1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // basic correctness checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/ADT/ilist.h" 62 #include "llvm/BinaryFormat/Dwarf.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstVisitor.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/ModuleSlotTracker.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/InitializePasses.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Debug.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <cstdint> 112 #include <memory> 113 #include <string> 114 #include <utility> 115 116 using namespace llvm; 117 118 static cl::opt<bool> VerifyNoAliasScopeDomination( 119 "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false), 120 cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical " 121 "scopes are not dominating")); 122 123 namespace llvm { 124 125 struct VerifierSupport { 126 raw_ostream *OS; 127 const Module &M; 128 ModuleSlotTracker MST; 129 Triple TT; 130 const DataLayout &DL; 131 LLVMContext &Context; 132 133 /// Track the brokenness of the module while recursively visiting. 134 bool Broken = false; 135 /// Broken debug info can be "recovered" from by stripping the debug info. 136 bool BrokenDebugInfo = false; 137 /// Whether to treat broken debug info as an error. 138 bool TreatBrokenDebugInfoAsError = true; 139 140 explicit VerifierSupport(raw_ostream *OS, const Module &M) 141 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 142 Context(M.getContext()) {} 143 144 private: 145 void Write(const Module *M) { 146 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 147 } 148 149 void Write(const Value *V) { 150 if (V) 151 Write(*V); 152 } 153 154 void Write(const Value &V) { 155 if (isa<Instruction>(V)) { 156 V.print(*OS, MST); 157 *OS << '\n'; 158 } else { 159 V.printAsOperand(*OS, true, MST); 160 *OS << '\n'; 161 } 162 } 163 164 void Write(const Metadata *MD) { 165 if (!MD) 166 return; 167 MD->print(*OS, MST, &M); 168 *OS << '\n'; 169 } 170 171 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 172 Write(MD.get()); 173 } 174 175 void Write(const NamedMDNode *NMD) { 176 if (!NMD) 177 return; 178 NMD->print(*OS, MST); 179 *OS << '\n'; 180 } 181 182 void Write(Type *T) { 183 if (!T) 184 return; 185 *OS << ' ' << *T; 186 } 187 188 void Write(const Comdat *C) { 189 if (!C) 190 return; 191 *OS << *C; 192 } 193 194 void Write(const APInt *AI) { 195 if (!AI) 196 return; 197 *OS << *AI << '\n'; 198 } 199 200 void Write(const unsigned i) { *OS << i << '\n'; } 201 202 // NOLINTNEXTLINE(readability-identifier-naming) 203 void Write(const Attribute *A) { 204 if (!A) 205 return; 206 *OS << A->getAsString() << '\n'; 207 } 208 209 // NOLINTNEXTLINE(readability-identifier-naming) 210 void Write(const AttributeSet *AS) { 211 if (!AS) 212 return; 213 *OS << AS->getAsString() << '\n'; 214 } 215 216 // NOLINTNEXTLINE(readability-identifier-naming) 217 void Write(const AttributeList *AL) { 218 if (!AL) 219 return; 220 AL->print(*OS); 221 } 222 223 template <typename T> void Write(ArrayRef<T> Vs) { 224 for (const T &V : Vs) 225 Write(V); 226 } 227 228 template <typename T1, typename... Ts> 229 void WriteTs(const T1 &V1, const Ts &... Vs) { 230 Write(V1); 231 WriteTs(Vs...); 232 } 233 234 template <typename... Ts> void WriteTs() {} 235 236 public: 237 /// A check failed, so printout out the condition and the message. 238 /// 239 /// This provides a nice place to put a breakpoint if you want to see why 240 /// something is not correct. 241 void CheckFailed(const Twine &Message) { 242 if (OS) 243 *OS << Message << '\n'; 244 Broken = true; 245 } 246 247 /// A check failed (with values to print). 248 /// 249 /// This calls the Message-only version so that the above is easier to set a 250 /// breakpoint on. 251 template <typename T1, typename... Ts> 252 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 253 CheckFailed(Message); 254 if (OS) 255 WriteTs(V1, Vs...); 256 } 257 258 /// A debug info check failed. 259 void DebugInfoCheckFailed(const Twine &Message) { 260 if (OS) 261 *OS << Message << '\n'; 262 Broken |= TreatBrokenDebugInfoAsError; 263 BrokenDebugInfo = true; 264 } 265 266 /// A debug info check failed (with values to print). 267 template <typename T1, typename... Ts> 268 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 269 const Ts &... Vs) { 270 DebugInfoCheckFailed(Message); 271 if (OS) 272 WriteTs(V1, Vs...); 273 } 274 }; 275 276 } // namespace llvm 277 278 namespace { 279 280 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 281 friend class InstVisitor<Verifier>; 282 283 DominatorTree DT; 284 285 /// When verifying a basic block, keep track of all of the 286 /// instructions we have seen so far. 287 /// 288 /// This allows us to do efficient dominance checks for the case when an 289 /// instruction has an operand that is an instruction in the same block. 290 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 291 292 /// Keep track of the metadata nodes that have been checked already. 293 SmallPtrSet<const Metadata *, 32> MDNodes; 294 295 /// Keep track which DISubprogram is attached to which function. 296 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 297 298 /// Track all DICompileUnits visited. 299 SmallPtrSet<const Metadata *, 2> CUVisited; 300 301 /// The result type for a landingpad. 302 Type *LandingPadResultTy; 303 304 /// Whether we've seen a call to @llvm.localescape in this function 305 /// already. 306 bool SawFrameEscape; 307 308 /// Whether the current function has a DISubprogram attached to it. 309 bool HasDebugInfo = false; 310 311 /// The current source language. 312 dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user; 313 314 /// Whether source was present on the first DIFile encountered in each CU. 315 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 316 317 /// Stores the count of how many objects were passed to llvm.localescape for a 318 /// given function and the largest index passed to llvm.localrecover. 319 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 320 321 // Maps catchswitches and cleanuppads that unwind to siblings to the 322 // terminators that indicate the unwind, used to detect cycles therein. 323 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 324 325 /// Cache of constants visited in search of ConstantExprs. 326 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 327 328 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 329 SmallVector<const Function *, 4> DeoptimizeDeclarations; 330 331 /// Cache of attribute lists verified. 332 SmallPtrSet<const void *, 32> AttributeListsVisited; 333 334 // Verify that this GlobalValue is only used in this module. 335 // This map is used to avoid visiting uses twice. We can arrive at a user 336 // twice, if they have multiple operands. In particular for very large 337 // constant expressions, we can arrive at a particular user many times. 338 SmallPtrSet<const Value *, 32> GlobalValueVisited; 339 340 // Keeps track of duplicate function argument debug info. 341 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 342 343 TBAAVerifier TBAAVerifyHelper; 344 345 SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls; 346 347 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 348 349 public: 350 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 351 const Module &M) 352 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 353 SawFrameEscape(false), TBAAVerifyHelper(this) { 354 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 355 } 356 357 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 358 359 bool verify(const Function &F) { 360 assert(F.getParent() == &M && 361 "An instance of this class only works with a specific module!"); 362 363 // First ensure the function is well-enough formed to compute dominance 364 // information, and directly compute a dominance tree. We don't rely on the 365 // pass manager to provide this as it isolates us from a potentially 366 // out-of-date dominator tree and makes it significantly more complex to run 367 // this code outside of a pass manager. 368 // FIXME: It's really gross that we have to cast away constness here. 369 if (!F.empty()) 370 DT.recalculate(const_cast<Function &>(F)); 371 372 for (const BasicBlock &BB : F) { 373 if (!BB.empty() && BB.back().isTerminator()) 374 continue; 375 376 if (OS) { 377 *OS << "Basic Block in function '" << F.getName() 378 << "' does not have terminator!\n"; 379 BB.printAsOperand(*OS, true, MST); 380 *OS << "\n"; 381 } 382 return false; 383 } 384 385 Broken = false; 386 // FIXME: We strip const here because the inst visitor strips const. 387 visit(const_cast<Function &>(F)); 388 verifySiblingFuncletUnwinds(); 389 InstsInThisBlock.clear(); 390 DebugFnArgs.clear(); 391 LandingPadResultTy = nullptr; 392 SawFrameEscape = false; 393 SiblingFuncletInfo.clear(); 394 verifyNoAliasScopeDecl(); 395 NoAliasScopeDecls.clear(); 396 397 return !Broken; 398 } 399 400 /// Verify the module that this instance of \c Verifier was initialized with. 401 bool verify() { 402 Broken = false; 403 404 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 405 for (const Function &F : M) 406 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 407 DeoptimizeDeclarations.push_back(&F); 408 409 // Now that we've visited every function, verify that we never asked to 410 // recover a frame index that wasn't escaped. 411 verifyFrameRecoverIndices(); 412 for (const GlobalVariable &GV : M.globals()) 413 visitGlobalVariable(GV); 414 415 for (const GlobalAlias &GA : M.aliases()) 416 visitGlobalAlias(GA); 417 418 for (const GlobalIFunc &GI : M.ifuncs()) 419 visitGlobalIFunc(GI); 420 421 for (const NamedMDNode &NMD : M.named_metadata()) 422 visitNamedMDNode(NMD); 423 424 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 425 visitComdat(SMEC.getValue()); 426 427 visitModuleFlags(); 428 visitModuleIdents(); 429 visitModuleCommandLines(); 430 431 verifyCompileUnits(); 432 433 verifyDeoptimizeCallingConvs(); 434 DISubprogramAttachments.clear(); 435 return !Broken; 436 } 437 438 private: 439 /// Whether a metadata node is allowed to be, or contain, a DILocation. 440 enum class AreDebugLocsAllowed { No, Yes }; 441 442 // Verification methods... 443 void visitGlobalValue(const GlobalValue &GV); 444 void visitGlobalVariable(const GlobalVariable &GV); 445 void visitGlobalAlias(const GlobalAlias &GA); 446 void visitGlobalIFunc(const GlobalIFunc &GI); 447 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 448 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 449 const GlobalAlias &A, const Constant &C); 450 void visitNamedMDNode(const NamedMDNode &NMD); 451 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); 452 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 453 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 454 void visitComdat(const Comdat &C); 455 void visitModuleIdents(); 456 void visitModuleCommandLines(); 457 void visitModuleFlags(); 458 void visitModuleFlag(const MDNode *Op, 459 DenseMap<const MDString *, const MDNode *> &SeenIDs, 460 SmallVectorImpl<const MDNode *> &Requirements); 461 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 462 void visitFunction(const Function &F); 463 void visitBasicBlock(BasicBlock &BB); 464 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 465 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 466 void visitProfMetadata(Instruction &I, MDNode *MD); 467 void visitAnnotationMetadata(MDNode *Annotation); 468 void visitAliasScopeMetadata(const MDNode *MD); 469 void visitAliasScopeListMetadata(const MDNode *MD); 470 471 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 472 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 473 #include "llvm/IR/Metadata.def" 474 void visitDIScope(const DIScope &N); 475 void visitDIVariable(const DIVariable &N); 476 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 477 void visitDITemplateParameter(const DITemplateParameter &N); 478 479 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 480 481 // InstVisitor overrides... 482 using InstVisitor<Verifier>::visit; 483 void visit(Instruction &I); 484 485 void visitTruncInst(TruncInst &I); 486 void visitZExtInst(ZExtInst &I); 487 void visitSExtInst(SExtInst &I); 488 void visitFPTruncInst(FPTruncInst &I); 489 void visitFPExtInst(FPExtInst &I); 490 void visitFPToUIInst(FPToUIInst &I); 491 void visitFPToSIInst(FPToSIInst &I); 492 void visitUIToFPInst(UIToFPInst &I); 493 void visitSIToFPInst(SIToFPInst &I); 494 void visitIntToPtrInst(IntToPtrInst &I); 495 void visitPtrToIntInst(PtrToIntInst &I); 496 void visitBitCastInst(BitCastInst &I); 497 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 498 void visitPHINode(PHINode &PN); 499 void visitCallBase(CallBase &Call); 500 void visitUnaryOperator(UnaryOperator &U); 501 void visitBinaryOperator(BinaryOperator &B); 502 void visitICmpInst(ICmpInst &IC); 503 void visitFCmpInst(FCmpInst &FC); 504 void visitExtractElementInst(ExtractElementInst &EI); 505 void visitInsertElementInst(InsertElementInst &EI); 506 void visitShuffleVectorInst(ShuffleVectorInst &EI); 507 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 508 void visitCallInst(CallInst &CI); 509 void visitInvokeInst(InvokeInst &II); 510 void visitGetElementPtrInst(GetElementPtrInst &GEP); 511 void visitLoadInst(LoadInst &LI); 512 void visitStoreInst(StoreInst &SI); 513 void verifyDominatesUse(Instruction &I, unsigned i); 514 void visitInstruction(Instruction &I); 515 void visitTerminator(Instruction &I); 516 void visitBranchInst(BranchInst &BI); 517 void visitReturnInst(ReturnInst &RI); 518 void visitSwitchInst(SwitchInst &SI); 519 void visitIndirectBrInst(IndirectBrInst &BI); 520 void visitCallBrInst(CallBrInst &CBI); 521 void visitSelectInst(SelectInst &SI); 522 void visitUserOp1(Instruction &I); 523 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 524 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 525 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 526 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 527 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 528 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 529 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 530 void visitFenceInst(FenceInst &FI); 531 void visitAllocaInst(AllocaInst &AI); 532 void visitExtractValueInst(ExtractValueInst &EVI); 533 void visitInsertValueInst(InsertValueInst &IVI); 534 void visitEHPadPredecessors(Instruction &I); 535 void visitLandingPadInst(LandingPadInst &LPI); 536 void visitResumeInst(ResumeInst &RI); 537 void visitCatchPadInst(CatchPadInst &CPI); 538 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 539 void visitCleanupPadInst(CleanupPadInst &CPI); 540 void visitFuncletPadInst(FuncletPadInst &FPI); 541 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 542 void visitCleanupReturnInst(CleanupReturnInst &CRI); 543 544 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 545 void verifySwiftErrorValue(const Value *SwiftErrorVal); 546 void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context); 547 void verifyMustTailCall(CallInst &CI); 548 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 549 void verifyAttributeTypes(AttributeSet Attrs, const Value *V); 550 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 551 void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 552 const Value *V); 553 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 554 const Value *V, bool IsIntrinsic, bool IsInlineAsm); 555 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 556 557 void visitConstantExprsRecursively(const Constant *EntryC); 558 void visitConstantExpr(const ConstantExpr *CE); 559 void verifyInlineAsmCall(const CallBase &Call); 560 void verifyStatepoint(const CallBase &Call); 561 void verifyFrameRecoverIndices(); 562 void verifySiblingFuncletUnwinds(); 563 564 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 565 template <typename ValueOrMetadata> 566 void verifyFragmentExpression(const DIVariable &V, 567 DIExpression::FragmentInfo Fragment, 568 ValueOrMetadata *Desc); 569 void verifyFnArgs(const DbgVariableIntrinsic &I); 570 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 571 572 /// Module-level debug info verification... 573 void verifyCompileUnits(); 574 575 /// Module-level verification that all @llvm.experimental.deoptimize 576 /// declarations share the same calling convention. 577 void verifyDeoptimizeCallingConvs(); 578 579 void verifyAttachedCallBundle(const CallBase &Call, 580 const OperandBundleUse &BU); 581 582 /// Verify all-or-nothing property of DIFile source attribute within a CU. 583 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 584 585 /// Verify the llvm.experimental.noalias.scope.decl declarations 586 void verifyNoAliasScopeDecl(); 587 }; 588 589 } // end anonymous namespace 590 591 /// We know that cond should be true, if not print an error message. 592 #define Assert(C, ...) \ 593 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 594 595 /// We know that a debug info condition should be true, if not print 596 /// an error message. 597 #define AssertDI(C, ...) \ 598 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 599 600 void Verifier::visit(Instruction &I) { 601 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 602 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 603 InstVisitor<Verifier>::visit(I); 604 } 605 606 // Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further. 607 static void forEachUser(const Value *User, 608 SmallPtrSet<const Value *, 32> &Visited, 609 llvm::function_ref<bool(const Value *)> Callback) { 610 if (!Visited.insert(User).second) 611 return; 612 613 SmallVector<const Value *> WorkList; 614 append_range(WorkList, User->materialized_users()); 615 while (!WorkList.empty()) { 616 const Value *Cur = WorkList.pop_back_val(); 617 if (!Visited.insert(Cur).second) 618 continue; 619 if (Callback(Cur)) 620 append_range(WorkList, Cur->materialized_users()); 621 } 622 } 623 624 void Verifier::visitGlobalValue(const GlobalValue &GV) { 625 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 626 "Global is external, but doesn't have external or weak linkage!", &GV); 627 628 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) { 629 630 if (MaybeAlign A = GO->getAlign()) { 631 Assert(A->value() <= Value::MaximumAlignment, 632 "huge alignment values are unsupported", GO); 633 } 634 } 635 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 636 "Only global variables can have appending linkage!", &GV); 637 638 if (GV.hasAppendingLinkage()) { 639 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 640 Assert(GVar && GVar->getValueType()->isArrayTy(), 641 "Only global arrays can have appending linkage!", GVar); 642 } 643 644 if (GV.isDeclarationForLinker()) 645 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 646 647 if (GV.hasDLLImportStorageClass()) { 648 Assert(!GV.isDSOLocal(), 649 "GlobalValue with DLLImport Storage is dso_local!", &GV); 650 651 Assert((GV.isDeclaration() && 652 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) || 653 GV.hasAvailableExternallyLinkage(), 654 "Global is marked as dllimport, but not external", &GV); 655 } 656 657 if (GV.isImplicitDSOLocal()) 658 Assert(GV.isDSOLocal(), 659 "GlobalValue with local linkage or non-default " 660 "visibility must be dso_local!", 661 &GV); 662 663 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 664 if (const Instruction *I = dyn_cast<Instruction>(V)) { 665 if (!I->getParent() || !I->getParent()->getParent()) 666 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 667 I); 668 else if (I->getParent()->getParent()->getParent() != &M) 669 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 670 I->getParent()->getParent(), 671 I->getParent()->getParent()->getParent()); 672 return false; 673 } else if (const Function *F = dyn_cast<Function>(V)) { 674 if (F->getParent() != &M) 675 CheckFailed("Global is used by function in a different module", &GV, &M, 676 F, F->getParent()); 677 return false; 678 } 679 return true; 680 }); 681 } 682 683 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 684 if (GV.hasInitializer()) { 685 Assert(GV.getInitializer()->getType() == GV.getValueType(), 686 "Global variable initializer type does not match global " 687 "variable type!", 688 &GV); 689 // If the global has common linkage, it must have a zero initializer and 690 // cannot be constant. 691 if (GV.hasCommonLinkage()) { 692 Assert(GV.getInitializer()->isNullValue(), 693 "'common' global must have a zero initializer!", &GV); 694 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 695 &GV); 696 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 697 } 698 } 699 700 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 701 GV.getName() == "llvm.global_dtors")) { 702 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 703 "invalid linkage for intrinsic global variable", &GV); 704 // Don't worry about emitting an error for it not being an array, 705 // visitGlobalValue will complain on appending non-array. 706 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 707 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 708 PointerType *FuncPtrTy = 709 FunctionType::get(Type::getVoidTy(Context), false)-> 710 getPointerTo(DL.getProgramAddressSpace()); 711 Assert(STy && 712 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 713 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 714 STy->getTypeAtIndex(1) == FuncPtrTy, 715 "wrong type for intrinsic global variable", &GV); 716 Assert(STy->getNumElements() == 3, 717 "the third field of the element type is mandatory, " 718 "specify i8* null to migrate from the obsoleted 2-field form"); 719 Type *ETy = STy->getTypeAtIndex(2); 720 Type *Int8Ty = Type::getInt8Ty(ETy->getContext()); 721 Assert(ETy->isPointerTy() && 722 cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty), 723 "wrong type for intrinsic global variable", &GV); 724 } 725 } 726 727 if (GV.hasName() && (GV.getName() == "llvm.used" || 728 GV.getName() == "llvm.compiler.used")) { 729 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 730 "invalid linkage for intrinsic global variable", &GV); 731 Type *GVType = GV.getValueType(); 732 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 733 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 734 Assert(PTy, "wrong type for intrinsic global variable", &GV); 735 if (GV.hasInitializer()) { 736 const Constant *Init = GV.getInitializer(); 737 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 738 Assert(InitArray, "wrong initalizer for intrinsic global variable", 739 Init); 740 for (Value *Op : InitArray->operands()) { 741 Value *V = Op->stripPointerCasts(); 742 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 743 isa<GlobalAlias>(V), 744 Twine("invalid ") + GV.getName() + " member", V); 745 Assert(V->hasName(), 746 Twine("members of ") + GV.getName() + " must be named", V); 747 } 748 } 749 } 750 } 751 752 // Visit any debug info attachments. 753 SmallVector<MDNode *, 1> MDs; 754 GV.getMetadata(LLVMContext::MD_dbg, MDs); 755 for (auto *MD : MDs) { 756 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 757 visitDIGlobalVariableExpression(*GVE); 758 else 759 AssertDI(false, "!dbg attachment of global variable must be a " 760 "DIGlobalVariableExpression"); 761 } 762 763 // Scalable vectors cannot be global variables, since we don't know 764 // the runtime size. If the global is an array containing scalable vectors, 765 // that will be caught by the isValidElementType methods in StructType or 766 // ArrayType instead. 767 Assert(!isa<ScalableVectorType>(GV.getValueType()), 768 "Globals cannot contain scalable vectors", &GV); 769 770 if (auto *STy = dyn_cast<StructType>(GV.getValueType())) 771 Assert(!STy->containsScalableVectorType(), 772 "Globals cannot contain scalable vectors", &GV); 773 774 if (!GV.hasInitializer()) { 775 visitGlobalValue(GV); 776 return; 777 } 778 779 // Walk any aggregate initializers looking for bitcasts between address spaces 780 visitConstantExprsRecursively(GV.getInitializer()); 781 782 visitGlobalValue(GV); 783 } 784 785 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 786 SmallPtrSet<const GlobalAlias*, 4> Visited; 787 Visited.insert(&GA); 788 visitAliaseeSubExpr(Visited, GA, C); 789 } 790 791 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 792 const GlobalAlias &GA, const Constant &C) { 793 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 794 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 795 &GA); 796 797 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 798 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 799 800 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 801 &GA); 802 } else { 803 // Only continue verifying subexpressions of GlobalAliases. 804 // Do not recurse into global initializers. 805 return; 806 } 807 } 808 809 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 810 visitConstantExprsRecursively(CE); 811 812 for (const Use &U : C.operands()) { 813 Value *V = &*U; 814 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 815 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 816 else if (const auto *C2 = dyn_cast<Constant>(V)) 817 visitAliaseeSubExpr(Visited, GA, *C2); 818 } 819 } 820 821 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 822 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 823 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 824 "weak_odr, or external linkage!", 825 &GA); 826 const Constant *Aliasee = GA.getAliasee(); 827 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 828 Assert(GA.getType() == Aliasee->getType(), 829 "Alias and aliasee types should match!", &GA); 830 831 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 832 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 833 834 visitAliaseeSubExpr(GA, *Aliasee); 835 836 visitGlobalValue(GA); 837 } 838 839 void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) { 840 // Pierce through ConstantExprs and GlobalAliases and check that the resolver 841 // has a Function 842 const Function *Resolver = GI.getResolverFunction(); 843 Assert(Resolver, "IFunc must have a Function resolver", &GI); 844 845 // Check that the immediate resolver operand (prior to any bitcasts) has the 846 // correct type 847 const Type *ResolverTy = GI.getResolver()->getType(); 848 const Type *ResolverFuncTy = 849 GlobalIFunc::getResolverFunctionType(GI.getValueType()); 850 Assert(ResolverTy == ResolverFuncTy->getPointerTo(), 851 "IFunc resolver has incorrect type", &GI); 852 } 853 854 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 855 // There used to be various other llvm.dbg.* nodes, but we don't support 856 // upgrading them and we want to reserve the namespace for future uses. 857 if (NMD.getName().startswith("llvm.dbg.")) 858 AssertDI(NMD.getName() == "llvm.dbg.cu", 859 "unrecognized named metadata node in the llvm.dbg namespace", 860 &NMD); 861 for (const MDNode *MD : NMD.operands()) { 862 if (NMD.getName() == "llvm.dbg.cu") 863 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 864 865 if (!MD) 866 continue; 867 868 visitMDNode(*MD, AreDebugLocsAllowed::Yes); 869 } 870 } 871 872 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { 873 // Only visit each node once. Metadata can be mutually recursive, so this 874 // avoids infinite recursion here, as well as being an optimization. 875 if (!MDNodes.insert(&MD).second) 876 return; 877 878 Assert(&MD.getContext() == &Context, 879 "MDNode context does not match Module context!", &MD); 880 881 switch (MD.getMetadataID()) { 882 default: 883 llvm_unreachable("Invalid MDNode subclass"); 884 case Metadata::MDTupleKind: 885 break; 886 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 887 case Metadata::CLASS##Kind: \ 888 visit##CLASS(cast<CLASS>(MD)); \ 889 break; 890 #include "llvm/IR/Metadata.def" 891 } 892 893 for (const Metadata *Op : MD.operands()) { 894 if (!Op) 895 continue; 896 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 897 &MD, Op); 898 AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes, 899 "DILocation not allowed within this metadata node", &MD, Op); 900 if (auto *N = dyn_cast<MDNode>(Op)) { 901 visitMDNode(*N, AllowLocs); 902 continue; 903 } 904 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 905 visitValueAsMetadata(*V, nullptr); 906 continue; 907 } 908 } 909 910 // Check these last, so we diagnose problems in operands first. 911 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 912 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 913 } 914 915 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 916 Assert(MD.getValue(), "Expected valid value", &MD); 917 Assert(!MD.getValue()->getType()->isMetadataTy(), 918 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 919 920 auto *L = dyn_cast<LocalAsMetadata>(&MD); 921 if (!L) 922 return; 923 924 Assert(F, "function-local metadata used outside a function", L); 925 926 // If this was an instruction, bb, or argument, verify that it is in the 927 // function that we expect. 928 Function *ActualF = nullptr; 929 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 930 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 931 ActualF = I->getParent()->getParent(); 932 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 933 ActualF = BB->getParent(); 934 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 935 ActualF = A->getParent(); 936 assert(ActualF && "Unimplemented function local metadata case!"); 937 938 Assert(ActualF == F, "function-local metadata used in wrong function", L); 939 } 940 941 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 942 Metadata *MD = MDV.getMetadata(); 943 if (auto *N = dyn_cast<MDNode>(MD)) { 944 visitMDNode(*N, AreDebugLocsAllowed::No); 945 return; 946 } 947 948 // Only visit each node once. Metadata can be mutually recursive, so this 949 // avoids infinite recursion here, as well as being an optimization. 950 if (!MDNodes.insert(MD).second) 951 return; 952 953 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 954 visitValueAsMetadata(*V, F); 955 } 956 957 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 958 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 959 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 960 961 void Verifier::visitDILocation(const DILocation &N) { 962 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 963 "location requires a valid scope", &N, N.getRawScope()); 964 if (auto *IA = N.getRawInlinedAt()) 965 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 966 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 967 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 968 } 969 970 void Verifier::visitGenericDINode(const GenericDINode &N) { 971 AssertDI(N.getTag(), "invalid tag", &N); 972 } 973 974 void Verifier::visitDIScope(const DIScope &N) { 975 if (auto *F = N.getRawFile()) 976 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 977 } 978 979 void Verifier::visitDISubrange(const DISubrange &N) { 980 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 981 bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang); 982 AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() || 983 N.getRawUpperBound(), 984 "Subrange must contain count or upperBound", &N); 985 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 986 "Subrange can have any one of count or upperBound", &N); 987 auto *CBound = N.getRawCountNode(); 988 AssertDI(!CBound || isa<ConstantAsMetadata>(CBound) || 989 isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 990 "Count must be signed constant or DIVariable or DIExpression", &N); 991 auto Count = N.getCount(); 992 AssertDI(!Count || !Count.is<ConstantInt *>() || 993 Count.get<ConstantInt *>()->getSExtValue() >= -1, 994 "invalid subrange count", &N); 995 auto *LBound = N.getRawLowerBound(); 996 AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) || 997 isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 998 "LowerBound must be signed constant or DIVariable or DIExpression", 999 &N); 1000 auto *UBound = N.getRawUpperBound(); 1001 AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) || 1002 isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 1003 "UpperBound must be signed constant or DIVariable or DIExpression", 1004 &N); 1005 auto *Stride = N.getRawStride(); 1006 AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) || 1007 isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 1008 "Stride must be signed constant or DIVariable or DIExpression", &N); 1009 } 1010 1011 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) { 1012 AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N); 1013 AssertDI(N.getRawCountNode() || N.getRawUpperBound(), 1014 "GenericSubrange must contain count or upperBound", &N); 1015 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 1016 "GenericSubrange can have any one of count or upperBound", &N); 1017 auto *CBound = N.getRawCountNode(); 1018 AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 1019 "Count must be signed constant or DIVariable or DIExpression", &N); 1020 auto *LBound = N.getRawLowerBound(); 1021 AssertDI(LBound, "GenericSubrange must contain lowerBound", &N); 1022 AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 1023 "LowerBound must be signed constant or DIVariable or DIExpression", 1024 &N); 1025 auto *UBound = N.getRawUpperBound(); 1026 AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 1027 "UpperBound must be signed constant or DIVariable or DIExpression", 1028 &N); 1029 auto *Stride = N.getRawStride(); 1030 AssertDI(Stride, "GenericSubrange must contain stride", &N); 1031 AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 1032 "Stride must be signed constant or DIVariable or DIExpression", &N); 1033 } 1034 1035 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 1036 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 1037 } 1038 1039 void Verifier::visitDIBasicType(const DIBasicType &N) { 1040 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 1041 N.getTag() == dwarf::DW_TAG_unspecified_type || 1042 N.getTag() == dwarf::DW_TAG_string_type, 1043 "invalid tag", &N); 1044 } 1045 1046 void Verifier::visitDIStringType(const DIStringType &N) { 1047 AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N); 1048 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 1049 "has conflicting flags", &N); 1050 } 1051 1052 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 1053 // Common scope checks. 1054 visitDIScope(N); 1055 1056 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 1057 N.getTag() == dwarf::DW_TAG_pointer_type || 1058 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 1059 N.getTag() == dwarf::DW_TAG_reference_type || 1060 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 1061 N.getTag() == dwarf::DW_TAG_const_type || 1062 N.getTag() == dwarf::DW_TAG_immutable_type || 1063 N.getTag() == dwarf::DW_TAG_volatile_type || 1064 N.getTag() == dwarf::DW_TAG_restrict_type || 1065 N.getTag() == dwarf::DW_TAG_atomic_type || 1066 N.getTag() == dwarf::DW_TAG_member || 1067 N.getTag() == dwarf::DW_TAG_inheritance || 1068 N.getTag() == dwarf::DW_TAG_friend || 1069 N.getTag() == dwarf::DW_TAG_set_type, 1070 "invalid tag", &N); 1071 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 1072 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 1073 N.getRawExtraData()); 1074 } 1075 1076 if (N.getTag() == dwarf::DW_TAG_set_type) { 1077 if (auto *T = N.getRawBaseType()) { 1078 auto *Enum = dyn_cast_or_null<DICompositeType>(T); 1079 auto *Basic = dyn_cast_or_null<DIBasicType>(T); 1080 AssertDI( 1081 (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) || 1082 (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned || 1083 Basic->getEncoding() == dwarf::DW_ATE_signed || 1084 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char || 1085 Basic->getEncoding() == dwarf::DW_ATE_signed_char || 1086 Basic->getEncoding() == dwarf::DW_ATE_boolean)), 1087 "invalid set base type", &N, T); 1088 } 1089 } 1090 1091 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1092 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1093 N.getRawBaseType()); 1094 1095 if (N.getDWARFAddressSpace()) { 1096 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 1097 N.getTag() == dwarf::DW_TAG_reference_type || 1098 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 1099 "DWARF address space only applies to pointer or reference types", 1100 &N); 1101 } 1102 } 1103 1104 /// Detect mutually exclusive flags. 1105 static bool hasConflictingReferenceFlags(unsigned Flags) { 1106 return ((Flags & DINode::FlagLValueReference) && 1107 (Flags & DINode::FlagRValueReference)) || 1108 ((Flags & DINode::FlagTypePassByValue) && 1109 (Flags & DINode::FlagTypePassByReference)); 1110 } 1111 1112 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 1113 auto *Params = dyn_cast<MDTuple>(&RawParams); 1114 AssertDI(Params, "invalid template params", &N, &RawParams); 1115 for (Metadata *Op : Params->operands()) { 1116 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 1117 &N, Params, Op); 1118 } 1119 } 1120 1121 void Verifier::visitDICompositeType(const DICompositeType &N) { 1122 // Common scope checks. 1123 visitDIScope(N); 1124 1125 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 1126 N.getTag() == dwarf::DW_TAG_structure_type || 1127 N.getTag() == dwarf::DW_TAG_union_type || 1128 N.getTag() == dwarf::DW_TAG_enumeration_type || 1129 N.getTag() == dwarf::DW_TAG_class_type || 1130 N.getTag() == dwarf::DW_TAG_variant_part || 1131 N.getTag() == dwarf::DW_TAG_namelist, 1132 "invalid tag", &N); 1133 1134 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1135 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1136 N.getRawBaseType()); 1137 1138 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 1139 "invalid composite elements", &N, N.getRawElements()); 1140 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 1141 N.getRawVTableHolder()); 1142 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1143 "invalid reference flags", &N); 1144 unsigned DIBlockByRefStruct = 1 << 4; 1145 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, 1146 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 1147 1148 if (N.isVector()) { 1149 const DINodeArray Elements = N.getElements(); 1150 AssertDI(Elements.size() == 1 && 1151 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 1152 "invalid vector, expected one element of type subrange", &N); 1153 } 1154 1155 if (auto *Params = N.getRawTemplateParams()) 1156 visitTemplateParams(N, *Params); 1157 1158 if (auto *D = N.getRawDiscriminator()) { 1159 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1160 "discriminator can only appear on variant part"); 1161 } 1162 1163 if (N.getRawDataLocation()) { 1164 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1165 "dataLocation can only appear in array type"); 1166 } 1167 1168 if (N.getRawAssociated()) { 1169 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1170 "associated can only appear in array type"); 1171 } 1172 1173 if (N.getRawAllocated()) { 1174 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1175 "allocated can only appear in array type"); 1176 } 1177 1178 if (N.getRawRank()) { 1179 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1180 "rank can only appear in array type"); 1181 } 1182 } 1183 1184 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1185 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1186 if (auto *Types = N.getRawTypeArray()) { 1187 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1188 for (Metadata *Ty : N.getTypeArray()->operands()) { 1189 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1190 } 1191 } 1192 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1193 "invalid reference flags", &N); 1194 } 1195 1196 void Verifier::visitDIFile(const DIFile &N) { 1197 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1198 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1199 if (Checksum) { 1200 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1201 "invalid checksum kind", &N); 1202 size_t Size; 1203 switch (Checksum->Kind) { 1204 case DIFile::CSK_MD5: 1205 Size = 32; 1206 break; 1207 case DIFile::CSK_SHA1: 1208 Size = 40; 1209 break; 1210 case DIFile::CSK_SHA256: 1211 Size = 64; 1212 break; 1213 } 1214 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1215 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1216 "invalid checksum", &N); 1217 } 1218 } 1219 1220 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1221 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1222 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1223 1224 // Don't bother verifying the compilation directory or producer string 1225 // as those could be empty. 1226 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1227 N.getRawFile()); 1228 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1229 N.getFile()); 1230 1231 CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage(); 1232 1233 verifySourceDebugInfo(N, *N.getFile()); 1234 1235 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1236 "invalid emission kind", &N); 1237 1238 if (auto *Array = N.getRawEnumTypes()) { 1239 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1240 for (Metadata *Op : N.getEnumTypes()->operands()) { 1241 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1242 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1243 "invalid enum type", &N, N.getEnumTypes(), Op); 1244 } 1245 } 1246 if (auto *Array = N.getRawRetainedTypes()) { 1247 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1248 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1249 AssertDI(Op && (isa<DIType>(Op) || 1250 (isa<DISubprogram>(Op) && 1251 !cast<DISubprogram>(Op)->isDefinition())), 1252 "invalid retained type", &N, Op); 1253 } 1254 } 1255 if (auto *Array = N.getRawGlobalVariables()) { 1256 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1257 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1258 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1259 "invalid global variable ref", &N, Op); 1260 } 1261 } 1262 if (auto *Array = N.getRawImportedEntities()) { 1263 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1264 for (Metadata *Op : N.getImportedEntities()->operands()) { 1265 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1266 &N, Op); 1267 } 1268 } 1269 if (auto *Array = N.getRawMacros()) { 1270 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1271 for (Metadata *Op : N.getMacros()->operands()) { 1272 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1273 } 1274 } 1275 CUVisited.insert(&N); 1276 } 1277 1278 void Verifier::visitDISubprogram(const DISubprogram &N) { 1279 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1280 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1281 if (auto *F = N.getRawFile()) 1282 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1283 else 1284 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1285 if (auto *T = N.getRawType()) 1286 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1287 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1288 N.getRawContainingType()); 1289 if (auto *Params = N.getRawTemplateParams()) 1290 visitTemplateParams(N, *Params); 1291 if (auto *S = N.getRawDeclaration()) 1292 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1293 "invalid subprogram declaration", &N, S); 1294 if (auto *RawNode = N.getRawRetainedNodes()) { 1295 auto *Node = dyn_cast<MDTuple>(RawNode); 1296 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1297 for (Metadata *Op : Node->operands()) { 1298 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1299 "invalid retained nodes, expected DILocalVariable or DILabel", 1300 &N, Node, Op); 1301 } 1302 } 1303 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1304 "invalid reference flags", &N); 1305 1306 auto *Unit = N.getRawUnit(); 1307 if (N.isDefinition()) { 1308 // Subprogram definitions (not part of the type hierarchy). 1309 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1310 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1311 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1312 if (N.getFile()) 1313 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1314 } else { 1315 // Subprogram declarations (part of the type hierarchy). 1316 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1317 } 1318 1319 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1320 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1321 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1322 for (Metadata *Op : ThrownTypes->operands()) 1323 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1324 Op); 1325 } 1326 1327 if (N.areAllCallsDescribed()) 1328 AssertDI(N.isDefinition(), 1329 "DIFlagAllCallsDescribed must be attached to a definition"); 1330 } 1331 1332 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1333 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1334 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1335 "invalid local scope", &N, N.getRawScope()); 1336 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1337 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1338 } 1339 1340 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1341 visitDILexicalBlockBase(N); 1342 1343 AssertDI(N.getLine() || !N.getColumn(), 1344 "cannot have column info without line info", &N); 1345 } 1346 1347 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1348 visitDILexicalBlockBase(N); 1349 } 1350 1351 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1352 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1353 if (auto *S = N.getRawScope()) 1354 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1355 if (auto *S = N.getRawDecl()) 1356 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1357 } 1358 1359 void Verifier::visitDINamespace(const DINamespace &N) { 1360 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1361 if (auto *S = N.getRawScope()) 1362 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1363 } 1364 1365 void Verifier::visitDIMacro(const DIMacro &N) { 1366 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1367 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1368 "invalid macinfo type", &N); 1369 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1370 if (!N.getValue().empty()) { 1371 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1372 } 1373 } 1374 1375 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1376 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1377 "invalid macinfo type", &N); 1378 if (auto *F = N.getRawFile()) 1379 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1380 1381 if (auto *Array = N.getRawElements()) { 1382 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1383 for (Metadata *Op : N.getElements()->operands()) { 1384 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1385 } 1386 } 1387 } 1388 1389 void Verifier::visitDIArgList(const DIArgList &N) { 1390 AssertDI(!N.getNumOperands(), 1391 "DIArgList should have no operands other than a list of " 1392 "ValueAsMetadata", 1393 &N); 1394 } 1395 1396 void Verifier::visitDIModule(const DIModule &N) { 1397 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1398 AssertDI(!N.getName().empty(), "anonymous module", &N); 1399 } 1400 1401 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1402 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1403 } 1404 1405 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1406 visitDITemplateParameter(N); 1407 1408 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1409 &N); 1410 } 1411 1412 void Verifier::visitDITemplateValueParameter( 1413 const DITemplateValueParameter &N) { 1414 visitDITemplateParameter(N); 1415 1416 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1417 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1418 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1419 "invalid tag", &N); 1420 } 1421 1422 void Verifier::visitDIVariable(const DIVariable &N) { 1423 if (auto *S = N.getRawScope()) 1424 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1425 if (auto *F = N.getRawFile()) 1426 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1427 } 1428 1429 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1430 // Checks common to all variables. 1431 visitDIVariable(N); 1432 1433 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1434 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1435 // Assert only if the global variable is not an extern 1436 if (N.isDefinition()) 1437 AssertDI(N.getType(), "missing global variable type", &N); 1438 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1439 AssertDI(isa<DIDerivedType>(Member), 1440 "invalid static data member declaration", &N, Member); 1441 } 1442 } 1443 1444 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1445 // Checks common to all variables. 1446 visitDIVariable(N); 1447 1448 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1449 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1450 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1451 "local variable requires a valid scope", &N, N.getRawScope()); 1452 if (auto Ty = N.getType()) 1453 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1454 } 1455 1456 void Verifier::visitDILabel(const DILabel &N) { 1457 if (auto *S = N.getRawScope()) 1458 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1459 if (auto *F = N.getRawFile()) 1460 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1461 1462 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1463 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1464 "label requires a valid scope", &N, N.getRawScope()); 1465 } 1466 1467 void Verifier::visitDIExpression(const DIExpression &N) { 1468 AssertDI(N.isValid(), "invalid expression", &N); 1469 } 1470 1471 void Verifier::visitDIGlobalVariableExpression( 1472 const DIGlobalVariableExpression &GVE) { 1473 AssertDI(GVE.getVariable(), "missing variable"); 1474 if (auto *Var = GVE.getVariable()) 1475 visitDIGlobalVariable(*Var); 1476 if (auto *Expr = GVE.getExpression()) { 1477 visitDIExpression(*Expr); 1478 if (auto Fragment = Expr->getFragmentInfo()) 1479 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1480 } 1481 } 1482 1483 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1484 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1485 if (auto *T = N.getRawType()) 1486 AssertDI(isType(T), "invalid type ref", &N, T); 1487 if (auto *F = N.getRawFile()) 1488 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1489 } 1490 1491 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1492 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1493 N.getTag() == dwarf::DW_TAG_imported_declaration, 1494 "invalid tag", &N); 1495 if (auto *S = N.getRawScope()) 1496 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1497 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1498 N.getRawEntity()); 1499 } 1500 1501 void Verifier::visitComdat(const Comdat &C) { 1502 // In COFF the Module is invalid if the GlobalValue has private linkage. 1503 // Entities with private linkage don't have entries in the symbol table. 1504 if (TT.isOSBinFormatCOFF()) 1505 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1506 Assert(!GV->hasPrivateLinkage(), 1507 "comdat global value has private linkage", GV); 1508 } 1509 1510 void Verifier::visitModuleIdents() { 1511 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1512 if (!Idents) 1513 return; 1514 1515 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1516 // Scan each llvm.ident entry and make sure that this requirement is met. 1517 for (const MDNode *N : Idents->operands()) { 1518 Assert(N->getNumOperands() == 1, 1519 "incorrect number of operands in llvm.ident metadata", N); 1520 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1521 ("invalid value for llvm.ident metadata entry operand" 1522 "(the operand should be a string)"), 1523 N->getOperand(0)); 1524 } 1525 } 1526 1527 void Verifier::visitModuleCommandLines() { 1528 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1529 if (!CommandLines) 1530 return; 1531 1532 // llvm.commandline takes a list of metadata entry. Each entry has only one 1533 // string. Scan each llvm.commandline entry and make sure that this 1534 // requirement is met. 1535 for (const MDNode *N : CommandLines->operands()) { 1536 Assert(N->getNumOperands() == 1, 1537 "incorrect number of operands in llvm.commandline metadata", N); 1538 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1539 ("invalid value for llvm.commandline metadata entry operand" 1540 "(the operand should be a string)"), 1541 N->getOperand(0)); 1542 } 1543 } 1544 1545 void Verifier::visitModuleFlags() { 1546 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1547 if (!Flags) return; 1548 1549 // Scan each flag, and track the flags and requirements. 1550 DenseMap<const MDString*, const MDNode*> SeenIDs; 1551 SmallVector<const MDNode*, 16> Requirements; 1552 for (const MDNode *MDN : Flags->operands()) 1553 visitModuleFlag(MDN, SeenIDs, Requirements); 1554 1555 // Validate that the requirements in the module are valid. 1556 for (const MDNode *Requirement : Requirements) { 1557 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1558 const Metadata *ReqValue = Requirement->getOperand(1); 1559 1560 const MDNode *Op = SeenIDs.lookup(Flag); 1561 if (!Op) { 1562 CheckFailed("invalid requirement on flag, flag is not present in module", 1563 Flag); 1564 continue; 1565 } 1566 1567 if (Op->getOperand(2) != ReqValue) { 1568 CheckFailed(("invalid requirement on flag, " 1569 "flag does not have the required value"), 1570 Flag); 1571 continue; 1572 } 1573 } 1574 } 1575 1576 void 1577 Verifier::visitModuleFlag(const MDNode *Op, 1578 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1579 SmallVectorImpl<const MDNode *> &Requirements) { 1580 // Each module flag should have three arguments, the merge behavior (a 1581 // constant int), the flag ID (an MDString), and the value. 1582 Assert(Op->getNumOperands() == 3, 1583 "incorrect number of operands in module flag", Op); 1584 Module::ModFlagBehavior MFB; 1585 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1586 Assert( 1587 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1588 "invalid behavior operand in module flag (expected constant integer)", 1589 Op->getOperand(0)); 1590 Assert(false, 1591 "invalid behavior operand in module flag (unexpected constant)", 1592 Op->getOperand(0)); 1593 } 1594 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1595 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1596 Op->getOperand(1)); 1597 1598 // Check the values for behaviors with additional requirements. 1599 switch (MFB) { 1600 case Module::Error: 1601 case Module::Warning: 1602 case Module::Override: 1603 // These behavior types accept any value. 1604 break; 1605 1606 case Module::Max: { 1607 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1608 "invalid value for 'max' module flag (expected constant integer)", 1609 Op->getOperand(2)); 1610 break; 1611 } 1612 1613 case Module::Require: { 1614 // The value should itself be an MDNode with two operands, a flag ID (an 1615 // MDString), and a value. 1616 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1617 Assert(Value && Value->getNumOperands() == 2, 1618 "invalid value for 'require' module flag (expected metadata pair)", 1619 Op->getOperand(2)); 1620 Assert(isa<MDString>(Value->getOperand(0)), 1621 ("invalid value for 'require' module flag " 1622 "(first value operand should be a string)"), 1623 Value->getOperand(0)); 1624 1625 // Append it to the list of requirements, to check once all module flags are 1626 // scanned. 1627 Requirements.push_back(Value); 1628 break; 1629 } 1630 1631 case Module::Append: 1632 case Module::AppendUnique: { 1633 // These behavior types require the operand be an MDNode. 1634 Assert(isa<MDNode>(Op->getOperand(2)), 1635 "invalid value for 'append'-type module flag " 1636 "(expected a metadata node)", 1637 Op->getOperand(2)); 1638 break; 1639 } 1640 } 1641 1642 // Unless this is a "requires" flag, check the ID is unique. 1643 if (MFB != Module::Require) { 1644 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1645 Assert(Inserted, 1646 "module flag identifiers must be unique (or of 'require' type)", ID); 1647 } 1648 1649 if (ID->getString() == "wchar_size") { 1650 ConstantInt *Value 1651 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1652 Assert(Value, "wchar_size metadata requires constant integer argument"); 1653 } 1654 1655 if (ID->getString() == "Linker Options") { 1656 // If the llvm.linker.options named metadata exists, we assume that the 1657 // bitcode reader has upgraded the module flag. Otherwise the flag might 1658 // have been created by a client directly. 1659 Assert(M.getNamedMetadata("llvm.linker.options"), 1660 "'Linker Options' named metadata no longer supported"); 1661 } 1662 1663 if (ID->getString() == "SemanticInterposition") { 1664 ConstantInt *Value = 1665 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1666 Assert(Value, 1667 "SemanticInterposition metadata requires constant integer argument"); 1668 } 1669 1670 if (ID->getString() == "CG Profile") { 1671 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1672 visitModuleFlagCGProfileEntry(MDO); 1673 } 1674 } 1675 1676 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1677 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1678 if (!FuncMDO) 1679 return; 1680 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1681 Assert(F && isa<Function>(F->getValue()->stripPointerCasts()), 1682 "expected a Function or null", FuncMDO); 1683 }; 1684 auto Node = dyn_cast_or_null<MDNode>(MDO); 1685 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1686 CheckFunction(Node->getOperand(0)); 1687 CheckFunction(Node->getOperand(1)); 1688 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1689 Assert(Count && Count->getType()->isIntegerTy(), 1690 "expected an integer constant", Node->getOperand(2)); 1691 } 1692 1693 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) { 1694 for (Attribute A : Attrs) { 1695 1696 if (A.isStringAttribute()) { 1697 #define GET_ATTR_NAMES 1698 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) 1699 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \ 1700 if (A.getKindAsString() == #DISPLAY_NAME) { \ 1701 auto V = A.getValueAsString(); \ 1702 if (!(V.empty() || V == "true" || V == "false")) \ 1703 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \ 1704 ""); \ 1705 } 1706 1707 #include "llvm/IR/Attributes.inc" 1708 continue; 1709 } 1710 1711 if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) { 1712 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", 1713 V); 1714 return; 1715 } 1716 } 1717 } 1718 1719 // VerifyParameterAttrs - Check the given attributes for an argument or return 1720 // value of the specified type. The value V is printed in error messages. 1721 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1722 const Value *V) { 1723 if (!Attrs.hasAttributes()) 1724 return; 1725 1726 verifyAttributeTypes(Attrs, V); 1727 1728 for (Attribute Attr : Attrs) 1729 Assert(Attr.isStringAttribute() || 1730 Attribute::canUseAsParamAttr(Attr.getKindAsEnum()), 1731 "Attribute '" + Attr.getAsString() + 1732 "' does not apply to parameters", 1733 V); 1734 1735 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1736 Assert(Attrs.getNumAttributes() == 1, 1737 "Attribute 'immarg' is incompatible with other attributes", V); 1738 } 1739 1740 // Check for mutually incompatible attributes. Only inreg is compatible with 1741 // sret. 1742 unsigned AttrCount = 0; 1743 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1744 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1745 AttrCount += Attrs.hasAttribute(Attribute::Preallocated); 1746 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1747 Attrs.hasAttribute(Attribute::InReg); 1748 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1749 AttrCount += Attrs.hasAttribute(Attribute::ByRef); 1750 Assert(AttrCount <= 1, 1751 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " 1752 "'byref', and 'sret' are incompatible!", 1753 V); 1754 1755 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1756 Attrs.hasAttribute(Attribute::ReadOnly)), 1757 "Attributes " 1758 "'inalloca and readonly' are incompatible!", 1759 V); 1760 1761 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1762 Attrs.hasAttribute(Attribute::Returned)), 1763 "Attributes " 1764 "'sret and returned' are incompatible!", 1765 V); 1766 1767 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1768 Attrs.hasAttribute(Attribute::SExt)), 1769 "Attributes " 1770 "'zeroext and signext' are incompatible!", 1771 V); 1772 1773 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1774 Attrs.hasAttribute(Attribute::ReadOnly)), 1775 "Attributes " 1776 "'readnone and readonly' are incompatible!", 1777 V); 1778 1779 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1780 Attrs.hasAttribute(Attribute::WriteOnly)), 1781 "Attributes " 1782 "'readnone and writeonly' are incompatible!", 1783 V); 1784 1785 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1786 Attrs.hasAttribute(Attribute::WriteOnly)), 1787 "Attributes " 1788 "'readonly and writeonly' are incompatible!", 1789 V); 1790 1791 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1792 Attrs.hasAttribute(Attribute::AlwaysInline)), 1793 "Attributes " 1794 "'noinline and alwaysinline' are incompatible!", 1795 V); 1796 1797 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1798 for (Attribute Attr : Attrs) { 1799 if (!Attr.isStringAttribute() && 1800 IncompatibleAttrs.contains(Attr.getKindAsEnum())) { 1801 CheckFailed("Attribute '" + Attr.getAsString() + 1802 "' applied to incompatible type!", V); 1803 return; 1804 } 1805 } 1806 1807 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1808 if (Attrs.hasAttribute(Attribute::ByVal)) { 1809 SmallPtrSet<Type *, 4> Visited; 1810 Assert(Attrs.getByValType()->isSized(&Visited), 1811 "Attribute 'byval' does not support unsized types!", V); 1812 } 1813 if (Attrs.hasAttribute(Attribute::ByRef)) { 1814 SmallPtrSet<Type *, 4> Visited; 1815 Assert(Attrs.getByRefType()->isSized(&Visited), 1816 "Attribute 'byref' does not support unsized types!", V); 1817 } 1818 if (Attrs.hasAttribute(Attribute::InAlloca)) { 1819 SmallPtrSet<Type *, 4> Visited; 1820 Assert(Attrs.getInAllocaType()->isSized(&Visited), 1821 "Attribute 'inalloca' does not support unsized types!", V); 1822 } 1823 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1824 SmallPtrSet<Type *, 4> Visited; 1825 Assert(Attrs.getPreallocatedType()->isSized(&Visited), 1826 "Attribute 'preallocated' does not support unsized types!", V); 1827 } 1828 if (!PTy->isOpaque()) { 1829 if (!isa<PointerType>(PTy->getNonOpaquePointerElementType())) 1830 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1831 "Attribute 'swifterror' only applies to parameters " 1832 "with pointer to pointer type!", 1833 V); 1834 if (Attrs.hasAttribute(Attribute::ByRef)) { 1835 Assert(Attrs.getByRefType() == PTy->getNonOpaquePointerElementType(), 1836 "Attribute 'byref' type does not match parameter!", V); 1837 } 1838 1839 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1840 Assert(Attrs.getByValType() == PTy->getNonOpaquePointerElementType(), 1841 "Attribute 'byval' type does not match parameter!", V); 1842 } 1843 1844 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1845 Assert(Attrs.getPreallocatedType() == 1846 PTy->getNonOpaquePointerElementType(), 1847 "Attribute 'preallocated' type does not match parameter!", V); 1848 } 1849 1850 if (Attrs.hasAttribute(Attribute::InAlloca)) { 1851 Assert(Attrs.getInAllocaType() == PTy->getNonOpaquePointerElementType(), 1852 "Attribute 'inalloca' type does not match parameter!", V); 1853 } 1854 1855 if (Attrs.hasAttribute(Attribute::ElementType)) { 1856 Assert(Attrs.getElementType() == PTy->getNonOpaquePointerElementType(), 1857 "Attribute 'elementtype' type does not match parameter!", V); 1858 } 1859 } 1860 } 1861 } 1862 1863 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 1864 const Value *V) { 1865 if (Attrs.hasFnAttr(Attr)) { 1866 StringRef S = Attrs.getFnAttr(Attr).getValueAsString(); 1867 unsigned N; 1868 if (S.getAsInteger(10, N)) 1869 CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V); 1870 } 1871 } 1872 1873 // Check parameter attributes against a function type. 1874 // The value V is printed in error messages. 1875 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1876 const Value *V, bool IsIntrinsic, 1877 bool IsInlineAsm) { 1878 if (Attrs.isEmpty()) 1879 return; 1880 1881 if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) { 1882 Assert(Attrs.hasParentContext(Context), 1883 "Attribute list does not match Module context!", &Attrs, V); 1884 for (const auto &AttrSet : Attrs) { 1885 Assert(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context), 1886 "Attribute set does not match Module context!", &AttrSet, V); 1887 for (const auto &A : AttrSet) { 1888 Assert(A.hasParentContext(Context), 1889 "Attribute does not match Module context!", &A, V); 1890 } 1891 } 1892 } 1893 1894 bool SawNest = false; 1895 bool SawReturned = false; 1896 bool SawSRet = false; 1897 bool SawSwiftSelf = false; 1898 bool SawSwiftAsync = false; 1899 bool SawSwiftError = false; 1900 1901 // Verify return value attributes. 1902 AttributeSet RetAttrs = Attrs.getRetAttrs(); 1903 for (Attribute RetAttr : RetAttrs) 1904 Assert(RetAttr.isStringAttribute() || 1905 Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()), 1906 "Attribute '" + RetAttr.getAsString() + 1907 "' does not apply to function return values", 1908 V); 1909 1910 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1911 1912 // Verify parameter attributes. 1913 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1914 Type *Ty = FT->getParamType(i); 1915 AttributeSet ArgAttrs = Attrs.getParamAttrs(i); 1916 1917 if (!IsIntrinsic) { 1918 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1919 "immarg attribute only applies to intrinsics",V); 1920 if (!IsInlineAsm) 1921 Assert(!ArgAttrs.hasAttribute(Attribute::ElementType), 1922 "Attribute 'elementtype' can only be applied to intrinsics" 1923 " and inline asm.", V); 1924 } 1925 1926 verifyParameterAttrs(ArgAttrs, Ty, V); 1927 1928 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1929 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1930 SawNest = true; 1931 } 1932 1933 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1934 Assert(!SawReturned, "More than one parameter has attribute returned!", 1935 V); 1936 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1937 "Incompatible argument and return types for 'returned' attribute", 1938 V); 1939 SawReturned = true; 1940 } 1941 1942 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1943 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1944 Assert(i == 0 || i == 1, 1945 "Attribute 'sret' is not on first or second parameter!", V); 1946 SawSRet = true; 1947 } 1948 1949 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1950 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1951 SawSwiftSelf = true; 1952 } 1953 1954 if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) { 1955 Assert(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V); 1956 SawSwiftAsync = true; 1957 } 1958 1959 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1960 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1961 V); 1962 SawSwiftError = true; 1963 } 1964 1965 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1966 Assert(i == FT->getNumParams() - 1, 1967 "inalloca isn't on the last parameter!", V); 1968 } 1969 } 1970 1971 if (!Attrs.hasFnAttrs()) 1972 return; 1973 1974 verifyAttributeTypes(Attrs.getFnAttrs(), V); 1975 for (Attribute FnAttr : Attrs.getFnAttrs()) 1976 Assert(FnAttr.isStringAttribute() || 1977 Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()), 1978 "Attribute '" + FnAttr.getAsString() + 1979 "' does not apply to functions!", 1980 V); 1981 1982 Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 1983 Attrs.hasFnAttr(Attribute::ReadOnly)), 1984 "Attributes 'readnone and readonly' are incompatible!", V); 1985 1986 Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 1987 Attrs.hasFnAttr(Attribute::WriteOnly)), 1988 "Attributes 'readnone and writeonly' are incompatible!", V); 1989 1990 Assert(!(Attrs.hasFnAttr(Attribute::ReadOnly) && 1991 Attrs.hasFnAttr(Attribute::WriteOnly)), 1992 "Attributes 'readonly and writeonly' are incompatible!", V); 1993 1994 Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 1995 Attrs.hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly)), 1996 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1997 "incompatible!", 1998 V); 1999 2000 Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 2001 Attrs.hasFnAttr(Attribute::InaccessibleMemOnly)), 2002 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 2003 2004 Assert(!(Attrs.hasFnAttr(Attribute::NoInline) && 2005 Attrs.hasFnAttr(Attribute::AlwaysInline)), 2006 "Attributes 'noinline and alwaysinline' are incompatible!", V); 2007 2008 if (Attrs.hasFnAttr(Attribute::OptimizeNone)) { 2009 Assert(Attrs.hasFnAttr(Attribute::NoInline), 2010 "Attribute 'optnone' requires 'noinline'!", V); 2011 2012 Assert(!Attrs.hasFnAttr(Attribute::OptimizeForSize), 2013 "Attributes 'optsize and optnone' are incompatible!", V); 2014 2015 Assert(!Attrs.hasFnAttr(Attribute::MinSize), 2016 "Attributes 'minsize and optnone' are incompatible!", V); 2017 } 2018 2019 if (Attrs.hasFnAttr(Attribute::JumpTable)) { 2020 const GlobalValue *GV = cast<GlobalValue>(V); 2021 Assert(GV->hasGlobalUnnamedAddr(), 2022 "Attribute 'jumptable' requires 'unnamed_addr'", V); 2023 } 2024 2025 if (Attrs.hasFnAttr(Attribute::AllocSize)) { 2026 std::pair<unsigned, Optional<unsigned>> Args = 2027 Attrs.getFnAttrs().getAllocSizeArgs(); 2028 2029 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 2030 if (ParamNo >= FT->getNumParams()) { 2031 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 2032 return false; 2033 } 2034 2035 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 2036 CheckFailed("'allocsize' " + Name + 2037 " argument must refer to an integer parameter", 2038 V); 2039 return false; 2040 } 2041 2042 return true; 2043 }; 2044 2045 if (!CheckParam("element size", Args.first)) 2046 return; 2047 2048 if (Args.second && !CheckParam("number of elements", *Args.second)) 2049 return; 2050 } 2051 2052 if (Attrs.hasFnAttr(Attribute::VScaleRange)) { 2053 unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin(); 2054 if (VScaleMin == 0) 2055 CheckFailed("'vscale_range' minimum must be greater than 0", V); 2056 2057 Optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax(); 2058 if (VScaleMax && VScaleMin > VScaleMax) 2059 CheckFailed("'vscale_range' minimum cannot be greater than maximum", V); 2060 } 2061 2062 if (Attrs.hasFnAttr("frame-pointer")) { 2063 StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString(); 2064 if (FP != "all" && FP != "non-leaf" && FP != "none") 2065 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 2066 } 2067 2068 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V); 2069 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V); 2070 checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V); 2071 } 2072 2073 void Verifier::verifyFunctionMetadata( 2074 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 2075 for (const auto &Pair : MDs) { 2076 if (Pair.first == LLVMContext::MD_prof) { 2077 MDNode *MD = Pair.second; 2078 Assert(MD->getNumOperands() >= 2, 2079 "!prof annotations should have no less than 2 operands", MD); 2080 2081 // Check first operand. 2082 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 2083 MD); 2084 Assert(isa<MDString>(MD->getOperand(0)), 2085 "expected string with name of the !prof annotation", MD); 2086 MDString *MDS = cast<MDString>(MD->getOperand(0)); 2087 StringRef ProfName = MDS->getString(); 2088 Assert(ProfName.equals("function_entry_count") || 2089 ProfName.equals("synthetic_function_entry_count"), 2090 "first operand should be 'function_entry_count'" 2091 " or 'synthetic_function_entry_count'", 2092 MD); 2093 2094 // Check second operand. 2095 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 2096 MD); 2097 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 2098 "expected integer argument to function_entry_count", MD); 2099 } 2100 } 2101 } 2102 2103 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 2104 if (!ConstantExprVisited.insert(EntryC).second) 2105 return; 2106 2107 SmallVector<const Constant *, 16> Stack; 2108 Stack.push_back(EntryC); 2109 2110 while (!Stack.empty()) { 2111 const Constant *C = Stack.pop_back_val(); 2112 2113 // Check this constant expression. 2114 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 2115 visitConstantExpr(CE); 2116 2117 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 2118 // Global Values get visited separately, but we do need to make sure 2119 // that the global value is in the correct module 2120 Assert(GV->getParent() == &M, "Referencing global in another module!", 2121 EntryC, &M, GV, GV->getParent()); 2122 continue; 2123 } 2124 2125 // Visit all sub-expressions. 2126 for (const Use &U : C->operands()) { 2127 const auto *OpC = dyn_cast<Constant>(U); 2128 if (!OpC) 2129 continue; 2130 if (!ConstantExprVisited.insert(OpC).second) 2131 continue; 2132 Stack.push_back(OpC); 2133 } 2134 } 2135 } 2136 2137 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 2138 if (CE->getOpcode() == Instruction::BitCast) 2139 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 2140 CE->getType()), 2141 "Invalid bitcast", CE); 2142 } 2143 2144 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 2145 // There shouldn't be more attribute sets than there are parameters plus the 2146 // function and return value. 2147 return Attrs.getNumAttrSets() <= Params + 2; 2148 } 2149 2150 void Verifier::verifyInlineAsmCall(const CallBase &Call) { 2151 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 2152 unsigned ArgNo = 0; 2153 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2154 // Only deal with constraints that correspond to call arguments. 2155 if (!CI.hasArg()) 2156 continue; 2157 2158 if (CI.isIndirect) { 2159 const Value *Arg = Call.getArgOperand(ArgNo); 2160 Assert(Arg->getType()->isPointerTy(), 2161 "Operand for indirect constraint must have pointer type", 2162 &Call); 2163 2164 Assert(Call.getAttributes().getParamElementType(ArgNo), 2165 "Operand for indirect constraint must have elementtype attribute", 2166 &Call); 2167 } else { 2168 Assert(!Call.paramHasAttr(ArgNo, Attribute::ElementType), 2169 "Elementtype attribute can only be applied for indirect " 2170 "constraints", &Call); 2171 } 2172 2173 ArgNo++; 2174 } 2175 } 2176 2177 /// Verify that statepoint intrinsic is well formed. 2178 void Verifier::verifyStatepoint(const CallBase &Call) { 2179 assert(Call.getCalledFunction() && 2180 Call.getCalledFunction()->getIntrinsicID() == 2181 Intrinsic::experimental_gc_statepoint); 2182 2183 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 2184 !Call.onlyAccessesArgMemory(), 2185 "gc.statepoint must read and write all memory to preserve " 2186 "reordering restrictions required by safepoint semantics", 2187 Call); 2188 2189 const int64_t NumPatchBytes = 2190 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 2191 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 2192 Assert(NumPatchBytes >= 0, 2193 "gc.statepoint number of patchable bytes must be " 2194 "positive", 2195 Call); 2196 2197 const Value *Target = Call.getArgOperand(2); 2198 auto *PT = dyn_cast<PointerType>(Target->getType()); 2199 Assert(PT && PT->getPointerElementType()->isFunctionTy(), 2200 "gc.statepoint callee must be of function pointer type", Call, Target); 2201 FunctionType *TargetFuncType = 2202 cast<FunctionType>(PT->getPointerElementType()); 2203 2204 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 2205 Assert(NumCallArgs >= 0, 2206 "gc.statepoint number of arguments to underlying call " 2207 "must be positive", 2208 Call); 2209 const int NumParams = (int)TargetFuncType->getNumParams(); 2210 if (TargetFuncType->isVarArg()) { 2211 Assert(NumCallArgs >= NumParams, 2212 "gc.statepoint mismatch in number of vararg call args", Call); 2213 2214 // TODO: Remove this limitation 2215 Assert(TargetFuncType->getReturnType()->isVoidTy(), 2216 "gc.statepoint doesn't support wrapping non-void " 2217 "vararg functions yet", 2218 Call); 2219 } else 2220 Assert(NumCallArgs == NumParams, 2221 "gc.statepoint mismatch in number of call args", Call); 2222 2223 const uint64_t Flags 2224 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 2225 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 2226 "unknown flag used in gc.statepoint flags argument", Call); 2227 2228 // Verify that the types of the call parameter arguments match 2229 // the type of the wrapped callee. 2230 AttributeList Attrs = Call.getAttributes(); 2231 for (int i = 0; i < NumParams; i++) { 2232 Type *ParamType = TargetFuncType->getParamType(i); 2233 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 2234 Assert(ArgType == ParamType, 2235 "gc.statepoint call argument does not match wrapped " 2236 "function type", 2237 Call); 2238 2239 if (TargetFuncType->isVarArg()) { 2240 AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i); 2241 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2242 "Attribute 'sret' cannot be used for vararg call arguments!", 2243 Call); 2244 } 2245 } 2246 2247 const int EndCallArgsInx = 4 + NumCallArgs; 2248 2249 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2250 Assert(isa<ConstantInt>(NumTransitionArgsV), 2251 "gc.statepoint number of transition arguments " 2252 "must be constant integer", 2253 Call); 2254 const int NumTransitionArgs = 2255 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2256 Assert(NumTransitionArgs == 0, 2257 "gc.statepoint w/inline transition bundle is deprecated", Call); 2258 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2259 2260 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2261 Assert(isa<ConstantInt>(NumDeoptArgsV), 2262 "gc.statepoint number of deoptimization arguments " 2263 "must be constant integer", 2264 Call); 2265 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2266 Assert(NumDeoptArgs == 0, 2267 "gc.statepoint w/inline deopt operands is deprecated", Call); 2268 2269 const int ExpectedNumArgs = 7 + NumCallArgs; 2270 Assert(ExpectedNumArgs == (int)Call.arg_size(), 2271 "gc.statepoint too many arguments", Call); 2272 2273 // Check that the only uses of this gc.statepoint are gc.result or 2274 // gc.relocate calls which are tied to this statepoint and thus part 2275 // of the same statepoint sequence 2276 for (const User *U : Call.users()) { 2277 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2278 Assert(UserCall, "illegal use of statepoint token", Call, U); 2279 if (!UserCall) 2280 continue; 2281 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2282 "gc.result or gc.relocate are the only value uses " 2283 "of a gc.statepoint", 2284 Call, U); 2285 if (isa<GCResultInst>(UserCall)) { 2286 Assert(UserCall->getArgOperand(0) == &Call, 2287 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2288 } else if (isa<GCRelocateInst>(Call)) { 2289 Assert(UserCall->getArgOperand(0) == &Call, 2290 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2291 } 2292 } 2293 2294 // Note: It is legal for a single derived pointer to be listed multiple 2295 // times. It's non-optimal, but it is legal. It can also happen after 2296 // insertion if we strip a bitcast away. 2297 // Note: It is really tempting to check that each base is relocated and 2298 // that a derived pointer is never reused as a base pointer. This turns 2299 // out to be problematic since optimizations run after safepoint insertion 2300 // can recognize equality properties that the insertion logic doesn't know 2301 // about. See example statepoint.ll in the verifier subdirectory 2302 } 2303 2304 void Verifier::verifyFrameRecoverIndices() { 2305 for (auto &Counts : FrameEscapeInfo) { 2306 Function *F = Counts.first; 2307 unsigned EscapedObjectCount = Counts.second.first; 2308 unsigned MaxRecoveredIndex = Counts.second.second; 2309 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2310 "all indices passed to llvm.localrecover must be less than the " 2311 "number of arguments passed to llvm.localescape in the parent " 2312 "function", 2313 F); 2314 } 2315 } 2316 2317 static Instruction *getSuccPad(Instruction *Terminator) { 2318 BasicBlock *UnwindDest; 2319 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2320 UnwindDest = II->getUnwindDest(); 2321 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2322 UnwindDest = CSI->getUnwindDest(); 2323 else 2324 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2325 return UnwindDest->getFirstNonPHI(); 2326 } 2327 2328 void Verifier::verifySiblingFuncletUnwinds() { 2329 SmallPtrSet<Instruction *, 8> Visited; 2330 SmallPtrSet<Instruction *, 8> Active; 2331 for (const auto &Pair : SiblingFuncletInfo) { 2332 Instruction *PredPad = Pair.first; 2333 if (Visited.count(PredPad)) 2334 continue; 2335 Active.insert(PredPad); 2336 Instruction *Terminator = Pair.second; 2337 do { 2338 Instruction *SuccPad = getSuccPad(Terminator); 2339 if (Active.count(SuccPad)) { 2340 // Found a cycle; report error 2341 Instruction *CyclePad = SuccPad; 2342 SmallVector<Instruction *, 8> CycleNodes; 2343 do { 2344 CycleNodes.push_back(CyclePad); 2345 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2346 if (CycleTerminator != CyclePad) 2347 CycleNodes.push_back(CycleTerminator); 2348 CyclePad = getSuccPad(CycleTerminator); 2349 } while (CyclePad != SuccPad); 2350 Assert(false, "EH pads can't handle each other's exceptions", 2351 ArrayRef<Instruction *>(CycleNodes)); 2352 } 2353 // Don't re-walk a node we've already checked 2354 if (!Visited.insert(SuccPad).second) 2355 break; 2356 // Walk to this successor if it has a map entry. 2357 PredPad = SuccPad; 2358 auto TermI = SiblingFuncletInfo.find(PredPad); 2359 if (TermI == SiblingFuncletInfo.end()) 2360 break; 2361 Terminator = TermI->second; 2362 Active.insert(PredPad); 2363 } while (true); 2364 // Each node only has one successor, so we've walked all the active 2365 // nodes' successors. 2366 Active.clear(); 2367 } 2368 } 2369 2370 // visitFunction - Verify that a function is ok. 2371 // 2372 void Verifier::visitFunction(const Function &F) { 2373 visitGlobalValue(F); 2374 2375 // Check function arguments. 2376 FunctionType *FT = F.getFunctionType(); 2377 unsigned NumArgs = F.arg_size(); 2378 2379 Assert(&Context == &F.getContext(), 2380 "Function context does not match Module context!", &F); 2381 2382 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2383 Assert(FT->getNumParams() == NumArgs, 2384 "# formal arguments must match # of arguments for function type!", &F, 2385 FT); 2386 Assert(F.getReturnType()->isFirstClassType() || 2387 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2388 "Functions cannot return aggregate values!", &F); 2389 2390 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2391 "Invalid struct return type!", &F); 2392 2393 AttributeList Attrs = F.getAttributes(); 2394 2395 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2396 "Attribute after last parameter!", &F); 2397 2398 bool IsIntrinsic = F.isIntrinsic(); 2399 2400 // Check function attributes. 2401 verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic, /* IsInlineAsm */ false); 2402 2403 // On function declarations/definitions, we do not support the builtin 2404 // attribute. We do not check this in VerifyFunctionAttrs since that is 2405 // checking for Attributes that can/can not ever be on functions. 2406 Assert(!Attrs.hasFnAttr(Attribute::Builtin), 2407 "Attribute 'builtin' can only be applied to a callsite.", &F); 2408 2409 Assert(!Attrs.hasAttrSomewhere(Attribute::ElementType), 2410 "Attribute 'elementtype' can only be applied to a callsite.", &F); 2411 2412 // Check that this function meets the restrictions on this calling convention. 2413 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2414 // restrictions can be lifted. 2415 switch (F.getCallingConv()) { 2416 default: 2417 case CallingConv::C: 2418 break; 2419 case CallingConv::X86_INTR: { 2420 Assert(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal), 2421 "Calling convention parameter requires byval", &F); 2422 break; 2423 } 2424 case CallingConv::AMDGPU_KERNEL: 2425 case CallingConv::SPIR_KERNEL: 2426 Assert(F.getReturnType()->isVoidTy(), 2427 "Calling convention requires void return type", &F); 2428 LLVM_FALLTHROUGH; 2429 case CallingConv::AMDGPU_VS: 2430 case CallingConv::AMDGPU_HS: 2431 case CallingConv::AMDGPU_GS: 2432 case CallingConv::AMDGPU_PS: 2433 case CallingConv::AMDGPU_CS: 2434 Assert(!F.hasStructRetAttr(), 2435 "Calling convention does not allow sret", &F); 2436 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) { 2437 const unsigned StackAS = DL.getAllocaAddrSpace(); 2438 unsigned i = 0; 2439 for (const Argument &Arg : F.args()) { 2440 Assert(!Attrs.hasParamAttr(i, Attribute::ByVal), 2441 "Calling convention disallows byval", &F); 2442 Assert(!Attrs.hasParamAttr(i, Attribute::Preallocated), 2443 "Calling convention disallows preallocated", &F); 2444 Assert(!Attrs.hasParamAttr(i, Attribute::InAlloca), 2445 "Calling convention disallows inalloca", &F); 2446 2447 if (Attrs.hasParamAttr(i, Attribute::ByRef)) { 2448 // FIXME: Should also disallow LDS and GDS, but we don't have the enum 2449 // value here. 2450 Assert(Arg.getType()->getPointerAddressSpace() != StackAS, 2451 "Calling convention disallows stack byref", &F); 2452 } 2453 2454 ++i; 2455 } 2456 } 2457 2458 LLVM_FALLTHROUGH; 2459 case CallingConv::Fast: 2460 case CallingConv::Cold: 2461 case CallingConv::Intel_OCL_BI: 2462 case CallingConv::PTX_Kernel: 2463 case CallingConv::PTX_Device: 2464 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2465 "perfect forwarding!", 2466 &F); 2467 break; 2468 } 2469 2470 // Check that the argument values match the function type for this function... 2471 unsigned i = 0; 2472 for (const Argument &Arg : F.args()) { 2473 Assert(Arg.getType() == FT->getParamType(i), 2474 "Argument value does not match function argument type!", &Arg, 2475 FT->getParamType(i)); 2476 Assert(Arg.getType()->isFirstClassType(), 2477 "Function arguments must have first-class types!", &Arg); 2478 if (!IsIntrinsic) { 2479 Assert(!Arg.getType()->isMetadataTy(), 2480 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2481 Assert(!Arg.getType()->isTokenTy(), 2482 "Function takes token but isn't an intrinsic", &Arg, &F); 2483 Assert(!Arg.getType()->isX86_AMXTy(), 2484 "Function takes x86_amx but isn't an intrinsic", &Arg, &F); 2485 } 2486 2487 // Check that swifterror argument is only used by loads and stores. 2488 if (Attrs.hasParamAttr(i, Attribute::SwiftError)) { 2489 verifySwiftErrorValue(&Arg); 2490 } 2491 ++i; 2492 } 2493 2494 if (!IsIntrinsic) { 2495 Assert(!F.getReturnType()->isTokenTy(), 2496 "Function returns a token but isn't an intrinsic", &F); 2497 Assert(!F.getReturnType()->isX86_AMXTy(), 2498 "Function returns a x86_amx but isn't an intrinsic", &F); 2499 } 2500 2501 // Get the function metadata attachments. 2502 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2503 F.getAllMetadata(MDs); 2504 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2505 verifyFunctionMetadata(MDs); 2506 2507 // Check validity of the personality function 2508 if (F.hasPersonalityFn()) { 2509 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2510 if (Per) 2511 Assert(Per->getParent() == F.getParent(), 2512 "Referencing personality function in another module!", 2513 &F, F.getParent(), Per, Per->getParent()); 2514 } 2515 2516 if (F.isMaterializable()) { 2517 // Function has a body somewhere we can't see. 2518 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2519 MDs.empty() ? nullptr : MDs.front().second); 2520 } else if (F.isDeclaration()) { 2521 for (const auto &I : MDs) { 2522 // This is used for call site debug information. 2523 AssertDI(I.first != LLVMContext::MD_dbg || 2524 !cast<DISubprogram>(I.second)->isDistinct(), 2525 "function declaration may only have a unique !dbg attachment", 2526 &F); 2527 Assert(I.first != LLVMContext::MD_prof, 2528 "function declaration may not have a !prof attachment", &F); 2529 2530 // Verify the metadata itself. 2531 visitMDNode(*I.second, AreDebugLocsAllowed::Yes); 2532 } 2533 Assert(!F.hasPersonalityFn(), 2534 "Function declaration shouldn't have a personality routine", &F); 2535 } else { 2536 // Verify that this function (which has a body) is not named "llvm.*". It 2537 // is not legal to define intrinsics. 2538 Assert(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F); 2539 2540 // Check the entry node 2541 const BasicBlock *Entry = &F.getEntryBlock(); 2542 Assert(pred_empty(Entry), 2543 "Entry block to function must not have predecessors!", Entry); 2544 2545 // The address of the entry block cannot be taken, unless it is dead. 2546 if (Entry->hasAddressTaken()) { 2547 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2548 "blockaddress may not be used with the entry block!", Entry); 2549 } 2550 2551 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2552 // Visit metadata attachments. 2553 for (const auto &I : MDs) { 2554 // Verify that the attachment is legal. 2555 auto AllowLocs = AreDebugLocsAllowed::No; 2556 switch (I.first) { 2557 default: 2558 break; 2559 case LLVMContext::MD_dbg: { 2560 ++NumDebugAttachments; 2561 AssertDI(NumDebugAttachments == 1, 2562 "function must have a single !dbg attachment", &F, I.second); 2563 AssertDI(isa<DISubprogram>(I.second), 2564 "function !dbg attachment must be a subprogram", &F, I.second); 2565 AssertDI(cast<DISubprogram>(I.second)->isDistinct(), 2566 "function definition may only have a distinct !dbg attachment", 2567 &F); 2568 2569 auto *SP = cast<DISubprogram>(I.second); 2570 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2571 AssertDI(!AttachedTo || AttachedTo == &F, 2572 "DISubprogram attached to more than one function", SP, &F); 2573 AttachedTo = &F; 2574 AllowLocs = AreDebugLocsAllowed::Yes; 2575 break; 2576 } 2577 case LLVMContext::MD_prof: 2578 ++NumProfAttachments; 2579 Assert(NumProfAttachments == 1, 2580 "function must have a single !prof attachment", &F, I.second); 2581 break; 2582 } 2583 2584 // Verify the metadata itself. 2585 visitMDNode(*I.second, AllowLocs); 2586 } 2587 } 2588 2589 // If this function is actually an intrinsic, verify that it is only used in 2590 // direct call/invokes, never having its "address taken". 2591 // Only do this if the module is materialized, otherwise we don't have all the 2592 // uses. 2593 if (F.isIntrinsic() && F.getParent()->isMaterialized()) { 2594 const User *U; 2595 if (F.hasAddressTaken(&U, false, true, false, 2596 /*IgnoreARCAttachedCall=*/true)) 2597 Assert(false, "Invalid user of intrinsic instruction!", U); 2598 } 2599 2600 // Check intrinsics' signatures. 2601 switch (F.getIntrinsicID()) { 2602 case Intrinsic::experimental_gc_get_pointer_base: { 2603 FunctionType *FT = F.getFunctionType(); 2604 Assert(FT->getNumParams() == 1, "wrong number of parameters", F); 2605 Assert(isa<PointerType>(F.getReturnType()), 2606 "gc.get.pointer.base must return a pointer", F); 2607 Assert(FT->getParamType(0) == F.getReturnType(), 2608 "gc.get.pointer.base operand and result must be of the same type", 2609 F); 2610 break; 2611 } 2612 case Intrinsic::experimental_gc_get_pointer_offset: { 2613 FunctionType *FT = F.getFunctionType(); 2614 Assert(FT->getNumParams() == 1, "wrong number of parameters", F); 2615 Assert(isa<PointerType>(FT->getParamType(0)), 2616 "gc.get.pointer.offset operand must be a pointer", F); 2617 Assert(F.getReturnType()->isIntegerTy(), 2618 "gc.get.pointer.offset must return integer", F); 2619 break; 2620 } 2621 } 2622 2623 auto *N = F.getSubprogram(); 2624 HasDebugInfo = (N != nullptr); 2625 if (!HasDebugInfo) 2626 return; 2627 2628 // Check that all !dbg attachments lead to back to N. 2629 // 2630 // FIXME: Check this incrementally while visiting !dbg attachments. 2631 // FIXME: Only check when N is the canonical subprogram for F. 2632 SmallPtrSet<const MDNode *, 32> Seen; 2633 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2634 // Be careful about using DILocation here since we might be dealing with 2635 // broken code (this is the Verifier after all). 2636 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2637 if (!DL) 2638 return; 2639 if (!Seen.insert(DL).second) 2640 return; 2641 2642 Metadata *Parent = DL->getRawScope(); 2643 AssertDI(Parent && isa<DILocalScope>(Parent), 2644 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2645 Parent); 2646 2647 DILocalScope *Scope = DL->getInlinedAtScope(); 2648 Assert(Scope, "Failed to find DILocalScope", DL); 2649 2650 if (!Seen.insert(Scope).second) 2651 return; 2652 2653 DISubprogram *SP = Scope->getSubprogram(); 2654 2655 // Scope and SP could be the same MDNode and we don't want to skip 2656 // validation in that case 2657 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2658 return; 2659 2660 AssertDI(SP->describes(&F), 2661 "!dbg attachment points at wrong subprogram for function", N, &F, 2662 &I, DL, Scope, SP); 2663 }; 2664 for (auto &BB : F) 2665 for (auto &I : BB) { 2666 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2667 // The llvm.loop annotations also contain two DILocations. 2668 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2669 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2670 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2671 if (BrokenDebugInfo) 2672 return; 2673 } 2674 } 2675 2676 // verifyBasicBlock - Verify that a basic block is well formed... 2677 // 2678 void Verifier::visitBasicBlock(BasicBlock &BB) { 2679 InstsInThisBlock.clear(); 2680 2681 // Ensure that basic blocks have terminators! 2682 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2683 2684 // Check constraints that this basic block imposes on all of the PHI nodes in 2685 // it. 2686 if (isa<PHINode>(BB.front())) { 2687 SmallVector<BasicBlock *, 8> Preds(predecessors(&BB)); 2688 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2689 llvm::sort(Preds); 2690 for (const PHINode &PN : BB.phis()) { 2691 Assert(PN.getNumIncomingValues() == Preds.size(), 2692 "PHINode should have one entry for each predecessor of its " 2693 "parent basic block!", 2694 &PN); 2695 2696 // Get and sort all incoming values in the PHI node... 2697 Values.clear(); 2698 Values.reserve(PN.getNumIncomingValues()); 2699 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2700 Values.push_back( 2701 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2702 llvm::sort(Values); 2703 2704 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2705 // Check to make sure that if there is more than one entry for a 2706 // particular basic block in this PHI node, that the incoming values are 2707 // all identical. 2708 // 2709 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2710 Values[i].second == Values[i - 1].second, 2711 "PHI node has multiple entries for the same basic block with " 2712 "different incoming values!", 2713 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2714 2715 // Check to make sure that the predecessors and PHI node entries are 2716 // matched up. 2717 Assert(Values[i].first == Preds[i], 2718 "PHI node entries do not match predecessors!", &PN, 2719 Values[i].first, Preds[i]); 2720 } 2721 } 2722 } 2723 2724 // Check that all instructions have their parent pointers set up correctly. 2725 for (auto &I : BB) 2726 { 2727 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2728 } 2729 } 2730 2731 void Verifier::visitTerminator(Instruction &I) { 2732 // Ensure that terminators only exist at the end of the basic block. 2733 Assert(&I == I.getParent()->getTerminator(), 2734 "Terminator found in the middle of a basic block!", I.getParent()); 2735 visitInstruction(I); 2736 } 2737 2738 void Verifier::visitBranchInst(BranchInst &BI) { 2739 if (BI.isConditional()) { 2740 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2741 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2742 } 2743 visitTerminator(BI); 2744 } 2745 2746 void Verifier::visitReturnInst(ReturnInst &RI) { 2747 Function *F = RI.getParent()->getParent(); 2748 unsigned N = RI.getNumOperands(); 2749 if (F->getReturnType()->isVoidTy()) 2750 Assert(N == 0, 2751 "Found return instr that returns non-void in Function of void " 2752 "return type!", 2753 &RI, F->getReturnType()); 2754 else 2755 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2756 "Function return type does not match operand " 2757 "type of return inst!", 2758 &RI, F->getReturnType()); 2759 2760 // Check to make sure that the return value has necessary properties for 2761 // terminators... 2762 visitTerminator(RI); 2763 } 2764 2765 void Verifier::visitSwitchInst(SwitchInst &SI) { 2766 Assert(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI); 2767 // Check to make sure that all of the constants in the switch instruction 2768 // have the same type as the switched-on value. 2769 Type *SwitchTy = SI.getCondition()->getType(); 2770 SmallPtrSet<ConstantInt*, 32> Constants; 2771 for (auto &Case : SI.cases()) { 2772 Assert(Case.getCaseValue()->getType() == SwitchTy, 2773 "Switch constants must all be same type as switch value!", &SI); 2774 Assert(Constants.insert(Case.getCaseValue()).second, 2775 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2776 } 2777 2778 visitTerminator(SI); 2779 } 2780 2781 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2782 Assert(BI.getAddress()->getType()->isPointerTy(), 2783 "Indirectbr operand must have pointer type!", &BI); 2784 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2785 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2786 "Indirectbr destinations must all have pointer type!", &BI); 2787 2788 visitTerminator(BI); 2789 } 2790 2791 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2792 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2793 &CBI); 2794 const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand()); 2795 Assert(!IA->canThrow(), "Unwinding from Callbr is not allowed"); 2796 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2797 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2798 "Callbr successors must all have pointer type!", &CBI); 2799 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2800 Assert(i >= CBI.arg_size() || !isa<BasicBlock>(CBI.getOperand(i)), 2801 "Using an unescaped label as a callbr argument!", &CBI); 2802 if (isa<BasicBlock>(CBI.getOperand(i))) 2803 for (unsigned j = i + 1; j != e; ++j) 2804 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2805 "Duplicate callbr destination!", &CBI); 2806 } 2807 { 2808 SmallPtrSet<BasicBlock *, 4> ArgBBs; 2809 for (Value *V : CBI.args()) 2810 if (auto *BA = dyn_cast<BlockAddress>(V)) 2811 ArgBBs.insert(BA->getBasicBlock()); 2812 for (BasicBlock *BB : CBI.getIndirectDests()) 2813 Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI); 2814 } 2815 2816 verifyInlineAsmCall(CBI); 2817 visitTerminator(CBI); 2818 } 2819 2820 void Verifier::visitSelectInst(SelectInst &SI) { 2821 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2822 SI.getOperand(2)), 2823 "Invalid operands for select instruction!", &SI); 2824 2825 Assert(SI.getTrueValue()->getType() == SI.getType(), 2826 "Select values must have same type as select instruction!", &SI); 2827 visitInstruction(SI); 2828 } 2829 2830 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2831 /// a pass, if any exist, it's an error. 2832 /// 2833 void Verifier::visitUserOp1(Instruction &I) { 2834 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2835 } 2836 2837 void Verifier::visitTruncInst(TruncInst &I) { 2838 // Get the source and destination types 2839 Type *SrcTy = I.getOperand(0)->getType(); 2840 Type *DestTy = I.getType(); 2841 2842 // Get the size of the types in bits, we'll need this later 2843 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2844 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2845 2846 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2847 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2848 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2849 "trunc source and destination must both be a vector or neither", &I); 2850 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2851 2852 visitInstruction(I); 2853 } 2854 2855 void Verifier::visitZExtInst(ZExtInst &I) { 2856 // Get the source and destination types 2857 Type *SrcTy = I.getOperand(0)->getType(); 2858 Type *DestTy = I.getType(); 2859 2860 // Get the size of the types in bits, we'll need this later 2861 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2862 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2863 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2864 "zext source and destination must both be a vector or neither", &I); 2865 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2866 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2867 2868 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2869 2870 visitInstruction(I); 2871 } 2872 2873 void Verifier::visitSExtInst(SExtInst &I) { 2874 // Get the source and destination types 2875 Type *SrcTy = I.getOperand(0)->getType(); 2876 Type *DestTy = I.getType(); 2877 2878 // Get the size of the types in bits, we'll need this later 2879 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2880 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2881 2882 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2883 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2884 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2885 "sext source and destination must both be a vector or neither", &I); 2886 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2887 2888 visitInstruction(I); 2889 } 2890 2891 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2892 // Get the source and destination types 2893 Type *SrcTy = I.getOperand(0)->getType(); 2894 Type *DestTy = I.getType(); 2895 // Get the size of the types in bits, we'll need this later 2896 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2897 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2898 2899 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2900 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2901 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2902 "fptrunc source and destination must both be a vector or neither", &I); 2903 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2904 2905 visitInstruction(I); 2906 } 2907 2908 void Verifier::visitFPExtInst(FPExtInst &I) { 2909 // Get the source and destination types 2910 Type *SrcTy = I.getOperand(0)->getType(); 2911 Type *DestTy = I.getType(); 2912 2913 // Get the size of the types in bits, we'll need this later 2914 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2915 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2916 2917 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2918 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2919 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2920 "fpext source and destination must both be a vector or neither", &I); 2921 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2922 2923 visitInstruction(I); 2924 } 2925 2926 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2927 // Get the source and destination types 2928 Type *SrcTy = I.getOperand(0)->getType(); 2929 Type *DestTy = I.getType(); 2930 2931 bool SrcVec = SrcTy->isVectorTy(); 2932 bool DstVec = DestTy->isVectorTy(); 2933 2934 Assert(SrcVec == DstVec, 2935 "UIToFP source and dest must both be vector or scalar", &I); 2936 Assert(SrcTy->isIntOrIntVectorTy(), 2937 "UIToFP source must be integer or integer vector", &I); 2938 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2939 &I); 2940 2941 if (SrcVec && DstVec) 2942 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2943 cast<VectorType>(DestTy)->getElementCount(), 2944 "UIToFP source and dest vector length mismatch", &I); 2945 2946 visitInstruction(I); 2947 } 2948 2949 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2950 // Get the source and destination types 2951 Type *SrcTy = I.getOperand(0)->getType(); 2952 Type *DestTy = I.getType(); 2953 2954 bool SrcVec = SrcTy->isVectorTy(); 2955 bool DstVec = DestTy->isVectorTy(); 2956 2957 Assert(SrcVec == DstVec, 2958 "SIToFP source and dest must both be vector or scalar", &I); 2959 Assert(SrcTy->isIntOrIntVectorTy(), 2960 "SIToFP source must be integer or integer vector", &I); 2961 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2962 &I); 2963 2964 if (SrcVec && DstVec) 2965 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2966 cast<VectorType>(DestTy)->getElementCount(), 2967 "SIToFP source and dest vector length mismatch", &I); 2968 2969 visitInstruction(I); 2970 } 2971 2972 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2973 // Get the source and destination types 2974 Type *SrcTy = I.getOperand(0)->getType(); 2975 Type *DestTy = I.getType(); 2976 2977 bool SrcVec = SrcTy->isVectorTy(); 2978 bool DstVec = DestTy->isVectorTy(); 2979 2980 Assert(SrcVec == DstVec, 2981 "FPToUI source and dest must both be vector or scalar", &I); 2982 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2983 &I); 2984 Assert(DestTy->isIntOrIntVectorTy(), 2985 "FPToUI result must be integer or integer vector", &I); 2986 2987 if (SrcVec && DstVec) 2988 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2989 cast<VectorType>(DestTy)->getElementCount(), 2990 "FPToUI source and dest vector length mismatch", &I); 2991 2992 visitInstruction(I); 2993 } 2994 2995 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2996 // Get the source and destination types 2997 Type *SrcTy = I.getOperand(0)->getType(); 2998 Type *DestTy = I.getType(); 2999 3000 bool SrcVec = SrcTy->isVectorTy(); 3001 bool DstVec = DestTy->isVectorTy(); 3002 3003 Assert(SrcVec == DstVec, 3004 "FPToSI source and dest must both be vector or scalar", &I); 3005 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 3006 &I); 3007 Assert(DestTy->isIntOrIntVectorTy(), 3008 "FPToSI result must be integer or integer vector", &I); 3009 3010 if (SrcVec && DstVec) 3011 Assert(cast<VectorType>(SrcTy)->getElementCount() == 3012 cast<VectorType>(DestTy)->getElementCount(), 3013 "FPToSI source and dest vector length mismatch", &I); 3014 3015 visitInstruction(I); 3016 } 3017 3018 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 3019 // Get the source and destination types 3020 Type *SrcTy = I.getOperand(0)->getType(); 3021 Type *DestTy = I.getType(); 3022 3023 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 3024 3025 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 3026 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 3027 &I); 3028 3029 if (SrcTy->isVectorTy()) { 3030 auto *VSrc = cast<VectorType>(SrcTy); 3031 auto *VDest = cast<VectorType>(DestTy); 3032 Assert(VSrc->getElementCount() == VDest->getElementCount(), 3033 "PtrToInt Vector width mismatch", &I); 3034 } 3035 3036 visitInstruction(I); 3037 } 3038 3039 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 3040 // Get the source and destination types 3041 Type *SrcTy = I.getOperand(0)->getType(); 3042 Type *DestTy = I.getType(); 3043 3044 Assert(SrcTy->isIntOrIntVectorTy(), 3045 "IntToPtr source must be an integral", &I); 3046 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 3047 3048 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 3049 &I); 3050 if (SrcTy->isVectorTy()) { 3051 auto *VSrc = cast<VectorType>(SrcTy); 3052 auto *VDest = cast<VectorType>(DestTy); 3053 Assert(VSrc->getElementCount() == VDest->getElementCount(), 3054 "IntToPtr Vector width mismatch", &I); 3055 } 3056 visitInstruction(I); 3057 } 3058 3059 void Verifier::visitBitCastInst(BitCastInst &I) { 3060 Assert( 3061 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 3062 "Invalid bitcast", &I); 3063 visitInstruction(I); 3064 } 3065 3066 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 3067 Type *SrcTy = I.getOperand(0)->getType(); 3068 Type *DestTy = I.getType(); 3069 3070 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 3071 &I); 3072 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 3073 &I); 3074 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 3075 "AddrSpaceCast must be between different address spaces", &I); 3076 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) 3077 Assert(SrcVTy->getElementCount() == 3078 cast<VectorType>(DestTy)->getElementCount(), 3079 "AddrSpaceCast vector pointer number of elements mismatch", &I); 3080 visitInstruction(I); 3081 } 3082 3083 /// visitPHINode - Ensure that a PHI node is well formed. 3084 /// 3085 void Verifier::visitPHINode(PHINode &PN) { 3086 // Ensure that the PHI nodes are all grouped together at the top of the block. 3087 // This can be tested by checking whether the instruction before this is 3088 // either nonexistent (because this is begin()) or is a PHI node. If not, 3089 // then there is some other instruction before a PHI. 3090 Assert(&PN == &PN.getParent()->front() || 3091 isa<PHINode>(--BasicBlock::iterator(&PN)), 3092 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 3093 3094 // Check that a PHI doesn't yield a Token. 3095 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 3096 3097 // Check that all of the values of the PHI node have the same type as the 3098 // result, and that the incoming blocks are really basic blocks. 3099 for (Value *IncValue : PN.incoming_values()) { 3100 Assert(PN.getType() == IncValue->getType(), 3101 "PHI node operands are not the same type as the result!", &PN); 3102 } 3103 3104 // All other PHI node constraints are checked in the visitBasicBlock method. 3105 3106 visitInstruction(PN); 3107 } 3108 3109 void Verifier::visitCallBase(CallBase &Call) { 3110 Assert(Call.getCalledOperand()->getType()->isPointerTy(), 3111 "Called function must be a pointer!", Call); 3112 PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType()); 3113 3114 Assert(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()), 3115 "Called function is not the same type as the call!", Call); 3116 3117 FunctionType *FTy = Call.getFunctionType(); 3118 3119 // Verify that the correct number of arguments are being passed 3120 if (FTy->isVarArg()) 3121 Assert(Call.arg_size() >= FTy->getNumParams(), 3122 "Called function requires more parameters than were provided!", 3123 Call); 3124 else 3125 Assert(Call.arg_size() == FTy->getNumParams(), 3126 "Incorrect number of arguments passed to called function!", Call); 3127 3128 // Verify that all arguments to the call match the function type. 3129 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3130 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 3131 "Call parameter type does not match function signature!", 3132 Call.getArgOperand(i), FTy->getParamType(i), Call); 3133 3134 AttributeList Attrs = Call.getAttributes(); 3135 3136 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 3137 "Attribute after last parameter!", Call); 3138 3139 Function *Callee = 3140 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 3141 bool IsIntrinsic = Callee && Callee->isIntrinsic(); 3142 if (IsIntrinsic) 3143 Assert(Callee->getValueType() == FTy, 3144 "Intrinsic called with incompatible signature", Call); 3145 3146 if (Attrs.hasFnAttr(Attribute::Speculatable)) { 3147 // Don't allow speculatable on call sites, unless the underlying function 3148 // declaration is also speculatable. 3149 Assert(Callee && Callee->isSpeculatable(), 3150 "speculatable attribute may not apply to call sites", Call); 3151 } 3152 3153 if (Attrs.hasFnAttr(Attribute::Preallocated)) { 3154 Assert(Call.getCalledFunction()->getIntrinsicID() == 3155 Intrinsic::call_preallocated_arg, 3156 "preallocated as a call site attribute can only be on " 3157 "llvm.call.preallocated.arg"); 3158 } 3159 3160 // Verify call attributes. 3161 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic, Call.isInlineAsm()); 3162 3163 // Conservatively check the inalloca argument. 3164 // We have a bug if we can find that there is an underlying alloca without 3165 // inalloca. 3166 if (Call.hasInAllocaArgument()) { 3167 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 3168 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 3169 Assert(AI->isUsedWithInAlloca(), 3170 "inalloca argument for call has mismatched alloca", AI, Call); 3171 } 3172 3173 // For each argument of the callsite, if it has the swifterror argument, 3174 // make sure the underlying alloca/parameter it comes from has a swifterror as 3175 // well. 3176 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3177 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 3178 Value *SwiftErrorArg = Call.getArgOperand(i); 3179 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 3180 Assert(AI->isSwiftError(), 3181 "swifterror argument for call has mismatched alloca", AI, Call); 3182 continue; 3183 } 3184 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 3185 Assert(ArgI, 3186 "swifterror argument should come from an alloca or parameter", 3187 SwiftErrorArg, Call); 3188 Assert(ArgI->hasSwiftErrorAttr(), 3189 "swifterror argument for call has mismatched parameter", ArgI, 3190 Call); 3191 } 3192 3193 if (Attrs.hasParamAttr(i, Attribute::ImmArg)) { 3194 // Don't allow immarg on call sites, unless the underlying declaration 3195 // also has the matching immarg. 3196 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 3197 "immarg may not apply only to call sites", 3198 Call.getArgOperand(i), Call); 3199 } 3200 3201 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 3202 Value *ArgVal = Call.getArgOperand(i); 3203 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 3204 "immarg operand has non-immediate parameter", ArgVal, Call); 3205 } 3206 3207 if (Call.paramHasAttr(i, Attribute::Preallocated)) { 3208 Value *ArgVal = Call.getArgOperand(i); 3209 bool hasOB = 3210 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0; 3211 bool isMustTail = Call.isMustTailCall(); 3212 Assert(hasOB != isMustTail, 3213 "preallocated operand either requires a preallocated bundle or " 3214 "the call to be musttail (but not both)", 3215 ArgVal, Call); 3216 } 3217 } 3218 3219 if (FTy->isVarArg()) { 3220 // FIXME? is 'nest' even legal here? 3221 bool SawNest = false; 3222 bool SawReturned = false; 3223 3224 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 3225 if (Attrs.hasParamAttr(Idx, Attribute::Nest)) 3226 SawNest = true; 3227 if (Attrs.hasParamAttr(Idx, Attribute::Returned)) 3228 SawReturned = true; 3229 } 3230 3231 // Check attributes on the varargs part. 3232 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 3233 Type *Ty = Call.getArgOperand(Idx)->getType(); 3234 AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx); 3235 verifyParameterAttrs(ArgAttrs, Ty, &Call); 3236 3237 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 3238 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 3239 SawNest = true; 3240 } 3241 3242 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 3243 Assert(!SawReturned, "More than one parameter has attribute returned!", 3244 Call); 3245 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 3246 "Incompatible argument and return types for 'returned' " 3247 "attribute", 3248 Call); 3249 SawReturned = true; 3250 } 3251 3252 // Statepoint intrinsic is vararg but the wrapped function may be not. 3253 // Allow sret here and check the wrapped function in verifyStatepoint. 3254 if (!Call.getCalledFunction() || 3255 Call.getCalledFunction()->getIntrinsicID() != 3256 Intrinsic::experimental_gc_statepoint) 3257 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 3258 "Attribute 'sret' cannot be used for vararg call arguments!", 3259 Call); 3260 3261 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 3262 Assert(Idx == Call.arg_size() - 1, 3263 "inalloca isn't on the last argument!", Call); 3264 } 3265 } 3266 3267 // Verify that there's no metadata unless it's a direct call to an intrinsic. 3268 if (!IsIntrinsic) { 3269 for (Type *ParamTy : FTy->params()) { 3270 Assert(!ParamTy->isMetadataTy(), 3271 "Function has metadata parameter but isn't an intrinsic", Call); 3272 Assert(!ParamTy->isTokenTy(), 3273 "Function has token parameter but isn't an intrinsic", Call); 3274 } 3275 } 3276 3277 // Verify that indirect calls don't return tokens. 3278 if (!Call.getCalledFunction()) { 3279 Assert(!FTy->getReturnType()->isTokenTy(), 3280 "Return type cannot be token for indirect call!"); 3281 Assert(!FTy->getReturnType()->isX86_AMXTy(), 3282 "Return type cannot be x86_amx for indirect call!"); 3283 } 3284 3285 if (Function *F = Call.getCalledFunction()) 3286 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 3287 visitIntrinsicCall(ID, Call); 3288 3289 // Verify that a callsite has at most one "deopt", at most one "funclet", at 3290 // most one "gc-transition", at most one "cfguardtarget", 3291 // and at most one "preallocated" operand bundle. 3292 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3293 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, 3294 FoundPreallocatedBundle = false, FoundGCLiveBundle = false, 3295 FoundAttachedCallBundle = false; 3296 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 3297 OperandBundleUse BU = Call.getOperandBundleAt(i); 3298 uint32_t Tag = BU.getTagID(); 3299 if (Tag == LLVMContext::OB_deopt) { 3300 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 3301 FoundDeoptBundle = true; 3302 } else if (Tag == LLVMContext::OB_gc_transition) { 3303 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 3304 Call); 3305 FoundGCTransitionBundle = true; 3306 } else if (Tag == LLVMContext::OB_funclet) { 3307 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 3308 FoundFuncletBundle = true; 3309 Assert(BU.Inputs.size() == 1, 3310 "Expected exactly one funclet bundle operand", Call); 3311 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 3312 "Funclet bundle operands should correspond to a FuncletPadInst", 3313 Call); 3314 } else if (Tag == LLVMContext::OB_cfguardtarget) { 3315 Assert(!FoundCFGuardTargetBundle, 3316 "Multiple CFGuardTarget operand bundles", Call); 3317 FoundCFGuardTargetBundle = true; 3318 Assert(BU.Inputs.size() == 1, 3319 "Expected exactly one cfguardtarget bundle operand", Call); 3320 } else if (Tag == LLVMContext::OB_preallocated) { 3321 Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles", 3322 Call); 3323 FoundPreallocatedBundle = true; 3324 Assert(BU.Inputs.size() == 1, 3325 "Expected exactly one preallocated bundle operand", Call); 3326 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); 3327 Assert(Input && 3328 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup, 3329 "\"preallocated\" argument must be a token from " 3330 "llvm.call.preallocated.setup", 3331 Call); 3332 } else if (Tag == LLVMContext::OB_gc_live) { 3333 Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles", 3334 Call); 3335 FoundGCLiveBundle = true; 3336 } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) { 3337 Assert(!FoundAttachedCallBundle, 3338 "Multiple \"clang.arc.attachedcall\" operand bundles", Call); 3339 FoundAttachedCallBundle = true; 3340 verifyAttachedCallBundle(Call, BU); 3341 } 3342 } 3343 3344 // Verify that each inlinable callsite of a debug-info-bearing function in a 3345 // debug-info-bearing function has a debug location attached to it. Failure to 3346 // do so causes assertion failures when the inliner sets up inline scope info. 3347 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3348 Call.getCalledFunction()->getSubprogram()) 3349 AssertDI(Call.getDebugLoc(), 3350 "inlinable function call in a function with " 3351 "debug info must have a !dbg location", 3352 Call); 3353 3354 if (Call.isInlineAsm()) 3355 verifyInlineAsmCall(Call); 3356 3357 visitInstruction(Call); 3358 } 3359 3360 void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, 3361 StringRef Context) { 3362 Assert(!Attrs.contains(Attribute::InAlloca), 3363 Twine("inalloca attribute not allowed in ") + Context); 3364 Assert(!Attrs.contains(Attribute::InReg), 3365 Twine("inreg attribute not allowed in ") + Context); 3366 Assert(!Attrs.contains(Attribute::SwiftError), 3367 Twine("swifterror attribute not allowed in ") + Context); 3368 Assert(!Attrs.contains(Attribute::Preallocated), 3369 Twine("preallocated attribute not allowed in ") + Context); 3370 Assert(!Attrs.contains(Attribute::ByRef), 3371 Twine("byref attribute not allowed in ") + Context); 3372 } 3373 3374 /// Two types are "congruent" if they are identical, or if they are both pointer 3375 /// types with different pointee types and the same address space. 3376 static bool isTypeCongruent(Type *L, Type *R) { 3377 if (L == R) 3378 return true; 3379 PointerType *PL = dyn_cast<PointerType>(L); 3380 PointerType *PR = dyn_cast<PointerType>(R); 3381 if (!PL || !PR) 3382 return false; 3383 return PL->getAddressSpace() == PR->getAddressSpace(); 3384 } 3385 3386 static AttrBuilder getParameterABIAttributes(LLVMContext& C, unsigned I, AttributeList Attrs) { 3387 static const Attribute::AttrKind ABIAttrs[] = { 3388 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3389 Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf, 3390 Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated, 3391 Attribute::ByRef}; 3392 AttrBuilder Copy(C); 3393 for (auto AK : ABIAttrs) { 3394 Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK); 3395 if (Attr.isValid()) 3396 Copy.addAttribute(Attr); 3397 } 3398 3399 // `align` is ABI-affecting only in combination with `byval` or `byref`. 3400 if (Attrs.hasParamAttr(I, Attribute::Alignment) && 3401 (Attrs.hasParamAttr(I, Attribute::ByVal) || 3402 Attrs.hasParamAttr(I, Attribute::ByRef))) 3403 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3404 return Copy; 3405 } 3406 3407 void Verifier::verifyMustTailCall(CallInst &CI) { 3408 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3409 3410 Function *F = CI.getParent()->getParent(); 3411 FunctionType *CallerTy = F->getFunctionType(); 3412 FunctionType *CalleeTy = CI.getFunctionType(); 3413 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3414 "cannot guarantee tail call due to mismatched varargs", &CI); 3415 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3416 "cannot guarantee tail call due to mismatched return types", &CI); 3417 3418 // - The calling conventions of the caller and callee must match. 3419 Assert(F->getCallingConv() == CI.getCallingConv(), 3420 "cannot guarantee tail call due to mismatched calling conv", &CI); 3421 3422 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3423 // or a pointer bitcast followed by a ret instruction. 3424 // - The ret instruction must return the (possibly bitcasted) value 3425 // produced by the call or void. 3426 Value *RetVal = &CI; 3427 Instruction *Next = CI.getNextNode(); 3428 3429 // Handle the optional bitcast. 3430 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3431 Assert(BI->getOperand(0) == RetVal, 3432 "bitcast following musttail call must use the call", BI); 3433 RetVal = BI; 3434 Next = BI->getNextNode(); 3435 } 3436 3437 // Check the return. 3438 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3439 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3440 &CI); 3441 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal || 3442 isa<UndefValue>(Ret->getReturnValue()), 3443 "musttail call result must be returned", Ret); 3444 3445 AttributeList CallerAttrs = F->getAttributes(); 3446 AttributeList CalleeAttrs = CI.getAttributes(); 3447 if (CI.getCallingConv() == CallingConv::SwiftTail || 3448 CI.getCallingConv() == CallingConv::Tail) { 3449 StringRef CCName = 3450 CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc"; 3451 3452 // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes 3453 // are allowed in swifttailcc call 3454 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3455 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs); 3456 SmallString<32> Context{CCName, StringRef(" musttail caller")}; 3457 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3458 } 3459 for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) { 3460 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs); 3461 SmallString<32> Context{CCName, StringRef(" musttail callee")}; 3462 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3463 } 3464 // - Varargs functions are not allowed 3465 Assert(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName + 3466 " tail call for varargs function"); 3467 return; 3468 } 3469 3470 // - The caller and callee prototypes must match. Pointer types of 3471 // parameters or return types may differ in pointee type, but not 3472 // address space. 3473 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3474 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3475 "cannot guarantee tail call due to mismatched parameter counts", 3476 &CI); 3477 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3478 Assert( 3479 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3480 "cannot guarantee tail call due to mismatched parameter types", &CI); 3481 } 3482 } 3483 3484 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3485 // returned, preallocated, and inalloca, must match. 3486 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3487 AttrBuilder CallerABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs); 3488 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs); 3489 Assert(CallerABIAttrs == CalleeABIAttrs, 3490 "cannot guarantee tail call due to mismatched ABI impacting " 3491 "function attributes", 3492 &CI, CI.getOperand(I)); 3493 } 3494 } 3495 3496 void Verifier::visitCallInst(CallInst &CI) { 3497 visitCallBase(CI); 3498 3499 if (CI.isMustTailCall()) 3500 verifyMustTailCall(CI); 3501 } 3502 3503 void Verifier::visitInvokeInst(InvokeInst &II) { 3504 visitCallBase(II); 3505 3506 // Verify that the first non-PHI instruction of the unwind destination is an 3507 // exception handling instruction. 3508 Assert( 3509 II.getUnwindDest()->isEHPad(), 3510 "The unwind destination does not have an exception handling instruction!", 3511 &II); 3512 3513 visitTerminator(II); 3514 } 3515 3516 /// visitUnaryOperator - Check the argument to the unary operator. 3517 /// 3518 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3519 Assert(U.getType() == U.getOperand(0)->getType(), 3520 "Unary operators must have same type for" 3521 "operands and result!", 3522 &U); 3523 3524 switch (U.getOpcode()) { 3525 // Check that floating-point arithmetic operators are only used with 3526 // floating-point operands. 3527 case Instruction::FNeg: 3528 Assert(U.getType()->isFPOrFPVectorTy(), 3529 "FNeg operator only works with float types!", &U); 3530 break; 3531 default: 3532 llvm_unreachable("Unknown UnaryOperator opcode!"); 3533 } 3534 3535 visitInstruction(U); 3536 } 3537 3538 /// visitBinaryOperator - Check that both arguments to the binary operator are 3539 /// of the same type! 3540 /// 3541 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3542 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3543 "Both operands to a binary operator are not of the same type!", &B); 3544 3545 switch (B.getOpcode()) { 3546 // Check that integer arithmetic operators are only used with 3547 // integral operands. 3548 case Instruction::Add: 3549 case Instruction::Sub: 3550 case Instruction::Mul: 3551 case Instruction::SDiv: 3552 case Instruction::UDiv: 3553 case Instruction::SRem: 3554 case Instruction::URem: 3555 Assert(B.getType()->isIntOrIntVectorTy(), 3556 "Integer arithmetic operators only work with integral types!", &B); 3557 Assert(B.getType() == B.getOperand(0)->getType(), 3558 "Integer arithmetic operators must have same type " 3559 "for operands and result!", 3560 &B); 3561 break; 3562 // Check that floating-point arithmetic operators are only used with 3563 // floating-point operands. 3564 case Instruction::FAdd: 3565 case Instruction::FSub: 3566 case Instruction::FMul: 3567 case Instruction::FDiv: 3568 case Instruction::FRem: 3569 Assert(B.getType()->isFPOrFPVectorTy(), 3570 "Floating-point arithmetic operators only work with " 3571 "floating-point types!", 3572 &B); 3573 Assert(B.getType() == B.getOperand(0)->getType(), 3574 "Floating-point arithmetic operators must have same type " 3575 "for operands and result!", 3576 &B); 3577 break; 3578 // Check that logical operators are only used with integral operands. 3579 case Instruction::And: 3580 case Instruction::Or: 3581 case Instruction::Xor: 3582 Assert(B.getType()->isIntOrIntVectorTy(), 3583 "Logical operators only work with integral types!", &B); 3584 Assert(B.getType() == B.getOperand(0)->getType(), 3585 "Logical operators must have same type for operands and result!", 3586 &B); 3587 break; 3588 case Instruction::Shl: 3589 case Instruction::LShr: 3590 case Instruction::AShr: 3591 Assert(B.getType()->isIntOrIntVectorTy(), 3592 "Shifts only work with integral types!", &B); 3593 Assert(B.getType() == B.getOperand(0)->getType(), 3594 "Shift return type must be same as operands!", &B); 3595 break; 3596 default: 3597 llvm_unreachable("Unknown BinaryOperator opcode!"); 3598 } 3599 3600 visitInstruction(B); 3601 } 3602 3603 void Verifier::visitICmpInst(ICmpInst &IC) { 3604 // Check that the operands are the same type 3605 Type *Op0Ty = IC.getOperand(0)->getType(); 3606 Type *Op1Ty = IC.getOperand(1)->getType(); 3607 Assert(Op0Ty == Op1Ty, 3608 "Both operands to ICmp instruction are not of the same type!", &IC); 3609 // Check that the operands are the right type 3610 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3611 "Invalid operand types for ICmp instruction", &IC); 3612 // Check that the predicate is valid. 3613 Assert(IC.isIntPredicate(), 3614 "Invalid predicate in ICmp instruction!", &IC); 3615 3616 visitInstruction(IC); 3617 } 3618 3619 void Verifier::visitFCmpInst(FCmpInst &FC) { 3620 // Check that the operands are the same type 3621 Type *Op0Ty = FC.getOperand(0)->getType(); 3622 Type *Op1Ty = FC.getOperand(1)->getType(); 3623 Assert(Op0Ty == Op1Ty, 3624 "Both operands to FCmp instruction are not of the same type!", &FC); 3625 // Check that the operands are the right type 3626 Assert(Op0Ty->isFPOrFPVectorTy(), 3627 "Invalid operand types for FCmp instruction", &FC); 3628 // Check that the predicate is valid. 3629 Assert(FC.isFPPredicate(), 3630 "Invalid predicate in FCmp instruction!", &FC); 3631 3632 visitInstruction(FC); 3633 } 3634 3635 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3636 Assert( 3637 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3638 "Invalid extractelement operands!", &EI); 3639 visitInstruction(EI); 3640 } 3641 3642 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3643 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3644 IE.getOperand(2)), 3645 "Invalid insertelement operands!", &IE); 3646 visitInstruction(IE); 3647 } 3648 3649 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3650 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3651 SV.getShuffleMask()), 3652 "Invalid shufflevector operands!", &SV); 3653 visitInstruction(SV); 3654 } 3655 3656 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3657 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3658 3659 Assert(isa<PointerType>(TargetTy), 3660 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3661 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3662 3663 SmallVector<Value *, 16> Idxs(GEP.indices()); 3664 Assert(all_of( 3665 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3666 "GEP indexes must be integers", &GEP); 3667 Type *ElTy = 3668 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3669 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3670 3671 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3672 GEP.getResultElementType() == ElTy, 3673 "GEP is not of right type for indices!", &GEP, ElTy); 3674 3675 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { 3676 // Additional checks for vector GEPs. 3677 ElementCount GEPWidth = GEPVTy->getElementCount(); 3678 if (GEP.getPointerOperandType()->isVectorTy()) 3679 Assert( 3680 GEPWidth == 3681 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(), 3682 "Vector GEP result width doesn't match operand's", &GEP); 3683 for (Value *Idx : Idxs) { 3684 Type *IndexTy = Idx->getType(); 3685 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { 3686 ElementCount IndexWidth = IndexVTy->getElementCount(); 3687 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3688 } 3689 Assert(IndexTy->isIntOrIntVectorTy(), 3690 "All GEP indices should be of integer type"); 3691 } 3692 } 3693 3694 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3695 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3696 "GEP address space doesn't match type", &GEP); 3697 } 3698 3699 visitInstruction(GEP); 3700 } 3701 3702 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3703 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3704 } 3705 3706 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3707 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3708 "precondition violation"); 3709 3710 unsigned NumOperands = Range->getNumOperands(); 3711 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3712 unsigned NumRanges = NumOperands / 2; 3713 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3714 3715 ConstantRange LastRange(1, true); // Dummy initial value 3716 for (unsigned i = 0; i < NumRanges; ++i) { 3717 ConstantInt *Low = 3718 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3719 Assert(Low, "The lower limit must be an integer!", Low); 3720 ConstantInt *High = 3721 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3722 Assert(High, "The upper limit must be an integer!", High); 3723 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3724 "Range types must match instruction type!", &I); 3725 3726 APInt HighV = High->getValue(); 3727 APInt LowV = Low->getValue(); 3728 ConstantRange CurRange(LowV, HighV); 3729 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3730 "Range must not be empty!", Range); 3731 if (i != 0) { 3732 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3733 "Intervals are overlapping", Range); 3734 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3735 Range); 3736 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3737 Range); 3738 } 3739 LastRange = ConstantRange(LowV, HighV); 3740 } 3741 if (NumRanges > 2) { 3742 APInt FirstLow = 3743 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3744 APInt FirstHigh = 3745 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3746 ConstantRange FirstRange(FirstLow, FirstHigh); 3747 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3748 "Intervals are overlapping", Range); 3749 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3750 Range); 3751 } 3752 } 3753 3754 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3755 unsigned Size = DL.getTypeSizeInBits(Ty); 3756 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3757 Assert(!(Size & (Size - 1)), 3758 "atomic memory access' operand must have a power-of-two size", Ty, I); 3759 } 3760 3761 void Verifier::visitLoadInst(LoadInst &LI) { 3762 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3763 Assert(PTy, "Load operand must be a pointer.", &LI); 3764 Type *ElTy = LI.getType(); 3765 if (MaybeAlign A = LI.getAlign()) { 3766 Assert(A->value() <= Value::MaximumAlignment, 3767 "huge alignment values are unsupported", &LI); 3768 } 3769 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3770 if (LI.isAtomic()) { 3771 Assert(LI.getOrdering() != AtomicOrdering::Release && 3772 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3773 "Load cannot have Release ordering", &LI); 3774 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3775 "atomic load operand must have integer, pointer, or floating point " 3776 "type!", 3777 ElTy, &LI); 3778 checkAtomicMemAccessSize(ElTy, &LI); 3779 } else { 3780 Assert(LI.getSyncScopeID() == SyncScope::System, 3781 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3782 } 3783 3784 visitInstruction(LI); 3785 } 3786 3787 void Verifier::visitStoreInst(StoreInst &SI) { 3788 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3789 Assert(PTy, "Store operand must be a pointer.", &SI); 3790 Type *ElTy = SI.getOperand(0)->getType(); 3791 Assert(PTy->isOpaqueOrPointeeTypeMatches(ElTy), 3792 "Stored value type does not match pointer operand type!", &SI, ElTy); 3793 if (MaybeAlign A = SI.getAlign()) { 3794 Assert(A->value() <= Value::MaximumAlignment, 3795 "huge alignment values are unsupported", &SI); 3796 } 3797 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3798 if (SI.isAtomic()) { 3799 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3800 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3801 "Store cannot have Acquire ordering", &SI); 3802 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3803 "atomic store operand must have integer, pointer, or floating point " 3804 "type!", 3805 ElTy, &SI); 3806 checkAtomicMemAccessSize(ElTy, &SI); 3807 } else { 3808 Assert(SI.getSyncScopeID() == SyncScope::System, 3809 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3810 } 3811 visitInstruction(SI); 3812 } 3813 3814 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3815 void Verifier::verifySwiftErrorCall(CallBase &Call, 3816 const Value *SwiftErrorVal) { 3817 for (const auto &I : llvm::enumerate(Call.args())) { 3818 if (I.value() == SwiftErrorVal) { 3819 Assert(Call.paramHasAttr(I.index(), Attribute::SwiftError), 3820 "swifterror value when used in a callsite should be marked " 3821 "with swifterror attribute", 3822 SwiftErrorVal, Call); 3823 } 3824 } 3825 } 3826 3827 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3828 // Check that swifterror value is only used by loads, stores, or as 3829 // a swifterror argument. 3830 for (const User *U : SwiftErrorVal->users()) { 3831 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3832 isa<InvokeInst>(U), 3833 "swifterror value can only be loaded and stored from, or " 3834 "as a swifterror argument!", 3835 SwiftErrorVal, U); 3836 // If it is used by a store, check it is the second operand. 3837 if (auto StoreI = dyn_cast<StoreInst>(U)) 3838 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3839 "swifterror value should be the second operand when used " 3840 "by stores", SwiftErrorVal, U); 3841 if (auto *Call = dyn_cast<CallBase>(U)) 3842 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3843 } 3844 } 3845 3846 void Verifier::visitAllocaInst(AllocaInst &AI) { 3847 SmallPtrSet<Type*, 4> Visited; 3848 Assert(AI.getAllocatedType()->isSized(&Visited), 3849 "Cannot allocate unsized type", &AI); 3850 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3851 "Alloca array size must have integer type", &AI); 3852 if (MaybeAlign A = AI.getAlign()) { 3853 Assert(A->value() <= Value::MaximumAlignment, 3854 "huge alignment values are unsupported", &AI); 3855 } 3856 3857 if (AI.isSwiftError()) { 3858 verifySwiftErrorValue(&AI); 3859 } 3860 3861 visitInstruction(AI); 3862 } 3863 3864 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3865 Type *ElTy = CXI.getOperand(1)->getType(); 3866 Assert(ElTy->isIntOrPtrTy(), 3867 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3868 checkAtomicMemAccessSize(ElTy, &CXI); 3869 visitInstruction(CXI); 3870 } 3871 3872 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3873 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3874 "atomicrmw instructions cannot be unordered.", &RMWI); 3875 auto Op = RMWI.getOperation(); 3876 Type *ElTy = RMWI.getOperand(1)->getType(); 3877 if (Op == AtomicRMWInst::Xchg) { 3878 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3879 AtomicRMWInst::getOperationName(Op) + 3880 " operand must have integer or floating point type!", 3881 &RMWI, ElTy); 3882 } else if (AtomicRMWInst::isFPOperation(Op)) { 3883 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3884 AtomicRMWInst::getOperationName(Op) + 3885 " operand must have floating point type!", 3886 &RMWI, ElTy); 3887 } else { 3888 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3889 AtomicRMWInst::getOperationName(Op) + 3890 " operand must have integer type!", 3891 &RMWI, ElTy); 3892 } 3893 checkAtomicMemAccessSize(ElTy, &RMWI); 3894 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3895 "Invalid binary operation!", &RMWI); 3896 visitInstruction(RMWI); 3897 } 3898 3899 void Verifier::visitFenceInst(FenceInst &FI) { 3900 const AtomicOrdering Ordering = FI.getOrdering(); 3901 Assert(Ordering == AtomicOrdering::Acquire || 3902 Ordering == AtomicOrdering::Release || 3903 Ordering == AtomicOrdering::AcquireRelease || 3904 Ordering == AtomicOrdering::SequentiallyConsistent, 3905 "fence instructions may only have acquire, release, acq_rel, or " 3906 "seq_cst ordering.", 3907 &FI); 3908 visitInstruction(FI); 3909 } 3910 3911 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3912 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3913 EVI.getIndices()) == EVI.getType(), 3914 "Invalid ExtractValueInst operands!", &EVI); 3915 3916 visitInstruction(EVI); 3917 } 3918 3919 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3920 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3921 IVI.getIndices()) == 3922 IVI.getOperand(1)->getType(), 3923 "Invalid InsertValueInst operands!", &IVI); 3924 3925 visitInstruction(IVI); 3926 } 3927 3928 static Value *getParentPad(Value *EHPad) { 3929 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3930 return FPI->getParentPad(); 3931 3932 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3933 } 3934 3935 void Verifier::visitEHPadPredecessors(Instruction &I) { 3936 assert(I.isEHPad()); 3937 3938 BasicBlock *BB = I.getParent(); 3939 Function *F = BB->getParent(); 3940 3941 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3942 3943 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3944 // The landingpad instruction defines its parent as a landing pad block. The 3945 // landing pad block may be branched to only by the unwind edge of an 3946 // invoke. 3947 for (BasicBlock *PredBB : predecessors(BB)) { 3948 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3949 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3950 "Block containing LandingPadInst must be jumped to " 3951 "only by the unwind edge of an invoke.", 3952 LPI); 3953 } 3954 return; 3955 } 3956 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3957 if (!pred_empty(BB)) 3958 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3959 "Block containg CatchPadInst must be jumped to " 3960 "only by its catchswitch.", 3961 CPI); 3962 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3963 "Catchswitch cannot unwind to one of its catchpads", 3964 CPI->getCatchSwitch(), CPI); 3965 return; 3966 } 3967 3968 // Verify that each pred has a legal terminator with a legal to/from EH 3969 // pad relationship. 3970 Instruction *ToPad = &I; 3971 Value *ToPadParent = getParentPad(ToPad); 3972 for (BasicBlock *PredBB : predecessors(BB)) { 3973 Instruction *TI = PredBB->getTerminator(); 3974 Value *FromPad; 3975 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3976 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3977 "EH pad must be jumped to via an unwind edge", ToPad, II); 3978 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3979 FromPad = Bundle->Inputs[0]; 3980 else 3981 FromPad = ConstantTokenNone::get(II->getContext()); 3982 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3983 FromPad = CRI->getOperand(0); 3984 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3985 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3986 FromPad = CSI; 3987 } else { 3988 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3989 } 3990 3991 // The edge may exit from zero or more nested pads. 3992 SmallSet<Value *, 8> Seen; 3993 for (;; FromPad = getParentPad(FromPad)) { 3994 Assert(FromPad != ToPad, 3995 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3996 if (FromPad == ToPadParent) { 3997 // This is a legal unwind edge. 3998 break; 3999 } 4000 Assert(!isa<ConstantTokenNone>(FromPad), 4001 "A single unwind edge may only enter one EH pad", TI); 4002 Assert(Seen.insert(FromPad).second, 4003 "EH pad jumps through a cycle of pads", FromPad); 4004 4005 // This will be diagnosed on the corresponding instruction already. We 4006 // need the extra check here to make sure getParentPad() works. 4007 Assert(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad), 4008 "Parent pad must be catchpad/cleanuppad/catchswitch", TI); 4009 } 4010 } 4011 } 4012 4013 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 4014 // The landingpad instruction is ill-formed if it doesn't have any clauses and 4015 // isn't a cleanup. 4016 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 4017 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 4018 4019 visitEHPadPredecessors(LPI); 4020 4021 if (!LandingPadResultTy) 4022 LandingPadResultTy = LPI.getType(); 4023 else 4024 Assert(LandingPadResultTy == LPI.getType(), 4025 "The landingpad instruction should have a consistent result type " 4026 "inside a function.", 4027 &LPI); 4028 4029 Function *F = LPI.getParent()->getParent(); 4030 Assert(F->hasPersonalityFn(), 4031 "LandingPadInst needs to be in a function with a personality.", &LPI); 4032 4033 // The landingpad instruction must be the first non-PHI instruction in the 4034 // block. 4035 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 4036 "LandingPadInst not the first non-PHI instruction in the block.", 4037 &LPI); 4038 4039 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 4040 Constant *Clause = LPI.getClause(i); 4041 if (LPI.isCatch(i)) { 4042 Assert(isa<PointerType>(Clause->getType()), 4043 "Catch operand does not have pointer type!", &LPI); 4044 } else { 4045 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 4046 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 4047 "Filter operand is not an array of constants!", &LPI); 4048 } 4049 } 4050 4051 visitInstruction(LPI); 4052 } 4053 4054 void Verifier::visitResumeInst(ResumeInst &RI) { 4055 Assert(RI.getFunction()->hasPersonalityFn(), 4056 "ResumeInst needs to be in a function with a personality.", &RI); 4057 4058 if (!LandingPadResultTy) 4059 LandingPadResultTy = RI.getValue()->getType(); 4060 else 4061 Assert(LandingPadResultTy == RI.getValue()->getType(), 4062 "The resume instruction should have a consistent result type " 4063 "inside a function.", 4064 &RI); 4065 4066 visitTerminator(RI); 4067 } 4068 4069 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 4070 BasicBlock *BB = CPI.getParent(); 4071 4072 Function *F = BB->getParent(); 4073 Assert(F->hasPersonalityFn(), 4074 "CatchPadInst needs to be in a function with a personality.", &CPI); 4075 4076 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 4077 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 4078 CPI.getParentPad()); 4079 4080 // The catchpad instruction must be the first non-PHI instruction in the 4081 // block. 4082 Assert(BB->getFirstNonPHI() == &CPI, 4083 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 4084 4085 visitEHPadPredecessors(CPI); 4086 visitFuncletPadInst(CPI); 4087 } 4088 4089 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 4090 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 4091 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 4092 CatchReturn.getOperand(0)); 4093 4094 visitTerminator(CatchReturn); 4095 } 4096 4097 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 4098 BasicBlock *BB = CPI.getParent(); 4099 4100 Function *F = BB->getParent(); 4101 Assert(F->hasPersonalityFn(), 4102 "CleanupPadInst needs to be in a function with a personality.", &CPI); 4103 4104 // The cleanuppad instruction must be the first non-PHI instruction in the 4105 // block. 4106 Assert(BB->getFirstNonPHI() == &CPI, 4107 "CleanupPadInst not the first non-PHI instruction in the block.", 4108 &CPI); 4109 4110 auto *ParentPad = CPI.getParentPad(); 4111 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4112 "CleanupPadInst has an invalid parent.", &CPI); 4113 4114 visitEHPadPredecessors(CPI); 4115 visitFuncletPadInst(CPI); 4116 } 4117 4118 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 4119 User *FirstUser = nullptr; 4120 Value *FirstUnwindPad = nullptr; 4121 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 4122 SmallSet<FuncletPadInst *, 8> Seen; 4123 4124 while (!Worklist.empty()) { 4125 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 4126 Assert(Seen.insert(CurrentPad).second, 4127 "FuncletPadInst must not be nested within itself", CurrentPad); 4128 Value *UnresolvedAncestorPad = nullptr; 4129 for (User *U : CurrentPad->users()) { 4130 BasicBlock *UnwindDest; 4131 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 4132 UnwindDest = CRI->getUnwindDest(); 4133 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 4134 // We allow catchswitch unwind to caller to nest 4135 // within an outer pad that unwinds somewhere else, 4136 // because catchswitch doesn't have a nounwind variant. 4137 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 4138 if (CSI->unwindsToCaller()) 4139 continue; 4140 UnwindDest = CSI->getUnwindDest(); 4141 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 4142 UnwindDest = II->getUnwindDest(); 4143 } else if (isa<CallInst>(U)) { 4144 // Calls which don't unwind may be found inside funclet 4145 // pads that unwind somewhere else. We don't *require* 4146 // such calls to be annotated nounwind. 4147 continue; 4148 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 4149 // The unwind dest for a cleanup can only be found by 4150 // recursive search. Add it to the worklist, and we'll 4151 // search for its first use that determines where it unwinds. 4152 Worklist.push_back(CPI); 4153 continue; 4154 } else { 4155 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 4156 continue; 4157 } 4158 4159 Value *UnwindPad; 4160 bool ExitsFPI; 4161 if (UnwindDest) { 4162 UnwindPad = UnwindDest->getFirstNonPHI(); 4163 if (!cast<Instruction>(UnwindPad)->isEHPad()) 4164 continue; 4165 Value *UnwindParent = getParentPad(UnwindPad); 4166 // Ignore unwind edges that don't exit CurrentPad. 4167 if (UnwindParent == CurrentPad) 4168 continue; 4169 // Determine whether the original funclet pad is exited, 4170 // and if we are scanning nested pads determine how many 4171 // of them are exited so we can stop searching their 4172 // children. 4173 Value *ExitedPad = CurrentPad; 4174 ExitsFPI = false; 4175 do { 4176 if (ExitedPad == &FPI) { 4177 ExitsFPI = true; 4178 // Now we can resolve any ancestors of CurrentPad up to 4179 // FPI, but not including FPI since we need to make sure 4180 // to check all direct users of FPI for consistency. 4181 UnresolvedAncestorPad = &FPI; 4182 break; 4183 } 4184 Value *ExitedParent = getParentPad(ExitedPad); 4185 if (ExitedParent == UnwindParent) { 4186 // ExitedPad is the ancestor-most pad which this unwind 4187 // edge exits, so we can resolve up to it, meaning that 4188 // ExitedParent is the first ancestor still unresolved. 4189 UnresolvedAncestorPad = ExitedParent; 4190 break; 4191 } 4192 ExitedPad = ExitedParent; 4193 } while (!isa<ConstantTokenNone>(ExitedPad)); 4194 } else { 4195 // Unwinding to caller exits all pads. 4196 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 4197 ExitsFPI = true; 4198 UnresolvedAncestorPad = &FPI; 4199 } 4200 4201 if (ExitsFPI) { 4202 // This unwind edge exits FPI. Make sure it agrees with other 4203 // such edges. 4204 if (FirstUser) { 4205 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 4206 "pad must have the same unwind " 4207 "dest", 4208 &FPI, U, FirstUser); 4209 } else { 4210 FirstUser = U; 4211 FirstUnwindPad = UnwindPad; 4212 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 4213 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 4214 getParentPad(UnwindPad) == getParentPad(&FPI)) 4215 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 4216 } 4217 } 4218 // Make sure we visit all uses of FPI, but for nested pads stop as 4219 // soon as we know where they unwind to. 4220 if (CurrentPad != &FPI) 4221 break; 4222 } 4223 if (UnresolvedAncestorPad) { 4224 if (CurrentPad == UnresolvedAncestorPad) { 4225 // When CurrentPad is FPI itself, we don't mark it as resolved even if 4226 // we've found an unwind edge that exits it, because we need to verify 4227 // all direct uses of FPI. 4228 assert(CurrentPad == &FPI); 4229 continue; 4230 } 4231 // Pop off the worklist any nested pads that we've found an unwind 4232 // destination for. The pads on the worklist are the uncles, 4233 // great-uncles, etc. of CurrentPad. We've found an unwind destination 4234 // for all ancestors of CurrentPad up to but not including 4235 // UnresolvedAncestorPad. 4236 Value *ResolvedPad = CurrentPad; 4237 while (!Worklist.empty()) { 4238 Value *UnclePad = Worklist.back(); 4239 Value *AncestorPad = getParentPad(UnclePad); 4240 // Walk ResolvedPad up the ancestor list until we either find the 4241 // uncle's parent or the last resolved ancestor. 4242 while (ResolvedPad != AncestorPad) { 4243 Value *ResolvedParent = getParentPad(ResolvedPad); 4244 if (ResolvedParent == UnresolvedAncestorPad) { 4245 break; 4246 } 4247 ResolvedPad = ResolvedParent; 4248 } 4249 // If the resolved ancestor search didn't find the uncle's parent, 4250 // then the uncle is not yet resolved. 4251 if (ResolvedPad != AncestorPad) 4252 break; 4253 // This uncle is resolved, so pop it from the worklist. 4254 Worklist.pop_back(); 4255 } 4256 } 4257 } 4258 4259 if (FirstUnwindPad) { 4260 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 4261 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 4262 Value *SwitchUnwindPad; 4263 if (SwitchUnwindDest) 4264 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 4265 else 4266 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 4267 Assert(SwitchUnwindPad == FirstUnwindPad, 4268 "Unwind edges out of a catch must have the same unwind dest as " 4269 "the parent catchswitch", 4270 &FPI, FirstUser, CatchSwitch); 4271 } 4272 } 4273 4274 visitInstruction(FPI); 4275 } 4276 4277 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 4278 BasicBlock *BB = CatchSwitch.getParent(); 4279 4280 Function *F = BB->getParent(); 4281 Assert(F->hasPersonalityFn(), 4282 "CatchSwitchInst needs to be in a function with a personality.", 4283 &CatchSwitch); 4284 4285 // The catchswitch instruction must be the first non-PHI instruction in the 4286 // block. 4287 Assert(BB->getFirstNonPHI() == &CatchSwitch, 4288 "CatchSwitchInst not the first non-PHI instruction in the block.", 4289 &CatchSwitch); 4290 4291 auto *ParentPad = CatchSwitch.getParentPad(); 4292 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4293 "CatchSwitchInst has an invalid parent.", ParentPad); 4294 4295 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 4296 Instruction *I = UnwindDest->getFirstNonPHI(); 4297 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4298 "CatchSwitchInst must unwind to an EH block which is not a " 4299 "landingpad.", 4300 &CatchSwitch); 4301 4302 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 4303 if (getParentPad(I) == ParentPad) 4304 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 4305 } 4306 4307 Assert(CatchSwitch.getNumHandlers() != 0, 4308 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 4309 4310 for (BasicBlock *Handler : CatchSwitch.handlers()) { 4311 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 4312 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 4313 } 4314 4315 visitEHPadPredecessors(CatchSwitch); 4316 visitTerminator(CatchSwitch); 4317 } 4318 4319 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 4320 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 4321 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 4322 CRI.getOperand(0)); 4323 4324 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 4325 Instruction *I = UnwindDest->getFirstNonPHI(); 4326 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4327 "CleanupReturnInst must unwind to an EH block which is not a " 4328 "landingpad.", 4329 &CRI); 4330 } 4331 4332 visitTerminator(CRI); 4333 } 4334 4335 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 4336 Instruction *Op = cast<Instruction>(I.getOperand(i)); 4337 // If the we have an invalid invoke, don't try to compute the dominance. 4338 // We already reject it in the invoke specific checks and the dominance 4339 // computation doesn't handle multiple edges. 4340 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 4341 if (II->getNormalDest() == II->getUnwindDest()) 4342 return; 4343 } 4344 4345 // Quick check whether the def has already been encountered in the same block. 4346 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 4347 // uses are defined to happen on the incoming edge, not at the instruction. 4348 // 4349 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 4350 // wrapping an SSA value, assert that we've already encountered it. See 4351 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 4352 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 4353 return; 4354 4355 const Use &U = I.getOperandUse(i); 4356 Assert(DT.dominates(Op, U), 4357 "Instruction does not dominate all uses!", Op, &I); 4358 } 4359 4360 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4361 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 4362 "apply only to pointer types", &I); 4363 Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4364 "dereferenceable, dereferenceable_or_null apply only to load" 4365 " and inttoptr instructions, use attributes for calls or invokes", &I); 4366 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 4367 "take one operand!", &I); 4368 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4369 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 4370 "dereferenceable_or_null metadata value must be an i64!", &I); 4371 } 4372 4373 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4374 Assert(MD->getNumOperands() >= 2, 4375 "!prof annotations should have no less than 2 operands", MD); 4376 4377 // Check first operand. 4378 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4379 Assert(isa<MDString>(MD->getOperand(0)), 4380 "expected string with name of the !prof annotation", MD); 4381 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4382 StringRef ProfName = MDS->getString(); 4383 4384 // Check consistency of !prof branch_weights metadata. 4385 if (ProfName.equals("branch_weights")) { 4386 if (isa<InvokeInst>(&I)) { 4387 Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3, 4388 "Wrong number of InvokeInst branch_weights operands", MD); 4389 } else { 4390 unsigned ExpectedNumOperands = 0; 4391 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4392 ExpectedNumOperands = BI->getNumSuccessors(); 4393 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4394 ExpectedNumOperands = SI->getNumSuccessors(); 4395 else if (isa<CallInst>(&I)) 4396 ExpectedNumOperands = 1; 4397 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4398 ExpectedNumOperands = IBI->getNumDestinations(); 4399 else if (isa<SelectInst>(&I)) 4400 ExpectedNumOperands = 2; 4401 else 4402 CheckFailed("!prof branch_weights are not allowed for this instruction", 4403 MD); 4404 4405 Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, 4406 "Wrong number of operands", MD); 4407 } 4408 for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 4409 auto &MDO = MD->getOperand(i); 4410 Assert(MDO, "second operand should not be null", MD); 4411 Assert(mdconst::dyn_extract<ConstantInt>(MDO), 4412 "!prof brunch_weights operand is not a const int"); 4413 } 4414 } 4415 } 4416 4417 void Verifier::visitAnnotationMetadata(MDNode *Annotation) { 4418 Assert(isa<MDTuple>(Annotation), "annotation must be a tuple"); 4419 Assert(Annotation->getNumOperands() >= 1, 4420 "annotation must have at least one operand"); 4421 for (const MDOperand &Op : Annotation->operands()) 4422 Assert(isa<MDString>(Op.get()), "operands must be strings"); 4423 } 4424 4425 void Verifier::visitAliasScopeMetadata(const MDNode *MD) { 4426 unsigned NumOps = MD->getNumOperands(); 4427 Assert(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands", 4428 MD); 4429 Assert(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)), 4430 "first scope operand must be self-referential or string", MD); 4431 if (NumOps == 3) 4432 Assert(isa<MDString>(MD->getOperand(2)), 4433 "third scope operand must be string (if used)", MD); 4434 4435 MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1)); 4436 Assert(Domain != nullptr, "second scope operand must be MDNode", MD); 4437 4438 unsigned NumDomainOps = Domain->getNumOperands(); 4439 Assert(NumDomainOps >= 1 && NumDomainOps <= 2, 4440 "domain must have one or two operands", Domain); 4441 Assert(Domain->getOperand(0).get() == Domain || 4442 isa<MDString>(Domain->getOperand(0)), 4443 "first domain operand must be self-referential or string", Domain); 4444 if (NumDomainOps == 2) 4445 Assert(isa<MDString>(Domain->getOperand(1)), 4446 "second domain operand must be string (if used)", Domain); 4447 } 4448 4449 void Verifier::visitAliasScopeListMetadata(const MDNode *MD) { 4450 for (const MDOperand &Op : MD->operands()) { 4451 const MDNode *OpMD = dyn_cast<MDNode>(Op); 4452 Assert(OpMD != nullptr, "scope list must consist of MDNodes", MD); 4453 visitAliasScopeMetadata(OpMD); 4454 } 4455 } 4456 4457 /// verifyInstruction - Verify that an instruction is well formed. 4458 /// 4459 void Verifier::visitInstruction(Instruction &I) { 4460 BasicBlock *BB = I.getParent(); 4461 Assert(BB, "Instruction not embedded in basic block!", &I); 4462 4463 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4464 for (User *U : I.users()) { 4465 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 4466 "Only PHI nodes may reference their own value!", &I); 4467 } 4468 } 4469 4470 // Check that void typed values don't have names 4471 Assert(!I.getType()->isVoidTy() || !I.hasName(), 4472 "Instruction has a name, but provides a void value!", &I); 4473 4474 // Check that the return value of the instruction is either void or a legal 4475 // value type. 4476 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4477 "Instruction returns a non-scalar type!", &I); 4478 4479 // Check that the instruction doesn't produce metadata. Calls are already 4480 // checked against the callee type. 4481 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4482 "Invalid use of metadata!", &I); 4483 4484 // Check that all uses of the instruction, if they are instructions 4485 // themselves, actually have parent basic blocks. If the use is not an 4486 // instruction, it is an error! 4487 for (Use &U : I.uses()) { 4488 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4489 Assert(Used->getParent() != nullptr, 4490 "Instruction referencing" 4491 " instruction not embedded in a basic block!", 4492 &I, Used); 4493 else { 4494 CheckFailed("Use of instruction is not an instruction!", U); 4495 return; 4496 } 4497 } 4498 4499 // Get a pointer to the call base of the instruction if it is some form of 4500 // call. 4501 const CallBase *CBI = dyn_cast<CallBase>(&I); 4502 4503 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4504 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4505 4506 // Check to make sure that only first-class-values are operands to 4507 // instructions. 4508 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4509 Assert(false, "Instruction operands must be first-class values!", &I); 4510 } 4511 4512 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4513 // This code checks whether the function is used as the operand of a 4514 // clang_arc_attachedcall operand bundle. 4515 auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI, 4516 int Idx) { 4517 return CBI && CBI->isOperandBundleOfType( 4518 LLVMContext::OB_clang_arc_attachedcall, Idx); 4519 }; 4520 4521 // Check to make sure that the "address of" an intrinsic function is never 4522 // taken. Ignore cases where the address of the intrinsic function is used 4523 // as the argument of operand bundle "clang.arc.attachedcall" as those 4524 // cases are handled in verifyAttachedCallBundle. 4525 Assert((!F->isIntrinsic() || 4526 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) || 4527 IsAttachedCallOperand(F, CBI, i)), 4528 "Cannot take the address of an intrinsic!", &I); 4529 Assert( 4530 !F->isIntrinsic() || isa<CallInst>(I) || 4531 F->getIntrinsicID() == Intrinsic::donothing || 4532 F->getIntrinsicID() == Intrinsic::seh_try_begin || 4533 F->getIntrinsicID() == Intrinsic::seh_try_end || 4534 F->getIntrinsicID() == Intrinsic::seh_scope_begin || 4535 F->getIntrinsicID() == Intrinsic::seh_scope_end || 4536 F->getIntrinsicID() == Intrinsic::coro_resume || 4537 F->getIntrinsicID() == Intrinsic::coro_destroy || 4538 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4539 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4540 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4541 F->getIntrinsicID() == Intrinsic::wasm_rethrow || 4542 IsAttachedCallOperand(F, CBI, i), 4543 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4544 "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall", 4545 &I); 4546 Assert(F->getParent() == &M, "Referencing function in another module!", 4547 &I, &M, F, F->getParent()); 4548 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4549 Assert(OpBB->getParent() == BB->getParent(), 4550 "Referring to a basic block in another function!", &I); 4551 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4552 Assert(OpArg->getParent() == BB->getParent(), 4553 "Referring to an argument in another function!", &I); 4554 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4555 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4556 &M, GV, GV->getParent()); 4557 } else if (isa<Instruction>(I.getOperand(i))) { 4558 verifyDominatesUse(I, i); 4559 } else if (isa<InlineAsm>(I.getOperand(i))) { 4560 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4561 "Cannot take the address of an inline asm!", &I); 4562 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4563 if (CE->getType()->isPtrOrPtrVectorTy()) { 4564 // If we have a ConstantExpr pointer, we need to see if it came from an 4565 // illegal bitcast. 4566 visitConstantExprsRecursively(CE); 4567 } 4568 } 4569 } 4570 4571 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4572 Assert(I.getType()->isFPOrFPVectorTy(), 4573 "fpmath requires a floating point result!", &I); 4574 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4575 if (ConstantFP *CFP0 = 4576 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4577 const APFloat &Accuracy = CFP0->getValueAPF(); 4578 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4579 "fpmath accuracy must have float type", &I); 4580 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4581 "fpmath accuracy not a positive number!", &I); 4582 } else { 4583 Assert(false, "invalid fpmath accuracy!", &I); 4584 } 4585 } 4586 4587 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4588 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4589 "Ranges are only for loads, calls and invokes!", &I); 4590 visitRangeMetadata(I, Range, I.getType()); 4591 } 4592 4593 if (I.hasMetadata(LLVMContext::MD_invariant_group)) { 4594 Assert(isa<LoadInst>(I) || isa<StoreInst>(I), 4595 "invariant.group metadata is only for loads and stores", &I); 4596 } 4597 4598 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4599 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4600 &I); 4601 Assert(isa<LoadInst>(I), 4602 "nonnull applies only to load instructions, use attributes" 4603 " for calls or invokes", 4604 &I); 4605 } 4606 4607 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4608 visitDereferenceableMetadata(I, MD); 4609 4610 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4611 visitDereferenceableMetadata(I, MD); 4612 4613 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4614 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4615 4616 if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias)) 4617 visitAliasScopeListMetadata(MD); 4618 if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope)) 4619 visitAliasScopeListMetadata(MD); 4620 4621 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4622 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4623 &I); 4624 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4625 "use attributes for calls or invokes", &I); 4626 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4627 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4628 Assert(CI && CI->getType()->isIntegerTy(64), 4629 "align metadata value must be an i64!", &I); 4630 uint64_t Align = CI->getZExtValue(); 4631 Assert(isPowerOf2_64(Align), 4632 "align metadata value must be a power of 2!", &I); 4633 Assert(Align <= Value::MaximumAlignment, 4634 "alignment is larger that implementation defined limit", &I); 4635 } 4636 4637 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 4638 visitProfMetadata(I, MD); 4639 4640 if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation)) 4641 visitAnnotationMetadata(Annotation); 4642 4643 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4644 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4645 visitMDNode(*N, AreDebugLocsAllowed::Yes); 4646 } 4647 4648 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 4649 verifyFragmentExpression(*DII); 4650 verifyNotEntryValue(*DII); 4651 } 4652 4653 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 4654 I.getAllMetadata(MDs); 4655 for (auto Attachment : MDs) { 4656 unsigned Kind = Attachment.first; 4657 auto AllowLocs = 4658 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) 4659 ? AreDebugLocsAllowed::Yes 4660 : AreDebugLocsAllowed::No; 4661 visitMDNode(*Attachment.second, AllowLocs); 4662 } 4663 4664 InstsInThisBlock.insert(&I); 4665 } 4666 4667 /// Allow intrinsics to be verified in different ways. 4668 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4669 Function *IF = Call.getCalledFunction(); 4670 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4671 IF); 4672 4673 // Verify that the intrinsic prototype lines up with what the .td files 4674 // describe. 4675 FunctionType *IFTy = IF->getFunctionType(); 4676 bool IsVarArg = IFTy->isVarArg(); 4677 4678 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4679 getIntrinsicInfoTableEntries(ID, Table); 4680 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4681 4682 // Walk the descriptors to extract overloaded types. 4683 SmallVector<Type *, 4> ArgTys; 4684 Intrinsic::MatchIntrinsicTypesResult Res = 4685 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4686 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4687 "Intrinsic has incorrect return type!", IF); 4688 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4689 "Intrinsic has incorrect argument type!", IF); 4690 4691 // Verify if the intrinsic call matches the vararg property. 4692 if (IsVarArg) 4693 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4694 "Intrinsic was not defined with variable arguments!", IF); 4695 else 4696 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4697 "Callsite was not defined with variable arguments!", IF); 4698 4699 // All descriptors should be absorbed by now. 4700 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4701 4702 // Now that we have the intrinsic ID and the actual argument types (and we 4703 // know they are legal for the intrinsic!) get the intrinsic name through the 4704 // usual means. This allows us to verify the mangling of argument types into 4705 // the name. 4706 const std::string ExpectedName = 4707 Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy); 4708 Assert(ExpectedName == IF->getName(), 4709 "Intrinsic name not mangled correctly for type arguments! " 4710 "Should be: " + 4711 ExpectedName, 4712 IF); 4713 4714 // If the intrinsic takes MDNode arguments, verify that they are either global 4715 // or are local to *this* function. 4716 for (Value *V : Call.args()) { 4717 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4718 visitMetadataAsValue(*MD, Call.getCaller()); 4719 if (auto *Const = dyn_cast<Constant>(V)) 4720 Assert(!Const->getType()->isX86_AMXTy(), 4721 "const x86_amx is not allowed in argument!"); 4722 } 4723 4724 switch (ID) { 4725 default: 4726 break; 4727 case Intrinsic::assume: { 4728 for (auto &Elem : Call.bundle_op_infos()) { 4729 Assert(Elem.Tag->getKey() == "ignore" || 4730 Attribute::isExistingAttribute(Elem.Tag->getKey()), 4731 "tags must be valid attribute names", Call); 4732 Attribute::AttrKind Kind = 4733 Attribute::getAttrKindFromName(Elem.Tag->getKey()); 4734 unsigned ArgCount = Elem.End - Elem.Begin; 4735 if (Kind == Attribute::Alignment) { 4736 Assert(ArgCount <= 3 && ArgCount >= 2, 4737 "alignment assumptions should have 2 or 3 arguments", Call); 4738 Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(), 4739 "first argument should be a pointer", Call); 4740 Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(), 4741 "second argument should be an integer", Call); 4742 if (ArgCount == 3) 4743 Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(), 4744 "third argument should be an integer if present", Call); 4745 return; 4746 } 4747 Assert(ArgCount <= 2, "too many arguments", Call); 4748 if (Kind == Attribute::None) 4749 break; 4750 if (Attribute::isIntAttrKind(Kind)) { 4751 Assert(ArgCount == 2, "this attribute should have 2 arguments", Call); 4752 Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), 4753 "the second argument should be a constant integral value", Call); 4754 } else if (Attribute::canUseAsParamAttr(Kind)) { 4755 Assert((ArgCount) == 1, "this attribute should have one argument", 4756 Call); 4757 } else if (Attribute::canUseAsFnAttr(Kind)) { 4758 Assert((ArgCount) == 0, "this attribute has no argument", Call); 4759 } 4760 } 4761 break; 4762 } 4763 case Intrinsic::coro_id: { 4764 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4765 if (isa<ConstantPointerNull>(InfoArg)) 4766 break; 4767 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4768 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4769 "info argument of llvm.coro.id must refer to an initialized " 4770 "constant"); 4771 Constant *Init = GV->getInitializer(); 4772 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4773 "info argument of llvm.coro.id must refer to either a struct or " 4774 "an array"); 4775 break; 4776 } 4777 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ 4778 case Intrinsic::INTRINSIC: 4779 #include "llvm/IR/ConstrainedOps.def" 4780 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4781 break; 4782 case Intrinsic::dbg_declare: // llvm.dbg.declare 4783 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4784 "invalid llvm.dbg.declare intrinsic call 1", Call); 4785 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4786 break; 4787 case Intrinsic::dbg_addr: // llvm.dbg.addr 4788 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4789 break; 4790 case Intrinsic::dbg_value: // llvm.dbg.value 4791 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4792 break; 4793 case Intrinsic::dbg_label: // llvm.dbg.label 4794 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4795 break; 4796 case Intrinsic::memcpy: 4797 case Intrinsic::memcpy_inline: 4798 case Intrinsic::memmove: 4799 case Intrinsic::memset: { 4800 const auto *MI = cast<MemIntrinsic>(&Call); 4801 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4802 return Alignment == 0 || isPowerOf2_32(Alignment); 4803 }; 4804 Assert(IsValidAlignment(MI->getDestAlignment()), 4805 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4806 Call); 4807 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4808 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4809 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4810 Call); 4811 } 4812 4813 break; 4814 } 4815 case Intrinsic::memcpy_element_unordered_atomic: 4816 case Intrinsic::memmove_element_unordered_atomic: 4817 case Intrinsic::memset_element_unordered_atomic: { 4818 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4819 4820 ConstantInt *ElementSizeCI = 4821 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4822 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4823 Assert(ElementSizeVal.isPowerOf2(), 4824 "element size of the element-wise atomic memory intrinsic " 4825 "must be a power of 2", 4826 Call); 4827 4828 auto IsValidAlignment = [&](uint64_t Alignment) { 4829 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4830 }; 4831 uint64_t DstAlignment = AMI->getDestAlignment(); 4832 Assert(IsValidAlignment(DstAlignment), 4833 "incorrect alignment of the destination argument", Call); 4834 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4835 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4836 Assert(IsValidAlignment(SrcAlignment), 4837 "incorrect alignment of the source argument", Call); 4838 } 4839 break; 4840 } 4841 case Intrinsic::call_preallocated_setup: { 4842 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 4843 Assert(NumArgs != nullptr, 4844 "llvm.call.preallocated.setup argument must be a constant"); 4845 bool FoundCall = false; 4846 for (User *U : Call.users()) { 4847 auto *UseCall = dyn_cast<CallBase>(U); 4848 Assert(UseCall != nullptr, 4849 "Uses of llvm.call.preallocated.setup must be calls"); 4850 const Function *Fn = UseCall->getCalledFunction(); 4851 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { 4852 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); 4853 Assert(AllocArgIndex != nullptr, 4854 "llvm.call.preallocated.alloc arg index must be a constant"); 4855 auto AllocArgIndexInt = AllocArgIndex->getValue(); 4856 Assert(AllocArgIndexInt.sge(0) && 4857 AllocArgIndexInt.slt(NumArgs->getValue()), 4858 "llvm.call.preallocated.alloc arg index must be between 0 and " 4859 "corresponding " 4860 "llvm.call.preallocated.setup's argument count"); 4861 } else if (Fn && Fn->getIntrinsicID() == 4862 Intrinsic::call_preallocated_teardown) { 4863 // nothing to do 4864 } else { 4865 Assert(!FoundCall, "Can have at most one call corresponding to a " 4866 "llvm.call.preallocated.setup"); 4867 FoundCall = true; 4868 size_t NumPreallocatedArgs = 0; 4869 for (unsigned i = 0; i < UseCall->arg_size(); i++) { 4870 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { 4871 ++NumPreallocatedArgs; 4872 } 4873 } 4874 Assert(NumPreallocatedArgs != 0, 4875 "cannot use preallocated intrinsics on a call without " 4876 "preallocated arguments"); 4877 Assert(NumArgs->equalsInt(NumPreallocatedArgs), 4878 "llvm.call.preallocated.setup arg size must be equal to number " 4879 "of preallocated arguments " 4880 "at call site", 4881 Call, *UseCall); 4882 // getOperandBundle() cannot be called if more than one of the operand 4883 // bundle exists. There is already a check elsewhere for this, so skip 4884 // here if we see more than one. 4885 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > 4886 1) { 4887 return; 4888 } 4889 auto PreallocatedBundle = 4890 UseCall->getOperandBundle(LLVMContext::OB_preallocated); 4891 Assert(PreallocatedBundle, 4892 "Use of llvm.call.preallocated.setup outside intrinsics " 4893 "must be in \"preallocated\" operand bundle"); 4894 Assert(PreallocatedBundle->Inputs.front().get() == &Call, 4895 "preallocated bundle must have token from corresponding " 4896 "llvm.call.preallocated.setup"); 4897 } 4898 } 4899 break; 4900 } 4901 case Intrinsic::call_preallocated_arg: { 4902 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4903 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4904 Intrinsic::call_preallocated_setup, 4905 "llvm.call.preallocated.arg token argument must be a " 4906 "llvm.call.preallocated.setup"); 4907 Assert(Call.hasFnAttr(Attribute::Preallocated), 4908 "llvm.call.preallocated.arg must be called with a \"preallocated\" " 4909 "call site attribute"); 4910 break; 4911 } 4912 case Intrinsic::call_preallocated_teardown: { 4913 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4914 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4915 Intrinsic::call_preallocated_setup, 4916 "llvm.call.preallocated.teardown token argument must be a " 4917 "llvm.call.preallocated.setup"); 4918 break; 4919 } 4920 case Intrinsic::gcroot: 4921 case Intrinsic::gcwrite: 4922 case Intrinsic::gcread: 4923 if (ID == Intrinsic::gcroot) { 4924 AllocaInst *AI = 4925 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4926 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4927 Assert(isa<Constant>(Call.getArgOperand(1)), 4928 "llvm.gcroot parameter #2 must be a constant.", Call); 4929 if (!AI->getAllocatedType()->isPointerTy()) { 4930 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4931 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4932 "or argument #2 must be a non-null constant.", 4933 Call); 4934 } 4935 } 4936 4937 Assert(Call.getParent()->getParent()->hasGC(), 4938 "Enclosing function does not use GC.", Call); 4939 break; 4940 case Intrinsic::init_trampoline: 4941 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4942 "llvm.init_trampoline parameter #2 must resolve to a function.", 4943 Call); 4944 break; 4945 case Intrinsic::prefetch: 4946 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4947 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4948 "invalid arguments to llvm.prefetch", Call); 4949 break; 4950 case Intrinsic::stackprotector: 4951 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4952 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4953 break; 4954 case Intrinsic::localescape: { 4955 BasicBlock *BB = Call.getParent(); 4956 Assert(BB == &BB->getParent()->front(), 4957 "llvm.localescape used outside of entry block", Call); 4958 Assert(!SawFrameEscape, 4959 "multiple calls to llvm.localescape in one function", Call); 4960 for (Value *Arg : Call.args()) { 4961 if (isa<ConstantPointerNull>(Arg)) 4962 continue; // Null values are allowed as placeholders. 4963 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4964 Assert(AI && AI->isStaticAlloca(), 4965 "llvm.localescape only accepts static allocas", Call); 4966 } 4967 FrameEscapeInfo[BB->getParent()].first = Call.arg_size(); 4968 SawFrameEscape = true; 4969 break; 4970 } 4971 case Intrinsic::localrecover: { 4972 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4973 Function *Fn = dyn_cast<Function>(FnArg); 4974 Assert(Fn && !Fn->isDeclaration(), 4975 "llvm.localrecover first " 4976 "argument must be function defined in this module", 4977 Call); 4978 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 4979 auto &Entry = FrameEscapeInfo[Fn]; 4980 Entry.second = unsigned( 4981 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4982 break; 4983 } 4984 4985 case Intrinsic::experimental_gc_statepoint: 4986 if (auto *CI = dyn_cast<CallInst>(&Call)) 4987 Assert(!CI->isInlineAsm(), 4988 "gc.statepoint support for inline assembly unimplemented", CI); 4989 Assert(Call.getParent()->getParent()->hasGC(), 4990 "Enclosing function does not use GC.", Call); 4991 4992 verifyStatepoint(Call); 4993 break; 4994 case Intrinsic::experimental_gc_result: { 4995 Assert(Call.getParent()->getParent()->hasGC(), 4996 "Enclosing function does not use GC.", Call); 4997 // Are we tied to a statepoint properly? 4998 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4999 const Function *StatepointFn = 5000 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 5001 Assert(StatepointFn && StatepointFn->isDeclaration() && 5002 StatepointFn->getIntrinsicID() == 5003 Intrinsic::experimental_gc_statepoint, 5004 "gc.result operand #1 must be from a statepoint", Call, 5005 Call.getArgOperand(0)); 5006 5007 // Assert that result type matches wrapped callee. 5008 const Value *Target = StatepointCall->getArgOperand(2); 5009 auto *PT = cast<PointerType>(Target->getType()); 5010 auto *TargetFuncType = cast<FunctionType>(PT->getPointerElementType()); 5011 Assert(Call.getType() == TargetFuncType->getReturnType(), 5012 "gc.result result type does not match wrapped callee", Call); 5013 break; 5014 } 5015 case Intrinsic::experimental_gc_relocate: { 5016 Assert(Call.arg_size() == 3, "wrong number of arguments", Call); 5017 5018 Assert(isa<PointerType>(Call.getType()->getScalarType()), 5019 "gc.relocate must return a pointer or a vector of pointers", Call); 5020 5021 // Check that this relocate is correctly tied to the statepoint 5022 5023 // This is case for relocate on the unwinding path of an invoke statepoint 5024 if (LandingPadInst *LandingPad = 5025 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 5026 5027 const BasicBlock *InvokeBB = 5028 LandingPad->getParent()->getUniquePredecessor(); 5029 5030 // Landingpad relocates should have only one predecessor with invoke 5031 // statepoint terminator 5032 Assert(InvokeBB, "safepoints should have unique landingpads", 5033 LandingPad->getParent()); 5034 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 5035 InvokeBB); 5036 Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()), 5037 "gc relocate should be linked to a statepoint", InvokeBB); 5038 } else { 5039 // In all other cases relocate should be tied to the statepoint directly. 5040 // This covers relocates on a normal return path of invoke statepoint and 5041 // relocates of a call statepoint. 5042 auto Token = Call.getArgOperand(0); 5043 Assert(isa<GCStatepointInst>(Token), 5044 "gc relocate is incorrectly tied to the statepoint", Call, Token); 5045 } 5046 5047 // Verify rest of the relocate arguments. 5048 const CallBase &StatepointCall = 5049 *cast<GCRelocateInst>(Call).getStatepoint(); 5050 5051 // Both the base and derived must be piped through the safepoint. 5052 Value *Base = Call.getArgOperand(1); 5053 Assert(isa<ConstantInt>(Base), 5054 "gc.relocate operand #2 must be integer offset", Call); 5055 5056 Value *Derived = Call.getArgOperand(2); 5057 Assert(isa<ConstantInt>(Derived), 5058 "gc.relocate operand #3 must be integer offset", Call); 5059 5060 const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 5061 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 5062 5063 // Check the bounds 5064 if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) { 5065 Assert(BaseIndex < Opt->Inputs.size(), 5066 "gc.relocate: statepoint base index out of bounds", Call); 5067 Assert(DerivedIndex < Opt->Inputs.size(), 5068 "gc.relocate: statepoint derived index out of bounds", Call); 5069 } 5070 5071 // Relocated value must be either a pointer type or vector-of-pointer type, 5072 // but gc_relocate does not need to return the same pointer type as the 5073 // relocated pointer. It can be casted to the correct type later if it's 5074 // desired. However, they must have the same address space and 'vectorness' 5075 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 5076 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 5077 "gc.relocate: relocated value must be a gc pointer", Call); 5078 5079 auto ResultType = Call.getType(); 5080 auto DerivedType = Relocate.getDerivedPtr()->getType(); 5081 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 5082 "gc.relocate: vector relocates to vector and pointer to pointer", 5083 Call); 5084 Assert( 5085 ResultType->getPointerAddressSpace() == 5086 DerivedType->getPointerAddressSpace(), 5087 "gc.relocate: relocating a pointer shouldn't change its address space", 5088 Call); 5089 break; 5090 } 5091 case Intrinsic::eh_exceptioncode: 5092 case Intrinsic::eh_exceptionpointer: { 5093 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 5094 "eh.exceptionpointer argument must be a catchpad", Call); 5095 break; 5096 } 5097 case Intrinsic::get_active_lane_mask: { 5098 Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a " 5099 "vector", Call); 5100 auto *ElemTy = Call.getType()->getScalarType(); 5101 Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not " 5102 "i1", Call); 5103 break; 5104 } 5105 case Intrinsic::masked_load: { 5106 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 5107 Call); 5108 5109 Value *Ptr = Call.getArgOperand(0); 5110 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 5111 Value *Mask = Call.getArgOperand(2); 5112 Value *PassThru = Call.getArgOperand(3); 5113 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 5114 Call); 5115 Assert(Alignment->getValue().isPowerOf2(), 5116 "masked_load: alignment must be a power of 2", Call); 5117 5118 PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 5119 Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType()), 5120 "masked_load: return must match pointer type", Call); 5121 Assert(PassThru->getType() == Call.getType(), 5122 "masked_load: pass through and return type must match", Call); 5123 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 5124 cast<VectorType>(Call.getType())->getElementCount(), 5125 "masked_load: vector mask must be same length as return", Call); 5126 break; 5127 } 5128 case Intrinsic::masked_store: { 5129 Value *Val = Call.getArgOperand(0); 5130 Value *Ptr = Call.getArgOperand(1); 5131 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 5132 Value *Mask = Call.getArgOperand(3); 5133 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 5134 Call); 5135 Assert(Alignment->getValue().isPowerOf2(), 5136 "masked_store: alignment must be a power of 2", Call); 5137 5138 PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 5139 Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType()), 5140 "masked_store: storee must match pointer type", Call); 5141 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 5142 cast<VectorType>(Val->getType())->getElementCount(), 5143 "masked_store: vector mask must be same length as value", Call); 5144 break; 5145 } 5146 5147 case Intrinsic::masked_gather: { 5148 const APInt &Alignment = 5149 cast<ConstantInt>(Call.getArgOperand(1))->getValue(); 5150 Assert(Alignment.isZero() || Alignment.isPowerOf2(), 5151 "masked_gather: alignment must be 0 or a power of 2", Call); 5152 break; 5153 } 5154 case Intrinsic::masked_scatter: { 5155 const APInt &Alignment = 5156 cast<ConstantInt>(Call.getArgOperand(2))->getValue(); 5157 Assert(Alignment.isZero() || Alignment.isPowerOf2(), 5158 "masked_scatter: alignment must be 0 or a power of 2", Call); 5159 break; 5160 } 5161 5162 case Intrinsic::experimental_guard: { 5163 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 5164 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5165 "experimental_guard must have exactly one " 5166 "\"deopt\" operand bundle"); 5167 break; 5168 } 5169 5170 case Intrinsic::experimental_deoptimize: { 5171 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 5172 Call); 5173 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5174 "experimental_deoptimize must have exactly one " 5175 "\"deopt\" operand bundle"); 5176 Assert(Call.getType() == Call.getFunction()->getReturnType(), 5177 "experimental_deoptimize return type must match caller return type"); 5178 5179 if (isa<CallInst>(Call)) { 5180 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 5181 Assert(RI, 5182 "calls to experimental_deoptimize must be followed by a return"); 5183 5184 if (!Call.getType()->isVoidTy() && RI) 5185 Assert(RI->getReturnValue() == &Call, 5186 "calls to experimental_deoptimize must be followed by a return " 5187 "of the value computed by experimental_deoptimize"); 5188 } 5189 5190 break; 5191 } 5192 case Intrinsic::vector_reduce_and: 5193 case Intrinsic::vector_reduce_or: 5194 case Intrinsic::vector_reduce_xor: 5195 case Intrinsic::vector_reduce_add: 5196 case Intrinsic::vector_reduce_mul: 5197 case Intrinsic::vector_reduce_smax: 5198 case Intrinsic::vector_reduce_smin: 5199 case Intrinsic::vector_reduce_umax: 5200 case Intrinsic::vector_reduce_umin: { 5201 Type *ArgTy = Call.getArgOperand(0)->getType(); 5202 Assert(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(), 5203 "Intrinsic has incorrect argument type!"); 5204 break; 5205 } 5206 case Intrinsic::vector_reduce_fmax: 5207 case Intrinsic::vector_reduce_fmin: { 5208 Type *ArgTy = Call.getArgOperand(0)->getType(); 5209 Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5210 "Intrinsic has incorrect argument type!"); 5211 break; 5212 } 5213 case Intrinsic::vector_reduce_fadd: 5214 case Intrinsic::vector_reduce_fmul: { 5215 // Unlike the other reductions, the first argument is a start value. The 5216 // second argument is the vector to be reduced. 5217 Type *ArgTy = Call.getArgOperand(1)->getType(); 5218 Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5219 "Intrinsic has incorrect argument type!"); 5220 break; 5221 } 5222 case Intrinsic::smul_fix: 5223 case Intrinsic::smul_fix_sat: 5224 case Intrinsic::umul_fix: 5225 case Intrinsic::umul_fix_sat: 5226 case Intrinsic::sdiv_fix: 5227 case Intrinsic::sdiv_fix_sat: 5228 case Intrinsic::udiv_fix: 5229 case Intrinsic::udiv_fix_sat: { 5230 Value *Op1 = Call.getArgOperand(0); 5231 Value *Op2 = Call.getArgOperand(1); 5232 Assert(Op1->getType()->isIntOrIntVectorTy(), 5233 "first operand of [us][mul|div]_fix[_sat] must be an int type or " 5234 "vector of ints"); 5235 Assert(Op2->getType()->isIntOrIntVectorTy(), 5236 "second operand of [us][mul|div]_fix[_sat] must be an int type or " 5237 "vector of ints"); 5238 5239 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 5240 Assert(Op3->getType()->getBitWidth() <= 32, 5241 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); 5242 5243 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 5244 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { 5245 Assert( 5246 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 5247 "the scale of s[mul|div]_fix[_sat] must be less than the width of " 5248 "the operands"); 5249 } else { 5250 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 5251 "the scale of u[mul|div]_fix[_sat] must be less than or equal " 5252 "to the width of the operands"); 5253 } 5254 break; 5255 } 5256 case Intrinsic::lround: 5257 case Intrinsic::llround: 5258 case Intrinsic::lrint: 5259 case Intrinsic::llrint: { 5260 Type *ValTy = Call.getArgOperand(0)->getType(); 5261 Type *ResultTy = Call.getType(); 5262 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5263 "Intrinsic does not support vectors", &Call); 5264 break; 5265 } 5266 case Intrinsic::bswap: { 5267 Type *Ty = Call.getType(); 5268 unsigned Size = Ty->getScalarSizeInBits(); 5269 Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call); 5270 break; 5271 } 5272 case Intrinsic::invariant_start: { 5273 ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 5274 Assert(InvariantSize && 5275 (!InvariantSize->isNegative() || InvariantSize->isMinusOne()), 5276 "invariant_start parameter must be -1, 0 or a positive number", 5277 &Call); 5278 break; 5279 } 5280 case Intrinsic::matrix_multiply: 5281 case Intrinsic::matrix_transpose: 5282 case Intrinsic::matrix_column_major_load: 5283 case Intrinsic::matrix_column_major_store: { 5284 Function *IF = Call.getCalledFunction(); 5285 ConstantInt *Stride = nullptr; 5286 ConstantInt *NumRows; 5287 ConstantInt *NumColumns; 5288 VectorType *ResultTy; 5289 Type *Op0ElemTy = nullptr; 5290 Type *Op1ElemTy = nullptr; 5291 switch (ID) { 5292 case Intrinsic::matrix_multiply: 5293 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 5294 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5295 ResultTy = cast<VectorType>(Call.getType()); 5296 Op0ElemTy = 5297 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5298 Op1ElemTy = 5299 cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType(); 5300 break; 5301 case Intrinsic::matrix_transpose: 5302 NumRows = cast<ConstantInt>(Call.getArgOperand(1)); 5303 NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); 5304 ResultTy = cast<VectorType>(Call.getType()); 5305 Op0ElemTy = 5306 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5307 break; 5308 case Intrinsic::matrix_column_major_load: { 5309 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1)); 5310 NumRows = cast<ConstantInt>(Call.getArgOperand(3)); 5311 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5312 ResultTy = cast<VectorType>(Call.getType()); 5313 5314 PointerType *Op0PtrTy = 5315 cast<PointerType>(Call.getArgOperand(0)->getType()); 5316 if (!Op0PtrTy->isOpaque()) 5317 Op0ElemTy = Op0PtrTy->getNonOpaquePointerElementType(); 5318 break; 5319 } 5320 case Intrinsic::matrix_column_major_store: { 5321 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2)); 5322 NumRows = cast<ConstantInt>(Call.getArgOperand(4)); 5323 NumColumns = cast<ConstantInt>(Call.getArgOperand(5)); 5324 ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 5325 Op0ElemTy = 5326 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5327 5328 PointerType *Op1PtrTy = 5329 cast<PointerType>(Call.getArgOperand(1)->getType()); 5330 if (!Op1PtrTy->isOpaque()) 5331 Op1ElemTy = Op1PtrTy->getNonOpaquePointerElementType(); 5332 break; 5333 } 5334 default: 5335 llvm_unreachable("unexpected intrinsic"); 5336 } 5337 5338 Assert(ResultTy->getElementType()->isIntegerTy() || 5339 ResultTy->getElementType()->isFloatingPointTy(), 5340 "Result type must be an integer or floating-point type!", IF); 5341 5342 if (Op0ElemTy) 5343 Assert(ResultTy->getElementType() == Op0ElemTy, 5344 "Vector element type mismatch of the result and first operand " 5345 "vector!", IF); 5346 5347 if (Op1ElemTy) 5348 Assert(ResultTy->getElementType() == Op1ElemTy, 5349 "Vector element type mismatch of the result and second operand " 5350 "vector!", IF); 5351 5352 Assert(cast<FixedVectorType>(ResultTy)->getNumElements() == 5353 NumRows->getZExtValue() * NumColumns->getZExtValue(), 5354 "Result of a matrix operation does not fit in the returned vector!"); 5355 5356 if (Stride) 5357 Assert(Stride->getZExtValue() >= NumRows->getZExtValue(), 5358 "Stride must be greater or equal than the number of rows!", IF); 5359 5360 break; 5361 } 5362 case Intrinsic::experimental_vector_splice: { 5363 VectorType *VecTy = cast<VectorType>(Call.getType()); 5364 int64_t Idx = cast<ConstantInt>(Call.getArgOperand(2))->getSExtValue(); 5365 int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue(); 5366 if (Call.getParent() && Call.getParent()->getParent()) { 5367 AttributeList Attrs = Call.getParent()->getParent()->getAttributes(); 5368 if (Attrs.hasFnAttr(Attribute::VScaleRange)) 5369 KnownMinNumElements *= Attrs.getFnAttrs().getVScaleRangeMin(); 5370 } 5371 Assert((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) || 5372 (Idx >= 0 && Idx < KnownMinNumElements), 5373 "The splice index exceeds the range [-VL, VL-1] where VL is the " 5374 "known minimum number of elements in the vector. For scalable " 5375 "vectors the minimum number of elements is determined from " 5376 "vscale_range.", 5377 &Call); 5378 break; 5379 } 5380 case Intrinsic::experimental_stepvector: { 5381 VectorType *VecTy = dyn_cast<VectorType>(Call.getType()); 5382 Assert(VecTy && VecTy->getScalarType()->isIntegerTy() && 5383 VecTy->getScalarSizeInBits() >= 8, 5384 "experimental_stepvector only supported for vectors of integers " 5385 "with a bitwidth of at least 8.", 5386 &Call); 5387 break; 5388 } 5389 case Intrinsic::experimental_vector_insert: { 5390 Value *Vec = Call.getArgOperand(0); 5391 Value *SubVec = Call.getArgOperand(1); 5392 Value *Idx = Call.getArgOperand(2); 5393 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5394 5395 VectorType *VecTy = cast<VectorType>(Vec->getType()); 5396 VectorType *SubVecTy = cast<VectorType>(SubVec->getType()); 5397 5398 ElementCount VecEC = VecTy->getElementCount(); 5399 ElementCount SubVecEC = SubVecTy->getElementCount(); 5400 Assert(VecTy->getElementType() == SubVecTy->getElementType(), 5401 "experimental_vector_insert parameters must have the same element " 5402 "type.", 5403 &Call); 5404 Assert(IdxN % SubVecEC.getKnownMinValue() == 0, 5405 "experimental_vector_insert index must be a constant multiple of " 5406 "the subvector's known minimum vector length."); 5407 5408 // If this insertion is not the 'mixed' case where a fixed vector is 5409 // inserted into a scalable vector, ensure that the insertion of the 5410 // subvector does not overrun the parent vector. 5411 if (VecEC.isScalable() == SubVecEC.isScalable()) { 5412 Assert( 5413 IdxN < VecEC.getKnownMinValue() && 5414 IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 5415 "subvector operand of experimental_vector_insert would overrun the " 5416 "vector being inserted into."); 5417 } 5418 break; 5419 } 5420 case Intrinsic::experimental_vector_extract: { 5421 Value *Vec = Call.getArgOperand(0); 5422 Value *Idx = Call.getArgOperand(1); 5423 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5424 5425 VectorType *ResultTy = cast<VectorType>(Call.getType()); 5426 VectorType *VecTy = cast<VectorType>(Vec->getType()); 5427 5428 ElementCount VecEC = VecTy->getElementCount(); 5429 ElementCount ResultEC = ResultTy->getElementCount(); 5430 5431 Assert(ResultTy->getElementType() == VecTy->getElementType(), 5432 "experimental_vector_extract result must have the same element " 5433 "type as the input vector.", 5434 &Call); 5435 Assert(IdxN % ResultEC.getKnownMinValue() == 0, 5436 "experimental_vector_extract index must be a constant multiple of " 5437 "the result type's known minimum vector length."); 5438 5439 // If this extraction is not the 'mixed' case where a fixed vector is is 5440 // extracted from a scalable vector, ensure that the extraction does not 5441 // overrun the parent vector. 5442 if (VecEC.isScalable() == ResultEC.isScalable()) { 5443 Assert(IdxN < VecEC.getKnownMinValue() && 5444 IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 5445 "experimental_vector_extract would overrun."); 5446 } 5447 break; 5448 } 5449 case Intrinsic::experimental_noalias_scope_decl: { 5450 NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call)); 5451 break; 5452 } 5453 case Intrinsic::preserve_array_access_index: 5454 case Intrinsic::preserve_struct_access_index: { 5455 Type *ElemTy = Call.getAttributes().getParamElementType(0); 5456 Assert(ElemTy, 5457 "Intrinsic requires elementtype attribute on first argument.", 5458 &Call); 5459 break; 5460 } 5461 }; 5462 } 5463 5464 /// Carefully grab the subprogram from a local scope. 5465 /// 5466 /// This carefully grabs the subprogram from a local scope, avoiding the 5467 /// built-in assertions that would typically fire. 5468 static DISubprogram *getSubprogram(Metadata *LocalScope) { 5469 if (!LocalScope) 5470 return nullptr; 5471 5472 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 5473 return SP; 5474 5475 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 5476 return getSubprogram(LB->getRawScope()); 5477 5478 // Just return null; broken scope chains are checked elsewhere. 5479 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 5480 return nullptr; 5481 } 5482 5483 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 5484 unsigned NumOperands; 5485 bool HasRoundingMD; 5486 switch (FPI.getIntrinsicID()) { 5487 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 5488 case Intrinsic::INTRINSIC: \ 5489 NumOperands = NARG; \ 5490 HasRoundingMD = ROUND_MODE; \ 5491 break; 5492 #include "llvm/IR/ConstrainedOps.def" 5493 default: 5494 llvm_unreachable("Invalid constrained FP intrinsic!"); 5495 } 5496 NumOperands += (1 + HasRoundingMD); 5497 // Compare intrinsics carry an extra predicate metadata operand. 5498 if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 5499 NumOperands += 1; 5500 Assert((FPI.arg_size() == NumOperands), 5501 "invalid arguments for constrained FP intrinsic", &FPI); 5502 5503 switch (FPI.getIntrinsicID()) { 5504 case Intrinsic::experimental_constrained_lrint: 5505 case Intrinsic::experimental_constrained_llrint: { 5506 Type *ValTy = FPI.getArgOperand(0)->getType(); 5507 Type *ResultTy = FPI.getType(); 5508 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5509 "Intrinsic does not support vectors", &FPI); 5510 } 5511 break; 5512 5513 case Intrinsic::experimental_constrained_lround: 5514 case Intrinsic::experimental_constrained_llround: { 5515 Type *ValTy = FPI.getArgOperand(0)->getType(); 5516 Type *ResultTy = FPI.getType(); 5517 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5518 "Intrinsic does not support vectors", &FPI); 5519 break; 5520 } 5521 5522 case Intrinsic::experimental_constrained_fcmp: 5523 case Intrinsic::experimental_constrained_fcmps: { 5524 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 5525 Assert(CmpInst::isFPPredicate(Pred), 5526 "invalid predicate for constrained FP comparison intrinsic", &FPI); 5527 break; 5528 } 5529 5530 case Intrinsic::experimental_constrained_fptosi: 5531 case Intrinsic::experimental_constrained_fptoui: { 5532 Value *Operand = FPI.getArgOperand(0); 5533 uint64_t NumSrcElem = 0; 5534 Assert(Operand->getType()->isFPOrFPVectorTy(), 5535 "Intrinsic first argument must be floating point", &FPI); 5536 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5537 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5538 } 5539 5540 Operand = &FPI; 5541 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5542 "Intrinsic first argument and result disagree on vector use", &FPI); 5543 Assert(Operand->getType()->isIntOrIntVectorTy(), 5544 "Intrinsic result must be an integer", &FPI); 5545 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5546 Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5547 "Intrinsic first argument and result vector lengths must be equal", 5548 &FPI); 5549 } 5550 } 5551 break; 5552 5553 case Intrinsic::experimental_constrained_sitofp: 5554 case Intrinsic::experimental_constrained_uitofp: { 5555 Value *Operand = FPI.getArgOperand(0); 5556 uint64_t NumSrcElem = 0; 5557 Assert(Operand->getType()->isIntOrIntVectorTy(), 5558 "Intrinsic first argument must be integer", &FPI); 5559 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5560 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5561 } 5562 5563 Operand = &FPI; 5564 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5565 "Intrinsic first argument and result disagree on vector use", &FPI); 5566 Assert(Operand->getType()->isFPOrFPVectorTy(), 5567 "Intrinsic result must be a floating point", &FPI); 5568 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5569 Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5570 "Intrinsic first argument and result vector lengths must be equal", 5571 &FPI); 5572 } 5573 } break; 5574 5575 case Intrinsic::experimental_constrained_fptrunc: 5576 case Intrinsic::experimental_constrained_fpext: { 5577 Value *Operand = FPI.getArgOperand(0); 5578 Type *OperandTy = Operand->getType(); 5579 Value *Result = &FPI; 5580 Type *ResultTy = Result->getType(); 5581 Assert(OperandTy->isFPOrFPVectorTy(), 5582 "Intrinsic first argument must be FP or FP vector", &FPI); 5583 Assert(ResultTy->isFPOrFPVectorTy(), 5584 "Intrinsic result must be FP or FP vector", &FPI); 5585 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 5586 "Intrinsic first argument and result disagree on vector use", &FPI); 5587 if (OperandTy->isVectorTy()) { 5588 Assert(cast<FixedVectorType>(OperandTy)->getNumElements() == 5589 cast<FixedVectorType>(ResultTy)->getNumElements(), 5590 "Intrinsic first argument and result vector lengths must be equal", 5591 &FPI); 5592 } 5593 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 5594 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 5595 "Intrinsic first argument's type must be larger than result type", 5596 &FPI); 5597 } else { 5598 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 5599 "Intrinsic first argument's type must be smaller than result type", 5600 &FPI); 5601 } 5602 } 5603 break; 5604 5605 default: 5606 break; 5607 } 5608 5609 // If a non-metadata argument is passed in a metadata slot then the 5610 // error will be caught earlier when the incorrect argument doesn't 5611 // match the specification in the intrinsic call table. Thus, no 5612 // argument type check is needed here. 5613 5614 Assert(FPI.getExceptionBehavior().hasValue(), 5615 "invalid exception behavior argument", &FPI); 5616 if (HasRoundingMD) { 5617 Assert(FPI.getRoundingMode().hasValue(), 5618 "invalid rounding mode argument", &FPI); 5619 } 5620 } 5621 5622 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 5623 auto *MD = DII.getRawLocation(); 5624 AssertDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) || 5625 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 5626 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 5627 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 5628 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 5629 DII.getRawVariable()); 5630 AssertDI(isa<DIExpression>(DII.getRawExpression()), 5631 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 5632 DII.getRawExpression()); 5633 5634 // Ignore broken !dbg attachments; they're checked elsewhere. 5635 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 5636 if (!isa<DILocation>(N)) 5637 return; 5638 5639 BasicBlock *BB = DII.getParent(); 5640 Function *F = BB ? BB->getParent() : nullptr; 5641 5642 // The scopes for variables and !dbg attachments must agree. 5643 DILocalVariable *Var = DII.getVariable(); 5644 DILocation *Loc = DII.getDebugLoc(); 5645 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5646 &DII, BB, F); 5647 5648 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 5649 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5650 if (!VarSP || !LocSP) 5651 return; // Broken scope chains are checked elsewhere. 5652 5653 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5654 " variable and !dbg attachment", 5655 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 5656 Loc->getScope()->getSubprogram()); 5657 5658 // This check is redundant with one in visitLocalVariable(). 5659 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 5660 Var->getRawType()); 5661 verifyFnArgs(DII); 5662 } 5663 5664 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 5665 AssertDI(isa<DILabel>(DLI.getRawLabel()), 5666 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 5667 DLI.getRawLabel()); 5668 5669 // Ignore broken !dbg attachments; they're checked elsewhere. 5670 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 5671 if (!isa<DILocation>(N)) 5672 return; 5673 5674 BasicBlock *BB = DLI.getParent(); 5675 Function *F = BB ? BB->getParent() : nullptr; 5676 5677 // The scopes for variables and !dbg attachments must agree. 5678 DILabel *Label = DLI.getLabel(); 5679 DILocation *Loc = DLI.getDebugLoc(); 5680 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5681 &DLI, BB, F); 5682 5683 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 5684 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5685 if (!LabelSP || !LocSP) 5686 return; 5687 5688 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5689 " label and !dbg attachment", 5690 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 5691 Loc->getScope()->getSubprogram()); 5692 } 5693 5694 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 5695 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 5696 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5697 5698 // We don't know whether this intrinsic verified correctly. 5699 if (!V || !E || !E->isValid()) 5700 return; 5701 5702 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 5703 auto Fragment = E->getFragmentInfo(); 5704 if (!Fragment) 5705 return; 5706 5707 // The frontend helps out GDB by emitting the members of local anonymous 5708 // unions as artificial local variables with shared storage. When SROA splits 5709 // the storage for artificial local variables that are smaller than the entire 5710 // union, the overhang piece will be outside of the allotted space for the 5711 // variable and this check fails. 5712 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 5713 if (V->isArtificial()) 5714 return; 5715 5716 verifyFragmentExpression(*V, *Fragment, &I); 5717 } 5718 5719 template <typename ValueOrMetadata> 5720 void Verifier::verifyFragmentExpression(const DIVariable &V, 5721 DIExpression::FragmentInfo Fragment, 5722 ValueOrMetadata *Desc) { 5723 // If there's no size, the type is broken, but that should be checked 5724 // elsewhere. 5725 auto VarSize = V.getSizeInBits(); 5726 if (!VarSize) 5727 return; 5728 5729 unsigned FragSize = Fragment.SizeInBits; 5730 unsigned FragOffset = Fragment.OffsetInBits; 5731 AssertDI(FragSize + FragOffset <= *VarSize, 5732 "fragment is larger than or outside of variable", Desc, &V); 5733 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 5734 } 5735 5736 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 5737 // This function does not take the scope of noninlined function arguments into 5738 // account. Don't run it if current function is nodebug, because it may 5739 // contain inlined debug intrinsics. 5740 if (!HasDebugInfo) 5741 return; 5742 5743 // For performance reasons only check non-inlined ones. 5744 if (I.getDebugLoc()->getInlinedAt()) 5745 return; 5746 5747 DILocalVariable *Var = I.getVariable(); 5748 AssertDI(Var, "dbg intrinsic without variable"); 5749 5750 unsigned ArgNo = Var->getArg(); 5751 if (!ArgNo) 5752 return; 5753 5754 // Verify there are no duplicate function argument debug info entries. 5755 // These will cause hard-to-debug assertions in the DWARF backend. 5756 if (DebugFnArgs.size() < ArgNo) 5757 DebugFnArgs.resize(ArgNo, nullptr); 5758 5759 auto *Prev = DebugFnArgs[ArgNo - 1]; 5760 DebugFnArgs[ArgNo - 1] = Var; 5761 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 5762 Prev, Var); 5763 } 5764 5765 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 5766 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5767 5768 // We don't know whether this intrinsic verified correctly. 5769 if (!E || !E->isValid()) 5770 return; 5771 5772 AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); 5773 } 5774 5775 void Verifier::verifyCompileUnits() { 5776 // When more than one Module is imported into the same context, such as during 5777 // an LTO build before linking the modules, ODR type uniquing may cause types 5778 // to point to a different CU. This check does not make sense in this case. 5779 if (M.getContext().isODRUniquingDebugTypes()) 5780 return; 5781 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 5782 SmallPtrSet<const Metadata *, 2> Listed; 5783 if (CUs) 5784 Listed.insert(CUs->op_begin(), CUs->op_end()); 5785 for (auto *CU : CUVisited) 5786 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 5787 CUVisited.clear(); 5788 } 5789 5790 void Verifier::verifyDeoptimizeCallingConvs() { 5791 if (DeoptimizeDeclarations.empty()) 5792 return; 5793 5794 const Function *First = DeoptimizeDeclarations[0]; 5795 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 5796 Assert(First->getCallingConv() == F->getCallingConv(), 5797 "All llvm.experimental.deoptimize declarations must have the same " 5798 "calling convention", 5799 First, F); 5800 } 5801 } 5802 5803 void Verifier::verifyAttachedCallBundle(const CallBase &Call, 5804 const OperandBundleUse &BU) { 5805 FunctionType *FTy = Call.getFunctionType(); 5806 5807 Assert((FTy->getReturnType()->isPointerTy() || 5808 (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())), 5809 "a call with operand bundle \"clang.arc.attachedcall\" must call a " 5810 "function returning a pointer or a non-returning function that has a " 5811 "void return type", 5812 Call); 5813 5814 Assert((BU.Inputs.empty() || 5815 (BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()))), 5816 "operand bundle \"clang.arc.attachedcall\" can take either no " 5817 "arguments or one function as an argument", 5818 Call); 5819 5820 if (BU.Inputs.empty()) 5821 return; 5822 5823 auto *Fn = cast<Function>(BU.Inputs.front()); 5824 Intrinsic::ID IID = Fn->getIntrinsicID(); 5825 5826 if (IID) { 5827 Assert((IID == Intrinsic::objc_retainAutoreleasedReturnValue || 5828 IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue), 5829 "invalid function argument", Call); 5830 } else { 5831 StringRef FnName = Fn->getName(); 5832 Assert((FnName == "objc_retainAutoreleasedReturnValue" || 5833 FnName == "objc_unsafeClaimAutoreleasedReturnValue"), 5834 "invalid function argument", Call); 5835 } 5836 } 5837 5838 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 5839 bool HasSource = F.getSource().hasValue(); 5840 if (!HasSourceDebugInfo.count(&U)) 5841 HasSourceDebugInfo[&U] = HasSource; 5842 AssertDI(HasSource == HasSourceDebugInfo[&U], 5843 "inconsistent use of embedded source"); 5844 } 5845 5846 void Verifier::verifyNoAliasScopeDecl() { 5847 if (NoAliasScopeDecls.empty()) 5848 return; 5849 5850 // only a single scope must be declared at a time. 5851 for (auto *II : NoAliasScopeDecls) { 5852 assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl && 5853 "Not a llvm.experimental.noalias.scope.decl ?"); 5854 const auto *ScopeListMV = dyn_cast<MetadataAsValue>( 5855 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 5856 Assert(ScopeListMV != nullptr, 5857 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue " 5858 "argument", 5859 II); 5860 5861 const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata()); 5862 Assert(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", 5863 II); 5864 Assert(ScopeListMD->getNumOperands() == 1, 5865 "!id.scope.list must point to a list with a single scope", II); 5866 visitAliasScopeListMetadata(ScopeListMD); 5867 } 5868 5869 // Only check the domination rule when requested. Once all passes have been 5870 // adapted this option can go away. 5871 if (!VerifyNoAliasScopeDomination) 5872 return; 5873 5874 // Now sort the intrinsics based on the scope MDNode so that declarations of 5875 // the same scopes are next to each other. 5876 auto GetScope = [](IntrinsicInst *II) { 5877 const auto *ScopeListMV = cast<MetadataAsValue>( 5878 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 5879 return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0); 5880 }; 5881 5882 // We are sorting on MDNode pointers here. For valid input IR this is ok. 5883 // TODO: Sort on Metadata ID to avoid non-deterministic error messages. 5884 auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) { 5885 return GetScope(Lhs) < GetScope(Rhs); 5886 }; 5887 5888 llvm::sort(NoAliasScopeDecls, Compare); 5889 5890 // Go over the intrinsics and check that for the same scope, they are not 5891 // dominating each other. 5892 auto ItCurrent = NoAliasScopeDecls.begin(); 5893 while (ItCurrent != NoAliasScopeDecls.end()) { 5894 auto CurScope = GetScope(*ItCurrent); 5895 auto ItNext = ItCurrent; 5896 do { 5897 ++ItNext; 5898 } while (ItNext != NoAliasScopeDecls.end() && 5899 GetScope(*ItNext) == CurScope); 5900 5901 // [ItCurrent, ItNext) represents the declarations for the same scope. 5902 // Ensure they are not dominating each other.. but only if it is not too 5903 // expensive. 5904 if (ItNext - ItCurrent < 32) 5905 for (auto *I : llvm::make_range(ItCurrent, ItNext)) 5906 for (auto *J : llvm::make_range(ItCurrent, ItNext)) 5907 if (I != J) 5908 Assert(!DT.dominates(I, J), 5909 "llvm.experimental.noalias.scope.decl dominates another one " 5910 "with the same scope", 5911 I); 5912 ItCurrent = ItNext; 5913 } 5914 } 5915 5916 //===----------------------------------------------------------------------===// 5917 // Implement the public interfaces to this file... 5918 //===----------------------------------------------------------------------===// 5919 5920 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 5921 Function &F = const_cast<Function &>(f); 5922 5923 // Don't use a raw_null_ostream. Printing IR is expensive. 5924 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 5925 5926 // Note that this function's return value is inverted from what you would 5927 // expect of a function called "verify". 5928 return !V.verify(F); 5929 } 5930 5931 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 5932 bool *BrokenDebugInfo) { 5933 // Don't use a raw_null_ostream. Printing IR is expensive. 5934 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 5935 5936 bool Broken = false; 5937 for (const Function &F : M) 5938 Broken |= !V.verify(F); 5939 5940 Broken |= !V.verify(); 5941 if (BrokenDebugInfo) 5942 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 5943 // Note that this function's return value is inverted from what you would 5944 // expect of a function called "verify". 5945 return Broken; 5946 } 5947 5948 namespace { 5949 5950 struct VerifierLegacyPass : public FunctionPass { 5951 static char ID; 5952 5953 std::unique_ptr<Verifier> V; 5954 bool FatalErrors = true; 5955 5956 VerifierLegacyPass() : FunctionPass(ID) { 5957 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5958 } 5959 explicit VerifierLegacyPass(bool FatalErrors) 5960 : FunctionPass(ID), 5961 FatalErrors(FatalErrors) { 5962 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5963 } 5964 5965 bool doInitialization(Module &M) override { 5966 V = std::make_unique<Verifier>( 5967 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 5968 return false; 5969 } 5970 5971 bool runOnFunction(Function &F) override { 5972 if (!V->verify(F) && FatalErrors) { 5973 errs() << "in function " << F.getName() << '\n'; 5974 report_fatal_error("Broken function found, compilation aborted!"); 5975 } 5976 return false; 5977 } 5978 5979 bool doFinalization(Module &M) override { 5980 bool HasErrors = false; 5981 for (Function &F : M) 5982 if (F.isDeclaration()) 5983 HasErrors |= !V->verify(F); 5984 5985 HasErrors |= !V->verify(); 5986 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 5987 report_fatal_error("Broken module found, compilation aborted!"); 5988 return false; 5989 } 5990 5991 void getAnalysisUsage(AnalysisUsage &AU) const override { 5992 AU.setPreservesAll(); 5993 } 5994 }; 5995 5996 } // end anonymous namespace 5997 5998 /// Helper to issue failure from the TBAA verification 5999 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 6000 if (Diagnostic) 6001 return Diagnostic->CheckFailed(Args...); 6002 } 6003 6004 #define AssertTBAA(C, ...) \ 6005 do { \ 6006 if (!(C)) { \ 6007 CheckFailed(__VA_ARGS__); \ 6008 return false; \ 6009 } \ 6010 } while (false) 6011 6012 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 6013 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 6014 /// struct-type node describing an aggregate data structure (like a struct). 6015 TBAAVerifier::TBAABaseNodeSummary 6016 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 6017 bool IsNewFormat) { 6018 if (BaseNode->getNumOperands() < 2) { 6019 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 6020 return {true, ~0u}; 6021 } 6022 6023 auto Itr = TBAABaseNodes.find(BaseNode); 6024 if (Itr != TBAABaseNodes.end()) 6025 return Itr->second; 6026 6027 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 6028 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 6029 (void)InsertResult; 6030 assert(InsertResult.second && "We just checked!"); 6031 return Result; 6032 } 6033 6034 TBAAVerifier::TBAABaseNodeSummary 6035 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 6036 bool IsNewFormat) { 6037 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 6038 6039 if (BaseNode->getNumOperands() == 2) { 6040 // Scalar nodes can only be accessed at offset 0. 6041 return isValidScalarTBAANode(BaseNode) 6042 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 6043 : InvalidNode; 6044 } 6045 6046 if (IsNewFormat) { 6047 if (BaseNode->getNumOperands() % 3 != 0) { 6048 CheckFailed("Access tag nodes must have the number of operands that is a " 6049 "multiple of 3!", BaseNode); 6050 return InvalidNode; 6051 } 6052 } else { 6053 if (BaseNode->getNumOperands() % 2 != 1) { 6054 CheckFailed("Struct tag nodes must have an odd number of operands!", 6055 BaseNode); 6056 return InvalidNode; 6057 } 6058 } 6059 6060 // Check the type size field. 6061 if (IsNewFormat) { 6062 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6063 BaseNode->getOperand(1)); 6064 if (!TypeSizeNode) { 6065 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 6066 return InvalidNode; 6067 } 6068 } 6069 6070 // Check the type name field. In the new format it can be anything. 6071 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 6072 CheckFailed("Struct tag nodes have a string as their first operand", 6073 BaseNode); 6074 return InvalidNode; 6075 } 6076 6077 bool Failed = false; 6078 6079 Optional<APInt> PrevOffset; 6080 unsigned BitWidth = ~0u; 6081 6082 // We've already checked that BaseNode is not a degenerate root node with one 6083 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 6084 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 6085 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 6086 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 6087 Idx += NumOpsPerField) { 6088 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 6089 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 6090 if (!isa<MDNode>(FieldTy)) { 6091 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 6092 Failed = true; 6093 continue; 6094 } 6095 6096 auto *OffsetEntryCI = 6097 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 6098 if (!OffsetEntryCI) { 6099 CheckFailed("Offset entries must be constants!", &I, BaseNode); 6100 Failed = true; 6101 continue; 6102 } 6103 6104 if (BitWidth == ~0u) 6105 BitWidth = OffsetEntryCI->getBitWidth(); 6106 6107 if (OffsetEntryCI->getBitWidth() != BitWidth) { 6108 CheckFailed( 6109 "Bitwidth between the offsets and struct type entries must match", &I, 6110 BaseNode); 6111 Failed = true; 6112 continue; 6113 } 6114 6115 // NB! As far as I can tell, we generate a non-strictly increasing offset 6116 // sequence only from structs that have zero size bit fields. When 6117 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 6118 // pick the field lexically the latest in struct type metadata node. This 6119 // mirrors the actual behavior of the alias analysis implementation. 6120 bool IsAscending = 6121 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 6122 6123 if (!IsAscending) { 6124 CheckFailed("Offsets must be increasing!", &I, BaseNode); 6125 Failed = true; 6126 } 6127 6128 PrevOffset = OffsetEntryCI->getValue(); 6129 6130 if (IsNewFormat) { 6131 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6132 BaseNode->getOperand(Idx + 2)); 6133 if (!MemberSizeNode) { 6134 CheckFailed("Member size entries must be constants!", &I, BaseNode); 6135 Failed = true; 6136 continue; 6137 } 6138 } 6139 } 6140 6141 return Failed ? InvalidNode 6142 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 6143 } 6144 6145 static bool IsRootTBAANode(const MDNode *MD) { 6146 return MD->getNumOperands() < 2; 6147 } 6148 6149 static bool IsScalarTBAANodeImpl(const MDNode *MD, 6150 SmallPtrSetImpl<const MDNode *> &Visited) { 6151 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 6152 return false; 6153 6154 if (!isa<MDString>(MD->getOperand(0))) 6155 return false; 6156 6157 if (MD->getNumOperands() == 3) { 6158 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 6159 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 6160 return false; 6161 } 6162 6163 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 6164 return Parent && Visited.insert(Parent).second && 6165 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 6166 } 6167 6168 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 6169 auto ResultIt = TBAAScalarNodes.find(MD); 6170 if (ResultIt != TBAAScalarNodes.end()) 6171 return ResultIt->second; 6172 6173 SmallPtrSet<const MDNode *, 4> Visited; 6174 bool Result = IsScalarTBAANodeImpl(MD, Visited); 6175 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 6176 (void)InsertResult; 6177 assert(InsertResult.second && "Just checked!"); 6178 6179 return Result; 6180 } 6181 6182 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 6183 /// Offset in place to be the offset within the field node returned. 6184 /// 6185 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 6186 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 6187 const MDNode *BaseNode, 6188 APInt &Offset, 6189 bool IsNewFormat) { 6190 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 6191 6192 // Scalar nodes have only one possible "field" -- their parent in the access 6193 // hierarchy. Offset must be zero at this point, but our caller is supposed 6194 // to Assert that. 6195 if (BaseNode->getNumOperands() == 2) 6196 return cast<MDNode>(BaseNode->getOperand(1)); 6197 6198 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 6199 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 6200 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 6201 Idx += NumOpsPerField) { 6202 auto *OffsetEntryCI = 6203 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 6204 if (OffsetEntryCI->getValue().ugt(Offset)) { 6205 if (Idx == FirstFieldOpNo) { 6206 CheckFailed("Could not find TBAA parent in struct type node", &I, 6207 BaseNode, &Offset); 6208 return nullptr; 6209 } 6210 6211 unsigned PrevIdx = Idx - NumOpsPerField; 6212 auto *PrevOffsetEntryCI = 6213 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 6214 Offset -= PrevOffsetEntryCI->getValue(); 6215 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 6216 } 6217 } 6218 6219 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 6220 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 6221 BaseNode->getOperand(LastIdx + 1)); 6222 Offset -= LastOffsetEntryCI->getValue(); 6223 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 6224 } 6225 6226 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 6227 if (!Type || Type->getNumOperands() < 3) 6228 return false; 6229 6230 // In the new format type nodes shall have a reference to the parent type as 6231 // its first operand. 6232 return isa_and_nonnull<MDNode>(Type->getOperand(0)); 6233 } 6234 6235 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 6236 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 6237 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 6238 isa<AtomicCmpXchgInst>(I), 6239 "This instruction shall not have a TBAA access tag!", &I); 6240 6241 bool IsStructPathTBAA = 6242 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 6243 6244 AssertTBAA( 6245 IsStructPathTBAA, 6246 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 6247 6248 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 6249 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 6250 6251 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 6252 6253 if (IsNewFormat) { 6254 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 6255 "Access tag metadata must have either 4 or 5 operands", &I, MD); 6256 } else { 6257 AssertTBAA(MD->getNumOperands() < 5, 6258 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 6259 } 6260 6261 // Check the access size field. 6262 if (IsNewFormat) { 6263 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6264 MD->getOperand(3)); 6265 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 6266 } 6267 6268 // Check the immutability flag. 6269 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 6270 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 6271 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 6272 MD->getOperand(ImmutabilityFlagOpNo)); 6273 AssertTBAA(IsImmutableCI, 6274 "Immutability tag on struct tag metadata must be a constant", 6275 &I, MD); 6276 AssertTBAA( 6277 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 6278 "Immutability part of the struct tag metadata must be either 0 or 1", 6279 &I, MD); 6280 } 6281 6282 AssertTBAA(BaseNode && AccessType, 6283 "Malformed struct tag metadata: base and access-type " 6284 "should be non-null and point to Metadata nodes", 6285 &I, MD, BaseNode, AccessType); 6286 6287 if (!IsNewFormat) { 6288 AssertTBAA(isValidScalarTBAANode(AccessType), 6289 "Access type node must be a valid scalar type", &I, MD, 6290 AccessType); 6291 } 6292 6293 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 6294 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 6295 6296 APInt Offset = OffsetCI->getValue(); 6297 bool SeenAccessTypeInPath = false; 6298 6299 SmallPtrSet<MDNode *, 4> StructPath; 6300 6301 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 6302 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 6303 IsNewFormat)) { 6304 if (!StructPath.insert(BaseNode).second) { 6305 CheckFailed("Cycle detected in struct path", &I, MD); 6306 return false; 6307 } 6308 6309 bool Invalid; 6310 unsigned BaseNodeBitWidth; 6311 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 6312 IsNewFormat); 6313 6314 // If the base node is invalid in itself, then we've already printed all the 6315 // errors we wanted to print. 6316 if (Invalid) 6317 return false; 6318 6319 SeenAccessTypeInPath |= BaseNode == AccessType; 6320 6321 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 6322 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 6323 &I, MD, &Offset); 6324 6325 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 6326 (BaseNodeBitWidth == 0 && Offset == 0) || 6327 (IsNewFormat && BaseNodeBitWidth == ~0u), 6328 "Access bit-width not the same as description bit-width", &I, MD, 6329 BaseNodeBitWidth, Offset.getBitWidth()); 6330 6331 if (IsNewFormat && SeenAccessTypeInPath) 6332 break; 6333 } 6334 6335 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 6336 &I, MD); 6337 return true; 6338 } 6339 6340 char VerifierLegacyPass::ID = 0; 6341 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 6342 6343 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 6344 return new VerifierLegacyPass(FatalErrors); 6345 } 6346 6347 AnalysisKey VerifierAnalysis::Key; 6348 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 6349 ModuleAnalysisManager &) { 6350 Result Res; 6351 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 6352 return Res; 6353 } 6354 6355 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 6356 FunctionAnalysisManager &) { 6357 return { llvm::verifyFunction(F, &dbgs()), false }; 6358 } 6359 6360 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 6361 auto Res = AM.getResult<VerifierAnalysis>(M); 6362 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 6363 report_fatal_error("Broken module found, compilation aborted!"); 6364 6365 return PreservedAnalyses::all(); 6366 } 6367 6368 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 6369 auto res = AM.getResult<VerifierAnalysis>(F); 6370 if (res.IRBroken && FatalErrors) 6371 report_fatal_error("Broken function found, compilation aborted!"); 6372 6373 return PreservedAnalyses::all(); 6374 } 6375