrs = Call.getAttributes();
2166   for (int i = 0; i < NumParams; i++) {
2167     Type *ParamType = TargetFuncType->getParamType(i);
2168     Type *ArgType = Call.getArgOperand(5 + i)->getType();
2169     Assert(ArgType == ParamType,
2170            "gc.statepoint call argument does not match wrapped "
2171            "function type",
2172            Call);
2173 
2174     if (TargetFuncType->isVarArg()) {
2175       AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i);
2176       Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2177              "Attribute 'sret' cannot be used for vararg call arguments!",
2178              Call);
2179     }
2180   }
2181 
2182   const int EndCallArgsInx = 4 + NumCallArgs;
2183 
2184   const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2185   Assert(isa<ConstantInt>(NumTransitionArgsV),
2186          "gc.statepoint number of transition arguments "
2187          "must be constant integer",
2188          Call);
2189   const int NumTransitionArgs =
2190       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2191   Assert(NumTransitionArgs == 0,
2192          "gc.statepoint w/inline transition bundle is deprecated", Call);
2193   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2194 
2195   const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2196   Assert(isa<ConstantInt>(NumDeoptArgsV),
2197          "gc.statepoint number of deoptimization arguments "
2198          "must be constant integer",
2199          Call);
2200   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2201   Assert(NumDeoptArgs == 0,
2202          "gc.statepoint w/inline deopt operands is deprecated", Call);
2203 
2204   const int ExpectedNumArgs = 7 + NumCallArgs;
2205   Assert(ExpectedNumArgs == (int)Call.arg_size(),
2206          "gc.statepoint too many arguments", Call);
2207 
2208   // Check that the only uses of this gc.statepoint are gc.result or
2209   // gc.relocate calls which are tied to this statepoint and thus part
2210   // of the same statepoint sequence
2211   for (const User *U : Call.users()) {
2212     const CallInst *UserCall = dyn_cast<const CallInst>(U);
2213     Assert(UserCall, "illegal use of statepoint token", Call, U);
2214     if (!UserCall)
2215       continue;
2216     Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2217            "gc.result or gc.relocate are the only value uses "
2218            "of a gc.statepoint",
2219            Call, U);
2220     if (isa<GCResultInst>(UserCall)) {
2221       Assert(UserCall->getArgOperand(0) == &Call,
2222              "gc.result connected to wrong gc.statepoint", Call, UserCall);
2223     } else if (isa<GCRelocateInst>(Call)) {
2224       Assert(UserCall->getArgOperand(0) == &Call,
2225              "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2226     }
2227   }
2228 
2229   // Note: It is legal for a single derived pointer to be listed multiple
2230   // times.  It's non-optimal, but it is legal.  It can also happen after
2231   // insertion if we strip a bitcast away.
2232   // Note: It is really tempting to check that each base is relocated and
2233   // that a derived pointer is never reused as a base pointer.  This turns
2234   // out to be problematic since optimizations run after safepoint insertion
2235   // can recognize equality properties that the insertion logic doesn't know
2236   // about.  See example statepoint.ll in the verifier subdirectory
2237 }
2238 
2239 void Verifier::verifyFrameRecoverIndices() {
2240   for (auto &Counts : FrameEscapeInfo) {
2241     Function *F = Counts.first;
2242     unsigned EscapedObjectCount = Counts.second.first;
2243     unsigned MaxRecoveredIndex = Counts.second.second;
2244     Assert(MaxRecoveredIndex <= EscapedObjectCount,
2245            "all indices passed to llvm.localrecover must be less than the "
2246            "number of arguments passed to llvm.localescape in the parent "
2247            "function",
2248            F);
2249   }
2250 }
2251 
2252 static Instruction *getSuccPad(Instruction *Terminator) {
2253   BasicBlock *UnwindDest;
2254   if (auto *II = dyn_cast<InvokeInst>(Terminator))
2255     UnwindDest = II->getUnwindDest();
2256   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2257     UnwindDest = CSI->getUnwindDest();
2258   else
2259     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2260   return UnwindDest->getFirstNonPHI();
2261 }
2262 
2263 void Verifier::verifySiblingFuncletUnwinds() {
2264   SmallPtrSet<Instruction *, 8> Visited;
2265   SmallPtrSet<Instruction *, 8> Active;
2266   for (const auto &Pair : SiblingFuncletInfo) {
2267     Instruction *PredPad = Pair.first;
2268     if (Visited.count(PredPad))
2269       continue;
2270     Active.insert(PredPad);
2271     Instruction *Terminator = Pair.second;
2272     do {
2273       Instruction *SuccPad = getSuccPad(Terminator);
2274       if (Active.count(SuccPad)) {
2275         // Found a cycle; report error
2276         Instruction *CyclePad = SuccPad;
2277         SmallVector<Instruction *, 8> CycleNodes;
2278         do {
2279           CycleNodes.push_back(CyclePad);
2280           Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2281           if (CycleTerminator != CyclePad)
2282             CycleNodes.push_back(CycleTerminator);
2283           CyclePad = getSuccPad(CycleTerminator);
2284         } while (CyclePad != SuccPad);
2285         Assert(false, "EH pads can't handle each other's exceptions",
2286                ArrayRef<Instruction *>(CycleNodes));
2287       }
2288       // Don't re-walk a node we've already checked
2289       if (!Visited.insert(SuccPad).second)
2290         break;
2291       // Walk to this successor if it has a map entry.
2292       PredPad = SuccPad;
2293       auto TermI = SiblingFuncletInfo.find(PredPad);
2294       if (TermI == SiblingFuncletInfo.end())
2295         break;
2296       Terminator = TermI->second;
2297       Active.insert(PredPad);
2298     } while (true);
2299     // Each node only has one successor, so we've walked all the active
2300     // nodes' successors.
2301     Active.clear();
2302   }
2303 }
2304 
2305 // visitFunction - Verify that a function is ok.
2306 //
2307 void Verifier::visitFunction(const Function &F) {
2308   visitGlobalValue(F);
2309 
2310   // Check function arguments.
2311   FunctionType *FT = F.getFunctionType();
2312   unsigned NumArgs = F.arg_size();
2313 
2314   Assert(&Context == &F.getContext(),
2315          "Function context does not match Module context!", &F);
2316 
2317   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2318   Assert(FT->getNumParams() == NumArgs,
2319          "# formal arguments must match # of arguments for function type!", &F,
2320          FT);
2321   Assert(F.getReturnType()->isFirstClassType() ||
2322              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2323          "Functions cannot return aggregate values!", &F);
2324 
2325   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2326          "Invalid struct return type!", &F);
2327 
2328   AttributeList Attrs = F.getAttributes();
2329 
2330   Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2331          "Attribute after last parameter!", &F);
2332 
2333   bool IsIntrinsic = F.isIntrinsic();
2334 
2335   // Check function attributes.
2336   verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic);
2337 
2338   // On function declarations/definitions, we do not support the builtin
2339   // attribute. We do not check this in VerifyFunctionAttrs since that is
2340   // checking for Attributes that can/can not ever be on functions.
2341   Assert(!Attrs.hasFnAttr(Attribute::Builtin),
2342          "Attribute 'builtin' can only be applied to a callsite.", &F);
2343 
2344   Assert(!Attrs.hasAttrSomewhere(Attribute::ElementType),
2345          "Attribute 'elementtype' can only be applied to a callsite.", &F);
2346 
2347   // Check that this function meets the restrictions on this calling convention.
2348   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2349   // restrictions can be lifted.
2350   switch (F.getCallingConv()) {
2351   default:
2352   case CallingConv::C:
2353     break;
2354   case CallingConv::X86_INTR: {
2355     Assert(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal),
2356            "Calling convention parameter requires byval", &F);
2357     break;
2358   }
2359   case CallingConv::AMDGPU_KERNEL:
2360   case CallingConv::SPIR_KERNEL:
2361     Assert(F.getReturnType()->isVoidTy(),
2362            "Calling convention requires void return type", &F);
2363     LLVM_FALLTHROUGH;
2364   case CallingConv::AMDGPU_VS:
2365   case CallingConv::AMDGPU_HS:
2366   case CallingConv::AMDGPU_GS:
2367   case CallingConv::AMDGPU_PS:
2368   case CallingConv::AMDGPU_CS:
2369     Assert(!F.hasStructRetAttr(),
2370            "Calling convention does not allow sret", &F);
2371     if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2372       const unsigned StackAS = DL.getAllocaAddrSpace();
2373       unsigned i = 0;
2374       for (const Argument &Arg : F.args()) {
2375         Assert(!Attrs.hasParamAttr(i, Attribute::ByVal),
2376                "Calling convention disallows byval", &F);
2377         Assert(!Attrs.hasParamAttr(i, Attribute::Preallocated),
2378                "Calling convention disallows preallocated", &F);
2379         Assert(!Attrs.hasParamAttr(i, Attribute::InAlloca),
2380                "Calling convention disallows inalloca", &F);
2381 
2382         if (Attrs.hasParamAttr(i, Attribute::ByRef)) {
2383           // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2384           // value here.
2385           Assert(Arg.getType()->getPointerAddressSpace() != StackAS,
2386                  "Calling convention disallows stack byref", &F);
2387         }
2388 
2389         ++i;
2390       }
2391     }
2392 
2393     LLVM_FALLTHROUGH;
2394   case CallingConv::Fast:
2395   case CallingConv::Cold:
2396   case CallingConv::Intel_OCL_BI:
2397   case CallingConv::PTX_Kernel:
2398   case CallingConv::PTX_Device:
2399     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2400                           "perfect forwarding!",
2401            &F);
2402     break;
2403   }
2404 
2405   // Check that the argument values match the function type for this function...
2406   unsigned i = 0;
2407   for (const Argument &Arg : F.args()) {
2408     Assert(Arg.getType() == FT->getParamType(i),
2409            "Argument value does not match function argument type!", &Arg,
2410            FT->getParamType(i));
2411     Assert(Arg.getType()->isFirstClassType(),
2412            "Function arguments must have first-class types!", &Arg);
2413     if (!IsIntrinsic) {
2414       Assert(!Arg.getType()->isMetadataTy(),
2415              "Function takes metadata but isn't an intrinsic", &Arg, &F);
2416       Assert(!Arg.getType()->isTokenTy(),
2417              "Function takes token but isn't an intrinsic", &Arg, &F);
2418       Assert(!Arg.getType()->isX86_AMXTy(),
2419              "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
2420     }
2421 
2422     // Check that swifterror argument is only used by loads and stores.
2423     if (Attrs.hasParamAttr(i, Attribute::SwiftError)) {
2424       verifySwiftErrorValue(&Arg);
2425     }
2426     ++i;
2427   }
2428 
2429   if (!IsIntrinsic) {
2430     Assert(!F.getReturnType()->isTokenTy(),
2431            "Function returns a token but isn't an intrinsic", &F);
2432     Assert(!F.getReturnType()->isX86_AMXTy(),
2433            "Function returns a x86_amx but isn't an intrinsic", &F);
2434   }
2435 
2436   // Get the function metadata attachments.
2437   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2438   F.getAllMetadata(MDs);
2439   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2440   verifyFunctionMetadata(MDs);
2441 
2442   // Check validity of the personality function
2443   if (F.hasPersonalityFn()) {
2444     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2445     if (Per)
2446       Assert(Per->getParent() == F.getParent(),
2447              "Referencing personality function in another module!",
2448              &F, F.getParent(), Per, Per->getParent());
2449   }
2450 
2451   if (F.isMaterializable()) {
2452     // Function has a body somewhere we can't see.
2453     Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2454            MDs.empty() ? nullptr : MDs.front().second);
2455   } else if (F.isDeclaration()) {
2456     for (const auto &I : MDs) {
2457       // This is used for call site debug information.
2458       AssertDI(I.first != LLVMContext::MD_dbg ||
2459                    !cast<DISubprogram>(I.second)->isDistinct(),
2460                "function declaration may only have a unique !dbg attachment",
2461                &F);
2462       Assert(I.first != LLVMContext::MD_prof,
2463              "function declaration may not have a !prof attachment", &F);
2464 
2465       // Verify the metadata itself.
2466       visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2467     }
2468     Assert(!F.hasPersonalityFn(),
2469            "Function declaration shouldn't have a personality routine", &F);
2470   } else {
2471     // Verify that this function (which has a body) is not named "llvm.*".  It
2472     // is not legal to define intrinsics.
2473     Assert(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F);
2474 
2475     // Check the entry node
2476     const BasicBlock *Entry = &F.getEntryBlock();
2477     Assert(pred_empty(Entry),
2478            "Entry block to function must not have predecessors!", Entry);
2479 
2480     // The address of the entry block cannot be taken, unless it is dead.
2481     if (Entry->hasAddressTaken()) {
2482       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2483              "blockaddress may not be used with the entry block!", Entry);
2484     }
2485 
2486     unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2487     // Visit metadata attachments.
2488     for (const auto &I : MDs) {
2489       // Verify that the attachment is legal.
2490       auto AllowLocs = AreDebugLocsAllowed::No;
2491       switch (I.first) {
2492       default:
2493         break;
2494       case LLVMContext::MD_dbg: {
2495         ++NumDebugAttachments;
2496         AssertDI(NumDebugAttachments == 1,
2497                  "function must have a single !dbg attachment", &F, I.second);
2498         AssertDI(isa<DISubprogram>(I.second),
2499                  "function !dbg attachment must be a subprogram", &F, I.second);
2500         AssertDI(cast<DISubprogram>(I.second)->isDistinct(),
2501                  "function definition may only have a distinct !dbg attachment",
2502                  &F);
2503 
2504         auto *SP = cast<DISubprogram>(I.second);
2505         const Function *&AttachedTo = DISubprogramAttachments[SP];
2506         AssertDI(!AttachedTo || AttachedTo == &F,
2507                  "DISubprogram attached to more than one function", SP, &F);
2508         AttachedTo = &F;
2509         AllowLocs = AreDebugLocsAllowed::Yes;
2510         break;
2511       }
2512       case LLVMContext::MD_prof:
2513         ++NumProfAttachments;
2514         Assert(NumProfAttachments == 1,
2515                "function must have a single !prof attachment", &F, I.second);
2516         break;
2517       }
2518 
2519       // Verify the metadata itself.
2520       visitMDNode(*I.second, AllowLocs);
2521     }
2522   }
2523 
2524   // If this function is actually an intrinsic, verify that it is only used in
2525   // direct call/invokes, never having its "address taken".
2526   // Only do this if the module is materialized, otherwise we don't have all the
2527   // uses.
2528   if (F.isIntrinsic() && F.getParent()->isMaterialized()) {
2529     const User *U;
2530     if (F.hasAddressTaken(&U, false, true, false,
2531                           /*IgnoreARCAttachedCall=*/true))
2532       Assert(false, "Invalid user of intrinsic instruction!", U);
2533   }
2534 
2535   // Check intrinsics' signatures.
2536   switch (F.getIntrinsicID()) {
2537   case Intrinsic::experimental_gc_get_pointer_base: {
2538     FunctionType *FT = F.getFunctionType();
2539     Assert(FT->getNumParams() == 1, "wrong number of parameters", F);
2540     Assert(isa<PointerType>(F.getReturnType()),
2541            "gc.get.pointer.base must return a pointer", F);
2542     Assert(FT->getParamType(0) == F.getReturnType(),
2543            "gc.get.pointer.base operand and result must be of the same type",
2544            F);
2545     break;
2546   }
2547   case Intrinsic::experimental_gc_get_pointer_offset: {
2548     FunctionType *FT = F.getFunctionType();
2549     Assert(FT->getNumParams() == 1, "wrong number of parameters", F);
2550     Assert(isa<PointerType>(FT->getParamType(0)),
2551            "gc.get.pointer.offset operand must be a pointer", F);
2552     Assert(F.getReturnType()->isIntegerTy(),
2553            "gc.get.pointer.offset must return integer", F);
2554     break;
2555   }
2556   }
2557 
2558   auto *N = F.getSubprogram();
2559   HasDebugInfo = (N != nullptr);
2560   if (!HasDebugInfo)
2561     return;
2562 
2563   // Check that all !dbg attachments lead to back to N.
2564   //
2565   // FIXME: Check this incrementally while visiting !dbg attachments.
2566   // FIXME: Only check when N is the canonical subprogram for F.
2567   SmallPtrSet<const MDNode *, 32> Seen;
2568   auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2569     // Be careful about using DILocation here since we might be dealing with
2570     // broken code (this is the Verifier after all).
2571     const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2572     if (!DL)
2573       return;
2574     if (!Seen.insert(DL).second)
2575       return;
2576 
2577     Metadata *Parent = DL->getRawScope();
2578     AssertDI(Parent && isa<DILocalScope>(Parent),
2579              "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
2580              Parent);
2581 
2582     DILocalScope *Scope = DL->getInlinedAtScope();
2583     Assert(Scope, "Failed to find DILocalScope", DL);
2584 
2585     if (!Seen.insert(Scope).second)
2586       return;
2587 
2588     DISubprogram *SP = Scope->getSubprogram();
2589 
2590     // Scope and SP could be the same MDNode and we don't want to skip
2591     // validation in that case
2592     if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2593       return;
2594 
2595     AssertDI(SP->describes(&F),
2596              "!dbg attachment points at wrong subprogram for function", N, &F,
2597              &I, DL, Scope, SP);
2598   };
2599   for (auto &BB : F)
2600     for (auto &I : BB) {
2601       VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2602       // The llvm.loop annotations also contain two DILocations.
2603       if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2604         for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2605           VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2606       if (BrokenDebugInfo)
2607         return;
2608     }
2609 }
2610 
2611 // verifyBasicBlock - Verify that a basic block is well formed...
2612 //
2613 void Verifier::visitBasicBlock(BasicBlock &BB) {
2614   InstsInThisBlock.clear();
2615 
2616   // Ensure that basic blocks have terminators!
2617   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2618 
2619   // Check constraints that this basic block imposes on all of the PHI nodes in
2620   // it.
2621   if (isa<PHINode>(BB.front())) {
2622     SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
2623     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2624     llvm::sort(Preds);
2625     for (const PHINode &PN : BB.phis()) {
2626       Assert(PN.getNumIncomingValues() == Preds.size(),
2627              "PHINode should have one entry for each predecessor of its "
2628              "parent basic block!",
2629              &PN);
2630 
2631       // Get and sort all incoming values in the PHI node...
2632       Values.clear();
2633       Values.reserve(PN.getNumIncomingValues());
2634       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2635         Values.push_back(
2636             std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2637       llvm::sort(Values);
2638 
2639       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2640         // Check to make sure that if there is more than one entry for a
2641         // particular basic block in this PHI node, that the incoming values are
2642         // all identical.
2643         //
2644         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2645                    Values[i].second == Values[i - 1].second,
2646                "PHI node has multiple entries for the same basic block with "
2647                "different incoming values!",
2648                &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2649 
2650         // Check to make sure that the predecessors and PHI node entries are
2651         // matched up.
2652         Assert(Values[i].first == Preds[i],
2653                "PHI node entries do not match predecessors!", &PN,
2654                Values[i].first, Preds[i]);
2655       }
2656     }
2657   }
2658 
2659   // Check that all instructions have their parent pointers set up correctly.
2660   for (auto &I : BB)
2661   {
2662     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2663   }
2664 }
2665 
2666 void Verifier::visitTerminator(Instruction &I) {
2667   // Ensure that terminators only exist at the end of the basic block.
2668   Assert(&I == I.getParent()->getTerminator(),
2669          "Terminator found in the middle of a basic block!", I.getParent());
2670   visitInstruction(I);
2671 }
2672 
2673 void Verifier::visitBranchInst(BranchInst &BI) {
2674   if (BI.isConditional()) {
2675     Assert(BI.getCondition()->getType()->isIntegerTy(1),
2676            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2677   }
2678   visitTerminator(BI);
2679 }
2680 
2681 void Verifier::visitReturnInst(ReturnInst &RI) {
2682   Function *F = RI.getParent()->getParent();
2683   unsigned N = RI.getNumOperands();
2684   if (F->getReturnType()->isVoidTy())
2685     Assert(N == 0,
2686            "Found return instr that returns non-void in Function of void "
2687            "return type!",
2688            &RI, F->getReturnType());
2689   else
2690     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2691            "Function return type does not match operand "
2692            "type of return inst!",
2693            &RI, F->getReturnType());
2694 
2695   // Check to make sure that the return value has necessary properties for
2696   // terminators...
2697   visitTerminator(RI);
2698 }
2699 
2700 void Verifier::visitSwitchInst(SwitchInst &SI) {
2701   Assert(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI);
2702   // Check to make sure that all of the constants in the switch instruction
2703   // have the same type as the switched-on value.
2704   Type *SwitchTy = SI.getCondition()->getType();
2705   SmallPtrSet<ConstantInt*, 32> Constants;
2706   for (auto &Case : SI.cases()) {
2707     Assert(Case.getCaseValue()->getType() == SwitchTy,
2708            "Switch constants must all be same type as switch value!", &SI);
2709     Assert(Constants.insert(Case.getCaseValue()).second,
2710            "Duplicate integer as switch case", &SI, Case.getCaseValue());
2711   }
2712 
2713   visitTerminator(SI);
2714 }
2715 
2716 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2717   Assert(BI.getAddress()->getType()->isPointerTy(),
2718          "Indirectbr operand must have pointer type!", &BI);
2719   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2720     Assert(BI.getDestination(i)->getType()->isLabelTy(),
2721            "Indirectbr destinations must all have pointer type!", &BI);
2722 
2723   visitTerminator(BI);
2724 }
2725 
2726 void Verifier::visitCallBrInst(CallBrInst &CBI) {
2727   Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2728          &CBI);
2729   const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
2730   Assert(!IA->canThrow(), "Unwinding from Callbr is not allowed");
2731   for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2732     Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
2733            "Callbr successors must all have pointer type!", &CBI);
2734   for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2735     Assert(i >= CBI.arg_size() || !isa<BasicBlock>(CBI.getOperand(i)),
2736            "Using an unescaped label as a callbr argument!", &CBI);
2737     if (isa<BasicBlock>(CBI.getOperand(i)))
2738       for (unsigned j = i + 1; j != e; ++j)
2739         Assert(CBI.getOperand(i) != CBI.getOperand(j),
2740                "Duplicate callbr destination!", &CBI);
2741   }
2742   {
2743     SmallPtrSet<BasicBlock *, 4> ArgBBs;
2744     for (Value *V : CBI.args())
2745       if (auto *BA = dyn_cast<BlockAddress>(V))
2746         ArgBBs.insert(BA->getBasicBlock());
2747     for (BasicBlock *BB : CBI.getIndirectDests())
2748       Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI);
2749   }
2750 
2751   visitTerminator(CBI);
2752 }
2753 
2754 void Verifier::visitSelectInst(SelectInst &SI) {
2755   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2756                                          SI.getOperand(2)),
2757          "Invalid operands for select instruction!", &SI);
2758 
2759   Assert(SI.getTrueValue()->getType() == SI.getType(),
2760          "Select values must have same type as select instruction!", &SI);
2761   visitInstruction(SI);
2762 }
2763 
2764 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2765 /// a pass, if any exist, it's an error.
2766 ///
2767 void Verifier::visitUserOp1(Instruction &I) {
2768   Assert(false, "User-defined operators should not live outside of a pass!", &I);
2769 }
2770 
2771 void Verifier::visitTruncInst(TruncInst &I) {
2772   // Get the source and destination types
2773   Type *SrcTy = I.getOperand(0)->getType();
2774   Type *DestTy = I.getType();
2775 
2776   // Get the size of the types in bits, we'll need this later
2777   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2778   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2779 
2780   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2781   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2782   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2783          "trunc source and destination must both be a vector or neither", &I);
2784   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2785 
2786   visitInstruction(I);
2787 }
2788 
2789 void Verifier::visitZExtInst(ZExtInst &I) {
2790   // Get the source and destination types
2791   Type *SrcTy = I.getOperand(0)->getType();
2792   Type *DestTy = I.getType();
2793 
2794   // Get the size of the types in bits, we'll need this later
2795   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2796   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2797   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2798          "zext source and destination must both be a vector or neither", &I);
2799   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2800   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2801 
2802   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2803 
2804   visitInstruction(I);
2805 }
2806 
2807 void Verifier::visitSExtInst(SExtInst &I) {
2808   // Get the source and destination types
2809   Type *SrcTy = I.getOperand(0)->getType();
2810   Type *DestTy = I.getType();
2811 
2812   // Get the size of the types in bits, we'll need this later
2813   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2814   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2815 
2816   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2817   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2818   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2819          "sext source and destination must both be a vector or neither", &I);
2820   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2821 
2822   visitInstruction(I);
2823 }
2824 
2825 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2826   // Get the source and destination types
2827   Type *SrcTy = I.getOperand(0)->getType();
2828   Type *DestTy = I.getType();
2829   // Get the size of the types in bits, we'll need this later
2830   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2831   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2832 
2833   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2834   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2835   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2836          "fptrunc source and destination must both be a vector or neither", &I);
2837   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2838 
2839   visitInstruction(I);
2840 }
2841 
2842 void Verifier::visitFPExtInst(FPExtInst &I) {
2843   // Get the source and destination types
2844   Type *SrcTy = I.getOperand(0)->getType();
2845   Type *DestTy = I.getType();
2846 
2847   // Get the size of the types in bits, we'll need this later
2848   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2849   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2850 
2851   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2852   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2853   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2854          "fpext source and destination must both be a vector or neither", &I);
2855   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2856 
2857   visitInstruction(I);
2858 }
2859 
2860 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2861   // Get the source and destination types
2862   Type *SrcTy = I.getOperand(0)->getType();
2863   Type *DestTy = I.getType();
2864 
2865   bool SrcVec = SrcTy->isVectorTy();
2866   bool DstVec = DestTy->isVectorTy();
2867 
2868   Assert(SrcVec == DstVec,
2869          "UIToFP source and dest must both be vector or scalar", &I);
2870   Assert(SrcTy->isIntOrIntVectorTy(),
2871          "UIToFP source must be integer or integer vector", &I);
2872   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2873          &I);
2874 
2875   if (SrcVec && DstVec)
2876     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2877                cast<VectorType>(DestTy)->getElementCount(),
2878            "UIToFP source and dest vector length mismatch", &I);
2879 
2880   visitInstruction(I);
2881 }
2882 
2883 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2884   // Get the source and destination types
2885   Type *SrcTy = I.getOperand(0)->getType();
2886   Type *DestTy = I.getType();
2887 
2888   bool SrcVec = SrcTy->isVectorTy();
2889   bool DstVec = DestTy->isVectorTy();
2890 
2891   Assert(SrcVec == DstVec,
2892          "SIToFP source and dest must both be vector or scalar", &I);
2893   Assert(SrcTy->isIntOrIntVectorTy(),
2894          "SIToFP source must be integer or integer vector", &I);
2895   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2896          &I);
2897 
2898   if (SrcVec && DstVec)
2899     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2900                cast<VectorType>(DestTy)->getElementCount(),
2901            "SIToFP source and dest vector length mismatch", &I);
2902 
2903   visitInstruction(I);
2904 }
2905 
2906 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2907   // Get the source and destination types
2908   Type *SrcTy = I.getOperand(0)->getType();
2909   Type *DestTy = I.getType();
2910 
2911   bool SrcVec = SrcTy->isVectorTy();
2912   bool DstVec = DestTy->isVectorTy();
2913 
2914   Assert(SrcVec == DstVec,
2915          "FPToUI source and dest must both be vector or scalar", &I);
2916   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2917          &I);
2918   Assert(DestTy->isIntOrIntVectorTy(),
2919          "FPToUI result must be integer or integer vector", &I);
2920 
2921   if (SrcVec && DstVec)
2922     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2923                cast<VectorType>(DestTy)->getElementCount(),
2924            "FPToUI source and dest vector length mismatch", &I);
2925 
2926   visitInstruction(I);
2927 }
2928 
2929 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2930   // Get the source and destination types
2931   Type *SrcTy = I.getOperand(0)->getType();
2932   Type *DestTy = I.getType();
2933 
2934   bool SrcVec = SrcTy->isVectorTy();
2935   bool DstVec = DestTy->isVectorTy();
2936 
2937   Assert(SrcVec == DstVec,
2938          "FPToSI source and dest must both be vector or scalar", &I);
2939   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2940          &I);
2941   Assert(DestTy->isIntOrIntVectorTy(),
2942          "FPToSI result must be integer or integer vector", &I);
2943 
2944   if (SrcVec && DstVec)
2945     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2946                cast<VectorType>(DestTy)->getElementCount(),
2947            "FPToSI source and dest vector length mismatch", &I);
2948 
2949   visitInstruction(I);
2950 }
2951 
2952 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2953   // Get the source and destination types
2954   Type *SrcTy = I.getOperand(0)->getType();
2955   Type *DestTy = I.getType();
2956 
2957   Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2958 
2959   Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2960   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2961          &I);
2962 
2963   if (SrcTy->isVectorTy()) {
2964     auto *VSrc = cast<VectorType>(SrcTy);
2965     auto *VDest = cast<VectorType>(DestTy);
2966     Assert(VSrc->getElementCount() == VDest->getElementCount(),
2967            "PtrToInt Vector width mismatch", &I);
2968   }
2969 
2970   visitInstruction(I);
2971 }
2972 
2973 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2974   // Get the source and destination types
2975   Type *SrcTy = I.getOperand(0)->getType();
2976   Type *DestTy = I.getType();
2977 
2978   Assert(SrcTy->isIntOrIntVectorTy(),
2979          "IntToPtr source must be an integral", &I);
2980   Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2981 
2982   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2983          &I);
2984   if (SrcTy->isVectorTy()) {
2985     auto *VSrc = cast<VectorType>(SrcTy);
2986     auto *VDest = cast<VectorType>(DestTy);
2987     Assert(VSrc->getElementCount() == VDest->getElementCount(),
2988            "IntToPtr Vector width mismatch", &I);
2989   }
2990   visitInstruction(I);
2991 }
2992 
2993 void Verifier::visitBitCastInst(BitCastInst &I) {
2994   Assert(
2995       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2996       "Invalid bitcast", &I);
2997   visitInstruction(I);
2998 }
2999 
3000 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
3001   Type *SrcTy = I.getOperand(0)->getType();
3002   Type *DestTy = I.getType();
3003 
3004   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
3005          &I);
3006   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
3007          &I);
3008   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
3009          "AddrSpaceCast must be between different address spaces", &I);
3010   if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
3011     Assert(SrcVTy->getElementCount() ==
3012                cast<VectorType>(DestTy)->getElementCount(),
3013            "AddrSpaceCast vector pointer number of elements mismatch", &I);
3014   visitInstruction(I);
3015 }
3016 
3017 /// visitPHINode - Ensure that a PHI node is well formed.
3018 ///
3019 void Verifier::visitPHINode(PHINode &PN) {
3020   // Ensure that the PHI nodes are all grouped together at the top of the block.
3021   // This can be tested by checking whether the instruction before this is
3022   // either nonexistent (because this is begin()) or is a PHI node.  If not,
3023   // then there is some other instruction before a PHI.
3024   Assert(&PN == &PN.getParent()->front() ||
3025              isa<PHINode>(--BasicBlock::iterator(&PN)),
3026          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
3027 
3028   // Check that a PHI doesn't yield a Token.
3029   Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
3030 
3031   // Check that all of the values of the PHI node have the same type as the
3032   // result, and that the incoming blocks are really basic blocks.
3033   for (Value *IncValue : PN.incoming_values()) {
3034     Assert(PN.getType() == IncValue->getType(),
3035            "PHI node operands are not the same type as the result!", &PN);
3036   }
3037 
3038   // All other PHI node constraints are checked in the visitBasicBlock method.
3039 
3040   visitInstruction(PN);
3041 }
3042 
3043 void Verifier::visitCallBase(CallBase &Call) {
3044   Assert(Call.getCalledOperand()->getType()->isPointerTy(),
3045          "Called function must be a pointer!", Call);
3046   PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType());
3047 
3048   Assert(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()),
3049          "Called function is not the same type as the call!", Call);
3050 
3051   FunctionType *FTy = Call.getFunctionType();
3052 
3053   // Verify that the correct number of arguments are being passed
3054   if (FTy->isVarArg())
3055     Assert(Call.arg_size() >= FTy->getNumParams(),
3056            "Called function requires more parameters than were provided!",
3057            Call);
3058   else
3059     Assert(Call.arg_size() == FTy->getNumParams(),
3060            "Incorrect number of arguments passed to called function!", Call);
3061 
3062   // Verify that all arguments to the call match the function type.
3063   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3064     Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
3065            "Call parameter type does not match function signature!",
3066            Call.getArgOperand(i), FTy->getParamType(i), Call);
3067 
3068   AttributeList Attrs = Call.getAttributes();
3069 
3070   Assert(verifyAttributeCount(Attrs, Call.arg_size()),
3071          "Attribute after last parameter!", Call);
3072 
3073   Function *Callee =
3074       dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3075   bool IsIntrinsic = Callee && Callee->isIntrinsic();
3076   if (IsIntrinsic)
3077     Assert(Callee->getValueType() == FTy,
3078            "Intrinsic called with incompatible signature", Call);
3079 
3080   if (Attrs.hasFnAttr(Attribute::Speculatable)) {
3081     // Don't allow speculatable on call sites, unless the underlying function
3082     // declaration is also speculatable.
3083     Assert(Callee && Callee->isSpeculatable(),
3084            "speculatable attribute may not apply to call sites", Call);
3085   }
3086 
3087   if (Attrs.hasFnAttr(Attribute::Preallocated)) {
3088     Assert(Call.getCalledFunction()->getIntrinsicID() ==
3089                Intrinsic::call_preallocated_arg,
3090            "preallocated as a call site attribute can only be on "
3091            "llvm.call.preallocated.arg");
3092   }
3093 
3094   // Verify call attributes.
3095   verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
3096 
3097   // Conservatively check the inalloca argument.
3098   // We have a bug if we can find that there is an underlying alloca without
3099   // inalloca.
3100   if (Call.hasInAllocaArgument()) {
3101     Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
3102     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
3103       Assert(AI->isUsedWithInAlloca(),
3104              "inalloca argument for call has mismatched alloca", AI, Call);
3105   }
3106 
3107   // For each argument of the callsite, if it has the swifterror argument,
3108   // make sure the underlying alloca/parameter it comes from has a swifterror as
3109   // well.
3110   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3111     if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3112       Value *SwiftErrorArg = Call.getArgOperand(i);
3113       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
3114         Assert(AI->isSwiftError(),
3115                "swifterror argument for call has mismatched alloca", AI, Call);
3116         continue;
3117       }
3118       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3119       Assert(ArgI,
3120              "swifterror argument should come from an alloca or parameter",
3121              SwiftErrorArg, Call);
3122       Assert(ArgI->hasSwiftErrorAttr(),
3123              "swifterror argument for call has mismatched parameter", ArgI,
3124              Call);
3125     }
3126 
3127     if (Attrs.hasParamAttr(i, Attribute::ImmArg)) {
3128       // Don't allow immarg on call sites, unless the underlying declaration
3129       // also has the matching immarg.
3130       Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
3131              "immarg may not apply only to call sites",
3132              Call.getArgOperand(i), Call);
3133     }
3134 
3135     if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3136       Value *ArgVal = Call.getArgOperand(i);
3137       Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3138              "immarg operand has non-immediate parameter", ArgVal, Call);
3139     }
3140 
3141     if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3142       Value *ArgVal = Call.getArgOperand(i);
3143       bool hasOB =
3144           Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3145       bool isMustTail = Call.isMustTailCall();
3146       Assert(hasOB != isMustTail,
3147              "preallocated operand either requires a preallocated bundle or "
3148              "the call to be musttail (but not both)",
3149              ArgVal, Call);
3150     }
3151   }
3152 
3153   if (FTy->isVarArg()) {
3154     // FIXME? is 'nest' even legal here?
3155     bool SawNest = false;
3156     bool SawReturned = false;
3157 
3158     for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3159       if (Attrs.hasParamAttr(Idx, Attribute::Nest))
3160         SawNest = true;
3161       if (Attrs.hasParamAttr(Idx, Attribute::Returned))
3162         SawReturned = true;
3163     }
3164 
3165     // Check attributes on the varargs part.
3166     for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3167       Type *Ty = Call.getArgOperand(Idx)->getType();
3168       AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx);
3169       verifyParameterAttrs(ArgAttrs, Ty, &Call);
3170 
3171       if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3172         Assert(!SawNest, "More than one parameter has attribute nest!", Call);
3173         SawNest = true;
3174       }
3175 
3176       if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3177         Assert(!SawReturned, "More than one parameter has attribute returned!",
3178                Call);
3179         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
3180                "Incompatible argument and return types for 'returned' "
3181                "attribute",
3182                Call);
3183         SawReturned = true;
3184       }
3185 
3186       // Statepoint intrinsic is vararg but the wrapped function may be not.
3187       // Allow sret here and check the wrapped function in verifyStatepoint.
3188       if (!Call.getCalledFunction() ||
3189           Call.getCalledFunction()->getIntrinsicID() !=
3190               Intrinsic::experimental_gc_statepoint)
3191         Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
3192                "Attribute 'sret' cannot be used for vararg call arguments!",
3193                Call);
3194 
3195       if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3196         Assert(Idx == Call.arg_size() - 1,
3197                "inalloca isn't on the last argument!", Call);
3198     }
3199   }
3200 
3201   // Verify that there's no metadata unless it's a direct call to an intrinsic.
3202   if (!IsIntrinsic) {
3203     for (Type *ParamTy : FTy->params()) {
3204       Assert(!ParamTy->isMetadataTy(),
3205              "Function has metadata parameter but isn't an intrinsic", Call);
3206       Assert(!ParamTy->isTokenTy(),
3207              "Function has token parameter but isn't an intrinsic", Call);
3208     }
3209   }
3210 
3211   // Verify that indirect calls don't return tokens.
3212   if (!Call.getCalledFunction()) {
3213     Assert(!FTy->getReturnType()->isTokenTy(),
3214            "Return type cannot be token for indirect call!");
3215     Assert(!FTy->getReturnType()->isX86_AMXTy(),
3216            "Return type cannot be x86_amx for indirect call!");
3217   }
3218 
3219   if (Function *F = Call.getCalledFunction())
3220     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3221       visitIntrinsicCall(ID, Call);
3222 
3223   // Verify that a callsite has at most one "deopt", at most one "funclet", at
3224   // most one "gc-transition", at most one "cfguardtarget",
3225   // and at most one "preallocated" operand bundle.
3226   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3227        FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3228        FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
3229        FoundAttachedCallBundle = false;
3230   for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3231     OperandBundleUse BU = Call.getOperandBundleAt(i);
3232     uint32_t Tag = BU.getTagID();
3233     if (Tag == LLVMContext::OB_deopt) {
3234       Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3235       FoundDeoptBundle = true;
3236     } else if (Tag == LLVMContext::OB_gc_transition) {
3237       Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3238              Call);
3239       FoundGCTransitionBundle = true;
3240     } else if (Tag == LLVMContext::OB_funclet) {
3241       Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3242       FoundFuncletBundle = true;
3243       Assert(BU.Inputs.size() == 1,
3244              "Expected exactly one funclet bundle operand", Call);
3245       Assert(isa<FuncletPadInst>(BU.Inputs.front()),
3246              "Funclet bundle operands should correspond to a FuncletPadInst",
3247              Call);
3248     } else if (Tag == LLVMContext::OB_cfguardtarget) {
3249       Assert(!FoundCFGuardTargetBundle,
3250              "Multiple CFGuardTarget operand bundles", Call);
3251       FoundCFGuardTargetBundle = true;
3252       Assert(BU.Inputs.size() == 1,
3253              "Expected exactly one cfguardtarget bundle operand", Call);
3254     } else if (Tag == LLVMContext::OB_preallocated) {
3255       Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
3256              Call);
3257       FoundPreallocatedBundle = true;
3258       Assert(BU.Inputs.size() == 1,
3259              "Expected exactly one preallocated bundle operand", Call);
3260       auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3261       Assert(Input &&
3262                  Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3263              "\"preallocated\" argument must be a token from "
3264              "llvm.call.preallocated.setup",
3265              Call);
3266     } else if (Tag == LLVMContext::OB_gc_live) {
3267       Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles",
3268              Call);
3269       FoundGCLiveBundle = true;
3270     } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
3271       Assert(!FoundAttachedCallBundle,
3272              "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
3273       FoundAttachedCallBundle = true;
3274       verifyAttachedCallBundle(Call, BU);
3275     }
3276   }
3277 
3278   // Verify that each inlinable callsite of a debug-info-bearing function in a
3279   // debug-info-bearing function has a debug location attached to it. Failure to
3280   // do so causes assertion failures when the inliner sets up inline scope info.
3281   if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3282       Call.getCalledFunction()->getSubprogram())
3283     AssertDI(Call.getDebugLoc(),
3284              "inlinable function call in a function with "
3285              "debug info must have a !dbg location",
3286              Call);
3287 
3288   visitInstruction(Call);
3289 }
3290 
3291 void Verifier::verifyTailCCMustTailAttrs(AttrBuilder Attrs,
3292                                          StringRef Context) {
3293   Assert(!Attrs.contains(Attribute::InAlloca),
3294          Twine("inalloca attribute not allowed in ") + Context);
3295   Assert(!Attrs.contains(Attribute::InReg),
3296          Twine("inreg attribute not allowed in ") + Context);
3297   Assert(!Attrs.contains(Attribute::SwiftError),
3298          Twine("swifterror attribute not allowed in ") + Context);
3299   Assert(!Attrs.contains(Attribute::Preallocated),
3300          Twine("preallocated attribute not allowed in ") + Context);
3301   Assert(!Attrs.contains(Attribute::ByRef),
3302          Twine("byref attribute not allowed in ") + Context);
3303 }
3304 
3305 /// Two types are "congruent" if they are identical, or if they are both pointer
3306 /// types with different pointee types and the same address space.
3307 static bool isTypeCongruent(Type *L, Type *R) {
3308   if (L == R)
3309     return true;
3310   PointerType *PL = dyn_cast<PointerType>(L);
3311   PointerType *PR = dyn_cast<PointerType>(R);
3312   if (!PL || !PR)
3313     return false;
3314   return PL->getAddressSpace() == PR->getAddressSpace();
3315 }
3316 
3317 static AttrBuilder getParameterABIAttributes(unsigned I, AttributeList Attrs) {
3318   static const Attribute::AttrKind ABIAttrs[] = {
3319       Attribute::StructRet,  Attribute::ByVal,          Attribute::InAlloca,
3320       Attribute::InReg,      Attribute::StackAlignment, Attribute::SwiftSelf,
3321       Attribute::SwiftAsync, Attribute::SwiftError,     Attribute::Preallocated,
3322       Attribute::ByRef};
3323   AttrBuilder Copy;
3324   for (auto AK : ABIAttrs) {
3325     Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK);
3326     if (Attr.isValid())
3327       Copy.addAttribute(Attr);
3328   }
3329 
3330   // `align` is ABI-affecting only in combination with `byval` or `byref`.
3331   if (Attrs.hasParamAttr(I, Attribute::Alignment) &&
3332       (Attrs.hasParamAttr(I, Attribute::ByVal) ||
3333        Attrs.hasParamAttr(I, Attribute::ByRef)))
3334     Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3335   return Copy;
3336 }
3337 
3338 void Verifier::verifyMustTailCall(CallInst &CI) {
3339   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3340 
3341   Function *F = CI.getParent()->getParent();
3342   FunctionType *CallerTy = F->getFunctionType();
3343   FunctionType *CalleeTy = CI.getFunctionType();
3344   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3345          "cannot guarantee tail call due to mismatched varargs", &CI);
3346   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3347          "cannot guarantee tail call due to mismatched return types", &CI);
3348 
3349   // - The calling conventions of the caller and callee must match.
3350   Assert(F->getCallingConv() == CI.getCallingConv(),
3351          "cannot guarantee tail call due to mismatched calling conv", &CI);
3352 
3353   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3354   //   or a pointer bitcast followed by a ret instruction.
3355   // - The ret instruction must return the (possibly bitcasted) value
3356   //   produced by the call or void.
3357   Value *RetVal = &CI;
3358   Instruction *Next = CI.getNextNode();
3359 
3360   // Handle the optional bitcast.
3361   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3362     Assert(BI->getOperand(0) == RetVal,
3363            "bitcast following musttail call must use the call", BI);
3364     RetVal = BI;
3365     Next = BI->getNextNode();
3366   }
3367 
3368   // Check the return.
3369   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3370   Assert(Ret, "musttail call must precede a ret with an optional bitcast",
3371          &CI);
3372   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||
3373              isa<UndefValue>(Ret->getReturnValue()),
3374          "musttail call result must be returned", Ret);
3375 
3376   AttributeList CallerAttrs = F->getAttributes();
3377   AttributeList CalleeAttrs = CI.getAttributes();
3378   if (CI.getCallingConv() == CallingConv::SwiftTail ||
3379       CI.getCallingConv() == CallingConv::Tail) {
3380     StringRef CCName =
3381         CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc";
3382 
3383     // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
3384     //   are allowed in swifttailcc call
3385     for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3386       AttrBuilder ABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3387       SmallString<32> Context{CCName, StringRef(" musttail caller")};
3388       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3389     }
3390     for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) {
3391       AttrBuilder ABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3392       SmallString<32> Context{CCName, StringRef(" musttail callee")};
3393       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3394     }
3395     // - Varargs functions are not allowed
3396     Assert(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +
3397                                       " tail call for varargs function");
3398     return;
3399   }
3400 
3401   // - The caller and callee prototypes must match.  Pointer types of
3402   //   parameters or return types may differ in pointee type, but not
3403   //   address space.
3404   if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3405     Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3406            "cannot guarantee tail call due to mismatched parameter counts",
3407            &CI);
3408     for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3409       Assert(
3410           isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3411           "cannot guarantee tail call due to mismatched parameter types", &CI);
3412     }
3413   }
3414 
3415   // - All ABI-impacting function attributes, such as sret, byval, inreg,
3416   //   returned, preallocated, and inalloca, must match.
3417   for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3418     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3419     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3420     Assert(CallerABIAttrs == CalleeABIAttrs,
3421            "cannot guarantee tail call due to mismatched ABI impacting "
3422            "function attributes",
3423            &CI, CI.getOperand(I));
3424   }
3425 }
3426 
3427 void Verifier::visitCallInst(CallInst &CI) {
3428   visitCallBase(CI);
3429 
3430   if (CI.isMustTailCall())
3431     verifyMustTailCall(CI);
3432 }
3433 
3434 void Verifier::visitInvokeInst(InvokeInst &II) {
3435   visitCallBase(II);
3436 
3437   // Verify that the first non-PHI instruction of the unwind destination is an
3438   // exception handling instruction.
3439   Assert(
3440       II.getUnwindDest()->isEHPad(),
3441       "The unwind destination does not have an exception handling instruction!",
3442       &II);
3443 
3444   visitTerminator(II);
3445 }
3446 
3447 /// visitUnaryOperator - Check the argument to the unary operator.
3448 ///
3449 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3450   Assert(U.getType() == U.getOperand(0)->getType(),
3451          "Unary operators must have same type for"
3452          "operands and result!",
3453          &U);
3454 
3455   switch (U.getOpcode()) {
3456   // Check that floating-point arithmetic operators are only used with
3457   // floating-point operands.
3458   case Instruction::FNeg:
3459     Assert(U.getType()->isFPOrFPVectorTy(),
3460            "FNeg operator only works with float types!", &U);
3461     break;
3462   default:
3463     llvm_unreachable("Unknown UnaryOperator opcode!");
3464   }
3465 
3466   visitInstruction(U);
3467 }
3468 
3469 /// visitBinaryOperator - Check that both arguments to the binary operator are
3470 /// of the same type!
3471 ///
3472 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3473   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3474          "Both operands to a binary operator are not of the same type!", &B);
3475 
3476   switch (B.getOpcode()) {
3477   // Check that integer arithmetic operators are only used with
3478   // integral operands.
3479   case Instruction::Add:
3480   case Instruction::Sub:
3481   case Instruction::Mul:
3482   case Instruction::SDiv:
3483   case Instruction::UDiv:
3484   case Instruction::SRem:
3485   case Instruction::URem:
3486     Assert(B.getType()->isIntOrIntVectorTy(),
3487            "Integer arithmetic operators only work with integral types!", &B);
3488     Assert(B.getType() == B.getOperand(0)->getType(),
3489            "Integer arithmetic operators must have same type "
3490            "for operands and result!",
3491            &B);
3492     break;
3493   // Check that floating-point arithmetic operators are only used with
3494   // floating-point operands.
3495   case Instruction::FAdd:
3496   case Instruction::FSub:
3497   case Instruction::FMul:
3498   case Instruction::FDiv:
3499   case Instruction::FRem:
3500     Assert(B.getType()->isFPOrFPVectorTy(),
3501            "Floating-point arithmetic operators only work with "
3502            "floating-point types!",
3503            &B);
3504     Assert(B.getType() == B.getOperand(0)->getType(),
3505            "Floating-point arithmetic operators must have same type "
3506            "for operands and result!",
3507            &B);
3508     break;
3509   // Check that logical operators are only used with integral operands.
3510   case Instruction::And:
3511   case Instruction::Or:
3512   case Instruction::Xor:
3513     Assert(B.getType()->isIntOrIntVectorTy(),
3514            "Logical operators only work with integral types!", &B);
3515     Assert(B.getType() == B.getOperand(0)->getType(),
3516            "Logical operators must have same type for operands and result!",
3517            &B);
3518     break;
3519   case Instruction::Shl:
3520   case Instruction::LShr:
3521   case Instruction::AShr:
3522     Assert(B.getType()->isIntOrIntVectorTy(),
3523            "Shifts only work with integral types!", &B);
3524     Assert(B.getType() == B.getOperand(0)->getType(),
3525            "Shift return type must be same as operands!", &B);
3526     break;
3527   default:
3528     llvm_unreachable("Unknown BinaryOperator opcode!");
3529   }
3530 
3531   visitInstruction(B);
3532 }
3533 
3534 void Verifier::visitICmpInst(ICmpInst &IC) {
3535   // Check that the operands are the same type
3536   Type *Op0Ty = IC.getOperand(0)->getType();
3537   Type *Op1Ty = IC.getOperand(1)->getType();
3538   Assert(Op0Ty == Op1Ty,
3539          "Both operands to ICmp instruction are not of the same type!", &IC);
3540   // Check that the operands are the right type
3541   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3542          "Invalid operand types for ICmp instruction", &IC);
3543   // Check that the predicate is valid.
3544   Assert(IC.isIntPredicate(),
3545          "Invalid predicate in ICmp instruction!", &IC);
3546 
3547   visitInstruction(IC);
3548 }
3549 
3550 void Verifier::visitFCmpInst(FCmpInst &FC) {
3551   // Check that the operands are the same type
3552   Type *Op0Ty = FC.getOperand(0)->getType();
3553   Type *Op1Ty = FC.getOperand(1)->getType();
3554   Assert(Op0Ty == Op1Ty,
3555          "Both operands to FCmp instruction are not of the same type!", &FC);
3556   // Check that the operands are the right type
3557   Assert(Op0Ty->isFPOrFPVectorTy(),
3558          "Invalid operand types for FCmp instruction", &FC);
3559   // Check that the predicate is valid.
3560   Assert(FC.isFPPredicate(),
3561          "Invalid predicate in FCmp instruction!", &FC);
3562 
3563   visitInstruction(FC);
3564 }
3565 
3566 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3567   Assert(
3568       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3569       "Invalid extractelement operands!", &EI);
3570   visitInstruction(EI);
3571 }
3572 
3573 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3574   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3575                                             IE.getOperand(2)),
3576          "Invalid insertelement operands!", &IE);
3577   visitInstruction(IE);
3578 }
3579 
3580 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3581   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3582                                             SV.getShuffleMask()),
3583          "Invalid shufflevector operands!", &SV);
3584   visitInstruction(SV);
3585 }
3586 
3587 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3588   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3589 
3590   Assert(isa<PointerType>(TargetTy),
3591          "GEP base pointer is not a vector or a vector of pointers", &GEP);
3592   Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3593 
3594   SmallVector<Value *, 16> Idxs(GEP.indices());
3595   Assert(all_of(
3596       Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3597       "GEP indexes must be integers", &GEP);
3598   Type *ElTy =
3599       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3600   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3601 
3602   Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3603              GEP.getResultElementType() == ElTy,
3604          "GEP is not of right type for indices!", &GEP, ElTy);
3605 
3606   if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
3607     // Additional checks for vector GEPs.
3608     ElementCount GEPWidth = GEPVTy->getElementCount();
3609     if (GEP.getPointerOperandType()->isVectorTy())
3610       Assert(
3611           GEPWidth ==
3612               cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
3613           "Vector GEP result width doesn't match operand's", &GEP);
3614     for (Value *Idx : Idxs) {
3615       Type *IndexTy = Idx->getType();
3616       if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
3617         ElementCount IndexWidth = IndexVTy->getElementCount();
3618         Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3619       }
3620       Assert(IndexTy->isIntOrIntVectorTy(),
3621              "All GEP indices should be of integer type");
3622     }
3623   }
3624 
3625   if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3626     Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
3627            "GEP address space doesn't match type", &GEP);
3628   }
3629 
3630   visitInstruction(GEP);
3631 }
3632 
3633 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3634   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3635 }
3636 
3637 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3638   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3639          "precondition violation");
3640 
3641   unsigned NumOperands = Range->getNumOperands();
3642   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3643   unsigned NumRanges = NumOperands / 2;
3644   Assert(NumRanges >= 1, "It should have at least one range!", Range);
3645 
3646   ConstantRange LastRange(1, true); // Dummy initial value
3647   for (unsigned i = 0; i < NumRanges; ++i) {
3648     ConstantInt *Low =
3649         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3650     Assert(Low, "The lower limit must be an integer!", Low);
3651     ConstantInt *High =
3652         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3653     Assert(High, "The upper limit must be an integer!", High);
3654     Assert(High->getType() == Low->getType() && High->getType() == Ty,
3655            "Range types must match instruction type!", &I);
3656 
3657     APInt HighV = High->getValue();
3658     APInt LowV = Low->getValue();
3659     ConstantRange CurRange(LowV, HighV);
3660     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3661            "Range must not be empty!", Range);
3662     if (i != 0) {
3663       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3664              "Intervals are overlapping", Range);
3665       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3666              Range);
3667       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3668              Range);
3669     }
3670     LastRange = ConstantRange(LowV, HighV);
3671   }
3672   if (NumRanges > 2) {
3673     APInt FirstLow =
3674         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3675     APInt FirstHigh =
3676         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3677     ConstantRange FirstRange(FirstLow, FirstHigh);
3678     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3679            "Intervals are overlapping", Range);
3680     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3681            Range);
3682   }
3683 }
3684 
3685 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3686   unsigned Size = DL.getTypeSizeInBits(Ty);
3687   Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3688   Assert(!(Size & (Size - 1)),
3689          "atomic memory access' operand must have a power-of-two size", Ty, I);
3690 }
3691 
3692 void Verifier::visitLoadInst(LoadInst &LI) {
3693   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3694   Assert(PTy, "Load operand must be a pointer.", &LI);
3695   Type *ElTy = LI.getType();
3696   Assert(LI.getAlignment() <= Value::MaximumAlignment,
3697          "huge alignment values are unsupported", &LI);
3698   Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3699   if (LI.isAtomic()) {
3700     Assert(LI.getOrdering() != AtomicOrdering::Release &&
3701                LI.getOrdering() != AtomicOrdering::AcquireRelease,
3702            "Load cannot have Release ordering", &LI);
3703     Assert(LI.getAlignment() != 0,
3704            "Atomic load must specify explicit alignment", &LI);
3705     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3706            "atomic load operand must have integer, pointer, or floating point "
3707            "type!",
3708            ElTy, &LI);
3709     checkAtomicMemAccessSize(ElTy, &LI);
3710   } else {
3711     Assert(LI.getSyncScopeID() == SyncScope::System,
3712            "Non-atomic load cannot have SynchronizationScope specified", &LI);
3713   }
3714 
3715   visitInstruction(LI);
3716 }
3717 
3718 void Verifier::visitStoreInst(StoreInst &SI) {
3719   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3720   Assert(PTy, "Store operand must be a pointer.", &SI);
3721   Type *ElTy = SI.getOperand(0)->getType();
3722   Assert(PTy->isOpaqueOrPointeeTypeMatches(ElTy),
3723          "Stored value type does not match pointer operand type!", &SI, ElTy);
3724   Assert(SI.getAlignment() <= Value::MaximumAlignment,
3725          "huge alignment values are unsupported", &SI);
3726   Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3727   if (SI.isAtomic()) {
3728     Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3729                SI.getOrdering() != AtomicOrdering::AcquireRelease,
3730            "Store cannot have Acquire ordering", &SI);
3731     Assert(SI.getAlignment() != 0,
3732            "Atomic store must specify explicit alignment", &SI);
3733     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3734            "atomic store operand must have integer, pointer, or floating point "
3735            "type!",
3736            ElTy, &SI);
3737     checkAtomicMemAccessSize(ElTy, &SI);
3738   } else {
3739     Assert(SI.getSyncScopeID() == SyncScope::System,
3740            "Non-atomic store cannot have SynchronizationScope specified", &SI);
3741   }
3742   visitInstruction(SI);
3743 }
3744 
3745 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3746 void Verifier::verifySwiftErrorCall(CallBase &Call,
3747                                     const Value *SwiftErrorVal) {
3748   for (const auto &I : llvm::enumerate(Call.args())) {
3749     if (I.value() == SwiftErrorVal) {
3750       Assert(Call.paramHasAttr(I.index(), Attribute::SwiftError),
3751              "swifterror value when used in a callsite should be marked "
3752              "with swifterror attribute",
3753              SwiftErrorVal, Call);
3754     }
3755   }
3756 }
3757 
3758 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3759   // Check that swifterror value is only used by loads, stores, or as
3760   // a swifterror argument.
3761   for (const User *U : SwiftErrorVal->users()) {
3762     Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3763            isa<InvokeInst>(U),
3764            "swifterror value can only be loaded and stored from, or "
3765            "as a swifterror argument!",
3766            SwiftErrorVal, U);
3767     // If it is used by a store, check it is the second operand.
3768     if (auto StoreI = dyn_cast<StoreInst>(U))
3769       Assert(StoreI->getOperand(1) == SwiftErrorVal,
3770              "swifterror value should be the second operand when used "
3771              "by stores", SwiftErrorVal, U);
3772     if (auto *Call = dyn_cast<CallBase>(U))
3773       verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3774   }
3775 }
3776 
3777 void Verifier::visitAllocaInst(AllocaInst &AI) {
3778   SmallPtrSet<Type*, 4> Visited;
3779   Assert(AI.getAllocatedType()->isSized(&Visited),
3780          "Cannot allocate unsized type", &AI);
3781   Assert(AI.getArraySize()->getType()->isIntegerTy(),
3782          "Alloca array size must have integer type", &AI);
3783   Assert(AI.getAlignment() <= Value::MaximumAlignment,
3784          "huge alignment values are unsupported", &AI);
3785 
3786   if (AI.isSwiftError()) {
3787     verifySwiftErrorValue(&AI);
3788   }
3789 
3790   visitInstruction(AI);
3791 }
3792 
3793 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3794   Type *ElTy = CXI.getOperand(1)->getType();
3795   Assert(ElTy->isIntOrPtrTy(),
3796          "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3797   checkAtomicMemAccessSize(ElTy, &CXI);
3798   visitInstruction(CXI);
3799 }
3800 
3801 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3802   Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3803          "atomicrmw instructions cannot be unordered.", &RMWI);
3804   auto Op = RMWI.getOperation();
3805   Type *ElTy = RMWI.getOperand(1)->getType();
3806   if (Op == AtomicRMWInst::Xchg) {
3807     Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
3808            AtomicRMWInst::getOperationName(Op) +
3809            " operand must have integer or floating point type!",
3810            &RMWI, ElTy);
3811   } else if (AtomicRMWInst::isFPOperation(Op)) {
3812     Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
3813            AtomicRMWInst::getOperationName(Op) +
3814            " operand must have floating point type!",
3815            &RMWI, ElTy);
3816   } else {
3817     Assert(ElTy->isIntegerTy(), "atomicrmw " +
3818            AtomicRMWInst::getOperationName(Op) +
3819            " operand must have integer type!",
3820            &RMWI, ElTy);
3821   }
3822   checkAtomicMemAccessSize(ElTy, &RMWI);
3823   Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
3824          "Invalid binary operation!", &RMWI);
3825   visitInstruction(RMWI);
3826 }
3827 
3828 void Verifier::visitFenceInst(FenceInst &FI) {
3829   const AtomicOrdering Ordering = FI.getOrdering();
3830   Assert(Ordering == AtomicOrdering::Acquire ||
3831              Ordering == AtomicOrdering::Release ||
3832              Ordering == AtomicOrdering::AcquireRelease ||
3833              Ordering == AtomicOrdering::SequentiallyConsistent,
3834          "fence instructions may only have acquire, release, acq_rel, or "
3835          "seq_cst ordering.",
3836          &FI);
3837   visitInstruction(FI);
3838 }
3839 
3840 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3841   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3842                                           EVI.getIndices()) == EVI.getType(),
3843          "Invalid ExtractValueInst operands!", &EVI);
3844 
3845   visitInstruction(EVI);
3846 }
3847 
3848 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3849   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3850                                           IVI.getIndices()) ==
3851              IVI.getOperand(1)->getType(),
3852          "Invalid InsertValueInst operands!", &IVI);
3853 
3854   visitInstruction(IVI);
3855 }
3856 
3857 static Value *getParentPad(Value *EHPad) {
3858   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3859     return FPI->getParentPad();
3860 
3861   return cast<CatchSwitchInst>(EHPad)->getParentPad();
3862 }
3863 
3864 void Verifier::visitEHPadPredecessors(Instruction &I) {
3865   assert(I.isEHPad());
3866 
3867   BasicBlock *BB = I.getParent();
3868   Function *F = BB->getParent();
3869 
3870   Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3871 
3872   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3873     // The landingpad instruction defines its parent as a landing pad block. The
3874     // landing pad block may be branched to only by the unwind edge of an
3875     // invoke.
3876     for (BasicBlock *PredBB : predecessors(BB)) {
3877       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3878       Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3879              "Block containing LandingPadInst must be jumped to "
3880              "only by the unwind edge of an invoke.",
3881              LPI);
3882     }
3883     return;
3884   }
3885   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3886     if (!pred_empty(BB))
3887       Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3888              "Block containg CatchPadInst must be jumped to "
3889              "only by its catchswitch.",
3890              CPI);
3891     Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3892            "Catchswitch cannot unwind to one of its catchpads",
3893            CPI->getCatchSwitch(), CPI);
3894     return;
3895   }
3896 
3897   // Verify that each pred has a legal terminator with a legal to/from EH
3898   // pad relationship.
3899   Instruction *ToPad = &I;
3900   Value *ToPadParent = getParentPad(ToPad);
3901   for (BasicBlock *PredBB : predecessors(BB)) {
3902     Instruction *TI = PredBB->getTerminator();
3903     Value *FromPad;
3904     if (auto *II = dyn_cast<InvokeInst>(TI)) {
3905       Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3906              "EH pad must be jumped to via an unwind edge", ToPad, II);
3907       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3908         FromPad = Bundle->Inputs[0];
3909       else
3910         FromPad = ConstantTokenNone::get(II->getContext());
3911     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3912       FromPad = CRI->getOperand(0);
3913       Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3914     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3915       FromPad = CSI;
3916     } else {
3917       Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3918     }
3919 
3920     // The edge may exit from zero or more nested pads.
3921     SmallSet<Value *, 8> Seen;
3922     for (;; FromPad = getParentPad(FromPad)) {
3923       Assert(FromPad != ToPad,
3924              "EH pad cannot handle exceptions raised within it", FromPad, TI);
3925       if (FromPad == ToPadParent) {
3926         // This is a legal unwind edge.
3927         break;
3928       }
3929       Assert(!isa<ConstantTokenNone>(FromPad),
3930              "A single unwind edge may only enter one EH pad", TI);
3931       Assert(Seen.insert(FromPad).second,
3932              "EH pad jumps through a cycle of pads", FromPad);
3933     }
3934   }
3935 }
3936 
3937 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3938   // The landingpad instruction is ill-formed if it doesn't have any clauses and
3939   // isn't a cleanup.
3940   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3941          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3942 
3943   visitEHPadPredecessors(LPI);
3944 
3945   if (!LandingPadResultTy)
3946     LandingPadResultTy = LPI.getType();
3947   else
3948     Assert(LandingPadResultTy == LPI.getType(),
3949            "The landingpad instruction should have a consistent result type "
3950            "inside a function.",
3951            &LPI);
3952 
3953   Function *F = LPI.getParent()->getParent();
3954   Assert(F->hasPersonalityFn(),
3955          "LandingPadInst needs to be in a function with a personality.", &LPI);
3956 
3957   // The landingpad instruction must be the first non-PHI instruction in the
3958   // block.
3959   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3960          "LandingPadInst not the first non-PHI instruction in the block.",
3961          &LPI);
3962 
3963   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3964     Constant *Clause = LPI.getClause(i);
3965     if (LPI.isCatch(i)) {
3966       Assert(isa<PointerType>(Clause->getType()),
3967              "Catch operand does not have pointer type!", &LPI);
3968     } else {
3969       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3970       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3971              "Filter operand is not an array of constants!", &LPI);
3972     }
3973   }
3974 
3975   visitInstruction(LPI);
3976 }
3977 
3978 void Verifier::visitResumeInst(ResumeInst &RI) {
3979   Assert(RI.getFunction()->hasPersonalityFn(),
3980          "ResumeInst needs to be in a function with a personality.", &RI);
3981 
3982   if (!LandingPadResultTy)
3983     LandingPadResultTy = RI.getValue()->getType();
3984   else
3985     Assert(LandingPadResultTy == RI.getValue()->getType(),
3986            "The resume instruction should have a consistent result type "
3987            "inside a function.",
3988            &RI);
3989 
3990   visitTerminator(RI);
3991 }
3992 
3993 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3994   BasicBlock *BB = CPI.getParent();
3995 
3996   Function *F = BB->getParent();
3997   Assert(F->hasPersonalityFn(),
3998          "CatchPadInst needs to be in a function with a personality.", &CPI);
3999 
4000   Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
4001          "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4002          CPI.getParentPad());
4003 
4004   // The catchpad instruction must be the first non-PHI instruction in the
4005   // block.
4006   Assert(BB->getFirstNonPHI() == &CPI,
4007          "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4008 
4009   visitEHPadPredecessors(CPI);
4010   visitFuncletPadInst(CPI);
4011 }
4012 
4013 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4014   Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
4015          "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4016          CatchReturn.getOperand(0));
4017 
4018   visitTerminator(CatchReturn);
4019 }
4020 
4021 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4022   BasicBlock *BB = CPI.getParent();
4023 
4024   Function *F = BB->getParent();
4025   Assert(F->hasPersonalityFn(),
4026          "CleanupPadInst needs to be in a function with a personality.", &CPI);
4027 
4028   // The cleanuppad instruction must be the first non-PHI instruction in the
4029   // block.
4030   Assert(BB->getFirstNonPHI() == &CPI,
4031          "CleanupPadInst not the first non-PHI instruction in the block.",
4032          &CPI);
4033 
4034   auto *ParentPad = CPI.getParentPad();
4035   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4036          "CleanupPadInst has an invalid parent.", &CPI);
4037 
4038   visitEHPadPredecessors(CPI);
4039   visitFuncletPadInst(CPI);
4040 }
4041 
4042 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4043   User *FirstUser = nullptr;
4044   Value *FirstUnwindPad = nullptr;
4045   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
4046   SmallSet<FuncletPadInst *, 8> Seen;
4047 
4048   while (!Worklist.empty()) {
4049     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4050     Assert(Seen.insert(CurrentPad).second,
4051            "FuncletPadInst must not be nested within itself", CurrentPad);
4052     Value *UnresolvedAncestorPad = nullptr;
4053     for (User *U : CurrentPad->users()) {
4054       BasicBlock *UnwindDest;
4055       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
4056         UnwindDest = CRI->getUnwindDest();
4057       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
4058         // We allow catchswitch unwind to caller to nest
4059         // within an outer pad that unwinds somewhere else,
4060         // because catchswitch doesn't have a nounwind variant.
4061         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
4062         if (CSI->unwindsToCaller())
4063           continue;
4064         UnwindDest = CSI->getUnwindDest();
4065       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
4066         UnwindDest = II->getUnwindDest();
4067       } else if (isa<CallInst>(U)) {
4068         // Calls which don't unwind may be found inside funclet
4069         // pads that unwind somewhere else.  We don't *require*
4070         // such calls to be annotated nounwind.
4071         continue;
4072       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
4073         // The unwind dest for a cleanup can only be found by
4074         // recursive search.  Add it to the worklist, and we'll
4075         // search for its first use that determines where it unwinds.
4076         Worklist.push_back(CPI);
4077         continue;
4078       } else {
4079         Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
4080         continue;
4081       }
4082 
4083       Value *UnwindPad;
4084       bool ExitsFPI;
4085       if (UnwindDest) {
4086         UnwindPad = UnwindDest->getFirstNonPHI();
4087         if (!cast<Instruction>(UnwindPad)->isEHPad())
4088           continue;
4089         Value *UnwindParent = getParentPad(UnwindPad);
4090         // Ignore unwind edges that don't exit CurrentPad.
4091         if (UnwindParent == CurrentPad)
4092           continue;
4093         // Determine whether the original funclet pad is exited,
4094         // and if we are scanning nested pads determine how many
4095         // of them are exited so we can stop searching their
4096         // children.
4097         Value *ExitedPad = CurrentPad;
4098         ExitsFPI = false;
4099         do {
4100           if (ExitedPad == &FPI) {
4101             ExitsFPI = true;
4102             // Now we can resolve any ancestors of CurrentPad up to
4103             // FPI, but not including FPI since we need to make sure
4104             // to check all direct users of FPI for consistency.
4105             UnresolvedAncestorPad = &FPI;
4106             break;
4107           }
4108           Value *ExitedParent = getParentPad(ExitedPad);
4109           if (ExitedParent == UnwindParent) {
4110             // ExitedPad is the ancestor-most pad which this unwind
4111             // edge exits, so we can resolve up to it, meaning that
4112             // ExitedParent is the first ancestor still unresolved.
4113             UnresolvedAncestorPad = ExitedParent;
4114             break;
4115           }
4116           ExitedPad = ExitedParent;
4117         } while (!isa<ConstantTokenNone>(ExitedPad));
4118       } else {
4119         // Unwinding to caller exits all pads.
4120         UnwindPad = ConstantTokenNone::get(FPI.getContext());
4121         ExitsFPI = true;
4122         UnresolvedAncestorPad = &FPI;
4123       }
4124 
4125       if (ExitsFPI) {
4126         // This unwind edge exits FPI.  Make sure it agrees with other
4127         // such edges.
4128         if (FirstUser) {
4129           Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
4130                                               "pad must have the same unwind "
4131                                               "dest",
4132                  &FPI, U, FirstUser);
4133         } else {
4134           FirstUser = U;
4135           FirstUnwindPad = UnwindPad;
4136           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4137           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4138               getParentPad(UnwindPad) == getParentPad(&FPI))
4139             SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4140         }
4141       }
4142       // Make sure we visit all uses of FPI, but for nested pads stop as
4143       // soon as we know where they unwind to.
4144       if (CurrentPad != &FPI)
4145         break;
4146     }
4147     if (UnresolvedAncestorPad) {
4148       if (CurrentPad == UnresolvedAncestorPad) {
4149         // When CurrentPad is FPI itself, we don't mark it as resolved even if
4150         // we've found an unwind edge that exits it, because we need to verify
4151         // all direct uses of FPI.
4152         assert(CurrentPad == &FPI);
4153         continue;
4154       }
4155       // Pop off the worklist any nested pads that we've found an unwind
4156       // destination for.  The pads on the worklist are the uncles,
4157       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
4158       // for all ancestors of CurrentPad up to but not including
4159       // UnresolvedAncestorPad.
4160       Value *ResolvedPad = CurrentPad;
4161       while (!Worklist.empty()) {
4162         Value *UnclePad = Worklist.back();
4163         Value *AncestorPad = getParentPad(UnclePad);
4164         // Walk ResolvedPad up the ancestor list until we either find the
4165         // uncle's parent or the last resolved ancestor.
4166         while (ResolvedPad != AncestorPad) {
4167           Value *ResolvedParent = getParentPad(ResolvedPad);
4168           if (ResolvedParent == UnresolvedAncestorPad) {
4169             break;
4170           }
4171           ResolvedPad = ResolvedParent;
4172         }
4173         // If the resolved ancestor search didn't find the uncle's parent,
4174         // then the uncle is not yet resolved.
4175         if (ResolvedPad != AncestorPad)
4176           break;
4177         // This uncle is resolved, so pop it from the worklist.
4178         Worklist.pop_back();
4179       }
4180     }
4181   }
4182 
4183   if (FirstUnwindPad) {
4184     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
4185       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4186       Value *SwitchUnwindPad;
4187       if (SwitchUnwindDest)
4188         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
4189       else
4190         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
4191       Assert(SwitchUnwindPad == FirstUnwindPad,
4192              "Unwind edges out of a catch must have the same unwind dest as "
4193              "the parent catchswitch",
4194              &FPI, FirstUser, CatchSwitch);
4195     }
4196   }
4197 
4198   visitInstruction(FPI);
4199 }
4200 
4201 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4202   BasicBlock *BB = CatchSwitch.getParent();
4203 
4204   Function *F = BB->getParent();
4205   Assert(F->hasPersonalityFn(),
4206          "CatchSwitchInst needs to be in a function with a personality.",
4207          &CatchSwitch);
4208 
4209   // The catchswitch instruction must be the first non-PHI instruction in the
4210   // block.
4211   Assert(BB->getFirstNonPHI() == &CatchSwitch,
4212          "CatchSwitchInst not the first non-PHI instruction in the block.",
4213          &CatchSwitch);
4214 
4215   auto *ParentPad = CatchSwitch.getParentPad();
4216   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4217          "CatchSwitchInst has an invalid parent.", ParentPad);
4218 
4219   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
4220     Instruction *I = UnwindDest->getFirstNonPHI();
4221     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
4222            "CatchSwitchInst must unwind to an EH block which is not a "
4223            "landingpad.",
4224            &CatchSwitch);
4225 
4226     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
4227     if (getParentPad(I) == ParentPad)
4228       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4229   }
4230 
4231   Assert(CatchSwitch.getNumHandlers() != 0,
4232          "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4233 
4234   for (BasicBlock *Handler : CatchSwitch.handlers()) {
4235     Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
4236            "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4237   }
4238 
4239   visitEHPadPredecessors(CatchSwitch);
4240   visitTerminator(CatchSwitch);
4241 }
4242 
4243 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4244   Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
4245          "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
4246          CRI.getOperand(0));
4247 
4248   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4249     Instruction *I = UnwindDest->getFirstNonPHI();
4250     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
4251            "CleanupReturnInst must unwind to an EH block which is not a "
4252            "landingpad.",
4253            &CRI);
4254   }
4255 
4256   visitTerminator(CRI);
4257 }
4258 
4259 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4260   Instruction *Op = cast<Instruction>(I.getOperand(i));
4261   // If the we have an invalid invoke, don't try to compute the dominance.
4262   // We already reject it in the invoke specific checks and the dominance
4263   // computation doesn't handle multiple edges.
4264   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4265     if (II->getNormalDest() == II->getUnwindDest())
4266       return;
4267   }
4268 
4269   // Quick check whether the def has already been encountered in the same block.
4270   // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4271   // uses are defined to happen on the incoming edge, not at the instruction.
4272   //
4273   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4274   // wrapping an SSA value, assert that we've already encountered it.  See
4275   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4276   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4277     return;
4278 
4279   const Use &U = I.getOperandUse(i);
4280   Assert(DT.dominates(Op, U),
4281          "Instruction does not dominate all uses!", Op, &I);
4282 }
4283 
4284 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4285   Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
4286          "apply only to pointer types", &I);
4287   Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4288          "dereferenceable, dereferenceable_or_null apply only to load"
4289          " and inttoptr instructions, use attributes for calls or invokes", &I);
4290   Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
4291          "take one operand!", &I);
4292   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4293   Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
4294          "dereferenceable_or_null metadata value must be an i64!", &I);
4295 }
4296 
4297 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4298   Assert(MD->getNumOperands() >= 2,
4299          "!prof annotations should have no less than 2 operands", MD);
4300 
4301   // Check first operand.
4302   Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4303   Assert(isa<MDString>(MD->getOperand(0)),
4304          "expected string with name of the !prof annotation", MD);
4305   MDString *MDS = cast<MDString>(MD->getOperand(0));
4306   StringRef ProfName = MDS->getString();
4307 
4308   // Check consistency of !prof branch_weights metadata.
4309   if (ProfName.equals("branch_weights")) {
4310     if (isa<InvokeInst>(&I)) {
4311       Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
4312              "Wrong number of InvokeInst branch_weights operands", MD);
4313     } else {
4314       unsigned ExpectedNumOperands = 0;
4315       if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4316         ExpectedNumOperands = BI->getNumSuccessors();
4317       else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4318         ExpectedNumOperands = SI->getNumSuccessors();
4319       else if (isa<CallInst>(&I))
4320         ExpectedNumOperands = 1;
4321       else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4322         ExpectedNumOperands = IBI->getNumDestinations();
4323       else if (isa<SelectInst>(&I))
4324         ExpectedNumOperands = 2;
4325       else
4326         CheckFailed("!prof branch_weights are not allowed for this instruction",
4327                     MD);
4328 
4329       Assert(MD->getNumOperands() == 1 + ExpectedNumOperands,
4330              "Wrong number of operands", MD);
4331     }
4332     for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4333       auto &MDO = MD->getOperand(i);
4334       Assert(MDO, "second operand should not be null", MD);
4335       Assert(mdconst::dyn_extract<ConstantInt>(MDO),
4336              "!prof brunch_weights operand is not a const int");
4337     }
4338   }
4339 }
4340 
4341 void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
4342   Assert(isa<MDTuple>(Annotation), "annotation must be a tuple");
4343   Assert(Annotation->getNumOperands() >= 1,
4344          "annotation must have at least one operand");
4345   for (const MDOperand &Op : Annotation->operands())
4346     Assert(isa<MDString>(Op.get()), "operands must be strings");
4347 }
4348 
4349 void Verifier::visitAliasScopeMetadata(const MDNode *MD) {
4350   unsigned NumOps = MD->getNumOperands();
4351   Assert(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands",
4352          MD);
4353   Assert(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)),
4354          "first scope operand must be self-referential or string", MD);
4355   if (NumOps == 3)
4356     Assert(isa<MDString>(MD->getOperand(2)),
4357            "third scope operand must be string (if used)", MD);
4358 
4359   MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1));
4360   Assert(Domain != nullptr, "second scope operand must be MDNode", MD);
4361 
4362   unsigned NumDomainOps = Domain->getNumOperands();
4363   Assert(NumDomainOps >= 1 && NumDomainOps <= 2,
4364          "domain must have one or two operands", Domain);
4365   Assert(Domain->getOperand(0).get() == Domain ||
4366              isa<MDString>(Domain->getOperand(0)),
4367          "first domain operand must be self-referential or string", Domain);
4368   if (NumDomainOps == 2)
4369     Assert(isa<MDString>(Domain->getOperand(1)),
4370            "second domain operand must be string (if used)", Domain);
4371 }
4372 
4373 void Verifier::visitAliasScopeListMetadata(const MDNode *MD) {
4374   for (const MDOperand &Op : MD->operands()) {
4375     const MDNode *OpMD = dyn_cast<MDNode>(Op);
4376     Assert(OpMD != nullptr, "scope list must consist of MDNodes", MD);
4377     visitAliasScopeMetadata(OpMD);
4378   }
4379 }
4380 
4381 /// verifyInstruction - Verify that an instruction is well formed.
4382 ///
4383 void Verifier::visitInstruction(Instruction &I) {
4384   BasicBlock *BB = I.getParent();
4385   Assert(BB, "Instruction not embedded in basic block!", &I);
4386 
4387   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
4388     for (User *U : I.users()) {
4389       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
4390              "Only PHI nodes may reference their own value!", &I);
4391     }
4392   }
4393 
4394   // Check that void typed values don't have names
4395   Assert(!I.getType()->isVoidTy() || !I.hasName(),
4396          "Instruction has a name, but provides a void value!", &I);
4397 
4398   // Check that the return value of the instruction is either void or a legal
4399   // value type.
4400   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4401          "Instruction returns a non-scalar type!", &I);
4402 
4403   // Check that the instruction doesn't produce metadata. Calls are already
4404   // checked against the callee type.
4405   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4406          "Invalid use of metadata!", &I);
4407 
4408   // Check that all uses of the instruction, if they are instructions
4409   // themselves, actually have parent basic blocks.  If the use is not an
4410   // instruction, it is an error!
4411   for (Use &U : I.uses()) {
4412     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4413       Assert(Used->getParent() != nullptr,
4414              "Instruction referencing"
4415              " instruction not embedded in a basic block!",
4416              &I, Used);
4417     else {
4418       CheckFailed("Use of instruction is not an instruction!", U);
4419       return;
4420     }
4421   }
4422 
4423   // Get a pointer to the call base of the instruction if it is some form of
4424   // call.
4425   const CallBase *CBI = dyn_cast<CallBase>(&I);
4426 
4427   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4428     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4429 
4430     // Check to make sure that only first-class-values are operands to
4431     // instructions.
4432     if (!I.getOperand(i)->getType()->isFirstClassType()) {
4433       Assert(false, "Instruction operands must be first-class values!", &I);
4434     }
4435 
4436     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4437       // This code checks whether the function is used as the operand of a
4438       // clang_arc_attachedcall operand bundle.
4439       auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI,
4440                                       int Idx) {
4441         return CBI && CBI->isOperandBundleOfType(
4442                           LLVMContext::OB_clang_arc_attachedcall, Idx);
4443       };
4444 
4445       // Check to make sure that the "address of" an intrinsic function is never
4446       // taken. Ignore cases where the address of the intrinsic function is used
4447       // as the argument of operand bundle "clang.arc.attachedcall" as those
4448       // cases are handled in verifyAttachedCallBundle.
4449       Assert((!F->isIntrinsic() ||
4450               (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) ||
4451               IsAttachedCallOperand(F, CBI, i)),
4452              "Cannot take the address of an intrinsic!", &I);
4453       Assert(
4454           !F->isIntrinsic() || isa<CallInst>(I) ||
4455               F->getIntrinsicID() == Intrinsic::donothing ||
4456               F->getIntrinsicID() == Intrinsic::seh_try_begin ||
4457               F->getIntrinsicID() == Intrinsic::seh_try_end ||
4458               F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
4459               F->getIntrinsicID() == Intrinsic::seh_scope_end ||
4460               F->getIntrinsicID() == Intrinsic::coro_resume ||
4461               F->getIntrinsicID() == Intrinsic::coro_destroy ||
4462               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
4463               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4464               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4465               F->getIntrinsicID() == Intrinsic::wasm_rethrow ||
4466               IsAttachedCallOperand(F, CBI, i),
4467           "Cannot invoke an intrinsic other than donothing, patchpoint, "
4468           "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall",
4469           &I);
4470       Assert(F->getParent() == &M, "Referencing function in another module!",
4471              &I, &M, F, F->getParent());
4472     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4473       Assert(OpBB->getParent() == BB->getParent(),
4474              "Referring to a basic block in another function!", &I);
4475     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4476       Assert(OpArg->getParent() == BB->getParent(),
4477              "Referring to an argument in another function!", &I);
4478     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4479       Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
4480              &M, GV, GV->getParent());
4481     } else if (isa<Instruction>(I.getOperand(i))) {
4482       verifyDominatesUse(I, i);
4483     } else if (isa<InlineAsm>(I.getOperand(i))) {
4484       Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4485              "Cannot take the address of an inline asm!", &I);
4486     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4487       if (CE->getType()->isPtrOrPtrVectorTy()) {
4488         // If we have a ConstantExpr pointer, we need to see if it came from an
4489         // illegal bitcast.
4490         visitConstantExprsRecursively(CE);
4491       }
4492     }
4493   }
4494 
4495   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4496     Assert(I.getType()->isFPOrFPVectorTy(),
4497            "fpmath requires a floating point result!", &I);
4498     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4499     if (ConstantFP *CFP0 =
4500             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4501       const APFloat &Accuracy = CFP0->getValueAPF();
4502       Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4503              "fpmath accuracy must have float type", &I);
4504       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4505              "fpmath accuracy not a positive number!", &I);
4506     } else {
4507       Assert(false, "invalid fpmath accuracy!", &I);
4508     }
4509   }
4510 
4511   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4512     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4513            "Ranges are only for loads, calls and invokes!", &I);
4514     visitRangeMetadata(I, Range, I.getType());
4515   }
4516 
4517   if (I.hasMetadata(LLVMContext::MD_invariant_group)) {
4518     Assert(isa<LoadInst>(I) || isa<StoreInst>(I),
4519            "invariant.group metadata is only for loads and stores", &I);
4520   }
4521 
4522   if (I.getMetadata(LLVMContext::MD_nonnull)) {
4523     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4524            &I);
4525     Assert(isa<LoadInst>(I),
4526            "nonnull applies only to load instructions, use attributes"
4527            " for calls or invokes",
4528            &I);
4529   }
4530 
4531   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4532     visitDereferenceableMetadata(I, MD);
4533 
4534   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4535     visitDereferenceableMetadata(I, MD);
4536 
4537   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4538     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4539 
4540   if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias))
4541     visitAliasScopeListMetadata(MD);
4542   if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope))
4543     visitAliasScopeListMetadata(MD);
4544 
4545   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4546     Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
4547            &I);
4548     Assert(isa<LoadInst>(I), "align applies only to load instructions, "
4549            "use attributes for calls or invokes", &I);
4550     Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4551     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4552     Assert(CI && CI->getType()->isIntegerTy(64),
4553            "align metadata value must be an i64!", &I);
4554     uint64_t Align = CI->getZExtValue();
4555     Assert(isPowerOf2_64(Align),
4556            "align metadata value must be a power of 2!", &I);
4557     Assert(Align <= Value::MaximumAlignment,
4558            "alignment is larger that implementation defined limit", &I);
4559   }
4560 
4561   if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
4562     visitProfMetadata(I, MD);
4563 
4564   if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation))
4565     visitAnnotationMetadata(Annotation);
4566 
4567   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4568     AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4569     visitMDNode(*N, AreDebugLocsAllowed::Yes);
4570   }
4571 
4572   if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
4573     verifyFragmentExpression(*DII);
4574     verifyNotEntryValue(*DII);
4575   }
4576 
4577   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
4578   I.getAllMetadata(MDs);
4579   for (auto Attachment : MDs) {
4580     unsigned Kind = Attachment.first;
4581     auto AllowLocs =
4582         (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
4583             ? AreDebugLocsAllowed::Yes
4584             : AreDebugLocsAllowed::No;
4585     visitMDNode(*Attachment.second, AllowLocs);
4586   }
4587 
4588   InstsInThisBlock.insert(&I);
4589 }
4590 
4591 /// Allow intrinsics to be verified in different ways.
4592 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4593   Function *IF = Call.getCalledFunction();
4594   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4595          IF);
4596 
4597   // Verify that the intrinsic prototype lines up with what the .td files
4598   // describe.
4599   FunctionType *IFTy = IF->getFunctionType();
4600   bool IsVarArg = IFTy->isVarArg();
4601 
4602   SmallVector<Intrinsic::IITDescriptor, 8> Table;
4603   getIntrinsicInfoTableEntries(ID, Table);
4604   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4605 
4606   // Walk the descriptors to extract overloaded types.
4607   SmallVector<Type *, 4> ArgTys;
4608   Intrinsic::MatchIntrinsicTypesResult Res =
4609       Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
4610   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
4611          "Intrinsic has incorrect return type!", IF);
4612   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
4613          "Intrinsic has incorrect argument type!", IF);
4614 
4615   // Verify if the intrinsic call matches the vararg property.
4616   if (IsVarArg)
4617     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4618            "Intrinsic was not defined with variable arguments!", IF);
4619   else
4620     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4621            "Callsite was not defined with variable arguments!", IF);
4622 
4623   // All descriptors should be absorbed by now.
4624   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4625 
4626   // Now that we have the intrinsic ID and the actual argument types (and we
4627   // know they are legal for the intrinsic!) get the intrinsic name through the
4628   // usual means.  This allows us to verify the mangling of argument types into
4629   // the name.
4630   const std::string ExpectedName =
4631       Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy);
4632   Assert(ExpectedName == IF->getName(),
4633          "Intrinsic name not mangled correctly for type arguments! "
4634          "Should be: " +
4635              ExpectedName,
4636          IF);
4637 
4638   // If the intrinsic takes MDNode arguments, verify that they are either global
4639   // or are local to *this* function.
4640   for (Value *V : Call.args()) {
4641     if (auto *MD = dyn_cast<MetadataAsValue>(V))
4642       visitMetadataAsValue(*MD, Call.getCaller());
4643     if (auto *Const = dyn_cast<Constant>(V))
4644       Assert(!Const->getType()->isX86_AMXTy(),
4645              "const x86_amx is not allowed in argument!");
4646   }
4647 
4648   switch (ID) {
4649   default:
4650     break;
4651   case Intrinsic::assume: {
4652     for (auto &Elem : Call.bundle_op_infos()) {
4653       Assert(Elem.Tag->getKey() == "ignore" ||
4654                  Attribute::isExistingAttribute(Elem.Tag->getKey()),
4655              "tags must be valid attribute names", Call);
4656       Attribute::AttrKind Kind =
4657           Attribute::getAttrKindFromName(Elem.Tag->getKey());
4658       unsigned ArgCount = Elem.End - Elem.Begin;
4659       if (Kind == Attribute::Alignment) {
4660         Assert(ArgCount <= 3 && ArgCount >= 2,
4661                "alignment assumptions should have 2 or 3 arguments", Call);
4662         Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
4663                "first argument should be a pointer", Call);
4664         Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
4665                "second argument should be an integer", Call);
4666         if (ArgCount == 3)
4667           Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
4668                  "third argument should be an integer if present", Call);
4669         return;
4670       }
4671       Assert(ArgCount <= 2, "too many arguments", Call);
4672       if (Kind == Attribute::None)
4673         break;
4674       if (Attribute::isIntAttrKind(Kind)) {
4675         Assert(ArgCount == 2, "this attribute should have 2 arguments", Call);
4676         Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
4677                "the second argument should be a constant integral value", Call);
4678       } else if (Attribute::canUseAsParamAttr(Kind)) {
4679         Assert((ArgCount) == 1, "this attribute should have one argument",
4680                Call);
4681       } else if (Attribute::canUseAsFnAttr(Kind)) {
4682         Assert((ArgCount) == 0, "this attribute has no argument", Call);
4683       }
4684     }
4685     break;
4686   }
4687   case Intrinsic::coro_id: {
4688     auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4689     if (isa<ConstantPointerNull>(InfoArg))
4690       break;
4691     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4692     Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4693            "info argument of llvm.coro.id must refer to an initialized "
4694            "constant");
4695     Constant *Init = GV->getInitializer();
4696     Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4697            "info argument of llvm.coro.id must refer to either a struct or "
4698            "an array");
4699     break;
4700   }
4701 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC)                        \
4702   case Intrinsic::INTRINSIC:
4703 #include "llvm/IR/ConstrainedOps.def"
4704     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4705     break;
4706   case Intrinsic::dbg_declare: // llvm.dbg.declare
4707     Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
4708            "invalid llvm.dbg.declare intrinsic call 1", Call);
4709     visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4710     break;
4711   case Intrinsic::dbg_addr: // llvm.dbg.addr
4712     visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4713     break;
4714   case Intrinsic::dbg_value: // llvm.dbg.value
4715     visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4716     break;
4717   case Intrinsic::dbg_label: // llvm.dbg.label
4718     visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4719     break;
4720   case Intrinsic::memcpy:
4721   case Intrinsic::memcpy_inline:
4722   case Intrinsic::memmove:
4723   case Intrinsic::memset: {
4724     const auto *MI = cast<MemIntrinsic>(&Call);
4725     auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4726       return Alignment == 0 || isPowerOf2_32(Alignment);
4727     };
4728     Assert(IsValidAlignment(MI->getDestAlignment()),
4729            "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4730            Call);
4731     if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4732       Assert(IsValidAlignment(MTI->getSourceAlignment()),
4733              "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4734              Call);
4735     }
4736 
4737     break;
4738   }
4739   case Intrinsic::memcpy_element_unordered_atomic:
4740   case Intrinsic::memmove_element_unordered_atomic:
4741   case Intrinsic::memset_element_unordered_atomic: {
4742     const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4743 
4744     ConstantInt *ElementSizeCI =
4745         cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4746     const APInt &ElementSizeVal = ElementSizeCI->getValue();
4747     Assert(ElementSizeVal.isPowerOf2(),
4748            "element size of the element-wise atomic memory intrinsic "
4749            "must be a power of 2",
4750            Call);
4751 
4752     auto IsValidAlignment = [&](uint64_t Alignment) {
4753       return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4754     };
4755     uint64_t DstAlignment = AMI->getDestAlignment();
4756     Assert(IsValidAlignment(DstAlignment),
4757            "incorrect alignment of the destination argument", Call);
4758     if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4759       uint64_t SrcAlignment = AMT->getSourceAlignment();
4760       Assert(IsValidAlignment(SrcAlignment),
4761              "incorrect alignment of the source argument", Call);
4762     }
4763     break;
4764   }
4765   case Intrinsic::call_preallocated_setup: {
4766     auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
4767     Assert(NumArgs != nullptr,
4768            "llvm.call.preallocated.setup argument must be a constant");
4769     bool FoundCall = false;
4770     for (User *U : Call.users()) {
4771       auto *UseCall = dyn_cast<CallBase>(U);
4772       Assert(UseCall != nullptr,
4773              "Uses of llvm.call.preallocated.setup must be calls");
4774       const Function *Fn = UseCall->getCalledFunction();
4775       if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
4776         auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
4777         Assert(AllocArgIndex != nullptr,
4778                "llvm.call.preallocated.alloc arg index must be a constant");
4779         auto AllocArgIndexInt = AllocArgIndex->getValue();
4780         Assert(AllocArgIndexInt.sge(0) &&
4781                    AllocArgIndexInt.slt(NumArgs->getValue()),
4782                "llvm.call.preallocated.alloc arg index must be between 0 and "
4783                "corresponding "
4784                "llvm.call.preallocated.setup's argument count");
4785       } else if (Fn && Fn->getIntrinsicID() ==
4786                            Intrinsic::call_preallocated_teardown) {
4787         // nothing to do
4788       } else {
4789         Assert(!FoundCall, "Can have at most one call corresponding to a "
4790                            "llvm.call.preallocated.setup");
4791         FoundCall = true;
4792         size_t NumPreallocatedArgs = 0;
4793         for (unsigned i = 0; i < UseCall->arg_size(); i++) {
4794           if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
4795             ++NumPreallocatedArgs;
4796           }
4797         }
4798         Assert(NumPreallocatedArgs != 0,
4799                "cannot use preallocated intrinsics on a call without "
4800                "preallocated arguments");
4801         Assert(NumArgs->equalsInt(NumPreallocatedArgs),
4802                "llvm.call.preallocated.setup arg size must be equal to number "
4803                "of preallocated arguments "
4804                "at call site",
4805                Call, *UseCall);
4806         // getOperandBundle() cannot be called if more than one of the operand
4807         // bundle exists. There is already a check elsewhere for this, so skip
4808         // here if we see more than one.
4809         if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
4810             1) {
4811           return;
4812         }
4813         auto PreallocatedBundle =
4814             UseCall->getOperandBundle(LLVMContext::OB_preallocated);
4815         Assert(PreallocatedBundle,
4816                "Use of llvm.call.preallocated.setup outside intrinsics "
4817                "must be in \"preallocated\" operand bundle");
4818         Assert(PreallocatedBundle->Inputs.front().get() == &Call,
4819                "preallocated bundle must have token from corresponding "
4820                "llvm.call.preallocated.setup");
4821       }
4822     }
4823     break;
4824   }
4825   case Intrinsic::call_preallocated_arg: {
4826     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
4827     Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
4828                         Intrinsic::call_preallocated_setup,
4829            "llvm.call.preallocated.arg token argument must be a "
4830            "llvm.call.preallocated.setup");
4831     Assert(Call.hasFnAttr(Attribute::Preallocated),
4832            "llvm.call.preallocated.arg must be called with a \"preallocated\" "
4833            "call site attribute");
4834     break;
4835   }
4836   case Intrinsic::call_preallocated_teardown: {
4837     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
4838     Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
4839                         Intrinsic::call_preallocated_setup,
4840            "llvm.call.preallocated.teardown token argument must be a "
4841            "llvm.call.preallocated.setup");
4842     break;
4843   }
4844   case Intrinsic::gcroot:
4845   case Intrinsic::gcwrite:
4846   case Intrinsic::gcread:
4847     if (ID == Intrinsic::gcroot) {
4848       AllocaInst *AI =
4849           dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
4850       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
4851       Assert(isa<Constant>(Call.getArgOperand(1)),
4852              "llvm.gcroot parameter #2 must be a constant.", Call);
4853       if (!AI->getAllocatedType()->isPointerTy()) {
4854         Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
4855                "llvm.gcroot parameter #1 must either be a pointer alloca, "
4856                "or argument #2 must be a non-null constant.",
4857                Call);
4858       }
4859     }
4860 
4861     Assert(Call.getParent()->getParent()->hasGC(),
4862            "Enclosing function does not use GC.", Call);
4863     break;
4864   case Intrinsic::init_trampoline:
4865     Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
4866            "llvm.init_trampoline parameter #2 must resolve to a function.",
4867            Call);
4868     break;
4869   case Intrinsic::prefetch:
4870     Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
4871            cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
4872            "invalid arguments to llvm.prefetch", Call);
4873     break;
4874   case Intrinsic::stackprotector:
4875     Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
4876            "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
4877     break;
4878   case Intrinsic::localescape: {
4879     BasicBlock *BB = Call.getParent();
4880     Assert(BB == &BB->getParent()->front(),
4881            "llvm.localescape used outside of entry block", Call);
4882     Assert(!SawFrameEscape,
4883            "multiple calls to llvm.localescape in one function", Call);
4884     for (Value *Arg : Call.args()) {
4885       if (isa<ConstantPointerNull>(Arg))
4886         continue; // Null values are allowed as placeholders.
4887       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4888       Assert(AI && AI->isStaticAlloca(),
4889              "llvm.localescape only accepts static allocas", Call);
4890     }
4891     FrameEscapeInfo[BB->getParent()].first = Call.arg_size();
4892     SawFrameEscape = true;
4893     break;
4894   }
4895   case Intrinsic::localrecover: {
4896     Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
4897     Function *Fn = dyn_cast<Function>(FnArg);
4898     Assert(Fn && !Fn->isDeclaration(),
4899            "llvm.localrecover first "
4900            "argument must be function defined in this module",
4901            Call);
4902     auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
4903     auto &Entry = FrameEscapeInfo[Fn];
4904     Entry.second = unsigned(
4905         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4906     break;
4907   }
4908 
4909   case Intrinsic::experimental_gc_statepoint:
4910     if (auto *CI = dyn_cast<CallInst>(&Call))
4911       Assert(!CI->isInlineAsm(),
4912              "gc.statepoint support for inline assembly unimplemented", CI);
4913     Assert(Call.getParent()->getParent()->hasGC(),
4914            "Enclosing function does not use GC.", Call);
4915 
4916     verifyStatepoint(Call);
4917     break;
4918   case Intrinsic::experimental_gc_result: {
4919     Assert(Call.getParent()->getParent()->hasGC(),
4920            "Enclosing function does not use GC.", Call);
4921     // Are we tied to a statepoint properly?
4922     const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
4923     const Function *StatepointFn =
4924         StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
4925     Assert(StatepointFn && StatepointFn->isDeclaration() &&
4926                StatepointFn->getIntrinsicID() ==
4927                    Intrinsic::experimental_gc_statepoint,
4928            "gc.result operand #1 must be from a statepoint", Call,
4929            Call.getArgOperand(0));
4930 
4931     // Assert that result type matches wrapped callee.
4932     const Value *Target = StatepointCall->getArgOperand(2);
4933     auto *PT = cast<PointerType>(Target->getType());
4934     auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4935     Assert(Call.getType() == TargetFuncType->getReturnType(),
4936            "gc.result result type does not match wrapped callee", Call);
4937     break;
4938   }
4939   case Intrinsic::experimental_gc_relocate: {
4940     Assert(Call.arg_size() == 3, "wrong number of arguments", Call);
4941 
4942     Assert(isa<PointerType>(Call.getType()->getScalarType()),
4943            "gc.relocate must return a pointer or a vector of pointers", Call);
4944 
4945     // Check that this relocate is correctly tied to the statepoint
4946 
4947     // This is case for relocate on the unwinding path of an invoke statepoint
4948     if (LandingPadInst *LandingPad =
4949             dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
4950 
4951       const BasicBlock *InvokeBB =
4952           LandingPad->getParent()->getUniquePredecessor();
4953 
4954       // Landingpad relocates should have only one predecessor with invoke
4955       // statepoint terminator
4956       Assert(InvokeBB, "safepoints should have unique landingpads",
4957              LandingPad->getParent());
4958       Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4959              InvokeBB);
4960       Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()),
4961              "gc relocate should be linked to a statepoint", InvokeBB);
4962     } else {
4963       // In all other cases relocate should be tied to the statepoint directly.
4964       // This covers relocates on a normal return path of invoke statepoint and
4965       // relocates of a call statepoint.
4966       auto Token = Call.getArgOperand(0);
4967       Assert(isa<GCStatepointInst>(Token),
4968              "gc relocate is incorrectly tied to the statepoint", Call, Token);
4969     }
4970 
4971     // Verify rest of the relocate arguments.
4972     const CallBase &StatepointCall =
4973       *cast<GCRelocateInst>(Call).getStatepoint();
4974 
4975     // Both the base and derived must be piped through the safepoint.
4976     Value *Base = Call.getArgOperand(1);
4977     Assert(isa<ConstantInt>(Base),
4978            "gc.relocate operand #2 must be integer offset", Call);
4979 
4980     Value *Derived = Call.getArgOperand(2);
4981     Assert(isa<ConstantInt>(Derived),
4982            "gc.relocate operand #3 must be integer offset", Call);
4983 
4984     const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4985     const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4986 
4987     // Check the bounds
4988     if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) {
4989       Assert(BaseIndex < Opt->Inputs.size(),
4990              "gc.relocate: statepoint base index out of bounds", Call);
4991       Assert(DerivedIndex < Opt->Inputs.size(),
4992              "gc.relocate: statepoint derived index out of bounds", Call);
4993     }
4994 
4995     // Relocated value must be either a pointer type or vector-of-pointer type,
4996     // but gc_relocate does not need to return the same pointer type as the
4997     // relocated pointer. It can be casted to the correct type later if it's
4998     // desired. However, they must have the same address space and 'vectorness'
4999     GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
5000     Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
5001            "gc.relocate: relocated value must be a gc pointer", Call);
5002 
5003     auto ResultType = Call.getType();
5004     auto DerivedType = Relocate.getDerivedPtr()->getType();
5005     Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
5006            "gc.relocate: vector relocates to vector and pointer to pointer",
5007            Call);
5008     Assert(
5009         ResultType->getPointerAddressSpace() ==
5010             DerivedType->getPointerAddressSpace(),
5011         "gc.relocate: relocating a pointer shouldn't change its address space",
5012         Call);
5013     break;
5014   }
5015   case Intrinsic::eh_exceptioncode:
5016   case Intrinsic::eh_exceptionpointer: {
5017     Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
5018            "eh.exceptionpointer argument must be a catchpad", Call);
5019     break;
5020   }
5021   case Intrinsic::get_active_lane_mask: {
5022     Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a "
5023            "vector", Call);
5024     auto *ElemTy = Call.getType()->getScalarType();
5025     Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not "
5026            "i1", Call);
5027     break;
5028   }
5029   case Intrinsic::masked_load: {
5030     Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
5031            Call);
5032 
5033     Value *Ptr = Call.getArgOperand(0);
5034     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
5035     Value *Mask = Call.getArgOperand(2);
5036     Value *PassThru = Call.getArgOperand(3);
5037     Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
5038            Call);
5039     Assert(Alignment->getValue().isPowerOf2(),
5040            "masked_load: alignment must be a power of 2", Call);
5041 
5042     PointerType *PtrTy = cast<PointerType>(Ptr->getType());
5043     Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType()),
5044            "masked_load: return must match pointer type", Call);
5045     Assert(PassThru->getType() == Call.getType(),
5046            "masked_load: pass through and return type must match", Call);
5047     Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
5048                cast<VectorType>(Call.getType())->getElementCount(),
5049            "masked_load: vector mask must be same length as return", Call);
5050     break;
5051   }
5052   case Intrinsic::masked_store: {
5053     Value *Val = Call.getArgOperand(0);
5054     Value *Ptr = Call.getArgOperand(1);
5055     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
5056     Value *Mask = Call.getArgOperand(3);
5057     Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
5058            Call);
5059     Assert(Alignment->getValue().isPowerOf2(),
5060            "masked_store: alignment must be a power of 2", Call);
5061 
5062     PointerType *PtrTy = cast<PointerType>(Ptr->getType());
5063     Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType()),
5064            "masked_store: storee must match pointer type", Call);
5065     Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
5066                cast<VectorType>(Val->getType())->getElementCount(),
5067            "masked_store: vector mask must be same length as value", Call);
5068     break;
5069   }
5070 
5071   case Intrinsic::masked_gather: {
5072     const APInt &Alignment =
5073         cast<ConstantInt>(Call.getArgOperand(1))->getValue();
5074     Assert(Alignment.isZero() || Alignment.isPowerOf2(),
5075            "masked_gather: alignment must be 0 or a power of 2", Call);
5076     break;
5077   }
5078   case Intrinsic::masked_scatter: {
5079     const APInt &Alignment =
5080         cast<ConstantInt>(Call.getArgOperand(2))->getValue();
5081     Assert(Alignment.isZero() || Alignment.isPowerOf2(),
5082            "masked_scatter: alignment must be 0 or a power of 2", Call);
5083     break;
5084   }
5085 
5086   case Intrinsic::experimental_guard: {
5087     Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
5088     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5089            "experimental_guard must have exactly one "
5090            "\"deopt\" operand bundle");
5091     break;
5092   }
5093 
5094   case Intrinsic::experimental_deoptimize: {
5095     Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
5096            Call);
5097     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5098            "experimental_deoptimize must have exactly one "
5099            "\"deopt\" operand bundle");
5100     Assert(Call.getType() == Call.getFunction()->getReturnType(),
5101            "experimental_deoptimize return type must match caller return type");
5102 
5103     if (isa<CallInst>(Call)) {
5104       auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
5105       Assert(RI,
5106              "calls to experimental_deoptimize must be followed by a return");
5107 
5108       if (!Call.getType()->isVoidTy() && RI)
5109         Assert(RI->getReturnValue() == &Call,
5110                "calls to experimental_deoptimize must be followed by a return "
5111                "of the value computed by experimental_deoptimize");
5112     }
5113 
5114     break;
5115   }
5116   case Intrinsic::vector_reduce_and:
5117   case Intrinsic::vector_reduce_or:
5118   case Intrinsic::vector_reduce_xor:
5119   case Intrinsic::vector_reduce_add:
5120   case Intrinsic::vector_reduce_mul:
5121   case Intrinsic::vector_reduce_smax:
5122   case Intrinsic::vector_reduce_smin:
5123   case Intrinsic::vector_reduce_umax:
5124   case Intrinsic::vector_reduce_umin: {
5125     Type *ArgTy = Call.getArgOperand(0)->getType();
5126     Assert(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(),
5127            "Intrinsic has incorrect argument type!");
5128     break;
5129   }
5130   case Intrinsic::vector_reduce_fmax:
5131   case Intrinsic::vector_reduce_fmin: {
5132     Type *ArgTy = Call.getArgOperand(0)->getType();
5133     Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5134            "Intrinsic has incorrect argument type!");
5135     break;
5136   }
5137   case Intrinsic::vector_reduce_fadd:
5138   case Intrinsic::vector_reduce_fmul: {
5139     // Unlike the other reductions, the first argument is a start value. The
5140     // second argument is the vector to be reduced.
5141     Type *ArgTy = Call.getArgOperand(1)->getType();
5142     Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5143            "Intrinsic has incorrect argument type!");
5144     break;
5145   }
5146   case Intrinsic::smul_fix:
5147   case Intrinsic::smul_fix_sat:
5148   case Intrinsic::umul_fix:
5149   case Intrinsic::umul_fix_sat:
5150   case Intrinsic::sdiv_fix:
5151   case Intrinsic::sdiv_fix_sat:
5152   case Intrinsic::udiv_fix:
5153   case Intrinsic::udiv_fix_sat: {
5154     Value *Op1 = Call.getArgOperand(0);
5155     Value *Op2 = Call.getArgOperand(1);
5156     Assert(Op1->getType()->isIntOrIntVectorTy(),
5157            "first operand of [us][mul|div]_fix[_sat] must be an int type or "
5158            "vector of ints");
5159     Assert(Op2->getType()->isIntOrIntVectorTy(),
5160            "second operand of [us][mul|div]_fix[_sat] must be an int type or "
5161            "vector of ints");
5162 
5163     auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
5164     Assert(Op3->getType()->getBitWidth() <= 32,
5165            "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits");
5166 
5167     if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
5168         ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
5169       Assert(
5170           Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
5171           "the scale of s[mul|div]_fix[_sat] must be less than the width of "
5172           "the operands");
5173     } else {
5174       Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
5175              "the scale of u[mul|div]_fix[_sat] must be less than or equal "
5176              "to the width of the operands");
5177     }
5178     break;
5179   }
5180   case Intrinsic::lround:
5181   case Intrinsic::llround:
5182   case Intrinsic::lrint:
5183   case Intrinsic::llrint: {
5184     Type *ValTy = Call.getArgOperand(0)->getType();
5185     Type *ResultTy = Call.getType();
5186     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5187            "Intrinsic does not support vectors", &Call);
5188     break;
5189   }
5190   case Intrinsic::bswap: {
5191     Type *Ty = Call.getType();
5192     unsigned Size = Ty->getScalarSizeInBits();
5193     Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
5194     break;
5195   }
5196   case Intrinsic::invariant_start: {
5197     ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5198     Assert(InvariantSize &&
5199                (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),
5200            "invariant_start parameter must be -1, 0 or a positive number",
5201            &Call);
5202     break;
5203   }
5204   case Intrinsic::matrix_multiply:
5205   case Intrinsic::matrix_transpose:
5206   case Intrinsic::matrix_column_major_load:
5207   case Intrinsic::matrix_column_major_store: {
5208     Function *IF = Call.getCalledFunction();
5209     ConstantInt *Stride = nullptr;
5210     ConstantInt *NumRows;
5211     ConstantInt *NumColumns;
5212     VectorType *ResultTy;
5213     Type *Op0ElemTy = nullptr;
5214     Type *Op1ElemTy = nullptr;
5215     switch (ID) {
5216     case Intrinsic::matrix_multiply:
5217       NumRows = cast<ConstantInt>(Call.getArgOperand(2));
5218       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5219       ResultTy = cast<VectorType>(Call.getType());
5220       Op0ElemTy =
5221           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5222       Op1ElemTy =
5223           cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
5224       break;
5225     case Intrinsic::matrix_transpose:
5226       NumRows = cast<ConstantInt>(Call.getArgOperand(1));
5227       NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
5228       ResultTy = cast<VectorType>(Call.getType());
5229       Op0ElemTy =
5230           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5231       break;
5232     case Intrinsic::matrix_column_major_load:
5233       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
5234       NumRows = cast<ConstantInt>(Call.getArgOperand(3));
5235       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5236       ResultTy = cast<VectorType>(Call.getType());
5237       Op0ElemTy =
5238           cast<PointerType>(Call.getArgOperand(0)->getType())->getElementType();
5239       break;
5240     case Intrinsic::matrix_column_major_store:
5241       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
5242       NumRows = cast<ConstantInt>(Call.getArgOperand(4));
5243       NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
5244       ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
5245       Op0ElemTy =
5246           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5247       Op1ElemTy =
5248           cast<PointerType>(Call.getArgOperand(1)->getType())->getElementType();
5249       break;
5250     default:
5251       llvm_unreachable("unexpected intrinsic");
5252     }
5253 
5254     Assert(ResultTy->getElementType()->isIntegerTy() ||
5255            ResultTy->getElementType()->isFloatingPointTy(),
5256            "Result type must be an integer or floating-point type!", IF);
5257 
5258     Assert(ResultTy->getElementType() == Op0ElemTy,
5259            "Vector element type mismatch of the result and first operand "
5260            "vector!", IF);
5261 
5262     if (Op1ElemTy)
5263       Assert(ResultTy->getElementType() == Op1ElemTy,
5264              "Vector element type mismatch of the result and second operand "
5265              "vector!", IF);
5266 
5267     Assert(cast<FixedVectorType>(ResultTy)->getNumElements() ==
5268                NumRows->getZExtValue() * NumColumns->getZExtValue(),
5269            "Result of a matrix operation does not fit in the returned vector!");
5270 
5271     if (Stride)
5272       Assert(Stride->getZExtValue() >= NumRows->getZExtValue(),
5273              "Stride must be greater or equal than the number of rows!", IF);
5274 
5275     break;
5276   }
5277   case Intrinsic::experimental_stepvector: {
5278     VectorType *VecTy = dyn_cast<VectorType>(Call.getType());
5279     Assert(VecTy && VecTy->getScalarType()->isIntegerTy() &&
5280                VecTy->getScalarSizeInBits() >= 8,
5281            "experimental_stepvector only supported for vectors of integers "
5282            "with a bitwidth of at least 8.",
5283            &Call);
5284     break;
5285   }
5286   case Intrinsic::experimental_vector_insert: {
5287     Value *Vec = Call.getArgOperand(0);
5288     Value *SubVec = Call.getArgOperand(1);
5289     Value *Idx = Call.getArgOperand(2);
5290     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5291 
5292     VectorType *VecTy = cast<VectorType>(Vec->getType());
5293     VectorType *SubVecTy = cast<VectorType>(SubVec->getType());
5294 
5295     ElementCount VecEC = VecTy->getElementCount();
5296     ElementCount SubVecEC = SubVecTy->getElementCount();
5297     Assert(VecTy->getElementType() == SubVecTy->getElementType(),
5298            "experimental_vector_insert parameters must have the same element "
5299            "type.",
5300            &Call);
5301     Assert(IdxN % SubVecEC.getKnownMinValue() == 0,
5302            "experimental_vector_insert index must be a constant multiple of "
5303            "the subvector's known minimum vector length.");
5304 
5305     // If this insertion is not the 'mixed' case where a fixed vector is
5306     // inserted into a scalable vector, ensure that the insertion of the
5307     // subvector does not overrun the parent vector.
5308     if (VecEC.isScalable() == SubVecEC.isScalable()) {
5309       Assert(
5310           IdxN < VecEC.getKnownMinValue() &&
5311               IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5312           "subvector operand of experimental_vector_insert would overrun the "
5313           "vector being inserted into.");
5314     }
5315     break;
5316   }
5317   case Intrinsic::experimental_vector_extract: {
5318     Value *Vec = Call.getArgOperand(0);
5319     Value *Idx = Call.getArgOperand(1);
5320     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5321 
5322     VectorType *ResultTy = cast<VectorType>(Call.getType());
5323     VectorType *VecTy = cast<VectorType>(Vec->getType());
5324 
5325     ElementCount VecEC = VecTy->getElementCount();
5326     ElementCount ResultEC = ResultTy->getElementCount();
5327 
5328     Assert(ResultTy->getElementType() == VecTy->getElementType(),
5329            "experimental_vector_extract result must have the same element "
5330            "type as the input vector.",
5331            &Call);
5332     Assert(IdxN % ResultEC.getKnownMinValue() == 0,
5333            "experimental_vector_extract index must be a constant multiple of "
5334            "the result type's known minimum vector length.");
5335 
5336     // If this extraction is not the 'mixed' case where a fixed vector is is
5337     // extracted from a scalable vector, ensure that the extraction does not
5338     // overrun the parent vector.
5339     if (VecEC.isScalable() == ResultEC.isScalable()) {
5340       Assert(IdxN < VecEC.getKnownMinValue() &&
5341                  IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5342              "experimental_vector_extract would overrun.");
5343     }
5344     break;
5345   }
5346   case Intrinsic::experimental_noalias_scope_decl: {
5347     NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call));
5348     break;
5349   }
5350   case Intrinsic::preserve_array_access_index:
5351   case Intrinsic::preserve_struct_access_index: {
5352     Type *ElemTy = Call.getAttributes().getParamElementType(0);
5353     Assert(ElemTy,
5354            "Intrinsic requires elementtype attribute on first argument.",
5355            &Call);
5356     break;
5357   }
5358   };
5359 }
5360 
5361 /// Carefully grab the subprogram from a local scope.
5362 ///
5363 /// This carefully grabs the subprogram from a local scope, avoiding the
5364 /// built-in assertions that would typically fire.
5365 static DISubprogram *getSubprogram(Metadata *LocalScope) {
5366   if (!LocalScope)
5367     return nullptr;
5368 
5369   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
5370     return SP;
5371 
5372   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
5373     return getSubprogram(LB->getRawScope());
5374 
5375   // Just return null; broken scope chains are checked elsewhere.
5376   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
5377   return nullptr;
5378 }
5379 
5380 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
5381   unsigned NumOperands;
5382   bool HasRoundingMD;
5383   switch (FPI.getIntrinsicID()) {
5384 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
5385   case Intrinsic::INTRINSIC:                                                   \
5386     NumOperands = NARG;                                                        \
5387     HasRoundingMD = ROUND_MODE;                                                \
5388     break;
5389 #include "llvm/IR/ConstrainedOps.def"
5390   default:
5391     llvm_unreachable("Invalid constrained FP intrinsic!");
5392   }
5393   NumOperands += (1 + HasRoundingMD);
5394   // Compare intrinsics carry an extra predicate metadata operand.
5395   if (isa<ConstrainedFPCmpIntrinsic>(FPI))
5396     NumOperands += 1;
5397   Assert((FPI.arg_size() == NumOperands),
5398          "invalid arguments for constrained FP intrinsic", &FPI);
5399 
5400   switch (FPI.getIntrinsicID()) {
5401   case Intrinsic::experimental_constrained_lrint:
5402   case Intrinsic::experimental_constrained_llrint: {
5403     Type *ValTy = FPI.getArgOperand(0)->getType();
5404     Type *ResultTy = FPI.getType();
5405     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5406            "Intrinsic does not support vectors", &FPI);
5407   }
5408     break;
5409 
5410   case Intrinsic::experimental_constrained_lround:
5411   case Intrinsic::experimental_constrained_llround: {
5412     Type *ValTy = FPI.getArgOperand(0)->getType();
5413     Type *ResultTy = FPI.getType();
5414     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5415            "Intrinsic does not support vectors", &FPI);
5416     break;
5417   }
5418 
5419   case Intrinsic::experimental_constrained_fcmp:
5420   case Intrinsic::experimental_constrained_fcmps: {
5421     auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
5422     Assert(CmpInst::isFPPredicate(Pred),
5423            "invalid predicate for constrained FP comparison intrinsic", &FPI);
5424     break;
5425   }
5426 
5427   case Intrinsic::experimental_constrained_fptosi:
5428   case Intrinsic::experimental_constrained_fptoui: {
5429     Value *Operand = FPI.getArgOperand(0);
5430     uint64_t NumSrcElem = 0;
5431     Assert(Operand->getType()->isFPOrFPVectorTy(),
5432            "Intrinsic first argument must be floating point", &FPI);
5433     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5434       NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5435     }
5436 
5437     Operand = &FPI;
5438     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5439            "Intrinsic first argument and result disagree on vector use", &FPI);
5440     Assert(Operand->getType()->isIntOrIntVectorTy(),
5441            "Intrinsic result must be an integer", &FPI);
5442     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5443       Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5444              "Intrinsic first argument and result vector lengths must be equal",
5445              &FPI);
5446     }
5447   }
5448     break;
5449 
5450   case Intrinsic::experimental_constrained_sitofp:
5451   case Intrinsic::experimental_constrained_uitofp: {
5452     Value *Operand = FPI.getArgOperand(0);
5453     uint64_t NumSrcElem = 0;
5454     Assert(Operand->getType()->isIntOrIntVectorTy(),
5455            "Intrinsic first argument must be integer", &FPI);
5456     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5457       NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5458     }
5459 
5460     Operand = &FPI;
5461     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5462            "Intrinsic first argument and result disagree on vector use", &FPI);
5463     Assert(Operand->getType()->isFPOrFPVectorTy(),
5464            "Intrinsic result must be a floating point", &FPI);
5465     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5466       Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5467              "Intrinsic first argument and result vector lengths must be equal",
5468              &FPI);
5469     }
5470   } break;
5471 
5472   case Intrinsic::experimental_constrained_fptrunc:
5473   case Intrinsic::experimental_constrained_fpext: {
5474     Value *Operand = FPI.getArgOperand(0);
5475     Type *OperandTy = Operand->getType();
5476     Value *Result = &FPI;
5477     Type *ResultTy = Result->getType();
5478     Assert(OperandTy->isFPOrFPVectorTy(),
5479            "Intrinsic first argument must be FP or FP vector", &FPI);
5480     Assert(ResultTy->isFPOrFPVectorTy(),
5481            "Intrinsic result must be FP or FP vector", &FPI);
5482     Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
5483            "Intrinsic first argument and result disagree on vector use", &FPI);
5484     if (OperandTy->isVectorTy()) {
5485       Assert(cast<FixedVectorType>(OperandTy)->getNumElements() ==
5486                  cast<FixedVectorType>(ResultTy)->getNumElements(),
5487              "Intrinsic first argument and result vector lengths must be equal",
5488              &FPI);
5489     }
5490     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
5491       Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
5492              "Intrinsic first argument's type must be larger than result type",
5493              &FPI);
5494     } else {
5495       Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
5496              "Intrinsic first argument's type must be smaller than result type",
5497              &FPI);
5498     }
5499   }
5500     break;
5501 
5502   default:
5503     break;
5504   }
5505 
5506   // If a non-metadata argument is passed in a metadata slot then the
5507   // error will be caught earlier when the incorrect argument doesn't
5508   // match the specification in the intrinsic call table. Thus, no
5509   // argument type check is needed here.
5510 
5511   Assert(FPI.getExceptionBehavior().hasValue(),
5512          "invalid exception behavior argument", &FPI);
5513   if (HasRoundingMD) {
5514     Assert(FPI.getRoundingMode().hasValue(),
5515            "invalid rounding mode argument", &FPI);
5516   }
5517 }
5518 
5519 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
5520   auto *MD = DII.getRawLocation();
5521   AssertDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
5522                (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
5523            "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
5524   AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
5525          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
5526          DII.getRawVariable());
5527   AssertDI(isa<DIExpression>(DII.getRawExpression()),
5528          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
5529          DII.getRawExpression());
5530 
5531   // Ignore broken !dbg attachments; they're checked elsewhere.
5532   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
5533     if (!isa<DILocation>(N))
5534       return;
5535 
5536   BasicBlock *BB = DII.getParent();
5537   Function *F = BB ? BB->getParent() : nullptr;
5538 
5539   // The scopes for variables and !dbg attachments must agree.
5540   DILocalVariable *Var = DII.getVariable();
5541   DILocation *Loc = DII.getDebugLoc();
5542   AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
5543            &DII, BB, F);
5544 
5545   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
5546   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
5547   if (!VarSP || !LocSP)
5548     return; // Broken scope chains are checked elsewhere.
5549 
5550   AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
5551                                " variable and !dbg attachment",
5552            &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
5553            Loc->getScope()->getSubprogram());
5554 
5555   // This check is redundant with one in visitLocalVariable().
5556   AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
5557            Var->getRawType());
5558   verifyFnArgs(DII);
5559 }
5560 
5561 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
5562   AssertDI(isa<DILabel>(DLI.getRawLabel()),
5563          "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
5564          DLI.getRawLabel());
5565 
5566   // Ignore broken !dbg attachments; they're checked elsewhere.
5567   if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
5568     if (!isa<DILocation>(N))
5569       return;
5570 
5571   BasicBlock *BB = DLI.getParent();
5572   Function *F = BB ? BB->getParent() : nullptr;
5573 
5574   // The scopes for variables and !dbg attachments must agree.
5575   DILabel *Label = DLI.getLabel();
5576   DILocation *Loc = DLI.getDebugLoc();
5577   Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
5578          &DLI, BB, F);
5579 
5580   DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
5581   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
5582   if (!LabelSP || !LocSP)
5583     return;
5584 
5585   AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
5586                              " label and !dbg attachment",
5587            &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
5588            Loc->getScope()->getSubprogram());
5589 }
5590 
5591 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
5592   DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
5593   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5594 
5595   // We don't know whether this intrinsic verified correctly.
5596   if (!V || !E || !E->isValid())
5597     return;
5598 
5599   // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
5600   auto Fragment = E->getFragmentInfo();
5601   if (!Fragment)
5602     return;
5603 
5604   // The frontend helps out GDB by emitting the members of local anonymous
5605   // unions as artificial local variables with shared storage. When SROA splits
5606   // the storage for artificial local variables that are smaller than the entire
5607   // union, the overhang piece will be outside of the allotted space for the
5608   // variable and this check fails.
5609   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
5610   if (V->isArtificial())
5611     return;
5612 
5613   verifyFragmentExpression(*V, *Fragment, &I);
5614 }
5615 
5616 template <typename ValueOrMetadata>
5617 void Verifier::verifyFragmentExpression(const DIVariable &V,
5618                                         DIExpression::FragmentInfo Fragment,
5619                                         ValueOrMetadata *Desc) {
5620   // If there's no size, the type is broken, but that should be checked
5621   // elsewhere.
5622   auto VarSize = V.getSizeInBits();
5623   if (!VarSize)
5624     return;
5625 
5626   unsigned FragSize = Fragment.SizeInBits;
5627   unsigned FragOffset = Fragment.OffsetInBits;
5628   AssertDI(FragSize + FragOffset <= *VarSize,
5629          "fragment is larger than or outside of variable", Desc, &V);
5630   AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
5631 }
5632 
5633 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
5634   // This function does not take the scope of noninlined function arguments into
5635   // account. Don't run it if current function is nodebug, because it may
5636   // contain inlined debug intrinsics.
5637   if (!HasDebugInfo)
5638     return;
5639 
5640   // For performance reasons only check non-inlined ones.
5641   if (I.getDebugLoc()->getInlinedAt())
5642     return;
5643 
5644   DILocalVariable *Var = I.getVariable();
5645   AssertDI(Var, "dbg intrinsic without variable");
5646 
5647   unsigned ArgNo = Var->getArg();
5648   if (!ArgNo)
5649     return;
5650 
5651   // Verify there are no duplicate function argument debug info entries.
5652   // These will cause hard-to-debug assertions in the DWARF backend.
5653   if (DebugFnArgs.size() < ArgNo)
5654     DebugFnArgs.resize(ArgNo, nullptr);
5655 
5656   auto *Prev = DebugFnArgs[ArgNo - 1];
5657   DebugFnArgs[ArgNo - 1] = Var;
5658   AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
5659            Prev, Var);
5660 }
5661 
5662 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
5663   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5664 
5665   // We don't know whether this intrinsic verified correctly.
5666   if (!E || !E->isValid())
5667     return;
5668 
5669   AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I);
5670 }
5671 
5672 void Verifier::verifyCompileUnits() {
5673   // When more than one Module is imported into the same context, such as during
5674   // an LTO build before linking the modules, ODR type uniquing may cause types
5675   // to point to a different CU. This check does not make sense in this case.
5676   if (M.getContext().isODRUniquingDebugTypes())
5677     return;
5678   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
5679   SmallPtrSet<const Metadata *, 2> Listed;
5680   if (CUs)
5681     Listed.insert(CUs->op_begin(), CUs->op_end());
5682   for (auto *CU : CUVisited)
5683     AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
5684   CUVisited.clear();
5685 }
5686 
5687 void Verifier::verifyDeoptimizeCallingConvs() {
5688   if (DeoptimizeDeclarations.empty())
5689     return;
5690 
5691   const Function *First = DeoptimizeDeclarations[0];
5692   for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
5693     Assert(First->getCallingConv() == F->getCallingConv(),
5694            "All llvm.experimental.deoptimize declarations must have the same "
5695            "calling convention",
5696            First, F);
5697   }
5698 }
5699 
5700 void Verifier::verifyAttachedCallBundle(const CallBase &Call,
5701                                         const OperandBundleUse &BU) {
5702   FunctionType *FTy = Call.getFunctionType();
5703 
5704   Assert((FTy->getReturnType()->isPointerTy() ||
5705           (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),
5706          "a call with operand bundle \"clang.arc.attachedcall\" must call a "
5707          "function returning a pointer or a non-returning function that has a "
5708          "void return type",
5709          Call);
5710 
5711   Assert((BU.Inputs.empty() ||
5712           (BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()))),
5713          "operand bundle \"clang.arc.attachedcall\" can take either no "
5714          "arguments or one function as an argument",
5715          Call);
5716 
5717   if (BU.Inputs.empty())
5718     return;
5719 
5720   auto *Fn = cast<Function>(BU.Inputs.front());
5721   Intrinsic::ID IID = Fn->getIntrinsicID();
5722 
5723   if (IID) {
5724     Assert((IID == Intrinsic::objc_retainAutoreleasedReturnValue ||
5725             IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue),
5726            "invalid function argument", Call);
5727   } else {
5728     StringRef FnName = Fn->getName();
5729     Assert((FnName == "objc_retainAutoreleasedReturnValue" ||
5730             FnName == "objc_unsafeClaimAutoreleasedReturnValue"),
5731            "invalid function argument", Call);
5732   }
5733 }
5734 
5735 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
5736   bool HasSource = F.getSource().hasValue();
5737   if (!HasSourceDebugInfo.count(&U))
5738     HasSourceDebugInfo[&U] = HasSource;
5739   AssertDI(HasSource == HasSourceDebugInfo[&U],
5740            "inconsistent use of embedded source");
5741 }
5742 
5743 void Verifier::verifyNoAliasScopeDecl() {
5744   if (NoAliasScopeDecls.empty())
5745     return;
5746 
5747   // only a single scope must be declared at a time.
5748   for (auto *II : NoAliasScopeDecls) {
5749     assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
5750            "Not a llvm.experimental.noalias.scope.decl ?");
5751     const auto *ScopeListMV = dyn_cast<MetadataAsValue>(
5752         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
5753     Assert(ScopeListMV != nullptr,
5754            "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
5755            "argument",
5756            II);
5757 
5758     const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata());
5759     Assert(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode",
5760            II);
5761     Assert(ScopeListMD->getNumOperands() == 1,
5762            "!id.scope.list must point to a list with a single scope", II);
5763     visitAliasScopeListMetadata(ScopeListMD);
5764   }
5765 
5766   // Only check the domination rule when requested. Once all passes have been
5767   // adapted this option can go away.
5768   if (!VerifyNoAliasScopeDomination)
5769     return;
5770 
5771   // Now sort the intrinsics based on the scope MDNode so that declarations of
5772   // the same scopes are next to each other.
5773   auto GetScope = [](IntrinsicInst *II) {
5774     const auto *ScopeListMV = cast<MetadataAsValue>(
5775         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
5776     return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
5777   };
5778 
5779   // We are sorting on MDNode pointers here. For valid input IR this is ok.
5780   // TODO: Sort on Metadata ID to avoid non-deterministic error messages.
5781   auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
5782     return GetScope(Lhs) < GetScope(Rhs);
5783   };
5784 
5785   llvm::sort(NoAliasScopeDecls, Compare);
5786 
5787   // Go over the intrinsics and check that for the same scope, they are not
5788   // dominating each other.
5789   auto ItCurrent = NoAliasScopeDecls.begin();
5790   while (ItCurrent != NoAliasScopeDecls.end()) {
5791     auto CurScope = GetScope(*ItCurrent);
5792     auto ItNext = ItCurrent;
5793     do {
5794       ++ItNext;
5795     } while (ItNext != NoAliasScopeDecls.end() &&
5796              GetScope(*ItNext) == CurScope);
5797 
5798     // [ItCurrent, ItNext) represents the declarations for the same scope.
5799     // Ensure they are not dominating each other.. but only if it is not too
5800     // expensive.
5801     if (ItNext - ItCurrent < 32)
5802       for (auto *I : llvm::make_range(ItCurrent, ItNext))
5803         for (auto *J : llvm::make_range(ItCurrent, ItNext))
5804           if (I != J)
5805             Assert(!DT.dominates(I, J),
5806                    "llvm.experimental.noalias.scope.decl dominates another one "
5807                    "with the same scope",
5808                    I);
5809     ItCurrent = ItNext;
5810   }
5811 }
5812 
5813 //===----------------------------------------------------------------------===//
5814 //  Implement the public interfaces to this file...
5815 //===----------------------------------------------------------------------===//
5816 
5817 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
5818   Function &F = const_cast<Function &>(f);
5819 
5820   // Don't use a raw_null_ostream.  Printing IR is expensive.
5821   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
5822 
5823   // Note that this function's return value is inverted from what you would
5824   // expect of a function called "verify".
5825   return !V.verify(F);
5826 }
5827 
5828 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
5829                         bool *BrokenDebugInfo) {
5830   // Don't use a raw_null_ostream.  Printing IR is expensive.
5831   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
5832 
5833   bool Broken = false;
5834   for (const Function &F : M)
5835     Broken |= !V.verify(F);
5836 
5837   Broken |= !V.verify();
5838   if (BrokenDebugInfo)
5839     *BrokenDebugInfo = V.hasBrokenDebugInfo();
5840   // Note that this function's return value is inverted from what you would
5841   // expect of a function called "verify".
5842   return Broken;
5843 }
5844 
5845 namespace {
5846 
5847 struct VerifierLegacyPass : public FunctionPass {
5848   static char ID;
5849 
5850   std::unique_ptr<Verifier> V;
5851   bool FatalErrors = true;
5852 
5853   VerifierLegacyPass() : FunctionPass(ID) {
5854     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5855   }
5856   explicit VerifierLegacyPass(bool FatalErrors)
5857       : FunctionPass(ID),
5858         FatalErrors(FatalErrors) {
5859     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5860   }
5861 
5862   bool doInitialization(Module &M) override {
5863     V = std::make_unique<Verifier>(
5864         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
5865     return false;
5866   }
5867 
5868   bool runOnFunction(Function &F) override {
5869     if (!V->verify(F) && FatalErrors) {
5870       errs() << "in function " << F.getName() << '\n';
5871       report_fatal_error("Broken function found, compilation aborted!");
5872     }
5873     return false;
5874   }
5875 
5876   bool doFinalization(Module &M) override {
5877     bool HasErrors = false;
5878     for (Function &F : M)
5879       if (F.isDeclaration())
5880         HasErrors |= !V->verify(F);
5881 
5882     HasErrors |= !V->verify();
5883     if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
5884       report_fatal_error("Broken module found, compilation aborted!");
5885     return false;
5886   }
5887 
5888   void getAnalysisUsage(AnalysisUsage &AU) const override {
5889     AU.setPreservesAll();
5890   }
5891 };
5892 
5893 } // end anonymous namespace
5894 
5895 /// Helper to issue failure from the TBAA verification
5896 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
5897   if (Diagnostic)
5898     return Diagnostic->CheckFailed(Args...);
5899 }
5900 
5901 #define AssertTBAA(C, ...)                                                     \
5902   do {                                                                         \
5903     if (!(C)) {                                                                \
5904       CheckFailed(__VA_ARGS__);                                                \
5905       return false;                                                            \
5906     }                                                                          \
5907   } while (false)
5908 
5909 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
5910 /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
5911 /// struct-type node describing an aggregate data structure (like a struct).
5912 TBAAVerifier::TBAABaseNodeSummary
5913 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
5914                                  bool IsNewFormat) {
5915   if (BaseNode->getNumOperands() < 2) {
5916     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
5917     return {true, ~0u};
5918   }
5919 
5920   auto Itr = TBAABaseNodes.find(BaseNode);
5921   if (Itr != TBAABaseNodes.end())
5922     return Itr->second;
5923 
5924   auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
5925   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
5926   (void)InsertResult;
5927   assert(InsertResult.second && "We just checked!");
5928   return Result;
5929 }
5930 
5931 TBAAVerifier::TBAABaseNodeSummary
5932 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
5933                                      bool IsNewFormat) {
5934   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
5935 
5936   if (BaseNode->getNumOperands() == 2) {
5937     // Scalar nodes can only be accessed at offset 0.
5938     return isValidScalarTBAANode(BaseNode)
5939                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
5940                : InvalidNode;
5941   }
5942 
5943   if (IsNewFormat) {
5944     if (BaseNode->getNumOperands() % 3 != 0) {
5945       CheckFailed("Access tag nodes must have the number of operands that is a "
5946                   "multiple of 3!", BaseNode);
5947       return InvalidNode;
5948     }
5949   } else {
5950     if (BaseNode->getNumOperands() % 2 != 1) {
5951       CheckFailed("Struct tag nodes must have an odd number of operands!",
5952                   BaseNode);
5953       return InvalidNode;
5954     }
5955   }
5956 
5957   // Check the type size field.
5958   if (IsNewFormat) {
5959     auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5960         BaseNode->getOperand(1));
5961     if (!TypeSizeNode) {
5962       CheckFailed("Type size nodes must be constants!", &I, BaseNode);
5963       return InvalidNode;
5964     }
5965   }
5966 
5967   // Check the type name field. In the new format it can be anything.
5968   if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
5969     CheckFailed("Struct tag nodes have a string as their first operand",
5970                 BaseNode);
5971     return InvalidNode;
5972   }
5973 
5974   bool Failed = false;
5975 
5976   Optional<APInt> PrevOffset;
5977   unsigned BitWidth = ~0u;
5978 
5979   // We've already checked that BaseNode is not a degenerate root node with one
5980   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
5981   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5982   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5983   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5984            Idx += NumOpsPerField) {
5985     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
5986     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
5987     if (!isa<MDNode>(FieldTy)) {
5988       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
5989       Failed = true;
5990       continue;
5991     }
5992 
5993     auto *OffsetEntryCI =
5994         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
5995     if (!OffsetEntryCI) {
5996       CheckFailed("Offset entries must be constants!", &I, BaseNode);
5997       Failed = true;
5998       continue;
5999     }
6000 
6001     if (BitWidth == ~0u)
6002       BitWidth = OffsetEntryCI->getBitWidth();
6003 
6004     if (OffsetEntryCI->getBitWidth() != BitWidth) {
6005       CheckFailed(
6006           "Bitwidth between the offsets and struct type entries must match", &I,
6007           BaseNode);
6008       Failed = true;
6009       continue;
6010     }
6011 
6012     // NB! As far as I can tell, we generate a non-strictly increasing offset
6013     // sequence only from structs that have zero size bit fields.  When
6014     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
6015     // pick the field lexically the latest in struct type metadata node.  This
6016     // mirrors the actual behavior of the alias analysis implementation.
6017     bool IsAscending =
6018         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
6019 
6020     if (!IsAscending) {
6021       CheckFailed("Offsets must be increasing!", &I, BaseNode);
6022       Failed = true;
6023     }
6024 
6025     PrevOffset = OffsetEntryCI->getValue();
6026 
6027     if (IsNewFormat) {
6028       auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6029           BaseNode->getOperand(Idx + 2));
6030       if (!MemberSizeNode) {
6031         CheckFailed("Member size entries must be constants!", &I, BaseNode);
6032         Failed = true;
6033         continue;
6034       }
6035     }
6036   }
6037 
6038   return Failed ? InvalidNode
6039                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
6040 }
6041 
6042 static bool IsRootTBAANode(const MDNode *MD) {
6043   return MD->getNumOperands() < 2;
6044 }
6045 
6046 static bool IsScalarTBAANodeImpl(const MDNode *MD,
6047                                  SmallPtrSetImpl<const MDNode *> &Visited) {
6048   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
6049     return false;
6050 
6051   if (!isa<MDString>(MD->getOperand(0)))
6052     return false;
6053 
6054   if (MD->getNumOperands() == 3) {
6055     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
6056     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
6057       return false;
6058   }
6059 
6060   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6061   return Parent && Visited.insert(Parent).second &&
6062          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
6063 }
6064 
6065 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
6066   auto ResultIt = TBAAScalarNodes.find(MD);
6067   if (ResultIt != TBAAScalarNodes.end())
6068     return ResultIt->second;
6069 
6070   SmallPtrSet<const MDNode *, 4> Visited;
6071   bool Result = IsScalarTBAANodeImpl(MD, Visited);
6072   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
6073   (void)InsertResult;
6074   assert(InsertResult.second && "Just checked!");
6075 
6076   return Result;
6077 }
6078 
6079 /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
6080 /// Offset in place to be the offset within the field node returned.
6081 ///
6082 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
6083 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
6084                                                    const MDNode *BaseNode,
6085                                                    APInt &Offset,
6086                                                    bool IsNewFormat) {
6087   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
6088 
6089   // Scalar nodes have only one possible "field" -- their parent in the access
6090   // hierarchy.  Offset must be zero at this point, but our caller is supposed
6091   // to Assert that.
6092   if (BaseNode->getNumOperands() == 2)
6093     return cast<MDNode>(BaseNode->getOperand(1));
6094 
6095   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6096   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6097   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6098            Idx += NumOpsPerField) {
6099     auto *OffsetEntryCI =
6100         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
6101     if (OffsetEntryCI->getValue().ugt(Offset)) {
6102       if (Idx == FirstFieldOpNo) {
6103         CheckFailed("Could not find TBAA parent in struct type node", &I,
6104                     BaseNode, &Offset);
6105         return nullptr;
6106       }
6107 
6108       unsigned PrevIdx = Idx - NumOpsPerField;
6109       auto *PrevOffsetEntryCI =
6110           mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
6111       Offset -= PrevOffsetEntryCI->getValue();
6112       return cast<MDNode>(BaseNode->getOperand(PrevIdx));
6113     }
6114   }
6115 
6116   unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
6117   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
6118       BaseNode->getOperand(LastIdx + 1));
6119   Offset -= LastOffsetEntryCI->getValue();
6120   return cast<MDNode>(BaseNode->getOperand(LastIdx));
6121 }
6122 
6123 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
6124   if (!Type || Type->getNumOperands() < 3)
6125     return false;
6126 
6127   // In the new format type nodes shall have a reference to the parent type as
6128   // its first operand.
6129   MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
6130   if (!Parent)
6131     return false;
6132 
6133   return true;
6134 }
6135 
6136 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
6137   AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
6138                  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
6139                  isa<AtomicCmpXchgInst>(I),
6140              "This instruction shall not have a TBAA access tag!", &I);
6141 
6142   bool IsStructPathTBAA =
6143       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
6144 
6145   AssertTBAA(
6146       IsStructPathTBAA,
6147       "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
6148 
6149   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
6150   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6151 
6152   bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
6153 
6154   if (IsNewFormat) {
6155     AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
6156                "Access tag metadata must have either 4 or 5 operands", &I, MD);
6157   } else {
6158     AssertTBAA(MD->getNumOperands() < 5,
6159                "Struct tag metadata must have either 3 or 4 operands", &I, MD);
6160   }
6161 
6162   // Check the access size field.
6163   if (IsNewFormat) {
6164     auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6165         MD->getOperand(3));
6166     AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
6167   }
6168 
6169   // Check the immutability flag.
6170   unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
6171   if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
6172     auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
6173         MD->getOperand(ImmutabilityFlagOpNo));
6174     AssertTBAA(IsImmutableCI,
6175                "Immutability tag on struct tag metadata must be a constant",
6176                &I, MD);
6177     AssertTBAA(
6178         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
6179         "Immutability part of the struct tag metadata must be either 0 or 1",
6180         &I, MD);
6181   }
6182 
6183   AssertTBAA(BaseNode && AccessType,
6184              "Malformed struct tag metadata: base and access-type "
6185              "should be non-null and point to Metadata nodes",
6186              &I, MD, BaseNode, AccessType);
6187 
6188   if (!IsNewFormat) {
6189     AssertTBAA(isValidScalarTBAANode(AccessType),
6190                "Access type node must be a valid scalar type", &I, MD,
6191                AccessType);
6192   }
6193 
6194   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
6195   AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
6196 
6197   APInt Offset = OffsetCI->getValue();
6198   bool SeenAccessTypeInPath = false;
6199 
6200   SmallPtrSet<MDNode *, 4> StructPath;
6201 
6202   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
6203        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
6204                                                IsNewFormat)) {
6205     if (!StructPath.insert(BaseNode).second) {
6206       CheckFailed("Cycle detected in struct path", &I, MD);
6207       return false;
6208     }
6209 
6210     bool Invalid;
6211     unsigned BaseNodeBitWidth;
6212     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
6213                                                              IsNewFormat);
6214 
6215     // If the base node is invalid in itself, then we've already printed all the
6216     // errors we wanted to print.
6217     if (Invalid)
6218       return false;
6219 
6220     SeenAccessTypeInPath |= BaseNode == AccessType;
6221 
6222     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
6223       AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
6224                  &I, MD, &Offset);
6225 
6226     AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
6227                    (BaseNodeBitWidth == 0 && Offset == 0) ||
6228                    (IsNewFormat && BaseNodeBitWidth == ~0u),
6229                "Access bit-width not the same as description bit-width", &I, MD,
6230                BaseNodeBitWidth, Offset.getBitWidth());
6231 
6232     if (IsNewFormat && SeenAccessTypeInPath)
6233       break;
6234   }
6235 
6236   AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
6237              &I, MD);
6238   return true;
6239 }
6240 
6241 char VerifierLegacyPass::ID = 0;
6242 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
6243 
6244 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
6245   return new VerifierLegacyPass(FatalErrors);
6246 }
6247 
6248 AnalysisKey VerifierAnalysis::Key;
6249 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
6250                                                ModuleAnalysisManager &) {
6251   Result Res;
6252   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
6253   return Res;
6254 }
6255 
6256 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
6257                                                FunctionAnalysisManager &) {
6258   return { llvm::verifyFunction(F, &dbgs()), false };
6259 }
6260 
6261 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
6262   auto Res = AM.getResult<VerifierAnalysis>(M);
6263   if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
6264     report_fatal_error("Broken module found, compilation aborted!");
6265 
6266   return PreservedAnalyses::all();
6267 }
6268 
6269 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
6270   auto res = AM.getResult<VerifierAnalysis>(F);
6271   if (res.IRBroken && FatalErrors)
6272     report_fatal_error("Broken function found, compilation aborted!");
6273 
6274   return PreservedAnalyses::all();
6275 }
6276