1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // sanity checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/ADT/ilist.h" 62 #include "llvm/BinaryFormat/Dwarf.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstVisitor.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/ModuleSlotTracker.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/InitializePasses.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Debug.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <cstdint> 112 #include <memory> 113 #include <string> 114 #include <utility> 115 116 using namespace llvm; 117 118 namespace llvm { 119 120 struct VerifierSupport { 121 raw_ostream *OS; 122 const Module &M; 123 ModuleSlotTracker MST; 124 Triple TT; 125 const DataLayout &DL; 126 LLVMContext &Context; 127 128 /// Track the brokenness of the module while recursively visiting. 129 bool Broken = false; 130 /// Broken debug info can be "recovered" from by stripping the debug info. 131 bool BrokenDebugInfo = false; 132 /// Whether to treat broken debug info as an error. 133 bool TreatBrokenDebugInfoAsError = true; 134 135 explicit VerifierSupport(raw_ostream *OS, const Module &M) 136 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 137 Context(M.getContext()) {} 138 139 private: 140 void Write(const Module *M) { 141 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 142 } 143 144 void Write(const Value *V) { 145 if (V) 146 Write(*V); 147 } 148 149 void Write(const Value &V) { 150 if (isa<Instruction>(V)) { 151 V.print(*OS, MST); 152 *OS << '\n'; 153 } else { 154 V.printAsOperand(*OS, true, MST); 155 *OS << '\n'; 156 } 157 } 158 159 void Write(const Metadata *MD) { 160 if (!MD) 161 return; 162 MD->print(*OS, MST, &M); 163 *OS << '\n'; 164 } 165 166 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 167 Write(MD.get()); 168 } 169 170 void Write(const NamedMDNode *NMD) { 171 if (!NMD) 172 return; 173 NMD->print(*OS, MST); 174 *OS << '\n'; 175 } 176 177 void Write(Type *T) { 178 if (!T) 179 return; 180 *OS << ' ' << *T; 181 } 182 183 void Write(const Comdat *C) { 184 if (!C) 185 return; 186 *OS << *C; 187 } 188 189 void Write(const APInt *AI) { 190 if (!AI) 191 return; 192 *OS << *AI << '\n'; 193 } 194 195 void Write(const unsigned i) { *OS << i << '\n'; } 196 197 template <typename T> void Write(ArrayRef<T> Vs) { 198 for (const T &V : Vs) 199 Write(V); 200 } 201 202 template <typename T1, typename... Ts> 203 void WriteTs(const T1 &V1, const Ts &... Vs) { 204 Write(V1); 205 WriteTs(Vs...); 206 } 207 208 template <typename... Ts> void WriteTs() {} 209 210 public: 211 /// A check failed, so printout out the condition and the message. 212 /// 213 /// This provides a nice place to put a breakpoint if you want to see why 214 /// something is not correct. 215 void CheckFailed(const Twine &Message) { 216 if (OS) 217 *OS << Message << '\n'; 218 Broken = true; 219 } 220 221 /// A check failed (with values to print). 222 /// 223 /// This calls the Message-only version so that the above is easier to set a 224 /// breakpoint on. 225 template <typename T1, typename... Ts> 226 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 227 CheckFailed(Message); 228 if (OS) 229 WriteTs(V1, Vs...); 230 } 231 232 /// A debug info check failed. 233 void DebugInfoCheckFailed(const Twine &Message) { 234 if (OS) 235 *OS << Message << '\n'; 236 Broken |= TreatBrokenDebugInfoAsError; 237 BrokenDebugInfo = true; 238 } 239 240 /// A debug info check failed (with values to print). 241 template <typename T1, typename... Ts> 242 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 243 const Ts &... Vs) { 244 DebugInfoCheckFailed(Message); 245 if (OS) 246 WriteTs(V1, Vs...); 247 } 248 }; 249 250 } // namespace llvm 251 252 namespace { 253 254 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 255 friend class InstVisitor<Verifier>; 256 257 DominatorTree DT; 258 259 /// When verifying a basic block, keep track of all of the 260 /// instructions we have seen so far. 261 /// 262 /// This allows us to do efficient dominance checks for the case when an 263 /// instruction has an operand that is an instruction in the same block. 264 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 265 266 /// Keep track of the metadata nodes that have been checked already. 267 SmallPtrSet<const Metadata *, 32> MDNodes; 268 269 /// Keep track which DISubprogram is attached to which function. 270 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 271 272 /// Track all DICompileUnits visited. 273 SmallPtrSet<const Metadata *, 2> CUVisited; 274 275 /// The result type for a landingpad. 276 Type *LandingPadResultTy; 277 278 /// Whether we've seen a call to @llvm.localescape in this function 279 /// already. 280 bool SawFrameEscape; 281 282 /// Whether the current function has a DISubprogram attached to it. 283 bool HasDebugInfo = false; 284 285 /// Whether source was present on the first DIFile encountered in each CU. 286 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 287 288 /// Stores the count of how many objects were passed to llvm.localescape for a 289 /// given function and the largest index passed to llvm.localrecover. 290 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 291 292 // Maps catchswitches and cleanuppads that unwind to siblings to the 293 // terminators that indicate the unwind, used to detect cycles therein. 294 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 295 296 /// Cache of constants visited in search of ConstantExprs. 297 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 298 299 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 300 SmallVector<const Function *, 4> DeoptimizeDeclarations; 301 302 // Verify that this GlobalValue is only used in this module. 303 // This map is used to avoid visiting uses twice. We can arrive at a user 304 // twice, if they have multiple operands. In particular for very large 305 // constant expressions, we can arrive at a particular user many times. 306 SmallPtrSet<const Value *, 32> GlobalValueVisited; 307 308 // Keeps track of duplicate function argument debug info. 309 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 310 311 TBAAVerifier TBAAVerifyHelper; 312 313 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 314 315 public: 316 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 317 const Module &M) 318 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 319 SawFrameEscape(false), TBAAVerifyHelper(this) { 320 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 321 } 322 323 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 324 325 bool verify(const Function &F) { 326 assert(F.getParent() == &M && 327 "An instance of this class only works with a specific module!"); 328 329 // First ensure the function is well-enough formed to compute dominance 330 // information, and directly compute a dominance tree. We don't rely on the 331 // pass manager to provide this as it isolates us from a potentially 332 // out-of-date dominator tree and makes it significantly more complex to run 333 // this code outside of a pass manager. 334 // FIXME: It's really gross that we have to cast away constness here. 335 if (!F.empty()) 336 DT.recalculate(const_cast<Function &>(F)); 337 338 for (const BasicBlock &BB : F) { 339 if (!BB.empty() && BB.back().isTerminator()) 340 continue; 341 342 if (OS) { 343 *OS << "Basic Block in function '" << F.getName() 344 << "' does not have terminator!\n"; 345 BB.printAsOperand(*OS, true, MST); 346 *OS << "\n"; 347 } 348 return false; 349 } 350 351 Broken = false; 352 // FIXME: We strip const here because the inst visitor strips const. 353 visit(const_cast<Function &>(F)); 354 verifySiblingFuncletUnwinds(); 355 InstsInThisBlock.clear(); 356 DebugFnArgs.clear(); 357 LandingPadResultTy = nullptr; 358 SawFrameEscape = false; 359 SiblingFuncletInfo.clear(); 360 361 return !Broken; 362 } 363 364 /// Verify the module that this instance of \c Verifier was initialized with. 365 bool verify() { 366 Broken = false; 367 368 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 369 for (const Function &F : M) 370 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 371 DeoptimizeDeclarations.push_back(&F); 372 373 // Now that we've visited every function, verify that we never asked to 374 // recover a frame index that wasn't escaped. 375 verifyFrameRecoverIndices(); 376 for (const GlobalVariable &GV : M.globals()) 377 visitGlobalVariable(GV); 378 379 for (const GlobalAlias &GA : M.aliases()) 380 visitGlobalAlias(GA); 381 382 for (const NamedMDNode &NMD : M.named_metadata()) 383 visitNamedMDNode(NMD); 384 385 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 386 visitComdat(SMEC.getValue()); 387 388 visitModuleFlags(M); 389 visitModuleIdents(M); 390 visitModuleCommandLines(M); 391 392 verifyCompileUnits(); 393 394 verifyDeoptimizeCallingConvs(); 395 DISubprogramAttachments.clear(); 396 return !Broken; 397 } 398 399 private: 400 /// Whether a metadata node is allowed to be, or contain, a DILocation. 401 enum class AreDebugLocsAllowed { No, Yes }; 402 403 // Verification methods... 404 void visitGlobalValue(const GlobalValue &GV); 405 void visitGlobalVariable(const GlobalVariable &GV); 406 void visitGlobalAlias(const GlobalAlias &GA); 407 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 408 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 409 const GlobalAlias &A, const Constant &C); 410 void visitNamedMDNode(const NamedMDNode &NMD); 411 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); 412 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 413 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 414 void visitComdat(const Comdat &C); 415 void visitModuleIdents(const Module &M); 416 void visitModuleCommandLines(const Module &M); 417 void visitModuleFlags(const Module &M); 418 void visitModuleFlag(const MDNode *Op, 419 DenseMap<const MDString *, const MDNode *> &SeenIDs, 420 SmallVectorImpl<const MDNode *> &Requirements); 421 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 422 void visitFunction(const Function &F); 423 void visitBasicBlock(BasicBlock &BB); 424 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 425 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 426 void visitProfMetadata(Instruction &I, MDNode *MD); 427 428 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 429 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 430 #include "llvm/IR/Metadata.def" 431 void visitDIScope(const DIScope &N); 432 void visitDIVariable(const DIVariable &N); 433 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 434 void visitDITemplateParameter(const DITemplateParameter &N); 435 436 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 437 438 // InstVisitor overrides... 439 using InstVisitor<Verifier>::visit; 440 void visit(Instruction &I); 441 442 void visitTruncInst(TruncInst &I); 443 void visitZExtInst(ZExtInst &I); 444 void visitSExtInst(SExtInst &I); 445 void visitFPTruncInst(FPTruncInst &I); 446 void visitFPExtInst(FPExtInst &I); 447 void visitFPToUIInst(FPToUIInst &I); 448 void visitFPToSIInst(FPToSIInst &I); 449 void visitUIToFPInst(UIToFPInst &I); 450 void visitSIToFPInst(SIToFPInst &I); 451 void visitIntToPtrInst(IntToPtrInst &I); 452 void visitPtrToIntInst(PtrToIntInst &I); 453 void visitBitCastInst(BitCastInst &I); 454 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 455 void visitPHINode(PHINode &PN); 456 void visitCallBase(CallBase &Call); 457 void visitUnaryOperator(UnaryOperator &U); 458 void visitBinaryOperator(BinaryOperator &B); 459 void visitICmpInst(ICmpInst &IC); 460 void visitFCmpInst(FCmpInst &FC); 461 void visitExtractElementInst(ExtractElementInst &EI); 462 void visitInsertElementInst(InsertElementInst &EI); 463 void visitShuffleVectorInst(ShuffleVectorInst &EI); 464 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 465 void visitCallInst(CallInst &CI); 466 void visitInvokeInst(InvokeInst &II); 467 void visitGetElementPtrInst(GetElementPtrInst &GEP); 468 void visitLoadInst(LoadInst &LI); 469 void visitStoreInst(StoreInst &SI); 470 void verifyDominatesUse(Instruction &I, unsigned i); 471 void visitInstruction(Instruction &I); 472 void visitTerminator(Instruction &I); 473 void visitBranchInst(BranchInst &BI); 474 void visitReturnInst(ReturnInst &RI); 475 void visitSwitchInst(SwitchInst &SI); 476 void visitIndirectBrInst(IndirectBrInst &BI); 477 void visitCallBrInst(CallBrInst &CBI); 478 void visitSelectInst(SelectInst &SI); 479 void visitUserOp1(Instruction &I); 480 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 481 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 482 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 483 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 484 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 485 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 486 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 487 void visitFenceInst(FenceInst &FI); 488 void visitAllocaInst(AllocaInst &AI); 489 void visitExtractValueInst(ExtractValueInst &EVI); 490 void visitInsertValueInst(InsertValueInst &IVI); 491 void visitEHPadPredecessors(Instruction &I); 492 void visitLandingPadInst(LandingPadInst &LPI); 493 void visitResumeInst(ResumeInst &RI); 494 void visitCatchPadInst(CatchPadInst &CPI); 495 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 496 void visitCleanupPadInst(CleanupPadInst &CPI); 497 void visitFuncletPadInst(FuncletPadInst &FPI); 498 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 499 void visitCleanupReturnInst(CleanupReturnInst &CRI); 500 501 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 502 void verifySwiftErrorValue(const Value *SwiftErrorVal); 503 void verifyMustTailCall(CallInst &CI); 504 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, 505 unsigned ArgNo, std::string &Suffix); 506 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 507 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 508 const Value *V); 509 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 510 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 511 const Value *V, bool IsIntrinsic); 512 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 513 514 void visitConstantExprsRecursively(const Constant *EntryC); 515 void visitConstantExpr(const ConstantExpr *CE); 516 void verifyStatepoint(const CallBase &Call); 517 void verifyFrameRecoverIndices(); 518 void verifySiblingFuncletUnwinds(); 519 520 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 521 template <typename ValueOrMetadata> 522 void verifyFragmentExpression(const DIVariable &V, 523 DIExpression::FragmentInfo Fragment, 524 ValueOrMetadata *Desc); 525 void verifyFnArgs(const DbgVariableIntrinsic &I); 526 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 527 528 /// Module-level debug info verification... 529 void verifyCompileUnits(); 530 531 /// Module-level verification that all @llvm.experimental.deoptimize 532 /// declarations share the same calling convention. 533 void verifyDeoptimizeCallingConvs(); 534 535 /// Verify all-or-nothing property of DIFile source attribute within a CU. 536 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 537 }; 538 539 } // end anonymous namespace 540 541 /// We know that cond should be true, if not print an error message. 542 #define Assert(C, ...) \ 543 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 544 545 /// We know that a debug info condition should be true, if not print 546 /// an error message. 547 #define AssertDI(C, ...) \ 548 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 549 550 void Verifier::visit(Instruction &I) { 551 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 552 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 553 InstVisitor<Verifier>::visit(I); 554 } 555 556 // Helper to recursively iterate over indirect users. By 557 // returning false, the callback can ask to stop recursing 558 // further. 559 static void forEachUser(const Value *User, 560 SmallPtrSet<const Value *, 32> &Visited, 561 llvm::function_ref<bool(const Value *)> Callback) { 562 if (!Visited.insert(User).second) 563 return; 564 for (const Value *TheNextUser : User->materialized_users()) 565 if (Callback(TheNextUser)) 566 forEachUser(TheNextUser, Visited, Callback); 567 } 568 569 void Verifier::visitGlobalValue(const GlobalValue &GV) { 570 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 571 "Global is external, but doesn't have external or weak linkage!", &GV); 572 573 Assert(GV.getAlignment() <= Value::MaximumAlignment, 574 "huge alignment values are unsupported", &GV); 575 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 576 "Only global variables can have appending linkage!", &GV); 577 578 if (GV.hasAppendingLinkage()) { 579 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 580 Assert(GVar && GVar->getValueType()->isArrayTy(), 581 "Only global arrays can have appending linkage!", GVar); 582 } 583 584 if (GV.isDeclarationForLinker()) 585 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 586 587 if (GV.hasDLLImportStorageClass()) { 588 Assert(!GV.isDSOLocal(), 589 "GlobalValue with DLLImport Storage is dso_local!", &GV); 590 591 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) || 592 GV.hasAvailableExternallyLinkage(), 593 "Global is marked as dllimport, but not external", &GV); 594 } 595 596 if (GV.isImplicitDSOLocal()) 597 Assert(GV.isDSOLocal(), 598 "GlobalValue with local linkage or non-default " 599 "visibility must be dso_local!", 600 &GV); 601 602 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 603 if (const Instruction *I = dyn_cast<Instruction>(V)) { 604 if (!I->getParent() || !I->getParent()->getParent()) 605 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 606 I); 607 else if (I->getParent()->getParent()->getParent() != &M) 608 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 609 I->getParent()->getParent(), 610 I->getParent()->getParent()->getParent()); 611 return false; 612 } else if (const Function *F = dyn_cast<Function>(V)) { 613 if (F->getParent() != &M) 614 CheckFailed("Global is used by function in a different module", &GV, &M, 615 F, F->getParent()); 616 return false; 617 } 618 return true; 619 }); 620 } 621 622 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 623 if (GV.hasInitializer()) { 624 Assert(GV.getInitializer()->getType() == GV.getValueType(), 625 "Global variable initializer type does not match global " 626 "variable type!", 627 &GV); 628 // If the global has common linkage, it must have a zero initializer and 629 // cannot be constant. 630 if (GV.hasCommonLinkage()) { 631 Assert(GV.getInitializer()->isNullValue(), 632 "'common' global must have a zero initializer!", &GV); 633 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 634 &GV); 635 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 636 } 637 } 638 639 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 640 GV.getName() == "llvm.global_dtors")) { 641 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 642 "invalid linkage for intrinsic global variable", &GV); 643 // Don't worry about emitting an error for it not being an array, 644 // visitGlobalValue will complain on appending non-array. 645 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 646 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 647 PointerType *FuncPtrTy = 648 FunctionType::get(Type::getVoidTy(Context), false)-> 649 getPointerTo(DL.getProgramAddressSpace()); 650 Assert(STy && 651 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 652 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 653 STy->getTypeAtIndex(1) == FuncPtrTy, 654 "wrong type for intrinsic global variable", &GV); 655 Assert(STy->getNumElements() == 3, 656 "the third field of the element type is mandatory, " 657 "specify i8* null to migrate from the obsoleted 2-field form"); 658 Type *ETy = STy->getTypeAtIndex(2); 659 Assert(ETy->isPointerTy() && 660 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 661 "wrong type for intrinsic global variable", &GV); 662 } 663 } 664 665 if (GV.hasName() && (GV.getName() == "llvm.used" || 666 GV.getName() == "llvm.compiler.used")) { 667 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 668 "invalid linkage for intrinsic global variable", &GV); 669 Type *GVType = GV.getValueType(); 670 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 671 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 672 Assert(PTy, "wrong type for intrinsic global variable", &GV); 673 if (GV.hasInitializer()) { 674 const Constant *Init = GV.getInitializer(); 675 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 676 Assert(InitArray, "wrong initalizer for intrinsic global variable", 677 Init); 678 for (Value *Op : InitArray->operands()) { 679 Value *V = Op->stripPointerCasts(); 680 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 681 isa<GlobalAlias>(V), 682 "invalid llvm.used member", V); 683 Assert(V->hasName(), "members of llvm.used must be named", V); 684 } 685 } 686 } 687 } 688 689 // Visit any debug info attachments. 690 SmallVector<MDNode *, 1> MDs; 691 GV.getMetadata(LLVMContext::MD_dbg, MDs); 692 for (auto *MD : MDs) { 693 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 694 visitDIGlobalVariableExpression(*GVE); 695 else 696 AssertDI(false, "!dbg attachment of global variable must be a " 697 "DIGlobalVariableExpression"); 698 } 699 700 // Scalable vectors cannot be global variables, since we don't know 701 // the runtime size. If the global is a struct or an array containing 702 // scalable vectors, that will be caught by the isValidElementType methods 703 // in StructType or ArrayType instead. 704 Assert(!isa<ScalableVectorType>(GV.getValueType()), 705 "Globals cannot contain scalable vectors", &GV); 706 707 if (!GV.hasInitializer()) { 708 visitGlobalValue(GV); 709 return; 710 } 711 712 // Walk any aggregate initializers looking for bitcasts between address spaces 713 visitConstantExprsRecursively(GV.getInitializer()); 714 715 visitGlobalValue(GV); 716 } 717 718 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 719 SmallPtrSet<const GlobalAlias*, 4> Visited; 720 Visited.insert(&GA); 721 visitAliaseeSubExpr(Visited, GA, C); 722 } 723 724 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 725 const GlobalAlias &GA, const Constant &C) { 726 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 727 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 728 &GA); 729 730 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 731 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 732 733 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 734 &GA); 735 } else { 736 // Only continue verifying subexpressions of GlobalAliases. 737 // Do not recurse into global initializers. 738 return; 739 } 740 } 741 742 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 743 visitConstantExprsRecursively(CE); 744 745 for (const Use &U : C.operands()) { 746 Value *V = &*U; 747 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 748 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 749 else if (const auto *C2 = dyn_cast<Constant>(V)) 750 visitAliaseeSubExpr(Visited, GA, *C2); 751 } 752 } 753 754 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 755 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 756 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 757 "weak_odr, or external linkage!", 758 &GA); 759 const Constant *Aliasee = GA.getAliasee(); 760 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 761 Assert(GA.getType() == Aliasee->getType(), 762 "Alias and aliasee types should match!", &GA); 763 764 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 765 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 766 767 visitAliaseeSubExpr(GA, *Aliasee); 768 769 visitGlobalValue(GA); 770 } 771 772 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 773 // There used to be various other llvm.dbg.* nodes, but we don't support 774 // upgrading them and we want to reserve the namespace for future uses. 775 if (NMD.getName().startswith("llvm.dbg.")) 776 AssertDI(NMD.getName() == "llvm.dbg.cu", 777 "unrecognized named metadata node in the llvm.dbg namespace", 778 &NMD); 779 for (const MDNode *MD : NMD.operands()) { 780 if (NMD.getName() == "llvm.dbg.cu") 781 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 782 783 if (!MD) 784 continue; 785 786 visitMDNode(*MD, AreDebugLocsAllowed::Yes); 787 } 788 } 789 790 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { 791 // Only visit each node once. Metadata can be mutually recursive, so this 792 // avoids infinite recursion here, as well as being an optimization. 793 if (!MDNodes.insert(&MD).second) 794 return; 795 796 switch (MD.getMetadataID()) { 797 default: 798 llvm_unreachable("Invalid MDNode subclass"); 799 case Metadata::MDTupleKind: 800 break; 801 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 802 case Metadata::CLASS##Kind: \ 803 visit##CLASS(cast<CLASS>(MD)); \ 804 break; 805 #include "llvm/IR/Metadata.def" 806 } 807 808 for (const Metadata *Op : MD.operands()) { 809 if (!Op) 810 continue; 811 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 812 &MD, Op); 813 AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes, 814 "DILocation not allowed within this metadata node", &MD, Op); 815 if (auto *N = dyn_cast<MDNode>(Op)) { 816 visitMDNode(*N, AllowLocs); 817 continue; 818 } 819 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 820 visitValueAsMetadata(*V, nullptr); 821 continue; 822 } 823 } 824 825 // Check these last, so we diagnose problems in operands first. 826 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 827 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 828 } 829 830 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 831 Assert(MD.getValue(), "Expected valid value", &MD); 832 Assert(!MD.getValue()->getType()->isMetadataTy(), 833 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 834 835 auto *L = dyn_cast<LocalAsMetadata>(&MD); 836 if (!L) 837 return; 838 839 Assert(F, "function-local metadata used outside a function", L); 840 841 // If this was an instruction, bb, or argument, verify that it is in the 842 // function that we expect. 843 Function *ActualF = nullptr; 844 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 845 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 846 ActualF = I->getParent()->getParent(); 847 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 848 ActualF = BB->getParent(); 849 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 850 ActualF = A->getParent(); 851 assert(ActualF && "Unimplemented function local metadata case!"); 852 853 Assert(ActualF == F, "function-local metadata used in wrong function", L); 854 } 855 856 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 857 Metadata *MD = MDV.getMetadata(); 858 if (auto *N = dyn_cast<MDNode>(MD)) { 859 visitMDNode(*N, AreDebugLocsAllowed::No); 860 return; 861 } 862 863 // Only visit each node once. Metadata can be mutually recursive, so this 864 // avoids infinite recursion here, as well as being an optimization. 865 if (!MDNodes.insert(MD).second) 866 return; 867 868 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 869 visitValueAsMetadata(*V, F); 870 } 871 872 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 873 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 874 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 875 876 void Verifier::visitDILocation(const DILocation &N) { 877 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 878 "location requires a valid scope", &N, N.getRawScope()); 879 if (auto *IA = N.getRawInlinedAt()) 880 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 881 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 882 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 883 } 884 885 void Verifier::visitGenericDINode(const GenericDINode &N) { 886 AssertDI(N.getTag(), "invalid tag", &N); 887 } 888 889 void Verifier::visitDIScope(const DIScope &N) { 890 if (auto *F = N.getRawFile()) 891 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 892 } 893 894 void Verifier::visitDISubrange(const DISubrange &N) { 895 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 896 auto Count = N.getCount(); 897 AssertDI(Count, "Count must either be a signed constant or a DIVariable", 898 &N); 899 AssertDI(!Count.is<ConstantInt*>() || 900 Count.get<ConstantInt*>()->getSExtValue() >= -1, 901 "invalid subrange count", &N); 902 } 903 904 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 905 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 906 } 907 908 void Verifier::visitDIBasicType(const DIBasicType &N) { 909 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 910 N.getTag() == dwarf::DW_TAG_unspecified_type, 911 "invalid tag", &N); 912 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 913 "has conflicting flags", &N); 914 } 915 916 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 917 // Common scope checks. 918 visitDIScope(N); 919 920 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 921 N.getTag() == dwarf::DW_TAG_pointer_type || 922 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 923 N.getTag() == dwarf::DW_TAG_reference_type || 924 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 925 N.getTag() == dwarf::DW_TAG_const_type || 926 N.getTag() == dwarf::DW_TAG_volatile_type || 927 N.getTag() == dwarf::DW_TAG_restrict_type || 928 N.getTag() == dwarf::DW_TAG_atomic_type || 929 N.getTag() == dwarf::DW_TAG_member || 930 N.getTag() == dwarf::DW_TAG_inheritance || 931 N.getTag() == dwarf::DW_TAG_friend, 932 "invalid tag", &N); 933 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 934 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 935 N.getRawExtraData()); 936 } 937 938 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 939 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 940 N.getRawBaseType()); 941 942 if (N.getDWARFAddressSpace()) { 943 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 944 N.getTag() == dwarf::DW_TAG_reference_type || 945 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 946 "DWARF address space only applies to pointer or reference types", 947 &N); 948 } 949 } 950 951 /// Detect mutually exclusive flags. 952 static bool hasConflictingReferenceFlags(unsigned Flags) { 953 return ((Flags & DINode::FlagLValueReference) && 954 (Flags & DINode::FlagRValueReference)) || 955 ((Flags & DINode::FlagTypePassByValue) && 956 (Flags & DINode::FlagTypePassByReference)); 957 } 958 959 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 960 auto *Params = dyn_cast<MDTuple>(&RawParams); 961 AssertDI(Params, "invalid template params", &N, &RawParams); 962 for (Metadata *Op : Params->operands()) { 963 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 964 &N, Params, Op); 965 } 966 } 967 968 void Verifier::visitDICompositeType(const DICompositeType &N) { 969 // Common scope checks. 970 visitDIScope(N); 971 972 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 973 N.getTag() == dwarf::DW_TAG_structure_type || 974 N.getTag() == dwarf::DW_TAG_union_type || 975 N.getTag() == dwarf::DW_TAG_enumeration_type || 976 N.getTag() == dwarf::DW_TAG_class_type || 977 N.getTag() == dwarf::DW_TAG_variant_part, 978 "invalid tag", &N); 979 980 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 981 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 982 N.getRawBaseType()); 983 984 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 985 "invalid composite elements", &N, N.getRawElements()); 986 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 987 N.getRawVTableHolder()); 988 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 989 "invalid reference flags", &N); 990 unsigned DIBlockByRefStruct = 1 << 4; 991 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, 992 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 993 994 if (N.isVector()) { 995 const DINodeArray Elements = N.getElements(); 996 AssertDI(Elements.size() == 1 && 997 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 998 "invalid vector, expected one element of type subrange", &N); 999 } 1000 1001 if (auto *Params = N.getRawTemplateParams()) 1002 visitTemplateParams(N, *Params); 1003 1004 if (N.getTag() == dwarf::DW_TAG_class_type || 1005 N.getTag() == dwarf::DW_TAG_union_type) { 1006 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), 1007 "class/union requires a filename", &N, N.getFile()); 1008 } 1009 1010 if (auto *D = N.getRawDiscriminator()) { 1011 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1012 "discriminator can only appear on variant part"); 1013 } 1014 1015 if (N.getRawDataLocation()) { 1016 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1017 "dataLocation can only appear in array type"); 1018 } 1019 } 1020 1021 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1022 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1023 if (auto *Types = N.getRawTypeArray()) { 1024 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1025 for (Metadata *Ty : N.getTypeArray()->operands()) { 1026 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1027 } 1028 } 1029 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1030 "invalid reference flags", &N); 1031 } 1032 1033 void Verifier::visitDIFile(const DIFile &N) { 1034 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1035 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1036 if (Checksum) { 1037 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1038 "invalid checksum kind", &N); 1039 size_t Size; 1040 switch (Checksum->Kind) { 1041 case DIFile::CSK_MD5: 1042 Size = 32; 1043 break; 1044 case DIFile::CSK_SHA1: 1045 Size = 40; 1046 break; 1047 case DIFile::CSK_SHA256: 1048 Size = 64; 1049 break; 1050 } 1051 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1052 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1053 "invalid checksum", &N); 1054 } 1055 } 1056 1057 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1058 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1059 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1060 1061 // Don't bother verifying the compilation directory or producer string 1062 // as those could be empty. 1063 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1064 N.getRawFile()); 1065 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1066 N.getFile()); 1067 1068 verifySourceDebugInfo(N, *N.getFile()); 1069 1070 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1071 "invalid emission kind", &N); 1072 1073 if (auto *Array = N.getRawEnumTypes()) { 1074 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1075 for (Metadata *Op : N.getEnumTypes()->operands()) { 1076 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1077 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1078 "invalid enum type", &N, N.getEnumTypes(), Op); 1079 } 1080 } 1081 if (auto *Array = N.getRawRetainedTypes()) { 1082 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1083 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1084 AssertDI(Op && (isa<DIType>(Op) || 1085 (isa<DISubprogram>(Op) && 1086 !cast<DISubprogram>(Op)->isDefinition())), 1087 "invalid retained type", &N, Op); 1088 } 1089 } 1090 if (auto *Array = N.getRawGlobalVariables()) { 1091 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1092 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1093 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1094 "invalid global variable ref", &N, Op); 1095 } 1096 } 1097 if (auto *Array = N.getRawImportedEntities()) { 1098 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1099 for (Metadata *Op : N.getImportedEntities()->operands()) { 1100 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1101 &N, Op); 1102 } 1103 } 1104 if (auto *Array = N.getRawMacros()) { 1105 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1106 for (Metadata *Op : N.getMacros()->operands()) { 1107 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1108 } 1109 } 1110 CUVisited.insert(&N); 1111 } 1112 1113 void Verifier::visitDISubprogram(const DISubprogram &N) { 1114 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1115 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1116 if (auto *F = N.getRawFile()) 1117 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1118 else 1119 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1120 if (auto *T = N.getRawType()) 1121 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1122 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1123 N.getRawContainingType()); 1124 if (auto *Params = N.getRawTemplateParams()) 1125 visitTemplateParams(N, *Params); 1126 if (auto *S = N.getRawDeclaration()) 1127 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1128 "invalid subprogram declaration", &N, S); 1129 if (auto *RawNode = N.getRawRetainedNodes()) { 1130 auto *Node = dyn_cast<MDTuple>(RawNode); 1131 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1132 for (Metadata *Op : Node->operands()) { 1133 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1134 "invalid retained nodes, expected DILocalVariable or DILabel", 1135 &N, Node, Op); 1136 } 1137 } 1138 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1139 "invalid reference flags", &N); 1140 1141 auto *Unit = N.getRawUnit(); 1142 if (N.isDefinition()) { 1143 // Subprogram definitions (not part of the type hierarchy). 1144 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1145 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1146 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1147 if (N.getFile()) 1148 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1149 } else { 1150 // Subprogram declarations (part of the type hierarchy). 1151 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1152 } 1153 1154 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1155 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1156 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1157 for (Metadata *Op : ThrownTypes->operands()) 1158 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1159 Op); 1160 } 1161 1162 if (N.areAllCallsDescribed()) 1163 AssertDI(N.isDefinition(), 1164 "DIFlagAllCallsDescribed must be attached to a definition"); 1165 } 1166 1167 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1168 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1169 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1170 "invalid local scope", &N, N.getRawScope()); 1171 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1172 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1173 } 1174 1175 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1176 visitDILexicalBlockBase(N); 1177 1178 AssertDI(N.getLine() || !N.getColumn(), 1179 "cannot have column info without line info", &N); 1180 } 1181 1182 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1183 visitDILexicalBlockBase(N); 1184 } 1185 1186 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1187 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1188 if (auto *S = N.getRawScope()) 1189 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1190 if (auto *S = N.getRawDecl()) 1191 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1192 } 1193 1194 void Verifier::visitDINamespace(const DINamespace &N) { 1195 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1196 if (auto *S = N.getRawScope()) 1197 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1198 } 1199 1200 void Verifier::visitDIMacro(const DIMacro &N) { 1201 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1202 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1203 "invalid macinfo type", &N); 1204 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1205 if (!N.getValue().empty()) { 1206 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1207 } 1208 } 1209 1210 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1211 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1212 "invalid macinfo type", &N); 1213 if (auto *F = N.getRawFile()) 1214 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1215 1216 if (auto *Array = N.getRawElements()) { 1217 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1218 for (Metadata *Op : N.getElements()->operands()) { 1219 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1220 } 1221 } 1222 } 1223 1224 void Verifier::visitDIModule(const DIModule &N) { 1225 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1226 AssertDI(!N.getName().empty(), "anonymous module", &N); 1227 } 1228 1229 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1230 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1231 } 1232 1233 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1234 visitDITemplateParameter(N); 1235 1236 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1237 &N); 1238 } 1239 1240 void Verifier::visitDITemplateValueParameter( 1241 const DITemplateValueParameter &N) { 1242 visitDITemplateParameter(N); 1243 1244 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1245 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1246 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1247 "invalid tag", &N); 1248 } 1249 1250 void Verifier::visitDIVariable(const DIVariable &N) { 1251 if (auto *S = N.getRawScope()) 1252 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1253 if (auto *F = N.getRawFile()) 1254 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1255 } 1256 1257 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1258 // Checks common to all variables. 1259 visitDIVariable(N); 1260 1261 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1262 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1263 AssertDI(N.getType(), "missing global variable type", &N); 1264 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1265 AssertDI(isa<DIDerivedType>(Member), 1266 "invalid static data member declaration", &N, Member); 1267 } 1268 } 1269 1270 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1271 // Checks common to all variables. 1272 visitDIVariable(N); 1273 1274 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1275 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1276 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1277 "local variable requires a valid scope", &N, N.getRawScope()); 1278 if (auto Ty = N.getType()) 1279 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1280 } 1281 1282 void Verifier::visitDILabel(const DILabel &N) { 1283 if (auto *S = N.getRawScope()) 1284 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1285 if (auto *F = N.getRawFile()) 1286 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1287 1288 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1289 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1290 "label requires a valid scope", &N, N.getRawScope()); 1291 } 1292 1293 void Verifier::visitDIExpression(const DIExpression &N) { 1294 AssertDI(N.isValid(), "invalid expression", &N); 1295 } 1296 1297 void Verifier::visitDIGlobalVariableExpression( 1298 const DIGlobalVariableExpression &GVE) { 1299 AssertDI(GVE.getVariable(), "missing variable"); 1300 if (auto *Var = GVE.getVariable()) 1301 visitDIGlobalVariable(*Var); 1302 if (auto *Expr = GVE.getExpression()) { 1303 visitDIExpression(*Expr); 1304 if (auto Fragment = Expr->getFragmentInfo()) 1305 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1306 } 1307 } 1308 1309 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1310 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1311 if (auto *T = N.getRawType()) 1312 AssertDI(isType(T), "invalid type ref", &N, T); 1313 if (auto *F = N.getRawFile()) 1314 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1315 } 1316 1317 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1318 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1319 N.getTag() == dwarf::DW_TAG_imported_declaration, 1320 "invalid tag", &N); 1321 if (auto *S = N.getRawScope()) 1322 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1323 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1324 N.getRawEntity()); 1325 } 1326 1327 void Verifier::visitComdat(const Comdat &C) { 1328 // In COFF the Module is invalid if the GlobalValue has private linkage. 1329 // Entities with private linkage don't have entries in the symbol table. 1330 if (TT.isOSBinFormatCOFF()) 1331 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1332 Assert(!GV->hasPrivateLinkage(), 1333 "comdat global value has private linkage", GV); 1334 } 1335 1336 void Verifier::visitModuleIdents(const Module &M) { 1337 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1338 if (!Idents) 1339 return; 1340 1341 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1342 // Scan each llvm.ident entry and make sure that this requirement is met. 1343 for (const MDNode *N : Idents->operands()) { 1344 Assert(N->getNumOperands() == 1, 1345 "incorrect number of operands in llvm.ident metadata", N); 1346 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1347 ("invalid value for llvm.ident metadata entry operand" 1348 "(the operand should be a string)"), 1349 N->getOperand(0)); 1350 } 1351 } 1352 1353 void Verifier::visitModuleCommandLines(const Module &M) { 1354 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1355 if (!CommandLines) 1356 return; 1357 1358 // llvm.commandline takes a list of metadata entry. Each entry has only one 1359 // string. Scan each llvm.commandline entry and make sure that this 1360 // requirement is met. 1361 for (const MDNode *N : CommandLines->operands()) { 1362 Assert(N->getNumOperands() == 1, 1363 "incorrect number of operands in llvm.commandline metadata", N); 1364 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1365 ("invalid value for llvm.commandline metadata entry operand" 1366 "(the operand should be a string)"), 1367 N->getOperand(0)); 1368 } 1369 } 1370 1371 void Verifier::visitModuleFlags(const Module &M) { 1372 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1373 if (!Flags) return; 1374 1375 // Scan each flag, and track the flags and requirements. 1376 DenseMap<const MDString*, const MDNode*> SeenIDs; 1377 SmallVector<const MDNode*, 16> Requirements; 1378 for (const MDNode *MDN : Flags->operands()) 1379 visitModuleFlag(MDN, SeenIDs, Requirements); 1380 1381 // Validate that the requirements in the module are valid. 1382 for (const MDNode *Requirement : Requirements) { 1383 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1384 const Metadata *ReqValue = Requirement->getOperand(1); 1385 1386 const MDNode *Op = SeenIDs.lookup(Flag); 1387 if (!Op) { 1388 CheckFailed("invalid requirement on flag, flag is not present in module", 1389 Flag); 1390 continue; 1391 } 1392 1393 if (Op->getOperand(2) != ReqValue) { 1394 CheckFailed(("invalid requirement on flag, " 1395 "flag does not have the required value"), 1396 Flag); 1397 continue; 1398 } 1399 } 1400 } 1401 1402 void 1403 Verifier::visitModuleFlag(const MDNode *Op, 1404 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1405 SmallVectorImpl<const MDNode *> &Requirements) { 1406 // Each module flag should have three arguments, the merge behavior (a 1407 // constant int), the flag ID (an MDString), and the value. 1408 Assert(Op->getNumOperands() == 3, 1409 "incorrect number of operands in module flag", Op); 1410 Module::ModFlagBehavior MFB; 1411 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1412 Assert( 1413 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1414 "invalid behavior operand in module flag (expected constant integer)", 1415 Op->getOperand(0)); 1416 Assert(false, 1417 "invalid behavior operand in module flag (unexpected constant)", 1418 Op->getOperand(0)); 1419 } 1420 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1421 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1422 Op->getOperand(1)); 1423 1424 // Sanity check the values for behaviors with additional requirements. 1425 switch (MFB) { 1426 case Module::Error: 1427 case Module::Warning: 1428 case Module::Override: 1429 // These behavior types accept any value. 1430 break; 1431 1432 case Module::Max: { 1433 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1434 "invalid value for 'max' module flag (expected constant integer)", 1435 Op->getOperand(2)); 1436 break; 1437 } 1438 1439 case Module::Require: { 1440 // The value should itself be an MDNode with two operands, a flag ID (an 1441 // MDString), and a value. 1442 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1443 Assert(Value && Value->getNumOperands() == 2, 1444 "invalid value for 'require' module flag (expected metadata pair)", 1445 Op->getOperand(2)); 1446 Assert(isa<MDString>(Value->getOperand(0)), 1447 ("invalid value for 'require' module flag " 1448 "(first value operand should be a string)"), 1449 Value->getOperand(0)); 1450 1451 // Append it to the list of requirements, to check once all module flags are 1452 // scanned. 1453 Requirements.push_back(Value); 1454 break; 1455 } 1456 1457 case Module::Append: 1458 case Module::AppendUnique: { 1459 // These behavior types require the operand be an MDNode. 1460 Assert(isa<MDNode>(Op->getOperand(2)), 1461 "invalid value for 'append'-type module flag " 1462 "(expected a metadata node)", 1463 Op->getOperand(2)); 1464 break; 1465 } 1466 } 1467 1468 // Unless this is a "requires" flag, check the ID is unique. 1469 if (MFB != Module::Require) { 1470 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1471 Assert(Inserted, 1472 "module flag identifiers must be unique (or of 'require' type)", ID); 1473 } 1474 1475 if (ID->getString() == "wchar_size") { 1476 ConstantInt *Value 1477 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1478 Assert(Value, "wchar_size metadata requires constant integer argument"); 1479 } 1480 1481 if (ID->getString() == "Linker Options") { 1482 // If the llvm.linker.options named metadata exists, we assume that the 1483 // bitcode reader has upgraded the module flag. Otherwise the flag might 1484 // have been created by a client directly. 1485 Assert(M.getNamedMetadata("llvm.linker.options"), 1486 "'Linker Options' named metadata no longer supported"); 1487 } 1488 1489 if (ID->getString() == "SemanticInterposition") { 1490 ConstantInt *Value = 1491 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1492 Assert(Value, 1493 "SemanticInterposition metadata requires constant integer argument"); 1494 } 1495 1496 if (ID->getString() == "CG Profile") { 1497 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1498 visitModuleFlagCGProfileEntry(MDO); 1499 } 1500 } 1501 1502 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1503 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1504 if (!FuncMDO) 1505 return; 1506 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1507 Assert(F && isa<Function>(F->getValue()), "expected a Function or null", 1508 FuncMDO); 1509 }; 1510 auto Node = dyn_cast_or_null<MDNode>(MDO); 1511 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1512 CheckFunction(Node->getOperand(0)); 1513 CheckFunction(Node->getOperand(1)); 1514 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1515 Assert(Count && Count->getType()->isIntegerTy(), 1516 "expected an integer constant", Node->getOperand(2)); 1517 } 1518 1519 /// Return true if this attribute kind only applies to functions. 1520 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { 1521 switch (Kind) { 1522 case Attribute::NoMerge: 1523 case Attribute::NoReturn: 1524 case Attribute::NoSync: 1525 case Attribute::WillReturn: 1526 case Attribute::NoCfCheck: 1527 case Attribute::NoUnwind: 1528 case Attribute::NoInline: 1529 case Attribute::AlwaysInline: 1530 case Attribute::OptimizeForSize: 1531 case Attribute::StackProtect: 1532 case Attribute::StackProtectReq: 1533 case Attribute::StackProtectStrong: 1534 case Attribute::SafeStack: 1535 case Attribute::ShadowCallStack: 1536 case Attribute::NoRedZone: 1537 case Attribute::NoImplicitFloat: 1538 case Attribute::Naked: 1539 case Attribute::InlineHint: 1540 case Attribute::StackAlignment: 1541 case Attribute::UWTable: 1542 case Attribute::NonLazyBind: 1543 case Attribute::ReturnsTwice: 1544 case Attribute::SanitizeAddress: 1545 case Attribute::SanitizeHWAddress: 1546 case Attribute::SanitizeMemTag: 1547 case Attribute::SanitizeThread: 1548 case Attribute::SanitizeMemory: 1549 case Attribute::MinSize: 1550 case Attribute::NoDuplicate: 1551 case Attribute::Builtin: 1552 case Attribute::NoBuiltin: 1553 case Attribute::Cold: 1554 case Attribute::OptForFuzzing: 1555 case Attribute::OptimizeNone: 1556 case Attribute::JumpTable: 1557 case Attribute::Convergent: 1558 case Attribute::ArgMemOnly: 1559 case Attribute::NoRecurse: 1560 case Attribute::InaccessibleMemOnly: 1561 case Attribute::InaccessibleMemOrArgMemOnly: 1562 case Attribute::AllocSize: 1563 case Attribute::SpeculativeLoadHardening: 1564 case Attribute::Speculatable: 1565 case Attribute::StrictFP: 1566 case Attribute::NullPointerIsValid: 1567 return true; 1568 default: 1569 break; 1570 } 1571 return false; 1572 } 1573 1574 /// Return true if this is a function attribute that can also appear on 1575 /// arguments. 1576 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { 1577 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || 1578 Kind == Attribute::ReadNone || Kind == Attribute::NoFree || 1579 Kind == Attribute::Preallocated; 1580 } 1581 1582 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 1583 const Value *V) { 1584 for (Attribute A : Attrs) { 1585 if (A.isStringAttribute()) 1586 continue; 1587 1588 if (A.isIntAttribute() != 1589 Attribute::doesAttrKindHaveArgument(A.getKindAsEnum())) { 1590 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", 1591 V); 1592 return; 1593 } 1594 1595 if (isFuncOnlyAttr(A.getKindAsEnum())) { 1596 if (!IsFunction) { 1597 CheckFailed("Attribute '" + A.getAsString() + 1598 "' only applies to functions!", 1599 V); 1600 return; 1601 } 1602 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { 1603 CheckFailed("Attribute '" + A.getAsString() + 1604 "' does not apply to functions!", 1605 V); 1606 return; 1607 } 1608 } 1609 } 1610 1611 // VerifyParameterAttrs - Check the given attributes for an argument or return 1612 // value of the specified type. The value V is printed in error messages. 1613 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1614 const Value *V) { 1615 if (!Attrs.hasAttributes()) 1616 return; 1617 1618 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); 1619 1620 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1621 Assert(Attrs.getNumAttributes() == 1, 1622 "Attribute 'immarg' is incompatible with other attributes", V); 1623 } 1624 1625 // Check for mutually incompatible attributes. Only inreg is compatible with 1626 // sret. 1627 unsigned AttrCount = 0; 1628 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1629 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1630 AttrCount += Attrs.hasAttribute(Attribute::Preallocated); 1631 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1632 Attrs.hasAttribute(Attribute::InReg); 1633 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1634 Assert(AttrCount <= 1, 1635 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " 1636 "and 'sret' are incompatible!", 1637 V); 1638 1639 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1640 Attrs.hasAttribute(Attribute::ReadOnly)), 1641 "Attributes " 1642 "'inalloca and readonly' are incompatible!", 1643 V); 1644 1645 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1646 Attrs.hasAttribute(Attribute::Returned)), 1647 "Attributes " 1648 "'sret and returned' are incompatible!", 1649 V); 1650 1651 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1652 Attrs.hasAttribute(Attribute::SExt)), 1653 "Attributes " 1654 "'zeroext and signext' are incompatible!", 1655 V); 1656 1657 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1658 Attrs.hasAttribute(Attribute::ReadOnly)), 1659 "Attributes " 1660 "'readnone and readonly' are incompatible!", 1661 V); 1662 1663 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1664 Attrs.hasAttribute(Attribute::WriteOnly)), 1665 "Attributes " 1666 "'readnone and writeonly' are incompatible!", 1667 V); 1668 1669 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1670 Attrs.hasAttribute(Attribute::WriteOnly)), 1671 "Attributes " 1672 "'readonly and writeonly' are incompatible!", 1673 V); 1674 1675 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1676 Attrs.hasAttribute(Attribute::AlwaysInline)), 1677 "Attributes " 1678 "'noinline and alwaysinline' are incompatible!", 1679 V); 1680 1681 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1682 Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(), 1683 "Attribute 'byval' type does not match parameter!", V); 1684 } 1685 1686 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1687 Assert(Attrs.getPreallocatedType() == 1688 cast<PointerType>(Ty)->getElementType(), 1689 "Attribute 'preallocated' type does not match parameter!", V); 1690 } 1691 1692 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1693 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), 1694 "Wrong types for attribute: " + 1695 AttributeSet::get(Context, IncompatibleAttrs).getAsString(), 1696 V); 1697 1698 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1699 SmallPtrSet<Type*, 4> Visited; 1700 if (!PTy->getElementType()->isSized(&Visited)) { 1701 Assert(!Attrs.hasAttribute(Attribute::ByVal) && 1702 !Attrs.hasAttribute(Attribute::InAlloca) && 1703 !Attrs.hasAttribute(Attribute::Preallocated), 1704 "Attributes 'byval', 'inalloca', and 'preallocated' do not " 1705 "support unsized types!", 1706 V); 1707 } 1708 if (!isa<PointerType>(PTy->getElementType())) 1709 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1710 "Attribute 'swifterror' only applies to parameters " 1711 "with pointer to pointer type!", 1712 V); 1713 } else { 1714 Assert(!Attrs.hasAttribute(Attribute::ByVal), 1715 "Attribute 'byval' only applies to parameters with pointer type!", 1716 V); 1717 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1718 "Attribute 'swifterror' only applies to parameters " 1719 "with pointer type!", 1720 V); 1721 } 1722 } 1723 1724 // Check parameter attributes against a function type. 1725 // The value V is printed in error messages. 1726 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1727 const Value *V, bool IsIntrinsic) { 1728 if (Attrs.isEmpty()) 1729 return; 1730 1731 bool SawNest = false; 1732 bool SawReturned = false; 1733 bool SawSRet = false; 1734 bool SawSwiftSelf = false; 1735 bool SawSwiftError = false; 1736 1737 // Verify return value attributes. 1738 AttributeSet RetAttrs = Attrs.getRetAttributes(); 1739 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && 1740 !RetAttrs.hasAttribute(Attribute::Nest) && 1741 !RetAttrs.hasAttribute(Attribute::StructRet) && 1742 !RetAttrs.hasAttribute(Attribute::NoCapture) && 1743 !RetAttrs.hasAttribute(Attribute::NoFree) && 1744 !RetAttrs.hasAttribute(Attribute::Returned) && 1745 !RetAttrs.hasAttribute(Attribute::InAlloca) && 1746 !RetAttrs.hasAttribute(Attribute::Preallocated) && 1747 !RetAttrs.hasAttribute(Attribute::SwiftSelf) && 1748 !RetAttrs.hasAttribute(Attribute::SwiftError)), 1749 "Attributes 'byval', 'inalloca', 'preallocated', 'nest', 'sret', " 1750 "'nocapture', 'nofree', " 1751 "'returned', 'swiftself', and 'swifterror' do not apply to return " 1752 "values!", 1753 V); 1754 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && 1755 !RetAttrs.hasAttribute(Attribute::WriteOnly) && 1756 !RetAttrs.hasAttribute(Attribute::ReadNone)), 1757 "Attribute '" + RetAttrs.getAsString() + 1758 "' does not apply to function returns", 1759 V); 1760 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1761 1762 // Verify parameter attributes. 1763 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1764 Type *Ty = FT->getParamType(i); 1765 AttributeSet ArgAttrs = Attrs.getParamAttributes(i); 1766 1767 if (!IsIntrinsic) { 1768 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1769 "immarg attribute only applies to intrinsics",V); 1770 } 1771 1772 verifyParameterAttrs(ArgAttrs, Ty, V); 1773 1774 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1775 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1776 SawNest = true; 1777 } 1778 1779 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1780 Assert(!SawReturned, "More than one parameter has attribute returned!", 1781 V); 1782 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1783 "Incompatible argument and return types for 'returned' attribute", 1784 V); 1785 SawReturned = true; 1786 } 1787 1788 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1789 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1790 Assert(i == 0 || i == 1, 1791 "Attribute 'sret' is not on first or second parameter!", V); 1792 SawSRet = true; 1793 } 1794 1795 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1796 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1797 SawSwiftSelf = true; 1798 } 1799 1800 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1801 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1802 V); 1803 SawSwiftError = true; 1804 } 1805 1806 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1807 Assert(i == FT->getNumParams() - 1, 1808 "inalloca isn't on the last parameter!", V); 1809 } 1810 } 1811 1812 if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) 1813 return; 1814 1815 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); 1816 1817 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1818 Attrs.hasFnAttribute(Attribute::ReadOnly)), 1819 "Attributes 'readnone and readonly' are incompatible!", V); 1820 1821 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1822 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1823 "Attributes 'readnone and writeonly' are incompatible!", V); 1824 1825 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && 1826 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1827 "Attributes 'readonly and writeonly' are incompatible!", V); 1828 1829 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1830 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), 1831 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1832 "incompatible!", 1833 V); 1834 1835 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1836 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), 1837 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1838 1839 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && 1840 Attrs.hasFnAttribute(Attribute::AlwaysInline)), 1841 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1842 1843 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { 1844 Assert(Attrs.hasFnAttribute(Attribute::NoInline), 1845 "Attribute 'optnone' requires 'noinline'!", V); 1846 1847 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), 1848 "Attributes 'optsize and optnone' are incompatible!", V); 1849 1850 Assert(!Attrs.hasFnAttribute(Attribute::MinSize), 1851 "Attributes 'minsize and optnone' are incompatible!", V); 1852 } 1853 1854 if (Attrs.hasFnAttribute(Attribute::JumpTable)) { 1855 const GlobalValue *GV = cast<GlobalValue>(V); 1856 Assert(GV->hasGlobalUnnamedAddr(), 1857 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1858 } 1859 1860 if (Attrs.hasFnAttribute(Attribute::AllocSize)) { 1861 std::pair<unsigned, Optional<unsigned>> Args = 1862 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 1863 1864 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1865 if (ParamNo >= FT->getNumParams()) { 1866 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1867 return false; 1868 } 1869 1870 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1871 CheckFailed("'allocsize' " + Name + 1872 " argument must refer to an integer parameter", 1873 V); 1874 return false; 1875 } 1876 1877 return true; 1878 }; 1879 1880 if (!CheckParam("element size", Args.first)) 1881 return; 1882 1883 if (Args.second && !CheckParam("number of elements", *Args.second)) 1884 return; 1885 } 1886 1887 if (Attrs.hasFnAttribute("frame-pointer")) { 1888 StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex, 1889 "frame-pointer").getValueAsString(); 1890 if (FP != "all" && FP != "non-leaf" && FP != "none") 1891 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 1892 } 1893 1894 if (Attrs.hasFnAttribute("patchable-function-prefix")) { 1895 StringRef S = Attrs 1896 .getAttribute(AttributeList::FunctionIndex, 1897 "patchable-function-prefix") 1898 .getValueAsString(); 1899 unsigned N; 1900 if (S.getAsInteger(10, N)) 1901 CheckFailed( 1902 "\"patchable-function-prefix\" takes an unsigned integer: " + S, V); 1903 } 1904 if (Attrs.hasFnAttribute("patchable-function-entry")) { 1905 StringRef S = Attrs 1906 .getAttribute(AttributeList::FunctionIndex, 1907 "patchable-function-entry") 1908 .getValueAsString(); 1909 unsigned N; 1910 if (S.getAsInteger(10, N)) 1911 CheckFailed( 1912 "\"patchable-function-entry\" takes an unsigned integer: " + S, V); 1913 } 1914 } 1915 1916 void Verifier::verifyFunctionMetadata( 1917 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 1918 for (const auto &Pair : MDs) { 1919 if (Pair.first == LLVMContext::MD_prof) { 1920 MDNode *MD = Pair.second; 1921 Assert(MD->getNumOperands() >= 2, 1922 "!prof annotations should have no less than 2 operands", MD); 1923 1924 // Check first operand. 1925 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 1926 MD); 1927 Assert(isa<MDString>(MD->getOperand(0)), 1928 "expected string with name of the !prof annotation", MD); 1929 MDString *MDS = cast<MDString>(MD->getOperand(0)); 1930 StringRef ProfName = MDS->getString(); 1931 Assert(ProfName.equals("function_entry_count") || 1932 ProfName.equals("synthetic_function_entry_count"), 1933 "first operand should be 'function_entry_count'" 1934 " or 'synthetic_function_entry_count'", 1935 MD); 1936 1937 // Check second operand. 1938 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 1939 MD); 1940 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 1941 "expected integer argument to function_entry_count", MD); 1942 } 1943 } 1944 } 1945 1946 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 1947 if (!ConstantExprVisited.insert(EntryC).second) 1948 return; 1949 1950 SmallVector<const Constant *, 16> Stack; 1951 Stack.push_back(EntryC); 1952 1953 while (!Stack.empty()) { 1954 const Constant *C = Stack.pop_back_val(); 1955 1956 // Check this constant expression. 1957 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 1958 visitConstantExpr(CE); 1959 1960 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 1961 // Global Values get visited separately, but we do need to make sure 1962 // that the global value is in the correct module 1963 Assert(GV->getParent() == &M, "Referencing global in another module!", 1964 EntryC, &M, GV, GV->getParent()); 1965 continue; 1966 } 1967 1968 // Visit all sub-expressions. 1969 for (const Use &U : C->operands()) { 1970 const auto *OpC = dyn_cast<Constant>(U); 1971 if (!OpC) 1972 continue; 1973 if (!ConstantExprVisited.insert(OpC).second) 1974 continue; 1975 Stack.push_back(OpC); 1976 } 1977 } 1978 } 1979 1980 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 1981 if (CE->getOpcode() == Instruction::BitCast) 1982 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 1983 CE->getType()), 1984 "Invalid bitcast", CE); 1985 1986 if (CE->getOpcode() == Instruction::IntToPtr || 1987 CE->getOpcode() == Instruction::PtrToInt) { 1988 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 1989 ? CE->getType() 1990 : CE->getOperand(0)->getType(); 1991 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 1992 ? "inttoptr not supported for non-integral pointers" 1993 : "ptrtoint not supported for non-integral pointers"; 1994 Assert( 1995 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 1996 Msg); 1997 } 1998 } 1999 2000 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 2001 // There shouldn't be more attribute sets than there are parameters plus the 2002 // function and return value. 2003 return Attrs.getNumAttrSets() <= Params + 2; 2004 } 2005 2006 /// Verify that statepoint intrinsic is well formed. 2007 void Verifier::verifyStatepoint(const CallBase &Call) { 2008 assert(Call.getCalledFunction() && 2009 Call.getCalledFunction()->getIntrinsicID() == 2010 Intrinsic::experimental_gc_statepoint); 2011 2012 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 2013 !Call.onlyAccessesArgMemory(), 2014 "gc.statepoint must read and write all memory to preserve " 2015 "reordering restrictions required by safepoint semantics", 2016 Call); 2017 2018 const int64_t NumPatchBytes = 2019 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 2020 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 2021 Assert(NumPatchBytes >= 0, 2022 "gc.statepoint number of patchable bytes must be " 2023 "positive", 2024 Call); 2025 2026 const Value *Target = Call.getArgOperand(2); 2027 auto *PT = dyn_cast<PointerType>(Target->getType()); 2028 Assert(PT && PT->getElementType()->isFunctionTy(), 2029 "gc.statepoint callee must be of function pointer type", Call, Target); 2030 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 2031 2032 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 2033 Assert(NumCallArgs >= 0, 2034 "gc.statepoint number of arguments to underlying call " 2035 "must be positive", 2036 Call); 2037 const int NumParams = (int)TargetFuncType->getNumParams(); 2038 if (TargetFuncType->isVarArg()) { 2039 Assert(NumCallArgs >= NumParams, 2040 "gc.statepoint mismatch in number of vararg call args", Call); 2041 2042 // TODO: Remove this limitation 2043 Assert(TargetFuncType->getReturnType()->isVoidTy(), 2044 "gc.statepoint doesn't support wrapping non-void " 2045 "vararg functions yet", 2046 Call); 2047 } else 2048 Assert(NumCallArgs == NumParams, 2049 "gc.statepoint mismatch in number of call args", Call); 2050 2051 const uint64_t Flags 2052 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 2053 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 2054 "unknown flag used in gc.statepoint flags argument", Call); 2055 2056 // Verify that the types of the call parameter arguments match 2057 // the type of the wrapped callee. 2058 AttributeList Attrs = Call.getAttributes(); 2059 for (int i = 0; i < NumParams; i++) { 2060 Type *ParamType = TargetFuncType->getParamType(i); 2061 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 2062 Assert(ArgType == ParamType, 2063 "gc.statepoint call argument does not match wrapped " 2064 "function type", 2065 Call); 2066 2067 if (TargetFuncType->isVarArg()) { 2068 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); 2069 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2070 "Attribute 'sret' cannot be used for vararg call arguments!", 2071 Call); 2072 } 2073 } 2074 2075 const int EndCallArgsInx = 4 + NumCallArgs; 2076 2077 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2078 Assert(isa<ConstantInt>(NumTransitionArgsV), 2079 "gc.statepoint number of transition arguments " 2080 "must be constant integer", 2081 Call); 2082 const int NumTransitionArgs = 2083 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2084 Assert(NumTransitionArgs >= 0, 2085 "gc.statepoint number of transition arguments must be positive", Call); 2086 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2087 2088 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2089 Assert(isa<ConstantInt>(NumDeoptArgsV), 2090 "gc.statepoint number of deoptimization arguments " 2091 "must be constant integer", 2092 Call); 2093 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2094 Assert(NumDeoptArgs >= 0, 2095 "gc.statepoint number of deoptimization arguments " 2096 "must be positive", 2097 Call); 2098 2099 const int ExpectedNumArgs = 2100 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; 2101 Assert(ExpectedNumArgs <= (int)Call.arg_size(), 2102 "gc.statepoint too few arguments according to length fields", Call); 2103 2104 // Check that the only uses of this gc.statepoint are gc.result or 2105 // gc.relocate calls which are tied to this statepoint and thus part 2106 // of the same statepoint sequence 2107 for (const User *U : Call.users()) { 2108 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2109 Assert(UserCall, "illegal use of statepoint token", Call, U); 2110 if (!UserCall) 2111 continue; 2112 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2113 "gc.result or gc.relocate are the only value uses " 2114 "of a gc.statepoint", 2115 Call, U); 2116 if (isa<GCResultInst>(UserCall)) { 2117 Assert(UserCall->getArgOperand(0) == &Call, 2118 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2119 } else if (isa<GCRelocateInst>(Call)) { 2120 Assert(UserCall->getArgOperand(0) == &Call, 2121 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2122 } 2123 } 2124 2125 // Note: It is legal for a single derived pointer to be listed multiple 2126 // times. It's non-optimal, but it is legal. It can also happen after 2127 // insertion if we strip a bitcast away. 2128 // Note: It is really tempting to check that each base is relocated and 2129 // that a derived pointer is never reused as a base pointer. This turns 2130 // out to be problematic since optimizations run after safepoint insertion 2131 // can recognize equality properties that the insertion logic doesn't know 2132 // about. See example statepoint.ll in the verifier subdirectory 2133 } 2134 2135 void Verifier::verifyFrameRecoverIndices() { 2136 for (auto &Counts : FrameEscapeInfo) { 2137 Function *F = Counts.first; 2138 unsigned EscapedObjectCount = Counts.second.first; 2139 unsigned MaxRecoveredIndex = Counts.second.second; 2140 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2141 "all indices passed to llvm.localrecover must be less than the " 2142 "number of arguments passed to llvm.localescape in the parent " 2143 "function", 2144 F); 2145 } 2146 } 2147 2148 static Instruction *getSuccPad(Instruction *Terminator) { 2149 BasicBlock *UnwindDest; 2150 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2151 UnwindDest = II->getUnwindDest(); 2152 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2153 UnwindDest = CSI->getUnwindDest(); 2154 else 2155 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2156 return UnwindDest->getFirstNonPHI(); 2157 } 2158 2159 void Verifier::verifySiblingFuncletUnwinds() { 2160 SmallPtrSet<Instruction *, 8> Visited; 2161 SmallPtrSet<Instruction *, 8> Active; 2162 for (const auto &Pair : SiblingFuncletInfo) { 2163 Instruction *PredPad = Pair.first; 2164 if (Visited.count(PredPad)) 2165 continue; 2166 Active.insert(PredPad); 2167 Instruction *Terminator = Pair.second; 2168 do { 2169 Instruction *SuccPad = getSuccPad(Terminator); 2170 if (Active.count(SuccPad)) { 2171 // Found a cycle; report error 2172 Instruction *CyclePad = SuccPad; 2173 SmallVector<Instruction *, 8> CycleNodes; 2174 do { 2175 CycleNodes.push_back(CyclePad); 2176 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2177 if (CycleTerminator != CyclePad) 2178 CycleNodes.push_back(CycleTerminator); 2179 CyclePad = getSuccPad(CycleTerminator); 2180 } while (CyclePad != SuccPad); 2181 Assert(false, "EH pads can't handle each other's exceptions", 2182 ArrayRef<Instruction *>(CycleNodes)); 2183 } 2184 // Don't re-walk a node we've already checked 2185 if (!Visited.insert(SuccPad).second) 2186 break; 2187 // Walk to this successor if it has a map entry. 2188 PredPad = SuccPad; 2189 auto TermI = SiblingFuncletInfo.find(PredPad); 2190 if (TermI == SiblingFuncletInfo.end()) 2191 break; 2192 Terminator = TermI->second; 2193 Active.insert(PredPad); 2194 } while (true); 2195 // Each node only has one successor, so we've walked all the active 2196 // nodes' successors. 2197 Active.clear(); 2198 } 2199 } 2200 2201 // visitFunction - Verify that a function is ok. 2202 // 2203 void Verifier::visitFunction(const Function &F) { 2204 visitGlobalValue(F); 2205 2206 // Check function arguments. 2207 FunctionType *FT = F.getFunctionType(); 2208 unsigned NumArgs = F.arg_size(); 2209 2210 Assert(&Context == &F.getContext(), 2211 "Function context does not match Module context!", &F); 2212 2213 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2214 Assert(FT->getNumParams() == NumArgs, 2215 "# formal arguments must match # of arguments for function type!", &F, 2216 FT); 2217 Assert(F.getReturnType()->isFirstClassType() || 2218 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2219 "Functions cannot return aggregate values!", &F); 2220 2221 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2222 "Invalid struct return type!", &F); 2223 2224 AttributeList Attrs = F.getAttributes(); 2225 2226 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2227 "Attribute after last parameter!", &F); 2228 2229 bool isLLVMdotName = F.getName().size() >= 5 && 2230 F.getName().substr(0, 5) == "llvm."; 2231 2232 // Check function attributes. 2233 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName); 2234 2235 // On function declarations/definitions, we do not support the builtin 2236 // attribute. We do not check this in VerifyFunctionAttrs since that is 2237 // checking for Attributes that can/can not ever be on functions. 2238 Assert(!Attrs.hasFnAttribute(Attribute::Builtin), 2239 "Attribute 'builtin' can only be applied to a callsite.", &F); 2240 2241 // Check that this function meets the restrictions on this calling convention. 2242 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2243 // restrictions can be lifted. 2244 switch (F.getCallingConv()) { 2245 default: 2246 case CallingConv::C: 2247 break; 2248 case CallingConv::AMDGPU_KERNEL: 2249 case CallingConv::SPIR_KERNEL: 2250 Assert(F.getReturnType()->isVoidTy(), 2251 "Calling convention requires void return type", &F); 2252 LLVM_FALLTHROUGH; 2253 case CallingConv::AMDGPU_VS: 2254 case CallingConv::AMDGPU_HS: 2255 case CallingConv::AMDGPU_GS: 2256 case CallingConv::AMDGPU_PS: 2257 case CallingConv::AMDGPU_CS: 2258 Assert(!F.hasStructRetAttr(), 2259 "Calling convention does not allow sret", &F); 2260 LLVM_FALLTHROUGH; 2261 case CallingConv::Fast: 2262 case CallingConv::Cold: 2263 case CallingConv::Intel_OCL_BI: 2264 case CallingConv::PTX_Kernel: 2265 case CallingConv::PTX_Device: 2266 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2267 "perfect forwarding!", 2268 &F); 2269 break; 2270 } 2271 2272 // Check that the argument values match the function type for this function... 2273 unsigned i = 0; 2274 for (const Argument &Arg : F.args()) { 2275 Assert(Arg.getType() == FT->getParamType(i), 2276 "Argument value does not match function argument type!", &Arg, 2277 FT->getParamType(i)); 2278 Assert(Arg.getType()->isFirstClassType(), 2279 "Function arguments must have first-class types!", &Arg); 2280 if (!isLLVMdotName) { 2281 Assert(!Arg.getType()->isMetadataTy(), 2282 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2283 Assert(!Arg.getType()->isTokenTy(), 2284 "Function takes token but isn't an intrinsic", &Arg, &F); 2285 } 2286 2287 // Check that swifterror argument is only used by loads and stores. 2288 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { 2289 verifySwiftErrorValue(&Arg); 2290 } 2291 ++i; 2292 } 2293 2294 if (!isLLVMdotName) 2295 Assert(!F.getReturnType()->isTokenTy(), 2296 "Functions returns a token but isn't an intrinsic", &F); 2297 2298 // Get the function metadata attachments. 2299 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2300 F.getAllMetadata(MDs); 2301 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2302 verifyFunctionMetadata(MDs); 2303 2304 // Check validity of the personality function 2305 if (F.hasPersonalityFn()) { 2306 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2307 if (Per) 2308 Assert(Per->getParent() == F.getParent(), 2309 "Referencing personality function in another module!", 2310 &F, F.getParent(), Per, Per->getParent()); 2311 } 2312 2313 if (F.isMaterializable()) { 2314 // Function has a body somewhere we can't see. 2315 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2316 MDs.empty() ? nullptr : MDs.front().second); 2317 } else if (F.isDeclaration()) { 2318 for (const auto &I : MDs) { 2319 // This is used for call site debug information. 2320 AssertDI(I.first != LLVMContext::MD_dbg || 2321 !cast<DISubprogram>(I.second)->isDistinct(), 2322 "function declaration may only have a unique !dbg attachment", 2323 &F); 2324 Assert(I.first != LLVMContext::MD_prof, 2325 "function declaration may not have a !prof attachment", &F); 2326 2327 // Verify the metadata itself. 2328 visitMDNode(*I.second, AreDebugLocsAllowed::Yes); 2329 } 2330 Assert(!F.hasPersonalityFn(), 2331 "Function declaration shouldn't have a personality routine", &F); 2332 } else { 2333 // Verify that this function (which has a body) is not named "llvm.*". It 2334 // is not legal to define intrinsics. 2335 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 2336 2337 // Check the entry node 2338 const BasicBlock *Entry = &F.getEntryBlock(); 2339 Assert(pred_empty(Entry), 2340 "Entry block to function must not have predecessors!", Entry); 2341 2342 // The address of the entry block cannot be taken, unless it is dead. 2343 if (Entry->hasAddressTaken()) { 2344 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2345 "blockaddress may not be used with the entry block!", Entry); 2346 } 2347 2348 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2349 // Visit metadata attachments. 2350 for (const auto &I : MDs) { 2351 // Verify that the attachment is legal. 2352 auto AllowLocs = AreDebugLocsAllowed::No; 2353 switch (I.first) { 2354 default: 2355 break; 2356 case LLVMContext::MD_dbg: { 2357 ++NumDebugAttachments; 2358 AssertDI(NumDebugAttachments == 1, 2359 "function must have a single !dbg attachment", &F, I.second); 2360 AssertDI(isa<DISubprogram>(I.second), 2361 "function !dbg attachment must be a subprogram", &F, I.second); 2362 auto *SP = cast<DISubprogram>(I.second); 2363 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2364 AssertDI(!AttachedTo || AttachedTo == &F, 2365 "DISubprogram attached to more than one function", SP, &F); 2366 AttachedTo = &F; 2367 AllowLocs = AreDebugLocsAllowed::Yes; 2368 break; 2369 } 2370 case LLVMContext::MD_prof: 2371 ++NumProfAttachments; 2372 Assert(NumProfAttachments == 1, 2373 "function must have a single !prof attachment", &F, I.second); 2374 break; 2375 } 2376 2377 // Verify the metadata itself. 2378 visitMDNode(*I.second, AllowLocs); 2379 } 2380 } 2381 2382 // If this function is actually an intrinsic, verify that it is only used in 2383 // direct call/invokes, never having its "address taken". 2384 // Only do this if the module is materialized, otherwise we don't have all the 2385 // uses. 2386 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2387 const User *U; 2388 if (F.hasAddressTaken(&U)) 2389 Assert(false, "Invalid user of intrinsic instruction!", U); 2390 } 2391 2392 auto *N = F.getSubprogram(); 2393 HasDebugInfo = (N != nullptr); 2394 if (!HasDebugInfo) 2395 return; 2396 2397 // Check that all !dbg attachments lead to back to N. 2398 // 2399 // FIXME: Check this incrementally while visiting !dbg attachments. 2400 // FIXME: Only check when N is the canonical subprogram for F. 2401 SmallPtrSet<const MDNode *, 32> Seen; 2402 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2403 // Be careful about using DILocation here since we might be dealing with 2404 // broken code (this is the Verifier after all). 2405 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2406 if (!DL) 2407 return; 2408 if (!Seen.insert(DL).second) 2409 return; 2410 2411 Metadata *Parent = DL->getRawScope(); 2412 AssertDI(Parent && isa<DILocalScope>(Parent), 2413 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2414 Parent); 2415 2416 DILocalScope *Scope = DL->getInlinedAtScope(); 2417 Assert(Scope, "Failed to find DILocalScope", DL); 2418 2419 if (!Seen.insert(Scope).second) 2420 return; 2421 2422 DISubprogram *SP = Scope->getSubprogram(); 2423 2424 // Scope and SP could be the same MDNode and we don't want to skip 2425 // validation in that case 2426 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2427 return; 2428 2429 AssertDI(SP->describes(&F), 2430 "!dbg attachment points at wrong subprogram for function", N, &F, 2431 &I, DL, Scope, SP); 2432 }; 2433 for (auto &BB : F) 2434 for (auto &I : BB) { 2435 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2436 // The llvm.loop annotations also contain two DILocations. 2437 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2438 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2439 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2440 if (BrokenDebugInfo) 2441 return; 2442 } 2443 } 2444 2445 // verifyBasicBlock - Verify that a basic block is well formed... 2446 // 2447 void Verifier::visitBasicBlock(BasicBlock &BB) { 2448 InstsInThisBlock.clear(); 2449 2450 // Ensure that basic blocks have terminators! 2451 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2452 2453 // Check constraints that this basic block imposes on all of the PHI nodes in 2454 // it. 2455 if (isa<PHINode>(BB.front())) { 2456 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 2457 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2458 llvm::sort(Preds); 2459 for (const PHINode &PN : BB.phis()) { 2460 // Ensure that PHI nodes have at least one entry! 2461 Assert(PN.getNumIncomingValues() != 0, 2462 "PHI nodes must have at least one entry. If the block is dead, " 2463 "the PHI should be removed!", 2464 &PN); 2465 Assert(PN.getNumIncomingValues() == Preds.size(), 2466 "PHINode should have one entry for each predecessor of its " 2467 "parent basic block!", 2468 &PN); 2469 2470 // Get and sort all incoming values in the PHI node... 2471 Values.clear(); 2472 Values.reserve(PN.getNumIncomingValues()); 2473 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2474 Values.push_back( 2475 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2476 llvm::sort(Values); 2477 2478 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2479 // Check to make sure that if there is more than one entry for a 2480 // particular basic block in this PHI node, that the incoming values are 2481 // all identical. 2482 // 2483 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2484 Values[i].second == Values[i - 1].second, 2485 "PHI node has multiple entries for the same basic block with " 2486 "different incoming values!", 2487 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2488 2489 // Check to make sure that the predecessors and PHI node entries are 2490 // matched up. 2491 Assert(Values[i].first == Preds[i], 2492 "PHI node entries do not match predecessors!", &PN, 2493 Values[i].first, Preds[i]); 2494 } 2495 } 2496 } 2497 2498 // Check that all instructions have their parent pointers set up correctly. 2499 for (auto &I : BB) 2500 { 2501 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2502 } 2503 } 2504 2505 void Verifier::visitTerminator(Instruction &I) { 2506 // Ensure that terminators only exist at the end of the basic block. 2507 Assert(&I == I.getParent()->getTerminator(), 2508 "Terminator found in the middle of a basic block!", I.getParent()); 2509 visitInstruction(I); 2510 } 2511 2512 void Verifier::visitBranchInst(BranchInst &BI) { 2513 if (BI.isConditional()) { 2514 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2515 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2516 } 2517 visitTerminator(BI); 2518 } 2519 2520 void Verifier::visitReturnInst(ReturnInst &RI) { 2521 Function *F = RI.getParent()->getParent(); 2522 unsigned N = RI.getNumOperands(); 2523 if (F->getReturnType()->isVoidTy()) 2524 Assert(N == 0, 2525 "Found return instr that returns non-void in Function of void " 2526 "return type!", 2527 &RI, F->getReturnType()); 2528 else 2529 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2530 "Function return type does not match operand " 2531 "type of return inst!", 2532 &RI, F->getReturnType()); 2533 2534 // Check to make sure that the return value has necessary properties for 2535 // terminators... 2536 visitTerminator(RI); 2537 } 2538 2539 void Verifier::visitSwitchInst(SwitchInst &SI) { 2540 // Check to make sure that all of the constants in the switch instruction 2541 // have the same type as the switched-on value. 2542 Type *SwitchTy = SI.getCondition()->getType(); 2543 SmallPtrSet<ConstantInt*, 32> Constants; 2544 for (auto &Case : SI.cases()) { 2545 Assert(Case.getCaseValue()->getType() == SwitchTy, 2546 "Switch constants must all be same type as switch value!", &SI); 2547 Assert(Constants.insert(Case.getCaseValue()).second, 2548 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2549 } 2550 2551 visitTerminator(SI); 2552 } 2553 2554 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2555 Assert(BI.getAddress()->getType()->isPointerTy(), 2556 "Indirectbr operand must have pointer type!", &BI); 2557 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2558 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2559 "Indirectbr destinations must all have pointer type!", &BI); 2560 2561 visitTerminator(BI); 2562 } 2563 2564 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2565 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2566 &CBI); 2567 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2568 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2569 "Callbr successors must all have pointer type!", &CBI); 2570 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2571 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), 2572 "Using an unescaped label as a callbr argument!", &CBI); 2573 if (isa<BasicBlock>(CBI.getOperand(i))) 2574 for (unsigned j = i + 1; j != e; ++j) 2575 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2576 "Duplicate callbr destination!", &CBI); 2577 } 2578 { 2579 SmallPtrSet<BasicBlock *, 4> ArgBBs; 2580 for (Value *V : CBI.args()) 2581 if (auto *BA = dyn_cast<BlockAddress>(V)) 2582 ArgBBs.insert(BA->getBasicBlock()); 2583 for (BasicBlock *BB : CBI.getIndirectDests()) 2584 Assert(ArgBBs.find(BB) != ArgBBs.end(), 2585 "Indirect label missing from arglist.", &CBI); 2586 } 2587 2588 visitTerminator(CBI); 2589 } 2590 2591 void Verifier::visitSelectInst(SelectInst &SI) { 2592 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2593 SI.getOperand(2)), 2594 "Invalid operands for select instruction!", &SI); 2595 2596 Assert(SI.getTrueValue()->getType() == SI.getType(), 2597 "Select values must have same type as select instruction!", &SI); 2598 visitInstruction(SI); 2599 } 2600 2601 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2602 /// a pass, if any exist, it's an error. 2603 /// 2604 void Verifier::visitUserOp1(Instruction &I) { 2605 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2606 } 2607 2608 void Verifier::visitTruncInst(TruncInst &I) { 2609 // Get the source and destination types 2610 Type *SrcTy = I.getOperand(0)->getType(); 2611 Type *DestTy = I.getType(); 2612 2613 // Get the size of the types in bits, we'll need this later 2614 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2615 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2616 2617 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2618 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2619 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2620 "trunc source and destination must both be a vector or neither", &I); 2621 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2622 2623 visitInstruction(I); 2624 } 2625 2626 void Verifier::visitZExtInst(ZExtInst &I) { 2627 // Get the source and destination types 2628 Type *SrcTy = I.getOperand(0)->getType(); 2629 Type *DestTy = I.getType(); 2630 2631 // Get the size of the types in bits, we'll need this later 2632 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2633 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2634 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2635 "zext source and destination must both be a vector or neither", &I); 2636 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2637 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2638 2639 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2640 2641 visitInstruction(I); 2642 } 2643 2644 void Verifier::visitSExtInst(SExtInst &I) { 2645 // Get the source and destination types 2646 Type *SrcTy = I.getOperand(0)->getType(); 2647 Type *DestTy = I.getType(); 2648 2649 // Get the size of the types in bits, we'll need this later 2650 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2651 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2652 2653 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2654 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2655 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2656 "sext source and destination must both be a vector or neither", &I); 2657 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2658 2659 visitInstruction(I); 2660 } 2661 2662 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2663 // Get the source and destination types 2664 Type *SrcTy = I.getOperand(0)->getType(); 2665 Type *DestTy = I.getType(); 2666 // Get the size of the types in bits, we'll need this later 2667 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2668 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2669 2670 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2671 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2672 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2673 "fptrunc source and destination must both be a vector or neither", &I); 2674 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2675 2676 visitInstruction(I); 2677 } 2678 2679 void Verifier::visitFPExtInst(FPExtInst &I) { 2680 // Get the source and destination types 2681 Type *SrcTy = I.getOperand(0)->getType(); 2682 Type *DestTy = I.getType(); 2683 2684 // Get the size of the types in bits, we'll need this later 2685 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2686 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2687 2688 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2689 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2690 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2691 "fpext source and destination must both be a vector or neither", &I); 2692 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2693 2694 visitInstruction(I); 2695 } 2696 2697 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2698 // Get the source and destination types 2699 Type *SrcTy = I.getOperand(0)->getType(); 2700 Type *DestTy = I.getType(); 2701 2702 bool SrcVec = SrcTy->isVectorTy(); 2703 bool DstVec = DestTy->isVectorTy(); 2704 2705 Assert(SrcVec == DstVec, 2706 "UIToFP source and dest must both be vector or scalar", &I); 2707 Assert(SrcTy->isIntOrIntVectorTy(), 2708 "UIToFP source must be integer or integer vector", &I); 2709 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2710 &I); 2711 2712 if (SrcVec && DstVec) 2713 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2714 cast<VectorType>(DestTy)->getNumElements(), 2715 "UIToFP source and dest vector length mismatch", &I); 2716 2717 visitInstruction(I); 2718 } 2719 2720 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2721 // Get the source and destination types 2722 Type *SrcTy = I.getOperand(0)->getType(); 2723 Type *DestTy = I.getType(); 2724 2725 bool SrcVec = SrcTy->isVectorTy(); 2726 bool DstVec = DestTy->isVectorTy(); 2727 2728 Assert(SrcVec == DstVec, 2729 "SIToFP source and dest must both be vector or scalar", &I); 2730 Assert(SrcTy->isIntOrIntVectorTy(), 2731 "SIToFP source must be integer or integer vector", &I); 2732 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2733 &I); 2734 2735 if (SrcVec && DstVec) 2736 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2737 cast<VectorType>(DestTy)->getNumElements(), 2738 "SIToFP source and dest vector length mismatch", &I); 2739 2740 visitInstruction(I); 2741 } 2742 2743 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2744 // Get the source and destination types 2745 Type *SrcTy = I.getOperand(0)->getType(); 2746 Type *DestTy = I.getType(); 2747 2748 bool SrcVec = SrcTy->isVectorTy(); 2749 bool DstVec = DestTy->isVectorTy(); 2750 2751 Assert(SrcVec == DstVec, 2752 "FPToUI source and dest must both be vector or scalar", &I); 2753 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2754 &I); 2755 Assert(DestTy->isIntOrIntVectorTy(), 2756 "FPToUI result must be integer or integer vector", &I); 2757 2758 if (SrcVec && DstVec) 2759 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2760 cast<VectorType>(DestTy)->getNumElements(), 2761 "FPToUI source and dest vector length mismatch", &I); 2762 2763 visitInstruction(I); 2764 } 2765 2766 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2767 // Get the source and destination types 2768 Type *SrcTy = I.getOperand(0)->getType(); 2769 Type *DestTy = I.getType(); 2770 2771 bool SrcVec = SrcTy->isVectorTy(); 2772 bool DstVec = DestTy->isVectorTy(); 2773 2774 Assert(SrcVec == DstVec, 2775 "FPToSI source and dest must both be vector or scalar", &I); 2776 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2777 &I); 2778 Assert(DestTy->isIntOrIntVectorTy(), 2779 "FPToSI result must be integer or integer vector", &I); 2780 2781 if (SrcVec && DstVec) 2782 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2783 cast<VectorType>(DestTy)->getNumElements(), 2784 "FPToSI source and dest vector length mismatch", &I); 2785 2786 visitInstruction(I); 2787 } 2788 2789 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2790 // Get the source and destination types 2791 Type *SrcTy = I.getOperand(0)->getType(); 2792 Type *DestTy = I.getType(); 2793 2794 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2795 2796 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 2797 Assert(!DL.isNonIntegralPointerType(PTy), 2798 "ptrtoint not supported for non-integral pointers"); 2799 2800 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 2801 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2802 &I); 2803 2804 if (SrcTy->isVectorTy()) { 2805 VectorType *VSrc = cast<VectorType>(SrcTy); 2806 VectorType *VDest = cast<VectorType>(DestTy); 2807 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2808 "PtrToInt Vector width mismatch", &I); 2809 } 2810 2811 visitInstruction(I); 2812 } 2813 2814 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2815 // Get the source and destination types 2816 Type *SrcTy = I.getOperand(0)->getType(); 2817 Type *DestTy = I.getType(); 2818 2819 Assert(SrcTy->isIntOrIntVectorTy(), 2820 "IntToPtr source must be an integral", &I); 2821 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 2822 2823 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 2824 Assert(!DL.isNonIntegralPointerType(PTy), 2825 "inttoptr not supported for non-integral pointers"); 2826 2827 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2828 &I); 2829 if (SrcTy->isVectorTy()) { 2830 VectorType *VSrc = cast<VectorType>(SrcTy); 2831 VectorType *VDest = cast<VectorType>(DestTy); 2832 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2833 "IntToPtr Vector width mismatch", &I); 2834 } 2835 visitInstruction(I); 2836 } 2837 2838 void Verifier::visitBitCastInst(BitCastInst &I) { 2839 Assert( 2840 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2841 "Invalid bitcast", &I); 2842 visitInstruction(I); 2843 } 2844 2845 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2846 Type *SrcTy = I.getOperand(0)->getType(); 2847 Type *DestTy = I.getType(); 2848 2849 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2850 &I); 2851 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 2852 &I); 2853 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 2854 "AddrSpaceCast must be between different address spaces", &I); 2855 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) 2856 Assert(SrcVTy->getNumElements() == 2857 cast<VectorType>(DestTy)->getNumElements(), 2858 "AddrSpaceCast vector pointer number of elements mismatch", &I); 2859 visitInstruction(I); 2860 } 2861 2862 /// visitPHINode - Ensure that a PHI node is well formed. 2863 /// 2864 void Verifier::visitPHINode(PHINode &PN) { 2865 // Ensure that the PHI nodes are all grouped together at the top of the block. 2866 // This can be tested by checking whether the instruction before this is 2867 // either nonexistent (because this is begin()) or is a PHI node. If not, 2868 // then there is some other instruction before a PHI. 2869 Assert(&PN == &PN.getParent()->front() || 2870 isa<PHINode>(--BasicBlock::iterator(&PN)), 2871 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 2872 2873 // Check that a PHI doesn't yield a Token. 2874 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 2875 2876 // Check that all of the values of the PHI node have the same type as the 2877 // result, and that the incoming blocks are really basic blocks. 2878 for (Value *IncValue : PN.incoming_values()) { 2879 Assert(PN.getType() == IncValue->getType(), 2880 "PHI node operands are not the same type as the result!", &PN); 2881 } 2882 2883 // All other PHI node constraints are checked in the visitBasicBlock method. 2884 2885 visitInstruction(PN); 2886 } 2887 2888 void Verifier::visitCallBase(CallBase &Call) { 2889 Assert(Call.getCalledOperand()->getType()->isPointerTy(), 2890 "Called function must be a pointer!", Call); 2891 PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType()); 2892 2893 Assert(FPTy->getElementType()->isFunctionTy(), 2894 "Called function is not pointer to function type!", Call); 2895 2896 Assert(FPTy->getElementType() == Call.getFunctionType(), 2897 "Called function is not the same type as the call!", Call); 2898 2899 FunctionType *FTy = Call.getFunctionType(); 2900 2901 // Verify that the correct number of arguments are being passed 2902 if (FTy->isVarArg()) 2903 Assert(Call.arg_size() >= FTy->getNumParams(), 2904 "Called function requires more parameters than were provided!", 2905 Call); 2906 else 2907 Assert(Call.arg_size() == FTy->getNumParams(), 2908 "Incorrect number of arguments passed to called function!", Call); 2909 2910 // Verify that all arguments to the call match the function type. 2911 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2912 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 2913 "Call parameter type does not match function signature!", 2914 Call.getArgOperand(i), FTy->getParamType(i), Call); 2915 2916 AttributeList Attrs = Call.getAttributes(); 2917 2918 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 2919 "Attribute after last parameter!", Call); 2920 2921 bool IsIntrinsic = Call.getCalledFunction() && 2922 Call.getCalledFunction()->getName().startswith("llvm."); 2923 2924 Function *Callee = 2925 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 2926 2927 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) { 2928 // Don't allow speculatable on call sites, unless the underlying function 2929 // declaration is also speculatable. 2930 Assert(Callee && Callee->isSpeculatable(), 2931 "speculatable attribute may not apply to call sites", Call); 2932 } 2933 2934 if (Attrs.hasAttribute(AttributeList::FunctionIndex, 2935 Attribute::Preallocated)) { 2936 Assert(Call.getCalledFunction()->getIntrinsicID() == 2937 Intrinsic::call_preallocated_arg, 2938 "preallocated as a call site attribute can only be on " 2939 "llvm.call.preallocated.arg"); 2940 } 2941 2942 // Verify call attributes. 2943 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 2944 2945 // Conservatively check the inalloca argument. 2946 // We have a bug if we can find that there is an underlying alloca without 2947 // inalloca. 2948 if (Call.hasInAllocaArgument()) { 2949 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 2950 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 2951 Assert(AI->isUsedWithInAlloca(), 2952 "inalloca argument for call has mismatched alloca", AI, Call); 2953 } 2954 2955 // For each argument of the callsite, if it has the swifterror argument, 2956 // make sure the underlying alloca/parameter it comes from has a swifterror as 2957 // well. 2958 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2959 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 2960 Value *SwiftErrorArg = Call.getArgOperand(i); 2961 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 2962 Assert(AI->isSwiftError(), 2963 "swifterror argument for call has mismatched alloca", AI, Call); 2964 continue; 2965 } 2966 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 2967 Assert(ArgI, 2968 "swifterror argument should come from an alloca or parameter", 2969 SwiftErrorArg, Call); 2970 Assert(ArgI->hasSwiftErrorAttr(), 2971 "swifterror argument for call has mismatched parameter", ArgI, 2972 Call); 2973 } 2974 2975 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) { 2976 // Don't allow immarg on call sites, unless the underlying declaration 2977 // also has the matching immarg. 2978 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 2979 "immarg may not apply only to call sites", 2980 Call.getArgOperand(i), Call); 2981 } 2982 2983 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 2984 Value *ArgVal = Call.getArgOperand(i); 2985 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 2986 "immarg operand has non-immediate parameter", ArgVal, Call); 2987 } 2988 2989 if (Call.paramHasAttr(i, Attribute::Preallocated)) { 2990 Value *ArgVal = Call.getArgOperand(i); 2991 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0, 2992 "preallocated operand requires a preallocated bundle", ArgVal, 2993 Call); 2994 } 2995 } 2996 2997 if (FTy->isVarArg()) { 2998 // FIXME? is 'nest' even legal here? 2999 bool SawNest = false; 3000 bool SawReturned = false; 3001 3002 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 3003 if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) 3004 SawNest = true; 3005 if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) 3006 SawReturned = true; 3007 } 3008 3009 // Check attributes on the varargs part. 3010 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 3011 Type *Ty = Call.getArgOperand(Idx)->getType(); 3012 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); 3013 verifyParameterAttrs(ArgAttrs, Ty, &Call); 3014 3015 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 3016 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 3017 SawNest = true; 3018 } 3019 3020 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 3021 Assert(!SawReturned, "More than one parameter has attribute returned!", 3022 Call); 3023 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 3024 "Incompatible argument and return types for 'returned' " 3025 "attribute", 3026 Call); 3027 SawReturned = true; 3028 } 3029 3030 // Statepoint intrinsic is vararg but the wrapped function may be not. 3031 // Allow sret here and check the wrapped function in verifyStatepoint. 3032 if (!Call.getCalledFunction() || 3033 Call.getCalledFunction()->getIntrinsicID() != 3034 Intrinsic::experimental_gc_statepoint) 3035 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 3036 "Attribute 'sret' cannot be used for vararg call arguments!", 3037 Call); 3038 3039 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 3040 Assert(Idx == Call.arg_size() - 1, 3041 "inalloca isn't on the last argument!", Call); 3042 } 3043 } 3044 3045 // Verify that there's no metadata unless it's a direct call to an intrinsic. 3046 if (!IsIntrinsic) { 3047 for (Type *ParamTy : FTy->params()) { 3048 Assert(!ParamTy->isMetadataTy(), 3049 "Function has metadata parameter but isn't an intrinsic", Call); 3050 Assert(!ParamTy->isTokenTy(), 3051 "Function has token parameter but isn't an intrinsic", Call); 3052 } 3053 } 3054 3055 // Verify that indirect calls don't return tokens. 3056 if (!Call.getCalledFunction()) 3057 Assert(!FTy->getReturnType()->isTokenTy(), 3058 "Return type cannot be token for indirect call!"); 3059 3060 if (Function *F = Call.getCalledFunction()) 3061 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 3062 visitIntrinsicCall(ID, Call); 3063 3064 // Verify that a callsite has at most one "deopt", at most one "funclet", at 3065 // most one "gc-transition", at most one "cfguardtarget", 3066 // and at most one "preallocated" operand bundle. 3067 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3068 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, 3069 FoundPreallocatedBundle = false; 3070 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 3071 OperandBundleUse BU = Call.getOperandBundleAt(i); 3072 uint32_t Tag = BU.getTagID(); 3073 if (Tag == LLVMContext::OB_deopt) { 3074 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 3075 FoundDeoptBundle = true; 3076 } else if (Tag == LLVMContext::OB_gc_transition) { 3077 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 3078 Call); 3079 FoundGCTransitionBundle = true; 3080 } else if (Tag == LLVMContext::OB_funclet) { 3081 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 3082 FoundFuncletBundle = true; 3083 Assert(BU.Inputs.size() == 1, 3084 "Expected exactly one funclet bundle operand", Call); 3085 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 3086 "Funclet bundle operands should correspond to a FuncletPadInst", 3087 Call); 3088 } else if (Tag == LLVMContext::OB_cfguardtarget) { 3089 Assert(!FoundCFGuardTargetBundle, 3090 "Multiple CFGuardTarget operand bundles", Call); 3091 FoundCFGuardTargetBundle = true; 3092 Assert(BU.Inputs.size() == 1, 3093 "Expected exactly one cfguardtarget bundle operand", Call); 3094 } else if (Tag == LLVMContext::OB_preallocated) { 3095 Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles", 3096 Call); 3097 FoundPreallocatedBundle = true; 3098 Assert(BU.Inputs.size() == 1, 3099 "Expected exactly one preallocated bundle operand", Call); 3100 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); 3101 Assert(Input && 3102 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup, 3103 "\"preallocated\" argument must be a token from " 3104 "llvm.call.preallocated.setup", 3105 Call); 3106 } 3107 } 3108 3109 // Verify that each inlinable callsite of a debug-info-bearing function in a 3110 // debug-info-bearing function has a debug location attached to it. Failure to 3111 // do so causes assertion failures when the inliner sets up inline scope info. 3112 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3113 Call.getCalledFunction()->getSubprogram()) 3114 AssertDI(Call.getDebugLoc(), 3115 "inlinable function call in a function with " 3116 "debug info must have a !dbg location", 3117 Call); 3118 3119 visitInstruction(Call); 3120 } 3121 3122 /// Two types are "congruent" if they are identical, or if they are both pointer 3123 /// types with different pointee types and the same address space. 3124 static bool isTypeCongruent(Type *L, Type *R) { 3125 if (L == R) 3126 return true; 3127 PointerType *PL = dyn_cast<PointerType>(L); 3128 PointerType *PR = dyn_cast<PointerType>(R); 3129 if (!PL || !PR) 3130 return false; 3131 return PL->getAddressSpace() == PR->getAddressSpace(); 3132 } 3133 3134 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 3135 static const Attribute::AttrKind ABIAttrs[] = { 3136 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3137 Attribute::InReg, Attribute::SwiftSelf, Attribute::SwiftError, 3138 Attribute::Preallocated}; 3139 AttrBuilder Copy; 3140 for (auto AK : ABIAttrs) { 3141 if (Attrs.hasParamAttribute(I, AK)) 3142 Copy.addAttribute(AK); 3143 } 3144 // `align` is ABI-affecting only in combination with `byval`. 3145 if (Attrs.hasParamAttribute(I, Attribute::Alignment) && 3146 Attrs.hasParamAttribute(I, Attribute::ByVal)) 3147 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3148 return Copy; 3149 } 3150 3151 void Verifier::verifyMustTailCall(CallInst &CI) { 3152 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3153 // FIXME: support musttail + preallocated 3154 Assert(!CI.countOperandBundlesOfType(LLVMContext::OB_preallocated), 3155 "musttail and preallocated not yet supported", &CI); 3156 3157 // - The caller and callee prototypes must match. Pointer types of 3158 // parameters or return types may differ in pointee type, but not 3159 // address space. 3160 Function *F = CI.getParent()->getParent(); 3161 FunctionType *CallerTy = F->getFunctionType(); 3162 FunctionType *CalleeTy = CI.getFunctionType(); 3163 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3164 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3165 "cannot guarantee tail call due to mismatched parameter counts", 3166 &CI); 3167 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3168 Assert( 3169 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3170 "cannot guarantee tail call due to mismatched parameter types", &CI); 3171 } 3172 } 3173 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3174 "cannot guarantee tail call due to mismatched varargs", &CI); 3175 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3176 "cannot guarantee tail call due to mismatched return types", &CI); 3177 3178 // - The calling conventions of the caller and callee must match. 3179 Assert(F->getCallingConv() == CI.getCallingConv(), 3180 "cannot guarantee tail call due to mismatched calling conv", &CI); 3181 3182 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3183 // returned, preallocated, and inalloca, must match. 3184 AttributeList CallerAttrs = F->getAttributes(); 3185 AttributeList CalleeAttrs = CI.getAttributes(); 3186 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3187 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3188 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3189 Assert(CallerABIAttrs == CalleeABIAttrs, 3190 "cannot guarantee tail call due to mismatched ABI impacting " 3191 "function attributes", 3192 &CI, CI.getOperand(I)); 3193 } 3194 3195 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3196 // or a pointer bitcast followed by a ret instruction. 3197 // - The ret instruction must return the (possibly bitcasted) value 3198 // produced by the call or void. 3199 Value *RetVal = &CI; 3200 Instruction *Next = CI.getNextNode(); 3201 3202 // Handle the optional bitcast. 3203 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3204 Assert(BI->getOperand(0) == RetVal, 3205 "bitcast following musttail call must use the call", BI); 3206 RetVal = BI; 3207 Next = BI->getNextNode(); 3208 } 3209 3210 // Check the return. 3211 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3212 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3213 &CI); 3214 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 3215 "musttail call result must be returned", Ret); 3216 } 3217 3218 void Verifier::visitCallInst(CallInst &CI) { 3219 visitCallBase(CI); 3220 3221 if (CI.isMustTailCall()) 3222 verifyMustTailCall(CI); 3223 } 3224 3225 void Verifier::visitInvokeInst(InvokeInst &II) { 3226 visitCallBase(II); 3227 3228 // Verify that the first non-PHI instruction of the unwind destination is an 3229 // exception handling instruction. 3230 Assert( 3231 II.getUnwindDest()->isEHPad(), 3232 "The unwind destination does not have an exception handling instruction!", 3233 &II); 3234 3235 visitTerminator(II); 3236 } 3237 3238 /// visitUnaryOperator - Check the argument to the unary operator. 3239 /// 3240 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3241 Assert(U.getType() == U.getOperand(0)->getType(), 3242 "Unary operators must have same type for" 3243 "operands and result!", 3244 &U); 3245 3246 switch (U.getOpcode()) { 3247 // Check that floating-point arithmetic operators are only used with 3248 // floating-point operands. 3249 case Instruction::FNeg: 3250 Assert(U.getType()->isFPOrFPVectorTy(), 3251 "FNeg operator only works with float types!", &U); 3252 break; 3253 default: 3254 llvm_unreachable("Unknown UnaryOperator opcode!"); 3255 } 3256 3257 visitInstruction(U); 3258 } 3259 3260 /// visitBinaryOperator - Check that both arguments to the binary operator are 3261 /// of the same type! 3262 /// 3263 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3264 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3265 "Both operands to a binary operator are not of the same type!", &B); 3266 3267 switch (B.getOpcode()) { 3268 // Check that integer arithmetic operators are only used with 3269 // integral operands. 3270 case Instruction::Add: 3271 case Instruction::Sub: 3272 case Instruction::Mul: 3273 case Instruction::SDiv: 3274 case Instruction::UDiv: 3275 case Instruction::SRem: 3276 case Instruction::URem: 3277 Assert(B.getType()->isIntOrIntVectorTy(), 3278 "Integer arithmetic operators only work with integral types!", &B); 3279 Assert(B.getType() == B.getOperand(0)->getType(), 3280 "Integer arithmetic operators must have same type " 3281 "for operands and result!", 3282 &B); 3283 break; 3284 // Check that floating-point arithmetic operators are only used with 3285 // floating-point operands. 3286 case Instruction::FAdd: 3287 case Instruction::FSub: 3288 case Instruction::FMul: 3289 case Instruction::FDiv: 3290 case Instruction::FRem: 3291 Assert(B.getType()->isFPOrFPVectorTy(), 3292 "Floating-point arithmetic operators only work with " 3293 "floating-point types!", 3294 &B); 3295 Assert(B.getType() == B.getOperand(0)->getType(), 3296 "Floating-point arithmetic operators must have same type " 3297 "for operands and result!", 3298 &B); 3299 break; 3300 // Check that logical operators are only used with integral operands. 3301 case Instruction::And: 3302 case Instruction::Or: 3303 case Instruction::Xor: 3304 Assert(B.getType()->isIntOrIntVectorTy(), 3305 "Logical operators only work with integral types!", &B); 3306 Assert(B.getType() == B.getOperand(0)->getType(), 3307 "Logical operators must have same type for operands and result!", 3308 &B); 3309 break; 3310 case Instruction::Shl: 3311 case Instruction::LShr: 3312 case Instruction::AShr: 3313 Assert(B.getType()->isIntOrIntVectorTy(), 3314 "Shifts only work with integral types!", &B); 3315 Assert(B.getType() == B.getOperand(0)->getType(), 3316 "Shift return type must be same as operands!", &B); 3317 break; 3318 default: 3319 llvm_unreachable("Unknown BinaryOperator opcode!"); 3320 } 3321 3322 visitInstruction(B); 3323 } 3324 3325 void Verifier::visitICmpInst(ICmpInst &IC) { 3326 // Check that the operands are the same type 3327 Type *Op0Ty = IC.getOperand(0)->getType(); 3328 Type *Op1Ty = IC.getOperand(1)->getType(); 3329 Assert(Op0Ty == Op1Ty, 3330 "Both operands to ICmp instruction are not of the same type!", &IC); 3331 // Check that the operands are the right type 3332 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3333 "Invalid operand types for ICmp instruction", &IC); 3334 // Check that the predicate is valid. 3335 Assert(IC.isIntPredicate(), 3336 "Invalid predicate in ICmp instruction!", &IC); 3337 3338 visitInstruction(IC); 3339 } 3340 3341 void Verifier::visitFCmpInst(FCmpInst &FC) { 3342 // Check that the operands are the same type 3343 Type *Op0Ty = FC.getOperand(0)->getType(); 3344 Type *Op1Ty = FC.getOperand(1)->getType(); 3345 Assert(Op0Ty == Op1Ty, 3346 "Both operands to FCmp instruction are not of the same type!", &FC); 3347 // Check that the operands are the right type 3348 Assert(Op0Ty->isFPOrFPVectorTy(), 3349 "Invalid operand types for FCmp instruction", &FC); 3350 // Check that the predicate is valid. 3351 Assert(FC.isFPPredicate(), 3352 "Invalid predicate in FCmp instruction!", &FC); 3353 3354 visitInstruction(FC); 3355 } 3356 3357 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3358 Assert( 3359 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3360 "Invalid extractelement operands!", &EI); 3361 visitInstruction(EI); 3362 } 3363 3364 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3365 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3366 IE.getOperand(2)), 3367 "Invalid insertelement operands!", &IE); 3368 visitInstruction(IE); 3369 } 3370 3371 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3372 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3373 SV.getShuffleMask()), 3374 "Invalid shufflevector operands!", &SV); 3375 visitInstruction(SV); 3376 } 3377 3378 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3379 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3380 3381 Assert(isa<PointerType>(TargetTy), 3382 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3383 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3384 3385 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 3386 Assert(all_of( 3387 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3388 "GEP indexes must be integers", &GEP); 3389 Type *ElTy = 3390 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3391 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3392 3393 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3394 GEP.getResultElementType() == ElTy, 3395 "GEP is not of right type for indices!", &GEP, ElTy); 3396 3397 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { 3398 // Additional checks for vector GEPs. 3399 unsigned GEPWidth = GEPVTy->getNumElements(); 3400 if (GEP.getPointerOperandType()->isVectorTy()) 3401 Assert( 3402 GEPWidth == 3403 cast<VectorType>(GEP.getPointerOperandType())->getNumElements(), 3404 "Vector GEP result width doesn't match operand's", &GEP); 3405 for (Value *Idx : Idxs) { 3406 Type *IndexTy = Idx->getType(); 3407 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { 3408 unsigned IndexWidth = IndexVTy->getNumElements(); 3409 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3410 } 3411 Assert(IndexTy->isIntOrIntVectorTy(), 3412 "All GEP indices should be of integer type"); 3413 } 3414 } 3415 3416 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3417 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3418 "GEP address space doesn't match type", &GEP); 3419 } 3420 3421 visitInstruction(GEP); 3422 } 3423 3424 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3425 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3426 } 3427 3428 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3429 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3430 "precondition violation"); 3431 3432 unsigned NumOperands = Range->getNumOperands(); 3433 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3434 unsigned NumRanges = NumOperands / 2; 3435 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3436 3437 ConstantRange LastRange(1, true); // Dummy initial value 3438 for (unsigned i = 0; i < NumRanges; ++i) { 3439 ConstantInt *Low = 3440 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3441 Assert(Low, "The lower limit must be an integer!", Low); 3442 ConstantInt *High = 3443 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3444 Assert(High, "The upper limit must be an integer!", High); 3445 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3446 "Range types must match instruction type!", &I); 3447 3448 APInt HighV = High->getValue(); 3449 APInt LowV = Low->getValue(); 3450 ConstantRange CurRange(LowV, HighV); 3451 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3452 "Range must not be empty!", Range); 3453 if (i != 0) { 3454 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3455 "Intervals are overlapping", Range); 3456 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3457 Range); 3458 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3459 Range); 3460 } 3461 LastRange = ConstantRange(LowV, HighV); 3462 } 3463 if (NumRanges > 2) { 3464 APInt FirstLow = 3465 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3466 APInt FirstHigh = 3467 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3468 ConstantRange FirstRange(FirstLow, FirstHigh); 3469 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3470 "Intervals are overlapping", Range); 3471 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3472 Range); 3473 } 3474 } 3475 3476 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3477 unsigned Size = DL.getTypeSizeInBits(Ty); 3478 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3479 Assert(!(Size & (Size - 1)), 3480 "atomic memory access' operand must have a power-of-two size", Ty, I); 3481 } 3482 3483 void Verifier::visitLoadInst(LoadInst &LI) { 3484 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3485 Assert(PTy, "Load operand must be a pointer.", &LI); 3486 Type *ElTy = LI.getType(); 3487 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3488 "huge alignment values are unsupported", &LI); 3489 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3490 if (LI.isAtomic()) { 3491 Assert(LI.getOrdering() != AtomicOrdering::Release && 3492 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3493 "Load cannot have Release ordering", &LI); 3494 Assert(LI.getAlignment() != 0, 3495 "Atomic load must specify explicit alignment", &LI); 3496 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3497 "atomic load operand must have integer, pointer, or floating point " 3498 "type!", 3499 ElTy, &LI); 3500 checkAtomicMemAccessSize(ElTy, &LI); 3501 } else { 3502 Assert(LI.getSyncScopeID() == SyncScope::System, 3503 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3504 } 3505 3506 visitInstruction(LI); 3507 } 3508 3509 void Verifier::visitStoreInst(StoreInst &SI) { 3510 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3511 Assert(PTy, "Store operand must be a pointer.", &SI); 3512 Type *ElTy = PTy->getElementType(); 3513 Assert(ElTy == SI.getOperand(0)->getType(), 3514 "Stored value type does not match pointer operand type!", &SI, ElTy); 3515 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3516 "huge alignment values are unsupported", &SI); 3517 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3518 if (SI.isAtomic()) { 3519 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3520 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3521 "Store cannot have Acquire ordering", &SI); 3522 Assert(SI.getAlignment() != 0, 3523 "Atomic store must specify explicit alignment", &SI); 3524 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3525 "atomic store operand must have integer, pointer, or floating point " 3526 "type!", 3527 ElTy, &SI); 3528 checkAtomicMemAccessSize(ElTy, &SI); 3529 } else { 3530 Assert(SI.getSyncScopeID() == SyncScope::System, 3531 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3532 } 3533 visitInstruction(SI); 3534 } 3535 3536 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3537 void Verifier::verifySwiftErrorCall(CallBase &Call, 3538 const Value *SwiftErrorVal) { 3539 unsigned Idx = 0; 3540 for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) { 3541 if (*I == SwiftErrorVal) { 3542 Assert(Call.paramHasAttr(Idx, Attribute::SwiftError), 3543 "swifterror value when used in a callsite should be marked " 3544 "with swifterror attribute", 3545 SwiftErrorVal, Call); 3546 } 3547 } 3548 } 3549 3550 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3551 // Check that swifterror value is only used by loads, stores, or as 3552 // a swifterror argument. 3553 for (const User *U : SwiftErrorVal->users()) { 3554 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3555 isa<InvokeInst>(U), 3556 "swifterror value can only be loaded and stored from, or " 3557 "as a swifterror argument!", 3558 SwiftErrorVal, U); 3559 // If it is used by a store, check it is the second operand. 3560 if (auto StoreI = dyn_cast<StoreInst>(U)) 3561 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3562 "swifterror value should be the second operand when used " 3563 "by stores", SwiftErrorVal, U); 3564 if (auto *Call = dyn_cast<CallBase>(U)) 3565 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3566 } 3567 } 3568 3569 void Verifier::visitAllocaInst(AllocaInst &AI) { 3570 SmallPtrSet<Type*, 4> Visited; 3571 PointerType *PTy = AI.getType(); 3572 // TODO: Relax this restriction? 3573 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), 3574 "Allocation instruction pointer not in the stack address space!", 3575 &AI); 3576 Assert(AI.getAllocatedType()->isSized(&Visited), 3577 "Cannot allocate unsized type", &AI); 3578 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3579 "Alloca array size must have integer type", &AI); 3580 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3581 "huge alignment values are unsupported", &AI); 3582 3583 if (AI.isSwiftError()) { 3584 verifySwiftErrorValue(&AI); 3585 } 3586 3587 visitInstruction(AI); 3588 } 3589 3590 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3591 3592 // FIXME: more conditions??? 3593 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 3594 "cmpxchg instructions must be atomic.", &CXI); 3595 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 3596 "cmpxchg instructions must be atomic.", &CXI); 3597 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 3598 "cmpxchg instructions cannot be unordered.", &CXI); 3599 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 3600 "cmpxchg instructions cannot be unordered.", &CXI); 3601 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 3602 "cmpxchg instructions failure argument shall be no stronger than the " 3603 "success argument", 3604 &CXI); 3605 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 3606 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 3607 "cmpxchg failure ordering cannot include release semantics", &CXI); 3608 3609 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 3610 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 3611 Type *ElTy = PTy->getElementType(); 3612 Assert(ElTy->isIntOrPtrTy(), 3613 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3614 checkAtomicMemAccessSize(ElTy, &CXI); 3615 Assert(ElTy == CXI.getOperand(1)->getType(), 3616 "Expected value type does not match pointer operand type!", &CXI, 3617 ElTy); 3618 Assert(ElTy == CXI.getOperand(2)->getType(), 3619 "Stored value type does not match pointer operand type!", &CXI, ElTy); 3620 visitInstruction(CXI); 3621 } 3622 3623 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3624 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 3625 "atomicrmw instructions must be atomic.", &RMWI); 3626 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3627 "atomicrmw instructions cannot be unordered.", &RMWI); 3628 auto Op = RMWI.getOperation(); 3629 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 3630 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 3631 Type *ElTy = PTy->getElementType(); 3632 if (Op == AtomicRMWInst::Xchg) { 3633 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3634 AtomicRMWInst::getOperationName(Op) + 3635 " operand must have integer or floating point type!", 3636 &RMWI, ElTy); 3637 } else if (AtomicRMWInst::isFPOperation(Op)) { 3638 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3639 AtomicRMWInst::getOperationName(Op) + 3640 " operand must have floating point type!", 3641 &RMWI, ElTy); 3642 } else { 3643 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3644 AtomicRMWInst::getOperationName(Op) + 3645 " operand must have integer type!", 3646 &RMWI, ElTy); 3647 } 3648 checkAtomicMemAccessSize(ElTy, &RMWI); 3649 Assert(ElTy == RMWI.getOperand(1)->getType(), 3650 "Argument value type does not match pointer operand type!", &RMWI, 3651 ElTy); 3652 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3653 "Invalid binary operation!", &RMWI); 3654 visitInstruction(RMWI); 3655 } 3656 3657 void Verifier::visitFenceInst(FenceInst &FI) { 3658 const AtomicOrdering Ordering = FI.getOrdering(); 3659 Assert(Ordering == AtomicOrdering::Acquire || 3660 Ordering == AtomicOrdering::Release || 3661 Ordering == AtomicOrdering::AcquireRelease || 3662 Ordering == AtomicOrdering::SequentiallyConsistent, 3663 "fence instructions may only have acquire, release, acq_rel, or " 3664 "seq_cst ordering.", 3665 &FI); 3666 visitInstruction(FI); 3667 } 3668 3669 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3670 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3671 EVI.getIndices()) == EVI.getType(), 3672 "Invalid ExtractValueInst operands!", &EVI); 3673 3674 visitInstruction(EVI); 3675 } 3676 3677 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3678 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3679 IVI.getIndices()) == 3680 IVI.getOperand(1)->getType(), 3681 "Invalid InsertValueInst operands!", &IVI); 3682 3683 visitInstruction(IVI); 3684 } 3685 3686 static Value *getParentPad(Value *EHPad) { 3687 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3688 return FPI->getParentPad(); 3689 3690 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3691 } 3692 3693 void Verifier::visitEHPadPredecessors(Instruction &I) { 3694 assert(I.isEHPad()); 3695 3696 BasicBlock *BB = I.getParent(); 3697 Function *F = BB->getParent(); 3698 3699 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3700 3701 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3702 // The landingpad instruction defines its parent as a landing pad block. The 3703 // landing pad block may be branched to only by the unwind edge of an 3704 // invoke. 3705 for (BasicBlock *PredBB : predecessors(BB)) { 3706 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3707 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3708 "Block containing LandingPadInst must be jumped to " 3709 "only by the unwind edge of an invoke.", 3710 LPI); 3711 } 3712 return; 3713 } 3714 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3715 if (!pred_empty(BB)) 3716 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3717 "Block containg CatchPadInst must be jumped to " 3718 "only by its catchswitch.", 3719 CPI); 3720 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3721 "Catchswitch cannot unwind to one of its catchpads", 3722 CPI->getCatchSwitch(), CPI); 3723 return; 3724 } 3725 3726 // Verify that each pred has a legal terminator with a legal to/from EH 3727 // pad relationship. 3728 Instruction *ToPad = &I; 3729 Value *ToPadParent = getParentPad(ToPad); 3730 for (BasicBlock *PredBB : predecessors(BB)) { 3731 Instruction *TI = PredBB->getTerminator(); 3732 Value *FromPad; 3733 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3734 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3735 "EH pad must be jumped to via an unwind edge", ToPad, II); 3736 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3737 FromPad = Bundle->Inputs[0]; 3738 else 3739 FromPad = ConstantTokenNone::get(II->getContext()); 3740 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3741 FromPad = CRI->getOperand(0); 3742 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3743 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3744 FromPad = CSI; 3745 } else { 3746 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3747 } 3748 3749 // The edge may exit from zero or more nested pads. 3750 SmallSet<Value *, 8> Seen; 3751 for (;; FromPad = getParentPad(FromPad)) { 3752 Assert(FromPad != ToPad, 3753 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3754 if (FromPad == ToPadParent) { 3755 // This is a legal unwind edge. 3756 break; 3757 } 3758 Assert(!isa<ConstantTokenNone>(FromPad), 3759 "A single unwind edge may only enter one EH pad", TI); 3760 Assert(Seen.insert(FromPad).second, 3761 "EH pad jumps through a cycle of pads", FromPad); 3762 } 3763 } 3764 } 3765 3766 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3767 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3768 // isn't a cleanup. 3769 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3770 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3771 3772 visitEHPadPredecessors(LPI); 3773 3774 if (!LandingPadResultTy) 3775 LandingPadResultTy = LPI.getType(); 3776 else 3777 Assert(LandingPadResultTy == LPI.getType(), 3778 "The landingpad instruction should have a consistent result type " 3779 "inside a function.", 3780 &LPI); 3781 3782 Function *F = LPI.getParent()->getParent(); 3783 Assert(F->hasPersonalityFn(), 3784 "LandingPadInst needs to be in a function with a personality.", &LPI); 3785 3786 // The landingpad instruction must be the first non-PHI instruction in the 3787 // block. 3788 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3789 "LandingPadInst not the first non-PHI instruction in the block.", 3790 &LPI); 3791 3792 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3793 Constant *Clause = LPI.getClause(i); 3794 if (LPI.isCatch(i)) { 3795 Assert(isa<PointerType>(Clause->getType()), 3796 "Catch operand does not have pointer type!", &LPI); 3797 } else { 3798 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3799 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3800 "Filter operand is not an array of constants!", &LPI); 3801 } 3802 } 3803 3804 visitInstruction(LPI); 3805 } 3806 3807 void Verifier::visitResumeInst(ResumeInst &RI) { 3808 Assert(RI.getFunction()->hasPersonalityFn(), 3809 "ResumeInst needs to be in a function with a personality.", &RI); 3810 3811 if (!LandingPadResultTy) 3812 LandingPadResultTy = RI.getValue()->getType(); 3813 else 3814 Assert(LandingPadResultTy == RI.getValue()->getType(), 3815 "The resume instruction should have a consistent result type " 3816 "inside a function.", 3817 &RI); 3818 3819 visitTerminator(RI); 3820 } 3821 3822 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3823 BasicBlock *BB = CPI.getParent(); 3824 3825 Function *F = BB->getParent(); 3826 Assert(F->hasPersonalityFn(), 3827 "CatchPadInst needs to be in a function with a personality.", &CPI); 3828 3829 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 3830 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 3831 CPI.getParentPad()); 3832 3833 // The catchpad instruction must be the first non-PHI instruction in the 3834 // block. 3835 Assert(BB->getFirstNonPHI() == &CPI, 3836 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 3837 3838 visitEHPadPredecessors(CPI); 3839 visitFuncletPadInst(CPI); 3840 } 3841 3842 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 3843 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 3844 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 3845 CatchReturn.getOperand(0)); 3846 3847 visitTerminator(CatchReturn); 3848 } 3849 3850 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 3851 BasicBlock *BB = CPI.getParent(); 3852 3853 Function *F = BB->getParent(); 3854 Assert(F->hasPersonalityFn(), 3855 "CleanupPadInst needs to be in a function with a personality.", &CPI); 3856 3857 // The cleanuppad instruction must be the first non-PHI instruction in the 3858 // block. 3859 Assert(BB->getFirstNonPHI() == &CPI, 3860 "CleanupPadInst not the first non-PHI instruction in the block.", 3861 &CPI); 3862 3863 auto *ParentPad = CPI.getParentPad(); 3864 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3865 "CleanupPadInst has an invalid parent.", &CPI); 3866 3867 visitEHPadPredecessors(CPI); 3868 visitFuncletPadInst(CPI); 3869 } 3870 3871 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 3872 User *FirstUser = nullptr; 3873 Value *FirstUnwindPad = nullptr; 3874 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 3875 SmallSet<FuncletPadInst *, 8> Seen; 3876 3877 while (!Worklist.empty()) { 3878 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 3879 Assert(Seen.insert(CurrentPad).second, 3880 "FuncletPadInst must not be nested within itself", CurrentPad); 3881 Value *UnresolvedAncestorPad = nullptr; 3882 for (User *U : CurrentPad->users()) { 3883 BasicBlock *UnwindDest; 3884 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 3885 UnwindDest = CRI->getUnwindDest(); 3886 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 3887 // We allow catchswitch unwind to caller to nest 3888 // within an outer pad that unwinds somewhere else, 3889 // because catchswitch doesn't have a nounwind variant. 3890 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 3891 if (CSI->unwindsToCaller()) 3892 continue; 3893 UnwindDest = CSI->getUnwindDest(); 3894 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 3895 UnwindDest = II->getUnwindDest(); 3896 } else if (isa<CallInst>(U)) { 3897 // Calls which don't unwind may be found inside funclet 3898 // pads that unwind somewhere else. We don't *require* 3899 // such calls to be annotated nounwind. 3900 continue; 3901 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 3902 // The unwind dest for a cleanup can only be found by 3903 // recursive search. Add it to the worklist, and we'll 3904 // search for its first use that determines where it unwinds. 3905 Worklist.push_back(CPI); 3906 continue; 3907 } else { 3908 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 3909 continue; 3910 } 3911 3912 Value *UnwindPad; 3913 bool ExitsFPI; 3914 if (UnwindDest) { 3915 UnwindPad = UnwindDest->getFirstNonPHI(); 3916 if (!cast<Instruction>(UnwindPad)->isEHPad()) 3917 continue; 3918 Value *UnwindParent = getParentPad(UnwindPad); 3919 // Ignore unwind edges that don't exit CurrentPad. 3920 if (UnwindParent == CurrentPad) 3921 continue; 3922 // Determine whether the original funclet pad is exited, 3923 // and if we are scanning nested pads determine how many 3924 // of them are exited so we can stop searching their 3925 // children. 3926 Value *ExitedPad = CurrentPad; 3927 ExitsFPI = false; 3928 do { 3929 if (ExitedPad == &FPI) { 3930 ExitsFPI = true; 3931 // Now we can resolve any ancestors of CurrentPad up to 3932 // FPI, but not including FPI since we need to make sure 3933 // to check all direct users of FPI for consistency. 3934 UnresolvedAncestorPad = &FPI; 3935 break; 3936 } 3937 Value *ExitedParent = getParentPad(ExitedPad); 3938 if (ExitedParent == UnwindParent) { 3939 // ExitedPad is the ancestor-most pad which this unwind 3940 // edge exits, so we can resolve up to it, meaning that 3941 // ExitedParent is the first ancestor still unresolved. 3942 UnresolvedAncestorPad = ExitedParent; 3943 break; 3944 } 3945 ExitedPad = ExitedParent; 3946 } while (!isa<ConstantTokenNone>(ExitedPad)); 3947 } else { 3948 // Unwinding to caller exits all pads. 3949 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 3950 ExitsFPI = true; 3951 UnresolvedAncestorPad = &FPI; 3952 } 3953 3954 if (ExitsFPI) { 3955 // This unwind edge exits FPI. Make sure it agrees with other 3956 // such edges. 3957 if (FirstUser) { 3958 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 3959 "pad must have the same unwind " 3960 "dest", 3961 &FPI, U, FirstUser); 3962 } else { 3963 FirstUser = U; 3964 FirstUnwindPad = UnwindPad; 3965 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 3966 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 3967 getParentPad(UnwindPad) == getParentPad(&FPI)) 3968 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 3969 } 3970 } 3971 // Make sure we visit all uses of FPI, but for nested pads stop as 3972 // soon as we know where they unwind to. 3973 if (CurrentPad != &FPI) 3974 break; 3975 } 3976 if (UnresolvedAncestorPad) { 3977 if (CurrentPad == UnresolvedAncestorPad) { 3978 // When CurrentPad is FPI itself, we don't mark it as resolved even if 3979 // we've found an unwind edge that exits it, because we need to verify 3980 // all direct uses of FPI. 3981 assert(CurrentPad == &FPI); 3982 continue; 3983 } 3984 // Pop off the worklist any nested pads that we've found an unwind 3985 // destination for. The pads on the worklist are the uncles, 3986 // great-uncles, etc. of CurrentPad. We've found an unwind destination 3987 // for all ancestors of CurrentPad up to but not including 3988 // UnresolvedAncestorPad. 3989 Value *ResolvedPad = CurrentPad; 3990 while (!Worklist.empty()) { 3991 Value *UnclePad = Worklist.back(); 3992 Value *AncestorPad = getParentPad(UnclePad); 3993 // Walk ResolvedPad up the ancestor list until we either find the 3994 // uncle's parent or the last resolved ancestor. 3995 while (ResolvedPad != AncestorPad) { 3996 Value *ResolvedParent = getParentPad(ResolvedPad); 3997 if (ResolvedParent == UnresolvedAncestorPad) { 3998 break; 3999 } 4000 ResolvedPad = ResolvedParent; 4001 } 4002 // If the resolved ancestor search didn't find the uncle's parent, 4003 // then the uncle is not yet resolved. 4004 if (ResolvedPad != AncestorPad) 4005 break; 4006 // This uncle is resolved, so pop it from the worklist. 4007 Worklist.pop_back(); 4008 } 4009 } 4010 } 4011 4012 if (FirstUnwindPad) { 4013 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 4014 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 4015 Value *SwitchUnwindPad; 4016 if (SwitchUnwindDest) 4017 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 4018 else 4019 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 4020 Assert(SwitchUnwindPad == FirstUnwindPad, 4021 "Unwind edges out of a catch must have the same unwind dest as " 4022 "the parent catchswitch", 4023 &FPI, FirstUser, CatchSwitch); 4024 } 4025 } 4026 4027 visitInstruction(FPI); 4028 } 4029 4030 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 4031 BasicBlock *BB = CatchSwitch.getParent(); 4032 4033 Function *F = BB->getParent(); 4034 Assert(F->hasPersonalityFn(), 4035 "CatchSwitchInst needs to be in a function with a personality.", 4036 &CatchSwitch); 4037 4038 // The catchswitch instruction must be the first non-PHI instruction in the 4039 // block. 4040 Assert(BB->getFirstNonPHI() == &CatchSwitch, 4041 "CatchSwitchInst not the first non-PHI instruction in the block.", 4042 &CatchSwitch); 4043 4044 auto *ParentPad = CatchSwitch.getParentPad(); 4045 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4046 "CatchSwitchInst has an invalid parent.", ParentPad); 4047 4048 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 4049 Instruction *I = UnwindDest->getFirstNonPHI(); 4050 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4051 "CatchSwitchInst must unwind to an EH block which is not a " 4052 "landingpad.", 4053 &CatchSwitch); 4054 4055 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 4056 if (getParentPad(I) == ParentPad) 4057 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 4058 } 4059 4060 Assert(CatchSwitch.getNumHandlers() != 0, 4061 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 4062 4063 for (BasicBlock *Handler : CatchSwitch.handlers()) { 4064 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 4065 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 4066 } 4067 4068 visitEHPadPredecessors(CatchSwitch); 4069 visitTerminator(CatchSwitch); 4070 } 4071 4072 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 4073 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 4074 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 4075 CRI.getOperand(0)); 4076 4077 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 4078 Instruction *I = UnwindDest->getFirstNonPHI(); 4079 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4080 "CleanupReturnInst must unwind to an EH block which is not a " 4081 "landingpad.", 4082 &CRI); 4083 } 4084 4085 visitTerminator(CRI); 4086 } 4087 4088 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 4089 Instruction *Op = cast<Instruction>(I.getOperand(i)); 4090 // If the we have an invalid invoke, don't try to compute the dominance. 4091 // We already reject it in the invoke specific checks and the dominance 4092 // computation doesn't handle multiple edges. 4093 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 4094 if (II->getNormalDest() == II->getUnwindDest()) 4095 return; 4096 } 4097 4098 // Quick check whether the def has already been encountered in the same block. 4099 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 4100 // uses are defined to happen on the incoming edge, not at the instruction. 4101 // 4102 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 4103 // wrapping an SSA value, assert that we've already encountered it. See 4104 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 4105 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 4106 return; 4107 4108 const Use &U = I.getOperandUse(i); 4109 Assert(DT.dominates(Op, U), 4110 "Instruction does not dominate all uses!", Op, &I); 4111 } 4112 4113 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4114 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 4115 "apply only to pointer types", &I); 4116 Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4117 "dereferenceable, dereferenceable_or_null apply only to load" 4118 " and inttoptr instructions, use attributes for calls or invokes", &I); 4119 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 4120 "take one operand!", &I); 4121 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4122 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 4123 "dereferenceable_or_null metadata value must be an i64!", &I); 4124 } 4125 4126 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4127 Assert(MD->getNumOperands() >= 2, 4128 "!prof annotations should have no less than 2 operands", MD); 4129 4130 // Check first operand. 4131 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4132 Assert(isa<MDString>(MD->getOperand(0)), 4133 "expected string with name of the !prof annotation", MD); 4134 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4135 StringRef ProfName = MDS->getString(); 4136 4137 // Check consistency of !prof branch_weights metadata. 4138 if (ProfName.equals("branch_weights")) { 4139 unsigned ExpectedNumOperands = 0; 4140 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4141 ExpectedNumOperands = BI->getNumSuccessors(); 4142 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4143 ExpectedNumOperands = SI->getNumSuccessors(); 4144 else if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) 4145 ExpectedNumOperands = 1; 4146 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4147 ExpectedNumOperands = IBI->getNumDestinations(); 4148 else if (isa<SelectInst>(&I)) 4149 ExpectedNumOperands = 2; 4150 else 4151 CheckFailed("!prof branch_weights are not allowed for this instruction", 4152 MD); 4153 4154 Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, 4155 "Wrong number of operands", MD); 4156 for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 4157 auto &MDO = MD->getOperand(i); 4158 Assert(MDO, "second operand should not be null", MD); 4159 Assert(mdconst::dyn_extract<ConstantInt>(MDO), 4160 "!prof brunch_weights operand is not a const int"); 4161 } 4162 } 4163 } 4164 4165 /// verifyInstruction - Verify that an instruction is well formed. 4166 /// 4167 void Verifier::visitInstruction(Instruction &I) { 4168 BasicBlock *BB = I.getParent(); 4169 Assert(BB, "Instruction not embedded in basic block!", &I); 4170 4171 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4172 for (User *U : I.users()) { 4173 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 4174 "Only PHI nodes may reference their own value!", &I); 4175 } 4176 } 4177 4178 // Check that void typed values don't have names 4179 Assert(!I.getType()->isVoidTy() || !I.hasName(), 4180 "Instruction has a name, but provides a void value!", &I); 4181 4182 // Check that the return value of the instruction is either void or a legal 4183 // value type. 4184 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4185 "Instruction returns a non-scalar type!", &I); 4186 4187 // Check that the instruction doesn't produce metadata. Calls are already 4188 // checked against the callee type. 4189 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4190 "Invalid use of metadata!", &I); 4191 4192 // Check that all uses of the instruction, if they are instructions 4193 // themselves, actually have parent basic blocks. If the use is not an 4194 // instruction, it is an error! 4195 for (Use &U : I.uses()) { 4196 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4197 Assert(Used->getParent() != nullptr, 4198 "Instruction referencing" 4199 " instruction not embedded in a basic block!", 4200 &I, Used); 4201 else { 4202 CheckFailed("Use of instruction is not an instruction!", U); 4203 return; 4204 } 4205 } 4206 4207 // Get a pointer to the call base of the instruction if it is some form of 4208 // call. 4209 const CallBase *CBI = dyn_cast<CallBase>(&I); 4210 4211 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4212 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4213 4214 // Check to make sure that only first-class-values are operands to 4215 // instructions. 4216 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4217 Assert(false, "Instruction operands must be first-class values!", &I); 4218 } 4219 4220 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4221 // Check to make sure that the "address of" an intrinsic function is never 4222 // taken. 4223 Assert(!F->isIntrinsic() || 4224 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), 4225 "Cannot take the address of an intrinsic!", &I); 4226 Assert( 4227 !F->isIntrinsic() || isa<CallInst>(I) || 4228 F->getIntrinsicID() == Intrinsic::donothing || 4229 F->getIntrinsicID() == Intrinsic::coro_resume || 4230 F->getIntrinsicID() == Intrinsic::coro_destroy || 4231 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4232 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4233 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4234 F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch, 4235 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4236 "statepoint, coro_resume or coro_destroy", 4237 &I); 4238 Assert(F->getParent() == &M, "Referencing function in another module!", 4239 &I, &M, F, F->getParent()); 4240 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4241 Assert(OpBB->getParent() == BB->getParent(), 4242 "Referring to a basic block in another function!", &I); 4243 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4244 Assert(OpArg->getParent() == BB->getParent(), 4245 "Referring to an argument in another function!", &I); 4246 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4247 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4248 &M, GV, GV->getParent()); 4249 } else if (isa<Instruction>(I.getOperand(i))) { 4250 verifyDominatesUse(I, i); 4251 } else if (isa<InlineAsm>(I.getOperand(i))) { 4252 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4253 "Cannot take the address of an inline asm!", &I); 4254 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4255 if (CE->getType()->isPtrOrPtrVectorTy() || 4256 !DL.getNonIntegralAddressSpaces().empty()) { 4257 // If we have a ConstantExpr pointer, we need to see if it came from an 4258 // illegal bitcast. If the datalayout string specifies non-integral 4259 // address spaces then we also need to check for illegal ptrtoint and 4260 // inttoptr expressions. 4261 visitConstantExprsRecursively(CE); 4262 } 4263 } 4264 } 4265 4266 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4267 Assert(I.getType()->isFPOrFPVectorTy(), 4268 "fpmath requires a floating point result!", &I); 4269 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4270 if (ConstantFP *CFP0 = 4271 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4272 const APFloat &Accuracy = CFP0->getValueAPF(); 4273 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4274 "fpmath accuracy must have float type", &I); 4275 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4276 "fpmath accuracy not a positive number!", &I); 4277 } else { 4278 Assert(false, "invalid fpmath accuracy!", &I); 4279 } 4280 } 4281 4282 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4283 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4284 "Ranges are only for loads, calls and invokes!", &I); 4285 visitRangeMetadata(I, Range, I.getType()); 4286 } 4287 4288 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4289 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4290 &I); 4291 Assert(isa<LoadInst>(I), 4292 "nonnull applies only to load instructions, use attributes" 4293 " for calls or invokes", 4294 &I); 4295 } 4296 4297 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4298 visitDereferenceableMetadata(I, MD); 4299 4300 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4301 visitDereferenceableMetadata(I, MD); 4302 4303 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4304 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4305 4306 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4307 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4308 &I); 4309 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4310 "use attributes for calls or invokes", &I); 4311 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4312 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4313 Assert(CI && CI->getType()->isIntegerTy(64), 4314 "align metadata value must be an i64!", &I); 4315 uint64_t Align = CI->getZExtValue(); 4316 Assert(isPowerOf2_64(Align), 4317 "align metadata value must be a power of 2!", &I); 4318 Assert(Align <= Value::MaximumAlignment, 4319 "alignment is larger that implementation defined limit", &I); 4320 } 4321 4322 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 4323 visitProfMetadata(I, MD); 4324 4325 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4326 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4327 visitMDNode(*N, AreDebugLocsAllowed::Yes); 4328 } 4329 4330 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 4331 verifyFragmentExpression(*DII); 4332 verifyNotEntryValue(*DII); 4333 } 4334 4335 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 4336 I.getAllMetadata(MDs); 4337 for (auto Attachment : MDs) { 4338 unsigned Kind = Attachment.first; 4339 auto AllowLocs = 4340 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) 4341 ? AreDebugLocsAllowed::Yes 4342 : AreDebugLocsAllowed::No; 4343 visitMDNode(*Attachment.second, AllowLocs); 4344 } 4345 4346 InstsInThisBlock.insert(&I); 4347 } 4348 4349 /// Allow intrinsics to be verified in different ways. 4350 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4351 Function *IF = Call.getCalledFunction(); 4352 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4353 IF); 4354 4355 // Verify that the intrinsic prototype lines up with what the .td files 4356 // describe. 4357 FunctionType *IFTy = IF->getFunctionType(); 4358 bool IsVarArg = IFTy->isVarArg(); 4359 4360 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4361 getIntrinsicInfoTableEntries(ID, Table); 4362 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4363 4364 // Walk the descriptors to extract overloaded types. 4365 SmallVector<Type *, 4> ArgTys; 4366 Intrinsic::MatchIntrinsicTypesResult Res = 4367 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4368 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4369 "Intrinsic has incorrect return type!", IF); 4370 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4371 "Intrinsic has incorrect argument type!", IF); 4372 4373 // Verify if the intrinsic call matches the vararg property. 4374 if (IsVarArg) 4375 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4376 "Intrinsic was not defined with variable arguments!", IF); 4377 else 4378 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4379 "Callsite was not defined with variable arguments!", IF); 4380 4381 // All descriptors should be absorbed by now. 4382 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4383 4384 // Now that we have the intrinsic ID and the actual argument types (and we 4385 // know they are legal for the intrinsic!) get the intrinsic name through the 4386 // usual means. This allows us to verify the mangling of argument types into 4387 // the name. 4388 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 4389 Assert(ExpectedName == IF->getName(), 4390 "Intrinsic name not mangled correctly for type arguments! " 4391 "Should be: " + 4392 ExpectedName, 4393 IF); 4394 4395 // If the intrinsic takes MDNode arguments, verify that they are either global 4396 // or are local to *this* function. 4397 for (Value *V : Call.args()) 4398 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4399 visitMetadataAsValue(*MD, Call.getCaller()); 4400 4401 switch (ID) { 4402 default: 4403 break; 4404 case Intrinsic::assume: { 4405 for (auto &Elem : Call.bundle_op_infos()) { 4406 Assert(Elem.Tag->getKey() == "ignore" || 4407 Attribute::isExistingAttribute(Elem.Tag->getKey()), 4408 "tags must be valid attribute names"); 4409 Assert(Elem.End - Elem.Begin <= 2, "to many arguments"); 4410 Attribute::AttrKind Kind = 4411 Attribute::getAttrKindFromName(Elem.Tag->getKey()); 4412 if (Kind == Attribute::None) 4413 break; 4414 if (Attribute::doesAttrKindHaveArgument(Kind)) { 4415 Assert(Elem.End - Elem.Begin == 2, 4416 "this attribute should have 2 arguments"); 4417 Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), 4418 "the second argument should be a constant integral value"); 4419 } else if (isFuncOnlyAttr(Kind)) { 4420 Assert((Elem.End - Elem.Begin) == 0, "this attribute has no argument"); 4421 } else if (!isFuncOrArgAttr(Kind)) { 4422 Assert((Elem.End - Elem.Begin) == 1, 4423 "this attribute should have one argument"); 4424 } 4425 } 4426 break; 4427 } 4428 case Intrinsic::coro_id: { 4429 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4430 if (isa<ConstantPointerNull>(InfoArg)) 4431 break; 4432 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4433 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4434 "info argument of llvm.coro.begin must refer to an initialized " 4435 "constant"); 4436 Constant *Init = GV->getInitializer(); 4437 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4438 "info argument of llvm.coro.begin must refer to either a struct or " 4439 "an array"); 4440 break; 4441 } 4442 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ 4443 case Intrinsic::INTRINSIC: 4444 #include "llvm/IR/ConstrainedOps.def" 4445 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4446 break; 4447 case Intrinsic::dbg_declare: // llvm.dbg.declare 4448 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4449 "invalid llvm.dbg.declare intrinsic call 1", Call); 4450 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4451 break; 4452 case Intrinsic::dbg_addr: // llvm.dbg.addr 4453 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4454 break; 4455 case Intrinsic::dbg_value: // llvm.dbg.value 4456 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4457 break; 4458 case Intrinsic::dbg_label: // llvm.dbg.label 4459 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4460 break; 4461 case Intrinsic::memcpy: 4462 case Intrinsic::memcpy_inline: 4463 case Intrinsic::memmove: 4464 case Intrinsic::memset: { 4465 const auto *MI = cast<MemIntrinsic>(&Call); 4466 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4467 return Alignment == 0 || isPowerOf2_32(Alignment); 4468 }; 4469 Assert(IsValidAlignment(MI->getDestAlignment()), 4470 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4471 Call); 4472 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4473 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4474 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4475 Call); 4476 } 4477 4478 break; 4479 } 4480 case Intrinsic::memcpy_element_unordered_atomic: 4481 case Intrinsic::memmove_element_unordered_atomic: 4482 case Intrinsic::memset_element_unordered_atomic: { 4483 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4484 4485 ConstantInt *ElementSizeCI = 4486 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4487 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4488 Assert(ElementSizeVal.isPowerOf2(), 4489 "element size of the element-wise atomic memory intrinsic " 4490 "must be a power of 2", 4491 Call); 4492 4493 auto IsValidAlignment = [&](uint64_t Alignment) { 4494 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4495 }; 4496 uint64_t DstAlignment = AMI->getDestAlignment(); 4497 Assert(IsValidAlignment(DstAlignment), 4498 "incorrect alignment of the destination argument", Call); 4499 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4500 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4501 Assert(IsValidAlignment(SrcAlignment), 4502 "incorrect alignment of the source argument", Call); 4503 } 4504 break; 4505 } 4506 case Intrinsic::call_preallocated_setup: { 4507 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 4508 Assert(NumArgs != nullptr, 4509 "llvm.call.preallocated.setup argument must be a constant"); 4510 bool FoundCall = false; 4511 for (User *U : Call.users()) { 4512 auto *UseCall = dyn_cast<CallBase>(U); 4513 Assert(UseCall != nullptr, 4514 "Uses of llvm.call.preallocated.setup must be calls"); 4515 const Function *Fn = UseCall->getCalledFunction(); 4516 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { 4517 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); 4518 Assert(AllocArgIndex != nullptr, 4519 "llvm.call.preallocated.alloc arg index must be a constant"); 4520 auto AllocArgIndexInt = AllocArgIndex->getValue(); 4521 Assert(AllocArgIndexInt.sge(0) && 4522 AllocArgIndexInt.slt(NumArgs->getValue()), 4523 "llvm.call.preallocated.alloc arg index must be between 0 and " 4524 "corresponding " 4525 "llvm.call.preallocated.setup's argument count"); 4526 } else { 4527 Assert(!FoundCall, "Can have at most one call corresponding to a " 4528 "llvm.call.preallocated.setup"); 4529 FoundCall = true; 4530 size_t NumPreallocatedArgs = 0; 4531 for (unsigned i = 0; i < UseCall->getNumArgOperands(); i++) { 4532 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { 4533 ++NumPreallocatedArgs; 4534 } 4535 } 4536 Assert(NumArgs->equalsInt(NumPreallocatedArgs), 4537 "llvm.call.preallocated.setup arg size must be equal to number " 4538 "of preallocated arguments " 4539 "at call site", 4540 Call, *UseCall); 4541 // getOperandBundle() cannot be called if more than one of the operand 4542 // bundle exists. There is already a check elsewhere for this, so skip 4543 // here if we see more than one. 4544 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > 4545 1) { 4546 return; 4547 } 4548 auto PreallocatedBundle = 4549 UseCall->getOperandBundle(LLVMContext::OB_preallocated); 4550 Assert(PreallocatedBundle, 4551 "Use of llvm.call.preallocated.setup outside intrinsics " 4552 "must be in \"preallocated\" operand bundle"); 4553 Assert(PreallocatedBundle->Inputs.front().get() == &Call, 4554 "preallocated bundle must have token from corresponding " 4555 "llvm.call.preallocated.setup"); 4556 } 4557 } 4558 break; 4559 } 4560 case Intrinsic::call_preallocated_arg: { 4561 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4562 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4563 Intrinsic::call_preallocated_setup, 4564 "llvm.call.preallocated.arg token argument must be a " 4565 "llvm.call.preallocated.setup"); 4566 Assert(Call.hasFnAttr(Attribute::Preallocated), 4567 "llvm.call.preallocated.arg must be called with a \"preallocated\" " 4568 "call site attribute"); 4569 break; 4570 } 4571 case Intrinsic::gcroot: 4572 case Intrinsic::gcwrite: 4573 case Intrinsic::gcread: 4574 if (ID == Intrinsic::gcroot) { 4575 AllocaInst *AI = 4576 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4577 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4578 Assert(isa<Constant>(Call.getArgOperand(1)), 4579 "llvm.gcroot parameter #2 must be a constant.", Call); 4580 if (!AI->getAllocatedType()->isPointerTy()) { 4581 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4582 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4583 "or argument #2 must be a non-null constant.", 4584 Call); 4585 } 4586 } 4587 4588 Assert(Call.getParent()->getParent()->hasGC(), 4589 "Enclosing function does not use GC.", Call); 4590 break; 4591 case Intrinsic::init_trampoline: 4592 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4593 "llvm.init_trampoline parameter #2 must resolve to a function.", 4594 Call); 4595 break; 4596 case Intrinsic::prefetch: 4597 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4598 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4599 "invalid arguments to llvm.prefetch", Call); 4600 break; 4601 case Intrinsic::stackprotector: 4602 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4603 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4604 break; 4605 case Intrinsic::localescape: { 4606 BasicBlock *BB = Call.getParent(); 4607 Assert(BB == &BB->getParent()->front(), 4608 "llvm.localescape used outside of entry block", Call); 4609 Assert(!SawFrameEscape, 4610 "multiple calls to llvm.localescape in one function", Call); 4611 for (Value *Arg : Call.args()) { 4612 if (isa<ConstantPointerNull>(Arg)) 4613 continue; // Null values are allowed as placeholders. 4614 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4615 Assert(AI && AI->isStaticAlloca(), 4616 "llvm.localescape only accepts static allocas", Call); 4617 } 4618 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); 4619 SawFrameEscape = true; 4620 break; 4621 } 4622 case Intrinsic::localrecover: { 4623 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4624 Function *Fn = dyn_cast<Function>(FnArg); 4625 Assert(Fn && !Fn->isDeclaration(), 4626 "llvm.localrecover first " 4627 "argument must be function defined in this module", 4628 Call); 4629 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 4630 auto &Entry = FrameEscapeInfo[Fn]; 4631 Entry.second = unsigned( 4632 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4633 break; 4634 } 4635 4636 case Intrinsic::experimental_gc_statepoint: 4637 if (auto *CI = dyn_cast<CallInst>(&Call)) 4638 Assert(!CI->isInlineAsm(), 4639 "gc.statepoint support for inline assembly unimplemented", CI); 4640 Assert(Call.getParent()->getParent()->hasGC(), 4641 "Enclosing function does not use GC.", Call); 4642 4643 verifyStatepoint(Call); 4644 break; 4645 case Intrinsic::experimental_gc_result: { 4646 Assert(Call.getParent()->getParent()->hasGC(), 4647 "Enclosing function does not use GC.", Call); 4648 // Are we tied to a statepoint properly? 4649 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4650 const Function *StatepointFn = 4651 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 4652 Assert(StatepointFn && StatepointFn->isDeclaration() && 4653 StatepointFn->getIntrinsicID() == 4654 Intrinsic::experimental_gc_statepoint, 4655 "gc.result operand #1 must be from a statepoint", Call, 4656 Call.getArgOperand(0)); 4657 4658 // Assert that result type matches wrapped callee. 4659 const Value *Target = StatepointCall->getArgOperand(2); 4660 auto *PT = cast<PointerType>(Target->getType()); 4661 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4662 Assert(Call.getType() == TargetFuncType->getReturnType(), 4663 "gc.result result type does not match wrapped callee", Call); 4664 break; 4665 } 4666 case Intrinsic::experimental_gc_relocate: { 4667 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); 4668 4669 Assert(isa<PointerType>(Call.getType()->getScalarType()), 4670 "gc.relocate must return a pointer or a vector of pointers", Call); 4671 4672 // Check that this relocate is correctly tied to the statepoint 4673 4674 // This is case for relocate on the unwinding path of an invoke statepoint 4675 if (LandingPadInst *LandingPad = 4676 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 4677 4678 const BasicBlock *InvokeBB = 4679 LandingPad->getParent()->getUniquePredecessor(); 4680 4681 // Landingpad relocates should have only one predecessor with invoke 4682 // statepoint terminator 4683 Assert(InvokeBB, "safepoints should have unique landingpads", 4684 LandingPad->getParent()); 4685 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4686 InvokeBB); 4687 Assert(isStatepoint(InvokeBB->getTerminator()), 4688 "gc relocate should be linked to a statepoint", InvokeBB); 4689 } else { 4690 // In all other cases relocate should be tied to the statepoint directly. 4691 // This covers relocates on a normal return path of invoke statepoint and 4692 // relocates of a call statepoint. 4693 auto Token = Call.getArgOperand(0); 4694 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)), 4695 "gc relocate is incorrectly tied to the statepoint", Call, Token); 4696 } 4697 4698 // Verify rest of the relocate arguments. 4699 const CallBase &StatepointCall = 4700 *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint()); 4701 4702 // Both the base and derived must be piped through the safepoint. 4703 Value *Base = Call.getArgOperand(1); 4704 Assert(isa<ConstantInt>(Base), 4705 "gc.relocate operand #2 must be integer offset", Call); 4706 4707 Value *Derived = Call.getArgOperand(2); 4708 Assert(isa<ConstantInt>(Derived), 4709 "gc.relocate operand #3 must be integer offset", Call); 4710 4711 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4712 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4713 // Check the bounds 4714 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(), 4715 "gc.relocate: statepoint base index out of bounds", Call); 4716 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(), 4717 "gc.relocate: statepoint derived index out of bounds", Call); 4718 4719 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' 4720 // section of the statepoint's argument. 4721 Assert(StatepointCall.arg_size() > 0, 4722 "gc.statepoint: insufficient arguments"); 4723 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)), 4724 "gc.statement: number of call arguments must be constant integer"); 4725 const unsigned NumCallArgs = 4726 cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue(); 4727 Assert(StatepointCall.arg_size() > NumCallArgs + 5, 4728 "gc.statepoint: mismatch in number of call arguments"); 4729 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)), 4730 "gc.statepoint: number of transition arguments must be " 4731 "a constant integer"); 4732 const int NumTransitionArgs = 4733 cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)) 4734 ->getZExtValue(); 4735 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; 4736 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)), 4737 "gc.statepoint: number of deoptimization arguments must be " 4738 "a constant integer"); 4739 const int NumDeoptArgs = 4740 cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)) 4741 ->getZExtValue(); 4742 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; 4743 const int GCParamArgsEnd = StatepointCall.arg_size(); 4744 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, 4745 "gc.relocate: statepoint base index doesn't fall within the " 4746 "'gc parameters' section of the statepoint call", 4747 Call); 4748 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, 4749 "gc.relocate: statepoint derived index doesn't fall within the " 4750 "'gc parameters' section of the statepoint call", 4751 Call); 4752 4753 // Relocated value must be either a pointer type or vector-of-pointer type, 4754 // but gc_relocate does not need to return the same pointer type as the 4755 // relocated pointer. It can be casted to the correct type later if it's 4756 // desired. However, they must have the same address space and 'vectorness' 4757 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 4758 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 4759 "gc.relocate: relocated value must be a gc pointer", Call); 4760 4761 auto ResultType = Call.getType(); 4762 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4763 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4764 "gc.relocate: vector relocates to vector and pointer to pointer", 4765 Call); 4766 Assert( 4767 ResultType->getPointerAddressSpace() == 4768 DerivedType->getPointerAddressSpace(), 4769 "gc.relocate: relocating a pointer shouldn't change its address space", 4770 Call); 4771 break; 4772 } 4773 case Intrinsic::eh_exceptioncode: 4774 case Intrinsic::eh_exceptionpointer: { 4775 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 4776 "eh.exceptionpointer argument must be a catchpad", Call); 4777 break; 4778 } 4779 case Intrinsic::masked_load: { 4780 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 4781 Call); 4782 4783 Value *Ptr = Call.getArgOperand(0); 4784 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 4785 Value *Mask = Call.getArgOperand(2); 4786 Value *PassThru = Call.getArgOperand(3); 4787 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 4788 Call); 4789 Assert(Alignment->getValue().isPowerOf2(), 4790 "masked_load: alignment must be a power of 2", Call); 4791 4792 // DataTy is the overloaded type 4793 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4794 Assert(DataTy == Call.getType(), 4795 "masked_load: return must match pointer type", Call); 4796 Assert(PassThru->getType() == DataTy, 4797 "masked_load: pass through and data type must match", Call); 4798 Assert(cast<VectorType>(Mask->getType())->getNumElements() == 4799 cast<VectorType>(DataTy)->getNumElements(), 4800 "masked_load: vector mask must be same length as data", Call); 4801 break; 4802 } 4803 case Intrinsic::masked_store: { 4804 Value *Val = Call.getArgOperand(0); 4805 Value *Ptr = Call.getArgOperand(1); 4806 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 4807 Value *Mask = Call.getArgOperand(3); 4808 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 4809 Call); 4810 Assert(Alignment->getValue().isPowerOf2(), 4811 "masked_store: alignment must be a power of 2", Call); 4812 4813 // DataTy is the overloaded type 4814 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4815 Assert(DataTy == Val->getType(), 4816 "masked_store: storee must match pointer type", Call); 4817 Assert(cast<VectorType>(Mask->getType())->getNumElements() == 4818 cast<VectorType>(DataTy)->getNumElements(), 4819 "masked_store: vector mask must be same length as data", Call); 4820 break; 4821 } 4822 4823 case Intrinsic::masked_gather: { 4824 const APInt &Alignment = 4825 cast<ConstantInt>(Call.getArgOperand(1))->getValue(); 4826 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 4827 "masked_gather: alignment must be 0 or a power of 2", Call); 4828 break; 4829 } 4830 case Intrinsic::masked_scatter: { 4831 const APInt &Alignment = 4832 cast<ConstantInt>(Call.getArgOperand(2))->getValue(); 4833 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 4834 "masked_scatter: alignment must be 0 or a power of 2", Call); 4835 break; 4836 } 4837 4838 case Intrinsic::experimental_guard: { 4839 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 4840 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4841 "experimental_guard must have exactly one " 4842 "\"deopt\" operand bundle"); 4843 break; 4844 } 4845 4846 case Intrinsic::experimental_deoptimize: { 4847 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 4848 Call); 4849 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4850 "experimental_deoptimize must have exactly one " 4851 "\"deopt\" operand bundle"); 4852 Assert(Call.getType() == Call.getFunction()->getReturnType(), 4853 "experimental_deoptimize return type must match caller return type"); 4854 4855 if (isa<CallInst>(Call)) { 4856 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 4857 Assert(RI, 4858 "calls to experimental_deoptimize must be followed by a return"); 4859 4860 if (!Call.getType()->isVoidTy() && RI) 4861 Assert(RI->getReturnValue() == &Call, 4862 "calls to experimental_deoptimize must be followed by a return " 4863 "of the value computed by experimental_deoptimize"); 4864 } 4865 4866 break; 4867 } 4868 case Intrinsic::sadd_sat: 4869 case Intrinsic::uadd_sat: 4870 case Intrinsic::ssub_sat: 4871 case Intrinsic::usub_sat: { 4872 Value *Op1 = Call.getArgOperand(0); 4873 Value *Op2 = Call.getArgOperand(1); 4874 Assert(Op1->getType()->isIntOrIntVectorTy(), 4875 "first operand of [us][add|sub]_sat must be an int type or vector " 4876 "of ints"); 4877 Assert(Op2->getType()->isIntOrIntVectorTy(), 4878 "second operand of [us][add|sub]_sat must be an int type or vector " 4879 "of ints"); 4880 break; 4881 } 4882 case Intrinsic::smul_fix: 4883 case Intrinsic::smul_fix_sat: 4884 case Intrinsic::umul_fix: 4885 case Intrinsic::umul_fix_sat: 4886 case Intrinsic::sdiv_fix: 4887 case Intrinsic::sdiv_fix_sat: 4888 case Intrinsic::udiv_fix: 4889 case Intrinsic::udiv_fix_sat: { 4890 Value *Op1 = Call.getArgOperand(0); 4891 Value *Op2 = Call.getArgOperand(1); 4892 Assert(Op1->getType()->isIntOrIntVectorTy(), 4893 "first operand of [us][mul|div]_fix[_sat] must be an int type or " 4894 "vector of ints"); 4895 Assert(Op2->getType()->isIntOrIntVectorTy(), 4896 "second operand of [us][mul|div]_fix[_sat] must be an int type or " 4897 "vector of ints"); 4898 4899 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 4900 Assert(Op3->getType()->getBitWidth() <= 32, 4901 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); 4902 4903 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 4904 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { 4905 Assert( 4906 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 4907 "the scale of s[mul|div]_fix[_sat] must be less than the width of " 4908 "the operands"); 4909 } else { 4910 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 4911 "the scale of u[mul|div]_fix[_sat] must be less than or equal " 4912 "to the width of the operands"); 4913 } 4914 break; 4915 } 4916 case Intrinsic::lround: 4917 case Intrinsic::llround: 4918 case Intrinsic::lrint: 4919 case Intrinsic::llrint: { 4920 Type *ValTy = Call.getArgOperand(0)->getType(); 4921 Type *ResultTy = Call.getType(); 4922 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 4923 "Intrinsic does not support vectors", &Call); 4924 break; 4925 } 4926 case Intrinsic::bswap: { 4927 Type *Ty = Call.getType(); 4928 unsigned Size = Ty->getScalarSizeInBits(); 4929 Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call); 4930 break; 4931 } 4932 case Intrinsic::matrix_multiply: 4933 case Intrinsic::matrix_transpose: 4934 case Intrinsic::matrix_columnwise_load: 4935 case Intrinsic::matrix_columnwise_store: { 4936 ConstantInt *NumRows; 4937 ConstantInt *NumColumns; 4938 VectorType *TypeToCheck; 4939 switch (ID) { 4940 case Intrinsic::matrix_multiply: 4941 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 4942 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 4943 TypeToCheck = cast<VectorType>(Call.getType()); 4944 break; 4945 case Intrinsic::matrix_transpose: 4946 NumRows = cast<ConstantInt>(Call.getArgOperand(1)); 4947 NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); 4948 TypeToCheck = cast<VectorType>(Call.getType()); 4949 break; 4950 case Intrinsic::matrix_columnwise_load: 4951 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 4952 NumColumns = cast<ConstantInt>(Call.getArgOperand(3)); 4953 TypeToCheck = cast<VectorType>(Call.getType()); 4954 break; 4955 case Intrinsic::matrix_columnwise_store: 4956 NumRows = cast<ConstantInt>(Call.getArgOperand(3)); 4957 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 4958 TypeToCheck = cast<VectorType>(Call.getArgOperand(0)->getType()); 4959 break; 4960 default: 4961 llvm_unreachable("unexpected intrinsic"); 4962 } 4963 Assert(TypeToCheck->getNumElements() == 4964 NumRows->getZExtValue() * NumColumns->getZExtValue(), 4965 "result of a matrix operation does not fit in the returned vector"); 4966 break; 4967 } 4968 }; 4969 } 4970 4971 /// Carefully grab the subprogram from a local scope. 4972 /// 4973 /// This carefully grabs the subprogram from a local scope, avoiding the 4974 /// built-in assertions that would typically fire. 4975 static DISubprogram *getSubprogram(Metadata *LocalScope) { 4976 if (!LocalScope) 4977 return nullptr; 4978 4979 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 4980 return SP; 4981 4982 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 4983 return getSubprogram(LB->getRawScope()); 4984 4985 // Just return null; broken scope chains are checked elsewhere. 4986 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 4987 return nullptr; 4988 } 4989 4990 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 4991 unsigned NumOperands; 4992 bool HasRoundingMD; 4993 switch (FPI.getIntrinsicID()) { 4994 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 4995 case Intrinsic::INTRINSIC: \ 4996 NumOperands = NARG; \ 4997 HasRoundingMD = ROUND_MODE; \ 4998 break; 4999 #include "llvm/IR/ConstrainedOps.def" 5000 default: 5001 llvm_unreachable("Invalid constrained FP intrinsic!"); 5002 } 5003 NumOperands += (1 + HasRoundingMD); 5004 // Compare intrinsics carry an extra predicate metadata operand. 5005 if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 5006 NumOperands += 1; 5007 Assert((FPI.getNumArgOperands() == NumOperands), 5008 "invalid arguments for constrained FP intrinsic", &FPI); 5009 5010 switch (FPI.getIntrinsicID()) { 5011 case Intrinsic::experimental_constrained_lrint: 5012 case Intrinsic::experimental_constrained_llrint: { 5013 Type *ValTy = FPI.getArgOperand(0)->getType(); 5014 Type *ResultTy = FPI.getType(); 5015 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5016 "Intrinsic does not support vectors", &FPI); 5017 } 5018 break; 5019 5020 case Intrinsic::experimental_constrained_lround: 5021 case Intrinsic::experimental_constrained_llround: { 5022 Type *ValTy = FPI.getArgOperand(0)->getType(); 5023 Type *ResultTy = FPI.getType(); 5024 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5025 "Intrinsic does not support vectors", &FPI); 5026 break; 5027 } 5028 5029 case Intrinsic::experimental_constrained_fcmp: 5030 case Intrinsic::experimental_constrained_fcmps: { 5031 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 5032 Assert(CmpInst::isFPPredicate(Pred), 5033 "invalid predicate for constrained FP comparison intrinsic", &FPI); 5034 break; 5035 } 5036 5037 case Intrinsic::experimental_constrained_fptosi: 5038 case Intrinsic::experimental_constrained_fptoui: { 5039 Value *Operand = FPI.getArgOperand(0); 5040 uint64_t NumSrcElem = 0; 5041 Assert(Operand->getType()->isFPOrFPVectorTy(), 5042 "Intrinsic first argument must be floating point", &FPI); 5043 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5044 NumSrcElem = OperandT->getNumElements(); 5045 } 5046 5047 Operand = &FPI; 5048 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5049 "Intrinsic first argument and result disagree on vector use", &FPI); 5050 Assert(Operand->getType()->isIntOrIntVectorTy(), 5051 "Intrinsic result must be an integer", &FPI); 5052 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5053 Assert(NumSrcElem == OperandT->getNumElements(), 5054 "Intrinsic first argument and result vector lengths must be equal", 5055 &FPI); 5056 } 5057 } 5058 break; 5059 5060 case Intrinsic::experimental_constrained_sitofp: 5061 case Intrinsic::experimental_constrained_uitofp: { 5062 Value *Operand = FPI.getArgOperand(0); 5063 uint64_t NumSrcElem = 0; 5064 Assert(Operand->getType()->isIntOrIntVectorTy(), 5065 "Intrinsic first argument must be integer", &FPI); 5066 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5067 NumSrcElem = OperandT->getNumElements(); 5068 } 5069 5070 Operand = &FPI; 5071 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5072 "Intrinsic first argument and result disagree on vector use", &FPI); 5073 Assert(Operand->getType()->isFPOrFPVectorTy(), 5074 "Intrinsic result must be a floating point", &FPI); 5075 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5076 Assert(NumSrcElem == OperandT->getNumElements(), 5077 "Intrinsic first argument and result vector lengths must be equal", 5078 &FPI); 5079 } 5080 } break; 5081 5082 case Intrinsic::experimental_constrained_fptrunc: 5083 case Intrinsic::experimental_constrained_fpext: { 5084 Value *Operand = FPI.getArgOperand(0); 5085 Type *OperandTy = Operand->getType(); 5086 Value *Result = &FPI; 5087 Type *ResultTy = Result->getType(); 5088 Assert(OperandTy->isFPOrFPVectorTy(), 5089 "Intrinsic first argument must be FP or FP vector", &FPI); 5090 Assert(ResultTy->isFPOrFPVectorTy(), 5091 "Intrinsic result must be FP or FP vector", &FPI); 5092 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 5093 "Intrinsic first argument and result disagree on vector use", &FPI); 5094 if (OperandTy->isVectorTy()) { 5095 auto *OperandVecTy = cast<VectorType>(OperandTy); 5096 auto *ResultVecTy = cast<VectorType>(ResultTy); 5097 Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(), 5098 "Intrinsic first argument and result vector lengths must be equal", 5099 &FPI); 5100 } 5101 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 5102 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 5103 "Intrinsic first argument's type must be larger than result type", 5104 &FPI); 5105 } else { 5106 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 5107 "Intrinsic first argument's type must be smaller than result type", 5108 &FPI); 5109 } 5110 } 5111 break; 5112 5113 default: 5114 break; 5115 } 5116 5117 // If a non-metadata argument is passed in a metadata slot then the 5118 // error will be caught earlier when the incorrect argument doesn't 5119 // match the specification in the intrinsic call table. Thus, no 5120 // argument type check is needed here. 5121 5122 Assert(FPI.getExceptionBehavior().hasValue(), 5123 "invalid exception behavior argument", &FPI); 5124 if (HasRoundingMD) { 5125 Assert(FPI.getRoundingMode().hasValue(), 5126 "invalid rounding mode argument", &FPI); 5127 } 5128 } 5129 5130 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 5131 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); 5132 AssertDI(isa<ValueAsMetadata>(MD) || 5133 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 5134 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 5135 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 5136 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 5137 DII.getRawVariable()); 5138 AssertDI(isa<DIExpression>(DII.getRawExpression()), 5139 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 5140 DII.getRawExpression()); 5141 5142 // Ignore broken !dbg attachments; they're checked elsewhere. 5143 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 5144 if (!isa<DILocation>(N)) 5145 return; 5146 5147 BasicBlock *BB = DII.getParent(); 5148 Function *F = BB ? BB->getParent() : nullptr; 5149 5150 // The scopes for variables and !dbg attachments must agree. 5151 DILocalVariable *Var = DII.getVariable(); 5152 DILocation *Loc = DII.getDebugLoc(); 5153 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5154 &DII, BB, F); 5155 5156 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 5157 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5158 if (!VarSP || !LocSP) 5159 return; // Broken scope chains are checked elsewhere. 5160 5161 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5162 " variable and !dbg attachment", 5163 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 5164 Loc->getScope()->getSubprogram()); 5165 5166 // This check is redundant with one in visitLocalVariable(). 5167 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 5168 Var->getRawType()); 5169 verifyFnArgs(DII); 5170 } 5171 5172 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 5173 AssertDI(isa<DILabel>(DLI.getRawLabel()), 5174 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 5175 DLI.getRawLabel()); 5176 5177 // Ignore broken !dbg attachments; they're checked elsewhere. 5178 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 5179 if (!isa<DILocation>(N)) 5180 return; 5181 5182 BasicBlock *BB = DLI.getParent(); 5183 Function *F = BB ? BB->getParent() : nullptr; 5184 5185 // The scopes for variables and !dbg attachments must agree. 5186 DILabel *Label = DLI.getLabel(); 5187 DILocation *Loc = DLI.getDebugLoc(); 5188 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5189 &DLI, BB, F); 5190 5191 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 5192 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5193 if (!LabelSP || !LocSP) 5194 return; 5195 5196 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5197 " label and !dbg attachment", 5198 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 5199 Loc->getScope()->getSubprogram()); 5200 } 5201 5202 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 5203 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 5204 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5205 5206 // We don't know whether this intrinsic verified correctly. 5207 if (!V || !E || !E->isValid()) 5208 return; 5209 5210 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 5211 auto Fragment = E->getFragmentInfo(); 5212 if (!Fragment) 5213 return; 5214 5215 // The frontend helps out GDB by emitting the members of local anonymous 5216 // unions as artificial local variables with shared storage. When SROA splits 5217 // the storage for artificial local variables that are smaller than the entire 5218 // union, the overhang piece will be outside of the allotted space for the 5219 // variable and this check fails. 5220 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 5221 if (V->isArtificial()) 5222 return; 5223 5224 verifyFragmentExpression(*V, *Fragment, &I); 5225 } 5226 5227 template <typename ValueOrMetadata> 5228 void Verifier::verifyFragmentExpression(const DIVariable &V, 5229 DIExpression::FragmentInfo Fragment, 5230 ValueOrMetadata *Desc) { 5231 // If there's no size, the type is broken, but that should be checked 5232 // elsewhere. 5233 auto VarSize = V.getSizeInBits(); 5234 if (!VarSize) 5235 return; 5236 5237 unsigned FragSize = Fragment.SizeInBits; 5238 unsigned FragOffset = Fragment.OffsetInBits; 5239 AssertDI(FragSize + FragOffset <= *VarSize, 5240 "fragment is larger than or outside of variable", Desc, &V); 5241 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 5242 } 5243 5244 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 5245 // This function does not take the scope of noninlined function arguments into 5246 // account. Don't run it if current function is nodebug, because it may 5247 // contain inlined debug intrinsics. 5248 if (!HasDebugInfo) 5249 return; 5250 5251 // For performance reasons only check non-inlined ones. 5252 if (I.getDebugLoc()->getInlinedAt()) 5253 return; 5254 5255 DILocalVariable *Var = I.getVariable(); 5256 AssertDI(Var, "dbg intrinsic without variable"); 5257 5258 unsigned ArgNo = Var->getArg(); 5259 if (!ArgNo) 5260 return; 5261 5262 // Verify there are no duplicate function argument debug info entries. 5263 // These will cause hard-to-debug assertions in the DWARF backend. 5264 if (DebugFnArgs.size() < ArgNo) 5265 DebugFnArgs.resize(ArgNo, nullptr); 5266 5267 auto *Prev = DebugFnArgs[ArgNo - 1]; 5268 DebugFnArgs[ArgNo - 1] = Var; 5269 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 5270 Prev, Var); 5271 } 5272 5273 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 5274 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5275 5276 // We don't know whether this intrinsic verified correctly. 5277 if (!E || !E->isValid()) 5278 return; 5279 5280 AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); 5281 } 5282 5283 void Verifier::verifyCompileUnits() { 5284 // When more than one Module is imported into the same context, such as during 5285 // an LTO build before linking the modules, ODR type uniquing may cause types 5286 // to point to a different CU. This check does not make sense in this case. 5287 if (M.getContext().isODRUniquingDebugTypes()) 5288 return; 5289 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 5290 SmallPtrSet<const Metadata *, 2> Listed; 5291 if (CUs) 5292 Listed.insert(CUs->op_begin(), CUs->op_end()); 5293 for (auto *CU : CUVisited) 5294 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 5295 CUVisited.clear(); 5296 } 5297 5298 void Verifier::verifyDeoptimizeCallingConvs() { 5299 if (DeoptimizeDeclarations.empty()) 5300 return; 5301 5302 const Function *First = DeoptimizeDeclarations[0]; 5303 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 5304 Assert(First->getCallingConv() == F->getCallingConv(), 5305 "All llvm.experimental.deoptimize declarations must have the same " 5306 "calling convention", 5307 First, F); 5308 } 5309 } 5310 5311 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 5312 bool HasSource = F.getSource().hasValue(); 5313 if (!HasSourceDebugInfo.count(&U)) 5314 HasSourceDebugInfo[&U] = HasSource; 5315 AssertDI(HasSource == HasSourceDebugInfo[&U], 5316 "inconsistent use of embedded source"); 5317 } 5318 5319 //===----------------------------------------------------------------------===// 5320 // Implement the public interfaces to this file... 5321 //===----------------------------------------------------------------------===// 5322 5323 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 5324 Function &F = const_cast<Function &>(f); 5325 5326 // Don't use a raw_null_ostream. Printing IR is expensive. 5327 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 5328 5329 // Note that this function's return value is inverted from what you would 5330 // expect of a function called "verify". 5331 return !V.verify(F); 5332 } 5333 5334 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 5335 bool *BrokenDebugInfo) { 5336 // Don't use a raw_null_ostream. Printing IR is expensive. 5337 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 5338 5339 bool Broken = false; 5340 for (const Function &F : M) 5341 Broken |= !V.verify(F); 5342 5343 Broken |= !V.verify(); 5344 if (BrokenDebugInfo) 5345 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 5346 // Note that this function's return value is inverted from what you would 5347 // expect of a function called "verify". 5348 return Broken; 5349 } 5350 5351 namespace { 5352 5353 struct VerifierLegacyPass : public FunctionPass { 5354 static char ID; 5355 5356 std::unique_ptr<Verifier> V; 5357 bool FatalErrors = true; 5358 5359 VerifierLegacyPass() : FunctionPass(ID) { 5360 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5361 } 5362 explicit VerifierLegacyPass(bool FatalErrors) 5363 : FunctionPass(ID), 5364 FatalErrors(FatalErrors) { 5365 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5366 } 5367 5368 bool doInitialization(Module &M) override { 5369 V = std::make_unique<Verifier>( 5370 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 5371 return false; 5372 } 5373 5374 bool runOnFunction(Function &F) override { 5375 if (!V->verify(F) && FatalErrors) { 5376 errs() << "in function " << F.getName() << '\n'; 5377 report_fatal_error("Broken function found, compilation aborted!"); 5378 } 5379 return false; 5380 } 5381 5382 bool doFinalization(Module &M) override { 5383 bool HasErrors = false; 5384 for (Function &F : M) 5385 if (F.isDeclaration()) 5386 HasErrors |= !V->verify(F); 5387 5388 HasErrors |= !V->verify(); 5389 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 5390 report_fatal_error("Broken module found, compilation aborted!"); 5391 return false; 5392 } 5393 5394 void getAnalysisUsage(AnalysisUsage &AU) const override { 5395 AU.setPreservesAll(); 5396 } 5397 }; 5398 5399 } // end anonymous namespace 5400 5401 /// Helper to issue failure from the TBAA verification 5402 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 5403 if (Diagnostic) 5404 return Diagnostic->CheckFailed(Args...); 5405 } 5406 5407 #define AssertTBAA(C, ...) \ 5408 do { \ 5409 if (!(C)) { \ 5410 CheckFailed(__VA_ARGS__); \ 5411 return false; \ 5412 } \ 5413 } while (false) 5414 5415 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 5416 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 5417 /// struct-type node describing an aggregate data structure (like a struct). 5418 TBAAVerifier::TBAABaseNodeSummary 5419 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 5420 bool IsNewFormat) { 5421 if (BaseNode->getNumOperands() < 2) { 5422 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 5423 return {true, ~0u}; 5424 } 5425 5426 auto Itr = TBAABaseNodes.find(BaseNode); 5427 if (Itr != TBAABaseNodes.end()) 5428 return Itr->second; 5429 5430 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 5431 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 5432 (void)InsertResult; 5433 assert(InsertResult.second && "We just checked!"); 5434 return Result; 5435 } 5436 5437 TBAAVerifier::TBAABaseNodeSummary 5438 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 5439 bool IsNewFormat) { 5440 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 5441 5442 if (BaseNode->getNumOperands() == 2) { 5443 // Scalar nodes can only be accessed at offset 0. 5444 return isValidScalarTBAANode(BaseNode) 5445 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 5446 : InvalidNode; 5447 } 5448 5449 if (IsNewFormat) { 5450 if (BaseNode->getNumOperands() % 3 != 0) { 5451 CheckFailed("Access tag nodes must have the number of operands that is a " 5452 "multiple of 3!", BaseNode); 5453 return InvalidNode; 5454 } 5455 } else { 5456 if (BaseNode->getNumOperands() % 2 != 1) { 5457 CheckFailed("Struct tag nodes must have an odd number of operands!", 5458 BaseNode); 5459 return InvalidNode; 5460 } 5461 } 5462 5463 // Check the type size field. 5464 if (IsNewFormat) { 5465 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5466 BaseNode->getOperand(1)); 5467 if (!TypeSizeNode) { 5468 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 5469 return InvalidNode; 5470 } 5471 } 5472 5473 // Check the type name field. In the new format it can be anything. 5474 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 5475 CheckFailed("Struct tag nodes have a string as their first operand", 5476 BaseNode); 5477 return InvalidNode; 5478 } 5479 5480 bool Failed = false; 5481 5482 Optional<APInt> PrevOffset; 5483 unsigned BitWidth = ~0u; 5484 5485 // We've already checked that BaseNode is not a degenerate root node with one 5486 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 5487 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5488 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5489 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5490 Idx += NumOpsPerField) { 5491 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 5492 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 5493 if (!isa<MDNode>(FieldTy)) { 5494 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 5495 Failed = true; 5496 continue; 5497 } 5498 5499 auto *OffsetEntryCI = 5500 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 5501 if (!OffsetEntryCI) { 5502 CheckFailed("Offset entries must be constants!", &I, BaseNode); 5503 Failed = true; 5504 continue; 5505 } 5506 5507 if (BitWidth == ~0u) 5508 BitWidth = OffsetEntryCI->getBitWidth(); 5509 5510 if (OffsetEntryCI->getBitWidth() != BitWidth) { 5511 CheckFailed( 5512 "Bitwidth between the offsets and struct type entries must match", &I, 5513 BaseNode); 5514 Failed = true; 5515 continue; 5516 } 5517 5518 // NB! As far as I can tell, we generate a non-strictly increasing offset 5519 // sequence only from structs that have zero size bit fields. When 5520 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 5521 // pick the field lexically the latest in struct type metadata node. This 5522 // mirrors the actual behavior of the alias analysis implementation. 5523 bool IsAscending = 5524 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 5525 5526 if (!IsAscending) { 5527 CheckFailed("Offsets must be increasing!", &I, BaseNode); 5528 Failed = true; 5529 } 5530 5531 PrevOffset = OffsetEntryCI->getValue(); 5532 5533 if (IsNewFormat) { 5534 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5535 BaseNode->getOperand(Idx + 2)); 5536 if (!MemberSizeNode) { 5537 CheckFailed("Member size entries must be constants!", &I, BaseNode); 5538 Failed = true; 5539 continue; 5540 } 5541 } 5542 } 5543 5544 return Failed ? InvalidNode 5545 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 5546 } 5547 5548 static bool IsRootTBAANode(const MDNode *MD) { 5549 return MD->getNumOperands() < 2; 5550 } 5551 5552 static bool IsScalarTBAANodeImpl(const MDNode *MD, 5553 SmallPtrSetImpl<const MDNode *> &Visited) { 5554 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 5555 return false; 5556 5557 if (!isa<MDString>(MD->getOperand(0))) 5558 return false; 5559 5560 if (MD->getNumOperands() == 3) { 5561 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 5562 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 5563 return false; 5564 } 5565 5566 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5567 return Parent && Visited.insert(Parent).second && 5568 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 5569 } 5570 5571 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 5572 auto ResultIt = TBAAScalarNodes.find(MD); 5573 if (ResultIt != TBAAScalarNodes.end()) 5574 return ResultIt->second; 5575 5576 SmallPtrSet<const MDNode *, 4> Visited; 5577 bool Result = IsScalarTBAANodeImpl(MD, Visited); 5578 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 5579 (void)InsertResult; 5580 assert(InsertResult.second && "Just checked!"); 5581 5582 return Result; 5583 } 5584 5585 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 5586 /// Offset in place to be the offset within the field node returned. 5587 /// 5588 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 5589 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 5590 const MDNode *BaseNode, 5591 APInt &Offset, 5592 bool IsNewFormat) { 5593 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 5594 5595 // Scalar nodes have only one possible "field" -- their parent in the access 5596 // hierarchy. Offset must be zero at this point, but our caller is supposed 5597 // to Assert that. 5598 if (BaseNode->getNumOperands() == 2) 5599 return cast<MDNode>(BaseNode->getOperand(1)); 5600 5601 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5602 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5603 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5604 Idx += NumOpsPerField) { 5605 auto *OffsetEntryCI = 5606 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 5607 if (OffsetEntryCI->getValue().ugt(Offset)) { 5608 if (Idx == FirstFieldOpNo) { 5609 CheckFailed("Could not find TBAA parent in struct type node", &I, 5610 BaseNode, &Offset); 5611 return nullptr; 5612 } 5613 5614 unsigned PrevIdx = Idx - NumOpsPerField; 5615 auto *PrevOffsetEntryCI = 5616 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 5617 Offset -= PrevOffsetEntryCI->getValue(); 5618 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 5619 } 5620 } 5621 5622 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 5623 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 5624 BaseNode->getOperand(LastIdx + 1)); 5625 Offset -= LastOffsetEntryCI->getValue(); 5626 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 5627 } 5628 5629 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 5630 if (!Type || Type->getNumOperands() < 3) 5631 return false; 5632 5633 // In the new format type nodes shall have a reference to the parent type as 5634 // its first operand. 5635 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 5636 if (!Parent) 5637 return false; 5638 5639 return true; 5640 } 5641 5642 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 5643 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 5644 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 5645 isa<AtomicCmpXchgInst>(I), 5646 "This instruction shall not have a TBAA access tag!", &I); 5647 5648 bool IsStructPathTBAA = 5649 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 5650 5651 AssertTBAA( 5652 IsStructPathTBAA, 5653 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 5654 5655 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 5656 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5657 5658 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 5659 5660 if (IsNewFormat) { 5661 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 5662 "Access tag metadata must have either 4 or 5 operands", &I, MD); 5663 } else { 5664 AssertTBAA(MD->getNumOperands() < 5, 5665 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 5666 } 5667 5668 // Check the access size field. 5669 if (IsNewFormat) { 5670 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5671 MD->getOperand(3)); 5672 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 5673 } 5674 5675 // Check the immutability flag. 5676 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 5677 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 5678 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 5679 MD->getOperand(ImmutabilityFlagOpNo)); 5680 AssertTBAA(IsImmutableCI, 5681 "Immutability tag on struct tag metadata must be a constant", 5682 &I, MD); 5683 AssertTBAA( 5684 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 5685 "Immutability part of the struct tag metadata must be either 0 or 1", 5686 &I, MD); 5687 } 5688 5689 AssertTBAA(BaseNode && AccessType, 5690 "Malformed struct tag metadata: base and access-type " 5691 "should be non-null and point to Metadata nodes", 5692 &I, MD, BaseNode, AccessType); 5693 5694 if (!IsNewFormat) { 5695 AssertTBAA(isValidScalarTBAANode(AccessType), 5696 "Access type node must be a valid scalar type", &I, MD, 5697 AccessType); 5698 } 5699 5700 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 5701 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 5702 5703 APInt Offset = OffsetCI->getValue(); 5704 bool SeenAccessTypeInPath = false; 5705 5706 SmallPtrSet<MDNode *, 4> StructPath; 5707 5708 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 5709 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 5710 IsNewFormat)) { 5711 if (!StructPath.insert(BaseNode).second) { 5712 CheckFailed("Cycle detected in struct path", &I, MD); 5713 return false; 5714 } 5715 5716 bool Invalid; 5717 unsigned BaseNodeBitWidth; 5718 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 5719 IsNewFormat); 5720 5721 // If the base node is invalid in itself, then we've already printed all the 5722 // errors we wanted to print. 5723 if (Invalid) 5724 return false; 5725 5726 SeenAccessTypeInPath |= BaseNode == AccessType; 5727 5728 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 5729 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 5730 &I, MD, &Offset); 5731 5732 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 5733 (BaseNodeBitWidth == 0 && Offset == 0) || 5734 (IsNewFormat && BaseNodeBitWidth == ~0u), 5735 "Access bit-width not the same as description bit-width", &I, MD, 5736 BaseNodeBitWidth, Offset.getBitWidth()); 5737 5738 if (IsNewFormat && SeenAccessTypeInPath) 5739 break; 5740 } 5741 5742 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 5743 &I, MD); 5744 return true; 5745 } 5746 5747 char VerifierLegacyPass::ID = 0; 5748 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 5749 5750 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 5751 return new VerifierLegacyPass(FatalErrors); 5752 } 5753 5754 AnalysisKey VerifierAnalysis::Key; 5755 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 5756 ModuleAnalysisManager &) { 5757 Result Res; 5758 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 5759 return Res; 5760 } 5761 5762 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 5763 FunctionAnalysisManager &) { 5764 return { llvm::verifyFunction(F, &dbgs()), false }; 5765 } 5766 5767 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 5768 auto Res = AM.getResult<VerifierAnalysis>(M); 5769 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 5770 report_fatal_error("Broken module found, compilation aborted!"); 5771 5772 return PreservedAnalyses::all(); 5773 } 5774 5775 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 5776 auto res = AM.getResult<VerifierAnalysis>(F); 5777 if (res.IRBroken && FatalErrors) 5778 report_fatal_error("Broken function found, compilation aborted!"); 5779 5780 return PreservedAnalyses::all(); 5781 } 5782