1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the function verifier interface, that can be used for some 11 // sanity checking of input to the system. 12 // 13 // Note that this does not provide full `Java style' security and verifications, 14 // instead it just tries to ensure that code is well-formed. 15 // 16 // * Both of a binary operator's parameters are of the same type 17 // * Verify that the indices of mem access instructions match other operands 18 // * Verify that arithmetic and other things are only performed on first-class 19 // types. Verify that shifts & logicals only happen on integrals f.e. 20 // * All of the constants in a switch statement are of the correct type 21 // * The code is in valid SSA form 22 // * It should be illegal to put a label into any other type (like a structure) 23 // or to return one. [except constant arrays!] 24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 25 // * PHI nodes must have an entry for each predecessor, with no extras. 26 // * PHI nodes must be the first thing in a basic block, all grouped together 27 // * PHI nodes must have at least one entry 28 // * All basic blocks should only end with terminator insts, not contain them 29 // * The entry node to a function must not have predecessors 30 // * All Instructions must be embedded into a basic block 31 // * Functions cannot take a void-typed parameter 32 // * Verify that a function's argument list agrees with it's declared type. 33 // * It is illegal to specify a name for a void value. 34 // * It is illegal to have a internal global value with no initializer 35 // * It is illegal to have a ret instruction that returns a value that does not 36 // agree with the function return value type. 37 // * Function call argument types match the function prototype 38 // * A landing pad is defined by a landingpad instruction, and can be jumped to 39 // only by the unwind edge of an invoke instruction. 40 // * A landingpad instruction must be the first non-PHI instruction in the 41 // block. 42 // * Landingpad instructions must be in a function with a personality function. 43 // * All other things that are tested by asserts spread about the code... 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "llvm/IR/Verifier.h" 48 #include "llvm/ADT/APFloat.h" 49 #include "llvm/ADT/APInt.h" 50 #include "llvm/ADT/ArrayRef.h" 51 #include "llvm/ADT/DenseMap.h" 52 #include "llvm/ADT/ilist.h" 53 #include "llvm/ADT/MapVector.h" 54 #include "llvm/ADT/Optional.h" 55 #include "llvm/ADT/STLExtras.h" 56 #include "llvm/ADT/SmallPtrSet.h" 57 #include "llvm/ADT/SmallSet.h" 58 #include "llvm/ADT/SmallVector.h" 59 #include "llvm/ADT/StringMap.h" 60 #include "llvm/ADT/StringRef.h" 61 #include "llvm/ADT/Twine.h" 62 #include "llvm/IR/Argument.h" 63 #include "llvm/IR/Attributes.h" 64 #include "llvm/IR/BasicBlock.h" 65 #include "llvm/IR/CFG.h" 66 #include "llvm/IR/CallSite.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/DiagnosticInfo.h" 78 #include "llvm/IR/Dominators.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GlobalAlias.h" 81 #include "llvm/IR/GlobalValue.h" 82 #include "llvm/IR/GlobalVariable.h" 83 #include "llvm/IR/InlineAsm.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/InstVisitor.h" 88 #include "llvm/IR/IntrinsicInst.h" 89 #include "llvm/IR/Intrinsics.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/ModuleSlotTracker.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/Pass.h" 101 #include "llvm/Support/AtomicOrdering.h" 102 #include "llvm/Support/Casting.h" 103 #include "llvm/Support/CommandLine.h" 104 #include "llvm/Support/Debug.h" 105 #include "llvm/Support/Dwarf.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <cstdint> 112 #include <memory> 113 #include <string> 114 #include <utility> 115 116 using namespace llvm; 117 118 static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true)); 119 120 namespace { 121 122 struct VerifierSupport { 123 raw_ostream *OS; 124 const Module &M; 125 ModuleSlotTracker MST; 126 const DataLayout &DL; 127 LLVMContext &Context; 128 129 /// Track the brokenness of the module while recursively visiting. 130 bool Broken = false; 131 /// Broken debug info can be "recovered" from by stripping the debug info. 132 bool BrokenDebugInfo = false; 133 /// Whether to treat broken debug info as an error. 134 bool TreatBrokenDebugInfoAsError = true; 135 136 explicit VerifierSupport(raw_ostream *OS, const Module &M) 137 : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {} 138 139 private: 140 void Write(const Module *M) { 141 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 142 } 143 144 void Write(const Value *V) { 145 if (!V) 146 return; 147 if (isa<Instruction>(V)) { 148 V->print(*OS, MST); 149 *OS << '\n'; 150 } else { 151 V->printAsOperand(*OS, true, MST); 152 *OS << '\n'; 153 } 154 } 155 156 void Write(ImmutableCallSite CS) { 157 Write(CS.getInstruction()); 158 } 159 160 void Write(const Metadata *MD) { 161 if (!MD) 162 return; 163 MD->print(*OS, MST, &M); 164 *OS << '\n'; 165 } 166 167 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 168 Write(MD.get()); 169 } 170 171 void Write(const NamedMDNode *NMD) { 172 if (!NMD) 173 return; 174 NMD->print(*OS, MST); 175 *OS << '\n'; 176 } 177 178 void Write(Type *T) { 179 if (!T) 180 return; 181 *OS << ' ' << *T; 182 } 183 184 void Write(const Comdat *C) { 185 if (!C) 186 return; 187 *OS << *C; 188 } 189 190 template <typename T> void Write(ArrayRef<T> Vs) { 191 for (const T &V : Vs) 192 Write(V); 193 } 194 195 template <typename T1, typename... Ts> 196 void WriteTs(const T1 &V1, const Ts &... Vs) { 197 Write(V1); 198 WriteTs(Vs...); 199 } 200 201 template <typename... Ts> void WriteTs() {} 202 203 public: 204 /// \brief A check failed, so printout out the condition and the message. 205 /// 206 /// This provides a nice place to put a breakpoint if you want to see why 207 /// something is not correct. 208 void CheckFailed(const Twine &Message) { 209 if (OS) 210 *OS << Message << '\n'; 211 Broken = true; 212 } 213 214 /// \brief A check failed (with values to print). 215 /// 216 /// This calls the Message-only version so that the above is easier to set a 217 /// breakpoint on. 218 template <typename T1, typename... Ts> 219 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 220 CheckFailed(Message); 221 if (OS) 222 WriteTs(V1, Vs...); 223 } 224 225 /// A debug info check failed. 226 void DebugInfoCheckFailed(const Twine &Message) { 227 if (OS) 228 *OS << Message << '\n'; 229 Broken |= TreatBrokenDebugInfoAsError; 230 BrokenDebugInfo = true; 231 } 232 233 /// A debug info check failed (with values to print). 234 template <typename T1, typename... Ts> 235 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 236 const Ts &... Vs) { 237 DebugInfoCheckFailed(Message); 238 if (OS) 239 WriteTs(V1, Vs...); 240 } 241 }; 242 243 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 244 friend class InstVisitor<Verifier>; 245 246 DominatorTree DT; 247 248 /// \brief When verifying a basic block, keep track of all of the 249 /// instructions we have seen so far. 250 /// 251 /// This allows us to do efficient dominance checks for the case when an 252 /// instruction has an operand that is an instruction in the same block. 253 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 254 255 /// \brief Keep track of the metadata nodes that have been checked already. 256 SmallPtrSet<const Metadata *, 32> MDNodes; 257 258 /// Track all DICompileUnits visited. 259 SmallPtrSet<const Metadata *, 2> CUVisited; 260 261 /// \brief The result type for a landingpad. 262 Type *LandingPadResultTy; 263 264 /// \brief Whether we've seen a call to @llvm.localescape in this function 265 /// already. 266 bool SawFrameEscape; 267 268 /// Stores the count of how many objects were passed to llvm.localescape for a 269 /// given function and the largest index passed to llvm.localrecover. 270 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 271 272 // Maps catchswitches and cleanuppads that unwind to siblings to the 273 // terminators that indicate the unwind, used to detect cycles therein. 274 MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo; 275 276 /// Cache of constants visited in search of ConstantExprs. 277 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 278 279 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 280 SmallVector<const Function *, 4> DeoptimizeDeclarations; 281 282 // Verify that this GlobalValue is only used in this module. 283 // This map is used to avoid visiting uses twice. We can arrive at a user 284 // twice, if they have multiple operands. In particular for very large 285 // constant expressions, we can arrive at a particular user many times. 286 SmallPtrSet<const Value *, 32> GlobalValueVisited; 287 288 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 289 290 public: 291 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 292 const Module &M) 293 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 294 SawFrameEscape(false) { 295 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 296 } 297 298 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 299 300 bool verify(const Function &F) { 301 assert(F.getParent() == &M && 302 "An instance of this class only works with a specific module!"); 303 304 // First ensure the function is well-enough formed to compute dominance 305 // information, and directly compute a dominance tree. We don't rely on the 306 // pass manager to provide this as it isolates us from a potentially 307 // out-of-date dominator tree and makes it significantly more complex to run 308 // this code outside of a pass manager. 309 // FIXME: It's really gross that we have to cast away constness here. 310 if (!F.empty()) 311 DT.recalculate(const_cast<Function &>(F)); 312 313 for (const BasicBlock &BB : F) { 314 if (!BB.empty() && BB.back().isTerminator()) 315 continue; 316 317 if (OS) { 318 *OS << "Basic Block in function '" << F.getName() 319 << "' does not have terminator!\n"; 320 BB.printAsOperand(*OS, true, MST); 321 *OS << "\n"; 322 } 323 return false; 324 } 325 326 Broken = false; 327 // FIXME: We strip const here because the inst visitor strips const. 328 visit(const_cast<Function &>(F)); 329 verifySiblingFuncletUnwinds(); 330 InstsInThisBlock.clear(); 331 LandingPadResultTy = nullptr; 332 SawFrameEscape = false; 333 SiblingFuncletInfo.clear(); 334 335 return !Broken; 336 } 337 338 /// Verify the module that this instance of \c Verifier was initialized with. 339 bool verify() { 340 Broken = false; 341 342 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 343 for (const Function &F : M) 344 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 345 DeoptimizeDeclarations.push_back(&F); 346 347 // Now that we've visited every function, verify that we never asked to 348 // recover a frame index that wasn't escaped. 349 verifyFrameRecoverIndices(); 350 for (const GlobalVariable &GV : M.globals()) 351 visitGlobalVariable(GV); 352 353 for (const GlobalAlias &GA : M.aliases()) 354 visitGlobalAlias(GA); 355 356 for (const NamedMDNode &NMD : M.named_metadata()) 357 visitNamedMDNode(NMD); 358 359 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 360 visitComdat(SMEC.getValue()); 361 362 visitModuleFlags(M); 363 visitModuleIdents(M); 364 365 verifyCompileUnits(); 366 367 verifyDeoptimizeCallingConvs(); 368 369 return !Broken; 370 } 371 372 private: 373 // Verification methods... 374 void visitGlobalValue(const GlobalValue &GV); 375 void visitGlobalVariable(const GlobalVariable &GV); 376 void visitGlobalAlias(const GlobalAlias &GA); 377 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 378 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 379 const GlobalAlias &A, const Constant &C); 380 void visitNamedMDNode(const NamedMDNode &NMD); 381 void visitMDNode(const MDNode &MD); 382 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 383 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 384 void visitComdat(const Comdat &C); 385 void visitModuleIdents(const Module &M); 386 void visitModuleFlags(const Module &M); 387 void visitModuleFlag(const MDNode *Op, 388 DenseMap<const MDString *, const MDNode *> &SeenIDs, 389 SmallVectorImpl<const MDNode *> &Requirements); 390 void visitFunction(const Function &F); 391 void visitBasicBlock(BasicBlock &BB); 392 void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty); 393 void visitDereferenceableMetadata(Instruction& I, MDNode* MD); 394 395 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 396 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 397 #include "llvm/IR/Metadata.def" 398 void visitDIScope(const DIScope &N); 399 void visitDIVariable(const DIVariable &N); 400 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 401 void visitDITemplateParameter(const DITemplateParameter &N); 402 403 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 404 405 // InstVisitor overrides... 406 using InstVisitor<Verifier>::visit; 407 void visit(Instruction &I); 408 409 void visitTruncInst(TruncInst &I); 410 void visitZExtInst(ZExtInst &I); 411 void visitSExtInst(SExtInst &I); 412 void visitFPTruncInst(FPTruncInst &I); 413 void visitFPExtInst(FPExtInst &I); 414 void visitFPToUIInst(FPToUIInst &I); 415 void visitFPToSIInst(FPToSIInst &I); 416 void visitUIToFPInst(UIToFPInst &I); 417 void visitSIToFPInst(SIToFPInst &I); 418 void visitIntToPtrInst(IntToPtrInst &I); 419 void visitPtrToIntInst(PtrToIntInst &I); 420 void visitBitCastInst(BitCastInst &I); 421 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 422 void visitPHINode(PHINode &PN); 423 void visitBinaryOperator(BinaryOperator &B); 424 void visitICmpInst(ICmpInst &IC); 425 void visitFCmpInst(FCmpInst &FC); 426 void visitExtractElementInst(ExtractElementInst &EI); 427 void visitInsertElementInst(InsertElementInst &EI); 428 void visitShuffleVectorInst(ShuffleVectorInst &EI); 429 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 430 void visitCallInst(CallInst &CI); 431 void visitInvokeInst(InvokeInst &II); 432 void visitGetElementPtrInst(GetElementPtrInst &GEP); 433 void visitLoadInst(LoadInst &LI); 434 void visitStoreInst(StoreInst &SI); 435 void verifyDominatesUse(Instruction &I, unsigned i); 436 void visitInstruction(Instruction &I); 437 void visitTerminatorInst(TerminatorInst &I); 438 void visitBranchInst(BranchInst &BI); 439 void visitReturnInst(ReturnInst &RI); 440 void visitSwitchInst(SwitchInst &SI); 441 void visitIndirectBrInst(IndirectBrInst &BI); 442 void visitSelectInst(SelectInst &SI); 443 void visitUserOp1(Instruction &I); 444 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 445 void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS); 446 template <class DbgIntrinsicTy> 447 void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII); 448 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 449 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 450 void visitFenceInst(FenceInst &FI); 451 void visitAllocaInst(AllocaInst &AI); 452 void visitExtractValueInst(ExtractValueInst &EVI); 453 void visitInsertValueInst(InsertValueInst &IVI); 454 void visitEHPadPredecessors(Instruction &I); 455 void visitLandingPadInst(LandingPadInst &LPI); 456 void visitResumeInst(ResumeInst &RI); 457 void visitCatchPadInst(CatchPadInst &CPI); 458 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 459 void visitCleanupPadInst(CleanupPadInst &CPI); 460 void visitFuncletPadInst(FuncletPadInst &FPI); 461 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 462 void visitCleanupReturnInst(CleanupReturnInst &CRI); 463 464 void verifyCallSite(CallSite CS); 465 void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal); 466 void verifySwiftErrorValue(const Value *SwiftErrorVal); 467 void verifyMustTailCall(CallInst &CI); 468 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, 469 unsigned ArgNo, std::string &Suffix); 470 bool verifyAttributeCount(AttributeSet Attrs, unsigned Params); 471 void verifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction, 472 const Value *V); 473 void verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty, 474 bool isReturnValue, const Value *V); 475 void verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs, 476 const Value *V); 477 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 478 479 void visitConstantExprsRecursively(const Constant *EntryC); 480 void visitConstantExpr(const ConstantExpr *CE); 481 void verifyStatepoint(ImmutableCallSite CS); 482 void verifyFrameRecoverIndices(); 483 void verifySiblingFuncletUnwinds(); 484 485 void verifyBitPieceExpression(const DbgInfoIntrinsic &I); 486 487 /// Module-level debug info verification... 488 void verifyCompileUnits(); 489 490 /// Module-level verification that all @llvm.experimental.deoptimize 491 /// declarations share the same calling convention. 492 void verifyDeoptimizeCallingConvs(); 493 }; 494 495 } // end anonymous namespace 496 497 /// We know that cond should be true, if not print an error message. 498 #define Assert(C, ...) \ 499 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 500 501 /// We know that a debug info condition should be true, if not print 502 /// an error message. 503 #define AssertDI(C, ...) \ 504 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 505 506 void Verifier::visit(Instruction &I) { 507 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 508 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 509 InstVisitor<Verifier>::visit(I); 510 } 511 512 // Helper to recursively iterate over indirect users. By 513 // returning false, the callback can ask to stop recursing 514 // further. 515 static void forEachUser(const Value *User, 516 SmallPtrSet<const Value *, 32> &Visited, 517 llvm::function_ref<bool(const Value *)> Callback) { 518 if (!Visited.insert(User).second) 519 return; 520 for (const Value *TheNextUser : User->materialized_users()) 521 if (Callback(TheNextUser)) 522 forEachUser(TheNextUser, Visited, Callback); 523 } 524 525 void Verifier::visitGlobalValue(const GlobalValue &GV) { 526 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 527 "Global is external, but doesn't have external or weak linkage!", &GV); 528 529 Assert(GV.getAlignment() <= Value::MaximumAlignment, 530 "huge alignment values are unsupported", &GV); 531 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 532 "Only global variables can have appending linkage!", &GV); 533 534 if (GV.hasAppendingLinkage()) { 535 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 536 Assert(GVar && GVar->getValueType()->isArrayTy(), 537 "Only global arrays can have appending linkage!", GVar); 538 } 539 540 if (GV.isDeclarationForLinker()) 541 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 542 543 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 544 if (const Instruction *I = dyn_cast<Instruction>(V)) { 545 if (!I->getParent() || !I->getParent()->getParent()) 546 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 547 I); 548 else if (I->getParent()->getParent()->getParent() != &M) 549 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 550 I->getParent()->getParent(), 551 I->getParent()->getParent()->getParent()); 552 return false; 553 } else if (const Function *F = dyn_cast<Function>(V)) { 554 if (F->getParent() != &M) 555 CheckFailed("Global is used by function in a different module", &GV, &M, 556 F, F->getParent()); 557 return false; 558 } 559 return true; 560 }); 561 } 562 563 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 564 if (GV.hasInitializer()) { 565 Assert(GV.getInitializer()->getType() == GV.getValueType(), 566 "Global variable initializer type does not match global " 567 "variable type!", 568 &GV); 569 570 // If the global has common linkage, it must have a zero initializer and 571 // cannot be constant. 572 if (GV.hasCommonLinkage()) { 573 Assert(GV.getInitializer()->isNullValue(), 574 "'common' global must have a zero initializer!", &GV); 575 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 576 &GV); 577 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 578 } 579 } 580 581 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 582 GV.getName() == "llvm.global_dtors")) { 583 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 584 "invalid linkage for intrinsic global variable", &GV); 585 // Don't worry about emitting an error for it not being an array, 586 // visitGlobalValue will complain on appending non-array. 587 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 588 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 589 PointerType *FuncPtrTy = 590 FunctionType::get(Type::getVoidTy(Context), false)->getPointerTo(); 591 // FIXME: Reject the 2-field form in LLVM 4.0. 592 Assert(STy && 593 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 594 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 595 STy->getTypeAtIndex(1) == FuncPtrTy, 596 "wrong type for intrinsic global variable", &GV); 597 if (STy->getNumElements() == 3) { 598 Type *ETy = STy->getTypeAtIndex(2); 599 Assert(ETy->isPointerTy() && 600 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 601 "wrong type for intrinsic global variable", &GV); 602 } 603 } 604 } 605 606 if (GV.hasName() && (GV.getName() == "llvm.used" || 607 GV.getName() == "llvm.compiler.used")) { 608 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 609 "invalid linkage for intrinsic global variable", &GV); 610 Type *GVType = GV.getValueType(); 611 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 612 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 613 Assert(PTy, "wrong type for intrinsic global variable", &GV); 614 if (GV.hasInitializer()) { 615 const Constant *Init = GV.getInitializer(); 616 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 617 Assert(InitArray, "wrong initalizer for intrinsic global variable", 618 Init); 619 for (Value *Op : InitArray->operands()) { 620 Value *V = Op->stripPointerCastsNoFollowAliases(); 621 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 622 isa<GlobalAlias>(V), 623 "invalid llvm.used member", V); 624 Assert(V->hasName(), "members of llvm.used must be named", V); 625 } 626 } 627 } 628 } 629 630 Assert(!GV.hasDLLImportStorageClass() || 631 (GV.isDeclaration() && GV.hasExternalLinkage()) || 632 GV.hasAvailableExternallyLinkage(), 633 "Global is marked as dllimport, but not external", &GV); 634 635 if (!GV.hasInitializer()) { 636 visitGlobalValue(GV); 637 return; 638 } 639 640 // Walk any aggregate initializers looking for bitcasts between address spaces 641 visitConstantExprsRecursively(GV.getInitializer()); 642 643 visitGlobalValue(GV); 644 } 645 646 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 647 SmallPtrSet<const GlobalAlias*, 4> Visited; 648 Visited.insert(&GA); 649 visitAliaseeSubExpr(Visited, GA, C); 650 } 651 652 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 653 const GlobalAlias &GA, const Constant &C) { 654 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 655 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 656 &GA); 657 658 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 659 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 660 661 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 662 &GA); 663 } else { 664 // Only continue verifying subexpressions of GlobalAliases. 665 // Do not recurse into global initializers. 666 return; 667 } 668 } 669 670 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 671 visitConstantExprsRecursively(CE); 672 673 for (const Use &U : C.operands()) { 674 Value *V = &*U; 675 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 676 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 677 else if (const auto *C2 = dyn_cast<Constant>(V)) 678 visitAliaseeSubExpr(Visited, GA, *C2); 679 } 680 } 681 682 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 683 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 684 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 685 "weak_odr, or external linkage!", 686 &GA); 687 const Constant *Aliasee = GA.getAliasee(); 688 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 689 Assert(GA.getType() == Aliasee->getType(), 690 "Alias and aliasee types should match!", &GA); 691 692 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 693 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 694 695 visitAliaseeSubExpr(GA, *Aliasee); 696 697 visitGlobalValue(GA); 698 } 699 700 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 701 // There used to be various other llvm.dbg.* nodes, but we don't support 702 // upgrading them and we want to reserve the namespace for future uses. 703 if (NMD.getName().startswith("llvm.dbg.")) 704 AssertDI(NMD.getName() == "llvm.dbg.cu", 705 "unrecognized named metadata node in the llvm.dbg namespace", 706 &NMD); 707 for (const MDNode *MD : NMD.operands()) { 708 if (NMD.getName() == "llvm.dbg.cu") 709 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 710 711 if (!MD) 712 continue; 713 714 visitMDNode(*MD); 715 } 716 } 717 718 void Verifier::visitMDNode(const MDNode &MD) { 719 // Only visit each node once. Metadata can be mutually recursive, so this 720 // avoids infinite recursion here, as well as being an optimization. 721 if (!MDNodes.insert(&MD).second) 722 return; 723 724 switch (MD.getMetadataID()) { 725 default: 726 llvm_unreachable("Invalid MDNode subclass"); 727 case Metadata::MDTupleKind: 728 break; 729 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 730 case Metadata::CLASS##Kind: \ 731 visit##CLASS(cast<CLASS>(MD)); \ 732 break; 733 #include "llvm/IR/Metadata.def" 734 } 735 736 for (const Metadata *Op : MD.operands()) { 737 if (!Op) 738 continue; 739 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 740 &MD, Op); 741 if (auto *N = dyn_cast<MDNode>(Op)) { 742 visitMDNode(*N); 743 continue; 744 } 745 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 746 visitValueAsMetadata(*V, nullptr); 747 continue; 748 } 749 } 750 751 // Check these last, so we diagnose problems in operands first. 752 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 753 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 754 } 755 756 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 757 Assert(MD.getValue(), "Expected valid value", &MD); 758 Assert(!MD.getValue()->getType()->isMetadataTy(), 759 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 760 761 auto *L = dyn_cast<LocalAsMetadata>(&MD); 762 if (!L) 763 return; 764 765 Assert(F, "function-local metadata used outside a function", L); 766 767 // If this was an instruction, bb, or argument, verify that it is in the 768 // function that we expect. 769 Function *ActualF = nullptr; 770 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 771 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 772 ActualF = I->getParent()->getParent(); 773 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 774 ActualF = BB->getParent(); 775 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 776 ActualF = A->getParent(); 777 assert(ActualF && "Unimplemented function local metadata case!"); 778 779 Assert(ActualF == F, "function-local metadata used in wrong function", L); 780 } 781 782 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 783 Metadata *MD = MDV.getMetadata(); 784 if (auto *N = dyn_cast<MDNode>(MD)) { 785 visitMDNode(*N); 786 return; 787 } 788 789 // Only visit each node once. Metadata can be mutually recursive, so this 790 // avoids infinite recursion here, as well as being an optimization. 791 if (!MDNodes.insert(MD).second) 792 return; 793 794 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 795 visitValueAsMetadata(*V, F); 796 } 797 798 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 799 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 800 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 801 802 template <class Ty> 803 static bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) { 804 for (Metadata *MD : N.operands()) { 805 if (MD) { 806 if (!isa<Ty>(MD)) 807 return false; 808 } else { 809 if (!AllowNull) 810 return false; 811 } 812 } 813 return true; 814 } 815 816 template <class Ty> static bool isValidMetadataArray(const MDTuple &N) { 817 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false); 818 } 819 820 template <class Ty> static bool isValidMetadataNullArray(const MDTuple &N) { 821 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true); 822 } 823 824 void Verifier::visitDILocation(const DILocation &N) { 825 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 826 "location requires a valid scope", &N, N.getRawScope()); 827 if (auto *IA = N.getRawInlinedAt()) 828 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 829 } 830 831 void Verifier::visitGenericDINode(const GenericDINode &N) { 832 AssertDI(N.getTag(), "invalid tag", &N); 833 } 834 835 void Verifier::visitDIScope(const DIScope &N) { 836 if (auto *F = N.getRawFile()) 837 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 838 } 839 840 void Verifier::visitDISubrange(const DISubrange &N) { 841 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 842 AssertDI(N.getCount() >= -1, "invalid subrange count", &N); 843 } 844 845 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 846 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 847 } 848 849 void Verifier::visitDIBasicType(const DIBasicType &N) { 850 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 851 N.getTag() == dwarf::DW_TAG_unspecified_type, 852 "invalid tag", &N); 853 } 854 855 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 856 // Common scope checks. 857 visitDIScope(N); 858 859 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 860 N.getTag() == dwarf::DW_TAG_pointer_type || 861 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 862 N.getTag() == dwarf::DW_TAG_reference_type || 863 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 864 N.getTag() == dwarf::DW_TAG_const_type || 865 N.getTag() == dwarf::DW_TAG_volatile_type || 866 N.getTag() == dwarf::DW_TAG_restrict_type || 867 N.getTag() == dwarf::DW_TAG_member || 868 N.getTag() == dwarf::DW_TAG_inheritance || 869 N.getTag() == dwarf::DW_TAG_friend, 870 "invalid tag", &N); 871 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 872 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 873 N.getRawExtraData()); 874 } 875 876 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 877 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 878 N.getRawBaseType()); 879 } 880 881 static bool hasConflictingReferenceFlags(unsigned Flags) { 882 return (Flags & DINode::FlagLValueReference) && 883 (Flags & DINode::FlagRValueReference); 884 } 885 886 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 887 auto *Params = dyn_cast<MDTuple>(&RawParams); 888 AssertDI(Params, "invalid template params", &N, &RawParams); 889 for (Metadata *Op : Params->operands()) { 890 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 891 &N, Params, Op); 892 } 893 } 894 895 void Verifier::visitDICompositeType(const DICompositeType &N) { 896 // Common scope checks. 897 visitDIScope(N); 898 899 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 900 N.getTag() == dwarf::DW_TAG_structure_type || 901 N.getTag() == dwarf::DW_TAG_union_type || 902 N.getTag() == dwarf::DW_TAG_enumeration_type || 903 N.getTag() == dwarf::DW_TAG_class_type, 904 "invalid tag", &N); 905 906 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 907 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 908 N.getRawBaseType()); 909 910 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 911 "invalid composite elements", &N, N.getRawElements()); 912 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 913 N.getRawVTableHolder()); 914 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 915 "invalid reference flags", &N); 916 if (auto *Params = N.getRawTemplateParams()) 917 visitTemplateParams(N, *Params); 918 919 if (N.getTag() == dwarf::DW_TAG_class_type || 920 N.getTag() == dwarf::DW_TAG_union_type) { 921 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), 922 "class/union requires a filename", &N, N.getFile()); 923 } 924 } 925 926 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 927 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 928 if (auto *Types = N.getRawTypeArray()) { 929 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 930 for (Metadata *Ty : N.getTypeArray()->operands()) { 931 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 932 } 933 } 934 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 935 "invalid reference flags", &N); 936 } 937 938 void Verifier::visitDIFile(const DIFile &N) { 939 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 940 } 941 942 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 943 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 944 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 945 946 // Don't bother verifying the compilation directory or producer string 947 // as those could be empty. 948 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 949 N.getRawFile()); 950 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 951 N.getFile()); 952 953 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 954 "invalid emission kind", &N); 955 956 if (auto *Array = N.getRawEnumTypes()) { 957 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 958 for (Metadata *Op : N.getEnumTypes()->operands()) { 959 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 960 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 961 "invalid enum type", &N, N.getEnumTypes(), Op); 962 } 963 } 964 if (auto *Array = N.getRawRetainedTypes()) { 965 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 966 for (Metadata *Op : N.getRetainedTypes()->operands()) { 967 AssertDI(Op && (isa<DIType>(Op) || 968 (isa<DISubprogram>(Op) && 969 !cast<DISubprogram>(Op)->isDefinition())), 970 "invalid retained type", &N, Op); 971 } 972 } 973 if (auto *Array = N.getRawGlobalVariables()) { 974 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 975 for (Metadata *Op : N.getGlobalVariables()->operands()) { 976 AssertDI(Op && isa<DIGlobalVariable>(Op), "invalid global variable ref", 977 &N, Op); 978 } 979 } 980 if (auto *Array = N.getRawImportedEntities()) { 981 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 982 for (Metadata *Op : N.getImportedEntities()->operands()) { 983 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 984 &N, Op); 985 } 986 } 987 if (auto *Array = N.getRawMacros()) { 988 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 989 for (Metadata *Op : N.getMacros()->operands()) { 990 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 991 } 992 } 993 CUVisited.insert(&N); 994 } 995 996 void Verifier::visitDISubprogram(const DISubprogram &N) { 997 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 998 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 999 if (auto *F = N.getRawFile()) 1000 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1001 if (auto *T = N.getRawType()) 1002 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1003 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1004 N.getRawContainingType()); 1005 if (auto *Params = N.getRawTemplateParams()) 1006 visitTemplateParams(N, *Params); 1007 if (auto *S = N.getRawDeclaration()) 1008 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1009 "invalid subprogram declaration", &N, S); 1010 if (auto *RawVars = N.getRawVariables()) { 1011 auto *Vars = dyn_cast<MDTuple>(RawVars); 1012 AssertDI(Vars, "invalid variable list", &N, RawVars); 1013 for (Metadata *Op : Vars->operands()) { 1014 AssertDI(Op && isa<DILocalVariable>(Op), "invalid local variable", &N, 1015 Vars, Op); 1016 } 1017 } 1018 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1019 "invalid reference flags", &N); 1020 1021 auto *Unit = N.getRawUnit(); 1022 if (N.isDefinition()) { 1023 // Subprogram definitions (not part of the type hierarchy). 1024 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1025 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1026 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1027 } else { 1028 // Subprogram declarations (part of the type hierarchy). 1029 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1030 } 1031 } 1032 1033 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1034 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1035 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1036 "invalid local scope", &N, N.getRawScope()); 1037 } 1038 1039 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1040 visitDILexicalBlockBase(N); 1041 1042 AssertDI(N.getLine() || !N.getColumn(), 1043 "cannot have column info without line info", &N); 1044 } 1045 1046 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1047 visitDILexicalBlockBase(N); 1048 } 1049 1050 void Verifier::visitDINamespace(const DINamespace &N) { 1051 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1052 if (auto *S = N.getRawScope()) 1053 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1054 } 1055 1056 void Verifier::visitDIMacro(const DIMacro &N) { 1057 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1058 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1059 "invalid macinfo type", &N); 1060 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1061 if (!N.getValue().empty()) { 1062 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1063 } 1064 } 1065 1066 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1067 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1068 "invalid macinfo type", &N); 1069 if (auto *F = N.getRawFile()) 1070 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1071 1072 if (auto *Array = N.getRawElements()) { 1073 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1074 for (Metadata *Op : N.getElements()->operands()) { 1075 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1076 } 1077 } 1078 } 1079 1080 void Verifier::visitDIModule(const DIModule &N) { 1081 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1082 AssertDI(!N.getName().empty(), "anonymous module", &N); 1083 } 1084 1085 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1086 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1087 } 1088 1089 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1090 visitDITemplateParameter(N); 1091 1092 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1093 &N); 1094 } 1095 1096 void Verifier::visitDITemplateValueParameter( 1097 const DITemplateValueParameter &N) { 1098 visitDITemplateParameter(N); 1099 1100 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1101 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1102 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1103 "invalid tag", &N); 1104 } 1105 1106 void Verifier::visitDIVariable(const DIVariable &N) { 1107 if (auto *S = N.getRawScope()) 1108 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1109 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1110 if (auto *F = N.getRawFile()) 1111 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1112 } 1113 1114 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1115 // Checks common to all variables. 1116 visitDIVariable(N); 1117 1118 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1119 AssertDI(!N.getName().empty(), "missing global variable name", &N); 1120 if (auto *V = N.getRawExpr()) 1121 AssertDI(isa<DIExpression>(V), "invalid expression location", &N, V); 1122 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1123 AssertDI(isa<DIDerivedType>(Member), 1124 "invalid static data member declaration", &N, Member); 1125 } 1126 } 1127 1128 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1129 // Checks common to all variables. 1130 visitDIVariable(N); 1131 1132 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1133 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1134 "local variable requires a valid scope", &N, N.getRawScope()); 1135 } 1136 1137 void Verifier::visitDIExpression(const DIExpression &N) { 1138 AssertDI(N.isValid(), "invalid expression", &N); 1139 } 1140 1141 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1142 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1143 if (auto *T = N.getRawType()) 1144 AssertDI(isType(T), "invalid type ref", &N, T); 1145 if (auto *F = N.getRawFile()) 1146 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1147 } 1148 1149 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1150 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1151 N.getTag() == dwarf::DW_TAG_imported_declaration, 1152 "invalid tag", &N); 1153 if (auto *S = N.getRawScope()) 1154 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1155 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1156 N.getRawEntity()); 1157 } 1158 1159 void Verifier::visitComdat(const Comdat &C) { 1160 // The Module is invalid if the GlobalValue has private linkage. Entities 1161 // with private linkage don't have entries in the symbol table. 1162 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1163 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage", 1164 GV); 1165 } 1166 1167 void Verifier::visitModuleIdents(const Module &M) { 1168 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1169 if (!Idents) 1170 return; 1171 1172 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1173 // Scan each llvm.ident entry and make sure that this requirement is met. 1174 for (const MDNode *N : Idents->operands()) { 1175 Assert(N->getNumOperands() == 1, 1176 "incorrect number of operands in llvm.ident metadata", N); 1177 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1178 ("invalid value for llvm.ident metadata entry operand" 1179 "(the operand should be a string)"), 1180 N->getOperand(0)); 1181 } 1182 } 1183 1184 void Verifier::visitModuleFlags(const Module &M) { 1185 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1186 if (!Flags) return; 1187 1188 // Scan each flag, and track the flags and requirements. 1189 DenseMap<const MDString*, const MDNode*> SeenIDs; 1190 SmallVector<const MDNode*, 16> Requirements; 1191 for (const MDNode *MDN : Flags->operands()) 1192 visitModuleFlag(MDN, SeenIDs, Requirements); 1193 1194 // Validate that the requirements in the module are valid. 1195 for (const MDNode *Requirement : Requirements) { 1196 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1197 const Metadata *ReqValue = Requirement->getOperand(1); 1198 1199 const MDNode *Op = SeenIDs.lookup(Flag); 1200 if (!Op) { 1201 CheckFailed("invalid requirement on flag, flag is not present in module", 1202 Flag); 1203 continue; 1204 } 1205 1206 if (Op->getOperand(2) != ReqValue) { 1207 CheckFailed(("invalid requirement on flag, " 1208 "flag does not have the required value"), 1209 Flag); 1210 continue; 1211 } 1212 } 1213 } 1214 1215 void 1216 Verifier::visitModuleFlag(const MDNode *Op, 1217 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1218 SmallVectorImpl<const MDNode *> &Requirements) { 1219 // Each module flag should have three arguments, the merge behavior (a 1220 // constant int), the flag ID (an MDString), and the value. 1221 Assert(Op->getNumOperands() == 3, 1222 "incorrect number of operands in module flag", Op); 1223 Module::ModFlagBehavior MFB; 1224 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1225 Assert( 1226 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1227 "invalid behavior operand in module flag (expected constant integer)", 1228 Op->getOperand(0)); 1229 Assert(false, 1230 "invalid behavior operand in module flag (unexpected constant)", 1231 Op->getOperand(0)); 1232 } 1233 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1234 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1235 Op->getOperand(1)); 1236 1237 // Sanity check the values for behaviors with additional requirements. 1238 switch (MFB) { 1239 case Module::Error: 1240 case Module::Warning: 1241 case Module::Override: 1242 // These behavior types accept any value. 1243 break; 1244 1245 case Module::Require: { 1246 // The value should itself be an MDNode with two operands, a flag ID (an 1247 // MDString), and a value. 1248 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1249 Assert(Value && Value->getNumOperands() == 2, 1250 "invalid value for 'require' module flag (expected metadata pair)", 1251 Op->getOperand(2)); 1252 Assert(isa<MDString>(Value->getOperand(0)), 1253 ("invalid value for 'require' module flag " 1254 "(first value operand should be a string)"), 1255 Value->getOperand(0)); 1256 1257 // Append it to the list of requirements, to check once all module flags are 1258 // scanned. 1259 Requirements.push_back(Value); 1260 break; 1261 } 1262 1263 case Module::Append: 1264 case Module::AppendUnique: { 1265 // These behavior types require the operand be an MDNode. 1266 Assert(isa<MDNode>(Op->getOperand(2)), 1267 "invalid value for 'append'-type module flag " 1268 "(expected a metadata node)", 1269 Op->getOperand(2)); 1270 break; 1271 } 1272 } 1273 1274 // Unless this is a "requires" flag, check the ID is unique. 1275 if (MFB != Module::Require) { 1276 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1277 Assert(Inserted, 1278 "module flag identifiers must be unique (or of 'require' type)", ID); 1279 } 1280 } 1281 1282 void Verifier::verifyAttributeTypes(AttributeSet Attrs, unsigned Idx, 1283 bool isFunction, const Value *V) { 1284 unsigned Slot = ~0U; 1285 for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I) 1286 if (Attrs.getSlotIndex(I) == Idx) { 1287 Slot = I; 1288 break; 1289 } 1290 1291 assert(Slot != ~0U && "Attribute set inconsistency!"); 1292 1293 for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot); 1294 I != E; ++I) { 1295 if (I->isStringAttribute()) 1296 continue; 1297 1298 if (I->getKindAsEnum() == Attribute::NoReturn || 1299 I->getKindAsEnum() == Attribute::NoUnwind || 1300 I->getKindAsEnum() == Attribute::NoInline || 1301 I->getKindAsEnum() == Attribute::AlwaysInline || 1302 I->getKindAsEnum() == Attribute::OptimizeForSize || 1303 I->getKindAsEnum() == Attribute::StackProtect || 1304 I->getKindAsEnum() == Attribute::StackProtectReq || 1305 I->getKindAsEnum() == Attribute::StackProtectStrong || 1306 I->getKindAsEnum() == Attribute::SafeStack || 1307 I->getKindAsEnum() == Attribute::NoRedZone || 1308 I->getKindAsEnum() == Attribute::NoImplicitFloat || 1309 I->getKindAsEnum() == Attribute::Naked || 1310 I->getKindAsEnum() == Attribute::InlineHint || 1311 I->getKindAsEnum() == Attribute::StackAlignment || 1312 I->getKindAsEnum() == Attribute::UWTable || 1313 I->getKindAsEnum() == Attribute::NonLazyBind || 1314 I->getKindAsEnum() == Attribute::ReturnsTwice || 1315 I->getKindAsEnum() == Attribute::SanitizeAddress || 1316 I->getKindAsEnum() == Attribute::SanitizeThread || 1317 I->getKindAsEnum() == Attribute::SanitizeMemory || 1318 I->getKindAsEnum() == Attribute::MinSize || 1319 I->getKindAsEnum() == Attribute::NoDuplicate || 1320 I->getKindAsEnum() == Attribute::Builtin || 1321 I->getKindAsEnum() == Attribute::NoBuiltin || 1322 I->getKindAsEnum() == Attribute::Cold || 1323 I->getKindAsEnum() == Attribute::OptimizeNone || 1324 I->getKindAsEnum() == Attribute::JumpTable || 1325 I->getKindAsEnum() == Attribute::Convergent || 1326 I->getKindAsEnum() == Attribute::ArgMemOnly || 1327 I->getKindAsEnum() == Attribute::NoRecurse || 1328 I->getKindAsEnum() == Attribute::InaccessibleMemOnly || 1329 I->getKindAsEnum() == Attribute::InaccessibleMemOrArgMemOnly || 1330 I->getKindAsEnum() == Attribute::AllocSize) { 1331 if (!isFunction) { 1332 CheckFailed("Attribute '" + I->getAsString() + 1333 "' only applies to functions!", V); 1334 return; 1335 } 1336 } else if (I->getKindAsEnum() == Attribute::ReadOnly || 1337 I->getKindAsEnum() == Attribute::WriteOnly || 1338 I->getKindAsEnum() == Attribute::ReadNone) { 1339 if (Idx == 0) { 1340 CheckFailed("Attribute '" + I->getAsString() + 1341 "' does not apply to function returns"); 1342 return; 1343 } 1344 } else if (isFunction) { 1345 CheckFailed("Attribute '" + I->getAsString() + 1346 "' does not apply to functions!", V); 1347 return; 1348 } 1349 } 1350 } 1351 1352 // VerifyParameterAttrs - Check the given attributes for an argument or return 1353 // value of the specified type. The value V is printed in error messages. 1354 void Verifier::verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty, 1355 bool isReturnValue, const Value *V) { 1356 if (!Attrs.hasAttributes(Idx)) 1357 return; 1358 1359 verifyAttributeTypes(Attrs, Idx, false, V); 1360 1361 if (isReturnValue) 1362 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) && 1363 !Attrs.hasAttribute(Idx, Attribute::Nest) && 1364 !Attrs.hasAttribute(Idx, Attribute::StructRet) && 1365 !Attrs.hasAttribute(Idx, Attribute::NoCapture) && 1366 !Attrs.hasAttribute(Idx, Attribute::Returned) && 1367 !Attrs.hasAttribute(Idx, Attribute::InAlloca) && 1368 !Attrs.hasAttribute(Idx, Attribute::SwiftSelf) && 1369 !Attrs.hasAttribute(Idx, Attribute::SwiftError), 1370 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', " 1371 "'returned', 'swiftself', and 'swifterror' do not apply to return " 1372 "values!", 1373 V); 1374 1375 // Check for mutually incompatible attributes. Only inreg is compatible with 1376 // sret. 1377 unsigned AttrCount = 0; 1378 AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal); 1379 AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca); 1380 AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) || 1381 Attrs.hasAttribute(Idx, Attribute::InReg); 1382 AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest); 1383 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " 1384 "and 'sret' are incompatible!", 1385 V); 1386 1387 Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) && 1388 Attrs.hasAttribute(Idx, Attribute::ReadOnly)), 1389 "Attributes " 1390 "'inalloca and readonly' are incompatible!", 1391 V); 1392 1393 Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) && 1394 Attrs.hasAttribute(Idx, Attribute::Returned)), 1395 "Attributes " 1396 "'sret and returned' are incompatible!", 1397 V); 1398 1399 Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) && 1400 Attrs.hasAttribute(Idx, Attribute::SExt)), 1401 "Attributes " 1402 "'zeroext and signext' are incompatible!", 1403 V); 1404 1405 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) && 1406 Attrs.hasAttribute(Idx, Attribute::ReadOnly)), 1407 "Attributes " 1408 "'readnone and readonly' are incompatible!", 1409 V); 1410 1411 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) && 1412 Attrs.hasAttribute(Idx, Attribute::WriteOnly)), 1413 "Attributes " 1414 "'readnone and writeonly' are incompatible!", 1415 V); 1416 1417 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) && 1418 Attrs.hasAttribute(Idx, Attribute::WriteOnly)), 1419 "Attributes " 1420 "'readonly and writeonly' are incompatible!", 1421 V); 1422 1423 Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) && 1424 Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), 1425 "Attributes " 1426 "'noinline and alwaysinline' are incompatible!", 1427 V); 1428 1429 Assert( 1430 !AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::typeIncompatible(Ty)), 1431 "Wrong types for attribute: " + 1432 AttributeSet::get(Context, Idx, AttributeFuncs::typeIncompatible(Ty)) 1433 .getAsString(Idx), 1434 V); 1435 1436 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1437 SmallPtrSet<Type*, 4> Visited; 1438 if (!PTy->getElementType()->isSized(&Visited)) { 1439 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) && 1440 !Attrs.hasAttribute(Idx, Attribute::InAlloca), 1441 "Attributes 'byval' and 'inalloca' do not support unsized types!", 1442 V); 1443 } 1444 if (!isa<PointerType>(PTy->getElementType())) 1445 Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError), 1446 "Attribute 'swifterror' only applies to parameters " 1447 "with pointer to pointer type!", 1448 V); 1449 } else { 1450 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal), 1451 "Attribute 'byval' only applies to parameters with pointer type!", 1452 V); 1453 Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError), 1454 "Attribute 'swifterror' only applies to parameters " 1455 "with pointer type!", 1456 V); 1457 } 1458 } 1459 1460 // Check parameter attributes against a function type. 1461 // The value V is printed in error messages. 1462 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs, 1463 const Value *V) { 1464 if (Attrs.isEmpty()) 1465 return; 1466 1467 bool SawNest = false; 1468 bool SawReturned = false; 1469 bool SawSRet = false; 1470 bool SawSwiftSelf = false; 1471 bool SawSwiftError = false; 1472 1473 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { 1474 unsigned Idx = Attrs.getSlotIndex(i); 1475 1476 Type *Ty; 1477 if (Idx == 0) 1478 Ty = FT->getReturnType(); 1479 else if (Idx-1 < FT->getNumParams()) 1480 Ty = FT->getParamType(Idx-1); 1481 else 1482 break; // VarArgs attributes, verified elsewhere. 1483 1484 verifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V); 1485 1486 if (Idx == 0) 1487 continue; 1488 1489 if (Attrs.hasAttribute(Idx, Attribute::Nest)) { 1490 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1491 SawNest = true; 1492 } 1493 1494 if (Attrs.hasAttribute(Idx, Attribute::Returned)) { 1495 Assert(!SawReturned, "More than one parameter has attribute returned!", 1496 V); 1497 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1498 "Incompatible " 1499 "argument and return types for 'returned' attribute", 1500 V); 1501 SawReturned = true; 1502 } 1503 1504 if (Attrs.hasAttribute(Idx, Attribute::StructRet)) { 1505 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1506 Assert(Idx == 1 || Idx == 2, 1507 "Attribute 'sret' is not on first or second parameter!", V); 1508 SawSRet = true; 1509 } 1510 1511 if (Attrs.hasAttribute(Idx, Attribute::SwiftSelf)) { 1512 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1513 SawSwiftSelf = true; 1514 } 1515 1516 if (Attrs.hasAttribute(Idx, Attribute::SwiftError)) { 1517 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1518 V); 1519 SawSwiftError = true; 1520 } 1521 1522 if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) { 1523 Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!", 1524 V); 1525 } 1526 } 1527 1528 if (!Attrs.hasAttributes(AttributeSet::FunctionIndex)) 1529 return; 1530 1531 verifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V); 1532 1533 Assert( 1534 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) && 1535 Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)), 1536 "Attributes 'readnone and readonly' are incompatible!", V); 1537 1538 Assert( 1539 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) && 1540 Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::WriteOnly)), 1541 "Attributes 'readnone and writeonly' are incompatible!", V); 1542 1543 Assert( 1544 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly) && 1545 Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::WriteOnly)), 1546 "Attributes 'readonly and writeonly' are incompatible!", V); 1547 1548 Assert( 1549 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) && 1550 Attrs.hasAttribute(AttributeSet::FunctionIndex, 1551 Attribute::InaccessibleMemOrArgMemOnly)), 1552 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!", V); 1553 1554 Assert( 1555 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) && 1556 Attrs.hasAttribute(AttributeSet::FunctionIndex, 1557 Attribute::InaccessibleMemOnly)), 1558 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1559 1560 Assert( 1561 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) && 1562 Attrs.hasAttribute(AttributeSet::FunctionIndex, 1563 Attribute::AlwaysInline)), 1564 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1565 1566 if (Attrs.hasAttribute(AttributeSet::FunctionIndex, 1567 Attribute::OptimizeNone)) { 1568 Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline), 1569 "Attribute 'optnone' requires 'noinline'!", V); 1570 1571 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, 1572 Attribute::OptimizeForSize), 1573 "Attributes 'optsize and optnone' are incompatible!", V); 1574 1575 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize), 1576 "Attributes 'minsize and optnone' are incompatible!", V); 1577 } 1578 1579 if (Attrs.hasAttribute(AttributeSet::FunctionIndex, 1580 Attribute::JumpTable)) { 1581 const GlobalValue *GV = cast<GlobalValue>(V); 1582 Assert(GV->hasGlobalUnnamedAddr(), 1583 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1584 } 1585 1586 if (Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::AllocSize)) { 1587 std::pair<unsigned, Optional<unsigned>> Args = 1588 Attrs.getAllocSizeArgs(AttributeSet::FunctionIndex); 1589 1590 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1591 if (ParamNo >= FT->getNumParams()) { 1592 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1593 return false; 1594 } 1595 1596 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1597 CheckFailed("'allocsize' " + Name + 1598 " argument must refer to an integer parameter", 1599 V); 1600 return false; 1601 } 1602 1603 return true; 1604 }; 1605 1606 if (!CheckParam("element size", Args.first)) 1607 return; 1608 1609 if (Args.second && !CheckParam("number of elements", *Args.second)) 1610 return; 1611 } 1612 } 1613 1614 void Verifier::verifyFunctionMetadata( 1615 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 1616 for (const auto &Pair : MDs) { 1617 if (Pair.first == LLVMContext::MD_prof) { 1618 MDNode *MD = Pair.second; 1619 Assert(MD->getNumOperands() == 2, 1620 "!prof annotations should have exactly 2 operands", MD); 1621 1622 // Check first operand. 1623 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 1624 MD); 1625 Assert(isa<MDString>(MD->getOperand(0)), 1626 "expected string with name of the !prof annotation", MD); 1627 MDString *MDS = cast<MDString>(MD->getOperand(0)); 1628 StringRef ProfName = MDS->getString(); 1629 Assert(ProfName.equals("function_entry_count"), 1630 "first operand should be 'function_entry_count'", MD); 1631 1632 // Check second operand. 1633 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 1634 MD); 1635 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 1636 "expected integer argument to function_entry_count", MD); 1637 } 1638 } 1639 } 1640 1641 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 1642 if (!ConstantExprVisited.insert(EntryC).second) 1643 return; 1644 1645 SmallVector<const Constant *, 16> Stack; 1646 Stack.push_back(EntryC); 1647 1648 while (!Stack.empty()) { 1649 const Constant *C = Stack.pop_back_val(); 1650 1651 // Check this constant expression. 1652 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 1653 visitConstantExpr(CE); 1654 1655 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 1656 // Global Values get visited separately, but we do need to make sure 1657 // that the global value is in the correct module 1658 Assert(GV->getParent() == &M, "Referencing global in another module!", 1659 EntryC, &M, GV, GV->getParent()); 1660 continue; 1661 } 1662 1663 // Visit all sub-expressions. 1664 for (const Use &U : C->operands()) { 1665 const auto *OpC = dyn_cast<Constant>(U); 1666 if (!OpC) 1667 continue; 1668 if (!ConstantExprVisited.insert(OpC).second) 1669 continue; 1670 Stack.push_back(OpC); 1671 } 1672 } 1673 } 1674 1675 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 1676 if (CE->getOpcode() == Instruction::BitCast) 1677 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 1678 CE->getType()), 1679 "Invalid bitcast", CE); 1680 1681 if (CE->getOpcode() == Instruction::IntToPtr || 1682 CE->getOpcode() == Instruction::PtrToInt) { 1683 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 1684 ? CE->getType() 1685 : CE->getOperand(0)->getType(); 1686 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 1687 ? "inttoptr not supported for non-integral pointers" 1688 : "ptrtoint not supported for non-integral pointers"; 1689 Assert( 1690 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 1691 Msg); 1692 } 1693 } 1694 1695 bool Verifier::verifyAttributeCount(AttributeSet Attrs, unsigned Params) { 1696 if (Attrs.getNumSlots() == 0) 1697 return true; 1698 1699 unsigned LastSlot = Attrs.getNumSlots() - 1; 1700 unsigned LastIndex = Attrs.getSlotIndex(LastSlot); 1701 if (LastIndex <= Params 1702 || (LastIndex == AttributeSet::FunctionIndex 1703 && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params))) 1704 return true; 1705 1706 return false; 1707 } 1708 1709 /// Verify that statepoint intrinsic is well formed. 1710 void Verifier::verifyStatepoint(ImmutableCallSite CS) { 1711 assert(CS.getCalledFunction() && 1712 CS.getCalledFunction()->getIntrinsicID() == 1713 Intrinsic::experimental_gc_statepoint); 1714 1715 const Instruction &CI = *CS.getInstruction(); 1716 1717 Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() && 1718 !CS.onlyAccessesArgMemory(), 1719 "gc.statepoint must read and write all memory to preserve " 1720 "reordering restrictions required by safepoint semantics", 1721 &CI); 1722 1723 const Value *IDV = CS.getArgument(0); 1724 Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer", 1725 &CI); 1726 1727 const Value *NumPatchBytesV = CS.getArgument(1); 1728 Assert(isa<ConstantInt>(NumPatchBytesV), 1729 "gc.statepoint number of patchable bytes must be a constant integer", 1730 &CI); 1731 const int64_t NumPatchBytes = 1732 cast<ConstantInt>(NumPatchBytesV)->getSExtValue(); 1733 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 1734 Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be " 1735 "positive", 1736 &CI); 1737 1738 const Value *Target = CS.getArgument(2); 1739 auto *PT = dyn_cast<PointerType>(Target->getType()); 1740 Assert(PT && PT->getElementType()->isFunctionTy(), 1741 "gc.statepoint callee must be of function pointer type", &CI, Target); 1742 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 1743 1744 const Value *NumCallArgsV = CS.getArgument(3); 1745 Assert(isa<ConstantInt>(NumCallArgsV), 1746 "gc.statepoint number of arguments to underlying call " 1747 "must be constant integer", 1748 &CI); 1749 const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue(); 1750 Assert(NumCallArgs >= 0, 1751 "gc.statepoint number of arguments to underlying call " 1752 "must be positive", 1753 &CI); 1754 const int NumParams = (int)TargetFuncType->getNumParams(); 1755 if (TargetFuncType->isVarArg()) { 1756 Assert(NumCallArgs >= NumParams, 1757 "gc.statepoint mismatch in number of vararg call args", &CI); 1758 1759 // TODO: Remove this limitation 1760 Assert(TargetFuncType->getReturnType()->isVoidTy(), 1761 "gc.statepoint doesn't support wrapping non-void " 1762 "vararg functions yet", 1763 &CI); 1764 } else 1765 Assert(NumCallArgs == NumParams, 1766 "gc.statepoint mismatch in number of call args", &CI); 1767 1768 const Value *FlagsV = CS.getArgument(4); 1769 Assert(isa<ConstantInt>(FlagsV), 1770 "gc.statepoint flags must be constant integer", &CI); 1771 const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue(); 1772 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 1773 "unknown flag used in gc.statepoint flags argument", &CI); 1774 1775 // Verify that the types of the call parameter arguments match 1776 // the type of the wrapped callee. 1777 for (int i = 0; i < NumParams; i++) { 1778 Type *ParamType = TargetFuncType->getParamType(i); 1779 Type *ArgType = CS.getArgument(5 + i)->getType(); 1780 Assert(ArgType == ParamType, 1781 "gc.statepoint call argument does not match wrapped " 1782 "function type", 1783 &CI); 1784 } 1785 1786 const int EndCallArgsInx = 4 + NumCallArgs; 1787 1788 const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1); 1789 Assert(isa<ConstantInt>(NumTransitionArgsV), 1790 "gc.statepoint number of transition arguments " 1791 "must be constant integer", 1792 &CI); 1793 const int NumTransitionArgs = 1794 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 1795 Assert(NumTransitionArgs >= 0, 1796 "gc.statepoint number of transition arguments must be positive", &CI); 1797 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 1798 1799 const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1); 1800 Assert(isa<ConstantInt>(NumDeoptArgsV), 1801 "gc.statepoint number of deoptimization arguments " 1802 "must be constant integer", 1803 &CI); 1804 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 1805 Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments " 1806 "must be positive", 1807 &CI); 1808 1809 const int ExpectedNumArgs = 1810 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; 1811 Assert(ExpectedNumArgs <= (int)CS.arg_size(), 1812 "gc.statepoint too few arguments according to length fields", &CI); 1813 1814 // Check that the only uses of this gc.statepoint are gc.result or 1815 // gc.relocate calls which are tied to this statepoint and thus part 1816 // of the same statepoint sequence 1817 for (const User *U : CI.users()) { 1818 const CallInst *Call = dyn_cast<const CallInst>(U); 1819 Assert(Call, "illegal use of statepoint token", &CI, U); 1820 if (!Call) continue; 1821 Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call), 1822 "gc.result or gc.relocate are the only value uses " 1823 "of a gc.statepoint", 1824 &CI, U); 1825 if (isa<GCResultInst>(Call)) { 1826 Assert(Call->getArgOperand(0) == &CI, 1827 "gc.result connected to wrong gc.statepoint", &CI, Call); 1828 } else if (isa<GCRelocateInst>(Call)) { 1829 Assert(Call->getArgOperand(0) == &CI, 1830 "gc.relocate connected to wrong gc.statepoint", &CI, Call); 1831 } 1832 } 1833 1834 // Note: It is legal for a single derived pointer to be listed multiple 1835 // times. It's non-optimal, but it is legal. It can also happen after 1836 // insertion if we strip a bitcast away. 1837 // Note: It is really tempting to check that each base is relocated and 1838 // that a derived pointer is never reused as a base pointer. This turns 1839 // out to be problematic since optimizations run after safepoint insertion 1840 // can recognize equality properties that the insertion logic doesn't know 1841 // about. See example statepoint.ll in the verifier subdirectory 1842 } 1843 1844 void Verifier::verifyFrameRecoverIndices() { 1845 for (auto &Counts : FrameEscapeInfo) { 1846 Function *F = Counts.first; 1847 unsigned EscapedObjectCount = Counts.second.first; 1848 unsigned MaxRecoveredIndex = Counts.second.second; 1849 Assert(MaxRecoveredIndex <= EscapedObjectCount, 1850 "all indices passed to llvm.localrecover must be less than the " 1851 "number of arguments passed ot llvm.localescape in the parent " 1852 "function", 1853 F); 1854 } 1855 } 1856 1857 static Instruction *getSuccPad(TerminatorInst *Terminator) { 1858 BasicBlock *UnwindDest; 1859 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 1860 UnwindDest = II->getUnwindDest(); 1861 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 1862 UnwindDest = CSI->getUnwindDest(); 1863 else 1864 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 1865 return UnwindDest->getFirstNonPHI(); 1866 } 1867 1868 void Verifier::verifySiblingFuncletUnwinds() { 1869 SmallPtrSet<Instruction *, 8> Visited; 1870 SmallPtrSet<Instruction *, 8> Active; 1871 for (const auto &Pair : SiblingFuncletInfo) { 1872 Instruction *PredPad = Pair.first; 1873 if (Visited.count(PredPad)) 1874 continue; 1875 Active.insert(PredPad); 1876 TerminatorInst *Terminator = Pair.second; 1877 do { 1878 Instruction *SuccPad = getSuccPad(Terminator); 1879 if (Active.count(SuccPad)) { 1880 // Found a cycle; report error 1881 Instruction *CyclePad = SuccPad; 1882 SmallVector<Instruction *, 8> CycleNodes; 1883 do { 1884 CycleNodes.push_back(CyclePad); 1885 TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad]; 1886 if (CycleTerminator != CyclePad) 1887 CycleNodes.push_back(CycleTerminator); 1888 CyclePad = getSuccPad(CycleTerminator); 1889 } while (CyclePad != SuccPad); 1890 Assert(false, "EH pads can't handle each other's exceptions", 1891 ArrayRef<Instruction *>(CycleNodes)); 1892 } 1893 // Don't re-walk a node we've already checked 1894 if (!Visited.insert(SuccPad).second) 1895 break; 1896 // Walk to this successor if it has a map entry. 1897 PredPad = SuccPad; 1898 auto TermI = SiblingFuncletInfo.find(PredPad); 1899 if (TermI == SiblingFuncletInfo.end()) 1900 break; 1901 Terminator = TermI->second; 1902 Active.insert(PredPad); 1903 } while (true); 1904 // Each node only has one successor, so we've walked all the active 1905 // nodes' successors. 1906 Active.clear(); 1907 } 1908 } 1909 1910 // visitFunction - Verify that a function is ok. 1911 // 1912 void Verifier::visitFunction(const Function &F) { 1913 visitGlobalValue(F); 1914 1915 // Check function arguments. 1916 FunctionType *FT = F.getFunctionType(); 1917 unsigned NumArgs = F.arg_size(); 1918 1919 Assert(&Context == &F.getContext(), 1920 "Function context does not match Module context!", &F); 1921 1922 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 1923 Assert(FT->getNumParams() == NumArgs, 1924 "# formal arguments must match # of arguments for function type!", &F, 1925 FT); 1926 Assert(F.getReturnType()->isFirstClassType() || 1927 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 1928 "Functions cannot return aggregate values!", &F); 1929 1930 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 1931 "Invalid struct return type!", &F); 1932 1933 AttributeSet Attrs = F.getAttributes(); 1934 1935 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 1936 "Attribute after last parameter!", &F); 1937 1938 // Check function attributes. 1939 verifyFunctionAttrs(FT, Attrs, &F); 1940 1941 // On function declarations/definitions, we do not support the builtin 1942 // attribute. We do not check this in VerifyFunctionAttrs since that is 1943 // checking for Attributes that can/can not ever be on functions. 1944 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin), 1945 "Attribute 'builtin' can only be applied to a callsite.", &F); 1946 1947 // Check that this function meets the restrictions on this calling convention. 1948 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 1949 // restrictions can be lifted. 1950 switch (F.getCallingConv()) { 1951 default: 1952 case CallingConv::C: 1953 break; 1954 case CallingConv::Fast: 1955 case CallingConv::Cold: 1956 case CallingConv::Intel_OCL_BI: 1957 case CallingConv::PTX_Kernel: 1958 case CallingConv::PTX_Device: 1959 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 1960 "perfect forwarding!", 1961 &F); 1962 break; 1963 } 1964 1965 bool isLLVMdotName = F.getName().size() >= 5 && 1966 F.getName().substr(0, 5) == "llvm."; 1967 1968 // Check that the argument values match the function type for this function... 1969 unsigned i = 0; 1970 for (const Argument &Arg : F.args()) { 1971 Assert(Arg.getType() == FT->getParamType(i), 1972 "Argument value does not match function argument type!", &Arg, 1973 FT->getParamType(i)); 1974 Assert(Arg.getType()->isFirstClassType(), 1975 "Function arguments must have first-class types!", &Arg); 1976 if (!isLLVMdotName) { 1977 Assert(!Arg.getType()->isMetadataTy(), 1978 "Function takes metadata but isn't an intrinsic", &Arg, &F); 1979 Assert(!Arg.getType()->isTokenTy(), 1980 "Function takes token but isn't an intrinsic", &Arg, &F); 1981 } 1982 1983 // Check that swifterror argument is only used by loads and stores. 1984 if (Attrs.hasAttribute(i+1, Attribute::SwiftError)) { 1985 verifySwiftErrorValue(&Arg); 1986 } 1987 ++i; 1988 } 1989 1990 if (!isLLVMdotName) 1991 Assert(!F.getReturnType()->isTokenTy(), 1992 "Functions returns a token but isn't an intrinsic", &F); 1993 1994 // Get the function metadata attachments. 1995 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1996 F.getAllMetadata(MDs); 1997 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 1998 verifyFunctionMetadata(MDs); 1999 2000 // Check validity of the personality function 2001 if (F.hasPersonalityFn()) { 2002 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2003 if (Per) 2004 Assert(Per->getParent() == F.getParent(), 2005 "Referencing personality function in another module!", 2006 &F, F.getParent(), Per, Per->getParent()); 2007 } 2008 2009 if (F.isMaterializable()) { 2010 // Function has a body somewhere we can't see. 2011 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2012 MDs.empty() ? nullptr : MDs.front().second); 2013 } else if (F.isDeclaration()) { 2014 for (const auto &I : MDs) { 2015 AssertDI(I.first != LLVMContext::MD_dbg, 2016 "function declaration may not have a !dbg attachment", &F); 2017 Assert(I.first != LLVMContext::MD_prof, 2018 "function declaration may not have a !prof attachment", &F); 2019 2020 // Verify the metadata itself. 2021 visitMDNode(*I.second); 2022 } 2023 Assert(!F.hasPersonalityFn(), 2024 "Function declaration shouldn't have a personality routine", &F); 2025 } else { 2026 // Verify that this function (which has a body) is not named "llvm.*". It 2027 // is not legal to define intrinsics. 2028 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 2029 2030 // Check the entry node 2031 const BasicBlock *Entry = &F.getEntryBlock(); 2032 Assert(pred_empty(Entry), 2033 "Entry block to function must not have predecessors!", Entry); 2034 2035 // The address of the entry block cannot be taken, unless it is dead. 2036 if (Entry->hasAddressTaken()) { 2037 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2038 "blockaddress may not be used with the entry block!", Entry); 2039 } 2040 2041 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2042 // Visit metadata attachments. 2043 for (const auto &I : MDs) { 2044 // Verify that the attachment is legal. 2045 switch (I.first) { 2046 default: 2047 break; 2048 case LLVMContext::MD_dbg: 2049 ++NumDebugAttachments; 2050 AssertDI(NumDebugAttachments == 1, 2051 "function must have a single !dbg attachment", &F, I.second); 2052 AssertDI(isa<DISubprogram>(I.second), 2053 "function !dbg attachment must be a subprogram", &F, I.second); 2054 break; 2055 case LLVMContext::MD_prof: 2056 ++NumProfAttachments; 2057 Assert(NumProfAttachments == 1, 2058 "function must have a single !prof attachment", &F, I.second); 2059 break; 2060 } 2061 2062 // Verify the metadata itself. 2063 visitMDNode(*I.second); 2064 } 2065 } 2066 2067 // If this function is actually an intrinsic, verify that it is only used in 2068 // direct call/invokes, never having its "address taken". 2069 // Only do this if the module is materialized, otherwise we don't have all the 2070 // uses. 2071 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2072 const User *U; 2073 if (F.hasAddressTaken(&U)) 2074 Assert(false, "Invalid user of intrinsic instruction!", U); 2075 } 2076 2077 Assert(!F.hasDLLImportStorageClass() || 2078 (F.isDeclaration() && F.hasExternalLinkage()) || 2079 F.hasAvailableExternallyLinkage(), 2080 "Function is marked as dllimport, but not external.", &F); 2081 2082 auto *N = F.getSubprogram(); 2083 if (!N) 2084 return; 2085 2086 visitDISubprogram(*N); 2087 2088 // Check that all !dbg attachments lead to back to N (or, at least, another 2089 // subprogram that describes the same function). 2090 // 2091 // FIXME: Check this incrementally while visiting !dbg attachments. 2092 // FIXME: Only check when N is the canonical subprogram for F. 2093 SmallPtrSet<const MDNode *, 32> Seen; 2094 for (auto &BB : F) 2095 for (auto &I : BB) { 2096 // Be careful about using DILocation here since we might be dealing with 2097 // broken code (this is the Verifier after all). 2098 DILocation *DL = 2099 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode()); 2100 if (!DL) 2101 continue; 2102 if (!Seen.insert(DL).second) 2103 continue; 2104 2105 DILocalScope *Scope = DL->getInlinedAtScope(); 2106 if (Scope && !Seen.insert(Scope).second) 2107 continue; 2108 2109 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr; 2110 2111 // Scope and SP could be the same MDNode and we don't want to skip 2112 // validation in that case 2113 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2114 continue; 2115 2116 // FIXME: Once N is canonical, check "SP == &N". 2117 AssertDI(SP->describes(&F), 2118 "!dbg attachment points at wrong subprogram for function", N, &F, 2119 &I, DL, Scope, SP); 2120 } 2121 } 2122 2123 // verifyBasicBlock - Verify that a basic block is well formed... 2124 // 2125 void Verifier::visitBasicBlock(BasicBlock &BB) { 2126 InstsInThisBlock.clear(); 2127 2128 // Ensure that basic blocks have terminators! 2129 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2130 2131 // Check constraints that this basic block imposes on all of the PHI nodes in 2132 // it. 2133 if (isa<PHINode>(BB.front())) { 2134 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 2135 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2136 std::sort(Preds.begin(), Preds.end()); 2137 PHINode *PN; 2138 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) { 2139 // Ensure that PHI nodes have at least one entry! 2140 Assert(PN->getNumIncomingValues() != 0, 2141 "PHI nodes must have at least one entry. If the block is dead, " 2142 "the PHI should be removed!", 2143 PN); 2144 Assert(PN->getNumIncomingValues() == Preds.size(), 2145 "PHINode should have one entry for each predecessor of its " 2146 "parent basic block!", 2147 PN); 2148 2149 // Get and sort all incoming values in the PHI node... 2150 Values.clear(); 2151 Values.reserve(PN->getNumIncomingValues()); 2152 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 2153 Values.push_back(std::make_pair(PN->getIncomingBlock(i), 2154 PN->getIncomingValue(i))); 2155 std::sort(Values.begin(), Values.end()); 2156 2157 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2158 // Check to make sure that if there is more than one entry for a 2159 // particular basic block in this PHI node, that the incoming values are 2160 // all identical. 2161 // 2162 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2163 Values[i].second == Values[i - 1].second, 2164 "PHI node has multiple entries for the same basic block with " 2165 "different incoming values!", 2166 PN, Values[i].first, Values[i].second, Values[i - 1].second); 2167 2168 // Check to make sure that the predecessors and PHI node entries are 2169 // matched up. 2170 Assert(Values[i].first == Preds[i], 2171 "PHI node entries do not match predecessors!", PN, 2172 Values[i].first, Preds[i]); 2173 } 2174 } 2175 } 2176 2177 // Check that all instructions have their parent pointers set up correctly. 2178 for (auto &I : BB) 2179 { 2180 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2181 } 2182 } 2183 2184 void Verifier::visitTerminatorInst(TerminatorInst &I) { 2185 // Ensure that terminators only exist at the end of the basic block. 2186 Assert(&I == I.getParent()->getTerminator(), 2187 "Terminator found in the middle of a basic block!", I.getParent()); 2188 visitInstruction(I); 2189 } 2190 2191 void Verifier::visitBranchInst(BranchInst &BI) { 2192 if (BI.isConditional()) { 2193 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2194 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2195 } 2196 visitTerminatorInst(BI); 2197 } 2198 2199 void Verifier::visitReturnInst(ReturnInst &RI) { 2200 Function *F = RI.getParent()->getParent(); 2201 unsigned N = RI.getNumOperands(); 2202 if (F->getReturnType()->isVoidTy()) 2203 Assert(N == 0, 2204 "Found return instr that returns non-void in Function of void " 2205 "return type!", 2206 &RI, F->getReturnType()); 2207 else 2208 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2209 "Function return type does not match operand " 2210 "type of return inst!", 2211 &RI, F->getReturnType()); 2212 2213 // Check to make sure that the return value has necessary properties for 2214 // terminators... 2215 visitTerminatorInst(RI); 2216 } 2217 2218 void Verifier::visitSwitchInst(SwitchInst &SI) { 2219 // Check to make sure that all of the constants in the switch instruction 2220 // have the same type as the switched-on value. 2221 Type *SwitchTy = SI.getCondition()->getType(); 2222 SmallPtrSet<ConstantInt*, 32> Constants; 2223 for (auto &Case : SI.cases()) { 2224 Assert(Case.getCaseValue()->getType() == SwitchTy, 2225 "Switch constants must all be same type as switch value!", &SI); 2226 Assert(Constants.insert(Case.getCaseValue()).second, 2227 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2228 } 2229 2230 visitTerminatorInst(SI); 2231 } 2232 2233 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2234 Assert(BI.getAddress()->getType()->isPointerTy(), 2235 "Indirectbr operand must have pointer type!", &BI); 2236 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2237 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2238 "Indirectbr destinations must all have pointer type!", &BI); 2239 2240 visitTerminatorInst(BI); 2241 } 2242 2243 void Verifier::visitSelectInst(SelectInst &SI) { 2244 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2245 SI.getOperand(2)), 2246 "Invalid operands for select instruction!", &SI); 2247 2248 Assert(SI.getTrueValue()->getType() == SI.getType(), 2249 "Select values must have same type as select instruction!", &SI); 2250 visitInstruction(SI); 2251 } 2252 2253 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2254 /// a pass, if any exist, it's an error. 2255 /// 2256 void Verifier::visitUserOp1(Instruction &I) { 2257 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2258 } 2259 2260 void Verifier::visitTruncInst(TruncInst &I) { 2261 // Get the source and destination types 2262 Type *SrcTy = I.getOperand(0)->getType(); 2263 Type *DestTy = I.getType(); 2264 2265 // Get the size of the types in bits, we'll need this later 2266 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2267 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2268 2269 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2270 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2271 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2272 "trunc source and destination must both be a vector or neither", &I); 2273 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2274 2275 visitInstruction(I); 2276 } 2277 2278 void Verifier::visitZExtInst(ZExtInst &I) { 2279 // Get the source and destination types 2280 Type *SrcTy = I.getOperand(0)->getType(); 2281 Type *DestTy = I.getType(); 2282 2283 // Get the size of the types in bits, we'll need this later 2284 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2285 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2286 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2287 "zext source and destination must both be a vector or neither", &I); 2288 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2289 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2290 2291 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2292 2293 visitInstruction(I); 2294 } 2295 2296 void Verifier::visitSExtInst(SExtInst &I) { 2297 // Get the source and destination types 2298 Type *SrcTy = I.getOperand(0)->getType(); 2299 Type *DestTy = I.getType(); 2300 2301 // Get the size of the types in bits, we'll need this later 2302 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2303 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2304 2305 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2306 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2307 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2308 "sext source and destination must both be a vector or neither", &I); 2309 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2310 2311 visitInstruction(I); 2312 } 2313 2314 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2315 // Get the source and destination types 2316 Type *SrcTy = I.getOperand(0)->getType(); 2317 Type *DestTy = I.getType(); 2318 // Get the size of the types in bits, we'll need this later 2319 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2320 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2321 2322 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2323 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2324 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2325 "fptrunc source and destination must both be a vector or neither", &I); 2326 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2327 2328 visitInstruction(I); 2329 } 2330 2331 void Verifier::visitFPExtInst(FPExtInst &I) { 2332 // Get the source and destination types 2333 Type *SrcTy = I.getOperand(0)->getType(); 2334 Type *DestTy = I.getType(); 2335 2336 // Get the size of the types in bits, we'll need this later 2337 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2338 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2339 2340 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2341 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2342 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2343 "fpext source and destination must both be a vector or neither", &I); 2344 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2345 2346 visitInstruction(I); 2347 } 2348 2349 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2350 // Get the source and destination types 2351 Type *SrcTy = I.getOperand(0)->getType(); 2352 Type *DestTy = I.getType(); 2353 2354 bool SrcVec = SrcTy->isVectorTy(); 2355 bool DstVec = DestTy->isVectorTy(); 2356 2357 Assert(SrcVec == DstVec, 2358 "UIToFP source and dest must both be vector or scalar", &I); 2359 Assert(SrcTy->isIntOrIntVectorTy(), 2360 "UIToFP source must be integer or integer vector", &I); 2361 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2362 &I); 2363 2364 if (SrcVec && DstVec) 2365 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2366 cast<VectorType>(DestTy)->getNumElements(), 2367 "UIToFP source and dest vector length mismatch", &I); 2368 2369 visitInstruction(I); 2370 } 2371 2372 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2373 // Get the source and destination types 2374 Type *SrcTy = I.getOperand(0)->getType(); 2375 Type *DestTy = I.getType(); 2376 2377 bool SrcVec = SrcTy->isVectorTy(); 2378 bool DstVec = DestTy->isVectorTy(); 2379 2380 Assert(SrcVec == DstVec, 2381 "SIToFP source and dest must both be vector or scalar", &I); 2382 Assert(SrcTy->isIntOrIntVectorTy(), 2383 "SIToFP source must be integer or integer vector", &I); 2384 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2385 &I); 2386 2387 if (SrcVec && DstVec) 2388 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2389 cast<VectorType>(DestTy)->getNumElements(), 2390 "SIToFP source and dest vector length mismatch", &I); 2391 2392 visitInstruction(I); 2393 } 2394 2395 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2396 // Get the source and destination types 2397 Type *SrcTy = I.getOperand(0)->getType(); 2398 Type *DestTy = I.getType(); 2399 2400 bool SrcVec = SrcTy->isVectorTy(); 2401 bool DstVec = DestTy->isVectorTy(); 2402 2403 Assert(SrcVec == DstVec, 2404 "FPToUI source and dest must both be vector or scalar", &I); 2405 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2406 &I); 2407 Assert(DestTy->isIntOrIntVectorTy(), 2408 "FPToUI result must be integer or integer vector", &I); 2409 2410 if (SrcVec && DstVec) 2411 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2412 cast<VectorType>(DestTy)->getNumElements(), 2413 "FPToUI source and dest vector length mismatch", &I); 2414 2415 visitInstruction(I); 2416 } 2417 2418 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2419 // Get the source and destination types 2420 Type *SrcTy = I.getOperand(0)->getType(); 2421 Type *DestTy = I.getType(); 2422 2423 bool SrcVec = SrcTy->isVectorTy(); 2424 bool DstVec = DestTy->isVectorTy(); 2425 2426 Assert(SrcVec == DstVec, 2427 "FPToSI source and dest must both be vector or scalar", &I); 2428 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2429 &I); 2430 Assert(DestTy->isIntOrIntVectorTy(), 2431 "FPToSI result must be integer or integer vector", &I); 2432 2433 if (SrcVec && DstVec) 2434 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2435 cast<VectorType>(DestTy)->getNumElements(), 2436 "FPToSI source and dest vector length mismatch", &I); 2437 2438 visitInstruction(I); 2439 } 2440 2441 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2442 // Get the source and destination types 2443 Type *SrcTy = I.getOperand(0)->getType(); 2444 Type *DestTy = I.getType(); 2445 2446 Assert(SrcTy->getScalarType()->isPointerTy(), 2447 "PtrToInt source must be pointer", &I); 2448 2449 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 2450 Assert(!DL.isNonIntegralPointerType(PTy), 2451 "ptrtoint not supported for non-integral pointers"); 2452 2453 Assert(DestTy->getScalarType()->isIntegerTy(), 2454 "PtrToInt result must be integral", &I); 2455 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2456 &I); 2457 2458 if (SrcTy->isVectorTy()) { 2459 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 2460 VectorType *VDest = dyn_cast<VectorType>(DestTy); 2461 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2462 "PtrToInt Vector width mismatch", &I); 2463 } 2464 2465 visitInstruction(I); 2466 } 2467 2468 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2469 // Get the source and destination types 2470 Type *SrcTy = I.getOperand(0)->getType(); 2471 Type *DestTy = I.getType(); 2472 2473 Assert(SrcTy->getScalarType()->isIntegerTy(), 2474 "IntToPtr source must be an integral", &I); 2475 Assert(DestTy->getScalarType()->isPointerTy(), 2476 "IntToPtr result must be a pointer", &I); 2477 2478 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 2479 Assert(!DL.isNonIntegralPointerType(PTy), 2480 "inttoptr not supported for non-integral pointers"); 2481 2482 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2483 &I); 2484 if (SrcTy->isVectorTy()) { 2485 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 2486 VectorType *VDest = dyn_cast<VectorType>(DestTy); 2487 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2488 "IntToPtr Vector width mismatch", &I); 2489 } 2490 visitInstruction(I); 2491 } 2492 2493 void Verifier::visitBitCastInst(BitCastInst &I) { 2494 Assert( 2495 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2496 "Invalid bitcast", &I); 2497 visitInstruction(I); 2498 } 2499 2500 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2501 Type *SrcTy = I.getOperand(0)->getType(); 2502 Type *DestTy = I.getType(); 2503 2504 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2505 &I); 2506 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 2507 &I); 2508 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 2509 "AddrSpaceCast must be between different address spaces", &I); 2510 if (SrcTy->isVectorTy()) 2511 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), 2512 "AddrSpaceCast vector pointer number of elements mismatch", &I); 2513 visitInstruction(I); 2514 } 2515 2516 /// visitPHINode - Ensure that a PHI node is well formed. 2517 /// 2518 void Verifier::visitPHINode(PHINode &PN) { 2519 // Ensure that the PHI nodes are all grouped together at the top of the block. 2520 // This can be tested by checking whether the instruction before this is 2521 // either nonexistent (because this is begin()) or is a PHI node. If not, 2522 // then there is some other instruction before a PHI. 2523 Assert(&PN == &PN.getParent()->front() || 2524 isa<PHINode>(--BasicBlock::iterator(&PN)), 2525 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 2526 2527 // Check that a PHI doesn't yield a Token. 2528 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 2529 2530 // Check that all of the values of the PHI node have the same type as the 2531 // result, and that the incoming blocks are really basic blocks. 2532 for (Value *IncValue : PN.incoming_values()) { 2533 Assert(PN.getType() == IncValue->getType(), 2534 "PHI node operands are not the same type as the result!", &PN); 2535 } 2536 2537 // All other PHI node constraints are checked in the visitBasicBlock method. 2538 2539 visitInstruction(PN); 2540 } 2541 2542 void Verifier::verifyCallSite(CallSite CS) { 2543 Instruction *I = CS.getInstruction(); 2544 2545 Assert(CS.getCalledValue()->getType()->isPointerTy(), 2546 "Called function must be a pointer!", I); 2547 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType()); 2548 2549 Assert(FPTy->getElementType()->isFunctionTy(), 2550 "Called function is not pointer to function type!", I); 2551 2552 Assert(FPTy->getElementType() == CS.getFunctionType(), 2553 "Called function is not the same type as the call!", I); 2554 2555 FunctionType *FTy = CS.getFunctionType(); 2556 2557 // Verify that the correct number of arguments are being passed 2558 if (FTy->isVarArg()) 2559 Assert(CS.arg_size() >= FTy->getNumParams(), 2560 "Called function requires more parameters than were provided!", I); 2561 else 2562 Assert(CS.arg_size() == FTy->getNumParams(), 2563 "Incorrect number of arguments passed to called function!", I); 2564 2565 // Verify that all arguments to the call match the function type. 2566 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2567 Assert(CS.getArgument(i)->getType() == FTy->getParamType(i), 2568 "Call parameter type does not match function signature!", 2569 CS.getArgument(i), FTy->getParamType(i), I); 2570 2571 AttributeSet Attrs = CS.getAttributes(); 2572 2573 Assert(verifyAttributeCount(Attrs, CS.arg_size()), 2574 "Attribute after last parameter!", I); 2575 2576 // Verify call attributes. 2577 verifyFunctionAttrs(FTy, Attrs, I); 2578 2579 // Conservatively check the inalloca argument. 2580 // We have a bug if we can find that there is an underlying alloca without 2581 // inalloca. 2582 if (CS.hasInAllocaArgument()) { 2583 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1); 2584 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 2585 Assert(AI->isUsedWithInAlloca(), 2586 "inalloca argument for call has mismatched alloca", AI, I); 2587 } 2588 2589 // For each argument of the callsite, if it has the swifterror argument, 2590 // make sure the underlying alloca/parameter it comes from has a swifterror as 2591 // well. 2592 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2593 if (CS.paramHasAttr(i+1, Attribute::SwiftError)) { 2594 Value *SwiftErrorArg = CS.getArgument(i); 2595 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 2596 Assert(AI->isSwiftError(), 2597 "swifterror argument for call has mismatched alloca", AI, I); 2598 continue; 2599 } 2600 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 2601 Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I); 2602 Assert(ArgI->hasSwiftErrorAttr(), 2603 "swifterror argument for call has mismatched parameter", ArgI, I); 2604 } 2605 2606 if (FTy->isVarArg()) { 2607 // FIXME? is 'nest' even legal here? 2608 bool SawNest = false; 2609 bool SawReturned = false; 2610 2611 for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) { 2612 if (Attrs.hasAttribute(Idx, Attribute::Nest)) 2613 SawNest = true; 2614 if (Attrs.hasAttribute(Idx, Attribute::Returned)) 2615 SawReturned = true; 2616 } 2617 2618 // Check attributes on the varargs part. 2619 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) { 2620 Type *Ty = CS.getArgument(Idx-1)->getType(); 2621 verifyParameterAttrs(Attrs, Idx, Ty, false, I); 2622 2623 if (Attrs.hasAttribute(Idx, Attribute::Nest)) { 2624 Assert(!SawNest, "More than one parameter has attribute nest!", I); 2625 SawNest = true; 2626 } 2627 2628 if (Attrs.hasAttribute(Idx, Attribute::Returned)) { 2629 Assert(!SawReturned, "More than one parameter has attribute returned!", 2630 I); 2631 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 2632 "Incompatible argument and return types for 'returned' " 2633 "attribute", 2634 I); 2635 SawReturned = true; 2636 } 2637 2638 Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet), 2639 "Attribute 'sret' cannot be used for vararg call arguments!", I); 2640 2641 if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) 2642 Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I); 2643 } 2644 } 2645 2646 // Verify that there's no metadata unless it's a direct call to an intrinsic. 2647 if (CS.getCalledFunction() == nullptr || 2648 !CS.getCalledFunction()->getName().startswith("llvm.")) { 2649 for (Type *ParamTy : FTy->params()) { 2650 Assert(!ParamTy->isMetadataTy(), 2651 "Function has metadata parameter but isn't an intrinsic", I); 2652 Assert(!ParamTy->isTokenTy(), 2653 "Function has token parameter but isn't an intrinsic", I); 2654 } 2655 } 2656 2657 // Verify that indirect calls don't return tokens. 2658 if (CS.getCalledFunction() == nullptr) 2659 Assert(!FTy->getReturnType()->isTokenTy(), 2660 "Return type cannot be token for indirect call!"); 2661 2662 if (Function *F = CS.getCalledFunction()) 2663 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 2664 visitIntrinsicCallSite(ID, CS); 2665 2666 // Verify that a callsite has at most one "deopt", at most one "funclet" and 2667 // at most one "gc-transition" operand bundle. 2668 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 2669 FoundGCTransitionBundle = false; 2670 for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) { 2671 OperandBundleUse BU = CS.getOperandBundleAt(i); 2672 uint32_t Tag = BU.getTagID(); 2673 if (Tag == LLVMContext::OB_deopt) { 2674 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I); 2675 FoundDeoptBundle = true; 2676 } else if (Tag == LLVMContext::OB_gc_transition) { 2677 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 2678 I); 2679 FoundGCTransitionBundle = true; 2680 } else if (Tag == LLVMContext::OB_funclet) { 2681 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I); 2682 FoundFuncletBundle = true; 2683 Assert(BU.Inputs.size() == 1, 2684 "Expected exactly one funclet bundle operand", I); 2685 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 2686 "Funclet bundle operands should correspond to a FuncletPadInst", 2687 I); 2688 } 2689 } 2690 2691 // Verify that each inlinable callsite of a debug-info-bearing function in a 2692 // debug-info-bearing function has a debug location attached to it. Failure to 2693 // do so causes assertion failures when the inliner sets up inline scope info. 2694 if (I->getFunction()->getSubprogram() && CS.getCalledFunction() && 2695 CS.getCalledFunction()->getSubprogram()) 2696 Assert(I->getDebugLoc(), "inlinable function call in a function with debug " 2697 "info must have a !dbg location", 2698 I); 2699 2700 visitInstruction(*I); 2701 } 2702 2703 /// Two types are "congruent" if they are identical, or if they are both pointer 2704 /// types with different pointee types and the same address space. 2705 static bool isTypeCongruent(Type *L, Type *R) { 2706 if (L == R) 2707 return true; 2708 PointerType *PL = dyn_cast<PointerType>(L); 2709 PointerType *PR = dyn_cast<PointerType>(R); 2710 if (!PL || !PR) 2711 return false; 2712 return PL->getAddressSpace() == PR->getAddressSpace(); 2713 } 2714 2715 static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) { 2716 static const Attribute::AttrKind ABIAttrs[] = { 2717 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 2718 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf, 2719 Attribute::SwiftError}; 2720 AttrBuilder Copy; 2721 for (auto AK : ABIAttrs) { 2722 if (Attrs.hasAttribute(I + 1, AK)) 2723 Copy.addAttribute(AK); 2724 } 2725 if (Attrs.hasAttribute(I + 1, Attribute::Alignment)) 2726 Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1)); 2727 return Copy; 2728 } 2729 2730 void Verifier::verifyMustTailCall(CallInst &CI) { 2731 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 2732 2733 // - The caller and callee prototypes must match. Pointer types of 2734 // parameters or return types may differ in pointee type, but not 2735 // address space. 2736 Function *F = CI.getParent()->getParent(); 2737 FunctionType *CallerTy = F->getFunctionType(); 2738 FunctionType *CalleeTy = CI.getFunctionType(); 2739 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 2740 "cannot guarantee tail call due to mismatched parameter counts", &CI); 2741 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 2742 "cannot guarantee tail call due to mismatched varargs", &CI); 2743 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 2744 "cannot guarantee tail call due to mismatched return types", &CI); 2745 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 2746 Assert( 2747 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 2748 "cannot guarantee tail call due to mismatched parameter types", &CI); 2749 } 2750 2751 // - The calling conventions of the caller and callee must match. 2752 Assert(F->getCallingConv() == CI.getCallingConv(), 2753 "cannot guarantee tail call due to mismatched calling conv", &CI); 2754 2755 // - All ABI-impacting function attributes, such as sret, byval, inreg, 2756 // returned, and inalloca, must match. 2757 AttributeSet CallerAttrs = F->getAttributes(); 2758 AttributeSet CalleeAttrs = CI.getAttributes(); 2759 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 2760 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 2761 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 2762 Assert(CallerABIAttrs == CalleeABIAttrs, 2763 "cannot guarantee tail call due to mismatched ABI impacting " 2764 "function attributes", 2765 &CI, CI.getOperand(I)); 2766 } 2767 2768 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 2769 // or a pointer bitcast followed by a ret instruction. 2770 // - The ret instruction must return the (possibly bitcasted) value 2771 // produced by the call or void. 2772 Value *RetVal = &CI; 2773 Instruction *Next = CI.getNextNode(); 2774 2775 // Handle the optional bitcast. 2776 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 2777 Assert(BI->getOperand(0) == RetVal, 2778 "bitcast following musttail call must use the call", BI); 2779 RetVal = BI; 2780 Next = BI->getNextNode(); 2781 } 2782 2783 // Check the return. 2784 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 2785 Assert(Ret, "musttail call must be precede a ret with an optional bitcast", 2786 &CI); 2787 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 2788 "musttail call result must be returned", Ret); 2789 } 2790 2791 void Verifier::visitCallInst(CallInst &CI) { 2792 verifyCallSite(&CI); 2793 2794 if (CI.isMustTailCall()) 2795 verifyMustTailCall(CI); 2796 } 2797 2798 void Verifier::visitInvokeInst(InvokeInst &II) { 2799 verifyCallSite(&II); 2800 2801 // Verify that the first non-PHI instruction of the unwind destination is an 2802 // exception handling instruction. 2803 Assert( 2804 II.getUnwindDest()->isEHPad(), 2805 "The unwind destination does not have an exception handling instruction!", 2806 &II); 2807 2808 visitTerminatorInst(II); 2809 } 2810 2811 /// visitBinaryOperator - Check that both arguments to the binary operator are 2812 /// of the same type! 2813 /// 2814 void Verifier::visitBinaryOperator(BinaryOperator &B) { 2815 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 2816 "Both operands to a binary operator are not of the same type!", &B); 2817 2818 switch (B.getOpcode()) { 2819 // Check that integer arithmetic operators are only used with 2820 // integral operands. 2821 case Instruction::Add: 2822 case Instruction::Sub: 2823 case Instruction::Mul: 2824 case Instruction::SDiv: 2825 case Instruction::UDiv: 2826 case Instruction::SRem: 2827 case Instruction::URem: 2828 Assert(B.getType()->isIntOrIntVectorTy(), 2829 "Integer arithmetic operators only work with integral types!", &B); 2830 Assert(B.getType() == B.getOperand(0)->getType(), 2831 "Integer arithmetic operators must have same type " 2832 "for operands and result!", 2833 &B); 2834 break; 2835 // Check that floating-point arithmetic operators are only used with 2836 // floating-point operands. 2837 case Instruction::FAdd: 2838 case Instruction::FSub: 2839 case Instruction::FMul: 2840 case Instruction::FDiv: 2841 case Instruction::FRem: 2842 Assert(B.getType()->isFPOrFPVectorTy(), 2843 "Floating-point arithmetic operators only work with " 2844 "floating-point types!", 2845 &B); 2846 Assert(B.getType() == B.getOperand(0)->getType(), 2847 "Floating-point arithmetic operators must have same type " 2848 "for operands and result!", 2849 &B); 2850 break; 2851 // Check that logical operators are only used with integral operands. 2852 case Instruction::And: 2853 case Instruction::Or: 2854 case Instruction::Xor: 2855 Assert(B.getType()->isIntOrIntVectorTy(), 2856 "Logical operators only work with integral types!", &B); 2857 Assert(B.getType() == B.getOperand(0)->getType(), 2858 "Logical operators must have same type for operands and result!", 2859 &B); 2860 break; 2861 case Instruction::Shl: 2862 case Instruction::LShr: 2863 case Instruction::AShr: 2864 Assert(B.getType()->isIntOrIntVectorTy(), 2865 "Shifts only work with integral types!", &B); 2866 Assert(B.getType() == B.getOperand(0)->getType(), 2867 "Shift return type must be same as operands!", &B); 2868 break; 2869 default: 2870 llvm_unreachable("Unknown BinaryOperator opcode!"); 2871 } 2872 2873 visitInstruction(B); 2874 } 2875 2876 void Verifier::visitICmpInst(ICmpInst &IC) { 2877 // Check that the operands are the same type 2878 Type *Op0Ty = IC.getOperand(0)->getType(); 2879 Type *Op1Ty = IC.getOperand(1)->getType(); 2880 Assert(Op0Ty == Op1Ty, 2881 "Both operands to ICmp instruction are not of the same type!", &IC); 2882 // Check that the operands are the right type 2883 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(), 2884 "Invalid operand types for ICmp instruction", &IC); 2885 // Check that the predicate is valid. 2886 Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE && 2887 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE, 2888 "Invalid predicate in ICmp instruction!", &IC); 2889 2890 visitInstruction(IC); 2891 } 2892 2893 void Verifier::visitFCmpInst(FCmpInst &FC) { 2894 // Check that the operands are the same type 2895 Type *Op0Ty = FC.getOperand(0)->getType(); 2896 Type *Op1Ty = FC.getOperand(1)->getType(); 2897 Assert(Op0Ty == Op1Ty, 2898 "Both operands to FCmp instruction are not of the same type!", &FC); 2899 // Check that the operands are the right type 2900 Assert(Op0Ty->isFPOrFPVectorTy(), 2901 "Invalid operand types for FCmp instruction", &FC); 2902 // Check that the predicate is valid. 2903 Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE && 2904 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE, 2905 "Invalid predicate in FCmp instruction!", &FC); 2906 2907 visitInstruction(FC); 2908 } 2909 2910 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 2911 Assert( 2912 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 2913 "Invalid extractelement operands!", &EI); 2914 visitInstruction(EI); 2915 } 2916 2917 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 2918 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 2919 IE.getOperand(2)), 2920 "Invalid insertelement operands!", &IE); 2921 visitInstruction(IE); 2922 } 2923 2924 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 2925 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 2926 SV.getOperand(2)), 2927 "Invalid shufflevector operands!", &SV); 2928 visitInstruction(SV); 2929 } 2930 2931 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 2932 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 2933 2934 Assert(isa<PointerType>(TargetTy), 2935 "GEP base pointer is not a vector or a vector of pointers", &GEP); 2936 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 2937 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 2938 Type *ElTy = 2939 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 2940 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 2941 2942 Assert(GEP.getType()->getScalarType()->isPointerTy() && 2943 GEP.getResultElementType() == ElTy, 2944 "GEP is not of right type for indices!", &GEP, ElTy); 2945 2946 if (GEP.getType()->isVectorTy()) { 2947 // Additional checks for vector GEPs. 2948 unsigned GEPWidth = GEP.getType()->getVectorNumElements(); 2949 if (GEP.getPointerOperandType()->isVectorTy()) 2950 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(), 2951 "Vector GEP result width doesn't match operand's", &GEP); 2952 for (Value *Idx : Idxs) { 2953 Type *IndexTy = Idx->getType(); 2954 if (IndexTy->isVectorTy()) { 2955 unsigned IndexWidth = IndexTy->getVectorNumElements(); 2956 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 2957 } 2958 Assert(IndexTy->getScalarType()->isIntegerTy(), 2959 "All GEP indices should be of integer type"); 2960 } 2961 } 2962 visitInstruction(GEP); 2963 } 2964 2965 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 2966 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 2967 } 2968 2969 void Verifier::visitRangeMetadata(Instruction& I, 2970 MDNode* Range, Type* Ty) { 2971 assert(Range && 2972 Range == I.getMetadata(LLVMContext::MD_range) && 2973 "precondition violation"); 2974 2975 unsigned NumOperands = Range->getNumOperands(); 2976 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 2977 unsigned NumRanges = NumOperands / 2; 2978 Assert(NumRanges >= 1, "It should have at least one range!", Range); 2979 2980 ConstantRange LastRange(1); // Dummy initial value 2981 for (unsigned i = 0; i < NumRanges; ++i) { 2982 ConstantInt *Low = 2983 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 2984 Assert(Low, "The lower limit must be an integer!", Low); 2985 ConstantInt *High = 2986 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 2987 Assert(High, "The upper limit must be an integer!", High); 2988 Assert(High->getType() == Low->getType() && High->getType() == Ty, 2989 "Range types must match instruction type!", &I); 2990 2991 APInt HighV = High->getValue(); 2992 APInt LowV = Low->getValue(); 2993 ConstantRange CurRange(LowV, HighV); 2994 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 2995 "Range must not be empty!", Range); 2996 if (i != 0) { 2997 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 2998 "Intervals are overlapping", Range); 2999 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3000 Range); 3001 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3002 Range); 3003 } 3004 LastRange = ConstantRange(LowV, HighV); 3005 } 3006 if (NumRanges > 2) { 3007 APInt FirstLow = 3008 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3009 APInt FirstHigh = 3010 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3011 ConstantRange FirstRange(FirstLow, FirstHigh); 3012 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3013 "Intervals are overlapping", Range); 3014 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3015 Range); 3016 } 3017 } 3018 3019 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3020 unsigned Size = DL.getTypeSizeInBits(Ty); 3021 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3022 Assert(!(Size & (Size - 1)), 3023 "atomic memory access' operand must have a power-of-two size", Ty, I); 3024 } 3025 3026 void Verifier::visitLoadInst(LoadInst &LI) { 3027 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3028 Assert(PTy, "Load operand must be a pointer.", &LI); 3029 Type *ElTy = LI.getType(); 3030 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3031 "huge alignment values are unsupported", &LI); 3032 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3033 if (LI.isAtomic()) { 3034 Assert(LI.getOrdering() != AtomicOrdering::Release && 3035 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3036 "Load cannot have Release ordering", &LI); 3037 Assert(LI.getAlignment() != 0, 3038 "Atomic load must specify explicit alignment", &LI); 3039 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() || 3040 ElTy->isFloatingPointTy(), 3041 "atomic load operand must have integer, pointer, or floating point " 3042 "type!", 3043 ElTy, &LI); 3044 checkAtomicMemAccessSize(ElTy, &LI); 3045 } else { 3046 Assert(LI.getSynchScope() == CrossThread, 3047 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3048 } 3049 3050 visitInstruction(LI); 3051 } 3052 3053 void Verifier::visitStoreInst(StoreInst &SI) { 3054 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3055 Assert(PTy, "Store operand must be a pointer.", &SI); 3056 Type *ElTy = PTy->getElementType(); 3057 Assert(ElTy == SI.getOperand(0)->getType(), 3058 "Stored value type does not match pointer operand type!", &SI, ElTy); 3059 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3060 "huge alignment values are unsupported", &SI); 3061 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3062 if (SI.isAtomic()) { 3063 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3064 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3065 "Store cannot have Acquire ordering", &SI); 3066 Assert(SI.getAlignment() != 0, 3067 "Atomic store must specify explicit alignment", &SI); 3068 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() || 3069 ElTy->isFloatingPointTy(), 3070 "atomic store operand must have integer, pointer, or floating point " 3071 "type!", 3072 ElTy, &SI); 3073 checkAtomicMemAccessSize(ElTy, &SI); 3074 } else { 3075 Assert(SI.getSynchScope() == CrossThread, 3076 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3077 } 3078 visitInstruction(SI); 3079 } 3080 3081 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3082 void Verifier::verifySwiftErrorCallSite(CallSite CS, 3083 const Value *SwiftErrorVal) { 3084 unsigned Idx = 0; 3085 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); 3086 I != E; ++I, ++Idx) { 3087 if (*I == SwiftErrorVal) { 3088 Assert(CS.paramHasAttr(Idx+1, Attribute::SwiftError), 3089 "swifterror value when used in a callsite should be marked " 3090 "with swifterror attribute", 3091 SwiftErrorVal, CS); 3092 } 3093 } 3094 } 3095 3096 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3097 // Check that swifterror value is only used by loads, stores, or as 3098 // a swifterror argument. 3099 for (const User *U : SwiftErrorVal->users()) { 3100 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3101 isa<InvokeInst>(U), 3102 "swifterror value can only be loaded and stored from, or " 3103 "as a swifterror argument!", 3104 SwiftErrorVal, U); 3105 // If it is used by a store, check it is the second operand. 3106 if (auto StoreI = dyn_cast<StoreInst>(U)) 3107 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3108 "swifterror value should be the second operand when used " 3109 "by stores", SwiftErrorVal, U); 3110 if (auto CallI = dyn_cast<CallInst>(U)) 3111 verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal); 3112 if (auto II = dyn_cast<InvokeInst>(U)) 3113 verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal); 3114 } 3115 } 3116 3117 void Verifier::visitAllocaInst(AllocaInst &AI) { 3118 SmallPtrSet<Type*, 4> Visited; 3119 PointerType *PTy = AI.getType(); 3120 Assert(PTy->getAddressSpace() == 0, 3121 "Allocation instruction pointer not in the generic address space!", 3122 &AI); 3123 Assert(AI.getAllocatedType()->isSized(&Visited), 3124 "Cannot allocate unsized type", &AI); 3125 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3126 "Alloca array size must have integer type", &AI); 3127 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3128 "huge alignment values are unsupported", &AI); 3129 3130 if (AI.isSwiftError()) { 3131 verifySwiftErrorValue(&AI); 3132 } 3133 3134 visitInstruction(AI); 3135 } 3136 3137 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3138 3139 // FIXME: more conditions??? 3140 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 3141 "cmpxchg instructions must be atomic.", &CXI); 3142 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 3143 "cmpxchg instructions must be atomic.", &CXI); 3144 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 3145 "cmpxchg instructions cannot be unordered.", &CXI); 3146 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 3147 "cmpxchg instructions cannot be unordered.", &CXI); 3148 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 3149 "cmpxchg instructions failure argument shall be no stronger than the " 3150 "success argument", 3151 &CXI); 3152 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 3153 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 3154 "cmpxchg failure ordering cannot include release semantics", &CXI); 3155 3156 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 3157 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 3158 Type *ElTy = PTy->getElementType(); 3159 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(), 3160 "cmpxchg operand must have integer or pointer type", 3161 ElTy, &CXI); 3162 checkAtomicMemAccessSize(ElTy, &CXI); 3163 Assert(ElTy == CXI.getOperand(1)->getType(), 3164 "Expected value type does not match pointer operand type!", &CXI, 3165 ElTy); 3166 Assert(ElTy == CXI.getOperand(2)->getType(), 3167 "Stored value type does not match pointer operand type!", &CXI, ElTy); 3168 visitInstruction(CXI); 3169 } 3170 3171 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3172 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 3173 "atomicrmw instructions must be atomic.", &RMWI); 3174 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3175 "atomicrmw instructions cannot be unordered.", &RMWI); 3176 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 3177 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 3178 Type *ElTy = PTy->getElementType(); 3179 Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!", 3180 &RMWI, ElTy); 3181 checkAtomicMemAccessSize(ElTy, &RMWI); 3182 Assert(ElTy == RMWI.getOperand(1)->getType(), 3183 "Argument value type does not match pointer operand type!", &RMWI, 3184 ElTy); 3185 Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() && 3186 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP, 3187 "Invalid binary operation!", &RMWI); 3188 visitInstruction(RMWI); 3189 } 3190 3191 void Verifier::visitFenceInst(FenceInst &FI) { 3192 const AtomicOrdering Ordering = FI.getOrdering(); 3193 Assert(Ordering == AtomicOrdering::Acquire || 3194 Ordering == AtomicOrdering::Release || 3195 Ordering == AtomicOrdering::AcquireRelease || 3196 Ordering == AtomicOrdering::SequentiallyConsistent, 3197 "fence instructions may only have acquire, release, acq_rel, or " 3198 "seq_cst ordering.", 3199 &FI); 3200 visitInstruction(FI); 3201 } 3202 3203 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3204 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3205 EVI.getIndices()) == EVI.getType(), 3206 "Invalid ExtractValueInst operands!", &EVI); 3207 3208 visitInstruction(EVI); 3209 } 3210 3211 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3212 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3213 IVI.getIndices()) == 3214 IVI.getOperand(1)->getType(), 3215 "Invalid InsertValueInst operands!", &IVI); 3216 3217 visitInstruction(IVI); 3218 } 3219 3220 static Value *getParentPad(Value *EHPad) { 3221 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3222 return FPI->getParentPad(); 3223 3224 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3225 } 3226 3227 void Verifier::visitEHPadPredecessors(Instruction &I) { 3228 assert(I.isEHPad()); 3229 3230 BasicBlock *BB = I.getParent(); 3231 Function *F = BB->getParent(); 3232 3233 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3234 3235 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3236 // The landingpad instruction defines its parent as a landing pad block. The 3237 // landing pad block may be branched to only by the unwind edge of an 3238 // invoke. 3239 for (BasicBlock *PredBB : predecessors(BB)) { 3240 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3241 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3242 "Block containing LandingPadInst must be jumped to " 3243 "only by the unwind edge of an invoke.", 3244 LPI); 3245 } 3246 return; 3247 } 3248 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3249 if (!pred_empty(BB)) 3250 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3251 "Block containg CatchPadInst must be jumped to " 3252 "only by its catchswitch.", 3253 CPI); 3254 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3255 "Catchswitch cannot unwind to one of its catchpads", 3256 CPI->getCatchSwitch(), CPI); 3257 return; 3258 } 3259 3260 // Verify that each pred has a legal terminator with a legal to/from EH 3261 // pad relationship. 3262 Instruction *ToPad = &I; 3263 Value *ToPadParent = getParentPad(ToPad); 3264 for (BasicBlock *PredBB : predecessors(BB)) { 3265 TerminatorInst *TI = PredBB->getTerminator(); 3266 Value *FromPad; 3267 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3268 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3269 "EH pad must be jumped to via an unwind edge", ToPad, II); 3270 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3271 FromPad = Bundle->Inputs[0]; 3272 else 3273 FromPad = ConstantTokenNone::get(II->getContext()); 3274 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3275 FromPad = CRI->getOperand(0); 3276 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3277 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3278 FromPad = CSI; 3279 } else { 3280 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3281 } 3282 3283 // The edge may exit from zero or more nested pads. 3284 SmallSet<Value *, 8> Seen; 3285 for (;; FromPad = getParentPad(FromPad)) { 3286 Assert(FromPad != ToPad, 3287 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3288 if (FromPad == ToPadParent) { 3289 // This is a legal unwind edge. 3290 break; 3291 } 3292 Assert(!isa<ConstantTokenNone>(FromPad), 3293 "A single unwind edge may only enter one EH pad", TI); 3294 Assert(Seen.insert(FromPad).second, 3295 "EH pad jumps through a cycle of pads", FromPad); 3296 } 3297 } 3298 } 3299 3300 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3301 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3302 // isn't a cleanup. 3303 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3304 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3305 3306 visitEHPadPredecessors(LPI); 3307 3308 if (!LandingPadResultTy) 3309 LandingPadResultTy = LPI.getType(); 3310 else 3311 Assert(LandingPadResultTy == LPI.getType(), 3312 "The landingpad instruction should have a consistent result type " 3313 "inside a function.", 3314 &LPI); 3315 3316 Function *F = LPI.getParent()->getParent(); 3317 Assert(F->hasPersonalityFn(), 3318 "LandingPadInst needs to be in a function with a personality.", &LPI); 3319 3320 // The landingpad instruction must be the first non-PHI instruction in the 3321 // block. 3322 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3323 "LandingPadInst not the first non-PHI instruction in the block.", 3324 &LPI); 3325 3326 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3327 Constant *Clause = LPI.getClause(i); 3328 if (LPI.isCatch(i)) { 3329 Assert(isa<PointerType>(Clause->getType()), 3330 "Catch operand does not have pointer type!", &LPI); 3331 } else { 3332 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3333 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3334 "Filter operand is not an array of constants!", &LPI); 3335 } 3336 } 3337 3338 visitInstruction(LPI); 3339 } 3340 3341 void Verifier::visitResumeInst(ResumeInst &RI) { 3342 Assert(RI.getFunction()->hasPersonalityFn(), 3343 "ResumeInst needs to be in a function with a personality.", &RI); 3344 3345 if (!LandingPadResultTy) 3346 LandingPadResultTy = RI.getValue()->getType(); 3347 else 3348 Assert(LandingPadResultTy == RI.getValue()->getType(), 3349 "The resume instruction should have a consistent result type " 3350 "inside a function.", 3351 &RI); 3352 3353 visitTerminatorInst(RI); 3354 } 3355 3356 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3357 BasicBlock *BB = CPI.getParent(); 3358 3359 Function *F = BB->getParent(); 3360 Assert(F->hasPersonalityFn(), 3361 "CatchPadInst needs to be in a function with a personality.", &CPI); 3362 3363 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 3364 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 3365 CPI.getParentPad()); 3366 3367 // The catchpad instruction must be the first non-PHI instruction in the 3368 // block. 3369 Assert(BB->getFirstNonPHI() == &CPI, 3370 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 3371 3372 visitEHPadPredecessors(CPI); 3373 visitFuncletPadInst(CPI); 3374 } 3375 3376 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 3377 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 3378 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 3379 CatchReturn.getOperand(0)); 3380 3381 visitTerminatorInst(CatchReturn); 3382 } 3383 3384 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 3385 BasicBlock *BB = CPI.getParent(); 3386 3387 Function *F = BB->getParent(); 3388 Assert(F->hasPersonalityFn(), 3389 "CleanupPadInst needs to be in a function with a personality.", &CPI); 3390 3391 // The cleanuppad instruction must be the first non-PHI instruction in the 3392 // block. 3393 Assert(BB->getFirstNonPHI() == &CPI, 3394 "CleanupPadInst not the first non-PHI instruction in the block.", 3395 &CPI); 3396 3397 auto *ParentPad = CPI.getParentPad(); 3398 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3399 "CleanupPadInst has an invalid parent.", &CPI); 3400 3401 visitEHPadPredecessors(CPI); 3402 visitFuncletPadInst(CPI); 3403 } 3404 3405 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 3406 User *FirstUser = nullptr; 3407 Value *FirstUnwindPad = nullptr; 3408 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 3409 SmallSet<FuncletPadInst *, 8> Seen; 3410 3411 while (!Worklist.empty()) { 3412 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 3413 Assert(Seen.insert(CurrentPad).second, 3414 "FuncletPadInst must not be nested within itself", CurrentPad); 3415 Value *UnresolvedAncestorPad = nullptr; 3416 for (User *U : CurrentPad->users()) { 3417 BasicBlock *UnwindDest; 3418 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 3419 UnwindDest = CRI->getUnwindDest(); 3420 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 3421 // We allow catchswitch unwind to caller to nest 3422 // within an outer pad that unwinds somewhere else, 3423 // because catchswitch doesn't have a nounwind variant. 3424 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 3425 if (CSI->unwindsToCaller()) 3426 continue; 3427 UnwindDest = CSI->getUnwindDest(); 3428 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 3429 UnwindDest = II->getUnwindDest(); 3430 } else if (isa<CallInst>(U)) { 3431 // Calls which don't unwind may be found inside funclet 3432 // pads that unwind somewhere else. We don't *require* 3433 // such calls to be annotated nounwind. 3434 continue; 3435 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 3436 // The unwind dest for a cleanup can only be found by 3437 // recursive search. Add it to the worklist, and we'll 3438 // search for its first use that determines where it unwinds. 3439 Worklist.push_back(CPI); 3440 continue; 3441 } else { 3442 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 3443 continue; 3444 } 3445 3446 Value *UnwindPad; 3447 bool ExitsFPI; 3448 if (UnwindDest) { 3449 UnwindPad = UnwindDest->getFirstNonPHI(); 3450 if (!cast<Instruction>(UnwindPad)->isEHPad()) 3451 continue; 3452 Value *UnwindParent = getParentPad(UnwindPad); 3453 // Ignore unwind edges that don't exit CurrentPad. 3454 if (UnwindParent == CurrentPad) 3455 continue; 3456 // Determine whether the original funclet pad is exited, 3457 // and if we are scanning nested pads determine how many 3458 // of them are exited so we can stop searching their 3459 // children. 3460 Value *ExitedPad = CurrentPad; 3461 ExitsFPI = false; 3462 do { 3463 if (ExitedPad == &FPI) { 3464 ExitsFPI = true; 3465 // Now we can resolve any ancestors of CurrentPad up to 3466 // FPI, but not including FPI since we need to make sure 3467 // to check all direct users of FPI for consistency. 3468 UnresolvedAncestorPad = &FPI; 3469 break; 3470 } 3471 Value *ExitedParent = getParentPad(ExitedPad); 3472 if (ExitedParent == UnwindParent) { 3473 // ExitedPad is the ancestor-most pad which this unwind 3474 // edge exits, so we can resolve up to it, meaning that 3475 // ExitedParent is the first ancestor still unresolved. 3476 UnresolvedAncestorPad = ExitedParent; 3477 break; 3478 } 3479 ExitedPad = ExitedParent; 3480 } while (!isa<ConstantTokenNone>(ExitedPad)); 3481 } else { 3482 // Unwinding to caller exits all pads. 3483 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 3484 ExitsFPI = true; 3485 UnresolvedAncestorPad = &FPI; 3486 } 3487 3488 if (ExitsFPI) { 3489 // This unwind edge exits FPI. Make sure it agrees with other 3490 // such edges. 3491 if (FirstUser) { 3492 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 3493 "pad must have the same unwind " 3494 "dest", 3495 &FPI, U, FirstUser); 3496 } else { 3497 FirstUser = U; 3498 FirstUnwindPad = UnwindPad; 3499 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 3500 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 3501 getParentPad(UnwindPad) == getParentPad(&FPI)) 3502 SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U); 3503 } 3504 } 3505 // Make sure we visit all uses of FPI, but for nested pads stop as 3506 // soon as we know where they unwind to. 3507 if (CurrentPad != &FPI) 3508 break; 3509 } 3510 if (UnresolvedAncestorPad) { 3511 if (CurrentPad == UnresolvedAncestorPad) { 3512 // When CurrentPad is FPI itself, we don't mark it as resolved even if 3513 // we've found an unwind edge that exits it, because we need to verify 3514 // all direct uses of FPI. 3515 assert(CurrentPad == &FPI); 3516 continue; 3517 } 3518 // Pop off the worklist any nested pads that we've found an unwind 3519 // destination for. The pads on the worklist are the uncles, 3520 // great-uncles, etc. of CurrentPad. We've found an unwind destination 3521 // for all ancestors of CurrentPad up to but not including 3522 // UnresolvedAncestorPad. 3523 Value *ResolvedPad = CurrentPad; 3524 while (!Worklist.empty()) { 3525 Value *UnclePad = Worklist.back(); 3526 Value *AncestorPad = getParentPad(UnclePad); 3527 // Walk ResolvedPad up the ancestor list until we either find the 3528 // uncle's parent or the last resolved ancestor. 3529 while (ResolvedPad != AncestorPad) { 3530 Value *ResolvedParent = getParentPad(ResolvedPad); 3531 if (ResolvedParent == UnresolvedAncestorPad) { 3532 break; 3533 } 3534 ResolvedPad = ResolvedParent; 3535 } 3536 // If the resolved ancestor search didn't find the uncle's parent, 3537 // then the uncle is not yet resolved. 3538 if (ResolvedPad != AncestorPad) 3539 break; 3540 // This uncle is resolved, so pop it from the worklist. 3541 Worklist.pop_back(); 3542 } 3543 } 3544 } 3545 3546 if (FirstUnwindPad) { 3547 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 3548 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 3549 Value *SwitchUnwindPad; 3550 if (SwitchUnwindDest) 3551 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 3552 else 3553 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 3554 Assert(SwitchUnwindPad == FirstUnwindPad, 3555 "Unwind edges out of a catch must have the same unwind dest as " 3556 "the parent catchswitch", 3557 &FPI, FirstUser, CatchSwitch); 3558 } 3559 } 3560 3561 visitInstruction(FPI); 3562 } 3563 3564 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 3565 BasicBlock *BB = CatchSwitch.getParent(); 3566 3567 Function *F = BB->getParent(); 3568 Assert(F->hasPersonalityFn(), 3569 "CatchSwitchInst needs to be in a function with a personality.", 3570 &CatchSwitch); 3571 3572 // The catchswitch instruction must be the first non-PHI instruction in the 3573 // block. 3574 Assert(BB->getFirstNonPHI() == &CatchSwitch, 3575 "CatchSwitchInst not the first non-PHI instruction in the block.", 3576 &CatchSwitch); 3577 3578 auto *ParentPad = CatchSwitch.getParentPad(); 3579 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3580 "CatchSwitchInst has an invalid parent.", ParentPad); 3581 3582 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 3583 Instruction *I = UnwindDest->getFirstNonPHI(); 3584 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3585 "CatchSwitchInst must unwind to an EH block which is not a " 3586 "landingpad.", 3587 &CatchSwitch); 3588 3589 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 3590 if (getParentPad(I) == ParentPad) 3591 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 3592 } 3593 3594 Assert(CatchSwitch.getNumHandlers() != 0, 3595 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 3596 3597 for (BasicBlock *Handler : CatchSwitch.handlers()) { 3598 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 3599 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 3600 } 3601 3602 visitEHPadPredecessors(CatchSwitch); 3603 visitTerminatorInst(CatchSwitch); 3604 } 3605 3606 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 3607 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 3608 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 3609 CRI.getOperand(0)); 3610 3611 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 3612 Instruction *I = UnwindDest->getFirstNonPHI(); 3613 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3614 "CleanupReturnInst must unwind to an EH block which is not a " 3615 "landingpad.", 3616 &CRI); 3617 } 3618 3619 visitTerminatorInst(CRI); 3620 } 3621 3622 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 3623 Instruction *Op = cast<Instruction>(I.getOperand(i)); 3624 // If the we have an invalid invoke, don't try to compute the dominance. 3625 // We already reject it in the invoke specific checks and the dominance 3626 // computation doesn't handle multiple edges. 3627 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 3628 if (II->getNormalDest() == II->getUnwindDest()) 3629 return; 3630 } 3631 3632 // Quick check whether the def has already been encountered in the same block. 3633 // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI 3634 // uses are defined to happen on the incoming edge, not at the instruction. 3635 // 3636 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 3637 // wrapping an SSA value, assert that we've already encountered it. See 3638 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 3639 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 3640 return; 3641 3642 const Use &U = I.getOperandUse(i); 3643 Assert(DT.dominates(Op, U), 3644 "Instruction does not dominate all uses!", Op, &I); 3645 } 3646 3647 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 3648 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 3649 "apply only to pointer types", &I); 3650 Assert(isa<LoadInst>(I), 3651 "dereferenceable, dereferenceable_or_null apply only to load" 3652 " instructions, use attributes for calls or invokes", &I); 3653 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 3654 "take one operand!", &I); 3655 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 3656 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 3657 "dereferenceable_or_null metadata value must be an i64!", &I); 3658 } 3659 3660 /// verifyInstruction - Verify that an instruction is well formed. 3661 /// 3662 void Verifier::visitInstruction(Instruction &I) { 3663 BasicBlock *BB = I.getParent(); 3664 Assert(BB, "Instruction not embedded in basic block!", &I); 3665 3666 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 3667 for (User *U : I.users()) { 3668 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 3669 "Only PHI nodes may reference their own value!", &I); 3670 } 3671 } 3672 3673 // Check that void typed values don't have names 3674 Assert(!I.getType()->isVoidTy() || !I.hasName(), 3675 "Instruction has a name, but provides a void value!", &I); 3676 3677 // Check that the return value of the instruction is either void or a legal 3678 // value type. 3679 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 3680 "Instruction returns a non-scalar type!", &I); 3681 3682 // Check that the instruction doesn't produce metadata. Calls are already 3683 // checked against the callee type. 3684 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 3685 "Invalid use of metadata!", &I); 3686 3687 // Check that all uses of the instruction, if they are instructions 3688 // themselves, actually have parent basic blocks. If the use is not an 3689 // instruction, it is an error! 3690 for (Use &U : I.uses()) { 3691 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 3692 Assert(Used->getParent() != nullptr, 3693 "Instruction referencing" 3694 " instruction not embedded in a basic block!", 3695 &I, Used); 3696 else { 3697 CheckFailed("Use of instruction is not an instruction!", U); 3698 return; 3699 } 3700 } 3701 3702 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 3703 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 3704 3705 // Check to make sure that only first-class-values are operands to 3706 // instructions. 3707 if (!I.getOperand(i)->getType()->isFirstClassType()) { 3708 Assert(false, "Instruction operands must be first-class values!", &I); 3709 } 3710 3711 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 3712 // Check to make sure that the "address of" an intrinsic function is never 3713 // taken. 3714 Assert( 3715 !F->isIntrinsic() || 3716 i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0), 3717 "Cannot take the address of an intrinsic!", &I); 3718 Assert( 3719 !F->isIntrinsic() || isa<CallInst>(I) || 3720 F->getIntrinsicID() == Intrinsic::donothing || 3721 F->getIntrinsicID() == Intrinsic::coro_resume || 3722 F->getIntrinsicID() == Intrinsic::coro_destroy || 3723 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 3724 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 3725 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint, 3726 "Cannot invoke an intrinsic other than donothing, patchpoint, " 3727 "statepoint, coro_resume or coro_destroy", 3728 &I); 3729 Assert(F->getParent() == &M, "Referencing function in another module!", 3730 &I, &M, F, F->getParent()); 3731 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 3732 Assert(OpBB->getParent() == BB->getParent(), 3733 "Referring to a basic block in another function!", &I); 3734 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 3735 Assert(OpArg->getParent() == BB->getParent(), 3736 "Referring to an argument in another function!", &I); 3737 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 3738 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 3739 &M, GV, GV->getParent()); 3740 } else if (isa<Instruction>(I.getOperand(i))) { 3741 verifyDominatesUse(I, i); 3742 } else if (isa<InlineAsm>(I.getOperand(i))) { 3743 Assert((i + 1 == e && isa<CallInst>(I)) || 3744 (i + 3 == e && isa<InvokeInst>(I)), 3745 "Cannot take the address of an inline asm!", &I); 3746 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 3747 if (CE->getType()->isPtrOrPtrVectorTy() || 3748 !DL.getNonIntegralAddressSpaces().empty()) { 3749 // If we have a ConstantExpr pointer, we need to see if it came from an 3750 // illegal bitcast. If the datalayout string specifies non-integral 3751 // address spaces then we also need to check for illegal ptrtoint and 3752 // inttoptr expressions. 3753 visitConstantExprsRecursively(CE); 3754 } 3755 } 3756 } 3757 3758 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 3759 Assert(I.getType()->isFPOrFPVectorTy(), 3760 "fpmath requires a floating point result!", &I); 3761 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 3762 if (ConstantFP *CFP0 = 3763 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 3764 const APFloat &Accuracy = CFP0->getValueAPF(); 3765 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle, 3766 "fpmath accuracy must have float type", &I); 3767 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 3768 "fpmath accuracy not a positive number!", &I); 3769 } else { 3770 Assert(false, "invalid fpmath accuracy!", &I); 3771 } 3772 } 3773 3774 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 3775 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 3776 "Ranges are only for loads, calls and invokes!", &I); 3777 visitRangeMetadata(I, Range, I.getType()); 3778 } 3779 3780 if (I.getMetadata(LLVMContext::MD_nonnull)) { 3781 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 3782 &I); 3783 Assert(isa<LoadInst>(I), 3784 "nonnull applies only to load instructions, use attributes" 3785 " for calls or invokes", 3786 &I); 3787 } 3788 3789 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 3790 visitDereferenceableMetadata(I, MD); 3791 3792 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 3793 visitDereferenceableMetadata(I, MD); 3794 3795 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 3796 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 3797 &I); 3798 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 3799 "use attributes for calls or invokes", &I); 3800 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 3801 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 3802 Assert(CI && CI->getType()->isIntegerTy(64), 3803 "align metadata value must be an i64!", &I); 3804 uint64_t Align = CI->getZExtValue(); 3805 Assert(isPowerOf2_64(Align), 3806 "align metadata value must be a power of 2!", &I); 3807 Assert(Align <= Value::MaximumAlignment, 3808 "alignment is larger that implementation defined limit", &I); 3809 } 3810 3811 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 3812 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 3813 visitMDNode(*N); 3814 } 3815 3816 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) 3817 verifyBitPieceExpression(*DII); 3818 3819 InstsInThisBlock.insert(&I); 3820 } 3821 3822 /// Allow intrinsics to be verified in different ways. 3823 void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) { 3824 Function *IF = CS.getCalledFunction(); 3825 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 3826 IF); 3827 3828 // Verify that the intrinsic prototype lines up with what the .td files 3829 // describe. 3830 FunctionType *IFTy = IF->getFunctionType(); 3831 bool IsVarArg = IFTy->isVarArg(); 3832 3833 SmallVector<Intrinsic::IITDescriptor, 8> Table; 3834 getIntrinsicInfoTableEntries(ID, Table); 3835 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 3836 3837 SmallVector<Type *, 4> ArgTys; 3838 Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(), 3839 TableRef, ArgTys), 3840 "Intrinsic has incorrect return type!", IF); 3841 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i) 3842 Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i), 3843 TableRef, ArgTys), 3844 "Intrinsic has incorrect argument type!", IF); 3845 3846 // Verify if the intrinsic call matches the vararg property. 3847 if (IsVarArg) 3848 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 3849 "Intrinsic was not defined with variable arguments!", IF); 3850 else 3851 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 3852 "Callsite was not defined with variable arguments!", IF); 3853 3854 // All descriptors should be absorbed by now. 3855 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 3856 3857 // Now that we have the intrinsic ID and the actual argument types (and we 3858 // know they are legal for the intrinsic!) get the intrinsic name through the 3859 // usual means. This allows us to verify the mangling of argument types into 3860 // the name. 3861 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 3862 Assert(ExpectedName == IF->getName(), 3863 "Intrinsic name not mangled correctly for type arguments! " 3864 "Should be: " + 3865 ExpectedName, 3866 IF); 3867 3868 // If the intrinsic takes MDNode arguments, verify that they are either global 3869 // or are local to *this* function. 3870 for (Value *V : CS.args()) 3871 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 3872 visitMetadataAsValue(*MD, CS.getCaller()); 3873 3874 switch (ID) { 3875 default: 3876 break; 3877 case Intrinsic::coro_id: { 3878 auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts(); 3879 if (isa<ConstantPointerNull>(InfoArg)) 3880 break; 3881 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 3882 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 3883 "info argument of llvm.coro.begin must refer to an initialized " 3884 "constant"); 3885 Constant *Init = GV->getInitializer(); 3886 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 3887 "info argument of llvm.coro.begin must refer to either a struct or " 3888 "an array"); 3889 break; 3890 } 3891 case Intrinsic::ctlz: // llvm.ctlz 3892 case Intrinsic::cttz: // llvm.cttz 3893 Assert(isa<ConstantInt>(CS.getArgOperand(1)), 3894 "is_zero_undef argument of bit counting intrinsics must be a " 3895 "constant int", 3896 CS); 3897 break; 3898 case Intrinsic::dbg_declare: // llvm.dbg.declare 3899 Assert(isa<MetadataAsValue>(CS.getArgOperand(0)), 3900 "invalid llvm.dbg.declare intrinsic call 1", CS); 3901 visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction())); 3902 break; 3903 case Intrinsic::dbg_value: // llvm.dbg.value 3904 visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction())); 3905 break; 3906 case Intrinsic::memcpy: 3907 case Intrinsic::memmove: 3908 case Intrinsic::memset: { 3909 ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3)); 3910 Assert(AlignCI, 3911 "alignment argument of memory intrinsics must be a constant int", 3912 CS); 3913 const APInt &AlignVal = AlignCI->getValue(); 3914 Assert(AlignCI->isZero() || AlignVal.isPowerOf2(), 3915 "alignment argument of memory intrinsics must be a power of 2", CS); 3916 Assert(isa<ConstantInt>(CS.getArgOperand(4)), 3917 "isvolatile argument of memory intrinsics must be a constant int", 3918 CS); 3919 break; 3920 } 3921 case Intrinsic::gcroot: 3922 case Intrinsic::gcwrite: 3923 case Intrinsic::gcread: 3924 if (ID == Intrinsic::gcroot) { 3925 AllocaInst *AI = 3926 dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts()); 3927 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS); 3928 Assert(isa<Constant>(CS.getArgOperand(1)), 3929 "llvm.gcroot parameter #2 must be a constant.", CS); 3930 if (!AI->getAllocatedType()->isPointerTy()) { 3931 Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)), 3932 "llvm.gcroot parameter #1 must either be a pointer alloca, " 3933 "or argument #2 must be a non-null constant.", 3934 CS); 3935 } 3936 } 3937 3938 Assert(CS.getParent()->getParent()->hasGC(), 3939 "Enclosing function does not use GC.", CS); 3940 break; 3941 case Intrinsic::init_trampoline: 3942 Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()), 3943 "llvm.init_trampoline parameter #2 must resolve to a function.", 3944 CS); 3945 break; 3946 case Intrinsic::prefetch: 3947 Assert(isa<ConstantInt>(CS.getArgOperand(1)) && 3948 isa<ConstantInt>(CS.getArgOperand(2)) && 3949 cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 && 3950 cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4, 3951 "invalid arguments to llvm.prefetch", CS); 3952 break; 3953 case Intrinsic::stackprotector: 3954 Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()), 3955 "llvm.stackprotector parameter #2 must resolve to an alloca.", CS); 3956 break; 3957 case Intrinsic::lifetime_start: 3958 case Intrinsic::lifetime_end: 3959 case Intrinsic::invariant_start: 3960 Assert(isa<ConstantInt>(CS.getArgOperand(0)), 3961 "size argument of memory use markers must be a constant integer", 3962 CS); 3963 break; 3964 case Intrinsic::invariant_end: 3965 Assert(isa<ConstantInt>(CS.getArgOperand(1)), 3966 "llvm.invariant.end parameter #2 must be a constant integer", CS); 3967 break; 3968 3969 case Intrinsic::localescape: { 3970 BasicBlock *BB = CS.getParent(); 3971 Assert(BB == &BB->getParent()->front(), 3972 "llvm.localescape used outside of entry block", CS); 3973 Assert(!SawFrameEscape, 3974 "multiple calls to llvm.localescape in one function", CS); 3975 for (Value *Arg : CS.args()) { 3976 if (isa<ConstantPointerNull>(Arg)) 3977 continue; // Null values are allowed as placeholders. 3978 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 3979 Assert(AI && AI->isStaticAlloca(), 3980 "llvm.localescape only accepts static allocas", CS); 3981 } 3982 FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands(); 3983 SawFrameEscape = true; 3984 break; 3985 } 3986 case Intrinsic::localrecover: { 3987 Value *FnArg = CS.getArgOperand(0)->stripPointerCasts(); 3988 Function *Fn = dyn_cast<Function>(FnArg); 3989 Assert(Fn && !Fn->isDeclaration(), 3990 "llvm.localrecover first " 3991 "argument must be function defined in this module", 3992 CS); 3993 auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2)); 3994 Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int", 3995 CS); 3996 auto &Entry = FrameEscapeInfo[Fn]; 3997 Entry.second = unsigned( 3998 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 3999 break; 4000 } 4001 4002 case Intrinsic::experimental_gc_statepoint: 4003 Assert(!CS.isInlineAsm(), 4004 "gc.statepoint support for inline assembly unimplemented", CS); 4005 Assert(CS.getParent()->getParent()->hasGC(), 4006 "Enclosing function does not use GC.", CS); 4007 4008 verifyStatepoint(CS); 4009 break; 4010 case Intrinsic::experimental_gc_result: { 4011 Assert(CS.getParent()->getParent()->hasGC(), 4012 "Enclosing function does not use GC.", CS); 4013 // Are we tied to a statepoint properly? 4014 CallSite StatepointCS(CS.getArgOperand(0)); 4015 const Function *StatepointFn = 4016 StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr; 4017 Assert(StatepointFn && StatepointFn->isDeclaration() && 4018 StatepointFn->getIntrinsicID() == 4019 Intrinsic::experimental_gc_statepoint, 4020 "gc.result operand #1 must be from a statepoint", CS, 4021 CS.getArgOperand(0)); 4022 4023 // Assert that result type matches wrapped callee. 4024 const Value *Target = StatepointCS.getArgument(2); 4025 auto *PT = cast<PointerType>(Target->getType()); 4026 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4027 Assert(CS.getType() == TargetFuncType->getReturnType(), 4028 "gc.result result type does not match wrapped callee", CS); 4029 break; 4030 } 4031 case Intrinsic::experimental_gc_relocate: { 4032 Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS); 4033 4034 Assert(isa<PointerType>(CS.getType()->getScalarType()), 4035 "gc.relocate must return a pointer or a vector of pointers", CS); 4036 4037 // Check that this relocate is correctly tied to the statepoint 4038 4039 // This is case for relocate on the unwinding path of an invoke statepoint 4040 if (LandingPadInst *LandingPad = 4041 dyn_cast<LandingPadInst>(CS.getArgOperand(0))) { 4042 4043 const BasicBlock *InvokeBB = 4044 LandingPad->getParent()->getUniquePredecessor(); 4045 4046 // Landingpad relocates should have only one predecessor with invoke 4047 // statepoint terminator 4048 Assert(InvokeBB, "safepoints should have unique landingpads", 4049 LandingPad->getParent()); 4050 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4051 InvokeBB); 4052 Assert(isStatepoint(InvokeBB->getTerminator()), 4053 "gc relocate should be linked to a statepoint", InvokeBB); 4054 } 4055 else { 4056 // In all other cases relocate should be tied to the statepoint directly. 4057 // This covers relocates on a normal return path of invoke statepoint and 4058 // relocates of a call statepoint. 4059 auto Token = CS.getArgOperand(0); 4060 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)), 4061 "gc relocate is incorrectly tied to the statepoint", CS, Token); 4062 } 4063 4064 // Verify rest of the relocate arguments. 4065 4066 ImmutableCallSite StatepointCS( 4067 cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint()); 4068 4069 // Both the base and derived must be piped through the safepoint. 4070 Value* Base = CS.getArgOperand(1); 4071 Assert(isa<ConstantInt>(Base), 4072 "gc.relocate operand #2 must be integer offset", CS); 4073 4074 Value* Derived = CS.getArgOperand(2); 4075 Assert(isa<ConstantInt>(Derived), 4076 "gc.relocate operand #3 must be integer offset", CS); 4077 4078 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4079 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4080 // Check the bounds 4081 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(), 4082 "gc.relocate: statepoint base index out of bounds", CS); 4083 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(), 4084 "gc.relocate: statepoint derived index out of bounds", CS); 4085 4086 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' 4087 // section of the statepoint's argument. 4088 Assert(StatepointCS.arg_size() > 0, 4089 "gc.statepoint: insufficient arguments"); 4090 Assert(isa<ConstantInt>(StatepointCS.getArgument(3)), 4091 "gc.statement: number of call arguments must be constant integer"); 4092 const unsigned NumCallArgs = 4093 cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue(); 4094 Assert(StatepointCS.arg_size() > NumCallArgs + 5, 4095 "gc.statepoint: mismatch in number of call arguments"); 4096 Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)), 4097 "gc.statepoint: number of transition arguments must be " 4098 "a constant integer"); 4099 const int NumTransitionArgs = 4100 cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)) 4101 ->getZExtValue(); 4102 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; 4103 Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)), 4104 "gc.statepoint: number of deoptimization arguments must be " 4105 "a constant integer"); 4106 const int NumDeoptArgs = 4107 cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)) 4108 ->getZExtValue(); 4109 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; 4110 const int GCParamArgsEnd = StatepointCS.arg_size(); 4111 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, 4112 "gc.relocate: statepoint base index doesn't fall within the " 4113 "'gc parameters' section of the statepoint call", 4114 CS); 4115 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, 4116 "gc.relocate: statepoint derived index doesn't fall within the " 4117 "'gc parameters' section of the statepoint call", 4118 CS); 4119 4120 // Relocated value must be either a pointer type or vector-of-pointer type, 4121 // but gc_relocate does not need to return the same pointer type as the 4122 // relocated pointer. It can be casted to the correct type later if it's 4123 // desired. However, they must have the same address space and 'vectorness' 4124 GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction()); 4125 Assert(Relocate.getDerivedPtr()->getType()->getScalarType()->isPointerTy(), 4126 "gc.relocate: relocated value must be a gc pointer", CS); 4127 4128 auto ResultType = CS.getType(); 4129 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4130 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4131 "gc.relocate: vector relocates to vector and pointer to pointer", 4132 CS); 4133 Assert( 4134 ResultType->getPointerAddressSpace() == 4135 DerivedType->getPointerAddressSpace(), 4136 "gc.relocate: relocating a pointer shouldn't change its address space", 4137 CS); 4138 break; 4139 } 4140 case Intrinsic::eh_exceptioncode: 4141 case Intrinsic::eh_exceptionpointer: { 4142 Assert(isa<CatchPadInst>(CS.getArgOperand(0)), 4143 "eh.exceptionpointer argument must be a catchpad", CS); 4144 break; 4145 } 4146 case Intrinsic::masked_load: { 4147 Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS); 4148 4149 Value *Ptr = CS.getArgOperand(0); 4150 //Value *Alignment = CS.getArgOperand(1); 4151 Value *Mask = CS.getArgOperand(2); 4152 Value *PassThru = CS.getArgOperand(3); 4153 Assert(Mask->getType()->isVectorTy(), 4154 "masked_load: mask must be vector", CS); 4155 4156 // DataTy is the overloaded type 4157 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4158 Assert(DataTy == CS.getType(), 4159 "masked_load: return must match pointer type", CS); 4160 Assert(PassThru->getType() == DataTy, 4161 "masked_load: pass through and data type must match", CS); 4162 Assert(Mask->getType()->getVectorNumElements() == 4163 DataTy->getVectorNumElements(), 4164 "masked_load: vector mask must be same length as data", CS); 4165 break; 4166 } 4167 case Intrinsic::masked_store: { 4168 Value *Val = CS.getArgOperand(0); 4169 Value *Ptr = CS.getArgOperand(1); 4170 //Value *Alignment = CS.getArgOperand(2); 4171 Value *Mask = CS.getArgOperand(3); 4172 Assert(Mask->getType()->isVectorTy(), 4173 "masked_store: mask must be vector", CS); 4174 4175 // DataTy is the overloaded type 4176 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4177 Assert(DataTy == Val->getType(), 4178 "masked_store: storee must match pointer type", CS); 4179 Assert(Mask->getType()->getVectorNumElements() == 4180 DataTy->getVectorNumElements(), 4181 "masked_store: vector mask must be same length as data", CS); 4182 break; 4183 } 4184 4185 case Intrinsic::experimental_guard: { 4186 Assert(CS.isCall(), "experimental_guard cannot be invoked", CS); 4187 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4188 "experimental_guard must have exactly one " 4189 "\"deopt\" operand bundle"); 4190 break; 4191 } 4192 4193 case Intrinsic::experimental_deoptimize: { 4194 Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS); 4195 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4196 "experimental_deoptimize must have exactly one " 4197 "\"deopt\" operand bundle"); 4198 Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(), 4199 "experimental_deoptimize return type must match caller return type"); 4200 4201 if (CS.isCall()) { 4202 auto *DeoptCI = CS.getInstruction(); 4203 auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode()); 4204 Assert(RI, 4205 "calls to experimental_deoptimize must be followed by a return"); 4206 4207 if (!CS.getType()->isVoidTy() && RI) 4208 Assert(RI->getReturnValue() == DeoptCI, 4209 "calls to experimental_deoptimize must be followed by a return " 4210 "of the value computed by experimental_deoptimize"); 4211 } 4212 4213 break; 4214 } 4215 }; 4216 } 4217 4218 /// \brief Carefully grab the subprogram from a local scope. 4219 /// 4220 /// This carefully grabs the subprogram from a local scope, avoiding the 4221 /// built-in assertions that would typically fire. 4222 static DISubprogram *getSubprogram(Metadata *LocalScope) { 4223 if (!LocalScope) 4224 return nullptr; 4225 4226 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 4227 return SP; 4228 4229 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 4230 return getSubprogram(LB->getRawScope()); 4231 4232 // Just return null; broken scope chains are checked elsewhere. 4233 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 4234 return nullptr; 4235 } 4236 4237 template <class DbgIntrinsicTy> 4238 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) { 4239 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); 4240 AssertDI(isa<ValueAsMetadata>(MD) || 4241 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 4242 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 4243 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 4244 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 4245 DII.getRawVariable()); 4246 AssertDI(isa<DIExpression>(DII.getRawExpression()), 4247 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 4248 DII.getRawExpression()); 4249 4250 // Ignore broken !dbg attachments; they're checked elsewhere. 4251 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 4252 if (!isa<DILocation>(N)) 4253 return; 4254 4255 BasicBlock *BB = DII.getParent(); 4256 Function *F = BB ? BB->getParent() : nullptr; 4257 4258 // The scopes for variables and !dbg attachments must agree. 4259 DILocalVariable *Var = DII.getVariable(); 4260 DILocation *Loc = DII.getDebugLoc(); 4261 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4262 &DII, BB, F); 4263 4264 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 4265 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4266 if (!VarSP || !LocSP) 4267 return; // Broken scope chains are checked elsewhere. 4268 4269 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4270 " variable and !dbg attachment", 4271 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 4272 Loc->getScope()->getSubprogram()); 4273 } 4274 4275 static uint64_t getVariableSize(const DILocalVariable &V) { 4276 // Be careful of broken types (checked elsewhere). 4277 const Metadata *RawType = V.getRawType(); 4278 while (RawType) { 4279 // Try to get the size directly. 4280 if (auto *T = dyn_cast<DIType>(RawType)) 4281 if (uint64_t Size = T->getSizeInBits()) 4282 return Size; 4283 4284 if (auto *DT = dyn_cast<DIDerivedType>(RawType)) { 4285 // Look at the base type. 4286 RawType = DT->getRawBaseType(); 4287 continue; 4288 } 4289 4290 // Missing type or size. 4291 break; 4292 } 4293 4294 // Fail gracefully. 4295 return 0; 4296 } 4297 4298 void Verifier::verifyBitPieceExpression(const DbgInfoIntrinsic &I) { 4299 DILocalVariable *V; 4300 DIExpression *E; 4301 if (auto *DVI = dyn_cast<DbgValueInst>(&I)) { 4302 V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable()); 4303 E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression()); 4304 } else { 4305 auto *DDI = cast<DbgDeclareInst>(&I); 4306 V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable()); 4307 E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression()); 4308 } 4309 4310 // We don't know whether this intrinsic verified correctly. 4311 if (!V || !E || !E->isValid()) 4312 return; 4313 4314 // Nothing to do if this isn't a bit piece expression. 4315 if (!E->isBitPiece()) 4316 return; 4317 4318 // The frontend helps out GDB by emitting the members of local anonymous 4319 // unions as artificial local variables with shared storage. When SROA splits 4320 // the storage for artificial local variables that are smaller than the entire 4321 // union, the overhang piece will be outside of the allotted space for the 4322 // variable and this check fails. 4323 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 4324 if (V->isArtificial()) 4325 return; 4326 4327 // If there's no size, the type is broken, but that should be checked 4328 // elsewhere. 4329 uint64_t VarSize = getVariableSize(*V); 4330 if (!VarSize) 4331 return; 4332 4333 unsigned PieceSize = E->getBitPieceSize(); 4334 unsigned PieceOffset = E->getBitPieceOffset(); 4335 AssertDI(PieceSize + PieceOffset <= VarSize, 4336 "piece is larger than or outside of variable", &I, V, E); 4337 AssertDI(PieceSize != VarSize, "piece covers entire variable", &I, V, E); 4338 } 4339 4340 void Verifier::verifyCompileUnits() { 4341 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 4342 SmallPtrSet<const Metadata *, 2> Listed; 4343 if (CUs) 4344 Listed.insert(CUs->op_begin(), CUs->op_end()); 4345 AssertDI( 4346 all_of(CUVisited, 4347 [&Listed](const Metadata *CU) { return Listed.count(CU); }), 4348 "All DICompileUnits must be listed in llvm.dbg.cu"); 4349 CUVisited.clear(); 4350 } 4351 4352 void Verifier::verifyDeoptimizeCallingConvs() { 4353 if (DeoptimizeDeclarations.empty()) 4354 return; 4355 4356 const Function *First = DeoptimizeDeclarations[0]; 4357 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 4358 Assert(First->getCallingConv() == F->getCallingConv(), 4359 "All llvm.experimental.deoptimize declarations must have the same " 4360 "calling convention", 4361 First, F); 4362 } 4363 } 4364 4365 //===----------------------------------------------------------------------===// 4366 // Implement the public interfaces to this file... 4367 //===----------------------------------------------------------------------===// 4368 4369 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 4370 Function &F = const_cast<Function &>(f); 4371 4372 // Don't use a raw_null_ostream. Printing IR is expensive. 4373 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 4374 4375 // Note that this function's return value is inverted from what you would 4376 // expect of a function called "verify". 4377 return !V.verify(F); 4378 } 4379 4380 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 4381 bool *BrokenDebugInfo) { 4382 // Don't use a raw_null_ostream. Printing IR is expensive. 4383 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 4384 4385 bool Broken = false; 4386 for (const Function &F : M) 4387 Broken |= !V.verify(F); 4388 4389 Broken |= !V.verify(); 4390 if (BrokenDebugInfo) 4391 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 4392 // Note that this function's return value is inverted from what you would 4393 // expect of a function called "verify". 4394 return Broken; 4395 } 4396 4397 namespace { 4398 4399 struct VerifierLegacyPass : public FunctionPass { 4400 static char ID; 4401 4402 std::unique_ptr<Verifier> V; 4403 bool FatalErrors = true; 4404 4405 VerifierLegacyPass() : FunctionPass(ID) { 4406 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 4407 } 4408 explicit VerifierLegacyPass(bool FatalErrors) 4409 : FunctionPass(ID), 4410 FatalErrors(FatalErrors) { 4411 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 4412 } 4413 4414 bool doInitialization(Module &M) override { 4415 V = llvm::make_unique<Verifier>( 4416 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 4417 return false; 4418 } 4419 4420 bool runOnFunction(Function &F) override { 4421 if (!V->verify(F) && FatalErrors) 4422 report_fatal_error("Broken function found, compilation aborted!"); 4423 4424 return false; 4425 } 4426 4427 bool doFinalization(Module &M) override { 4428 bool HasErrors = false; 4429 for (Function &F : M) 4430 if (F.isDeclaration()) 4431 HasErrors |= !V->verify(F); 4432 4433 HasErrors |= !V->verify(); 4434 if (FatalErrors) { 4435 if (HasErrors) 4436 report_fatal_error("Broken module found, compilation aborted!"); 4437 assert(!V->hasBrokenDebugInfo() && "Module contains invalid debug info"); 4438 } 4439 4440 // Strip broken debug info. 4441 if (V->hasBrokenDebugInfo()) { 4442 DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M); 4443 M.getContext().diagnose(DiagInvalid); 4444 if (!StripDebugInfo(M)) 4445 report_fatal_error("Failed to strip malformed debug info"); 4446 } 4447 return false; 4448 } 4449 4450 void getAnalysisUsage(AnalysisUsage &AU) const override { 4451 AU.setPreservesAll(); 4452 } 4453 }; 4454 4455 } // end anonymous namespace 4456 4457 char VerifierLegacyPass::ID = 0; 4458 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 4459 4460 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 4461 return new VerifierLegacyPass(FatalErrors); 4462 } 4463 4464 char VerifierAnalysis::PassID; 4465 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 4466 ModuleAnalysisManager &) { 4467 Result Res; 4468 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 4469 return Res; 4470 } 4471 4472 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 4473 FunctionAnalysisManager &) { 4474 return { llvm::verifyFunction(F, &dbgs()), false }; 4475 } 4476 4477 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 4478 auto Res = AM.getResult<VerifierAnalysis>(M); 4479 if (FatalErrors) { 4480 if (Res.IRBroken) 4481 report_fatal_error("Broken module found, compilation aborted!"); 4482 assert(!Res.DebugInfoBroken && "Module contains invalid debug info"); 4483 } 4484 4485 // Strip broken debug info. 4486 if (Res.DebugInfoBroken) { 4487 DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M); 4488 M.getContext().diagnose(DiagInvalid); 4489 if (!StripDebugInfo(M)) 4490 report_fatal_error("Failed to strip malformed debug info"); 4491 } 4492 return PreservedAnalyses::all(); 4493 } 4494 4495 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 4496 auto res = AM.getResult<VerifierAnalysis>(F); 4497 if (res.IRBroken && FatalErrors) 4498 report_fatal_error("Broken function found, compilation aborted!"); 4499 4500 return PreservedAnalyses::all(); 4501 } 4502