1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
12 //
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
15 //
16 //  * Both of a binary operator's parameters are of the same type
17 //  * Verify that the indices of mem access instructions match other operands
18 //  * Verify that arithmetic and other things are only performed on first-class
19 //    types.  Verify that shifts & logicals only happen on integrals f.e.
20 //  * All of the constants in a switch statement are of the correct type
21 //  * The code is in valid SSA form
22 //  * It should be illegal to put a label into any other type (like a structure)
23 //    or to return one. [except constant arrays!]
24 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 //  * PHI nodes must have an entry for each predecessor, with no extras.
26 //  * PHI nodes must be the first thing in a basic block, all grouped together
27 //  * PHI nodes must have at least one entry
28 //  * All basic blocks should only end with terminator insts, not contain them
29 //  * The entry node to a function must not have predecessors
30 //  * All Instructions must be embedded into a basic block
31 //  * Functions cannot take a void-typed parameter
32 //  * Verify that a function's argument list agrees with it's declared type.
33 //  * It is illegal to specify a name for a void value.
34 //  * It is illegal to have a internal global value with no initializer
35 //  * It is illegal to have a ret instruction that returns a value that does not
36 //    agree with the function return value type.
37 //  * Function call argument types match the function prototype
38 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
39 //    only by the unwind edge of an invoke instruction.
40 //  * A landingpad instruction must be the first non-PHI instruction in the
41 //    block.
42 //  * Landingpad instructions must be in a function with a personality function.
43 //  * All other things that are tested by asserts spread about the code...
44 //
45 //===----------------------------------------------------------------------===//
46 
47 #include "llvm/IR/Verifier.h"
48 #include "llvm/ADT/APFloat.h"
49 #include "llvm/ADT/APInt.h"
50 #include "llvm/ADT/ArrayRef.h"
51 #include "llvm/ADT/DenseMap.h"
52 #include "llvm/ADT/ilist.h"
53 #include "llvm/ADT/MapVector.h"
54 #include "llvm/ADT/Optional.h"
55 #include "llvm/ADT/STLExtras.h"
56 #include "llvm/ADT/SmallPtrSet.h"
57 #include "llvm/ADT/SmallSet.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/StringMap.h"
60 #include "llvm/ADT/StringRef.h"
61 #include "llvm/ADT/Twine.h"
62 #include "llvm/IR/Argument.h"
63 #include "llvm/IR/Attributes.h"
64 #include "llvm/IR/BasicBlock.h"
65 #include "llvm/IR/CFG.h"
66 #include "llvm/IR/CallSite.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Comdat.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DebugInfo.h"
74 #include "llvm/IR/DebugInfoMetadata.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/DiagnosticInfo.h"
78 #include "llvm/IR/Dominators.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GlobalAlias.h"
81 #include "llvm/IR/GlobalValue.h"
82 #include "llvm/IR/GlobalVariable.h"
83 #include "llvm/IR/InlineAsm.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/InstVisitor.h"
88 #include "llvm/IR/IntrinsicInst.h"
89 #include "llvm/IR/Intrinsics.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/Metadata.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/ModuleSlotTracker.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Statepoint.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/Use.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Support/AtomicOrdering.h"
102 #include "llvm/Support/Casting.h"
103 #include "llvm/Support/CommandLine.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/Dwarf.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include <algorithm>
110 #include <cassert>
111 #include <cstdint>
112 #include <memory>
113 #include <string>
114 #include <utility>
115 
116 using namespace llvm;
117 
118 static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
119 
120 namespace {
121 
122 struct VerifierSupport {
123   raw_ostream *OS;
124   const Module &M;
125   ModuleSlotTracker MST;
126   const DataLayout &DL;
127   LLVMContext &Context;
128 
129   /// Track the brokenness of the module while recursively visiting.
130   bool Broken = false;
131   /// Broken debug info can be "recovered" from by stripping the debug info.
132   bool BrokenDebugInfo = false;
133   /// Whether to treat broken debug info as an error.
134   bool TreatBrokenDebugInfoAsError = true;
135 
136   explicit VerifierSupport(raw_ostream *OS, const Module &M)
137       : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
138 
139 private:
140   void Write(const Module *M) {
141     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
142   }
143 
144   void Write(const Value *V) {
145     if (!V)
146       return;
147     if (isa<Instruction>(V)) {
148       V->print(*OS, MST);
149       *OS << '\n';
150     } else {
151       V->printAsOperand(*OS, true, MST);
152       *OS << '\n';
153     }
154   }
155 
156   void Write(ImmutableCallSite CS) {
157     Write(CS.getInstruction());
158   }
159 
160   void Write(const Metadata *MD) {
161     if (!MD)
162       return;
163     MD->print(*OS, MST, &M);
164     *OS << '\n';
165   }
166 
167   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
168     Write(MD.get());
169   }
170 
171   void Write(const NamedMDNode *NMD) {
172     if (!NMD)
173       return;
174     NMD->print(*OS, MST);
175     *OS << '\n';
176   }
177 
178   void Write(Type *T) {
179     if (!T)
180       return;
181     *OS << ' ' << *T;
182   }
183 
184   void Write(const Comdat *C) {
185     if (!C)
186       return;
187     *OS << *C;
188   }
189 
190   template <typename T> void Write(ArrayRef<T> Vs) {
191     for (const T &V : Vs)
192       Write(V);
193   }
194 
195   template <typename T1, typename... Ts>
196   void WriteTs(const T1 &V1, const Ts &... Vs) {
197     Write(V1);
198     WriteTs(Vs...);
199   }
200 
201   template <typename... Ts> void WriteTs() {}
202 
203 public:
204   /// \brief A check failed, so printout out the condition and the message.
205   ///
206   /// This provides a nice place to put a breakpoint if you want to see why
207   /// something is not correct.
208   void CheckFailed(const Twine &Message) {
209     if (OS)
210       *OS << Message << '\n';
211     Broken = true;
212   }
213 
214   /// \brief A check failed (with values to print).
215   ///
216   /// This calls the Message-only version so that the above is easier to set a
217   /// breakpoint on.
218   template <typename T1, typename... Ts>
219   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
220     CheckFailed(Message);
221     if (OS)
222       WriteTs(V1, Vs...);
223   }
224 
225   /// A debug info check failed.
226   void DebugInfoCheckFailed(const Twine &Message) {
227     if (OS)
228       *OS << Message << '\n';
229     Broken |= TreatBrokenDebugInfoAsError;
230     BrokenDebugInfo = true;
231   }
232 
233   /// A debug info check failed (with values to print).
234   template <typename T1, typename... Ts>
235   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
236                             const Ts &... Vs) {
237     DebugInfoCheckFailed(Message);
238     if (OS)
239       WriteTs(V1, Vs...);
240   }
241 };
242 
243 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
244   friend class InstVisitor<Verifier>;
245 
246   DominatorTree DT;
247 
248   /// \brief When verifying a basic block, keep track of all of the
249   /// instructions we have seen so far.
250   ///
251   /// This allows us to do efficient dominance checks for the case when an
252   /// instruction has an operand that is an instruction in the same block.
253   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
254 
255   /// \brief Keep track of the metadata nodes that have been checked already.
256   SmallPtrSet<const Metadata *, 32> MDNodes;
257 
258   /// Track all DICompileUnits visited.
259   SmallPtrSet<const Metadata *, 2> CUVisited;
260 
261   /// \brief The result type for a landingpad.
262   Type *LandingPadResultTy;
263 
264   /// \brief Whether we've seen a call to @llvm.localescape in this function
265   /// already.
266   bool SawFrameEscape;
267 
268   /// Stores the count of how many objects were passed to llvm.localescape for a
269   /// given function and the largest index passed to llvm.localrecover.
270   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
271 
272   // Maps catchswitches and cleanuppads that unwind to siblings to the
273   // terminators that indicate the unwind, used to detect cycles therein.
274   MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo;
275 
276   /// Cache of constants visited in search of ConstantExprs.
277   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
278 
279   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
280   SmallVector<const Function *, 4> DeoptimizeDeclarations;
281 
282   // Verify that this GlobalValue is only used in this module.
283   // This map is used to avoid visiting uses twice. We can arrive at a user
284   // twice, if they have multiple operands. In particular for very large
285   // constant expressions, we can arrive at a particular user many times.
286   SmallPtrSet<const Value *, 32> GlobalValueVisited;
287 
288   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
289 
290 public:
291   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
292                     const Module &M)
293       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
294         SawFrameEscape(false) {
295     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
296   }
297 
298   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
299 
300   bool verify(const Function &F) {
301     assert(F.getParent() == &M &&
302            "An instance of this class only works with a specific module!");
303 
304     // First ensure the function is well-enough formed to compute dominance
305     // information, and directly compute a dominance tree. We don't rely on the
306     // pass manager to provide this as it isolates us from a potentially
307     // out-of-date dominator tree and makes it significantly more complex to run
308     // this code outside of a pass manager.
309     // FIXME: It's really gross that we have to cast away constness here.
310     if (!F.empty())
311       DT.recalculate(const_cast<Function &>(F));
312 
313     for (const BasicBlock &BB : F) {
314       if (!BB.empty() && BB.back().isTerminator())
315         continue;
316 
317       if (OS) {
318         *OS << "Basic Block in function '" << F.getName()
319             << "' does not have terminator!\n";
320         BB.printAsOperand(*OS, true, MST);
321         *OS << "\n";
322       }
323       return false;
324     }
325 
326     Broken = false;
327     // FIXME: We strip const here because the inst visitor strips const.
328     visit(const_cast<Function &>(F));
329     verifySiblingFuncletUnwinds();
330     InstsInThisBlock.clear();
331     LandingPadResultTy = nullptr;
332     SawFrameEscape = false;
333     SiblingFuncletInfo.clear();
334 
335     return !Broken;
336   }
337 
338   /// Verify the module that this instance of \c Verifier was initialized with.
339   bool verify() {
340     Broken = false;
341 
342     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
343     for (const Function &F : M)
344       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
345         DeoptimizeDeclarations.push_back(&F);
346 
347     // Now that we've visited every function, verify that we never asked to
348     // recover a frame index that wasn't escaped.
349     verifyFrameRecoverIndices();
350     for (const GlobalVariable &GV : M.globals())
351       visitGlobalVariable(GV);
352 
353     for (const GlobalAlias &GA : M.aliases())
354       visitGlobalAlias(GA);
355 
356     for (const NamedMDNode &NMD : M.named_metadata())
357       visitNamedMDNode(NMD);
358 
359     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
360       visitComdat(SMEC.getValue());
361 
362     visitModuleFlags(M);
363     visitModuleIdents(M);
364 
365     verifyCompileUnits();
366 
367     verifyDeoptimizeCallingConvs();
368 
369     return !Broken;
370   }
371 
372 private:
373   // Verification methods...
374   void visitGlobalValue(const GlobalValue &GV);
375   void visitGlobalVariable(const GlobalVariable &GV);
376   void visitGlobalAlias(const GlobalAlias &GA);
377   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
378   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
379                            const GlobalAlias &A, const Constant &C);
380   void visitNamedMDNode(const NamedMDNode &NMD);
381   void visitMDNode(const MDNode &MD);
382   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
383   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
384   void visitComdat(const Comdat &C);
385   void visitModuleIdents(const Module &M);
386   void visitModuleFlags(const Module &M);
387   void visitModuleFlag(const MDNode *Op,
388                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
389                        SmallVectorImpl<const MDNode *> &Requirements);
390   void visitFunction(const Function &F);
391   void visitBasicBlock(BasicBlock &BB);
392   void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty);
393   void visitDereferenceableMetadata(Instruction& I, MDNode* MD);
394 
395   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
396 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
397 #include "llvm/IR/Metadata.def"
398   void visitDIScope(const DIScope &N);
399   void visitDIVariable(const DIVariable &N);
400   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
401   void visitDITemplateParameter(const DITemplateParameter &N);
402 
403   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
404 
405   // InstVisitor overrides...
406   using InstVisitor<Verifier>::visit;
407   void visit(Instruction &I);
408 
409   void visitTruncInst(TruncInst &I);
410   void visitZExtInst(ZExtInst &I);
411   void visitSExtInst(SExtInst &I);
412   void visitFPTruncInst(FPTruncInst &I);
413   void visitFPExtInst(FPExtInst &I);
414   void visitFPToUIInst(FPToUIInst &I);
415   void visitFPToSIInst(FPToSIInst &I);
416   void visitUIToFPInst(UIToFPInst &I);
417   void visitSIToFPInst(SIToFPInst &I);
418   void visitIntToPtrInst(IntToPtrInst &I);
419   void visitPtrToIntInst(PtrToIntInst &I);
420   void visitBitCastInst(BitCastInst &I);
421   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
422   void visitPHINode(PHINode &PN);
423   void visitBinaryOperator(BinaryOperator &B);
424   void visitICmpInst(ICmpInst &IC);
425   void visitFCmpInst(FCmpInst &FC);
426   void visitExtractElementInst(ExtractElementInst &EI);
427   void visitInsertElementInst(InsertElementInst &EI);
428   void visitShuffleVectorInst(ShuffleVectorInst &EI);
429   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
430   void visitCallInst(CallInst &CI);
431   void visitInvokeInst(InvokeInst &II);
432   void visitGetElementPtrInst(GetElementPtrInst &GEP);
433   void visitLoadInst(LoadInst &LI);
434   void visitStoreInst(StoreInst &SI);
435   void verifyDominatesUse(Instruction &I, unsigned i);
436   void visitInstruction(Instruction &I);
437   void visitTerminatorInst(TerminatorInst &I);
438   void visitBranchInst(BranchInst &BI);
439   void visitReturnInst(ReturnInst &RI);
440   void visitSwitchInst(SwitchInst &SI);
441   void visitIndirectBrInst(IndirectBrInst &BI);
442   void visitSelectInst(SelectInst &SI);
443   void visitUserOp1(Instruction &I);
444   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
445   void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
446   template <class DbgIntrinsicTy>
447   void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
448   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
449   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
450   void visitFenceInst(FenceInst &FI);
451   void visitAllocaInst(AllocaInst &AI);
452   void visitExtractValueInst(ExtractValueInst &EVI);
453   void visitInsertValueInst(InsertValueInst &IVI);
454   void visitEHPadPredecessors(Instruction &I);
455   void visitLandingPadInst(LandingPadInst &LPI);
456   void visitResumeInst(ResumeInst &RI);
457   void visitCatchPadInst(CatchPadInst &CPI);
458   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
459   void visitCleanupPadInst(CleanupPadInst &CPI);
460   void visitFuncletPadInst(FuncletPadInst &FPI);
461   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
462   void visitCleanupReturnInst(CleanupReturnInst &CRI);
463 
464   void verifyCallSite(CallSite CS);
465   void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
466   void verifySwiftErrorValue(const Value *SwiftErrorVal);
467   void verifyMustTailCall(CallInst &CI);
468   bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
469                         unsigned ArgNo, std::string &Suffix);
470   bool verifyAttributeCount(AttributeSet Attrs, unsigned Params);
471   void verifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
472                             const Value *V);
473   void verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
474                             bool isReturnValue, const Value *V);
475   void verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
476                            const Value *V);
477   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
478 
479   void visitConstantExprsRecursively(const Constant *EntryC);
480   void visitConstantExpr(const ConstantExpr *CE);
481   void verifyStatepoint(ImmutableCallSite CS);
482   void verifyFrameRecoverIndices();
483   void verifySiblingFuncletUnwinds();
484 
485   void verifyBitPieceExpression(const DbgInfoIntrinsic &I);
486 
487   /// Module-level debug info verification...
488   void verifyCompileUnits();
489 
490   /// Module-level verification that all @llvm.experimental.deoptimize
491   /// declarations share the same calling convention.
492   void verifyDeoptimizeCallingConvs();
493 };
494 
495 } // end anonymous namespace
496 
497 /// We know that cond should be true, if not print an error message.
498 #define Assert(C, ...) \
499   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
500 
501 /// We know that a debug info condition should be true, if not print
502 /// an error message.
503 #define AssertDI(C, ...) \
504   do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
505 
506 void Verifier::visit(Instruction &I) {
507   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
508     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
509   InstVisitor<Verifier>::visit(I);
510 }
511 
512 // Helper to recursively iterate over indirect users. By
513 // returning false, the callback can ask to stop recursing
514 // further.
515 static void forEachUser(const Value *User,
516                         SmallPtrSet<const Value *, 32> &Visited,
517                         llvm::function_ref<bool(const Value *)> Callback) {
518   if (!Visited.insert(User).second)
519     return;
520   for (const Value *TheNextUser : User->materialized_users())
521     if (Callback(TheNextUser))
522       forEachUser(TheNextUser, Visited, Callback);
523 }
524 
525 void Verifier::visitGlobalValue(const GlobalValue &GV) {
526   Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
527          "Global is external, but doesn't have external or weak linkage!", &GV);
528 
529   Assert(GV.getAlignment() <= Value::MaximumAlignment,
530          "huge alignment values are unsupported", &GV);
531   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
532          "Only global variables can have appending linkage!", &GV);
533 
534   if (GV.hasAppendingLinkage()) {
535     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
536     Assert(GVar && GVar->getValueType()->isArrayTy(),
537            "Only global arrays can have appending linkage!", GVar);
538   }
539 
540   if (GV.isDeclarationForLinker())
541     Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
542 
543   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
544     if (const Instruction *I = dyn_cast<Instruction>(V)) {
545       if (!I->getParent() || !I->getParent()->getParent())
546         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
547                     I);
548       else if (I->getParent()->getParent()->getParent() != &M)
549         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
550                     I->getParent()->getParent(),
551                     I->getParent()->getParent()->getParent());
552       return false;
553     } else if (const Function *F = dyn_cast<Function>(V)) {
554       if (F->getParent() != &M)
555         CheckFailed("Global is used by function in a different module", &GV, &M,
556                     F, F->getParent());
557       return false;
558     }
559     return true;
560   });
561 }
562 
563 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
564   if (GV.hasInitializer()) {
565     Assert(GV.getInitializer()->getType() == GV.getValueType(),
566            "Global variable initializer type does not match global "
567            "variable type!",
568            &GV);
569 
570     // If the global has common linkage, it must have a zero initializer and
571     // cannot be constant.
572     if (GV.hasCommonLinkage()) {
573       Assert(GV.getInitializer()->isNullValue(),
574              "'common' global must have a zero initializer!", &GV);
575       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
576              &GV);
577       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
578     }
579   }
580 
581   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
582                        GV.getName() == "llvm.global_dtors")) {
583     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
584            "invalid linkage for intrinsic global variable", &GV);
585     // Don't worry about emitting an error for it not being an array,
586     // visitGlobalValue will complain on appending non-array.
587     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
588       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
589       PointerType *FuncPtrTy =
590           FunctionType::get(Type::getVoidTy(Context), false)->getPointerTo();
591       // FIXME: Reject the 2-field form in LLVM 4.0.
592       Assert(STy &&
593                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
594                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
595                  STy->getTypeAtIndex(1) == FuncPtrTy,
596              "wrong type for intrinsic global variable", &GV);
597       if (STy->getNumElements() == 3) {
598         Type *ETy = STy->getTypeAtIndex(2);
599         Assert(ETy->isPointerTy() &&
600                    cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
601                "wrong type for intrinsic global variable", &GV);
602       }
603     }
604   }
605 
606   if (GV.hasName() && (GV.getName() == "llvm.used" ||
607                        GV.getName() == "llvm.compiler.used")) {
608     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
609            "invalid linkage for intrinsic global variable", &GV);
610     Type *GVType = GV.getValueType();
611     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
612       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
613       Assert(PTy, "wrong type for intrinsic global variable", &GV);
614       if (GV.hasInitializer()) {
615         const Constant *Init = GV.getInitializer();
616         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
617         Assert(InitArray, "wrong initalizer for intrinsic global variable",
618                Init);
619         for (Value *Op : InitArray->operands()) {
620           Value *V = Op->stripPointerCastsNoFollowAliases();
621           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
622                      isa<GlobalAlias>(V),
623                  "invalid llvm.used member", V);
624           Assert(V->hasName(), "members of llvm.used must be named", V);
625         }
626       }
627     }
628   }
629 
630   Assert(!GV.hasDLLImportStorageClass() ||
631              (GV.isDeclaration() && GV.hasExternalLinkage()) ||
632              GV.hasAvailableExternallyLinkage(),
633          "Global is marked as dllimport, but not external", &GV);
634 
635   if (!GV.hasInitializer()) {
636     visitGlobalValue(GV);
637     return;
638   }
639 
640   // Walk any aggregate initializers looking for bitcasts between address spaces
641   visitConstantExprsRecursively(GV.getInitializer());
642 
643   visitGlobalValue(GV);
644 }
645 
646 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
647   SmallPtrSet<const GlobalAlias*, 4> Visited;
648   Visited.insert(&GA);
649   visitAliaseeSubExpr(Visited, GA, C);
650 }
651 
652 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
653                                    const GlobalAlias &GA, const Constant &C) {
654   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
655     Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
656            &GA);
657 
658     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
659       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
660 
661       Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
662              &GA);
663     } else {
664       // Only continue verifying subexpressions of GlobalAliases.
665       // Do not recurse into global initializers.
666       return;
667     }
668   }
669 
670   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
671     visitConstantExprsRecursively(CE);
672 
673   for (const Use &U : C.operands()) {
674     Value *V = &*U;
675     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
676       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
677     else if (const auto *C2 = dyn_cast<Constant>(V))
678       visitAliaseeSubExpr(Visited, GA, *C2);
679   }
680 }
681 
682 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
683   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
684          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
685          "weak_odr, or external linkage!",
686          &GA);
687   const Constant *Aliasee = GA.getAliasee();
688   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
689   Assert(GA.getType() == Aliasee->getType(),
690          "Alias and aliasee types should match!", &GA);
691 
692   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
693          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
694 
695   visitAliaseeSubExpr(GA, *Aliasee);
696 
697   visitGlobalValue(GA);
698 }
699 
700 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
701   // There used to be various other llvm.dbg.* nodes, but we don't support
702   // upgrading them and we want to reserve the namespace for future uses.
703   if (NMD.getName().startswith("llvm.dbg."))
704     AssertDI(NMD.getName() == "llvm.dbg.cu",
705              "unrecognized named metadata node in the llvm.dbg namespace",
706              &NMD);
707   for (const MDNode *MD : NMD.operands()) {
708     if (NMD.getName() == "llvm.dbg.cu")
709       AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
710 
711     if (!MD)
712       continue;
713 
714     visitMDNode(*MD);
715   }
716 }
717 
718 void Verifier::visitMDNode(const MDNode &MD) {
719   // Only visit each node once.  Metadata can be mutually recursive, so this
720   // avoids infinite recursion here, as well as being an optimization.
721   if (!MDNodes.insert(&MD).second)
722     return;
723 
724   switch (MD.getMetadataID()) {
725   default:
726     llvm_unreachable("Invalid MDNode subclass");
727   case Metadata::MDTupleKind:
728     break;
729 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
730   case Metadata::CLASS##Kind:                                                  \
731     visit##CLASS(cast<CLASS>(MD));                                             \
732     break;
733 #include "llvm/IR/Metadata.def"
734   }
735 
736   for (const Metadata *Op : MD.operands()) {
737     if (!Op)
738       continue;
739     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
740            &MD, Op);
741     if (auto *N = dyn_cast<MDNode>(Op)) {
742       visitMDNode(*N);
743       continue;
744     }
745     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
746       visitValueAsMetadata(*V, nullptr);
747       continue;
748     }
749   }
750 
751   // Check these last, so we diagnose problems in operands first.
752   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
753   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
754 }
755 
756 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
757   Assert(MD.getValue(), "Expected valid value", &MD);
758   Assert(!MD.getValue()->getType()->isMetadataTy(),
759          "Unexpected metadata round-trip through values", &MD, MD.getValue());
760 
761   auto *L = dyn_cast<LocalAsMetadata>(&MD);
762   if (!L)
763     return;
764 
765   Assert(F, "function-local metadata used outside a function", L);
766 
767   // If this was an instruction, bb, or argument, verify that it is in the
768   // function that we expect.
769   Function *ActualF = nullptr;
770   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
771     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
772     ActualF = I->getParent()->getParent();
773   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
774     ActualF = BB->getParent();
775   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
776     ActualF = A->getParent();
777   assert(ActualF && "Unimplemented function local metadata case!");
778 
779   Assert(ActualF == F, "function-local metadata used in wrong function", L);
780 }
781 
782 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
783   Metadata *MD = MDV.getMetadata();
784   if (auto *N = dyn_cast<MDNode>(MD)) {
785     visitMDNode(*N);
786     return;
787   }
788 
789   // Only visit each node once.  Metadata can be mutually recursive, so this
790   // avoids infinite recursion here, as well as being an optimization.
791   if (!MDNodes.insert(MD).second)
792     return;
793 
794   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
795     visitValueAsMetadata(*V, F);
796 }
797 
798 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
799 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
800 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
801 
802 template <class Ty>
803 static bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
804   for (Metadata *MD : N.operands()) {
805     if (MD) {
806       if (!isa<Ty>(MD))
807         return false;
808     } else {
809       if (!AllowNull)
810         return false;
811     }
812   }
813   return true;
814 }
815 
816 template <class Ty> static bool isValidMetadataArray(const MDTuple &N) {
817   return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
818 }
819 
820 template <class Ty> static bool isValidMetadataNullArray(const MDTuple &N) {
821   return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
822 }
823 
824 void Verifier::visitDILocation(const DILocation &N) {
825   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
826            "location requires a valid scope", &N, N.getRawScope());
827   if (auto *IA = N.getRawInlinedAt())
828     AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
829 }
830 
831 void Verifier::visitGenericDINode(const GenericDINode &N) {
832   AssertDI(N.getTag(), "invalid tag", &N);
833 }
834 
835 void Verifier::visitDIScope(const DIScope &N) {
836   if (auto *F = N.getRawFile())
837     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
838 }
839 
840 void Verifier::visitDISubrange(const DISubrange &N) {
841   AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
842   AssertDI(N.getCount() >= -1, "invalid subrange count", &N);
843 }
844 
845 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
846   AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
847 }
848 
849 void Verifier::visitDIBasicType(const DIBasicType &N) {
850   AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
851                N.getTag() == dwarf::DW_TAG_unspecified_type,
852            "invalid tag", &N);
853 }
854 
855 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
856   // Common scope checks.
857   visitDIScope(N);
858 
859   AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
860                N.getTag() == dwarf::DW_TAG_pointer_type ||
861                N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
862                N.getTag() == dwarf::DW_TAG_reference_type ||
863                N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
864                N.getTag() == dwarf::DW_TAG_const_type ||
865                N.getTag() == dwarf::DW_TAG_volatile_type ||
866                N.getTag() == dwarf::DW_TAG_restrict_type ||
867                N.getTag() == dwarf::DW_TAG_member ||
868                N.getTag() == dwarf::DW_TAG_inheritance ||
869                N.getTag() == dwarf::DW_TAG_friend,
870            "invalid tag", &N);
871   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
872     AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
873              N.getRawExtraData());
874   }
875 
876   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
877   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
878            N.getRawBaseType());
879 }
880 
881 static bool hasConflictingReferenceFlags(unsigned Flags) {
882   return (Flags & DINode::FlagLValueReference) &&
883          (Flags & DINode::FlagRValueReference);
884 }
885 
886 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
887   auto *Params = dyn_cast<MDTuple>(&RawParams);
888   AssertDI(Params, "invalid template params", &N, &RawParams);
889   for (Metadata *Op : Params->operands()) {
890     AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
891              &N, Params, Op);
892   }
893 }
894 
895 void Verifier::visitDICompositeType(const DICompositeType &N) {
896   // Common scope checks.
897   visitDIScope(N);
898 
899   AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
900                N.getTag() == dwarf::DW_TAG_structure_type ||
901                N.getTag() == dwarf::DW_TAG_union_type ||
902                N.getTag() == dwarf::DW_TAG_enumeration_type ||
903                N.getTag() == dwarf::DW_TAG_class_type,
904            "invalid tag", &N);
905 
906   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
907   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
908            N.getRawBaseType());
909 
910   AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
911            "invalid composite elements", &N, N.getRawElements());
912   AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
913            N.getRawVTableHolder());
914   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
915            "invalid reference flags", &N);
916   if (auto *Params = N.getRawTemplateParams())
917     visitTemplateParams(N, *Params);
918 
919   if (N.getTag() == dwarf::DW_TAG_class_type ||
920       N.getTag() == dwarf::DW_TAG_union_type) {
921     AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
922              "class/union requires a filename", &N, N.getFile());
923   }
924 }
925 
926 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
927   AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
928   if (auto *Types = N.getRawTypeArray()) {
929     AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
930     for (Metadata *Ty : N.getTypeArray()->operands()) {
931       AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
932     }
933   }
934   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
935            "invalid reference flags", &N);
936 }
937 
938 void Verifier::visitDIFile(const DIFile &N) {
939   AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
940 }
941 
942 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
943   AssertDI(N.isDistinct(), "compile units must be distinct", &N);
944   AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
945 
946   // Don't bother verifying the compilation directory or producer string
947   // as those could be empty.
948   AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
949            N.getRawFile());
950   AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
951            N.getFile());
952 
953   AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
954            "invalid emission kind", &N);
955 
956   if (auto *Array = N.getRawEnumTypes()) {
957     AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
958     for (Metadata *Op : N.getEnumTypes()->operands()) {
959       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
960       AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
961                "invalid enum type", &N, N.getEnumTypes(), Op);
962     }
963   }
964   if (auto *Array = N.getRawRetainedTypes()) {
965     AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
966     for (Metadata *Op : N.getRetainedTypes()->operands()) {
967       AssertDI(Op && (isa<DIType>(Op) ||
968                       (isa<DISubprogram>(Op) &&
969                        !cast<DISubprogram>(Op)->isDefinition())),
970                "invalid retained type", &N, Op);
971     }
972   }
973   if (auto *Array = N.getRawGlobalVariables()) {
974     AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
975     for (Metadata *Op : N.getGlobalVariables()->operands()) {
976       AssertDI(Op && isa<DIGlobalVariable>(Op), "invalid global variable ref",
977                &N, Op);
978     }
979   }
980   if (auto *Array = N.getRawImportedEntities()) {
981     AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
982     for (Metadata *Op : N.getImportedEntities()->operands()) {
983       AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
984                &N, Op);
985     }
986   }
987   if (auto *Array = N.getRawMacros()) {
988     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
989     for (Metadata *Op : N.getMacros()->operands()) {
990       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
991     }
992   }
993   CUVisited.insert(&N);
994 }
995 
996 void Verifier::visitDISubprogram(const DISubprogram &N) {
997   AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
998   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
999   if (auto *F = N.getRawFile())
1000     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1001   if (auto *T = N.getRawType())
1002     AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1003   AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1004            N.getRawContainingType());
1005   if (auto *Params = N.getRawTemplateParams())
1006     visitTemplateParams(N, *Params);
1007   if (auto *S = N.getRawDeclaration())
1008     AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1009              "invalid subprogram declaration", &N, S);
1010   if (auto *RawVars = N.getRawVariables()) {
1011     auto *Vars = dyn_cast<MDTuple>(RawVars);
1012     AssertDI(Vars, "invalid variable list", &N, RawVars);
1013     for (Metadata *Op : Vars->operands()) {
1014       AssertDI(Op && isa<DILocalVariable>(Op), "invalid local variable", &N,
1015                Vars, Op);
1016     }
1017   }
1018   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1019            "invalid reference flags", &N);
1020 
1021   auto *Unit = N.getRawUnit();
1022   if (N.isDefinition()) {
1023     // Subprogram definitions (not part of the type hierarchy).
1024     AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1025     AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1026     AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1027   } else {
1028     // Subprogram declarations (part of the type hierarchy).
1029     AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1030   }
1031 }
1032 
1033 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1034   AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1035   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1036            "invalid local scope", &N, N.getRawScope());
1037 }
1038 
1039 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1040   visitDILexicalBlockBase(N);
1041 
1042   AssertDI(N.getLine() || !N.getColumn(),
1043            "cannot have column info without line info", &N);
1044 }
1045 
1046 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1047   visitDILexicalBlockBase(N);
1048 }
1049 
1050 void Verifier::visitDINamespace(const DINamespace &N) {
1051   AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1052   if (auto *S = N.getRawScope())
1053     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1054 }
1055 
1056 void Verifier::visitDIMacro(const DIMacro &N) {
1057   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1058                N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1059            "invalid macinfo type", &N);
1060   AssertDI(!N.getName().empty(), "anonymous macro", &N);
1061   if (!N.getValue().empty()) {
1062     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1063   }
1064 }
1065 
1066 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1067   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1068            "invalid macinfo type", &N);
1069   if (auto *F = N.getRawFile())
1070     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1071 
1072   if (auto *Array = N.getRawElements()) {
1073     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1074     for (Metadata *Op : N.getElements()->operands()) {
1075       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1076     }
1077   }
1078 }
1079 
1080 void Verifier::visitDIModule(const DIModule &N) {
1081   AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1082   AssertDI(!N.getName().empty(), "anonymous module", &N);
1083 }
1084 
1085 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1086   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1087 }
1088 
1089 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1090   visitDITemplateParameter(N);
1091 
1092   AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1093            &N);
1094 }
1095 
1096 void Verifier::visitDITemplateValueParameter(
1097     const DITemplateValueParameter &N) {
1098   visitDITemplateParameter(N);
1099 
1100   AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1101                N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1102                N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1103            "invalid tag", &N);
1104 }
1105 
1106 void Verifier::visitDIVariable(const DIVariable &N) {
1107   if (auto *S = N.getRawScope())
1108     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1109   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1110   if (auto *F = N.getRawFile())
1111     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1112 }
1113 
1114 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1115   // Checks common to all variables.
1116   visitDIVariable(N);
1117 
1118   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1119   AssertDI(!N.getName().empty(), "missing global variable name", &N);
1120   if (auto *V = N.getRawExpr())
1121     AssertDI(isa<DIExpression>(V), "invalid expression location", &N, V);
1122   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1123     AssertDI(isa<DIDerivedType>(Member),
1124              "invalid static data member declaration", &N, Member);
1125   }
1126 }
1127 
1128 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1129   // Checks common to all variables.
1130   visitDIVariable(N);
1131 
1132   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1133   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1134            "local variable requires a valid scope", &N, N.getRawScope());
1135 }
1136 
1137 void Verifier::visitDIExpression(const DIExpression &N) {
1138   AssertDI(N.isValid(), "invalid expression", &N);
1139 }
1140 
1141 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1142   AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1143   if (auto *T = N.getRawType())
1144     AssertDI(isType(T), "invalid type ref", &N, T);
1145   if (auto *F = N.getRawFile())
1146     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1147 }
1148 
1149 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1150   AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1151                N.getTag() == dwarf::DW_TAG_imported_declaration,
1152            "invalid tag", &N);
1153   if (auto *S = N.getRawScope())
1154     AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1155   AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1156            N.getRawEntity());
1157 }
1158 
1159 void Verifier::visitComdat(const Comdat &C) {
1160   // The Module is invalid if the GlobalValue has private linkage.  Entities
1161   // with private linkage don't have entries in the symbol table.
1162   if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1163     Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1164            GV);
1165 }
1166 
1167 void Verifier::visitModuleIdents(const Module &M) {
1168   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1169   if (!Idents)
1170     return;
1171 
1172   // llvm.ident takes a list of metadata entry. Each entry has only one string.
1173   // Scan each llvm.ident entry and make sure that this requirement is met.
1174   for (const MDNode *N : Idents->operands()) {
1175     Assert(N->getNumOperands() == 1,
1176            "incorrect number of operands in llvm.ident metadata", N);
1177     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1178            ("invalid value for llvm.ident metadata entry operand"
1179             "(the operand should be a string)"),
1180            N->getOperand(0));
1181   }
1182 }
1183 
1184 void Verifier::visitModuleFlags(const Module &M) {
1185   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1186   if (!Flags) return;
1187 
1188   // Scan each flag, and track the flags and requirements.
1189   DenseMap<const MDString*, const MDNode*> SeenIDs;
1190   SmallVector<const MDNode*, 16> Requirements;
1191   for (const MDNode *MDN : Flags->operands())
1192     visitModuleFlag(MDN, SeenIDs, Requirements);
1193 
1194   // Validate that the requirements in the module are valid.
1195   for (const MDNode *Requirement : Requirements) {
1196     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1197     const Metadata *ReqValue = Requirement->getOperand(1);
1198 
1199     const MDNode *Op = SeenIDs.lookup(Flag);
1200     if (!Op) {
1201       CheckFailed("invalid requirement on flag, flag is not present in module",
1202                   Flag);
1203       continue;
1204     }
1205 
1206     if (Op->getOperand(2) != ReqValue) {
1207       CheckFailed(("invalid requirement on flag, "
1208                    "flag does not have the required value"),
1209                   Flag);
1210       continue;
1211     }
1212   }
1213 }
1214 
1215 void
1216 Verifier::visitModuleFlag(const MDNode *Op,
1217                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
1218                           SmallVectorImpl<const MDNode *> &Requirements) {
1219   // Each module flag should have three arguments, the merge behavior (a
1220   // constant int), the flag ID (an MDString), and the value.
1221   Assert(Op->getNumOperands() == 3,
1222          "incorrect number of operands in module flag", Op);
1223   Module::ModFlagBehavior MFB;
1224   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1225     Assert(
1226         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1227         "invalid behavior operand in module flag (expected constant integer)",
1228         Op->getOperand(0));
1229     Assert(false,
1230            "invalid behavior operand in module flag (unexpected constant)",
1231            Op->getOperand(0));
1232   }
1233   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1234   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1235          Op->getOperand(1));
1236 
1237   // Sanity check the values for behaviors with additional requirements.
1238   switch (MFB) {
1239   case Module::Error:
1240   case Module::Warning:
1241   case Module::Override:
1242     // These behavior types accept any value.
1243     break;
1244 
1245   case Module::Require: {
1246     // The value should itself be an MDNode with two operands, a flag ID (an
1247     // MDString), and a value.
1248     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1249     Assert(Value && Value->getNumOperands() == 2,
1250            "invalid value for 'require' module flag (expected metadata pair)",
1251            Op->getOperand(2));
1252     Assert(isa<MDString>(Value->getOperand(0)),
1253            ("invalid value for 'require' module flag "
1254             "(first value operand should be a string)"),
1255            Value->getOperand(0));
1256 
1257     // Append it to the list of requirements, to check once all module flags are
1258     // scanned.
1259     Requirements.push_back(Value);
1260     break;
1261   }
1262 
1263   case Module::Append:
1264   case Module::AppendUnique: {
1265     // These behavior types require the operand be an MDNode.
1266     Assert(isa<MDNode>(Op->getOperand(2)),
1267            "invalid value for 'append'-type module flag "
1268            "(expected a metadata node)",
1269            Op->getOperand(2));
1270     break;
1271   }
1272   }
1273 
1274   // Unless this is a "requires" flag, check the ID is unique.
1275   if (MFB != Module::Require) {
1276     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1277     Assert(Inserted,
1278            "module flag identifiers must be unique (or of 'require' type)", ID);
1279   }
1280 }
1281 
1282 void Verifier::verifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
1283                                     bool isFunction, const Value *V) {
1284   unsigned Slot = ~0U;
1285   for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
1286     if (Attrs.getSlotIndex(I) == Idx) {
1287       Slot = I;
1288       break;
1289     }
1290 
1291   assert(Slot != ~0U && "Attribute set inconsistency!");
1292 
1293   for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
1294          I != E; ++I) {
1295     if (I->isStringAttribute())
1296       continue;
1297 
1298     if (I->getKindAsEnum() == Attribute::NoReturn ||
1299         I->getKindAsEnum() == Attribute::NoUnwind ||
1300         I->getKindAsEnum() == Attribute::NoInline ||
1301         I->getKindAsEnum() == Attribute::AlwaysInline ||
1302         I->getKindAsEnum() == Attribute::OptimizeForSize ||
1303         I->getKindAsEnum() == Attribute::StackProtect ||
1304         I->getKindAsEnum() == Attribute::StackProtectReq ||
1305         I->getKindAsEnum() == Attribute::StackProtectStrong ||
1306         I->getKindAsEnum() == Attribute::SafeStack ||
1307         I->getKindAsEnum() == Attribute::NoRedZone ||
1308         I->getKindAsEnum() == Attribute::NoImplicitFloat ||
1309         I->getKindAsEnum() == Attribute::Naked ||
1310         I->getKindAsEnum() == Attribute::InlineHint ||
1311         I->getKindAsEnum() == Attribute::StackAlignment ||
1312         I->getKindAsEnum() == Attribute::UWTable ||
1313         I->getKindAsEnum() == Attribute::NonLazyBind ||
1314         I->getKindAsEnum() == Attribute::ReturnsTwice ||
1315         I->getKindAsEnum() == Attribute::SanitizeAddress ||
1316         I->getKindAsEnum() == Attribute::SanitizeThread ||
1317         I->getKindAsEnum() == Attribute::SanitizeMemory ||
1318         I->getKindAsEnum() == Attribute::MinSize ||
1319         I->getKindAsEnum() == Attribute::NoDuplicate ||
1320         I->getKindAsEnum() == Attribute::Builtin ||
1321         I->getKindAsEnum() == Attribute::NoBuiltin ||
1322         I->getKindAsEnum() == Attribute::Cold ||
1323         I->getKindAsEnum() == Attribute::OptimizeNone ||
1324         I->getKindAsEnum() == Attribute::JumpTable ||
1325         I->getKindAsEnum() == Attribute::Convergent ||
1326         I->getKindAsEnum() == Attribute::ArgMemOnly ||
1327         I->getKindAsEnum() == Attribute::NoRecurse ||
1328         I->getKindAsEnum() == Attribute::InaccessibleMemOnly ||
1329         I->getKindAsEnum() == Attribute::InaccessibleMemOrArgMemOnly ||
1330         I->getKindAsEnum() == Attribute::AllocSize) {
1331       if (!isFunction) {
1332         CheckFailed("Attribute '" + I->getAsString() +
1333                     "' only applies to functions!", V);
1334         return;
1335       }
1336     } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
1337                I->getKindAsEnum() == Attribute::WriteOnly ||
1338                I->getKindAsEnum() == Attribute::ReadNone) {
1339       if (Idx == 0) {
1340         CheckFailed("Attribute '" + I->getAsString() +
1341                     "' does not apply to function returns");
1342         return;
1343       }
1344     } else if (isFunction) {
1345       CheckFailed("Attribute '" + I->getAsString() +
1346                   "' does not apply to functions!", V);
1347       return;
1348     }
1349   }
1350 }
1351 
1352 // VerifyParameterAttrs - Check the given attributes for an argument or return
1353 // value of the specified type.  The value V is printed in error messages.
1354 void Verifier::verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
1355                                     bool isReturnValue, const Value *V) {
1356   if (!Attrs.hasAttributes(Idx))
1357     return;
1358 
1359   verifyAttributeTypes(Attrs, Idx, false, V);
1360 
1361   if (isReturnValue)
1362     Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
1363                !Attrs.hasAttribute(Idx, Attribute::Nest) &&
1364                !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
1365                !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
1366                !Attrs.hasAttribute(Idx, Attribute::Returned) &&
1367                !Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
1368                !Attrs.hasAttribute(Idx, Attribute::SwiftSelf) &&
1369                !Attrs.hasAttribute(Idx, Attribute::SwiftError),
1370            "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1371            "'returned', 'swiftself', and 'swifterror' do not apply to return "
1372            "values!",
1373            V);
1374 
1375   // Check for mutually incompatible attributes.  Only inreg is compatible with
1376   // sret.
1377   unsigned AttrCount = 0;
1378   AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
1379   AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
1380   AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
1381                Attrs.hasAttribute(Idx, Attribute::InReg);
1382   AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
1383   Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1384                          "and 'sret' are incompatible!",
1385          V);
1386 
1387   Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
1388            Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
1389          "Attributes "
1390          "'inalloca and readonly' are incompatible!",
1391          V);
1392 
1393   Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
1394            Attrs.hasAttribute(Idx, Attribute::Returned)),
1395          "Attributes "
1396          "'sret and returned' are incompatible!",
1397          V);
1398 
1399   Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
1400            Attrs.hasAttribute(Idx, Attribute::SExt)),
1401          "Attributes "
1402          "'zeroext and signext' are incompatible!",
1403          V);
1404 
1405   Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
1406            Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
1407          "Attributes "
1408          "'readnone and readonly' are incompatible!",
1409          V);
1410 
1411   Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
1412            Attrs.hasAttribute(Idx, Attribute::WriteOnly)),
1413          "Attributes "
1414          "'readnone and writeonly' are incompatible!",
1415          V);
1416 
1417   Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
1418            Attrs.hasAttribute(Idx, Attribute::WriteOnly)),
1419          "Attributes "
1420          "'readonly and writeonly' are incompatible!",
1421          V);
1422 
1423   Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
1424            Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),
1425          "Attributes "
1426          "'noinline and alwaysinline' are incompatible!",
1427          V);
1428 
1429   Assert(
1430       !AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::typeIncompatible(Ty)),
1431       "Wrong types for attribute: " +
1432           AttributeSet::get(Context, Idx, AttributeFuncs::typeIncompatible(Ty))
1433               .getAsString(Idx),
1434       V);
1435 
1436   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1437     SmallPtrSet<Type*, 4> Visited;
1438     if (!PTy->getElementType()->isSized(&Visited)) {
1439       Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
1440                  !Attrs.hasAttribute(Idx, Attribute::InAlloca),
1441              "Attributes 'byval' and 'inalloca' do not support unsized types!",
1442              V);
1443     }
1444     if (!isa<PointerType>(PTy->getElementType()))
1445       Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError),
1446              "Attribute 'swifterror' only applies to parameters "
1447              "with pointer to pointer type!",
1448              V);
1449   } else {
1450     Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),
1451            "Attribute 'byval' only applies to parameters with pointer type!",
1452            V);
1453     Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError),
1454            "Attribute 'swifterror' only applies to parameters "
1455            "with pointer type!",
1456            V);
1457   }
1458 }
1459 
1460 // Check parameter attributes against a function type.
1461 // The value V is printed in error messages.
1462 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
1463                                    const Value *V) {
1464   if (Attrs.isEmpty())
1465     return;
1466 
1467   bool SawNest = false;
1468   bool SawReturned = false;
1469   bool SawSRet = false;
1470   bool SawSwiftSelf = false;
1471   bool SawSwiftError = false;
1472 
1473   for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1474     unsigned Idx = Attrs.getSlotIndex(i);
1475 
1476     Type *Ty;
1477     if (Idx == 0)
1478       Ty = FT->getReturnType();
1479     else if (Idx-1 < FT->getNumParams())
1480       Ty = FT->getParamType(Idx-1);
1481     else
1482       break;  // VarArgs attributes, verified elsewhere.
1483 
1484     verifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
1485 
1486     if (Idx == 0)
1487       continue;
1488 
1489     if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
1490       Assert(!SawNest, "More than one parameter has attribute nest!", V);
1491       SawNest = true;
1492     }
1493 
1494     if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
1495       Assert(!SawReturned, "More than one parameter has attribute returned!",
1496              V);
1497       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1498              "Incompatible "
1499              "argument and return types for 'returned' attribute",
1500              V);
1501       SawReturned = true;
1502     }
1503 
1504     if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
1505       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1506       Assert(Idx == 1 || Idx == 2,
1507              "Attribute 'sret' is not on first or second parameter!", V);
1508       SawSRet = true;
1509     }
1510 
1511     if (Attrs.hasAttribute(Idx, Attribute::SwiftSelf)) {
1512       Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1513       SawSwiftSelf = true;
1514     }
1515 
1516     if (Attrs.hasAttribute(Idx, Attribute::SwiftError)) {
1517       Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1518              V);
1519       SawSwiftError = true;
1520     }
1521 
1522     if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
1523       Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",
1524              V);
1525     }
1526   }
1527 
1528   if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
1529     return;
1530 
1531   verifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
1532 
1533   Assert(
1534       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1535         Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),
1536       "Attributes 'readnone and readonly' are incompatible!", V);
1537 
1538   Assert(
1539       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1540         Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::WriteOnly)),
1541       "Attributes 'readnone and writeonly' are incompatible!", V);
1542 
1543   Assert(
1544       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly) &&
1545         Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::WriteOnly)),
1546       "Attributes 'readonly and writeonly' are incompatible!", V);
1547 
1548   Assert(
1549       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1550         Attrs.hasAttribute(AttributeSet::FunctionIndex,
1551                            Attribute::InaccessibleMemOrArgMemOnly)),
1552       "Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!", V);
1553 
1554   Assert(
1555       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1556         Attrs.hasAttribute(AttributeSet::FunctionIndex,
1557                            Attribute::InaccessibleMemOnly)),
1558       "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1559 
1560   Assert(
1561       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&
1562         Attrs.hasAttribute(AttributeSet::FunctionIndex,
1563                            Attribute::AlwaysInline)),
1564       "Attributes 'noinline and alwaysinline' are incompatible!", V);
1565 
1566   if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1567                          Attribute::OptimizeNone)) {
1568     Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),
1569            "Attribute 'optnone' requires 'noinline'!", V);
1570 
1571     Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
1572                                Attribute::OptimizeForSize),
1573            "Attributes 'optsize and optnone' are incompatible!", V);
1574 
1575     Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),
1576            "Attributes 'minsize and optnone' are incompatible!", V);
1577   }
1578 
1579   if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1580                          Attribute::JumpTable)) {
1581     const GlobalValue *GV = cast<GlobalValue>(V);
1582     Assert(GV->hasGlobalUnnamedAddr(),
1583            "Attribute 'jumptable' requires 'unnamed_addr'", V);
1584   }
1585 
1586   if (Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::AllocSize)) {
1587     std::pair<unsigned, Optional<unsigned>> Args =
1588         Attrs.getAllocSizeArgs(AttributeSet::FunctionIndex);
1589 
1590     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1591       if (ParamNo >= FT->getNumParams()) {
1592         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1593         return false;
1594       }
1595 
1596       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1597         CheckFailed("'allocsize' " + Name +
1598                         " argument must refer to an integer parameter",
1599                     V);
1600         return false;
1601       }
1602 
1603       return true;
1604     };
1605 
1606     if (!CheckParam("element size", Args.first))
1607       return;
1608 
1609     if (Args.second && !CheckParam("number of elements", *Args.second))
1610       return;
1611   }
1612 }
1613 
1614 void Verifier::verifyFunctionMetadata(
1615     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1616   for (const auto &Pair : MDs) {
1617     if (Pair.first == LLVMContext::MD_prof) {
1618       MDNode *MD = Pair.second;
1619       Assert(MD->getNumOperands() == 2,
1620              "!prof annotations should have exactly 2 operands", MD);
1621 
1622       // Check first operand.
1623       Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1624              MD);
1625       Assert(isa<MDString>(MD->getOperand(0)),
1626              "expected string with name of the !prof annotation", MD);
1627       MDString *MDS = cast<MDString>(MD->getOperand(0));
1628       StringRef ProfName = MDS->getString();
1629       Assert(ProfName.equals("function_entry_count"),
1630              "first operand should be 'function_entry_count'", MD);
1631 
1632       // Check second operand.
1633       Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1634              MD);
1635       Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1636              "expected integer argument to function_entry_count", MD);
1637     }
1638   }
1639 }
1640 
1641 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1642   if (!ConstantExprVisited.insert(EntryC).second)
1643     return;
1644 
1645   SmallVector<const Constant *, 16> Stack;
1646   Stack.push_back(EntryC);
1647 
1648   while (!Stack.empty()) {
1649     const Constant *C = Stack.pop_back_val();
1650 
1651     // Check this constant expression.
1652     if (const auto *CE = dyn_cast<ConstantExpr>(C))
1653       visitConstantExpr(CE);
1654 
1655     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1656       // Global Values get visited separately, but we do need to make sure
1657       // that the global value is in the correct module
1658       Assert(GV->getParent() == &M, "Referencing global in another module!",
1659              EntryC, &M, GV, GV->getParent());
1660       continue;
1661     }
1662 
1663     // Visit all sub-expressions.
1664     for (const Use &U : C->operands()) {
1665       const auto *OpC = dyn_cast<Constant>(U);
1666       if (!OpC)
1667         continue;
1668       if (!ConstantExprVisited.insert(OpC).second)
1669         continue;
1670       Stack.push_back(OpC);
1671     }
1672   }
1673 }
1674 
1675 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1676   if (CE->getOpcode() == Instruction::BitCast)
1677     Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1678                                  CE->getType()),
1679            "Invalid bitcast", CE);
1680 
1681   if (CE->getOpcode() == Instruction::IntToPtr ||
1682       CE->getOpcode() == Instruction::PtrToInt) {
1683     auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1684                       ? CE->getType()
1685                       : CE->getOperand(0)->getType();
1686     StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1687                         ? "inttoptr not supported for non-integral pointers"
1688                         : "ptrtoint not supported for non-integral pointers";
1689     Assert(
1690         !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
1691         Msg);
1692   }
1693 }
1694 
1695 bool Verifier::verifyAttributeCount(AttributeSet Attrs, unsigned Params) {
1696   if (Attrs.getNumSlots() == 0)
1697     return true;
1698 
1699   unsigned LastSlot = Attrs.getNumSlots() - 1;
1700   unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
1701   if (LastIndex <= Params
1702       || (LastIndex == AttributeSet::FunctionIndex
1703           && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
1704     return true;
1705 
1706   return false;
1707 }
1708 
1709 /// Verify that statepoint intrinsic is well formed.
1710 void Verifier::verifyStatepoint(ImmutableCallSite CS) {
1711   assert(CS.getCalledFunction() &&
1712          CS.getCalledFunction()->getIntrinsicID() ==
1713            Intrinsic::experimental_gc_statepoint);
1714 
1715   const Instruction &CI = *CS.getInstruction();
1716 
1717   Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
1718          !CS.onlyAccessesArgMemory(),
1719          "gc.statepoint must read and write all memory to preserve "
1720          "reordering restrictions required by safepoint semantics",
1721          &CI);
1722 
1723   const Value *IDV = CS.getArgument(0);
1724   Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
1725          &CI);
1726 
1727   const Value *NumPatchBytesV = CS.getArgument(1);
1728   Assert(isa<ConstantInt>(NumPatchBytesV),
1729          "gc.statepoint number of patchable bytes must be a constant integer",
1730          &CI);
1731   const int64_t NumPatchBytes =
1732       cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1733   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1734   Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
1735                              "positive",
1736          &CI);
1737 
1738   const Value *Target = CS.getArgument(2);
1739   auto *PT = dyn_cast<PointerType>(Target->getType());
1740   Assert(PT && PT->getElementType()->isFunctionTy(),
1741          "gc.statepoint callee must be of function pointer type", &CI, Target);
1742   FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1743 
1744   const Value *NumCallArgsV = CS.getArgument(3);
1745   Assert(isa<ConstantInt>(NumCallArgsV),
1746          "gc.statepoint number of arguments to underlying call "
1747          "must be constant integer",
1748          &CI);
1749   const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1750   Assert(NumCallArgs >= 0,
1751          "gc.statepoint number of arguments to underlying call "
1752          "must be positive",
1753          &CI);
1754   const int NumParams = (int)TargetFuncType->getNumParams();
1755   if (TargetFuncType->isVarArg()) {
1756     Assert(NumCallArgs >= NumParams,
1757            "gc.statepoint mismatch in number of vararg call args", &CI);
1758 
1759     // TODO: Remove this limitation
1760     Assert(TargetFuncType->getReturnType()->isVoidTy(),
1761            "gc.statepoint doesn't support wrapping non-void "
1762            "vararg functions yet",
1763            &CI);
1764   } else
1765     Assert(NumCallArgs == NumParams,
1766            "gc.statepoint mismatch in number of call args", &CI);
1767 
1768   const Value *FlagsV = CS.getArgument(4);
1769   Assert(isa<ConstantInt>(FlagsV),
1770          "gc.statepoint flags must be constant integer", &CI);
1771   const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1772   Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1773          "unknown flag used in gc.statepoint flags argument", &CI);
1774 
1775   // Verify that the types of the call parameter arguments match
1776   // the type of the wrapped callee.
1777   for (int i = 0; i < NumParams; i++) {
1778     Type *ParamType = TargetFuncType->getParamType(i);
1779     Type *ArgType = CS.getArgument(5 + i)->getType();
1780     Assert(ArgType == ParamType,
1781            "gc.statepoint call argument does not match wrapped "
1782            "function type",
1783            &CI);
1784   }
1785 
1786   const int EndCallArgsInx = 4 + NumCallArgs;
1787 
1788   const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1789   Assert(isa<ConstantInt>(NumTransitionArgsV),
1790          "gc.statepoint number of transition arguments "
1791          "must be constant integer",
1792          &CI);
1793   const int NumTransitionArgs =
1794       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1795   Assert(NumTransitionArgs >= 0,
1796          "gc.statepoint number of transition arguments must be positive", &CI);
1797   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1798 
1799   const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1800   Assert(isa<ConstantInt>(NumDeoptArgsV),
1801          "gc.statepoint number of deoptimization arguments "
1802          "must be constant integer",
1803          &CI);
1804   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1805   Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
1806                             "must be positive",
1807          &CI);
1808 
1809   const int ExpectedNumArgs =
1810       7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1811   Assert(ExpectedNumArgs <= (int)CS.arg_size(),
1812          "gc.statepoint too few arguments according to length fields", &CI);
1813 
1814   // Check that the only uses of this gc.statepoint are gc.result or
1815   // gc.relocate calls which are tied to this statepoint and thus part
1816   // of the same statepoint sequence
1817   for (const User *U : CI.users()) {
1818     const CallInst *Call = dyn_cast<const CallInst>(U);
1819     Assert(Call, "illegal use of statepoint token", &CI, U);
1820     if (!Call) continue;
1821     Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),
1822            "gc.result or gc.relocate are the only value uses "
1823            "of a gc.statepoint",
1824            &CI, U);
1825     if (isa<GCResultInst>(Call)) {
1826       Assert(Call->getArgOperand(0) == &CI,
1827              "gc.result connected to wrong gc.statepoint", &CI, Call);
1828     } else if (isa<GCRelocateInst>(Call)) {
1829       Assert(Call->getArgOperand(0) == &CI,
1830              "gc.relocate connected to wrong gc.statepoint", &CI, Call);
1831     }
1832   }
1833 
1834   // Note: It is legal for a single derived pointer to be listed multiple
1835   // times.  It's non-optimal, but it is legal.  It can also happen after
1836   // insertion if we strip a bitcast away.
1837   // Note: It is really tempting to check that each base is relocated and
1838   // that a derived pointer is never reused as a base pointer.  This turns
1839   // out to be problematic since optimizations run after safepoint insertion
1840   // can recognize equality properties that the insertion logic doesn't know
1841   // about.  See example statepoint.ll in the verifier subdirectory
1842 }
1843 
1844 void Verifier::verifyFrameRecoverIndices() {
1845   for (auto &Counts : FrameEscapeInfo) {
1846     Function *F = Counts.first;
1847     unsigned EscapedObjectCount = Counts.second.first;
1848     unsigned MaxRecoveredIndex = Counts.second.second;
1849     Assert(MaxRecoveredIndex <= EscapedObjectCount,
1850            "all indices passed to llvm.localrecover must be less than the "
1851            "number of arguments passed ot llvm.localescape in the parent "
1852            "function",
1853            F);
1854   }
1855 }
1856 
1857 static Instruction *getSuccPad(TerminatorInst *Terminator) {
1858   BasicBlock *UnwindDest;
1859   if (auto *II = dyn_cast<InvokeInst>(Terminator))
1860     UnwindDest = II->getUnwindDest();
1861   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
1862     UnwindDest = CSI->getUnwindDest();
1863   else
1864     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
1865   return UnwindDest->getFirstNonPHI();
1866 }
1867 
1868 void Verifier::verifySiblingFuncletUnwinds() {
1869   SmallPtrSet<Instruction *, 8> Visited;
1870   SmallPtrSet<Instruction *, 8> Active;
1871   for (const auto &Pair : SiblingFuncletInfo) {
1872     Instruction *PredPad = Pair.first;
1873     if (Visited.count(PredPad))
1874       continue;
1875     Active.insert(PredPad);
1876     TerminatorInst *Terminator = Pair.second;
1877     do {
1878       Instruction *SuccPad = getSuccPad(Terminator);
1879       if (Active.count(SuccPad)) {
1880         // Found a cycle; report error
1881         Instruction *CyclePad = SuccPad;
1882         SmallVector<Instruction *, 8> CycleNodes;
1883         do {
1884           CycleNodes.push_back(CyclePad);
1885           TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
1886           if (CycleTerminator != CyclePad)
1887             CycleNodes.push_back(CycleTerminator);
1888           CyclePad = getSuccPad(CycleTerminator);
1889         } while (CyclePad != SuccPad);
1890         Assert(false, "EH pads can't handle each other's exceptions",
1891                ArrayRef<Instruction *>(CycleNodes));
1892       }
1893       // Don't re-walk a node we've already checked
1894       if (!Visited.insert(SuccPad).second)
1895         break;
1896       // Walk to this successor if it has a map entry.
1897       PredPad = SuccPad;
1898       auto TermI = SiblingFuncletInfo.find(PredPad);
1899       if (TermI == SiblingFuncletInfo.end())
1900         break;
1901       Terminator = TermI->second;
1902       Active.insert(PredPad);
1903     } while (true);
1904     // Each node only has one successor, so we've walked all the active
1905     // nodes' successors.
1906     Active.clear();
1907   }
1908 }
1909 
1910 // visitFunction - Verify that a function is ok.
1911 //
1912 void Verifier::visitFunction(const Function &F) {
1913   visitGlobalValue(F);
1914 
1915   // Check function arguments.
1916   FunctionType *FT = F.getFunctionType();
1917   unsigned NumArgs = F.arg_size();
1918 
1919   Assert(&Context == &F.getContext(),
1920          "Function context does not match Module context!", &F);
1921 
1922   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
1923   Assert(FT->getNumParams() == NumArgs,
1924          "# formal arguments must match # of arguments for function type!", &F,
1925          FT);
1926   Assert(F.getReturnType()->isFirstClassType() ||
1927              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
1928          "Functions cannot return aggregate values!", &F);
1929 
1930   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
1931          "Invalid struct return type!", &F);
1932 
1933   AttributeSet Attrs = F.getAttributes();
1934 
1935   Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
1936          "Attribute after last parameter!", &F);
1937 
1938   // Check function attributes.
1939   verifyFunctionAttrs(FT, Attrs, &F);
1940 
1941   // On function declarations/definitions, we do not support the builtin
1942   // attribute. We do not check this in VerifyFunctionAttrs since that is
1943   // checking for Attributes that can/can not ever be on functions.
1944   Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),
1945          "Attribute 'builtin' can only be applied to a callsite.", &F);
1946 
1947   // Check that this function meets the restrictions on this calling convention.
1948   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
1949   // restrictions can be lifted.
1950   switch (F.getCallingConv()) {
1951   default:
1952   case CallingConv::C:
1953     break;
1954   case CallingConv::Fast:
1955   case CallingConv::Cold:
1956   case CallingConv::Intel_OCL_BI:
1957   case CallingConv::PTX_Kernel:
1958   case CallingConv::PTX_Device:
1959     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
1960                           "perfect forwarding!",
1961            &F);
1962     break;
1963   }
1964 
1965   bool isLLVMdotName = F.getName().size() >= 5 &&
1966                        F.getName().substr(0, 5) == "llvm.";
1967 
1968   // Check that the argument values match the function type for this function...
1969   unsigned i = 0;
1970   for (const Argument &Arg : F.args()) {
1971     Assert(Arg.getType() == FT->getParamType(i),
1972            "Argument value does not match function argument type!", &Arg,
1973            FT->getParamType(i));
1974     Assert(Arg.getType()->isFirstClassType(),
1975            "Function arguments must have first-class types!", &Arg);
1976     if (!isLLVMdotName) {
1977       Assert(!Arg.getType()->isMetadataTy(),
1978              "Function takes metadata but isn't an intrinsic", &Arg, &F);
1979       Assert(!Arg.getType()->isTokenTy(),
1980              "Function takes token but isn't an intrinsic", &Arg, &F);
1981     }
1982 
1983     // Check that swifterror argument is only used by loads and stores.
1984     if (Attrs.hasAttribute(i+1, Attribute::SwiftError)) {
1985       verifySwiftErrorValue(&Arg);
1986     }
1987     ++i;
1988   }
1989 
1990   if (!isLLVMdotName)
1991     Assert(!F.getReturnType()->isTokenTy(),
1992            "Functions returns a token but isn't an intrinsic", &F);
1993 
1994   // Get the function metadata attachments.
1995   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1996   F.getAllMetadata(MDs);
1997   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
1998   verifyFunctionMetadata(MDs);
1999 
2000   // Check validity of the personality function
2001   if (F.hasPersonalityFn()) {
2002     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2003     if (Per)
2004       Assert(Per->getParent() == F.getParent(),
2005              "Referencing personality function in another module!",
2006              &F, F.getParent(), Per, Per->getParent());
2007   }
2008 
2009   if (F.isMaterializable()) {
2010     // Function has a body somewhere we can't see.
2011     Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2012            MDs.empty() ? nullptr : MDs.front().second);
2013   } else if (F.isDeclaration()) {
2014     for (const auto &I : MDs) {
2015       AssertDI(I.first != LLVMContext::MD_dbg,
2016                "function declaration may not have a !dbg attachment", &F);
2017       Assert(I.first != LLVMContext::MD_prof,
2018              "function declaration may not have a !prof attachment", &F);
2019 
2020       // Verify the metadata itself.
2021       visitMDNode(*I.second);
2022     }
2023     Assert(!F.hasPersonalityFn(),
2024            "Function declaration shouldn't have a personality routine", &F);
2025   } else {
2026     // Verify that this function (which has a body) is not named "llvm.*".  It
2027     // is not legal to define intrinsics.
2028     Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2029 
2030     // Check the entry node
2031     const BasicBlock *Entry = &F.getEntryBlock();
2032     Assert(pred_empty(Entry),
2033            "Entry block to function must not have predecessors!", Entry);
2034 
2035     // The address of the entry block cannot be taken, unless it is dead.
2036     if (Entry->hasAddressTaken()) {
2037       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2038              "blockaddress may not be used with the entry block!", Entry);
2039     }
2040 
2041     unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2042     // Visit metadata attachments.
2043     for (const auto &I : MDs) {
2044       // Verify that the attachment is legal.
2045       switch (I.first) {
2046       default:
2047         break;
2048       case LLVMContext::MD_dbg:
2049         ++NumDebugAttachments;
2050         AssertDI(NumDebugAttachments == 1,
2051                  "function must have a single !dbg attachment", &F, I.second);
2052         AssertDI(isa<DISubprogram>(I.second),
2053                  "function !dbg attachment must be a subprogram", &F, I.second);
2054         break;
2055       case LLVMContext::MD_prof:
2056         ++NumProfAttachments;
2057         Assert(NumProfAttachments == 1,
2058                "function must have a single !prof attachment", &F, I.second);
2059         break;
2060       }
2061 
2062       // Verify the metadata itself.
2063       visitMDNode(*I.second);
2064     }
2065   }
2066 
2067   // If this function is actually an intrinsic, verify that it is only used in
2068   // direct call/invokes, never having its "address taken".
2069   // Only do this if the module is materialized, otherwise we don't have all the
2070   // uses.
2071   if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2072     const User *U;
2073     if (F.hasAddressTaken(&U))
2074       Assert(false, "Invalid user of intrinsic instruction!", U);
2075   }
2076 
2077   Assert(!F.hasDLLImportStorageClass() ||
2078              (F.isDeclaration() && F.hasExternalLinkage()) ||
2079              F.hasAvailableExternallyLinkage(),
2080          "Function is marked as dllimport, but not external.", &F);
2081 
2082   auto *N = F.getSubprogram();
2083   if (!N)
2084     return;
2085 
2086   visitDISubprogram(*N);
2087 
2088   // Check that all !dbg attachments lead to back to N (or, at least, another
2089   // subprogram that describes the same function).
2090   //
2091   // FIXME: Check this incrementally while visiting !dbg attachments.
2092   // FIXME: Only check when N is the canonical subprogram for F.
2093   SmallPtrSet<const MDNode *, 32> Seen;
2094   for (auto &BB : F)
2095     for (auto &I : BB) {
2096       // Be careful about using DILocation here since we might be dealing with
2097       // broken code (this is the Verifier after all).
2098       DILocation *DL =
2099           dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2100       if (!DL)
2101         continue;
2102       if (!Seen.insert(DL).second)
2103         continue;
2104 
2105       DILocalScope *Scope = DL->getInlinedAtScope();
2106       if (Scope && !Seen.insert(Scope).second)
2107         continue;
2108 
2109       DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2110 
2111       // Scope and SP could be the same MDNode and we don't want to skip
2112       // validation in that case
2113       if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2114         continue;
2115 
2116       // FIXME: Once N is canonical, check "SP == &N".
2117       AssertDI(SP->describes(&F),
2118                "!dbg attachment points at wrong subprogram for function", N, &F,
2119                &I, DL, Scope, SP);
2120     }
2121 }
2122 
2123 // verifyBasicBlock - Verify that a basic block is well formed...
2124 //
2125 void Verifier::visitBasicBlock(BasicBlock &BB) {
2126   InstsInThisBlock.clear();
2127 
2128   // Ensure that basic blocks have terminators!
2129   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2130 
2131   // Check constraints that this basic block imposes on all of the PHI nodes in
2132   // it.
2133   if (isa<PHINode>(BB.front())) {
2134     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2135     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2136     std::sort(Preds.begin(), Preds.end());
2137     PHINode *PN;
2138     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
2139       // Ensure that PHI nodes have at least one entry!
2140       Assert(PN->getNumIncomingValues() != 0,
2141              "PHI nodes must have at least one entry.  If the block is dead, "
2142              "the PHI should be removed!",
2143              PN);
2144       Assert(PN->getNumIncomingValues() == Preds.size(),
2145              "PHINode should have one entry for each predecessor of its "
2146              "parent basic block!",
2147              PN);
2148 
2149       // Get and sort all incoming values in the PHI node...
2150       Values.clear();
2151       Values.reserve(PN->getNumIncomingValues());
2152       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2153         Values.push_back(std::make_pair(PN->getIncomingBlock(i),
2154                                         PN->getIncomingValue(i)));
2155       std::sort(Values.begin(), Values.end());
2156 
2157       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2158         // Check to make sure that if there is more than one entry for a
2159         // particular basic block in this PHI node, that the incoming values are
2160         // all identical.
2161         //
2162         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2163                    Values[i].second == Values[i - 1].second,
2164                "PHI node has multiple entries for the same basic block with "
2165                "different incoming values!",
2166                PN, Values[i].first, Values[i].second, Values[i - 1].second);
2167 
2168         // Check to make sure that the predecessors and PHI node entries are
2169         // matched up.
2170         Assert(Values[i].first == Preds[i],
2171                "PHI node entries do not match predecessors!", PN,
2172                Values[i].first, Preds[i]);
2173       }
2174     }
2175   }
2176 
2177   // Check that all instructions have their parent pointers set up correctly.
2178   for (auto &I : BB)
2179   {
2180     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2181   }
2182 }
2183 
2184 void Verifier::visitTerminatorInst(TerminatorInst &I) {
2185   // Ensure that terminators only exist at the end of the basic block.
2186   Assert(&I == I.getParent()->getTerminator(),
2187          "Terminator found in the middle of a basic block!", I.getParent());
2188   visitInstruction(I);
2189 }
2190 
2191 void Verifier::visitBranchInst(BranchInst &BI) {
2192   if (BI.isConditional()) {
2193     Assert(BI.getCondition()->getType()->isIntegerTy(1),
2194            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2195   }
2196   visitTerminatorInst(BI);
2197 }
2198 
2199 void Verifier::visitReturnInst(ReturnInst &RI) {
2200   Function *F = RI.getParent()->getParent();
2201   unsigned N = RI.getNumOperands();
2202   if (F->getReturnType()->isVoidTy())
2203     Assert(N == 0,
2204            "Found return instr that returns non-void in Function of void "
2205            "return type!",
2206            &RI, F->getReturnType());
2207   else
2208     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2209            "Function return type does not match operand "
2210            "type of return inst!",
2211            &RI, F->getReturnType());
2212 
2213   // Check to make sure that the return value has necessary properties for
2214   // terminators...
2215   visitTerminatorInst(RI);
2216 }
2217 
2218 void Verifier::visitSwitchInst(SwitchInst &SI) {
2219   // Check to make sure that all of the constants in the switch instruction
2220   // have the same type as the switched-on value.
2221   Type *SwitchTy = SI.getCondition()->getType();
2222   SmallPtrSet<ConstantInt*, 32> Constants;
2223   for (auto &Case : SI.cases()) {
2224     Assert(Case.getCaseValue()->getType() == SwitchTy,
2225            "Switch constants must all be same type as switch value!", &SI);
2226     Assert(Constants.insert(Case.getCaseValue()).second,
2227            "Duplicate integer as switch case", &SI, Case.getCaseValue());
2228   }
2229 
2230   visitTerminatorInst(SI);
2231 }
2232 
2233 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2234   Assert(BI.getAddress()->getType()->isPointerTy(),
2235          "Indirectbr operand must have pointer type!", &BI);
2236   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2237     Assert(BI.getDestination(i)->getType()->isLabelTy(),
2238            "Indirectbr destinations must all have pointer type!", &BI);
2239 
2240   visitTerminatorInst(BI);
2241 }
2242 
2243 void Verifier::visitSelectInst(SelectInst &SI) {
2244   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2245                                          SI.getOperand(2)),
2246          "Invalid operands for select instruction!", &SI);
2247 
2248   Assert(SI.getTrueValue()->getType() == SI.getType(),
2249          "Select values must have same type as select instruction!", &SI);
2250   visitInstruction(SI);
2251 }
2252 
2253 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2254 /// a pass, if any exist, it's an error.
2255 ///
2256 void Verifier::visitUserOp1(Instruction &I) {
2257   Assert(false, "User-defined operators should not live outside of a pass!", &I);
2258 }
2259 
2260 void Verifier::visitTruncInst(TruncInst &I) {
2261   // Get the source and destination types
2262   Type *SrcTy = I.getOperand(0)->getType();
2263   Type *DestTy = I.getType();
2264 
2265   // Get the size of the types in bits, we'll need this later
2266   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2267   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2268 
2269   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2270   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2271   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2272          "trunc source and destination must both be a vector or neither", &I);
2273   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2274 
2275   visitInstruction(I);
2276 }
2277 
2278 void Verifier::visitZExtInst(ZExtInst &I) {
2279   // Get the source and destination types
2280   Type *SrcTy = I.getOperand(0)->getType();
2281   Type *DestTy = I.getType();
2282 
2283   // Get the size of the types in bits, we'll need this later
2284   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2285   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2286   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2287          "zext source and destination must both be a vector or neither", &I);
2288   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2289   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2290 
2291   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2292 
2293   visitInstruction(I);
2294 }
2295 
2296 void Verifier::visitSExtInst(SExtInst &I) {
2297   // Get the source and destination types
2298   Type *SrcTy = I.getOperand(0)->getType();
2299   Type *DestTy = I.getType();
2300 
2301   // Get the size of the types in bits, we'll need this later
2302   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2303   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2304 
2305   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2306   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2307   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2308          "sext source and destination must both be a vector or neither", &I);
2309   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2310 
2311   visitInstruction(I);
2312 }
2313 
2314 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2315   // Get the source and destination types
2316   Type *SrcTy = I.getOperand(0)->getType();
2317   Type *DestTy = I.getType();
2318   // Get the size of the types in bits, we'll need this later
2319   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2320   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2321 
2322   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2323   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2324   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2325          "fptrunc source and destination must both be a vector or neither", &I);
2326   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2327 
2328   visitInstruction(I);
2329 }
2330 
2331 void Verifier::visitFPExtInst(FPExtInst &I) {
2332   // Get the source and destination types
2333   Type *SrcTy = I.getOperand(0)->getType();
2334   Type *DestTy = I.getType();
2335 
2336   // Get the size of the types in bits, we'll need this later
2337   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2338   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2339 
2340   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2341   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2342   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2343          "fpext source and destination must both be a vector or neither", &I);
2344   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2345 
2346   visitInstruction(I);
2347 }
2348 
2349 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2350   // Get the source and destination types
2351   Type *SrcTy = I.getOperand(0)->getType();
2352   Type *DestTy = I.getType();
2353 
2354   bool SrcVec = SrcTy->isVectorTy();
2355   bool DstVec = DestTy->isVectorTy();
2356 
2357   Assert(SrcVec == DstVec,
2358          "UIToFP source and dest must both be vector or scalar", &I);
2359   Assert(SrcTy->isIntOrIntVectorTy(),
2360          "UIToFP source must be integer or integer vector", &I);
2361   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2362          &I);
2363 
2364   if (SrcVec && DstVec)
2365     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2366                cast<VectorType>(DestTy)->getNumElements(),
2367            "UIToFP source and dest vector length mismatch", &I);
2368 
2369   visitInstruction(I);
2370 }
2371 
2372 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2373   // Get the source and destination types
2374   Type *SrcTy = I.getOperand(0)->getType();
2375   Type *DestTy = I.getType();
2376 
2377   bool SrcVec = SrcTy->isVectorTy();
2378   bool DstVec = DestTy->isVectorTy();
2379 
2380   Assert(SrcVec == DstVec,
2381          "SIToFP source and dest must both be vector or scalar", &I);
2382   Assert(SrcTy->isIntOrIntVectorTy(),
2383          "SIToFP source must be integer or integer vector", &I);
2384   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2385          &I);
2386 
2387   if (SrcVec && DstVec)
2388     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2389                cast<VectorType>(DestTy)->getNumElements(),
2390            "SIToFP source and dest vector length mismatch", &I);
2391 
2392   visitInstruction(I);
2393 }
2394 
2395 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2396   // Get the source and destination types
2397   Type *SrcTy = I.getOperand(0)->getType();
2398   Type *DestTy = I.getType();
2399 
2400   bool SrcVec = SrcTy->isVectorTy();
2401   bool DstVec = DestTy->isVectorTy();
2402 
2403   Assert(SrcVec == DstVec,
2404          "FPToUI source and dest must both be vector or scalar", &I);
2405   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2406          &I);
2407   Assert(DestTy->isIntOrIntVectorTy(),
2408          "FPToUI result must be integer or integer vector", &I);
2409 
2410   if (SrcVec && DstVec)
2411     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2412                cast<VectorType>(DestTy)->getNumElements(),
2413            "FPToUI source and dest vector length mismatch", &I);
2414 
2415   visitInstruction(I);
2416 }
2417 
2418 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2419   // Get the source and destination types
2420   Type *SrcTy = I.getOperand(0)->getType();
2421   Type *DestTy = I.getType();
2422 
2423   bool SrcVec = SrcTy->isVectorTy();
2424   bool DstVec = DestTy->isVectorTy();
2425 
2426   Assert(SrcVec == DstVec,
2427          "FPToSI source and dest must both be vector or scalar", &I);
2428   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2429          &I);
2430   Assert(DestTy->isIntOrIntVectorTy(),
2431          "FPToSI result must be integer or integer vector", &I);
2432 
2433   if (SrcVec && DstVec)
2434     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2435                cast<VectorType>(DestTy)->getNumElements(),
2436            "FPToSI source and dest vector length mismatch", &I);
2437 
2438   visitInstruction(I);
2439 }
2440 
2441 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2442   // Get the source and destination types
2443   Type *SrcTy = I.getOperand(0)->getType();
2444   Type *DestTy = I.getType();
2445 
2446   Assert(SrcTy->getScalarType()->isPointerTy(),
2447          "PtrToInt source must be pointer", &I);
2448 
2449   if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2450     Assert(!DL.isNonIntegralPointerType(PTy),
2451            "ptrtoint not supported for non-integral pointers");
2452 
2453   Assert(DestTy->getScalarType()->isIntegerTy(),
2454          "PtrToInt result must be integral", &I);
2455   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2456          &I);
2457 
2458   if (SrcTy->isVectorTy()) {
2459     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2460     VectorType *VDest = dyn_cast<VectorType>(DestTy);
2461     Assert(VSrc->getNumElements() == VDest->getNumElements(),
2462            "PtrToInt Vector width mismatch", &I);
2463   }
2464 
2465   visitInstruction(I);
2466 }
2467 
2468 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2469   // Get the source and destination types
2470   Type *SrcTy = I.getOperand(0)->getType();
2471   Type *DestTy = I.getType();
2472 
2473   Assert(SrcTy->getScalarType()->isIntegerTy(),
2474          "IntToPtr source must be an integral", &I);
2475   Assert(DestTy->getScalarType()->isPointerTy(),
2476          "IntToPtr result must be a pointer", &I);
2477 
2478   if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2479     Assert(!DL.isNonIntegralPointerType(PTy),
2480            "inttoptr not supported for non-integral pointers");
2481 
2482   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2483          &I);
2484   if (SrcTy->isVectorTy()) {
2485     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2486     VectorType *VDest = dyn_cast<VectorType>(DestTy);
2487     Assert(VSrc->getNumElements() == VDest->getNumElements(),
2488            "IntToPtr Vector width mismatch", &I);
2489   }
2490   visitInstruction(I);
2491 }
2492 
2493 void Verifier::visitBitCastInst(BitCastInst &I) {
2494   Assert(
2495       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2496       "Invalid bitcast", &I);
2497   visitInstruction(I);
2498 }
2499 
2500 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2501   Type *SrcTy = I.getOperand(0)->getType();
2502   Type *DestTy = I.getType();
2503 
2504   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2505          &I);
2506   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2507          &I);
2508   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2509          "AddrSpaceCast must be between different address spaces", &I);
2510   if (SrcTy->isVectorTy())
2511     Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2512            "AddrSpaceCast vector pointer number of elements mismatch", &I);
2513   visitInstruction(I);
2514 }
2515 
2516 /// visitPHINode - Ensure that a PHI node is well formed.
2517 ///
2518 void Verifier::visitPHINode(PHINode &PN) {
2519   // Ensure that the PHI nodes are all grouped together at the top of the block.
2520   // This can be tested by checking whether the instruction before this is
2521   // either nonexistent (because this is begin()) or is a PHI node.  If not,
2522   // then there is some other instruction before a PHI.
2523   Assert(&PN == &PN.getParent()->front() ||
2524              isa<PHINode>(--BasicBlock::iterator(&PN)),
2525          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2526 
2527   // Check that a PHI doesn't yield a Token.
2528   Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2529 
2530   // Check that all of the values of the PHI node have the same type as the
2531   // result, and that the incoming blocks are really basic blocks.
2532   for (Value *IncValue : PN.incoming_values()) {
2533     Assert(PN.getType() == IncValue->getType(),
2534            "PHI node operands are not the same type as the result!", &PN);
2535   }
2536 
2537   // All other PHI node constraints are checked in the visitBasicBlock method.
2538 
2539   visitInstruction(PN);
2540 }
2541 
2542 void Verifier::verifyCallSite(CallSite CS) {
2543   Instruction *I = CS.getInstruction();
2544 
2545   Assert(CS.getCalledValue()->getType()->isPointerTy(),
2546          "Called function must be a pointer!", I);
2547   PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2548 
2549   Assert(FPTy->getElementType()->isFunctionTy(),
2550          "Called function is not pointer to function type!", I);
2551 
2552   Assert(FPTy->getElementType() == CS.getFunctionType(),
2553          "Called function is not the same type as the call!", I);
2554 
2555   FunctionType *FTy = CS.getFunctionType();
2556 
2557   // Verify that the correct number of arguments are being passed
2558   if (FTy->isVarArg())
2559     Assert(CS.arg_size() >= FTy->getNumParams(),
2560            "Called function requires more parameters than were provided!", I);
2561   else
2562     Assert(CS.arg_size() == FTy->getNumParams(),
2563            "Incorrect number of arguments passed to called function!", I);
2564 
2565   // Verify that all arguments to the call match the function type.
2566   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2567     Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
2568            "Call parameter type does not match function signature!",
2569            CS.getArgument(i), FTy->getParamType(i), I);
2570 
2571   AttributeSet Attrs = CS.getAttributes();
2572 
2573   Assert(verifyAttributeCount(Attrs, CS.arg_size()),
2574          "Attribute after last parameter!", I);
2575 
2576   // Verify call attributes.
2577   verifyFunctionAttrs(FTy, Attrs, I);
2578 
2579   // Conservatively check the inalloca argument.
2580   // We have a bug if we can find that there is an underlying alloca without
2581   // inalloca.
2582   if (CS.hasInAllocaArgument()) {
2583     Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2584     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2585       Assert(AI->isUsedWithInAlloca(),
2586              "inalloca argument for call has mismatched alloca", AI, I);
2587   }
2588 
2589   // For each argument of the callsite, if it has the swifterror argument,
2590   // make sure the underlying alloca/parameter it comes from has a swifterror as
2591   // well.
2592   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2593     if (CS.paramHasAttr(i+1, Attribute::SwiftError)) {
2594       Value *SwiftErrorArg = CS.getArgument(i);
2595       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2596         Assert(AI->isSwiftError(),
2597                "swifterror argument for call has mismatched alloca", AI, I);
2598         continue;
2599       }
2600       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2601       Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I);
2602       Assert(ArgI->hasSwiftErrorAttr(),
2603              "swifterror argument for call has mismatched parameter", ArgI, I);
2604     }
2605 
2606   if (FTy->isVarArg()) {
2607     // FIXME? is 'nest' even legal here?
2608     bool SawNest = false;
2609     bool SawReturned = false;
2610 
2611     for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
2612       if (Attrs.hasAttribute(Idx, Attribute::Nest))
2613         SawNest = true;
2614       if (Attrs.hasAttribute(Idx, Attribute::Returned))
2615         SawReturned = true;
2616     }
2617 
2618     // Check attributes on the varargs part.
2619     for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
2620       Type *Ty = CS.getArgument(Idx-1)->getType();
2621       verifyParameterAttrs(Attrs, Idx, Ty, false, I);
2622 
2623       if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
2624         Assert(!SawNest, "More than one parameter has attribute nest!", I);
2625         SawNest = true;
2626       }
2627 
2628       if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
2629         Assert(!SawReturned, "More than one parameter has attribute returned!",
2630                I);
2631         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2632                "Incompatible argument and return types for 'returned' "
2633                "attribute",
2634                I);
2635         SawReturned = true;
2636       }
2637 
2638       Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),
2639              "Attribute 'sret' cannot be used for vararg call arguments!", I);
2640 
2641       if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
2642         Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I);
2643     }
2644   }
2645 
2646   // Verify that there's no metadata unless it's a direct call to an intrinsic.
2647   if (CS.getCalledFunction() == nullptr ||
2648       !CS.getCalledFunction()->getName().startswith("llvm.")) {
2649     for (Type *ParamTy : FTy->params()) {
2650       Assert(!ParamTy->isMetadataTy(),
2651              "Function has metadata parameter but isn't an intrinsic", I);
2652       Assert(!ParamTy->isTokenTy(),
2653              "Function has token parameter but isn't an intrinsic", I);
2654     }
2655   }
2656 
2657   // Verify that indirect calls don't return tokens.
2658   if (CS.getCalledFunction() == nullptr)
2659     Assert(!FTy->getReturnType()->isTokenTy(),
2660            "Return type cannot be token for indirect call!");
2661 
2662   if (Function *F = CS.getCalledFunction())
2663     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2664       visitIntrinsicCallSite(ID, CS);
2665 
2666   // Verify that a callsite has at most one "deopt", at most one "funclet" and
2667   // at most one "gc-transition" operand bundle.
2668   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2669        FoundGCTransitionBundle = false;
2670   for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2671     OperandBundleUse BU = CS.getOperandBundleAt(i);
2672     uint32_t Tag = BU.getTagID();
2673     if (Tag == LLVMContext::OB_deopt) {
2674       Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I);
2675       FoundDeoptBundle = true;
2676     } else if (Tag == LLVMContext::OB_gc_transition) {
2677       Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
2678              I);
2679       FoundGCTransitionBundle = true;
2680     } else if (Tag == LLVMContext::OB_funclet) {
2681       Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I);
2682       FoundFuncletBundle = true;
2683       Assert(BU.Inputs.size() == 1,
2684              "Expected exactly one funclet bundle operand", I);
2685       Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2686              "Funclet bundle operands should correspond to a FuncletPadInst",
2687              I);
2688     }
2689   }
2690 
2691   // Verify that each inlinable callsite of a debug-info-bearing function in a
2692   // debug-info-bearing function has a debug location attached to it. Failure to
2693   // do so causes assertion failures when the inliner sets up inline scope info.
2694   if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
2695       CS.getCalledFunction()->getSubprogram())
2696     Assert(I->getDebugLoc(), "inlinable function call in a function with debug "
2697                              "info must have a !dbg location",
2698            I);
2699 
2700   visitInstruction(*I);
2701 }
2702 
2703 /// Two types are "congruent" if they are identical, or if they are both pointer
2704 /// types with different pointee types and the same address space.
2705 static bool isTypeCongruent(Type *L, Type *R) {
2706   if (L == R)
2707     return true;
2708   PointerType *PL = dyn_cast<PointerType>(L);
2709   PointerType *PR = dyn_cast<PointerType>(R);
2710   if (!PL || !PR)
2711     return false;
2712   return PL->getAddressSpace() == PR->getAddressSpace();
2713 }
2714 
2715 static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
2716   static const Attribute::AttrKind ABIAttrs[] = {
2717       Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2718       Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2719       Attribute::SwiftError};
2720   AttrBuilder Copy;
2721   for (auto AK : ABIAttrs) {
2722     if (Attrs.hasAttribute(I + 1, AK))
2723       Copy.addAttribute(AK);
2724   }
2725   if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
2726     Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
2727   return Copy;
2728 }
2729 
2730 void Verifier::verifyMustTailCall(CallInst &CI) {
2731   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
2732 
2733   // - The caller and callee prototypes must match.  Pointer types of
2734   //   parameters or return types may differ in pointee type, but not
2735   //   address space.
2736   Function *F = CI.getParent()->getParent();
2737   FunctionType *CallerTy = F->getFunctionType();
2738   FunctionType *CalleeTy = CI.getFunctionType();
2739   Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
2740          "cannot guarantee tail call due to mismatched parameter counts", &CI);
2741   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
2742          "cannot guarantee tail call due to mismatched varargs", &CI);
2743   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
2744          "cannot guarantee tail call due to mismatched return types", &CI);
2745   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2746     Assert(
2747         isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
2748         "cannot guarantee tail call due to mismatched parameter types", &CI);
2749   }
2750 
2751   // - The calling conventions of the caller and callee must match.
2752   Assert(F->getCallingConv() == CI.getCallingConv(),
2753          "cannot guarantee tail call due to mismatched calling conv", &CI);
2754 
2755   // - All ABI-impacting function attributes, such as sret, byval, inreg,
2756   //   returned, and inalloca, must match.
2757   AttributeSet CallerAttrs = F->getAttributes();
2758   AttributeSet CalleeAttrs = CI.getAttributes();
2759   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2760     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2761     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2762     Assert(CallerABIAttrs == CalleeABIAttrs,
2763            "cannot guarantee tail call due to mismatched ABI impacting "
2764            "function attributes",
2765            &CI, CI.getOperand(I));
2766   }
2767 
2768   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2769   //   or a pointer bitcast followed by a ret instruction.
2770   // - The ret instruction must return the (possibly bitcasted) value
2771   //   produced by the call or void.
2772   Value *RetVal = &CI;
2773   Instruction *Next = CI.getNextNode();
2774 
2775   // Handle the optional bitcast.
2776   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2777     Assert(BI->getOperand(0) == RetVal,
2778            "bitcast following musttail call must use the call", BI);
2779     RetVal = BI;
2780     Next = BI->getNextNode();
2781   }
2782 
2783   // Check the return.
2784   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2785   Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
2786          &CI);
2787   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
2788          "musttail call result must be returned", Ret);
2789 }
2790 
2791 void Verifier::visitCallInst(CallInst &CI) {
2792   verifyCallSite(&CI);
2793 
2794   if (CI.isMustTailCall())
2795     verifyMustTailCall(CI);
2796 }
2797 
2798 void Verifier::visitInvokeInst(InvokeInst &II) {
2799   verifyCallSite(&II);
2800 
2801   // Verify that the first non-PHI instruction of the unwind destination is an
2802   // exception handling instruction.
2803   Assert(
2804       II.getUnwindDest()->isEHPad(),
2805       "The unwind destination does not have an exception handling instruction!",
2806       &II);
2807 
2808   visitTerminatorInst(II);
2809 }
2810 
2811 /// visitBinaryOperator - Check that both arguments to the binary operator are
2812 /// of the same type!
2813 ///
2814 void Verifier::visitBinaryOperator(BinaryOperator &B) {
2815   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
2816          "Both operands to a binary operator are not of the same type!", &B);
2817 
2818   switch (B.getOpcode()) {
2819   // Check that integer arithmetic operators are only used with
2820   // integral operands.
2821   case Instruction::Add:
2822   case Instruction::Sub:
2823   case Instruction::Mul:
2824   case Instruction::SDiv:
2825   case Instruction::UDiv:
2826   case Instruction::SRem:
2827   case Instruction::URem:
2828     Assert(B.getType()->isIntOrIntVectorTy(),
2829            "Integer arithmetic operators only work with integral types!", &B);
2830     Assert(B.getType() == B.getOperand(0)->getType(),
2831            "Integer arithmetic operators must have same type "
2832            "for operands and result!",
2833            &B);
2834     break;
2835   // Check that floating-point arithmetic operators are only used with
2836   // floating-point operands.
2837   case Instruction::FAdd:
2838   case Instruction::FSub:
2839   case Instruction::FMul:
2840   case Instruction::FDiv:
2841   case Instruction::FRem:
2842     Assert(B.getType()->isFPOrFPVectorTy(),
2843            "Floating-point arithmetic operators only work with "
2844            "floating-point types!",
2845            &B);
2846     Assert(B.getType() == B.getOperand(0)->getType(),
2847            "Floating-point arithmetic operators must have same type "
2848            "for operands and result!",
2849            &B);
2850     break;
2851   // Check that logical operators are only used with integral operands.
2852   case Instruction::And:
2853   case Instruction::Or:
2854   case Instruction::Xor:
2855     Assert(B.getType()->isIntOrIntVectorTy(),
2856            "Logical operators only work with integral types!", &B);
2857     Assert(B.getType() == B.getOperand(0)->getType(),
2858            "Logical operators must have same type for operands and result!",
2859            &B);
2860     break;
2861   case Instruction::Shl:
2862   case Instruction::LShr:
2863   case Instruction::AShr:
2864     Assert(B.getType()->isIntOrIntVectorTy(),
2865            "Shifts only work with integral types!", &B);
2866     Assert(B.getType() == B.getOperand(0)->getType(),
2867            "Shift return type must be same as operands!", &B);
2868     break;
2869   default:
2870     llvm_unreachable("Unknown BinaryOperator opcode!");
2871   }
2872 
2873   visitInstruction(B);
2874 }
2875 
2876 void Verifier::visitICmpInst(ICmpInst &IC) {
2877   // Check that the operands are the same type
2878   Type *Op0Ty = IC.getOperand(0)->getType();
2879   Type *Op1Ty = IC.getOperand(1)->getType();
2880   Assert(Op0Ty == Op1Ty,
2881          "Both operands to ICmp instruction are not of the same type!", &IC);
2882   // Check that the operands are the right type
2883   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
2884          "Invalid operand types for ICmp instruction", &IC);
2885   // Check that the predicate is valid.
2886   Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
2887              IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
2888          "Invalid predicate in ICmp instruction!", &IC);
2889 
2890   visitInstruction(IC);
2891 }
2892 
2893 void Verifier::visitFCmpInst(FCmpInst &FC) {
2894   // Check that the operands are the same type
2895   Type *Op0Ty = FC.getOperand(0)->getType();
2896   Type *Op1Ty = FC.getOperand(1)->getType();
2897   Assert(Op0Ty == Op1Ty,
2898          "Both operands to FCmp instruction are not of the same type!", &FC);
2899   // Check that the operands are the right type
2900   Assert(Op0Ty->isFPOrFPVectorTy(),
2901          "Invalid operand types for FCmp instruction", &FC);
2902   // Check that the predicate is valid.
2903   Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
2904              FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
2905          "Invalid predicate in FCmp instruction!", &FC);
2906 
2907   visitInstruction(FC);
2908 }
2909 
2910 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
2911   Assert(
2912       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
2913       "Invalid extractelement operands!", &EI);
2914   visitInstruction(EI);
2915 }
2916 
2917 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
2918   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
2919                                             IE.getOperand(2)),
2920          "Invalid insertelement operands!", &IE);
2921   visitInstruction(IE);
2922 }
2923 
2924 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
2925   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
2926                                             SV.getOperand(2)),
2927          "Invalid shufflevector operands!", &SV);
2928   visitInstruction(SV);
2929 }
2930 
2931 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2932   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
2933 
2934   Assert(isa<PointerType>(TargetTy),
2935          "GEP base pointer is not a vector or a vector of pointers", &GEP);
2936   Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
2937   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
2938   Type *ElTy =
2939       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
2940   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
2941 
2942   Assert(GEP.getType()->getScalarType()->isPointerTy() &&
2943              GEP.getResultElementType() == ElTy,
2944          "GEP is not of right type for indices!", &GEP, ElTy);
2945 
2946   if (GEP.getType()->isVectorTy()) {
2947     // Additional checks for vector GEPs.
2948     unsigned GEPWidth = GEP.getType()->getVectorNumElements();
2949     if (GEP.getPointerOperandType()->isVectorTy())
2950       Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
2951              "Vector GEP result width doesn't match operand's", &GEP);
2952     for (Value *Idx : Idxs) {
2953       Type *IndexTy = Idx->getType();
2954       if (IndexTy->isVectorTy()) {
2955         unsigned IndexWidth = IndexTy->getVectorNumElements();
2956         Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
2957       }
2958       Assert(IndexTy->getScalarType()->isIntegerTy(),
2959              "All GEP indices should be of integer type");
2960     }
2961   }
2962   visitInstruction(GEP);
2963 }
2964 
2965 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
2966   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
2967 }
2968 
2969 void Verifier::visitRangeMetadata(Instruction& I,
2970                                   MDNode* Range, Type* Ty) {
2971   assert(Range &&
2972          Range == I.getMetadata(LLVMContext::MD_range) &&
2973          "precondition violation");
2974 
2975   unsigned NumOperands = Range->getNumOperands();
2976   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
2977   unsigned NumRanges = NumOperands / 2;
2978   Assert(NumRanges >= 1, "It should have at least one range!", Range);
2979 
2980   ConstantRange LastRange(1); // Dummy initial value
2981   for (unsigned i = 0; i < NumRanges; ++i) {
2982     ConstantInt *Low =
2983         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
2984     Assert(Low, "The lower limit must be an integer!", Low);
2985     ConstantInt *High =
2986         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
2987     Assert(High, "The upper limit must be an integer!", High);
2988     Assert(High->getType() == Low->getType() && High->getType() == Ty,
2989            "Range types must match instruction type!", &I);
2990 
2991     APInt HighV = High->getValue();
2992     APInt LowV = Low->getValue();
2993     ConstantRange CurRange(LowV, HighV);
2994     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
2995            "Range must not be empty!", Range);
2996     if (i != 0) {
2997       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
2998              "Intervals are overlapping", Range);
2999       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3000              Range);
3001       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3002              Range);
3003     }
3004     LastRange = ConstantRange(LowV, HighV);
3005   }
3006   if (NumRanges > 2) {
3007     APInt FirstLow =
3008         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3009     APInt FirstHigh =
3010         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3011     ConstantRange FirstRange(FirstLow, FirstHigh);
3012     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3013            "Intervals are overlapping", Range);
3014     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3015            Range);
3016   }
3017 }
3018 
3019 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3020   unsigned Size = DL.getTypeSizeInBits(Ty);
3021   Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3022   Assert(!(Size & (Size - 1)),
3023          "atomic memory access' operand must have a power-of-two size", Ty, I);
3024 }
3025 
3026 void Verifier::visitLoadInst(LoadInst &LI) {
3027   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3028   Assert(PTy, "Load operand must be a pointer.", &LI);
3029   Type *ElTy = LI.getType();
3030   Assert(LI.getAlignment() <= Value::MaximumAlignment,
3031          "huge alignment values are unsupported", &LI);
3032   Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3033   if (LI.isAtomic()) {
3034     Assert(LI.getOrdering() != AtomicOrdering::Release &&
3035                LI.getOrdering() != AtomicOrdering::AcquireRelease,
3036            "Load cannot have Release ordering", &LI);
3037     Assert(LI.getAlignment() != 0,
3038            "Atomic load must specify explicit alignment", &LI);
3039     Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
3040                ElTy->isFloatingPointTy(),
3041            "atomic load operand must have integer, pointer, or floating point "
3042            "type!",
3043            ElTy, &LI);
3044     checkAtomicMemAccessSize(ElTy, &LI);
3045   } else {
3046     Assert(LI.getSynchScope() == CrossThread,
3047            "Non-atomic load cannot have SynchronizationScope specified", &LI);
3048   }
3049 
3050   visitInstruction(LI);
3051 }
3052 
3053 void Verifier::visitStoreInst(StoreInst &SI) {
3054   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3055   Assert(PTy, "Store operand must be a pointer.", &SI);
3056   Type *ElTy = PTy->getElementType();
3057   Assert(ElTy == SI.getOperand(0)->getType(),
3058          "Stored value type does not match pointer operand type!", &SI, ElTy);
3059   Assert(SI.getAlignment() <= Value::MaximumAlignment,
3060          "huge alignment values are unsupported", &SI);
3061   Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3062   if (SI.isAtomic()) {
3063     Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3064                SI.getOrdering() != AtomicOrdering::AcquireRelease,
3065            "Store cannot have Acquire ordering", &SI);
3066     Assert(SI.getAlignment() != 0,
3067            "Atomic store must specify explicit alignment", &SI);
3068     Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
3069                ElTy->isFloatingPointTy(),
3070            "atomic store operand must have integer, pointer, or floating point "
3071            "type!",
3072            ElTy, &SI);
3073     checkAtomicMemAccessSize(ElTy, &SI);
3074   } else {
3075     Assert(SI.getSynchScope() == CrossThread,
3076            "Non-atomic store cannot have SynchronizationScope specified", &SI);
3077   }
3078   visitInstruction(SI);
3079 }
3080 
3081 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3082 void Verifier::verifySwiftErrorCallSite(CallSite CS,
3083                                         const Value *SwiftErrorVal) {
3084   unsigned Idx = 0;
3085   for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
3086        I != E; ++I, ++Idx) {
3087     if (*I == SwiftErrorVal) {
3088       Assert(CS.paramHasAttr(Idx+1, Attribute::SwiftError),
3089              "swifterror value when used in a callsite should be marked "
3090              "with swifterror attribute",
3091               SwiftErrorVal, CS);
3092     }
3093   }
3094 }
3095 
3096 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3097   // Check that swifterror value is only used by loads, stores, or as
3098   // a swifterror argument.
3099   for (const User *U : SwiftErrorVal->users()) {
3100     Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3101            isa<InvokeInst>(U),
3102            "swifterror value can only be loaded and stored from, or "
3103            "as a swifterror argument!",
3104            SwiftErrorVal, U);
3105     // If it is used by a store, check it is the second operand.
3106     if (auto StoreI = dyn_cast<StoreInst>(U))
3107       Assert(StoreI->getOperand(1) == SwiftErrorVal,
3108              "swifterror value should be the second operand when used "
3109              "by stores", SwiftErrorVal, U);
3110     if (auto CallI = dyn_cast<CallInst>(U))
3111       verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
3112     if (auto II = dyn_cast<InvokeInst>(U))
3113       verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
3114   }
3115 }
3116 
3117 void Verifier::visitAllocaInst(AllocaInst &AI) {
3118   SmallPtrSet<Type*, 4> Visited;
3119   PointerType *PTy = AI.getType();
3120   Assert(PTy->getAddressSpace() == 0,
3121          "Allocation instruction pointer not in the generic address space!",
3122          &AI);
3123   Assert(AI.getAllocatedType()->isSized(&Visited),
3124          "Cannot allocate unsized type", &AI);
3125   Assert(AI.getArraySize()->getType()->isIntegerTy(),
3126          "Alloca array size must have integer type", &AI);
3127   Assert(AI.getAlignment() <= Value::MaximumAlignment,
3128          "huge alignment values are unsupported", &AI);
3129 
3130   if (AI.isSwiftError()) {
3131     verifySwiftErrorValue(&AI);
3132   }
3133 
3134   visitInstruction(AI);
3135 }
3136 
3137 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3138 
3139   // FIXME: more conditions???
3140   Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
3141          "cmpxchg instructions must be atomic.", &CXI);
3142   Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
3143          "cmpxchg instructions must be atomic.", &CXI);
3144   Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
3145          "cmpxchg instructions cannot be unordered.", &CXI);
3146   Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
3147          "cmpxchg instructions cannot be unordered.", &CXI);
3148   Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
3149          "cmpxchg instructions failure argument shall be no stronger than the "
3150          "success argument",
3151          &CXI);
3152   Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
3153              CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
3154          "cmpxchg failure ordering cannot include release semantics", &CXI);
3155 
3156   PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3157   Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3158   Type *ElTy = PTy->getElementType();
3159   Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(),
3160         "cmpxchg operand must have integer or pointer type",
3161          ElTy, &CXI);
3162   checkAtomicMemAccessSize(ElTy, &CXI);
3163   Assert(ElTy == CXI.getOperand(1)->getType(),
3164          "Expected value type does not match pointer operand type!", &CXI,
3165          ElTy);
3166   Assert(ElTy == CXI.getOperand(2)->getType(),
3167          "Stored value type does not match pointer operand type!", &CXI, ElTy);
3168   visitInstruction(CXI);
3169 }
3170 
3171 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3172   Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
3173          "atomicrmw instructions must be atomic.", &RMWI);
3174   Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3175          "atomicrmw instructions cannot be unordered.", &RMWI);
3176   PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3177   Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3178   Type *ElTy = PTy->getElementType();
3179   Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
3180          &RMWI, ElTy);
3181   checkAtomicMemAccessSize(ElTy, &RMWI);
3182   Assert(ElTy == RMWI.getOperand(1)->getType(),
3183          "Argument value type does not match pointer operand type!", &RMWI,
3184          ElTy);
3185   Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
3186              RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
3187          "Invalid binary operation!", &RMWI);
3188   visitInstruction(RMWI);
3189 }
3190 
3191 void Verifier::visitFenceInst(FenceInst &FI) {
3192   const AtomicOrdering Ordering = FI.getOrdering();
3193   Assert(Ordering == AtomicOrdering::Acquire ||
3194              Ordering == AtomicOrdering::Release ||
3195              Ordering == AtomicOrdering::AcquireRelease ||
3196              Ordering == AtomicOrdering::SequentiallyConsistent,
3197          "fence instructions may only have acquire, release, acq_rel, or "
3198          "seq_cst ordering.",
3199          &FI);
3200   visitInstruction(FI);
3201 }
3202 
3203 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3204   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3205                                           EVI.getIndices()) == EVI.getType(),
3206          "Invalid ExtractValueInst operands!", &EVI);
3207 
3208   visitInstruction(EVI);
3209 }
3210 
3211 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3212   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3213                                           IVI.getIndices()) ==
3214              IVI.getOperand(1)->getType(),
3215          "Invalid InsertValueInst operands!", &IVI);
3216 
3217   visitInstruction(IVI);
3218 }
3219 
3220 static Value *getParentPad(Value *EHPad) {
3221   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3222     return FPI->getParentPad();
3223 
3224   return cast<CatchSwitchInst>(EHPad)->getParentPad();
3225 }
3226 
3227 void Verifier::visitEHPadPredecessors(Instruction &I) {
3228   assert(I.isEHPad());
3229 
3230   BasicBlock *BB = I.getParent();
3231   Function *F = BB->getParent();
3232 
3233   Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3234 
3235   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3236     // The landingpad instruction defines its parent as a landing pad block. The
3237     // landing pad block may be branched to only by the unwind edge of an
3238     // invoke.
3239     for (BasicBlock *PredBB : predecessors(BB)) {
3240       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3241       Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3242              "Block containing LandingPadInst must be jumped to "
3243              "only by the unwind edge of an invoke.",
3244              LPI);
3245     }
3246     return;
3247   }
3248   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3249     if (!pred_empty(BB))
3250       Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3251              "Block containg CatchPadInst must be jumped to "
3252              "only by its catchswitch.",
3253              CPI);
3254     Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3255            "Catchswitch cannot unwind to one of its catchpads",
3256            CPI->getCatchSwitch(), CPI);
3257     return;
3258   }
3259 
3260   // Verify that each pred has a legal terminator with a legal to/from EH
3261   // pad relationship.
3262   Instruction *ToPad = &I;
3263   Value *ToPadParent = getParentPad(ToPad);
3264   for (BasicBlock *PredBB : predecessors(BB)) {
3265     TerminatorInst *TI = PredBB->getTerminator();
3266     Value *FromPad;
3267     if (auto *II = dyn_cast<InvokeInst>(TI)) {
3268       Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3269              "EH pad must be jumped to via an unwind edge", ToPad, II);
3270       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3271         FromPad = Bundle->Inputs[0];
3272       else
3273         FromPad = ConstantTokenNone::get(II->getContext());
3274     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3275       FromPad = CRI->getOperand(0);
3276       Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3277     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3278       FromPad = CSI;
3279     } else {
3280       Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3281     }
3282 
3283     // The edge may exit from zero or more nested pads.
3284     SmallSet<Value *, 8> Seen;
3285     for (;; FromPad = getParentPad(FromPad)) {
3286       Assert(FromPad != ToPad,
3287              "EH pad cannot handle exceptions raised within it", FromPad, TI);
3288       if (FromPad == ToPadParent) {
3289         // This is a legal unwind edge.
3290         break;
3291       }
3292       Assert(!isa<ConstantTokenNone>(FromPad),
3293              "A single unwind edge may only enter one EH pad", TI);
3294       Assert(Seen.insert(FromPad).second,
3295              "EH pad jumps through a cycle of pads", FromPad);
3296     }
3297   }
3298 }
3299 
3300 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3301   // The landingpad instruction is ill-formed if it doesn't have any clauses and
3302   // isn't a cleanup.
3303   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3304          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3305 
3306   visitEHPadPredecessors(LPI);
3307 
3308   if (!LandingPadResultTy)
3309     LandingPadResultTy = LPI.getType();
3310   else
3311     Assert(LandingPadResultTy == LPI.getType(),
3312            "The landingpad instruction should have a consistent result type "
3313            "inside a function.",
3314            &LPI);
3315 
3316   Function *F = LPI.getParent()->getParent();
3317   Assert(F->hasPersonalityFn(),
3318          "LandingPadInst needs to be in a function with a personality.", &LPI);
3319 
3320   // The landingpad instruction must be the first non-PHI instruction in the
3321   // block.
3322   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3323          "LandingPadInst not the first non-PHI instruction in the block.",
3324          &LPI);
3325 
3326   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3327     Constant *Clause = LPI.getClause(i);
3328     if (LPI.isCatch(i)) {
3329       Assert(isa<PointerType>(Clause->getType()),
3330              "Catch operand does not have pointer type!", &LPI);
3331     } else {
3332       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3333       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3334              "Filter operand is not an array of constants!", &LPI);
3335     }
3336   }
3337 
3338   visitInstruction(LPI);
3339 }
3340 
3341 void Verifier::visitResumeInst(ResumeInst &RI) {
3342   Assert(RI.getFunction()->hasPersonalityFn(),
3343          "ResumeInst needs to be in a function with a personality.", &RI);
3344 
3345   if (!LandingPadResultTy)
3346     LandingPadResultTy = RI.getValue()->getType();
3347   else
3348     Assert(LandingPadResultTy == RI.getValue()->getType(),
3349            "The resume instruction should have a consistent result type "
3350            "inside a function.",
3351            &RI);
3352 
3353   visitTerminatorInst(RI);
3354 }
3355 
3356 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3357   BasicBlock *BB = CPI.getParent();
3358 
3359   Function *F = BB->getParent();
3360   Assert(F->hasPersonalityFn(),
3361          "CatchPadInst needs to be in a function with a personality.", &CPI);
3362 
3363   Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3364          "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3365          CPI.getParentPad());
3366 
3367   // The catchpad instruction must be the first non-PHI instruction in the
3368   // block.
3369   Assert(BB->getFirstNonPHI() == &CPI,
3370          "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3371 
3372   visitEHPadPredecessors(CPI);
3373   visitFuncletPadInst(CPI);
3374 }
3375 
3376 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3377   Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3378          "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3379          CatchReturn.getOperand(0));
3380 
3381   visitTerminatorInst(CatchReturn);
3382 }
3383 
3384 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3385   BasicBlock *BB = CPI.getParent();
3386 
3387   Function *F = BB->getParent();
3388   Assert(F->hasPersonalityFn(),
3389          "CleanupPadInst needs to be in a function with a personality.", &CPI);
3390 
3391   // The cleanuppad instruction must be the first non-PHI instruction in the
3392   // block.
3393   Assert(BB->getFirstNonPHI() == &CPI,
3394          "CleanupPadInst not the first non-PHI instruction in the block.",
3395          &CPI);
3396 
3397   auto *ParentPad = CPI.getParentPad();
3398   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3399          "CleanupPadInst has an invalid parent.", &CPI);
3400 
3401   visitEHPadPredecessors(CPI);
3402   visitFuncletPadInst(CPI);
3403 }
3404 
3405 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3406   User *FirstUser = nullptr;
3407   Value *FirstUnwindPad = nullptr;
3408   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3409   SmallSet<FuncletPadInst *, 8> Seen;
3410 
3411   while (!Worklist.empty()) {
3412     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3413     Assert(Seen.insert(CurrentPad).second,
3414            "FuncletPadInst must not be nested within itself", CurrentPad);
3415     Value *UnresolvedAncestorPad = nullptr;
3416     for (User *U : CurrentPad->users()) {
3417       BasicBlock *UnwindDest;
3418       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3419         UnwindDest = CRI->getUnwindDest();
3420       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3421         // We allow catchswitch unwind to caller to nest
3422         // within an outer pad that unwinds somewhere else,
3423         // because catchswitch doesn't have a nounwind variant.
3424         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3425         if (CSI->unwindsToCaller())
3426           continue;
3427         UnwindDest = CSI->getUnwindDest();
3428       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3429         UnwindDest = II->getUnwindDest();
3430       } else if (isa<CallInst>(U)) {
3431         // Calls which don't unwind may be found inside funclet
3432         // pads that unwind somewhere else.  We don't *require*
3433         // such calls to be annotated nounwind.
3434         continue;
3435       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3436         // The unwind dest for a cleanup can only be found by
3437         // recursive search.  Add it to the worklist, and we'll
3438         // search for its first use that determines where it unwinds.
3439         Worklist.push_back(CPI);
3440         continue;
3441       } else {
3442         Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3443         continue;
3444       }
3445 
3446       Value *UnwindPad;
3447       bool ExitsFPI;
3448       if (UnwindDest) {
3449         UnwindPad = UnwindDest->getFirstNonPHI();
3450         if (!cast<Instruction>(UnwindPad)->isEHPad())
3451           continue;
3452         Value *UnwindParent = getParentPad(UnwindPad);
3453         // Ignore unwind edges that don't exit CurrentPad.
3454         if (UnwindParent == CurrentPad)
3455           continue;
3456         // Determine whether the original funclet pad is exited,
3457         // and if we are scanning nested pads determine how many
3458         // of them are exited so we can stop searching their
3459         // children.
3460         Value *ExitedPad = CurrentPad;
3461         ExitsFPI = false;
3462         do {
3463           if (ExitedPad == &FPI) {
3464             ExitsFPI = true;
3465             // Now we can resolve any ancestors of CurrentPad up to
3466             // FPI, but not including FPI since we need to make sure
3467             // to check all direct users of FPI for consistency.
3468             UnresolvedAncestorPad = &FPI;
3469             break;
3470           }
3471           Value *ExitedParent = getParentPad(ExitedPad);
3472           if (ExitedParent == UnwindParent) {
3473             // ExitedPad is the ancestor-most pad which this unwind
3474             // edge exits, so we can resolve up to it, meaning that
3475             // ExitedParent is the first ancestor still unresolved.
3476             UnresolvedAncestorPad = ExitedParent;
3477             break;
3478           }
3479           ExitedPad = ExitedParent;
3480         } while (!isa<ConstantTokenNone>(ExitedPad));
3481       } else {
3482         // Unwinding to caller exits all pads.
3483         UnwindPad = ConstantTokenNone::get(FPI.getContext());
3484         ExitsFPI = true;
3485         UnresolvedAncestorPad = &FPI;
3486       }
3487 
3488       if (ExitsFPI) {
3489         // This unwind edge exits FPI.  Make sure it agrees with other
3490         // such edges.
3491         if (FirstUser) {
3492           Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3493                                               "pad must have the same unwind "
3494                                               "dest",
3495                  &FPI, U, FirstUser);
3496         } else {
3497           FirstUser = U;
3498           FirstUnwindPad = UnwindPad;
3499           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3500           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3501               getParentPad(UnwindPad) == getParentPad(&FPI))
3502             SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3503         }
3504       }
3505       // Make sure we visit all uses of FPI, but for nested pads stop as
3506       // soon as we know where they unwind to.
3507       if (CurrentPad != &FPI)
3508         break;
3509     }
3510     if (UnresolvedAncestorPad) {
3511       if (CurrentPad == UnresolvedAncestorPad) {
3512         // When CurrentPad is FPI itself, we don't mark it as resolved even if
3513         // we've found an unwind edge that exits it, because we need to verify
3514         // all direct uses of FPI.
3515         assert(CurrentPad == &FPI);
3516         continue;
3517       }
3518       // Pop off the worklist any nested pads that we've found an unwind
3519       // destination for.  The pads on the worklist are the uncles,
3520       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
3521       // for all ancestors of CurrentPad up to but not including
3522       // UnresolvedAncestorPad.
3523       Value *ResolvedPad = CurrentPad;
3524       while (!Worklist.empty()) {
3525         Value *UnclePad = Worklist.back();
3526         Value *AncestorPad = getParentPad(UnclePad);
3527         // Walk ResolvedPad up the ancestor list until we either find the
3528         // uncle's parent or the last resolved ancestor.
3529         while (ResolvedPad != AncestorPad) {
3530           Value *ResolvedParent = getParentPad(ResolvedPad);
3531           if (ResolvedParent == UnresolvedAncestorPad) {
3532             break;
3533           }
3534           ResolvedPad = ResolvedParent;
3535         }
3536         // If the resolved ancestor search didn't find the uncle's parent,
3537         // then the uncle is not yet resolved.
3538         if (ResolvedPad != AncestorPad)
3539           break;
3540         // This uncle is resolved, so pop it from the worklist.
3541         Worklist.pop_back();
3542       }
3543     }
3544   }
3545 
3546   if (FirstUnwindPad) {
3547     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3548       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3549       Value *SwitchUnwindPad;
3550       if (SwitchUnwindDest)
3551         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3552       else
3553         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3554       Assert(SwitchUnwindPad == FirstUnwindPad,
3555              "Unwind edges out of a catch must have the same unwind dest as "
3556              "the parent catchswitch",
3557              &FPI, FirstUser, CatchSwitch);
3558     }
3559   }
3560 
3561   visitInstruction(FPI);
3562 }
3563 
3564 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3565   BasicBlock *BB = CatchSwitch.getParent();
3566 
3567   Function *F = BB->getParent();
3568   Assert(F->hasPersonalityFn(),
3569          "CatchSwitchInst needs to be in a function with a personality.",
3570          &CatchSwitch);
3571 
3572   // The catchswitch instruction must be the first non-PHI instruction in the
3573   // block.
3574   Assert(BB->getFirstNonPHI() == &CatchSwitch,
3575          "CatchSwitchInst not the first non-PHI instruction in the block.",
3576          &CatchSwitch);
3577 
3578   auto *ParentPad = CatchSwitch.getParentPad();
3579   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3580          "CatchSwitchInst has an invalid parent.", ParentPad);
3581 
3582   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3583     Instruction *I = UnwindDest->getFirstNonPHI();
3584     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3585            "CatchSwitchInst must unwind to an EH block which is not a "
3586            "landingpad.",
3587            &CatchSwitch);
3588 
3589     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3590     if (getParentPad(I) == ParentPad)
3591       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3592   }
3593 
3594   Assert(CatchSwitch.getNumHandlers() != 0,
3595          "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3596 
3597   for (BasicBlock *Handler : CatchSwitch.handlers()) {
3598     Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3599            "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3600   }
3601 
3602   visitEHPadPredecessors(CatchSwitch);
3603   visitTerminatorInst(CatchSwitch);
3604 }
3605 
3606 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3607   Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3608          "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3609          CRI.getOperand(0));
3610 
3611   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3612     Instruction *I = UnwindDest->getFirstNonPHI();
3613     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3614            "CleanupReturnInst must unwind to an EH block which is not a "
3615            "landingpad.",
3616            &CRI);
3617   }
3618 
3619   visitTerminatorInst(CRI);
3620 }
3621 
3622 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3623   Instruction *Op = cast<Instruction>(I.getOperand(i));
3624   // If the we have an invalid invoke, don't try to compute the dominance.
3625   // We already reject it in the invoke specific checks and the dominance
3626   // computation doesn't handle multiple edges.
3627   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3628     if (II->getNormalDest() == II->getUnwindDest())
3629       return;
3630   }
3631 
3632   // Quick check whether the def has already been encountered in the same block.
3633   // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
3634   // uses are defined to happen on the incoming edge, not at the instruction.
3635   //
3636   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3637   // wrapping an SSA value, assert that we've already encountered it.  See
3638   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3639   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3640     return;
3641 
3642   const Use &U = I.getOperandUse(i);
3643   Assert(DT.dominates(Op, U),
3644          "Instruction does not dominate all uses!", Op, &I);
3645 }
3646 
3647 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3648   Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3649          "apply only to pointer types", &I);
3650   Assert(isa<LoadInst>(I),
3651          "dereferenceable, dereferenceable_or_null apply only to load"
3652          " instructions, use attributes for calls or invokes", &I);
3653   Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3654          "take one operand!", &I);
3655   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3656   Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3657          "dereferenceable_or_null metadata value must be an i64!", &I);
3658 }
3659 
3660 /// verifyInstruction - Verify that an instruction is well formed.
3661 ///
3662 void Verifier::visitInstruction(Instruction &I) {
3663   BasicBlock *BB = I.getParent();
3664   Assert(BB, "Instruction not embedded in basic block!", &I);
3665 
3666   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
3667     for (User *U : I.users()) {
3668       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
3669              "Only PHI nodes may reference their own value!", &I);
3670     }
3671   }
3672 
3673   // Check that void typed values don't have names
3674   Assert(!I.getType()->isVoidTy() || !I.hasName(),
3675          "Instruction has a name, but provides a void value!", &I);
3676 
3677   // Check that the return value of the instruction is either void or a legal
3678   // value type.
3679   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
3680          "Instruction returns a non-scalar type!", &I);
3681 
3682   // Check that the instruction doesn't produce metadata. Calls are already
3683   // checked against the callee type.
3684   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
3685          "Invalid use of metadata!", &I);
3686 
3687   // Check that all uses of the instruction, if they are instructions
3688   // themselves, actually have parent basic blocks.  If the use is not an
3689   // instruction, it is an error!
3690   for (Use &U : I.uses()) {
3691     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3692       Assert(Used->getParent() != nullptr,
3693              "Instruction referencing"
3694              " instruction not embedded in a basic block!",
3695              &I, Used);
3696     else {
3697       CheckFailed("Use of instruction is not an instruction!", U);
3698       return;
3699     }
3700   }
3701 
3702   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3703     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
3704 
3705     // Check to make sure that only first-class-values are operands to
3706     // instructions.
3707     if (!I.getOperand(i)->getType()->isFirstClassType()) {
3708       Assert(false, "Instruction operands must be first-class values!", &I);
3709     }
3710 
3711     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3712       // Check to make sure that the "address of" an intrinsic function is never
3713       // taken.
3714       Assert(
3715           !F->isIntrinsic() ||
3716               i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
3717           "Cannot take the address of an intrinsic!", &I);
3718       Assert(
3719           !F->isIntrinsic() || isa<CallInst>(I) ||
3720               F->getIntrinsicID() == Intrinsic::donothing ||
3721               F->getIntrinsicID() == Intrinsic::coro_resume ||
3722               F->getIntrinsicID() == Intrinsic::coro_destroy ||
3723               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
3724               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
3725               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
3726           "Cannot invoke an intrinsic other than donothing, patchpoint, "
3727           "statepoint, coro_resume or coro_destroy",
3728           &I);
3729       Assert(F->getParent() == &M, "Referencing function in another module!",
3730              &I, &M, F, F->getParent());
3731     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3732       Assert(OpBB->getParent() == BB->getParent(),
3733              "Referring to a basic block in another function!", &I);
3734     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3735       Assert(OpArg->getParent() == BB->getParent(),
3736              "Referring to an argument in another function!", &I);
3737     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3738       Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
3739              &M, GV, GV->getParent());
3740     } else if (isa<Instruction>(I.getOperand(i))) {
3741       verifyDominatesUse(I, i);
3742     } else if (isa<InlineAsm>(I.getOperand(i))) {
3743       Assert((i + 1 == e && isa<CallInst>(I)) ||
3744                  (i + 3 == e && isa<InvokeInst>(I)),
3745              "Cannot take the address of an inline asm!", &I);
3746     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3747       if (CE->getType()->isPtrOrPtrVectorTy() ||
3748           !DL.getNonIntegralAddressSpaces().empty()) {
3749         // If we have a ConstantExpr pointer, we need to see if it came from an
3750         // illegal bitcast.  If the datalayout string specifies non-integral
3751         // address spaces then we also need to check for illegal ptrtoint and
3752         // inttoptr expressions.
3753         visitConstantExprsRecursively(CE);
3754       }
3755     }
3756   }
3757 
3758   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3759     Assert(I.getType()->isFPOrFPVectorTy(),
3760            "fpmath requires a floating point result!", &I);
3761     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
3762     if (ConstantFP *CFP0 =
3763             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3764       const APFloat &Accuracy = CFP0->getValueAPF();
3765       Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle,
3766              "fpmath accuracy must have float type", &I);
3767       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
3768              "fpmath accuracy not a positive number!", &I);
3769     } else {
3770       Assert(false, "invalid fpmath accuracy!", &I);
3771     }
3772   }
3773 
3774   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3775     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
3776            "Ranges are only for loads, calls and invokes!", &I);
3777     visitRangeMetadata(I, Range, I.getType());
3778   }
3779 
3780   if (I.getMetadata(LLVMContext::MD_nonnull)) {
3781     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
3782            &I);
3783     Assert(isa<LoadInst>(I),
3784            "nonnull applies only to load instructions, use attributes"
3785            " for calls or invokes",
3786            &I);
3787   }
3788 
3789   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
3790     visitDereferenceableMetadata(I, MD);
3791 
3792   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
3793     visitDereferenceableMetadata(I, MD);
3794 
3795   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3796     Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
3797            &I);
3798     Assert(isa<LoadInst>(I), "align applies only to load instructions, "
3799            "use attributes for calls or invokes", &I);
3800     Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
3801     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3802     Assert(CI && CI->getType()->isIntegerTy(64),
3803            "align metadata value must be an i64!", &I);
3804     uint64_t Align = CI->getZExtValue();
3805     Assert(isPowerOf2_64(Align),
3806            "align metadata value must be a power of 2!", &I);
3807     Assert(Align <= Value::MaximumAlignment,
3808            "alignment is larger that implementation defined limit", &I);
3809   }
3810 
3811   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3812     AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
3813     visitMDNode(*N);
3814   }
3815 
3816   if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3817     verifyBitPieceExpression(*DII);
3818 
3819   InstsInThisBlock.insert(&I);
3820 }
3821 
3822 /// Allow intrinsics to be verified in different ways.
3823 void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3824   Function *IF = CS.getCalledFunction();
3825   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
3826          IF);
3827 
3828   // Verify that the intrinsic prototype lines up with what the .td files
3829   // describe.
3830   FunctionType *IFTy = IF->getFunctionType();
3831   bool IsVarArg = IFTy->isVarArg();
3832 
3833   SmallVector<Intrinsic::IITDescriptor, 8> Table;
3834   getIntrinsicInfoTableEntries(ID, Table);
3835   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
3836 
3837   SmallVector<Type *, 4> ArgTys;
3838   Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),
3839                                         TableRef, ArgTys),
3840          "Intrinsic has incorrect return type!", IF);
3841   for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3842     Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),
3843                                           TableRef, ArgTys),
3844            "Intrinsic has incorrect argument type!", IF);
3845 
3846   // Verify if the intrinsic call matches the vararg property.
3847   if (IsVarArg)
3848     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
3849            "Intrinsic was not defined with variable arguments!", IF);
3850   else
3851     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
3852            "Callsite was not defined with variable arguments!", IF);
3853 
3854   // All descriptors should be absorbed by now.
3855   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
3856 
3857   // Now that we have the intrinsic ID and the actual argument types (and we
3858   // know they are legal for the intrinsic!) get the intrinsic name through the
3859   // usual means.  This allows us to verify the mangling of argument types into
3860   // the name.
3861   const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
3862   Assert(ExpectedName == IF->getName(),
3863          "Intrinsic name not mangled correctly for type arguments! "
3864          "Should be: " +
3865              ExpectedName,
3866          IF);
3867 
3868   // If the intrinsic takes MDNode arguments, verify that they are either global
3869   // or are local to *this* function.
3870   for (Value *V : CS.args())
3871     if (auto *MD = dyn_cast<MetadataAsValue>(V))
3872       visitMetadataAsValue(*MD, CS.getCaller());
3873 
3874   switch (ID) {
3875   default:
3876     break;
3877   case Intrinsic::coro_id: {
3878     auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts();
3879     if (isa<ConstantPointerNull>(InfoArg))
3880       break;
3881     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
3882     Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
3883       "info argument of llvm.coro.begin must refer to an initialized "
3884       "constant");
3885     Constant *Init = GV->getInitializer();
3886     Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
3887       "info argument of llvm.coro.begin must refer to either a struct or "
3888       "an array");
3889     break;
3890   }
3891   case Intrinsic::ctlz:  // llvm.ctlz
3892   case Intrinsic::cttz:  // llvm.cttz
3893     Assert(isa<ConstantInt>(CS.getArgOperand(1)),
3894            "is_zero_undef argument of bit counting intrinsics must be a "
3895            "constant int",
3896            CS);
3897     break;
3898   case Intrinsic::dbg_declare: // llvm.dbg.declare
3899     Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
3900            "invalid llvm.dbg.declare intrinsic call 1", CS);
3901     visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
3902     break;
3903   case Intrinsic::dbg_value: // llvm.dbg.value
3904     visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
3905     break;
3906   case Intrinsic::memcpy:
3907   case Intrinsic::memmove:
3908   case Intrinsic::memset: {
3909     ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3910     Assert(AlignCI,
3911            "alignment argument of memory intrinsics must be a constant int",
3912            CS);
3913     const APInt &AlignVal = AlignCI->getValue();
3914     Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),
3915            "alignment argument of memory intrinsics must be a power of 2", CS);
3916     Assert(isa<ConstantInt>(CS.getArgOperand(4)),
3917            "isvolatile argument of memory intrinsics must be a constant int",
3918            CS);
3919     break;
3920   }
3921   case Intrinsic::gcroot:
3922   case Intrinsic::gcwrite:
3923   case Intrinsic::gcread:
3924     if (ID == Intrinsic::gcroot) {
3925       AllocaInst *AI =
3926         dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
3927       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
3928       Assert(isa<Constant>(CS.getArgOperand(1)),
3929              "llvm.gcroot parameter #2 must be a constant.", CS);
3930       if (!AI->getAllocatedType()->isPointerTy()) {
3931         Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
3932                "llvm.gcroot parameter #1 must either be a pointer alloca, "
3933                "or argument #2 must be a non-null constant.",
3934                CS);
3935       }
3936     }
3937 
3938     Assert(CS.getParent()->getParent()->hasGC(),
3939            "Enclosing function does not use GC.", CS);
3940     break;
3941   case Intrinsic::init_trampoline:
3942     Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
3943            "llvm.init_trampoline parameter #2 must resolve to a function.",
3944            CS);
3945     break;
3946   case Intrinsic::prefetch:
3947     Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
3948                isa<ConstantInt>(CS.getArgOperand(2)) &&
3949                cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
3950                cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
3951            "invalid arguments to llvm.prefetch", CS);
3952     break;
3953   case Intrinsic::stackprotector:
3954     Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
3955            "llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
3956     break;
3957   case Intrinsic::lifetime_start:
3958   case Intrinsic::lifetime_end:
3959   case Intrinsic::invariant_start:
3960     Assert(isa<ConstantInt>(CS.getArgOperand(0)),
3961            "size argument of memory use markers must be a constant integer",
3962            CS);
3963     break;
3964   case Intrinsic::invariant_end:
3965     Assert(isa<ConstantInt>(CS.getArgOperand(1)),
3966            "llvm.invariant.end parameter #2 must be a constant integer", CS);
3967     break;
3968 
3969   case Intrinsic::localescape: {
3970     BasicBlock *BB = CS.getParent();
3971     Assert(BB == &BB->getParent()->front(),
3972            "llvm.localescape used outside of entry block", CS);
3973     Assert(!SawFrameEscape,
3974            "multiple calls to llvm.localescape in one function", CS);
3975     for (Value *Arg : CS.args()) {
3976       if (isa<ConstantPointerNull>(Arg))
3977         continue; // Null values are allowed as placeholders.
3978       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
3979       Assert(AI && AI->isStaticAlloca(),
3980              "llvm.localescape only accepts static allocas", CS);
3981     }
3982     FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
3983     SawFrameEscape = true;
3984     break;
3985   }
3986   case Intrinsic::localrecover: {
3987     Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
3988     Function *Fn = dyn_cast<Function>(FnArg);
3989     Assert(Fn && !Fn->isDeclaration(),
3990            "llvm.localrecover first "
3991            "argument must be function defined in this module",
3992            CS);
3993     auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
3994     Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
3995            CS);
3996     auto &Entry = FrameEscapeInfo[Fn];
3997     Entry.second = unsigned(
3998         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
3999     break;
4000   }
4001 
4002   case Intrinsic::experimental_gc_statepoint:
4003     Assert(!CS.isInlineAsm(),
4004            "gc.statepoint support for inline assembly unimplemented", CS);
4005     Assert(CS.getParent()->getParent()->hasGC(),
4006            "Enclosing function does not use GC.", CS);
4007 
4008     verifyStatepoint(CS);
4009     break;
4010   case Intrinsic::experimental_gc_result: {
4011     Assert(CS.getParent()->getParent()->hasGC(),
4012            "Enclosing function does not use GC.", CS);
4013     // Are we tied to a statepoint properly?
4014     CallSite StatepointCS(CS.getArgOperand(0));
4015     const Function *StatepointFn =
4016       StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
4017     Assert(StatepointFn && StatepointFn->isDeclaration() &&
4018                StatepointFn->getIntrinsicID() ==
4019                    Intrinsic::experimental_gc_statepoint,
4020            "gc.result operand #1 must be from a statepoint", CS,
4021            CS.getArgOperand(0));
4022 
4023     // Assert that result type matches wrapped callee.
4024     const Value *Target = StatepointCS.getArgument(2);
4025     auto *PT = cast<PointerType>(Target->getType());
4026     auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4027     Assert(CS.getType() == TargetFuncType->getReturnType(),
4028            "gc.result result type does not match wrapped callee", CS);
4029     break;
4030   }
4031   case Intrinsic::experimental_gc_relocate: {
4032     Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
4033 
4034     Assert(isa<PointerType>(CS.getType()->getScalarType()),
4035            "gc.relocate must return a pointer or a vector of pointers", CS);
4036 
4037     // Check that this relocate is correctly tied to the statepoint
4038 
4039     // This is case for relocate on the unwinding path of an invoke statepoint
4040     if (LandingPadInst *LandingPad =
4041           dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
4042 
4043       const BasicBlock *InvokeBB =
4044           LandingPad->getParent()->getUniquePredecessor();
4045 
4046       // Landingpad relocates should have only one predecessor with invoke
4047       // statepoint terminator
4048       Assert(InvokeBB, "safepoints should have unique landingpads",
4049              LandingPad->getParent());
4050       Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4051              InvokeBB);
4052       Assert(isStatepoint(InvokeBB->getTerminator()),
4053              "gc relocate should be linked to a statepoint", InvokeBB);
4054     }
4055     else {
4056       // In all other cases relocate should be tied to the statepoint directly.
4057       // This covers relocates on a normal return path of invoke statepoint and
4058       // relocates of a call statepoint.
4059       auto Token = CS.getArgOperand(0);
4060       Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
4061              "gc relocate is incorrectly tied to the statepoint", CS, Token);
4062     }
4063 
4064     // Verify rest of the relocate arguments.
4065 
4066     ImmutableCallSite StatepointCS(
4067         cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
4068 
4069     // Both the base and derived must be piped through the safepoint.
4070     Value* Base = CS.getArgOperand(1);
4071     Assert(isa<ConstantInt>(Base),
4072            "gc.relocate operand #2 must be integer offset", CS);
4073 
4074     Value* Derived = CS.getArgOperand(2);
4075     Assert(isa<ConstantInt>(Derived),
4076            "gc.relocate operand #3 must be integer offset", CS);
4077 
4078     const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4079     const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4080     // Check the bounds
4081     Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
4082            "gc.relocate: statepoint base index out of bounds", CS);
4083     Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
4084            "gc.relocate: statepoint derived index out of bounds", CS);
4085 
4086     // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4087     // section of the statepoint's argument.
4088     Assert(StatepointCS.arg_size() > 0,
4089            "gc.statepoint: insufficient arguments");
4090     Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
4091            "gc.statement: number of call arguments must be constant integer");
4092     const unsigned NumCallArgs =
4093         cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
4094     Assert(StatepointCS.arg_size() > NumCallArgs + 5,
4095            "gc.statepoint: mismatch in number of call arguments");
4096     Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
4097            "gc.statepoint: number of transition arguments must be "
4098            "a constant integer");
4099     const int NumTransitionArgs =
4100         cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
4101             ->getZExtValue();
4102     const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4103     Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
4104            "gc.statepoint: number of deoptimization arguments must be "
4105            "a constant integer");
4106     const int NumDeoptArgs =
4107         cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
4108             ->getZExtValue();
4109     const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4110     const int GCParamArgsEnd = StatepointCS.arg_size();
4111     Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4112            "gc.relocate: statepoint base index doesn't fall within the "
4113            "'gc parameters' section of the statepoint call",
4114            CS);
4115     Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4116            "gc.relocate: statepoint derived index doesn't fall within the "
4117            "'gc parameters' section of the statepoint call",
4118            CS);
4119 
4120     // Relocated value must be either a pointer type or vector-of-pointer type,
4121     // but gc_relocate does not need to return the same pointer type as the
4122     // relocated pointer. It can be casted to the correct type later if it's
4123     // desired. However, they must have the same address space and 'vectorness'
4124     GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
4125     Assert(Relocate.getDerivedPtr()->getType()->getScalarType()->isPointerTy(),
4126            "gc.relocate: relocated value must be a gc pointer", CS);
4127 
4128     auto ResultType = CS.getType();
4129     auto DerivedType = Relocate.getDerivedPtr()->getType();
4130     Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4131            "gc.relocate: vector relocates to vector and pointer to pointer",
4132            CS);
4133     Assert(
4134         ResultType->getPointerAddressSpace() ==
4135             DerivedType->getPointerAddressSpace(),
4136         "gc.relocate: relocating a pointer shouldn't change its address space",
4137         CS);
4138     break;
4139   }
4140   case Intrinsic::eh_exceptioncode:
4141   case Intrinsic::eh_exceptionpointer: {
4142     Assert(isa<CatchPadInst>(CS.getArgOperand(0)),
4143            "eh.exceptionpointer argument must be a catchpad", CS);
4144     break;
4145   }
4146   case Intrinsic::masked_load: {
4147     Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS);
4148 
4149     Value *Ptr = CS.getArgOperand(0);
4150     //Value *Alignment = CS.getArgOperand(1);
4151     Value *Mask = CS.getArgOperand(2);
4152     Value *PassThru = CS.getArgOperand(3);
4153     Assert(Mask->getType()->isVectorTy(),
4154            "masked_load: mask must be vector", CS);
4155 
4156     // DataTy is the overloaded type
4157     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4158     Assert(DataTy == CS.getType(),
4159            "masked_load: return must match pointer type", CS);
4160     Assert(PassThru->getType() == DataTy,
4161            "masked_load: pass through and data type must match", CS);
4162     Assert(Mask->getType()->getVectorNumElements() ==
4163            DataTy->getVectorNumElements(),
4164            "masked_load: vector mask must be same length as data", CS);
4165     break;
4166   }
4167   case Intrinsic::masked_store: {
4168     Value *Val = CS.getArgOperand(0);
4169     Value *Ptr = CS.getArgOperand(1);
4170     //Value *Alignment = CS.getArgOperand(2);
4171     Value *Mask = CS.getArgOperand(3);
4172     Assert(Mask->getType()->isVectorTy(),
4173            "masked_store: mask must be vector", CS);
4174 
4175     // DataTy is the overloaded type
4176     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4177     Assert(DataTy == Val->getType(),
4178            "masked_store: storee must match pointer type", CS);
4179     Assert(Mask->getType()->getVectorNumElements() ==
4180            DataTy->getVectorNumElements(),
4181            "masked_store: vector mask must be same length as data", CS);
4182     break;
4183   }
4184 
4185   case Intrinsic::experimental_guard: {
4186     Assert(CS.isCall(), "experimental_guard cannot be invoked", CS);
4187     Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4188            "experimental_guard must have exactly one "
4189            "\"deopt\" operand bundle");
4190     break;
4191   }
4192 
4193   case Intrinsic::experimental_deoptimize: {
4194     Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS);
4195     Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4196            "experimental_deoptimize must have exactly one "
4197            "\"deopt\" operand bundle");
4198     Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(),
4199            "experimental_deoptimize return type must match caller return type");
4200 
4201     if (CS.isCall()) {
4202       auto *DeoptCI = CS.getInstruction();
4203       auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
4204       Assert(RI,
4205              "calls to experimental_deoptimize must be followed by a return");
4206 
4207       if (!CS.getType()->isVoidTy() && RI)
4208         Assert(RI->getReturnValue() == DeoptCI,
4209                "calls to experimental_deoptimize must be followed by a return "
4210                "of the value computed by experimental_deoptimize");
4211     }
4212 
4213     break;
4214   }
4215   };
4216 }
4217 
4218 /// \brief Carefully grab the subprogram from a local scope.
4219 ///
4220 /// This carefully grabs the subprogram from a local scope, avoiding the
4221 /// built-in assertions that would typically fire.
4222 static DISubprogram *getSubprogram(Metadata *LocalScope) {
4223   if (!LocalScope)
4224     return nullptr;
4225 
4226   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4227     return SP;
4228 
4229   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4230     return getSubprogram(LB->getRawScope());
4231 
4232   // Just return null; broken scope chains are checked elsewhere.
4233   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4234   return nullptr;
4235 }
4236 
4237 template <class DbgIntrinsicTy>
4238 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
4239   auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4240   AssertDI(isa<ValueAsMetadata>(MD) ||
4241              (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4242          "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4243   AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4244          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4245          DII.getRawVariable());
4246   AssertDI(isa<DIExpression>(DII.getRawExpression()),
4247          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4248          DII.getRawExpression());
4249 
4250   // Ignore broken !dbg attachments; they're checked elsewhere.
4251   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4252     if (!isa<DILocation>(N))
4253       return;
4254 
4255   BasicBlock *BB = DII.getParent();
4256   Function *F = BB ? BB->getParent() : nullptr;
4257 
4258   // The scopes for variables and !dbg attachments must agree.
4259   DILocalVariable *Var = DII.getVariable();
4260   DILocation *Loc = DII.getDebugLoc();
4261   Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4262          &DII, BB, F);
4263 
4264   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4265   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4266   if (!VarSP || !LocSP)
4267     return; // Broken scope chains are checked elsewhere.
4268 
4269   AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4270                                " variable and !dbg attachment",
4271            &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4272            Loc->getScope()->getSubprogram());
4273 }
4274 
4275 static uint64_t getVariableSize(const DILocalVariable &V) {
4276   // Be careful of broken types (checked elsewhere).
4277   const Metadata *RawType = V.getRawType();
4278   while (RawType) {
4279     // Try to get the size directly.
4280     if (auto *T = dyn_cast<DIType>(RawType))
4281       if (uint64_t Size = T->getSizeInBits())
4282         return Size;
4283 
4284     if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
4285       // Look at the base type.
4286       RawType = DT->getRawBaseType();
4287       continue;
4288     }
4289 
4290     // Missing type or size.
4291     break;
4292   }
4293 
4294   // Fail gracefully.
4295   return 0;
4296 }
4297 
4298 void Verifier::verifyBitPieceExpression(const DbgInfoIntrinsic &I) {
4299   DILocalVariable *V;
4300   DIExpression *E;
4301   if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
4302     V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
4303     E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
4304   } else {
4305     auto *DDI = cast<DbgDeclareInst>(&I);
4306     V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
4307     E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
4308   }
4309 
4310   // We don't know whether this intrinsic verified correctly.
4311   if (!V || !E || !E->isValid())
4312     return;
4313 
4314   // Nothing to do if this isn't a bit piece expression.
4315   if (!E->isBitPiece())
4316     return;
4317 
4318   // The frontend helps out GDB by emitting the members of local anonymous
4319   // unions as artificial local variables with shared storage. When SROA splits
4320   // the storage for artificial local variables that are smaller than the entire
4321   // union, the overhang piece will be outside of the allotted space for the
4322   // variable and this check fails.
4323   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4324   if (V->isArtificial())
4325     return;
4326 
4327   // If there's no size, the type is broken, but that should be checked
4328   // elsewhere.
4329   uint64_t VarSize = getVariableSize(*V);
4330   if (!VarSize)
4331     return;
4332 
4333   unsigned PieceSize = E->getBitPieceSize();
4334   unsigned PieceOffset = E->getBitPieceOffset();
4335   AssertDI(PieceSize + PieceOffset <= VarSize,
4336          "piece is larger than or outside of variable", &I, V, E);
4337   AssertDI(PieceSize != VarSize, "piece covers entire variable", &I, V, E);
4338 }
4339 
4340 void Verifier::verifyCompileUnits() {
4341   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4342   SmallPtrSet<const Metadata *, 2> Listed;
4343   if (CUs)
4344     Listed.insert(CUs->op_begin(), CUs->op_end());
4345   AssertDI(
4346       all_of(CUVisited,
4347              [&Listed](const Metadata *CU) { return Listed.count(CU); }),
4348       "All DICompileUnits must be listed in llvm.dbg.cu");
4349   CUVisited.clear();
4350 }
4351 
4352 void Verifier::verifyDeoptimizeCallingConvs() {
4353   if (DeoptimizeDeclarations.empty())
4354     return;
4355 
4356   const Function *First = DeoptimizeDeclarations[0];
4357   for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4358     Assert(First->getCallingConv() == F->getCallingConv(),
4359            "All llvm.experimental.deoptimize declarations must have the same "
4360            "calling convention",
4361            First, F);
4362   }
4363 }
4364 
4365 //===----------------------------------------------------------------------===//
4366 //  Implement the public interfaces to this file...
4367 //===----------------------------------------------------------------------===//
4368 
4369 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4370   Function &F = const_cast<Function &>(f);
4371 
4372   // Don't use a raw_null_ostream.  Printing IR is expensive.
4373   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4374 
4375   // Note that this function's return value is inverted from what you would
4376   // expect of a function called "verify".
4377   return !V.verify(F);
4378 }
4379 
4380 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
4381                         bool *BrokenDebugInfo) {
4382   // Don't use a raw_null_ostream.  Printing IR is expensive.
4383   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4384 
4385   bool Broken = false;
4386   for (const Function &F : M)
4387     Broken |= !V.verify(F);
4388 
4389   Broken |= !V.verify();
4390   if (BrokenDebugInfo)
4391     *BrokenDebugInfo = V.hasBrokenDebugInfo();
4392   // Note that this function's return value is inverted from what you would
4393   // expect of a function called "verify".
4394   return Broken;
4395 }
4396 
4397 namespace {
4398 
4399 struct VerifierLegacyPass : public FunctionPass {
4400   static char ID;
4401 
4402   std::unique_ptr<Verifier> V;
4403   bool FatalErrors = true;
4404 
4405   VerifierLegacyPass() : FunctionPass(ID) {
4406     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4407   }
4408   explicit VerifierLegacyPass(bool FatalErrors)
4409       : FunctionPass(ID),
4410         FatalErrors(FatalErrors) {
4411     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4412   }
4413 
4414   bool doInitialization(Module &M) override {
4415     V = llvm::make_unique<Verifier>(
4416         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
4417     return false;
4418   }
4419 
4420   bool runOnFunction(Function &F) override {
4421     if (!V->verify(F) && FatalErrors)
4422       report_fatal_error("Broken function found, compilation aborted!");
4423 
4424     return false;
4425   }
4426 
4427   bool doFinalization(Module &M) override {
4428     bool HasErrors = false;
4429     for (Function &F : M)
4430       if (F.isDeclaration())
4431         HasErrors |= !V->verify(F);
4432 
4433     HasErrors |= !V->verify();
4434     if (FatalErrors) {
4435       if (HasErrors)
4436         report_fatal_error("Broken module found, compilation aborted!");
4437       assert(!V->hasBrokenDebugInfo() && "Module contains invalid debug info");
4438     }
4439 
4440     // Strip broken debug info.
4441     if (V->hasBrokenDebugInfo()) {
4442       DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M);
4443       M.getContext().diagnose(DiagInvalid);
4444       if (!StripDebugInfo(M))
4445         report_fatal_error("Failed to strip malformed debug info");
4446     }
4447     return false;
4448   }
4449 
4450   void getAnalysisUsage(AnalysisUsage &AU) const override {
4451     AU.setPreservesAll();
4452   }
4453 };
4454 
4455 } // end anonymous namespace
4456 
4457 char VerifierLegacyPass::ID = 0;
4458 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
4459 
4460 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
4461   return new VerifierLegacyPass(FatalErrors);
4462 }
4463 
4464 char VerifierAnalysis::PassID;
4465 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
4466                                                ModuleAnalysisManager &) {
4467   Result Res;
4468   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
4469   return Res;
4470 }
4471 
4472 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
4473                                                FunctionAnalysisManager &) {
4474   return { llvm::verifyFunction(F, &dbgs()), false };
4475 }
4476 
4477 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
4478   auto Res = AM.getResult<VerifierAnalysis>(M);
4479   if (FatalErrors) {
4480     if (Res.IRBroken)
4481       report_fatal_error("Broken module found, compilation aborted!");
4482     assert(!Res.DebugInfoBroken && "Module contains invalid debug info");
4483   }
4484 
4485   // Strip broken debug info.
4486   if (Res.DebugInfoBroken) {
4487     DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M);
4488     M.getContext().diagnose(DiagInvalid);
4489     if (!StripDebugInfo(M))
4490       report_fatal_error("Failed to strip malformed debug info");
4491   }
4492   return PreservedAnalyses::all();
4493 }
4494 
4495 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
4496   auto res = AM.getResult<VerifierAnalysis>(F);
4497   if (res.IRBroken && FatalErrors)
4498     report_fatal_error("Broken function found, compilation aborted!");
4499 
4500   return PreservedAnalyses::all();
4501 }
4502