1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the function verifier interface, that can be used for some 11 // sanity checking of input to the system. 12 // 13 // Note that this does not provide full `Java style' security and verifications, 14 // instead it just tries to ensure that code is well-formed. 15 // 16 // * Both of a binary operator's parameters are of the same type 17 // * Verify that the indices of mem access instructions match other operands 18 // * Verify that arithmetic and other things are only performed on first-class 19 // types. Verify that shifts & logicals only happen on integrals f.e. 20 // * All of the constants in a switch statement are of the correct type 21 // * The code is in valid SSA form 22 // * It should be illegal to put a label into any other type (like a structure) 23 // or to return one. [except constant arrays!] 24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 25 // * PHI nodes must have an entry for each predecessor, with no extras. 26 // * PHI nodes must be the first thing in a basic block, all grouped together 27 // * PHI nodes must have at least one entry 28 // * All basic blocks should only end with terminator insts, not contain them 29 // * The entry node to a function must not have predecessors 30 // * All Instructions must be embedded into a basic block 31 // * Functions cannot take a void-typed parameter 32 // * Verify that a function's argument list agrees with it's declared type. 33 // * It is illegal to specify a name for a void value. 34 // * It is illegal to have a internal global value with no initializer 35 // * It is illegal to have a ret instruction that returns a value that does not 36 // agree with the function return value type. 37 // * Function call argument types match the function prototype 38 // * A landing pad is defined by a landingpad instruction, and can be jumped to 39 // only by the unwind edge of an invoke instruction. 40 // * A landingpad instruction must be the first non-PHI instruction in the 41 // block. 42 // * All landingpad instructions must use the same personality function with 43 // the same function. 44 // * All other things that are tested by asserts spread about the code... 45 // 46 //===----------------------------------------------------------------------===// 47 48 #include "llvm/IR/Verifier.h" 49 #include "llvm/ADT/STLExtras.h" 50 #include "llvm/ADT/SetVector.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallVector.h" 53 #include "llvm/ADT/StringExtras.h" 54 #include "llvm/IR/CFG.h" 55 #include "llvm/IR/CallSite.h" 56 #include "llvm/IR/CallingConv.h" 57 #include "llvm/IR/ConstantRange.h" 58 #include "llvm/IR/Constants.h" 59 #include "llvm/IR/DataLayout.h" 60 #include "llvm/IR/DebugInfo.h" 61 #include "llvm/IR/DerivedTypes.h" 62 #include "llvm/IR/Dominators.h" 63 #include "llvm/IR/InlineAsm.h" 64 #include "llvm/IR/InstIterator.h" 65 #include "llvm/IR/InstVisitor.h" 66 #include "llvm/IR/IntrinsicInst.h" 67 #include "llvm/IR/LLVMContext.h" 68 #include "llvm/IR/Metadata.h" 69 #include "llvm/IR/Module.h" 70 #include "llvm/IR/PassManager.h" 71 #include "llvm/Pass.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include <algorithm> 77 #include <cstdarg> 78 using namespace llvm; 79 80 static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(false)); 81 82 namespace { 83 struct VerifierSupport { 84 raw_ostream &OS; 85 const Module *M; 86 87 /// \brief Track the brokenness of the module while recursively visiting. 88 bool Broken; 89 90 explicit VerifierSupport(raw_ostream &OS) 91 : OS(OS), M(nullptr), Broken(false) {} 92 93 void WriteValue(const Value *V) { 94 if (!V) 95 return; 96 if (isa<Instruction>(V)) { 97 OS << *V << '\n'; 98 } else { 99 V->printAsOperand(OS, true, M); 100 OS << '\n'; 101 } 102 } 103 104 void WriteType(Type *T) { 105 if (!T) 106 return; 107 OS << ' ' << *T; 108 } 109 110 void WriteComdat(const Comdat *C) { 111 if (!C) 112 return; 113 OS << *C; 114 } 115 116 // CheckFailed - A check failed, so print out the condition and the message 117 // that failed. This provides a nice place to put a breakpoint if you want 118 // to see why something is not correct. 119 void CheckFailed(const Twine &Message, const Value *V1 = nullptr, 120 const Value *V2 = nullptr, const Value *V3 = nullptr, 121 const Value *V4 = nullptr) { 122 OS << Message.str() << "\n"; 123 WriteValue(V1); 124 WriteValue(V2); 125 WriteValue(V3); 126 WriteValue(V4); 127 Broken = true; 128 } 129 130 void CheckFailed(const Twine &Message, const Value *V1, Type *T2, 131 const Value *V3 = nullptr) { 132 OS << Message.str() << "\n"; 133 WriteValue(V1); 134 WriteType(T2); 135 WriteValue(V3); 136 Broken = true; 137 } 138 139 void CheckFailed(const Twine &Message, Type *T1, Type *T2 = nullptr, 140 Type *T3 = nullptr) { 141 OS << Message.str() << "\n"; 142 WriteType(T1); 143 WriteType(T2); 144 WriteType(T3); 145 Broken = true; 146 } 147 148 void CheckFailed(const Twine &Message, const Comdat *C) { 149 OS << Message.str() << "\n"; 150 WriteComdat(C); 151 Broken = true; 152 } 153 }; 154 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 155 friend class InstVisitor<Verifier>; 156 157 LLVMContext *Context; 158 const DataLayout *DL; 159 DominatorTree DT; 160 161 /// \brief When verifying a basic block, keep track of all of the 162 /// instructions we have seen so far. 163 /// 164 /// This allows us to do efficient dominance checks for the case when an 165 /// instruction has an operand that is an instruction in the same block. 166 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 167 168 /// \brief Keep track of the metadata nodes that have been checked already. 169 SmallPtrSet<MDNode *, 32> MDNodes; 170 171 /// \brief The personality function referenced by the LandingPadInsts. 172 /// All LandingPadInsts within the same function must use the same 173 /// personality function. 174 const Value *PersonalityFn; 175 176 public: 177 explicit Verifier(raw_ostream &OS = dbgs()) 178 : VerifierSupport(OS), Context(nullptr), DL(nullptr), 179 PersonalityFn(nullptr) {} 180 181 bool verify(const Function &F) { 182 M = F.getParent(); 183 Context = &M->getContext(); 184 185 // First ensure the function is well-enough formed to compute dominance 186 // information. 187 if (F.empty()) { 188 OS << "Function '" << F.getName() 189 << "' does not contain an entry block!\n"; 190 return false; 191 } 192 for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) { 193 if (I->empty() || !I->back().isTerminator()) { 194 OS << "Basic Block in function '" << F.getName() 195 << "' does not have terminator!\n"; 196 I->printAsOperand(OS, true); 197 OS << "\n"; 198 return false; 199 } 200 } 201 202 // Now directly compute a dominance tree. We don't rely on the pass 203 // manager to provide this as it isolates us from a potentially 204 // out-of-date dominator tree and makes it significantly more complex to 205 // run this code outside of a pass manager. 206 // FIXME: It's really gross that we have to cast away constness here. 207 DT.recalculate(const_cast<Function &>(F)); 208 209 Broken = false; 210 // FIXME: We strip const here because the inst visitor strips const. 211 visit(const_cast<Function &>(F)); 212 InstsInThisBlock.clear(); 213 PersonalityFn = nullptr; 214 215 return !Broken; 216 } 217 218 bool verify(const Module &M) { 219 this->M = &M; 220 Context = &M.getContext(); 221 Broken = false; 222 223 // Scan through, checking all of the external function's linkage now... 224 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 225 visitGlobalValue(*I); 226 227 // Check to make sure function prototypes are okay. 228 if (I->isDeclaration()) 229 visitFunction(*I); 230 } 231 232 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 233 I != E; ++I) 234 visitGlobalVariable(*I); 235 236 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 237 I != E; ++I) 238 visitGlobalAlias(*I); 239 240 for (Module::const_named_metadata_iterator I = M.named_metadata_begin(), 241 E = M.named_metadata_end(); 242 I != E; ++I) 243 visitNamedMDNode(*I); 244 245 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 246 visitComdat(SMEC.getValue()); 247 248 visitModuleFlags(M); 249 visitModuleIdents(M); 250 251 return !Broken; 252 } 253 254 private: 255 // Verification methods... 256 void visitGlobalValue(const GlobalValue &GV); 257 void visitGlobalVariable(const GlobalVariable &GV); 258 void visitGlobalAlias(const GlobalAlias &GA); 259 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 260 void visitAliaseeSubExpr(SmallPtrSet<const GlobalAlias *, 4> &Visited, 261 const GlobalAlias &A, const Constant &C); 262 void visitNamedMDNode(const NamedMDNode &NMD); 263 void visitMDNode(MDNode &MD, Function *F); 264 void visitComdat(const Comdat &C); 265 void visitModuleIdents(const Module &M); 266 void visitModuleFlags(const Module &M); 267 void visitModuleFlag(const MDNode *Op, 268 DenseMap<const MDString *, const MDNode *> &SeenIDs, 269 SmallVectorImpl<const MDNode *> &Requirements); 270 void visitFunction(const Function &F); 271 void visitBasicBlock(BasicBlock &BB); 272 273 // InstVisitor overrides... 274 using InstVisitor<Verifier>::visit; 275 void visit(Instruction &I); 276 277 void visitTruncInst(TruncInst &I); 278 void visitZExtInst(ZExtInst &I); 279 void visitSExtInst(SExtInst &I); 280 void visitFPTruncInst(FPTruncInst &I); 281 void visitFPExtInst(FPExtInst &I); 282 void visitFPToUIInst(FPToUIInst &I); 283 void visitFPToSIInst(FPToSIInst &I); 284 void visitUIToFPInst(UIToFPInst &I); 285 void visitSIToFPInst(SIToFPInst &I); 286 void visitIntToPtrInst(IntToPtrInst &I); 287 void visitPtrToIntInst(PtrToIntInst &I); 288 void visitBitCastInst(BitCastInst &I); 289 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 290 void visitPHINode(PHINode &PN); 291 void visitBinaryOperator(BinaryOperator &B); 292 void visitICmpInst(ICmpInst &IC); 293 void visitFCmpInst(FCmpInst &FC); 294 void visitExtractElementInst(ExtractElementInst &EI); 295 void visitInsertElementInst(InsertElementInst &EI); 296 void visitShuffleVectorInst(ShuffleVectorInst &EI); 297 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 298 void visitCallInst(CallInst &CI); 299 void visitInvokeInst(InvokeInst &II); 300 void visitGetElementPtrInst(GetElementPtrInst &GEP); 301 void visitLoadInst(LoadInst &LI); 302 void visitStoreInst(StoreInst &SI); 303 void verifyDominatesUse(Instruction &I, unsigned i); 304 void visitInstruction(Instruction &I); 305 void visitTerminatorInst(TerminatorInst &I); 306 void visitBranchInst(BranchInst &BI); 307 void visitReturnInst(ReturnInst &RI); 308 void visitSwitchInst(SwitchInst &SI); 309 void visitIndirectBrInst(IndirectBrInst &BI); 310 void visitSelectInst(SelectInst &SI); 311 void visitUserOp1(Instruction &I); 312 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 313 void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI); 314 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 315 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 316 void visitFenceInst(FenceInst &FI); 317 void visitAllocaInst(AllocaInst &AI); 318 void visitExtractValueInst(ExtractValueInst &EVI); 319 void visitInsertValueInst(InsertValueInst &IVI); 320 void visitLandingPadInst(LandingPadInst &LPI); 321 322 void VerifyCallSite(CallSite CS); 323 void verifyMustTailCall(CallInst &CI); 324 bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, 325 unsigned ArgNo, std::string &Suffix); 326 bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 327 SmallVectorImpl<Type *> &ArgTys); 328 bool VerifyIntrinsicIsVarArg(bool isVarArg, 329 ArrayRef<Intrinsic::IITDescriptor> &Infos); 330 bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params); 331 void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction, 332 const Value *V); 333 void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty, 334 bool isReturnValue, const Value *V); 335 void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs, 336 const Value *V); 337 338 void VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy); 339 void VerifyConstantExprBitcastType(const ConstantExpr *CE); 340 }; 341 class DebugInfoVerifier : public VerifierSupport { 342 public: 343 explicit DebugInfoVerifier(raw_ostream &OS = dbgs()) : VerifierSupport(OS) {} 344 345 bool verify(const Module &M) { 346 this->M = &M; 347 verifyDebugInfo(); 348 return !Broken; 349 } 350 351 private: 352 void verifyDebugInfo(); 353 void processInstructions(DebugInfoFinder &Finder); 354 void processCallInst(DebugInfoFinder &Finder, const CallInst &CI); 355 }; 356 } // End anonymous namespace 357 358 // Assert - We know that cond should be true, if not print an error message. 359 #define Assert(C, M) \ 360 do { if (!(C)) { CheckFailed(M); return; } } while (0) 361 #define Assert1(C, M, V1) \ 362 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0) 363 #define Assert2(C, M, V1, V2) \ 364 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0) 365 #define Assert3(C, M, V1, V2, V3) \ 366 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0) 367 #define Assert4(C, M, V1, V2, V3, V4) \ 368 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0) 369 370 void Verifier::visit(Instruction &I) { 371 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 372 Assert1(I.getOperand(i) != nullptr, "Operand is null", &I); 373 InstVisitor<Verifier>::visit(I); 374 } 375 376 377 void Verifier::visitGlobalValue(const GlobalValue &GV) { 378 Assert1(!GV.isDeclaration() || GV.isMaterializable() || 379 GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(), 380 "Global is external, but doesn't have external or weak linkage!", 381 &GV); 382 383 Assert1(GV.getAlignment() <= Value::MaximumAlignment, 384 "huge alignment values are unsupported", &GV); 385 Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 386 "Only global variables can have appending linkage!", &GV); 387 388 if (GV.hasAppendingLinkage()) { 389 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 390 Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(), 391 "Only global arrays can have appending linkage!", GVar); 392 } 393 } 394 395 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 396 if (GV.hasInitializer()) { 397 Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(), 398 "Global variable initializer type does not match global " 399 "variable type!", &GV); 400 401 // If the global has common linkage, it must have a zero initializer and 402 // cannot be constant. 403 if (GV.hasCommonLinkage()) { 404 Assert1(GV.getInitializer()->isNullValue(), 405 "'common' global must have a zero initializer!", &GV); 406 Assert1(!GV.isConstant(), "'common' global may not be marked constant!", 407 &GV); 408 Assert1(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 409 } 410 } else { 411 Assert1(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(), 412 "invalid linkage type for global declaration", &GV); 413 } 414 415 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 416 GV.getName() == "llvm.global_dtors")) { 417 Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(), 418 "invalid linkage for intrinsic global variable", &GV); 419 // Don't worry about emitting an error for it not being an array, 420 // visitGlobalValue will complain on appending non-array. 421 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType()->getElementType())) { 422 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 423 PointerType *FuncPtrTy = 424 FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo(); 425 // FIXME: Reject the 2-field form in LLVM 4.0. 426 Assert1(STy && (STy->getNumElements() == 2 || 427 STy->getNumElements() == 3) && 428 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 429 STy->getTypeAtIndex(1) == FuncPtrTy, 430 "wrong type for intrinsic global variable", &GV); 431 if (STy->getNumElements() == 3) { 432 Type *ETy = STy->getTypeAtIndex(2); 433 Assert1(ETy->isPointerTy() && 434 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 435 "wrong type for intrinsic global variable", &GV); 436 } 437 } 438 } 439 440 if (GV.hasName() && (GV.getName() == "llvm.used" || 441 GV.getName() == "llvm.compiler.used")) { 442 Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(), 443 "invalid linkage for intrinsic global variable", &GV); 444 Type *GVType = GV.getType()->getElementType(); 445 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 446 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 447 Assert1(PTy, "wrong type for intrinsic global variable", &GV); 448 if (GV.hasInitializer()) { 449 const Constant *Init = GV.getInitializer(); 450 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 451 Assert1(InitArray, "wrong initalizer for intrinsic global variable", 452 Init); 453 for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) { 454 Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases(); 455 Assert1( 456 isa<GlobalVariable>(V) || isa<Function>(V) || isa<GlobalAlias>(V), 457 "invalid llvm.used member", V); 458 Assert1(V->hasName(), "members of llvm.used must be named", V); 459 } 460 } 461 } 462 } 463 464 Assert1(!GV.hasDLLImportStorageClass() || 465 (GV.isDeclaration() && GV.hasExternalLinkage()) || 466 GV.hasAvailableExternallyLinkage(), 467 "Global is marked as dllimport, but not external", &GV); 468 469 if (!GV.hasInitializer()) { 470 visitGlobalValue(GV); 471 return; 472 } 473 474 // Walk any aggregate initializers looking for bitcasts between address spaces 475 SmallPtrSet<const Value *, 4> Visited; 476 SmallVector<const Value *, 4> WorkStack; 477 WorkStack.push_back(cast<Value>(GV.getInitializer())); 478 479 while (!WorkStack.empty()) { 480 const Value *V = WorkStack.pop_back_val(); 481 if (!Visited.insert(V)) 482 continue; 483 484 if (const User *U = dyn_cast<User>(V)) { 485 for (unsigned I = 0, N = U->getNumOperands(); I != N; ++I) 486 WorkStack.push_back(U->getOperand(I)); 487 } 488 489 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 490 VerifyConstantExprBitcastType(CE); 491 if (Broken) 492 return; 493 } 494 } 495 496 visitGlobalValue(GV); 497 } 498 499 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 500 SmallPtrSet<const GlobalAlias*, 4> Visited; 501 Visited.insert(&GA); 502 visitAliaseeSubExpr(Visited, GA, C); 503 } 504 505 void Verifier::visitAliaseeSubExpr(SmallPtrSet<const GlobalAlias *, 4> &Visited, 506 const GlobalAlias &GA, const Constant &C) { 507 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 508 Assert1(!GV->isDeclaration(), "Alias must point to a definition", &GA); 509 510 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 511 Assert1(Visited.insert(GA2), "Aliases cannot form a cycle", &GA); 512 513 Assert1(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias", 514 &GA); 515 } else { 516 // Only continue verifying subexpressions of GlobalAliases. 517 // Do not recurse into global initializers. 518 return; 519 } 520 } 521 522 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 523 VerifyConstantExprBitcastType(CE); 524 525 for (const Use &U : C.operands()) { 526 Value *V = &*U; 527 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 528 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 529 else if (const auto *C2 = dyn_cast<Constant>(V)) 530 visitAliaseeSubExpr(Visited, GA, *C2); 531 } 532 } 533 534 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 535 Assert1(!GA.getName().empty(), 536 "Alias name cannot be empty!", &GA); 537 Assert1(GlobalAlias::isValidLinkage(GA.getLinkage()), 538 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 539 "weak_odr, or external linkage!", 540 &GA); 541 const Constant *Aliasee = GA.getAliasee(); 542 Assert1(Aliasee, "Aliasee cannot be NULL!", &GA); 543 Assert1(GA.getType() == Aliasee->getType(), 544 "Alias and aliasee types should match!", &GA); 545 546 Assert1(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 547 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 548 549 visitAliaseeSubExpr(GA, *Aliasee); 550 551 visitGlobalValue(GA); 552 } 553 554 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 555 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) { 556 MDNode *MD = NMD.getOperand(i); 557 if (!MD) 558 continue; 559 560 Assert1(!MD->isFunctionLocal(), 561 "Named metadata operand cannot be function local!", MD); 562 visitMDNode(*MD, nullptr); 563 } 564 } 565 566 void Verifier::visitMDNode(MDNode &MD, Function *F) { 567 // Only visit each node once. Metadata can be mutually recursive, so this 568 // avoids infinite recursion here, as well as being an optimization. 569 if (!MDNodes.insert(&MD)) 570 return; 571 572 for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) { 573 Value *Op = MD.getOperand(i); 574 if (!Op) 575 continue; 576 if (isa<Constant>(Op) || isa<MDString>(Op)) 577 continue; 578 if (MDNode *N = dyn_cast<MDNode>(Op)) { 579 Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(), 580 "Global metadata operand cannot be function local!", &MD, N); 581 visitMDNode(*N, F); 582 continue; 583 } 584 Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op); 585 586 // If this was an instruction, bb, or argument, verify that it is in the 587 // function that we expect. 588 Function *ActualF = nullptr; 589 if (Instruction *I = dyn_cast<Instruction>(Op)) 590 ActualF = I->getParent()->getParent(); 591 else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op)) 592 ActualF = BB->getParent(); 593 else if (Argument *A = dyn_cast<Argument>(Op)) 594 ActualF = A->getParent(); 595 assert(ActualF && "Unimplemented function local metadata case!"); 596 597 Assert2(ActualF == F, "function-local metadata used in wrong function", 598 &MD, Op); 599 } 600 } 601 602 void Verifier::visitComdat(const Comdat &C) { 603 // All Comdat::SelectionKind values other than Comdat::Any require a 604 // GlobalValue with the same name as the Comdat. 605 const GlobalValue *GV = M->getNamedValue(C.getName()); 606 if (C.getSelectionKind() != Comdat::Any) 607 Assert1(GV, 608 "comdat selection kind requires a global value with the same name", 609 &C); 610 // The Module is invalid if the GlobalValue has private linkage. Entities 611 // with private linkage don't have entries in the symbol table. 612 if (GV) 613 Assert1(!GV->hasPrivateLinkage(), "comdat global value has private linkage", 614 GV); 615 } 616 617 void Verifier::visitModuleIdents(const Module &M) { 618 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 619 if (!Idents) 620 return; 621 622 // llvm.ident takes a list of metadata entry. Each entry has only one string. 623 // Scan each llvm.ident entry and make sure that this requirement is met. 624 for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) { 625 const MDNode *N = Idents->getOperand(i); 626 Assert1(N->getNumOperands() == 1, 627 "incorrect number of operands in llvm.ident metadata", N); 628 Assert1(isa<MDString>(N->getOperand(0)), 629 ("invalid value for llvm.ident metadata entry operand" 630 "(the operand should be a string)"), 631 N->getOperand(0)); 632 } 633 } 634 635 void Verifier::visitModuleFlags(const Module &M) { 636 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 637 if (!Flags) return; 638 639 // Scan each flag, and track the flags and requirements. 640 DenseMap<const MDString*, const MDNode*> SeenIDs; 641 SmallVector<const MDNode*, 16> Requirements; 642 for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) { 643 visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements); 644 } 645 646 // Validate that the requirements in the module are valid. 647 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) { 648 const MDNode *Requirement = Requirements[I]; 649 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 650 const Value *ReqValue = Requirement->getOperand(1); 651 652 const MDNode *Op = SeenIDs.lookup(Flag); 653 if (!Op) { 654 CheckFailed("invalid requirement on flag, flag is not present in module", 655 Flag); 656 continue; 657 } 658 659 if (Op->getOperand(2) != ReqValue) { 660 CheckFailed(("invalid requirement on flag, " 661 "flag does not have the required value"), 662 Flag); 663 continue; 664 } 665 } 666 } 667 668 void 669 Verifier::visitModuleFlag(const MDNode *Op, 670 DenseMap<const MDString *, const MDNode *> &SeenIDs, 671 SmallVectorImpl<const MDNode *> &Requirements) { 672 // Each module flag should have three arguments, the merge behavior (a 673 // constant int), the flag ID (an MDString), and the value. 674 Assert1(Op->getNumOperands() == 3, 675 "incorrect number of operands in module flag", Op); 676 ConstantInt *Behavior = dyn_cast<ConstantInt>(Op->getOperand(0)); 677 MDString *ID = dyn_cast<MDString>(Op->getOperand(1)); 678 Assert1(Behavior, 679 "invalid behavior operand in module flag (expected constant integer)", 680 Op->getOperand(0)); 681 unsigned BehaviorValue = Behavior->getZExtValue(); 682 Assert1(ID, 683 "invalid ID operand in module flag (expected metadata string)", 684 Op->getOperand(1)); 685 686 // Sanity check the values for behaviors with additional requirements. 687 switch (BehaviorValue) { 688 default: 689 Assert1(false, 690 "invalid behavior operand in module flag (unexpected constant)", 691 Op->getOperand(0)); 692 break; 693 694 case Module::Error: 695 case Module::Warning: 696 case Module::Override: 697 // These behavior types accept any value. 698 break; 699 700 case Module::Require: { 701 // The value should itself be an MDNode with two operands, a flag ID (an 702 // MDString), and a value. 703 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 704 Assert1(Value && Value->getNumOperands() == 2, 705 "invalid value for 'require' module flag (expected metadata pair)", 706 Op->getOperand(2)); 707 Assert1(isa<MDString>(Value->getOperand(0)), 708 ("invalid value for 'require' module flag " 709 "(first value operand should be a string)"), 710 Value->getOperand(0)); 711 712 // Append it to the list of requirements, to check once all module flags are 713 // scanned. 714 Requirements.push_back(Value); 715 break; 716 } 717 718 case Module::Append: 719 case Module::AppendUnique: { 720 // These behavior types require the operand be an MDNode. 721 Assert1(isa<MDNode>(Op->getOperand(2)), 722 "invalid value for 'append'-type module flag " 723 "(expected a metadata node)", Op->getOperand(2)); 724 break; 725 } 726 } 727 728 // Unless this is a "requires" flag, check the ID is unique. 729 if (BehaviorValue != Module::Require) { 730 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 731 Assert1(Inserted, 732 "module flag identifiers must be unique (or of 'require' type)", 733 ID); 734 } 735 } 736 737 void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, 738 bool isFunction, const Value *V) { 739 unsigned Slot = ~0U; 740 for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I) 741 if (Attrs.getSlotIndex(I) == Idx) { 742 Slot = I; 743 break; 744 } 745 746 assert(Slot != ~0U && "Attribute set inconsistency!"); 747 748 for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot); 749 I != E; ++I) { 750 if (I->isStringAttribute()) 751 continue; 752 753 if (I->getKindAsEnum() == Attribute::NoReturn || 754 I->getKindAsEnum() == Attribute::NoUnwind || 755 I->getKindAsEnum() == Attribute::NoInline || 756 I->getKindAsEnum() == Attribute::AlwaysInline || 757 I->getKindAsEnum() == Attribute::OptimizeForSize || 758 I->getKindAsEnum() == Attribute::StackProtect || 759 I->getKindAsEnum() == Attribute::StackProtectReq || 760 I->getKindAsEnum() == Attribute::StackProtectStrong || 761 I->getKindAsEnum() == Attribute::NoRedZone || 762 I->getKindAsEnum() == Attribute::NoImplicitFloat || 763 I->getKindAsEnum() == Attribute::Naked || 764 I->getKindAsEnum() == Attribute::InlineHint || 765 I->getKindAsEnum() == Attribute::StackAlignment || 766 I->getKindAsEnum() == Attribute::UWTable || 767 I->getKindAsEnum() == Attribute::NonLazyBind || 768 I->getKindAsEnum() == Attribute::ReturnsTwice || 769 I->getKindAsEnum() == Attribute::SanitizeAddress || 770 I->getKindAsEnum() == Attribute::SanitizeThread || 771 I->getKindAsEnum() == Attribute::SanitizeMemory || 772 I->getKindAsEnum() == Attribute::MinSize || 773 I->getKindAsEnum() == Attribute::NoDuplicate || 774 I->getKindAsEnum() == Attribute::Builtin || 775 I->getKindAsEnum() == Attribute::NoBuiltin || 776 I->getKindAsEnum() == Attribute::Cold || 777 I->getKindAsEnum() == Attribute::OptimizeNone || 778 I->getKindAsEnum() == Attribute::JumpTable) { 779 if (!isFunction) { 780 CheckFailed("Attribute '" + I->getAsString() + 781 "' only applies to functions!", V); 782 return; 783 } 784 } else if (I->getKindAsEnum() == Attribute::ReadOnly || 785 I->getKindAsEnum() == Attribute::ReadNone) { 786 if (Idx == 0) { 787 CheckFailed("Attribute '" + I->getAsString() + 788 "' does not apply to function returns"); 789 return; 790 } 791 } else if (isFunction) { 792 CheckFailed("Attribute '" + I->getAsString() + 793 "' does not apply to functions!", V); 794 return; 795 } 796 } 797 } 798 799 // VerifyParameterAttrs - Check the given attributes for an argument or return 800 // value of the specified type. The value V is printed in error messages. 801 void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty, 802 bool isReturnValue, const Value *V) { 803 if (!Attrs.hasAttributes(Idx)) 804 return; 805 806 VerifyAttributeTypes(Attrs, Idx, false, V); 807 808 if (isReturnValue) 809 Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) && 810 !Attrs.hasAttribute(Idx, Attribute::Nest) && 811 !Attrs.hasAttribute(Idx, Attribute::StructRet) && 812 !Attrs.hasAttribute(Idx, Attribute::NoCapture) && 813 !Attrs.hasAttribute(Idx, Attribute::Returned) && 814 !Attrs.hasAttribute(Idx, Attribute::InAlloca), 815 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and " 816 "'returned' do not apply to return values!", V); 817 818 // Check for mutually incompatible attributes. Only inreg is compatible with 819 // sret. 820 unsigned AttrCount = 0; 821 AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal); 822 AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca); 823 AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) || 824 Attrs.hasAttribute(Idx, Attribute::InReg); 825 AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest); 826 Assert1(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " 827 "and 'sret' are incompatible!", V); 828 829 Assert1(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) && 830 Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes " 831 "'inalloca and readonly' are incompatible!", V); 832 833 Assert1(!(Attrs.hasAttribute(Idx, Attribute::StructRet) && 834 Attrs.hasAttribute(Idx, Attribute::Returned)), "Attributes " 835 "'sret and returned' are incompatible!", V); 836 837 Assert1(!(Attrs.hasAttribute(Idx, Attribute::ZExt) && 838 Attrs.hasAttribute(Idx, Attribute::SExt)), "Attributes " 839 "'zeroext and signext' are incompatible!", V); 840 841 Assert1(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) && 842 Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes " 843 "'readnone and readonly' are incompatible!", V); 844 845 Assert1(!(Attrs.hasAttribute(Idx, Attribute::NoInline) && 846 Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), "Attributes " 847 "'noinline and alwaysinline' are incompatible!", V); 848 849 Assert1(!AttrBuilder(Attrs, Idx). 850 hasAttributes(AttributeFuncs::typeIncompatible(Ty, Idx), Idx), 851 "Wrong types for attribute: " + 852 AttributeFuncs::typeIncompatible(Ty, Idx).getAsString(Idx), V); 853 854 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 855 if (!PTy->getElementType()->isSized()) { 856 Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) && 857 !Attrs.hasAttribute(Idx, Attribute::InAlloca), 858 "Attributes 'byval' and 'inalloca' do not support unsized types!", 859 V); 860 } 861 } else { 862 Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal), 863 "Attribute 'byval' only applies to parameters with pointer type!", 864 V); 865 } 866 } 867 868 // VerifyFunctionAttrs - Check parameter attributes against a function type. 869 // The value V is printed in error messages. 870 void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs, 871 const Value *V) { 872 if (Attrs.isEmpty()) 873 return; 874 875 bool SawNest = false; 876 bool SawReturned = false; 877 bool SawSRet = false; 878 879 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { 880 unsigned Idx = Attrs.getSlotIndex(i); 881 882 Type *Ty; 883 if (Idx == 0) 884 Ty = FT->getReturnType(); 885 else if (Idx-1 < FT->getNumParams()) 886 Ty = FT->getParamType(Idx-1); 887 else 888 break; // VarArgs attributes, verified elsewhere. 889 890 VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V); 891 892 if (Idx == 0) 893 continue; 894 895 if (Attrs.hasAttribute(Idx, Attribute::Nest)) { 896 Assert1(!SawNest, "More than one parameter has attribute nest!", V); 897 SawNest = true; 898 } 899 900 if (Attrs.hasAttribute(Idx, Attribute::Returned)) { 901 Assert1(!SawReturned, "More than one parameter has attribute returned!", 902 V); 903 Assert1(Ty->canLosslesslyBitCastTo(FT->getReturnType()), "Incompatible " 904 "argument and return types for 'returned' attribute", V); 905 SawReturned = true; 906 } 907 908 if (Attrs.hasAttribute(Idx, Attribute::StructRet)) { 909 Assert1(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 910 Assert1(Idx == 1 || Idx == 2, 911 "Attribute 'sret' is not on first or second parameter!", V); 912 SawSRet = true; 913 } 914 915 if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) { 916 Assert1(Idx == FT->getNumParams(), 917 "inalloca isn't on the last parameter!", V); 918 } 919 } 920 921 if (!Attrs.hasAttributes(AttributeSet::FunctionIndex)) 922 return; 923 924 VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V); 925 926 Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, 927 Attribute::ReadNone) && 928 Attrs.hasAttribute(AttributeSet::FunctionIndex, 929 Attribute::ReadOnly)), 930 "Attributes 'readnone and readonly' are incompatible!", V); 931 932 Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, 933 Attribute::NoInline) && 934 Attrs.hasAttribute(AttributeSet::FunctionIndex, 935 Attribute::AlwaysInline)), 936 "Attributes 'noinline and alwaysinline' are incompatible!", V); 937 938 if (Attrs.hasAttribute(AttributeSet::FunctionIndex, 939 Attribute::OptimizeNone)) { 940 Assert1(Attrs.hasAttribute(AttributeSet::FunctionIndex, 941 Attribute::NoInline), 942 "Attribute 'optnone' requires 'noinline'!", V); 943 944 Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex, 945 Attribute::OptimizeForSize), 946 "Attributes 'optsize and optnone' are incompatible!", V); 947 948 Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex, 949 Attribute::MinSize), 950 "Attributes 'minsize and optnone' are incompatible!", V); 951 } 952 953 if (Attrs.hasAttribute(AttributeSet::FunctionIndex, 954 Attribute::JumpTable)) { 955 const GlobalValue *GV = cast<GlobalValue>(V); 956 Assert1(GV->hasUnnamedAddr(), 957 "Attribute 'jumptable' requires 'unnamed_addr'", V); 958 959 } 960 } 961 962 void Verifier::VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy) { 963 // Get the size of the types in bits, we'll need this later 964 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); 965 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); 966 967 // BitCast implies a no-op cast of type only. No bits change. 968 // However, you can't cast pointers to anything but pointers. 969 Assert1(SrcTy->isPointerTy() == DestTy->isPointerTy(), 970 "Bitcast requires both operands to be pointer or neither", V); 971 Assert1(SrcBitSize == DestBitSize, 972 "Bitcast requires types of same width", V); 973 974 // Disallow aggregates. 975 Assert1(!SrcTy->isAggregateType(), 976 "Bitcast operand must not be aggregate", V); 977 Assert1(!DestTy->isAggregateType(), 978 "Bitcast type must not be aggregate", V); 979 980 // Without datalayout, assume all address spaces are the same size. 981 // Don't check if both types are not pointers. 982 // Skip casts between scalars and vectors. 983 if (!DL || 984 !SrcTy->isPtrOrPtrVectorTy() || 985 !DestTy->isPtrOrPtrVectorTy() || 986 SrcTy->isVectorTy() != DestTy->isVectorTy()) { 987 return; 988 } 989 990 unsigned SrcAS = SrcTy->getPointerAddressSpace(); 991 unsigned DstAS = DestTy->getPointerAddressSpace(); 992 993 Assert1(SrcAS == DstAS, 994 "Bitcasts between pointers of different address spaces is not legal." 995 "Use AddrSpaceCast instead.", V); 996 } 997 998 void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) { 999 if (CE->getOpcode() == Instruction::BitCast) { 1000 Type *SrcTy = CE->getOperand(0)->getType(); 1001 Type *DstTy = CE->getType(); 1002 VerifyBitcastType(CE, DstTy, SrcTy); 1003 } 1004 } 1005 1006 bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) { 1007 if (Attrs.getNumSlots() == 0) 1008 return true; 1009 1010 unsigned LastSlot = Attrs.getNumSlots() - 1; 1011 unsigned LastIndex = Attrs.getSlotIndex(LastSlot); 1012 if (LastIndex <= Params 1013 || (LastIndex == AttributeSet::FunctionIndex 1014 && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params))) 1015 return true; 1016 1017 return false; 1018 } 1019 1020 // visitFunction - Verify that a function is ok. 1021 // 1022 void Verifier::visitFunction(const Function &F) { 1023 // Check function arguments. 1024 FunctionType *FT = F.getFunctionType(); 1025 unsigned NumArgs = F.arg_size(); 1026 1027 Assert1(Context == &F.getContext(), 1028 "Function context does not match Module context!", &F); 1029 1030 Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 1031 Assert2(FT->getNumParams() == NumArgs, 1032 "# formal arguments must match # of arguments for function type!", 1033 &F, FT); 1034 Assert1(F.getReturnType()->isFirstClassType() || 1035 F.getReturnType()->isVoidTy() || 1036 F.getReturnType()->isStructTy(), 1037 "Functions cannot return aggregate values!", &F); 1038 1039 Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 1040 "Invalid struct return type!", &F); 1041 1042 AttributeSet Attrs = F.getAttributes(); 1043 1044 Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()), 1045 "Attribute after last parameter!", &F); 1046 1047 // Check function attributes. 1048 VerifyFunctionAttrs(FT, Attrs, &F); 1049 1050 // On function declarations/definitions, we do not support the builtin 1051 // attribute. We do not check this in VerifyFunctionAttrs since that is 1052 // checking for Attributes that can/can not ever be on functions. 1053 Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex, 1054 Attribute::Builtin), 1055 "Attribute 'builtin' can only be applied to a callsite.", &F); 1056 1057 // Check that this function meets the restrictions on this calling convention. 1058 switch (F.getCallingConv()) { 1059 default: 1060 break; 1061 case CallingConv::C: 1062 break; 1063 case CallingConv::Fast: 1064 case CallingConv::Cold: 1065 case CallingConv::X86_FastCall: 1066 case CallingConv::X86_ThisCall: 1067 case CallingConv::Intel_OCL_BI: 1068 case CallingConv::PTX_Kernel: 1069 case CallingConv::PTX_Device: 1070 Assert1(!F.isVarArg(), 1071 "Varargs functions must have C calling conventions!", &F); 1072 break; 1073 } 1074 1075 bool isLLVMdotName = F.getName().size() >= 5 && 1076 F.getName().substr(0, 5) == "llvm."; 1077 1078 // Check that the argument values match the function type for this function... 1079 unsigned i = 0; 1080 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 1081 ++I, ++i) { 1082 Assert2(I->getType() == FT->getParamType(i), 1083 "Argument value does not match function argument type!", 1084 I, FT->getParamType(i)); 1085 Assert1(I->getType()->isFirstClassType(), 1086 "Function arguments must have first-class types!", I); 1087 if (!isLLVMdotName) 1088 Assert2(!I->getType()->isMetadataTy(), 1089 "Function takes metadata but isn't an intrinsic", I, &F); 1090 } 1091 1092 if (F.isMaterializable()) { 1093 // Function has a body somewhere we can't see. 1094 } else if (F.isDeclaration()) { 1095 Assert1(F.hasExternalLinkage() || F.hasExternalWeakLinkage(), 1096 "invalid linkage type for function declaration", &F); 1097 } else { 1098 // Verify that this function (which has a body) is not named "llvm.*". It 1099 // is not legal to define intrinsics. 1100 Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 1101 1102 // Check the entry node 1103 const BasicBlock *Entry = &F.getEntryBlock(); 1104 Assert1(pred_begin(Entry) == pred_end(Entry), 1105 "Entry block to function must not have predecessors!", Entry); 1106 1107 // The address of the entry block cannot be taken, unless it is dead. 1108 if (Entry->hasAddressTaken()) { 1109 Assert1(!BlockAddress::lookup(Entry)->isConstantUsed(), 1110 "blockaddress may not be used with the entry block!", Entry); 1111 } 1112 } 1113 1114 // If this function is actually an intrinsic, verify that it is only used in 1115 // direct call/invokes, never having its "address taken". 1116 if (F.getIntrinsicID()) { 1117 const User *U; 1118 if (F.hasAddressTaken(&U)) 1119 Assert1(0, "Invalid user of intrinsic instruction!", U); 1120 } 1121 1122 Assert1(!F.hasDLLImportStorageClass() || 1123 (F.isDeclaration() && F.hasExternalLinkage()) || 1124 F.hasAvailableExternallyLinkage(), 1125 "Function is marked as dllimport, but not external.", &F); 1126 } 1127 1128 // verifyBasicBlock - Verify that a basic block is well formed... 1129 // 1130 void Verifier::visitBasicBlock(BasicBlock &BB) { 1131 InstsInThisBlock.clear(); 1132 1133 // Ensure that basic blocks have terminators! 1134 Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 1135 1136 // Check constraints that this basic block imposes on all of the PHI nodes in 1137 // it. 1138 if (isa<PHINode>(BB.front())) { 1139 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 1140 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 1141 std::sort(Preds.begin(), Preds.end()); 1142 PHINode *PN; 1143 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) { 1144 // Ensure that PHI nodes have at least one entry! 1145 Assert1(PN->getNumIncomingValues() != 0, 1146 "PHI nodes must have at least one entry. If the block is dead, " 1147 "the PHI should be removed!", PN); 1148 Assert1(PN->getNumIncomingValues() == Preds.size(), 1149 "PHINode should have one entry for each predecessor of its " 1150 "parent basic block!", PN); 1151 1152 // Get and sort all incoming values in the PHI node... 1153 Values.clear(); 1154 Values.reserve(PN->getNumIncomingValues()); 1155 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1156 Values.push_back(std::make_pair(PN->getIncomingBlock(i), 1157 PN->getIncomingValue(i))); 1158 std::sort(Values.begin(), Values.end()); 1159 1160 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 1161 // Check to make sure that if there is more than one entry for a 1162 // particular basic block in this PHI node, that the incoming values are 1163 // all identical. 1164 // 1165 Assert4(i == 0 || Values[i].first != Values[i-1].first || 1166 Values[i].second == Values[i-1].second, 1167 "PHI node has multiple entries for the same basic block with " 1168 "different incoming values!", PN, Values[i].first, 1169 Values[i].second, Values[i-1].second); 1170 1171 // Check to make sure that the predecessors and PHI node entries are 1172 // matched up. 1173 Assert3(Values[i].first == Preds[i], 1174 "PHI node entries do not match predecessors!", PN, 1175 Values[i].first, Preds[i]); 1176 } 1177 } 1178 } 1179 } 1180 1181 void Verifier::visitTerminatorInst(TerminatorInst &I) { 1182 // Ensure that terminators only exist at the end of the basic block. 1183 Assert1(&I == I.getParent()->getTerminator(), 1184 "Terminator found in the middle of a basic block!", I.getParent()); 1185 visitInstruction(I); 1186 } 1187 1188 void Verifier::visitBranchInst(BranchInst &BI) { 1189 if (BI.isConditional()) { 1190 Assert2(BI.getCondition()->getType()->isIntegerTy(1), 1191 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 1192 } 1193 visitTerminatorInst(BI); 1194 } 1195 1196 void Verifier::visitReturnInst(ReturnInst &RI) { 1197 Function *F = RI.getParent()->getParent(); 1198 unsigned N = RI.getNumOperands(); 1199 if (F->getReturnType()->isVoidTy()) 1200 Assert2(N == 0, 1201 "Found return instr that returns non-void in Function of void " 1202 "return type!", &RI, F->getReturnType()); 1203 else 1204 Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 1205 "Function return type does not match operand " 1206 "type of return inst!", &RI, F->getReturnType()); 1207 1208 // Check to make sure that the return value has necessary properties for 1209 // terminators... 1210 visitTerminatorInst(RI); 1211 } 1212 1213 void Verifier::visitSwitchInst(SwitchInst &SI) { 1214 // Check to make sure that all of the constants in the switch instruction 1215 // have the same type as the switched-on value. 1216 Type *SwitchTy = SI.getCondition()->getType(); 1217 SmallPtrSet<ConstantInt*, 32> Constants; 1218 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) { 1219 Assert1(i.getCaseValue()->getType() == SwitchTy, 1220 "Switch constants must all be same type as switch value!", &SI); 1221 Assert2(Constants.insert(i.getCaseValue()), 1222 "Duplicate integer as switch case", &SI, i.getCaseValue()); 1223 } 1224 1225 visitTerminatorInst(SI); 1226 } 1227 1228 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 1229 Assert1(BI.getAddress()->getType()->isPointerTy(), 1230 "Indirectbr operand must have pointer type!", &BI); 1231 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 1232 Assert1(BI.getDestination(i)->getType()->isLabelTy(), 1233 "Indirectbr destinations must all have pointer type!", &BI); 1234 1235 visitTerminatorInst(BI); 1236 } 1237 1238 void Verifier::visitSelectInst(SelectInst &SI) { 1239 Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 1240 SI.getOperand(2)), 1241 "Invalid operands for select instruction!", &SI); 1242 1243 Assert1(SI.getTrueValue()->getType() == SI.getType(), 1244 "Select values must have same type as select instruction!", &SI); 1245 visitInstruction(SI); 1246 } 1247 1248 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 1249 /// a pass, if any exist, it's an error. 1250 /// 1251 void Verifier::visitUserOp1(Instruction &I) { 1252 Assert1(0, "User-defined operators should not live outside of a pass!", &I); 1253 } 1254 1255 void Verifier::visitTruncInst(TruncInst &I) { 1256 // Get the source and destination types 1257 Type *SrcTy = I.getOperand(0)->getType(); 1258 Type *DestTy = I.getType(); 1259 1260 // Get the size of the types in bits, we'll need this later 1261 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1262 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1263 1264 Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 1265 Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 1266 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), 1267 "trunc source and destination must both be a vector or neither", &I); 1268 Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I); 1269 1270 visitInstruction(I); 1271 } 1272 1273 void Verifier::visitZExtInst(ZExtInst &I) { 1274 // Get the source and destination types 1275 Type *SrcTy = I.getOperand(0)->getType(); 1276 Type *DestTy = I.getType(); 1277 1278 // Get the size of the types in bits, we'll need this later 1279 Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 1280 Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 1281 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), 1282 "zext source and destination must both be a vector or neither", &I); 1283 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1284 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1285 1286 Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I); 1287 1288 visitInstruction(I); 1289 } 1290 1291 void Verifier::visitSExtInst(SExtInst &I) { 1292 // Get the source and destination types 1293 Type *SrcTy = I.getOperand(0)->getType(); 1294 Type *DestTy = I.getType(); 1295 1296 // Get the size of the types in bits, we'll need this later 1297 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1298 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1299 1300 Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 1301 Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 1302 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), 1303 "sext source and destination must both be a vector or neither", &I); 1304 Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I); 1305 1306 visitInstruction(I); 1307 } 1308 1309 void Verifier::visitFPTruncInst(FPTruncInst &I) { 1310 // Get the source and destination types 1311 Type *SrcTy = I.getOperand(0)->getType(); 1312 Type *DestTy = I.getType(); 1313 // Get the size of the types in bits, we'll need this later 1314 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1315 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1316 1317 Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I); 1318 Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I); 1319 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), 1320 "fptrunc source and destination must both be a vector or neither",&I); 1321 Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I); 1322 1323 visitInstruction(I); 1324 } 1325 1326 void Verifier::visitFPExtInst(FPExtInst &I) { 1327 // Get the source and destination types 1328 Type *SrcTy = I.getOperand(0)->getType(); 1329 Type *DestTy = I.getType(); 1330 1331 // Get the size of the types in bits, we'll need this later 1332 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1333 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1334 1335 Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I); 1336 Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I); 1337 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), 1338 "fpext source and destination must both be a vector or neither", &I); 1339 Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I); 1340 1341 visitInstruction(I); 1342 } 1343 1344 void Verifier::visitUIToFPInst(UIToFPInst &I) { 1345 // Get the source and destination types 1346 Type *SrcTy = I.getOperand(0)->getType(); 1347 Type *DestTy = I.getType(); 1348 1349 bool SrcVec = SrcTy->isVectorTy(); 1350 bool DstVec = DestTy->isVectorTy(); 1351 1352 Assert1(SrcVec == DstVec, 1353 "UIToFP source and dest must both be vector or scalar", &I); 1354 Assert1(SrcTy->isIntOrIntVectorTy(), 1355 "UIToFP source must be integer or integer vector", &I); 1356 Assert1(DestTy->isFPOrFPVectorTy(), 1357 "UIToFP result must be FP or FP vector", &I); 1358 1359 if (SrcVec && DstVec) 1360 Assert1(cast<VectorType>(SrcTy)->getNumElements() == 1361 cast<VectorType>(DestTy)->getNumElements(), 1362 "UIToFP source and dest vector length mismatch", &I); 1363 1364 visitInstruction(I); 1365 } 1366 1367 void Verifier::visitSIToFPInst(SIToFPInst &I) { 1368 // Get the source and destination types 1369 Type *SrcTy = I.getOperand(0)->getType(); 1370 Type *DestTy = I.getType(); 1371 1372 bool SrcVec = SrcTy->isVectorTy(); 1373 bool DstVec = DestTy->isVectorTy(); 1374 1375 Assert1(SrcVec == DstVec, 1376 "SIToFP source and dest must both be vector or scalar", &I); 1377 Assert1(SrcTy->isIntOrIntVectorTy(), 1378 "SIToFP source must be integer or integer vector", &I); 1379 Assert1(DestTy->isFPOrFPVectorTy(), 1380 "SIToFP result must be FP or FP vector", &I); 1381 1382 if (SrcVec && DstVec) 1383 Assert1(cast<VectorType>(SrcTy)->getNumElements() == 1384 cast<VectorType>(DestTy)->getNumElements(), 1385 "SIToFP source and dest vector length mismatch", &I); 1386 1387 visitInstruction(I); 1388 } 1389 1390 void Verifier::visitFPToUIInst(FPToUIInst &I) { 1391 // Get the source and destination types 1392 Type *SrcTy = I.getOperand(0)->getType(); 1393 Type *DestTy = I.getType(); 1394 1395 bool SrcVec = SrcTy->isVectorTy(); 1396 bool DstVec = DestTy->isVectorTy(); 1397 1398 Assert1(SrcVec == DstVec, 1399 "FPToUI source and dest must both be vector or scalar", &I); 1400 Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 1401 &I); 1402 Assert1(DestTy->isIntOrIntVectorTy(), 1403 "FPToUI result must be integer or integer vector", &I); 1404 1405 if (SrcVec && DstVec) 1406 Assert1(cast<VectorType>(SrcTy)->getNumElements() == 1407 cast<VectorType>(DestTy)->getNumElements(), 1408 "FPToUI source and dest vector length mismatch", &I); 1409 1410 visitInstruction(I); 1411 } 1412 1413 void Verifier::visitFPToSIInst(FPToSIInst &I) { 1414 // Get the source and destination types 1415 Type *SrcTy = I.getOperand(0)->getType(); 1416 Type *DestTy = I.getType(); 1417 1418 bool SrcVec = SrcTy->isVectorTy(); 1419 bool DstVec = DestTy->isVectorTy(); 1420 1421 Assert1(SrcVec == DstVec, 1422 "FPToSI source and dest must both be vector or scalar", &I); 1423 Assert1(SrcTy->isFPOrFPVectorTy(), 1424 "FPToSI source must be FP or FP vector", &I); 1425 Assert1(DestTy->isIntOrIntVectorTy(), 1426 "FPToSI result must be integer or integer vector", &I); 1427 1428 if (SrcVec && DstVec) 1429 Assert1(cast<VectorType>(SrcTy)->getNumElements() == 1430 cast<VectorType>(DestTy)->getNumElements(), 1431 "FPToSI source and dest vector length mismatch", &I); 1432 1433 visitInstruction(I); 1434 } 1435 1436 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 1437 // Get the source and destination types 1438 Type *SrcTy = I.getOperand(0)->getType(); 1439 Type *DestTy = I.getType(); 1440 1441 Assert1(SrcTy->getScalarType()->isPointerTy(), 1442 "PtrToInt source must be pointer", &I); 1443 Assert1(DestTy->getScalarType()->isIntegerTy(), 1444 "PtrToInt result must be integral", &I); 1445 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), 1446 "PtrToInt type mismatch", &I); 1447 1448 if (SrcTy->isVectorTy()) { 1449 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 1450 VectorType *VDest = dyn_cast<VectorType>(DestTy); 1451 Assert1(VSrc->getNumElements() == VDest->getNumElements(), 1452 "PtrToInt Vector width mismatch", &I); 1453 } 1454 1455 visitInstruction(I); 1456 } 1457 1458 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 1459 // Get the source and destination types 1460 Type *SrcTy = I.getOperand(0)->getType(); 1461 Type *DestTy = I.getType(); 1462 1463 Assert1(SrcTy->getScalarType()->isIntegerTy(), 1464 "IntToPtr source must be an integral", &I); 1465 Assert1(DestTy->getScalarType()->isPointerTy(), 1466 "IntToPtr result must be a pointer",&I); 1467 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), 1468 "IntToPtr type mismatch", &I); 1469 if (SrcTy->isVectorTy()) { 1470 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 1471 VectorType *VDest = dyn_cast<VectorType>(DestTy); 1472 Assert1(VSrc->getNumElements() == VDest->getNumElements(), 1473 "IntToPtr Vector width mismatch", &I); 1474 } 1475 visitInstruction(I); 1476 } 1477 1478 void Verifier::visitBitCastInst(BitCastInst &I) { 1479 Type *SrcTy = I.getOperand(0)->getType(); 1480 Type *DestTy = I.getType(); 1481 VerifyBitcastType(&I, DestTy, SrcTy); 1482 visitInstruction(I); 1483 } 1484 1485 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 1486 Type *SrcTy = I.getOperand(0)->getType(); 1487 Type *DestTy = I.getType(); 1488 1489 Assert1(SrcTy->isPtrOrPtrVectorTy(), 1490 "AddrSpaceCast source must be a pointer", &I); 1491 Assert1(DestTy->isPtrOrPtrVectorTy(), 1492 "AddrSpaceCast result must be a pointer", &I); 1493 Assert1(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 1494 "AddrSpaceCast must be between different address spaces", &I); 1495 if (SrcTy->isVectorTy()) 1496 Assert1(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), 1497 "AddrSpaceCast vector pointer number of elements mismatch", &I); 1498 visitInstruction(I); 1499 } 1500 1501 /// visitPHINode - Ensure that a PHI node is well formed. 1502 /// 1503 void Verifier::visitPHINode(PHINode &PN) { 1504 // Ensure that the PHI nodes are all grouped together at the top of the block. 1505 // This can be tested by checking whether the instruction before this is 1506 // either nonexistent (because this is begin()) or is a PHI node. If not, 1507 // then there is some other instruction before a PHI. 1508 Assert2(&PN == &PN.getParent()->front() || 1509 isa<PHINode>(--BasicBlock::iterator(&PN)), 1510 "PHI nodes not grouped at top of basic block!", 1511 &PN, PN.getParent()); 1512 1513 // Check that all of the values of the PHI node have the same type as the 1514 // result, and that the incoming blocks are really basic blocks. 1515 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1516 Assert1(PN.getType() == PN.getIncomingValue(i)->getType(), 1517 "PHI node operands are not the same type as the result!", &PN); 1518 } 1519 1520 // All other PHI node constraints are checked in the visitBasicBlock method. 1521 1522 visitInstruction(PN); 1523 } 1524 1525 void Verifier::VerifyCallSite(CallSite CS) { 1526 Instruction *I = CS.getInstruction(); 1527 1528 Assert1(CS.getCalledValue()->getType()->isPointerTy(), 1529 "Called function must be a pointer!", I); 1530 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType()); 1531 1532 Assert1(FPTy->getElementType()->isFunctionTy(), 1533 "Called function is not pointer to function type!", I); 1534 FunctionType *FTy = cast<FunctionType>(FPTy->getElementType()); 1535 1536 // Verify that the correct number of arguments are being passed 1537 if (FTy->isVarArg()) 1538 Assert1(CS.arg_size() >= FTy->getNumParams(), 1539 "Called function requires more parameters than were provided!",I); 1540 else 1541 Assert1(CS.arg_size() == FTy->getNumParams(), 1542 "Incorrect number of arguments passed to called function!", I); 1543 1544 // Verify that all arguments to the call match the function type. 1545 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1546 Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i), 1547 "Call parameter type does not match function signature!", 1548 CS.getArgument(i), FTy->getParamType(i), I); 1549 1550 AttributeSet Attrs = CS.getAttributes(); 1551 1552 Assert1(VerifyAttributeCount(Attrs, CS.arg_size()), 1553 "Attribute after last parameter!", I); 1554 1555 // Verify call attributes. 1556 VerifyFunctionAttrs(FTy, Attrs, I); 1557 1558 // Conservatively check the inalloca argument. 1559 // We have a bug if we can find that there is an underlying alloca without 1560 // inalloca. 1561 if (CS.hasInAllocaArgument()) { 1562 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1); 1563 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 1564 Assert2(AI->isUsedWithInAlloca(), 1565 "inalloca argument for call has mismatched alloca", AI, I); 1566 } 1567 1568 if (FTy->isVarArg()) { 1569 // FIXME? is 'nest' even legal here? 1570 bool SawNest = false; 1571 bool SawReturned = false; 1572 1573 for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) { 1574 if (Attrs.hasAttribute(Idx, Attribute::Nest)) 1575 SawNest = true; 1576 if (Attrs.hasAttribute(Idx, Attribute::Returned)) 1577 SawReturned = true; 1578 } 1579 1580 // Check attributes on the varargs part. 1581 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) { 1582 Type *Ty = CS.getArgument(Idx-1)->getType(); 1583 VerifyParameterAttrs(Attrs, Idx, Ty, false, I); 1584 1585 if (Attrs.hasAttribute(Idx, Attribute::Nest)) { 1586 Assert1(!SawNest, "More than one parameter has attribute nest!", I); 1587 SawNest = true; 1588 } 1589 1590 if (Attrs.hasAttribute(Idx, Attribute::Returned)) { 1591 Assert1(!SawReturned, "More than one parameter has attribute returned!", 1592 I); 1593 Assert1(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 1594 "Incompatible argument and return types for 'returned' " 1595 "attribute", I); 1596 SawReturned = true; 1597 } 1598 1599 Assert1(!Attrs.hasAttribute(Idx, Attribute::StructRet), 1600 "Attribute 'sret' cannot be used for vararg call arguments!", I); 1601 1602 if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) 1603 Assert1(Idx == CS.arg_size(), "inalloca isn't on the last argument!", 1604 I); 1605 } 1606 } 1607 1608 // Verify that there's no metadata unless it's a direct call to an intrinsic. 1609 if (CS.getCalledFunction() == nullptr || 1610 !CS.getCalledFunction()->getName().startswith("llvm.")) { 1611 for (FunctionType::param_iterator PI = FTy->param_begin(), 1612 PE = FTy->param_end(); PI != PE; ++PI) 1613 Assert1(!(*PI)->isMetadataTy(), 1614 "Function has metadata parameter but isn't an intrinsic", I); 1615 } 1616 1617 visitInstruction(*I); 1618 } 1619 1620 /// Two types are "congruent" if they are identical, or if they are both pointer 1621 /// types with different pointee types and the same address space. 1622 static bool isTypeCongruent(Type *L, Type *R) { 1623 if (L == R) 1624 return true; 1625 PointerType *PL = dyn_cast<PointerType>(L); 1626 PointerType *PR = dyn_cast<PointerType>(R); 1627 if (!PL || !PR) 1628 return false; 1629 return PL->getAddressSpace() == PR->getAddressSpace(); 1630 } 1631 1632 static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) { 1633 static const Attribute::AttrKind ABIAttrs[] = { 1634 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 1635 Attribute::InReg, Attribute::Returned}; 1636 AttrBuilder Copy; 1637 for (auto AK : ABIAttrs) { 1638 if (Attrs.hasAttribute(I + 1, AK)) 1639 Copy.addAttribute(AK); 1640 } 1641 if (Attrs.hasAttribute(I + 1, Attribute::Alignment)) 1642 Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1)); 1643 return Copy; 1644 } 1645 1646 void Verifier::verifyMustTailCall(CallInst &CI) { 1647 Assert1(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 1648 1649 // - The caller and callee prototypes must match. Pointer types of 1650 // parameters or return types may differ in pointee type, but not 1651 // address space. 1652 Function *F = CI.getParent()->getParent(); 1653 auto GetFnTy = [](Value *V) { 1654 return cast<FunctionType>( 1655 cast<PointerType>(V->getType())->getElementType()); 1656 }; 1657 FunctionType *CallerTy = GetFnTy(F); 1658 FunctionType *CalleeTy = GetFnTy(CI.getCalledValue()); 1659 Assert1(CallerTy->getNumParams() == CalleeTy->getNumParams(), 1660 "cannot guarantee tail call due to mismatched parameter counts", &CI); 1661 Assert1(CallerTy->isVarArg() == CalleeTy->isVarArg(), 1662 "cannot guarantee tail call due to mismatched varargs", &CI); 1663 Assert1(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 1664 "cannot guarantee tail call due to mismatched return types", &CI); 1665 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 1666 Assert1( 1667 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 1668 "cannot guarantee tail call due to mismatched parameter types", &CI); 1669 } 1670 1671 // - The calling conventions of the caller and callee must match. 1672 Assert1(F->getCallingConv() == CI.getCallingConv(), 1673 "cannot guarantee tail call due to mismatched calling conv", &CI); 1674 1675 // - All ABI-impacting function attributes, such as sret, byval, inreg, 1676 // returned, and inalloca, must match. 1677 AttributeSet CallerAttrs = F->getAttributes(); 1678 AttributeSet CalleeAttrs = CI.getAttributes(); 1679 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 1680 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 1681 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 1682 Assert2(CallerABIAttrs == CalleeABIAttrs, 1683 "cannot guarantee tail call due to mismatched ABI impacting " 1684 "function attributes", &CI, CI.getOperand(I)); 1685 } 1686 1687 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 1688 // or a pointer bitcast followed by a ret instruction. 1689 // - The ret instruction must return the (possibly bitcasted) value 1690 // produced by the call or void. 1691 Value *RetVal = &CI; 1692 Instruction *Next = CI.getNextNode(); 1693 1694 // Handle the optional bitcast. 1695 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 1696 Assert1(BI->getOperand(0) == RetVal, 1697 "bitcast following musttail call must use the call", BI); 1698 RetVal = BI; 1699 Next = BI->getNextNode(); 1700 } 1701 1702 // Check the return. 1703 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 1704 Assert1(Ret, "musttail call must be precede a ret with an optional bitcast", 1705 &CI); 1706 Assert1(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 1707 "musttail call result must be returned", Ret); 1708 } 1709 1710 void Verifier::visitCallInst(CallInst &CI) { 1711 VerifyCallSite(&CI); 1712 1713 if (CI.isMustTailCall()) 1714 verifyMustTailCall(CI); 1715 1716 if (Function *F = CI.getCalledFunction()) 1717 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 1718 visitIntrinsicFunctionCall(ID, CI); 1719 } 1720 1721 void Verifier::visitInvokeInst(InvokeInst &II) { 1722 VerifyCallSite(&II); 1723 1724 // Verify that there is a landingpad instruction as the first non-PHI 1725 // instruction of the 'unwind' destination. 1726 Assert1(II.getUnwindDest()->isLandingPad(), 1727 "The unwind destination does not have a landingpad instruction!",&II); 1728 1729 visitTerminatorInst(II); 1730 } 1731 1732 /// visitBinaryOperator - Check that both arguments to the binary operator are 1733 /// of the same type! 1734 /// 1735 void Verifier::visitBinaryOperator(BinaryOperator &B) { 1736 Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 1737 "Both operands to a binary operator are not of the same type!", &B); 1738 1739 switch (B.getOpcode()) { 1740 // Check that integer arithmetic operators are only used with 1741 // integral operands. 1742 case Instruction::Add: 1743 case Instruction::Sub: 1744 case Instruction::Mul: 1745 case Instruction::SDiv: 1746 case Instruction::UDiv: 1747 case Instruction::SRem: 1748 case Instruction::URem: 1749 Assert1(B.getType()->isIntOrIntVectorTy(), 1750 "Integer arithmetic operators only work with integral types!", &B); 1751 Assert1(B.getType() == B.getOperand(0)->getType(), 1752 "Integer arithmetic operators must have same type " 1753 "for operands and result!", &B); 1754 break; 1755 // Check that floating-point arithmetic operators are only used with 1756 // floating-point operands. 1757 case Instruction::FAdd: 1758 case Instruction::FSub: 1759 case Instruction::FMul: 1760 case Instruction::FDiv: 1761 case Instruction::FRem: 1762 Assert1(B.getType()->isFPOrFPVectorTy(), 1763 "Floating-point arithmetic operators only work with " 1764 "floating-point types!", &B); 1765 Assert1(B.getType() == B.getOperand(0)->getType(), 1766 "Floating-point arithmetic operators must have same type " 1767 "for operands and result!", &B); 1768 break; 1769 // Check that logical operators are only used with integral operands. 1770 case Instruction::And: 1771 case Instruction::Or: 1772 case Instruction::Xor: 1773 Assert1(B.getType()->isIntOrIntVectorTy(), 1774 "Logical operators only work with integral types!", &B); 1775 Assert1(B.getType() == B.getOperand(0)->getType(), 1776 "Logical operators must have same type for operands and result!", 1777 &B); 1778 break; 1779 case Instruction::Shl: 1780 case Instruction::LShr: 1781 case Instruction::AShr: 1782 Assert1(B.getType()->isIntOrIntVectorTy(), 1783 "Shifts only work with integral types!", &B); 1784 Assert1(B.getType() == B.getOperand(0)->getType(), 1785 "Shift return type must be same as operands!", &B); 1786 break; 1787 default: 1788 llvm_unreachable("Unknown BinaryOperator opcode!"); 1789 } 1790 1791 visitInstruction(B); 1792 } 1793 1794 void Verifier::visitICmpInst(ICmpInst &IC) { 1795 // Check that the operands are the same type 1796 Type *Op0Ty = IC.getOperand(0)->getType(); 1797 Type *Op1Ty = IC.getOperand(1)->getType(); 1798 Assert1(Op0Ty == Op1Ty, 1799 "Both operands to ICmp instruction are not of the same type!", &IC); 1800 // Check that the operands are the right type 1801 Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(), 1802 "Invalid operand types for ICmp instruction", &IC); 1803 // Check that the predicate is valid. 1804 Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE && 1805 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE, 1806 "Invalid predicate in ICmp instruction!", &IC); 1807 1808 visitInstruction(IC); 1809 } 1810 1811 void Verifier::visitFCmpInst(FCmpInst &FC) { 1812 // Check that the operands are the same type 1813 Type *Op0Ty = FC.getOperand(0)->getType(); 1814 Type *Op1Ty = FC.getOperand(1)->getType(); 1815 Assert1(Op0Ty == Op1Ty, 1816 "Both operands to FCmp instruction are not of the same type!", &FC); 1817 // Check that the operands are the right type 1818 Assert1(Op0Ty->isFPOrFPVectorTy(), 1819 "Invalid operand types for FCmp instruction", &FC); 1820 // Check that the predicate is valid. 1821 Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE && 1822 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE, 1823 "Invalid predicate in FCmp instruction!", &FC); 1824 1825 visitInstruction(FC); 1826 } 1827 1828 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 1829 Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0), 1830 EI.getOperand(1)), 1831 "Invalid extractelement operands!", &EI); 1832 visitInstruction(EI); 1833 } 1834 1835 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 1836 Assert1(InsertElementInst::isValidOperands(IE.getOperand(0), 1837 IE.getOperand(1), 1838 IE.getOperand(2)), 1839 "Invalid insertelement operands!", &IE); 1840 visitInstruction(IE); 1841 } 1842 1843 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 1844 Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 1845 SV.getOperand(2)), 1846 "Invalid shufflevector operands!", &SV); 1847 visitInstruction(SV); 1848 } 1849 1850 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1851 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 1852 1853 Assert1(isa<PointerType>(TargetTy), 1854 "GEP base pointer is not a vector or a vector of pointers", &GEP); 1855 Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(), 1856 "GEP into unsized type!", &GEP); 1857 Assert1(GEP.getPointerOperandType()->isVectorTy() == 1858 GEP.getType()->isVectorTy(), "Vector GEP must return a vector value", 1859 &GEP); 1860 1861 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 1862 Type *ElTy = 1863 GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs); 1864 Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP); 1865 1866 Assert2(GEP.getType()->getScalarType()->isPointerTy() && 1867 cast<PointerType>(GEP.getType()->getScalarType())->getElementType() 1868 == ElTy, "GEP is not of right type for indices!", &GEP, ElTy); 1869 1870 if (GEP.getPointerOperandType()->isVectorTy()) { 1871 // Additional checks for vector GEPs. 1872 unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements(); 1873 Assert1(GepWidth == GEP.getType()->getVectorNumElements(), 1874 "Vector GEP result width doesn't match operand's", &GEP); 1875 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { 1876 Type *IndexTy = Idxs[i]->getType(); 1877 Assert1(IndexTy->isVectorTy(), 1878 "Vector GEP must have vector indices!", &GEP); 1879 unsigned IndexWidth = IndexTy->getVectorNumElements(); 1880 Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP); 1881 } 1882 } 1883 visitInstruction(GEP); 1884 } 1885 1886 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 1887 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 1888 } 1889 1890 void Verifier::visitLoadInst(LoadInst &LI) { 1891 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 1892 Assert1(PTy, "Load operand must be a pointer.", &LI); 1893 Type *ElTy = PTy->getElementType(); 1894 Assert2(ElTy == LI.getType(), 1895 "Load result type does not match pointer operand type!", &LI, ElTy); 1896 Assert1(LI.getAlignment() <= Value::MaximumAlignment, 1897 "huge alignment values are unsupported", &LI); 1898 if (LI.isAtomic()) { 1899 Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease, 1900 "Load cannot have Release ordering", &LI); 1901 Assert1(LI.getAlignment() != 0, 1902 "Atomic load must specify explicit alignment", &LI); 1903 if (!ElTy->isPointerTy()) { 1904 Assert2(ElTy->isIntegerTy(), 1905 "atomic load operand must have integer type!", 1906 &LI, ElTy); 1907 unsigned Size = ElTy->getPrimitiveSizeInBits(); 1908 Assert2(Size >= 8 && !(Size & (Size - 1)), 1909 "atomic load operand must be power-of-two byte-sized integer", 1910 &LI, ElTy); 1911 } 1912 } else { 1913 Assert1(LI.getSynchScope() == CrossThread, 1914 "Non-atomic load cannot have SynchronizationScope specified", &LI); 1915 } 1916 1917 if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) { 1918 unsigned NumOperands = Range->getNumOperands(); 1919 Assert1(NumOperands % 2 == 0, "Unfinished range!", Range); 1920 unsigned NumRanges = NumOperands / 2; 1921 Assert1(NumRanges >= 1, "It should have at least one range!", Range); 1922 1923 ConstantRange LastRange(1); // Dummy initial value 1924 for (unsigned i = 0; i < NumRanges; ++i) { 1925 ConstantInt *Low = dyn_cast<ConstantInt>(Range->getOperand(2*i)); 1926 Assert1(Low, "The lower limit must be an integer!", Low); 1927 ConstantInt *High = dyn_cast<ConstantInt>(Range->getOperand(2*i + 1)); 1928 Assert1(High, "The upper limit must be an integer!", High); 1929 Assert1(High->getType() == Low->getType() && 1930 High->getType() == ElTy, "Range types must match load type!", 1931 &LI); 1932 1933 APInt HighV = High->getValue(); 1934 APInt LowV = Low->getValue(); 1935 ConstantRange CurRange(LowV, HighV); 1936 Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(), 1937 "Range must not be empty!", Range); 1938 if (i != 0) { 1939 Assert1(CurRange.intersectWith(LastRange).isEmptySet(), 1940 "Intervals are overlapping", Range); 1941 Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 1942 Range); 1943 Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 1944 Range); 1945 } 1946 LastRange = ConstantRange(LowV, HighV); 1947 } 1948 if (NumRanges > 2) { 1949 APInt FirstLow = 1950 dyn_cast<ConstantInt>(Range->getOperand(0))->getValue(); 1951 APInt FirstHigh = 1952 dyn_cast<ConstantInt>(Range->getOperand(1))->getValue(); 1953 ConstantRange FirstRange(FirstLow, FirstHigh); 1954 Assert1(FirstRange.intersectWith(LastRange).isEmptySet(), 1955 "Intervals are overlapping", Range); 1956 Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 1957 Range); 1958 } 1959 1960 1961 } 1962 1963 visitInstruction(LI); 1964 } 1965 1966 void Verifier::visitStoreInst(StoreInst &SI) { 1967 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 1968 Assert1(PTy, "Store operand must be a pointer.", &SI); 1969 Type *ElTy = PTy->getElementType(); 1970 Assert2(ElTy == SI.getOperand(0)->getType(), 1971 "Stored value type does not match pointer operand type!", 1972 &SI, ElTy); 1973 Assert1(SI.getAlignment() <= Value::MaximumAlignment, 1974 "huge alignment values are unsupported", &SI); 1975 if (SI.isAtomic()) { 1976 Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease, 1977 "Store cannot have Acquire ordering", &SI); 1978 Assert1(SI.getAlignment() != 0, 1979 "Atomic store must specify explicit alignment", &SI); 1980 if (!ElTy->isPointerTy()) { 1981 Assert2(ElTy->isIntegerTy(), 1982 "atomic store operand must have integer type!", 1983 &SI, ElTy); 1984 unsigned Size = ElTy->getPrimitiveSizeInBits(); 1985 Assert2(Size >= 8 && !(Size & (Size - 1)), 1986 "atomic store operand must be power-of-two byte-sized integer", 1987 &SI, ElTy); 1988 } 1989 } else { 1990 Assert1(SI.getSynchScope() == CrossThread, 1991 "Non-atomic store cannot have SynchronizationScope specified", &SI); 1992 } 1993 visitInstruction(SI); 1994 } 1995 1996 void Verifier::visitAllocaInst(AllocaInst &AI) { 1997 SmallPtrSet<const Type*, 4> Visited; 1998 PointerType *PTy = AI.getType(); 1999 Assert1(PTy->getAddressSpace() == 0, 2000 "Allocation instruction pointer not in the generic address space!", 2001 &AI); 2002 Assert1(PTy->getElementType()->isSized(&Visited), "Cannot allocate unsized type", 2003 &AI); 2004 Assert1(AI.getArraySize()->getType()->isIntegerTy(), 2005 "Alloca array size must have integer type", &AI); 2006 Assert1(AI.getAlignment() <= Value::MaximumAlignment, 2007 "huge alignment values are unsupported", &AI); 2008 2009 visitInstruction(AI); 2010 } 2011 2012 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 2013 2014 // FIXME: more conditions??? 2015 Assert1(CXI.getSuccessOrdering() != NotAtomic, 2016 "cmpxchg instructions must be atomic.", &CXI); 2017 Assert1(CXI.getFailureOrdering() != NotAtomic, 2018 "cmpxchg instructions must be atomic.", &CXI); 2019 Assert1(CXI.getSuccessOrdering() != Unordered, 2020 "cmpxchg instructions cannot be unordered.", &CXI); 2021 Assert1(CXI.getFailureOrdering() != Unordered, 2022 "cmpxchg instructions cannot be unordered.", &CXI); 2023 Assert1(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(), 2024 "cmpxchg instructions be at least as constrained on success as fail", 2025 &CXI); 2026 Assert1(CXI.getFailureOrdering() != Release && 2027 CXI.getFailureOrdering() != AcquireRelease, 2028 "cmpxchg failure ordering cannot include release semantics", &CXI); 2029 2030 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 2031 Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI); 2032 Type *ElTy = PTy->getElementType(); 2033 Assert2(ElTy->isIntegerTy(), 2034 "cmpxchg operand must have integer type!", 2035 &CXI, ElTy); 2036 unsigned Size = ElTy->getPrimitiveSizeInBits(); 2037 Assert2(Size >= 8 && !(Size & (Size - 1)), 2038 "cmpxchg operand must be power-of-two byte-sized integer", 2039 &CXI, ElTy); 2040 Assert2(ElTy == CXI.getOperand(1)->getType(), 2041 "Expected value type does not match pointer operand type!", 2042 &CXI, ElTy); 2043 Assert2(ElTy == CXI.getOperand(2)->getType(), 2044 "Stored value type does not match pointer operand type!", 2045 &CXI, ElTy); 2046 visitInstruction(CXI); 2047 } 2048 2049 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 2050 Assert1(RMWI.getOrdering() != NotAtomic, 2051 "atomicrmw instructions must be atomic.", &RMWI); 2052 Assert1(RMWI.getOrdering() != Unordered, 2053 "atomicrmw instructions cannot be unordered.", &RMWI); 2054 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 2055 Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 2056 Type *ElTy = PTy->getElementType(); 2057 Assert2(ElTy->isIntegerTy(), 2058 "atomicrmw operand must have integer type!", 2059 &RMWI, ElTy); 2060 unsigned Size = ElTy->getPrimitiveSizeInBits(); 2061 Assert2(Size >= 8 && !(Size & (Size - 1)), 2062 "atomicrmw operand must be power-of-two byte-sized integer", 2063 &RMWI, ElTy); 2064 Assert2(ElTy == RMWI.getOperand(1)->getType(), 2065 "Argument value type does not match pointer operand type!", 2066 &RMWI, ElTy); 2067 Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() && 2068 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP, 2069 "Invalid binary operation!", &RMWI); 2070 visitInstruction(RMWI); 2071 } 2072 2073 void Verifier::visitFenceInst(FenceInst &FI) { 2074 const AtomicOrdering Ordering = FI.getOrdering(); 2075 Assert1(Ordering == Acquire || Ordering == Release || 2076 Ordering == AcquireRelease || Ordering == SequentiallyConsistent, 2077 "fence instructions may only have " 2078 "acquire, release, acq_rel, or seq_cst ordering.", &FI); 2079 visitInstruction(FI); 2080 } 2081 2082 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 2083 Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 2084 EVI.getIndices()) == 2085 EVI.getType(), 2086 "Invalid ExtractValueInst operands!", &EVI); 2087 2088 visitInstruction(EVI); 2089 } 2090 2091 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 2092 Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 2093 IVI.getIndices()) == 2094 IVI.getOperand(1)->getType(), 2095 "Invalid InsertValueInst operands!", &IVI); 2096 2097 visitInstruction(IVI); 2098 } 2099 2100 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 2101 BasicBlock *BB = LPI.getParent(); 2102 2103 // The landingpad instruction is ill-formed if it doesn't have any clauses and 2104 // isn't a cleanup. 2105 Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(), 2106 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 2107 2108 // The landingpad instruction defines its parent as a landing pad block. The 2109 // landing pad block may be branched to only by the unwind edge of an invoke. 2110 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 2111 const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator()); 2112 Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 2113 "Block containing LandingPadInst must be jumped to " 2114 "only by the unwind edge of an invoke.", &LPI); 2115 } 2116 2117 // The landingpad instruction must be the first non-PHI instruction in the 2118 // block. 2119 Assert1(LPI.getParent()->getLandingPadInst() == &LPI, 2120 "LandingPadInst not the first non-PHI instruction in the block.", 2121 &LPI); 2122 2123 // The personality functions for all landingpad instructions within the same 2124 // function should match. 2125 if (PersonalityFn) 2126 Assert1(LPI.getPersonalityFn() == PersonalityFn, 2127 "Personality function doesn't match others in function", &LPI); 2128 PersonalityFn = LPI.getPersonalityFn(); 2129 2130 // All operands must be constants. 2131 Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!", 2132 &LPI); 2133 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 2134 Constant *Clause = LPI.getClause(i); 2135 if (LPI.isCatch(i)) { 2136 Assert1(isa<PointerType>(Clause->getType()), 2137 "Catch operand does not have pointer type!", &LPI); 2138 } else { 2139 Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 2140 Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 2141 "Filter operand is not an array of constants!", &LPI); 2142 } 2143 } 2144 2145 visitInstruction(LPI); 2146 } 2147 2148 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 2149 Instruction *Op = cast<Instruction>(I.getOperand(i)); 2150 // If the we have an invalid invoke, don't try to compute the dominance. 2151 // We already reject it in the invoke specific checks and the dominance 2152 // computation doesn't handle multiple edges. 2153 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 2154 if (II->getNormalDest() == II->getUnwindDest()) 2155 return; 2156 } 2157 2158 const Use &U = I.getOperandUse(i); 2159 Assert2(InstsInThisBlock.count(Op) || DT.dominates(Op, U), 2160 "Instruction does not dominate all uses!", Op, &I); 2161 } 2162 2163 /// verifyInstruction - Verify that an instruction is well formed. 2164 /// 2165 void Verifier::visitInstruction(Instruction &I) { 2166 BasicBlock *BB = I.getParent(); 2167 Assert1(BB, "Instruction not embedded in basic block!", &I); 2168 2169 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 2170 for (User *U : I.users()) { 2171 Assert1(U != (User*)&I || !DT.isReachableFromEntry(BB), 2172 "Only PHI nodes may reference their own value!", &I); 2173 } 2174 } 2175 2176 // Check that void typed values don't have names 2177 Assert1(!I.getType()->isVoidTy() || !I.hasName(), 2178 "Instruction has a name, but provides a void value!", &I); 2179 2180 // Check that the return value of the instruction is either void or a legal 2181 // value type. 2182 Assert1(I.getType()->isVoidTy() || 2183 I.getType()->isFirstClassType(), 2184 "Instruction returns a non-scalar type!", &I); 2185 2186 // Check that the instruction doesn't produce metadata. Calls are already 2187 // checked against the callee type. 2188 Assert1(!I.getType()->isMetadataTy() || 2189 isa<CallInst>(I) || isa<InvokeInst>(I), 2190 "Invalid use of metadata!", &I); 2191 2192 // Check that all uses of the instruction, if they are instructions 2193 // themselves, actually have parent basic blocks. If the use is not an 2194 // instruction, it is an error! 2195 for (Use &U : I.uses()) { 2196 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 2197 Assert2(Used->getParent() != nullptr, "Instruction referencing" 2198 " instruction not embedded in a basic block!", &I, Used); 2199 else { 2200 CheckFailed("Use of instruction is not an instruction!", U); 2201 return; 2202 } 2203 } 2204 2205 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 2206 Assert1(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 2207 2208 // Check to make sure that only first-class-values are operands to 2209 // instructions. 2210 if (!I.getOperand(i)->getType()->isFirstClassType()) { 2211 Assert1(0, "Instruction operands must be first-class values!", &I); 2212 } 2213 2214 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 2215 // Check to make sure that the "address of" an intrinsic function is never 2216 // taken. 2217 Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 : 0), 2218 "Cannot take the address of an intrinsic!", &I); 2219 Assert1(!F->isIntrinsic() || isa<CallInst>(I) || 2220 F->getIntrinsicID() == Intrinsic::donothing, 2221 "Cannot invoke an intrinsinc other than donothing", &I); 2222 Assert1(F->getParent() == M, "Referencing function in another module!", 2223 &I); 2224 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 2225 Assert1(OpBB->getParent() == BB->getParent(), 2226 "Referring to a basic block in another function!", &I); 2227 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 2228 Assert1(OpArg->getParent() == BB->getParent(), 2229 "Referring to an argument in another function!", &I); 2230 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 2231 Assert1(GV->getParent() == M, "Referencing global in another module!", 2232 &I); 2233 } else if (isa<Instruction>(I.getOperand(i))) { 2234 verifyDominatesUse(I, i); 2235 } else if (isa<InlineAsm>(I.getOperand(i))) { 2236 Assert1((i + 1 == e && isa<CallInst>(I)) || 2237 (i + 3 == e && isa<InvokeInst>(I)), 2238 "Cannot take the address of an inline asm!", &I); 2239 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 2240 if (CE->getType()->isPtrOrPtrVectorTy()) { 2241 // If we have a ConstantExpr pointer, we need to see if it came from an 2242 // illegal bitcast (inttoptr <constant int> ) 2243 SmallVector<const ConstantExpr *, 4> Stack; 2244 SmallPtrSet<const ConstantExpr *, 4> Visited; 2245 Stack.push_back(CE); 2246 2247 while (!Stack.empty()) { 2248 const ConstantExpr *V = Stack.pop_back_val(); 2249 if (!Visited.insert(V)) 2250 continue; 2251 2252 VerifyConstantExprBitcastType(V); 2253 2254 for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) { 2255 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(V->getOperand(I))) 2256 Stack.push_back(Op); 2257 } 2258 } 2259 } 2260 } 2261 } 2262 2263 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 2264 Assert1(I.getType()->isFPOrFPVectorTy(), 2265 "fpmath requires a floating point result!", &I); 2266 Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 2267 Value *Op0 = MD->getOperand(0); 2268 if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) { 2269 APFloat Accuracy = CFP0->getValueAPF(); 2270 Assert1(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 2271 "fpmath accuracy not a positive number!", &I); 2272 } else { 2273 Assert1(false, "invalid fpmath accuracy!", &I); 2274 } 2275 } 2276 2277 MDNode *MD = I.getMetadata(LLVMContext::MD_range); 2278 Assert1(!MD || isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 2279 "Ranges are only for loads, calls and invokes!", &I); 2280 2281 InstsInThisBlock.insert(&I); 2282 } 2283 2284 /// VerifyIntrinsicType - Verify that the specified type (which comes from an 2285 /// intrinsic argument or return value) matches the type constraints specified 2286 /// by the .td file (e.g. an "any integer" argument really is an integer). 2287 /// 2288 /// This return true on error but does not print a message. 2289 bool Verifier::VerifyIntrinsicType(Type *Ty, 2290 ArrayRef<Intrinsic::IITDescriptor> &Infos, 2291 SmallVectorImpl<Type*> &ArgTys) { 2292 using namespace Intrinsic; 2293 2294 // If we ran out of descriptors, there are too many arguments. 2295 if (Infos.empty()) return true; 2296 IITDescriptor D = Infos.front(); 2297 Infos = Infos.slice(1); 2298 2299 switch (D.Kind) { 2300 case IITDescriptor::Void: return !Ty->isVoidTy(); 2301 case IITDescriptor::VarArg: return true; 2302 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 2303 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 2304 case IITDescriptor::Half: return !Ty->isHalfTy(); 2305 case IITDescriptor::Float: return !Ty->isFloatTy(); 2306 case IITDescriptor::Double: return !Ty->isDoubleTy(); 2307 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 2308 case IITDescriptor::Vector: { 2309 VectorType *VT = dyn_cast<VectorType>(Ty); 2310 return !VT || VT->getNumElements() != D.Vector_Width || 2311 VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys); 2312 } 2313 case IITDescriptor::Pointer: { 2314 PointerType *PT = dyn_cast<PointerType>(Ty); 2315 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 2316 VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys); 2317 } 2318 2319 case IITDescriptor::Struct: { 2320 StructType *ST = dyn_cast<StructType>(Ty); 2321 if (!ST || ST->getNumElements() != D.Struct_NumElements) 2322 return true; 2323 2324 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 2325 if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 2326 return true; 2327 return false; 2328 } 2329 2330 case IITDescriptor::Argument: 2331 // Two cases here - If this is the second occurrence of an argument, verify 2332 // that the later instance matches the previous instance. 2333 if (D.getArgumentNumber() < ArgTys.size()) 2334 return Ty != ArgTys[D.getArgumentNumber()]; 2335 2336 // Otherwise, if this is the first instance of an argument, record it and 2337 // verify the "Any" kind. 2338 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 2339 ArgTys.push_back(Ty); 2340 2341 switch (D.getArgumentKind()) { 2342 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 2343 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 2344 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 2345 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 2346 } 2347 llvm_unreachable("all argument kinds not covered"); 2348 2349 case IITDescriptor::ExtendArgument: { 2350 // This may only be used when referring to a previous vector argument. 2351 if (D.getArgumentNumber() >= ArgTys.size()) 2352 return true; 2353 2354 Type *NewTy = ArgTys[D.getArgumentNumber()]; 2355 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 2356 NewTy = VectorType::getExtendedElementVectorType(VTy); 2357 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 2358 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 2359 else 2360 return true; 2361 2362 return Ty != NewTy; 2363 } 2364 case IITDescriptor::TruncArgument: { 2365 // This may only be used when referring to a previous vector argument. 2366 if (D.getArgumentNumber() >= ArgTys.size()) 2367 return true; 2368 2369 Type *NewTy = ArgTys[D.getArgumentNumber()]; 2370 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 2371 NewTy = VectorType::getTruncatedElementVectorType(VTy); 2372 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 2373 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 2374 else 2375 return true; 2376 2377 return Ty != NewTy; 2378 } 2379 case IITDescriptor::HalfVecArgument: 2380 // This may only be used when referring to a previous vector argument. 2381 return D.getArgumentNumber() >= ArgTys.size() || 2382 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 2383 VectorType::getHalfElementsVectorType( 2384 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 2385 } 2386 llvm_unreachable("unhandled"); 2387 } 2388 2389 /// \brief Verify if the intrinsic has variable arguments. 2390 /// This method is intended to be called after all the fixed arguments have been 2391 /// verified first. 2392 /// 2393 /// This method returns true on error and does not print an error message. 2394 bool 2395 Verifier::VerifyIntrinsicIsVarArg(bool isVarArg, 2396 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 2397 using namespace Intrinsic; 2398 2399 // If there are no descriptors left, then it can't be a vararg. 2400 if (Infos.empty()) 2401 return isVarArg ? true : false; 2402 2403 // There should be only one descriptor remaining at this point. 2404 if (Infos.size() != 1) 2405 return true; 2406 2407 // Check and verify the descriptor. 2408 IITDescriptor D = Infos.front(); 2409 Infos = Infos.slice(1); 2410 if (D.Kind == IITDescriptor::VarArg) 2411 return isVarArg ? false : true; 2412 2413 return true; 2414 } 2415 2416 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways. 2417 /// 2418 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { 2419 Function *IF = CI.getCalledFunction(); 2420 Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!", 2421 IF); 2422 2423 // Verify that the intrinsic prototype lines up with what the .td files 2424 // describe. 2425 FunctionType *IFTy = IF->getFunctionType(); 2426 bool IsVarArg = IFTy->isVarArg(); 2427 2428 SmallVector<Intrinsic::IITDescriptor, 8> Table; 2429 getIntrinsicInfoTableEntries(ID, Table); 2430 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 2431 2432 SmallVector<Type *, 4> ArgTys; 2433 Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys), 2434 "Intrinsic has incorrect return type!", IF); 2435 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i) 2436 Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys), 2437 "Intrinsic has incorrect argument type!", IF); 2438 2439 // Verify if the intrinsic call matches the vararg property. 2440 if (IsVarArg) 2441 Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef), 2442 "Intrinsic was not defined with variable arguments!", IF); 2443 else 2444 Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef), 2445 "Callsite was not defined with variable arguments!", IF); 2446 2447 // All descriptors should be absorbed by now. 2448 Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF); 2449 2450 // Now that we have the intrinsic ID and the actual argument types (and we 2451 // know they are legal for the intrinsic!) get the intrinsic name through the 2452 // usual means. This allows us to verify the mangling of argument types into 2453 // the name. 2454 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 2455 Assert1(ExpectedName == IF->getName(), 2456 "Intrinsic name not mangled correctly for type arguments! " 2457 "Should be: " + ExpectedName, IF); 2458 2459 // If the intrinsic takes MDNode arguments, verify that they are either global 2460 // or are local to *this* function. 2461 for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i) 2462 if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i))) 2463 visitMDNode(*MD, CI.getParent()->getParent()); 2464 2465 switch (ID) { 2466 default: 2467 break; 2468 case Intrinsic::ctlz: // llvm.ctlz 2469 case Intrinsic::cttz: // llvm.cttz 2470 Assert1(isa<ConstantInt>(CI.getArgOperand(1)), 2471 "is_zero_undef argument of bit counting intrinsics must be a " 2472 "constant int", &CI); 2473 break; 2474 case Intrinsic::dbg_declare: { // llvm.dbg.declare 2475 Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)), 2476 "invalid llvm.dbg.declare intrinsic call 1", &CI); 2477 MDNode *MD = cast<MDNode>(CI.getArgOperand(0)); 2478 Assert1(MD->getNumOperands() == 1, 2479 "invalid llvm.dbg.declare intrinsic call 2", &CI); 2480 } break; 2481 case Intrinsic::memcpy: 2482 case Intrinsic::memmove: 2483 case Intrinsic::memset: 2484 Assert1(isa<ConstantInt>(CI.getArgOperand(3)), 2485 "alignment argument of memory intrinsics must be a constant int", 2486 &CI); 2487 Assert1(isa<ConstantInt>(CI.getArgOperand(4)), 2488 "isvolatile argument of memory intrinsics must be a constant int", 2489 &CI); 2490 break; 2491 case Intrinsic::gcroot: 2492 case Intrinsic::gcwrite: 2493 case Intrinsic::gcread: 2494 if (ID == Intrinsic::gcroot) { 2495 AllocaInst *AI = 2496 dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts()); 2497 Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI); 2498 Assert1(isa<Constant>(CI.getArgOperand(1)), 2499 "llvm.gcroot parameter #2 must be a constant.", &CI); 2500 if (!AI->getType()->getElementType()->isPointerTy()) { 2501 Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)), 2502 "llvm.gcroot parameter #1 must either be a pointer alloca, " 2503 "or argument #2 must be a non-null constant.", &CI); 2504 } 2505 } 2506 2507 Assert1(CI.getParent()->getParent()->hasGC(), 2508 "Enclosing function does not use GC.", &CI); 2509 break; 2510 case Intrinsic::init_trampoline: 2511 Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()), 2512 "llvm.init_trampoline parameter #2 must resolve to a function.", 2513 &CI); 2514 break; 2515 case Intrinsic::prefetch: 2516 Assert1(isa<ConstantInt>(CI.getArgOperand(1)) && 2517 isa<ConstantInt>(CI.getArgOperand(2)) && 2518 cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 && 2519 cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4, 2520 "invalid arguments to llvm.prefetch", 2521 &CI); 2522 break; 2523 case Intrinsic::stackprotector: 2524 Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()), 2525 "llvm.stackprotector parameter #2 must resolve to an alloca.", 2526 &CI); 2527 break; 2528 case Intrinsic::lifetime_start: 2529 case Intrinsic::lifetime_end: 2530 case Intrinsic::invariant_start: 2531 Assert1(isa<ConstantInt>(CI.getArgOperand(0)), 2532 "size argument of memory use markers must be a constant integer", 2533 &CI); 2534 break; 2535 case Intrinsic::invariant_end: 2536 Assert1(isa<ConstantInt>(CI.getArgOperand(1)), 2537 "llvm.invariant.end parameter #2 must be a constant integer", &CI); 2538 break; 2539 } 2540 } 2541 2542 void DebugInfoVerifier::verifyDebugInfo() { 2543 if (!VerifyDebugInfo) 2544 return; 2545 2546 DebugInfoFinder Finder; 2547 Finder.processModule(*M); 2548 processInstructions(Finder); 2549 2550 // Verify Debug Info. 2551 // 2552 // NOTE: The loud braces are necessary for MSVC compatibility. 2553 for (DICompileUnit CU : Finder.compile_units()) { 2554 Assert1(CU.Verify(), "DICompileUnit does not Verify!", CU); 2555 } 2556 for (DISubprogram S : Finder.subprograms()) { 2557 Assert1(S.Verify(), "DISubprogram does not Verify!", S); 2558 } 2559 for (DIGlobalVariable GV : Finder.global_variables()) { 2560 Assert1(GV.Verify(), "DIGlobalVariable does not Verify!", GV); 2561 } 2562 for (DIType T : Finder.types()) { 2563 Assert1(T.Verify(), "DIType does not Verify!", T); 2564 } 2565 for (DIScope S : Finder.scopes()) { 2566 Assert1(S.Verify(), "DIScope does not Verify!", S); 2567 } 2568 } 2569 2570 void DebugInfoVerifier::processInstructions(DebugInfoFinder &Finder) { 2571 for (const Function &F : *M) 2572 for (auto I = inst_begin(&F), E = inst_end(&F); I != E; ++I) { 2573 if (MDNode *MD = I->getMetadata(LLVMContext::MD_dbg)) 2574 Finder.processLocation(*M, DILocation(MD)); 2575 if (const CallInst *CI = dyn_cast<CallInst>(&*I)) 2576 processCallInst(Finder, *CI); 2577 } 2578 } 2579 2580 void DebugInfoVerifier::processCallInst(DebugInfoFinder &Finder, 2581 const CallInst &CI) { 2582 if (Function *F = CI.getCalledFunction()) 2583 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 2584 switch (ID) { 2585 case Intrinsic::dbg_declare: 2586 Finder.processDeclare(*M, cast<DbgDeclareInst>(&CI)); 2587 break; 2588 case Intrinsic::dbg_value: 2589 Finder.processValue(*M, cast<DbgValueInst>(&CI)); 2590 break; 2591 default: 2592 break; 2593 } 2594 } 2595 2596 //===----------------------------------------------------------------------===// 2597 // Implement the public interfaces to this file... 2598 //===----------------------------------------------------------------------===// 2599 2600 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 2601 Function &F = const_cast<Function &>(f); 2602 assert(!F.isDeclaration() && "Cannot verify external functions"); 2603 2604 raw_null_ostream NullStr; 2605 Verifier V(OS ? *OS : NullStr); 2606 2607 // Note that this function's return value is inverted from what you would 2608 // expect of a function called "verify". 2609 return !V.verify(F); 2610 } 2611 2612 bool llvm::verifyModule(const Module &M, raw_ostream *OS) { 2613 raw_null_ostream NullStr; 2614 Verifier V(OS ? *OS : NullStr); 2615 2616 bool Broken = false; 2617 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) 2618 if (!I->isDeclaration()) 2619 Broken |= !V.verify(*I); 2620 2621 // Note that this function's return value is inverted from what you would 2622 // expect of a function called "verify". 2623 DebugInfoVerifier DIV(OS ? *OS : NullStr); 2624 return !V.verify(M) || !DIV.verify(M) || Broken; 2625 } 2626 2627 namespace { 2628 struct VerifierLegacyPass : public FunctionPass { 2629 static char ID; 2630 2631 Verifier V; 2632 bool FatalErrors; 2633 2634 VerifierLegacyPass() : FunctionPass(ID), FatalErrors(true) { 2635 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 2636 } 2637 explicit VerifierLegacyPass(bool FatalErrors) 2638 : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) { 2639 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 2640 } 2641 2642 bool runOnFunction(Function &F) override { 2643 if (!V.verify(F) && FatalErrors) 2644 report_fatal_error("Broken function found, compilation aborted!"); 2645 2646 return false; 2647 } 2648 2649 bool doFinalization(Module &M) override { 2650 if (!V.verify(M) && FatalErrors) 2651 report_fatal_error("Broken module found, compilation aborted!"); 2652 2653 return false; 2654 } 2655 2656 void getAnalysisUsage(AnalysisUsage &AU) const override { 2657 AU.setPreservesAll(); 2658 } 2659 }; 2660 struct DebugInfoVerifierLegacyPass : public ModulePass { 2661 static char ID; 2662 2663 DebugInfoVerifier V; 2664 bool FatalErrors; 2665 2666 DebugInfoVerifierLegacyPass() : ModulePass(ID), FatalErrors(true) { 2667 initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 2668 } 2669 explicit DebugInfoVerifierLegacyPass(bool FatalErrors) 2670 : ModulePass(ID), V(dbgs()), FatalErrors(FatalErrors) { 2671 initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 2672 } 2673 2674 bool runOnModule(Module &M) override { 2675 if (!V.verify(M) && FatalErrors) 2676 report_fatal_error("Broken debug info found, compilation aborted!"); 2677 2678 return false; 2679 } 2680 2681 void getAnalysisUsage(AnalysisUsage &AU) const override { 2682 AU.setPreservesAll(); 2683 } 2684 }; 2685 } 2686 2687 char VerifierLegacyPass::ID = 0; 2688 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 2689 2690 char DebugInfoVerifierLegacyPass::ID = 0; 2691 INITIALIZE_PASS(DebugInfoVerifierLegacyPass, "verify-di", "Debug Info Verifier", 2692 false, false) 2693 2694 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 2695 return new VerifierLegacyPass(FatalErrors); 2696 } 2697 2698 ModulePass *llvm::createDebugInfoVerifierPass(bool FatalErrors) { 2699 return new DebugInfoVerifierLegacyPass(FatalErrors); 2700 } 2701 2702 PreservedAnalyses VerifierPass::run(Module *M) { 2703 if (verifyModule(*M, &dbgs()) && FatalErrors) 2704 report_fatal_error("Broken module found, compilation aborted!"); 2705 2706 return PreservedAnalyses::all(); 2707 } 2708 2709 PreservedAnalyses VerifierPass::run(Function *F) { 2710 if (verifyFunction(*F, &dbgs()) && FatalErrors) 2711 report_fatal_error("Broken function found, compilation aborted!"); 2712 2713 return PreservedAnalyses::all(); 2714 } 2715