1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // sanity checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/ADT/ilist.h" 62 #include "llvm/BinaryFormat/Dwarf.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstVisitor.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/ModuleSlotTracker.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/InitializePasses.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Debug.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <cstdint> 112 #include <memory> 113 #include <string> 114 #include <utility> 115 116 using namespace llvm; 117 118 static cl::opt<bool> VerifyNoAliasScopeDomination( 119 "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false), 120 cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical " 121 "scopes are not dominating")); 122 123 namespace llvm { 124 125 struct VerifierSupport { 126 raw_ostream *OS; 127 const Module &M; 128 ModuleSlotTracker MST; 129 Triple TT; 130 const DataLayout &DL; 131 LLVMContext &Context; 132 133 /// Track the brokenness of the module while recursively visiting. 134 bool Broken = false; 135 /// Broken debug info can be "recovered" from by stripping the debug info. 136 bool BrokenDebugInfo = false; 137 /// Whether to treat broken debug info as an error. 138 bool TreatBrokenDebugInfoAsError = true; 139 140 explicit VerifierSupport(raw_ostream *OS, const Module &M) 141 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 142 Context(M.getContext()) {} 143 144 private: 145 void Write(const Module *M) { 146 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 147 } 148 149 void Write(const Value *V) { 150 if (V) 151 Write(*V); 152 } 153 154 void Write(const Value &V) { 155 if (isa<Instruction>(V)) { 156 V.print(*OS, MST); 157 *OS << '\n'; 158 } else { 159 V.printAsOperand(*OS, true, MST); 160 *OS << '\n'; 161 } 162 } 163 164 void Write(const Metadata *MD) { 165 if (!MD) 166 return; 167 MD->print(*OS, MST, &M); 168 *OS << '\n'; 169 } 170 171 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 172 Write(MD.get()); 173 } 174 175 void Write(const NamedMDNode *NMD) { 176 if (!NMD) 177 return; 178 NMD->print(*OS, MST); 179 *OS << '\n'; 180 } 181 182 void Write(Type *T) { 183 if (!T) 184 return; 185 *OS << ' ' << *T; 186 } 187 188 void Write(const Comdat *C) { 189 if (!C) 190 return; 191 *OS << *C; 192 } 193 194 void Write(const APInt *AI) { 195 if (!AI) 196 return; 197 *OS << *AI << '\n'; 198 } 199 200 void Write(const unsigned i) { *OS << i << '\n'; } 201 202 template <typename T> void Write(ArrayRef<T> Vs) { 203 for (const T &V : Vs) 204 Write(V); 205 } 206 207 template <typename T1, typename... Ts> 208 void WriteTs(const T1 &V1, const Ts &... Vs) { 209 Write(V1); 210 WriteTs(Vs...); 211 } 212 213 template <typename... Ts> void WriteTs() {} 214 215 public: 216 /// A check failed, so printout out the condition and the message. 217 /// 218 /// This provides a nice place to put a breakpoint if you want to see why 219 /// something is not correct. 220 void CheckFailed(const Twine &Message) { 221 if (OS) 222 *OS << Message << '\n'; 223 Broken = true; 224 } 225 226 /// A check failed (with values to print). 227 /// 228 /// This calls the Message-only version so that the above is easier to set a 229 /// breakpoint on. 230 template <typename T1, typename... Ts> 231 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 232 CheckFailed(Message); 233 if (OS) 234 WriteTs(V1, Vs...); 235 } 236 237 /// A debug info check failed. 238 void DebugInfoCheckFailed(const Twine &Message) { 239 if (OS) 240 *OS << Message << '\n'; 241 Broken |= TreatBrokenDebugInfoAsError; 242 BrokenDebugInfo = true; 243 } 244 245 /// A debug info check failed (with values to print). 246 template <typename T1, typename... Ts> 247 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 248 const Ts &... Vs) { 249 DebugInfoCheckFailed(Message); 250 if (OS) 251 WriteTs(V1, Vs...); 252 } 253 }; 254 255 } // namespace llvm 256 257 namespace { 258 259 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 260 friend class InstVisitor<Verifier>; 261 262 DominatorTree DT; 263 264 /// When verifying a basic block, keep track of all of the 265 /// instructions we have seen so far. 266 /// 267 /// This allows us to do efficient dominance checks for the case when an 268 /// instruction has an operand that is an instruction in the same block. 269 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 270 271 /// Keep track of the metadata nodes that have been checked already. 272 SmallPtrSet<const Metadata *, 32> MDNodes; 273 274 /// Keep track which DISubprogram is attached to which function. 275 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 276 277 /// Track all DICompileUnits visited. 278 SmallPtrSet<const Metadata *, 2> CUVisited; 279 280 /// The result type for a landingpad. 281 Type *LandingPadResultTy; 282 283 /// Whether we've seen a call to @llvm.localescape in this function 284 /// already. 285 bool SawFrameEscape; 286 287 /// Whether the current function has a DISubprogram attached to it. 288 bool HasDebugInfo = false; 289 290 /// The current source language. 291 dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user; 292 293 /// Whether source was present on the first DIFile encountered in each CU. 294 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 295 296 /// Stores the count of how many objects were passed to llvm.localescape for a 297 /// given function and the largest index passed to llvm.localrecover. 298 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 299 300 // Maps catchswitches and cleanuppads that unwind to siblings to the 301 // terminators that indicate the unwind, used to detect cycles therein. 302 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 303 304 /// Cache of constants visited in search of ConstantExprs. 305 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 306 307 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 308 SmallVector<const Function *, 4> DeoptimizeDeclarations; 309 310 // Verify that this GlobalValue is only used in this module. 311 // This map is used to avoid visiting uses twice. We can arrive at a user 312 // twice, if they have multiple operands. In particular for very large 313 // constant expressions, we can arrive at a particular user many times. 314 SmallPtrSet<const Value *, 32> GlobalValueVisited; 315 316 // Keeps track of duplicate function argument debug info. 317 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 318 319 TBAAVerifier TBAAVerifyHelper; 320 321 SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls; 322 323 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 324 325 public: 326 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 327 const Module &M) 328 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 329 SawFrameEscape(false), TBAAVerifyHelper(this) { 330 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 331 } 332 333 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 334 335 bool verify(const Function &F) { 336 assert(F.getParent() == &M && 337 "An instance of this class only works with a specific module!"); 338 339 // First ensure the function is well-enough formed to compute dominance 340 // information, and directly compute a dominance tree. We don't rely on the 341 // pass manager to provide this as it isolates us from a potentially 342 // out-of-date dominator tree and makes it significantly more complex to run 343 // this code outside of a pass manager. 344 // FIXME: It's really gross that we have to cast away constness here. 345 if (!F.empty()) 346 DT.recalculate(const_cast<Function &>(F)); 347 348 for (const BasicBlock &BB : F) { 349 if (!BB.empty() && BB.back().isTerminator()) 350 continue; 351 352 if (OS) { 353 *OS << "Basic Block in function '" << F.getName() 354 << "' does not have terminator!\n"; 355 BB.printAsOperand(*OS, true, MST); 356 *OS << "\n"; 357 } 358 return false; 359 } 360 361 Broken = false; 362 // FIXME: We strip const here because the inst visitor strips const. 363 visit(const_cast<Function &>(F)); 364 verifySiblingFuncletUnwinds(); 365 InstsInThisBlock.clear(); 366 DebugFnArgs.clear(); 367 LandingPadResultTy = nullptr; 368 SawFrameEscape = false; 369 SiblingFuncletInfo.clear(); 370 verifyNoAliasScopeDecl(); 371 NoAliasScopeDecls.clear(); 372 373 return !Broken; 374 } 375 376 /// Verify the module that this instance of \c Verifier was initialized with. 377 bool verify() { 378 Broken = false; 379 380 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 381 for (const Function &F : M) 382 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 383 DeoptimizeDeclarations.push_back(&F); 384 385 // Now that we've visited every function, verify that we never asked to 386 // recover a frame index that wasn't escaped. 387 verifyFrameRecoverIndices(); 388 for (const GlobalVariable &GV : M.globals()) 389 visitGlobalVariable(GV); 390 391 for (const GlobalAlias &GA : M.aliases()) 392 visitGlobalAlias(GA); 393 394 for (const NamedMDNode &NMD : M.named_metadata()) 395 visitNamedMDNode(NMD); 396 397 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 398 visitComdat(SMEC.getValue()); 399 400 visitModuleFlags(M); 401 visitModuleIdents(M); 402 visitModuleCommandLines(M); 403 404 verifyCompileUnits(); 405 406 verifyDeoptimizeCallingConvs(); 407 DISubprogramAttachments.clear(); 408 return !Broken; 409 } 410 411 private: 412 /// Whether a metadata node is allowed to be, or contain, a DILocation. 413 enum class AreDebugLocsAllowed { No, Yes }; 414 415 // Verification methods... 416 void visitGlobalValue(const GlobalValue &GV); 417 void visitGlobalVariable(const GlobalVariable &GV); 418 void visitGlobalAlias(const GlobalAlias &GA); 419 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 420 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 421 const GlobalAlias &A, const Constant &C); 422 void visitNamedMDNode(const NamedMDNode &NMD); 423 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); 424 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 425 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 426 void visitComdat(const Comdat &C); 427 void visitModuleIdents(const Module &M); 428 void visitModuleCommandLines(const Module &M); 429 void visitModuleFlags(const Module &M); 430 void visitModuleFlag(const MDNode *Op, 431 DenseMap<const MDString *, const MDNode *> &SeenIDs, 432 SmallVectorImpl<const MDNode *> &Requirements); 433 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 434 void visitFunction(const Function &F); 435 void visitBasicBlock(BasicBlock &BB); 436 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 437 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 438 void visitProfMetadata(Instruction &I, MDNode *MD); 439 void visitAnnotationMetadata(MDNode *Annotation); 440 441 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 442 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 443 #include "llvm/IR/Metadata.def" 444 void visitDIScope(const DIScope &N); 445 void visitDIVariable(const DIVariable &N); 446 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 447 void visitDITemplateParameter(const DITemplateParameter &N); 448 449 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 450 451 // InstVisitor overrides... 452 using InstVisitor<Verifier>::visit; 453 void visit(Instruction &I); 454 455 void visitTruncInst(TruncInst &I); 456 void visitZExtInst(ZExtInst &I); 457 void visitSExtInst(SExtInst &I); 458 void visitFPTruncInst(FPTruncInst &I); 459 void visitFPExtInst(FPExtInst &I); 460 void visitFPToUIInst(FPToUIInst &I); 461 void visitFPToSIInst(FPToSIInst &I); 462 void visitUIToFPInst(UIToFPInst &I); 463 void visitSIToFPInst(SIToFPInst &I); 464 void visitIntToPtrInst(IntToPtrInst &I); 465 void visitPtrToIntInst(PtrToIntInst &I); 466 void visitBitCastInst(BitCastInst &I); 467 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 468 void visitPHINode(PHINode &PN); 469 void visitCallBase(CallBase &Call); 470 void visitUnaryOperator(UnaryOperator &U); 471 void visitBinaryOperator(BinaryOperator &B); 472 void visitICmpInst(ICmpInst &IC); 473 void visitFCmpInst(FCmpInst &FC); 474 void visitExtractElementInst(ExtractElementInst &EI); 475 void visitInsertElementInst(InsertElementInst &EI); 476 void visitShuffleVectorInst(ShuffleVectorInst &EI); 477 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 478 void visitCallInst(CallInst &CI); 479 void visitInvokeInst(InvokeInst &II); 480 void visitGetElementPtrInst(GetElementPtrInst &GEP); 481 void visitLoadInst(LoadInst &LI); 482 void visitStoreInst(StoreInst &SI); 483 void verifyDominatesUse(Instruction &I, unsigned i); 484 void visitInstruction(Instruction &I); 485 void visitTerminator(Instruction &I); 486 void visitBranchInst(BranchInst &BI); 487 void visitReturnInst(ReturnInst &RI); 488 void visitSwitchInst(SwitchInst &SI); 489 void visitIndirectBrInst(IndirectBrInst &BI); 490 void visitCallBrInst(CallBrInst &CBI); 491 void visitSelectInst(SelectInst &SI); 492 void visitUserOp1(Instruction &I); 493 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 494 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 495 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 496 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 497 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 498 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 499 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 500 void visitFenceInst(FenceInst &FI); 501 void visitAllocaInst(AllocaInst &AI); 502 void visitExtractValueInst(ExtractValueInst &EVI); 503 void visitInsertValueInst(InsertValueInst &IVI); 504 void visitEHPadPredecessors(Instruction &I); 505 void visitLandingPadInst(LandingPadInst &LPI); 506 void visitResumeInst(ResumeInst &RI); 507 void visitCatchPadInst(CatchPadInst &CPI); 508 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 509 void visitCleanupPadInst(CleanupPadInst &CPI); 510 void visitFuncletPadInst(FuncletPadInst &FPI); 511 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 512 void visitCleanupReturnInst(CleanupReturnInst &CRI); 513 514 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 515 void verifySwiftErrorValue(const Value *SwiftErrorVal); 516 void verifyMustTailCall(CallInst &CI); 517 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 518 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 519 const Value *V); 520 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 521 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 522 const Value *V, bool IsIntrinsic); 523 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 524 525 void visitConstantExprsRecursively(const Constant *EntryC); 526 void visitConstantExpr(const ConstantExpr *CE); 527 void verifyStatepoint(const CallBase &Call); 528 void verifyFrameRecoverIndices(); 529 void verifySiblingFuncletUnwinds(); 530 531 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 532 template <typename ValueOrMetadata> 533 void verifyFragmentExpression(const DIVariable &V, 534 DIExpression::FragmentInfo Fragment, 535 ValueOrMetadata *Desc); 536 void verifyFnArgs(const DbgVariableIntrinsic &I); 537 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 538 539 /// Module-level debug info verification... 540 void verifyCompileUnits(); 541 542 /// Module-level verification that all @llvm.experimental.deoptimize 543 /// declarations share the same calling convention. 544 void verifyDeoptimizeCallingConvs(); 545 546 /// Verify all-or-nothing property of DIFile source attribute within a CU. 547 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 548 549 /// Verify the llvm.experimental.noalias.scope.decl declarations 550 void verifyNoAliasScopeDecl(); 551 }; 552 553 } // end anonymous namespace 554 555 /// We know that cond should be true, if not print an error message. 556 #define Assert(C, ...) \ 557 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 558 559 /// We know that a debug info condition should be true, if not print 560 /// an error message. 561 #define AssertDI(C, ...) \ 562 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 563 564 void Verifier::visit(Instruction &I) { 565 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 566 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 567 InstVisitor<Verifier>::visit(I); 568 } 569 570 // Helper to recursively iterate over indirect users. By 571 // returning false, the callback can ask to stop recursing 572 // further. 573 static void forEachUser(const Value *User, 574 SmallPtrSet<const Value *, 32> &Visited, 575 llvm::function_ref<bool(const Value *)> Callback) { 576 if (!Visited.insert(User).second) 577 return; 578 for (const Value *TheNextUser : User->materialized_users()) 579 if (Callback(TheNextUser)) 580 forEachUser(TheNextUser, Visited, Callback); 581 } 582 583 void Verifier::visitGlobalValue(const GlobalValue &GV) { 584 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 585 "Global is external, but doesn't have external or weak linkage!", &GV); 586 587 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) 588 Assert(GO->getAlignment() <= Value::MaximumAlignment, 589 "huge alignment values are unsupported", GO); 590 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 591 "Only global variables can have appending linkage!", &GV); 592 593 if (GV.hasAppendingLinkage()) { 594 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 595 Assert(GVar && GVar->getValueType()->isArrayTy(), 596 "Only global arrays can have appending linkage!", GVar); 597 } 598 599 if (GV.isDeclarationForLinker()) 600 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 601 602 if (GV.hasDLLImportStorageClass()) { 603 Assert(!GV.isDSOLocal(), 604 "GlobalValue with DLLImport Storage is dso_local!", &GV); 605 606 Assert((GV.isDeclaration() && 607 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) || 608 GV.hasAvailableExternallyLinkage(), 609 "Global is marked as dllimport, but not external", &GV); 610 } 611 612 if (GV.isImplicitDSOLocal()) 613 Assert(GV.isDSOLocal(), 614 "GlobalValue with local linkage or non-default " 615 "visibility must be dso_local!", 616 &GV); 617 618 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 619 if (const Instruction *I = dyn_cast<Instruction>(V)) { 620 if (!I->getParent() || !I->getParent()->getParent()) 621 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 622 I); 623 else if (I->getParent()->getParent()->getParent() != &M) 624 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 625 I->getParent()->getParent(), 626 I->getParent()->getParent()->getParent()); 627 return false; 628 } else if (const Function *F = dyn_cast<Function>(V)) { 629 if (F->getParent() != &M) 630 CheckFailed("Global is used by function in a different module", &GV, &M, 631 F, F->getParent()); 632 return false; 633 } 634 return true; 635 }); 636 } 637 638 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 639 if (GV.hasInitializer()) { 640 Assert(GV.getInitializer()->getType() == GV.getValueType(), 641 "Global variable initializer type does not match global " 642 "variable type!", 643 &GV); 644 // If the global has common linkage, it must have a zero initializer and 645 // cannot be constant. 646 if (GV.hasCommonLinkage()) { 647 Assert(GV.getInitializer()->isNullValue(), 648 "'common' global must have a zero initializer!", &GV); 649 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 650 &GV); 651 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 652 } 653 } 654 655 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 656 GV.getName() == "llvm.global_dtors")) { 657 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 658 "invalid linkage for intrinsic global variable", &GV); 659 // Don't worry about emitting an error for it not being an array, 660 // visitGlobalValue will complain on appending non-array. 661 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 662 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 663 PointerType *FuncPtrTy = 664 FunctionType::get(Type::getVoidTy(Context), false)-> 665 getPointerTo(DL.getProgramAddressSpace()); 666 Assert(STy && 667 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 668 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 669 STy->getTypeAtIndex(1) == FuncPtrTy, 670 "wrong type for intrinsic global variable", &GV); 671 Assert(STy->getNumElements() == 3, 672 "the third field of the element type is mandatory, " 673 "specify i8* null to migrate from the obsoleted 2-field form"); 674 Type *ETy = STy->getTypeAtIndex(2); 675 Assert(ETy->isPointerTy() && 676 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 677 "wrong type for intrinsic global variable", &GV); 678 } 679 } 680 681 if (GV.hasName() && (GV.getName() == "llvm.used" || 682 GV.getName() == "llvm.compiler.used")) { 683 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 684 "invalid linkage for intrinsic global variable", &GV); 685 Type *GVType = GV.getValueType(); 686 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 687 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 688 Assert(PTy, "wrong type for intrinsic global variable", &GV); 689 if (GV.hasInitializer()) { 690 const Constant *Init = GV.getInitializer(); 691 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 692 Assert(InitArray, "wrong initalizer for intrinsic global variable", 693 Init); 694 for (Value *Op : InitArray->operands()) { 695 Value *V = Op->stripPointerCasts(); 696 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 697 isa<GlobalAlias>(V), 698 "invalid llvm.used member", V); 699 Assert(V->hasName(), "members of llvm.used must be named", V); 700 } 701 } 702 } 703 } 704 705 // Visit any debug info attachments. 706 SmallVector<MDNode *, 1> MDs; 707 GV.getMetadata(LLVMContext::MD_dbg, MDs); 708 for (auto *MD : MDs) { 709 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 710 visitDIGlobalVariableExpression(*GVE); 711 else 712 AssertDI(false, "!dbg attachment of global variable must be a " 713 "DIGlobalVariableExpression"); 714 } 715 716 // Scalable vectors cannot be global variables, since we don't know 717 // the runtime size. If the global is an array containing scalable vectors, 718 // that will be caught by the isValidElementType methods in StructType or 719 // ArrayType instead. 720 Assert(!isa<ScalableVectorType>(GV.getValueType()), 721 "Globals cannot contain scalable vectors", &GV); 722 723 if (auto *STy = dyn_cast<StructType>(GV.getValueType())) 724 Assert(!STy->containsScalableVectorType(), 725 "Globals cannot contain scalable vectors", &GV); 726 727 if (!GV.hasInitializer()) { 728 visitGlobalValue(GV); 729 return; 730 } 731 732 // Walk any aggregate initializers looking for bitcasts between address spaces 733 visitConstantExprsRecursively(GV.getInitializer()); 734 735 visitGlobalValue(GV); 736 } 737 738 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 739 SmallPtrSet<const GlobalAlias*, 4> Visited; 740 Visited.insert(&GA); 741 visitAliaseeSubExpr(Visited, GA, C); 742 } 743 744 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 745 const GlobalAlias &GA, const Constant &C) { 746 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 747 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 748 &GA); 749 750 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 751 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 752 753 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 754 &GA); 755 } else { 756 // Only continue verifying subexpressions of GlobalAliases. 757 // Do not recurse into global initializers. 758 return; 759 } 760 } 761 762 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 763 visitConstantExprsRecursively(CE); 764 765 for (const Use &U : C.operands()) { 766 Value *V = &*U; 767 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 768 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 769 else if (const auto *C2 = dyn_cast<Constant>(V)) 770 visitAliaseeSubExpr(Visited, GA, *C2); 771 } 772 } 773 774 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 775 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 776 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 777 "weak_odr, or external linkage!", 778 &GA); 779 const Constant *Aliasee = GA.getAliasee(); 780 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 781 Assert(GA.getType() == Aliasee->getType(), 782 "Alias and aliasee types should match!", &GA); 783 784 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 785 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 786 787 visitAliaseeSubExpr(GA, *Aliasee); 788 789 visitGlobalValue(GA); 790 } 791 792 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 793 // There used to be various other llvm.dbg.* nodes, but we don't support 794 // upgrading them and we want to reserve the namespace for future uses. 795 if (NMD.getName().startswith("llvm.dbg.")) 796 AssertDI(NMD.getName() == "llvm.dbg.cu", 797 "unrecognized named metadata node in the llvm.dbg namespace", 798 &NMD); 799 for (const MDNode *MD : NMD.operands()) { 800 if (NMD.getName() == "llvm.dbg.cu") 801 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 802 803 if (!MD) 804 continue; 805 806 visitMDNode(*MD, AreDebugLocsAllowed::Yes); 807 } 808 } 809 810 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { 811 // Only visit each node once. Metadata can be mutually recursive, so this 812 // avoids infinite recursion here, as well as being an optimization. 813 if (!MDNodes.insert(&MD).second) 814 return; 815 816 Assert(&MD.getContext() == &Context, 817 "MDNode context does not match Module context!", &MD); 818 819 switch (MD.getMetadataID()) { 820 default: 821 llvm_unreachable("Invalid MDNode subclass"); 822 case Metadata::MDTupleKind: 823 break; 824 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 825 case Metadata::CLASS##Kind: \ 826 visit##CLASS(cast<CLASS>(MD)); \ 827 break; 828 #include "llvm/IR/Metadata.def" 829 } 830 831 for (const Metadata *Op : MD.operands()) { 832 if (!Op) 833 continue; 834 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 835 &MD, Op); 836 AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes, 837 "DILocation not allowed within this metadata node", &MD, Op); 838 if (auto *N = dyn_cast<MDNode>(Op)) { 839 visitMDNode(*N, AllowLocs); 840 continue; 841 } 842 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 843 visitValueAsMetadata(*V, nullptr); 844 continue; 845 } 846 } 847 848 // Check these last, so we diagnose problems in operands first. 849 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 850 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 851 } 852 853 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 854 Assert(MD.getValue(), "Expected valid value", &MD); 855 Assert(!MD.getValue()->getType()->isMetadataTy(), 856 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 857 858 auto *L = dyn_cast<LocalAsMetadata>(&MD); 859 if (!L) 860 return; 861 862 Assert(F, "function-local metadata used outside a function", L); 863 864 // If this was an instruction, bb, or argument, verify that it is in the 865 // function that we expect. 866 Function *ActualF = nullptr; 867 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 868 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 869 ActualF = I->getParent()->getParent(); 870 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 871 ActualF = BB->getParent(); 872 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 873 ActualF = A->getParent(); 874 assert(ActualF && "Unimplemented function local metadata case!"); 875 876 Assert(ActualF == F, "function-local metadata used in wrong function", L); 877 } 878 879 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 880 Metadata *MD = MDV.getMetadata(); 881 if (auto *N = dyn_cast<MDNode>(MD)) { 882 visitMDNode(*N, AreDebugLocsAllowed::No); 883 return; 884 } 885 886 // Only visit each node once. Metadata can be mutually recursive, so this 887 // avoids infinite recursion here, as well as being an optimization. 888 if (!MDNodes.insert(MD).second) 889 return; 890 891 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 892 visitValueAsMetadata(*V, F); 893 } 894 895 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 896 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 897 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 898 899 void Verifier::visitDILocation(const DILocation &N) { 900 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 901 "location requires a valid scope", &N, N.getRawScope()); 902 if (auto *IA = N.getRawInlinedAt()) 903 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 904 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 905 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 906 } 907 908 void Verifier::visitGenericDINode(const GenericDINode &N) { 909 AssertDI(N.getTag(), "invalid tag", &N); 910 } 911 912 void Verifier::visitDIScope(const DIScope &N) { 913 if (auto *F = N.getRawFile()) 914 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 915 } 916 917 void Verifier::visitDISubrange(const DISubrange &N) { 918 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 919 bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang); 920 AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() || 921 N.getRawUpperBound(), 922 "Subrange must contain count or upperBound", &N); 923 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 924 "Subrange can have any one of count or upperBound", &N); 925 auto *CBound = N.getRawCountNode(); 926 AssertDI(!CBound || isa<ConstantAsMetadata>(CBound) || 927 isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 928 "Count must be signed constant or DIVariable or DIExpression", &N); 929 auto Count = N.getCount(); 930 AssertDI(!Count || !Count.is<ConstantInt *>() || 931 Count.get<ConstantInt *>()->getSExtValue() >= -1, 932 "invalid subrange count", &N); 933 auto *LBound = N.getRawLowerBound(); 934 AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) || 935 isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 936 "LowerBound must be signed constant or DIVariable or DIExpression", 937 &N); 938 auto *UBound = N.getRawUpperBound(); 939 AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) || 940 isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 941 "UpperBound must be signed constant or DIVariable or DIExpression", 942 &N); 943 auto *Stride = N.getRawStride(); 944 AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) || 945 isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 946 "Stride must be signed constant or DIVariable or DIExpression", &N); 947 } 948 949 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) { 950 AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N); 951 AssertDI(N.getRawCountNode() || N.getRawUpperBound(), 952 "GenericSubrange must contain count or upperBound", &N); 953 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 954 "GenericSubrange can have any one of count or upperBound", &N); 955 auto *CBound = N.getRawCountNode(); 956 AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 957 "Count must be signed constant or DIVariable or DIExpression", &N); 958 auto *LBound = N.getRawLowerBound(); 959 AssertDI(LBound, "GenericSubrange must contain lowerBound", &N); 960 AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 961 "LowerBound must be signed constant or DIVariable or DIExpression", 962 &N); 963 auto *UBound = N.getRawUpperBound(); 964 AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 965 "UpperBound must be signed constant or DIVariable or DIExpression", 966 &N); 967 auto *Stride = N.getRawStride(); 968 AssertDI(Stride, "GenericSubrange must contain stride", &N); 969 AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 970 "Stride must be signed constant or DIVariable or DIExpression", &N); 971 } 972 973 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 974 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 975 } 976 977 void Verifier::visitDIBasicType(const DIBasicType &N) { 978 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 979 N.getTag() == dwarf::DW_TAG_unspecified_type || 980 N.getTag() == dwarf::DW_TAG_string_type, 981 "invalid tag", &N); 982 } 983 984 void Verifier::visitDIStringType(const DIStringType &N) { 985 AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N); 986 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 987 "has conflicting flags", &N); 988 } 989 990 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 991 // Common scope checks. 992 visitDIScope(N); 993 994 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 995 N.getTag() == dwarf::DW_TAG_pointer_type || 996 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 997 N.getTag() == dwarf::DW_TAG_reference_type || 998 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 999 N.getTag() == dwarf::DW_TAG_const_type || 1000 N.getTag() == dwarf::DW_TAG_volatile_type || 1001 N.getTag() == dwarf::DW_TAG_restrict_type || 1002 N.getTag() == dwarf::DW_TAG_atomic_type || 1003 N.getTag() == dwarf::DW_TAG_member || 1004 N.getTag() == dwarf::DW_TAG_inheritance || 1005 N.getTag() == dwarf::DW_TAG_friend || 1006 N.getTag() == dwarf::DW_TAG_set_type, 1007 "invalid tag", &N); 1008 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 1009 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 1010 N.getRawExtraData()); 1011 } 1012 1013 if (N.getTag() == dwarf::DW_TAG_set_type) { 1014 if (auto *T = N.getRawBaseType()) { 1015 auto *Enum = dyn_cast_or_null<DICompositeType>(T); 1016 auto *Basic = dyn_cast_or_null<DIBasicType>(T); 1017 AssertDI( 1018 (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) || 1019 (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned || 1020 Basic->getEncoding() == dwarf::DW_ATE_signed || 1021 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char || 1022 Basic->getEncoding() == dwarf::DW_ATE_signed_char || 1023 Basic->getEncoding() == dwarf::DW_ATE_boolean)), 1024 "invalid set base type", &N, T); 1025 } 1026 } 1027 1028 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1029 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1030 N.getRawBaseType()); 1031 1032 if (N.getDWARFAddressSpace()) { 1033 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 1034 N.getTag() == dwarf::DW_TAG_reference_type || 1035 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 1036 "DWARF address space only applies to pointer or reference types", 1037 &N); 1038 } 1039 } 1040 1041 /// Detect mutually exclusive flags. 1042 static bool hasConflictingReferenceFlags(unsigned Flags) { 1043 return ((Flags & DINode::FlagLValueReference) && 1044 (Flags & DINode::FlagRValueReference)) || 1045 ((Flags & DINode::FlagTypePassByValue) && 1046 (Flags & DINode::FlagTypePassByReference)); 1047 } 1048 1049 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 1050 auto *Params = dyn_cast<MDTuple>(&RawParams); 1051 AssertDI(Params, "invalid template params", &N, &RawParams); 1052 for (Metadata *Op : Params->operands()) { 1053 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 1054 &N, Params, Op); 1055 } 1056 } 1057 1058 void Verifier::visitDICompositeType(const DICompositeType &N) { 1059 // Common scope checks. 1060 visitDIScope(N); 1061 1062 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 1063 N.getTag() == dwarf::DW_TAG_structure_type || 1064 N.getTag() == dwarf::DW_TAG_union_type || 1065 N.getTag() == dwarf::DW_TAG_enumeration_type || 1066 N.getTag() == dwarf::DW_TAG_class_type || 1067 N.getTag() == dwarf::DW_TAG_variant_part, 1068 "invalid tag", &N); 1069 1070 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1071 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1072 N.getRawBaseType()); 1073 1074 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 1075 "invalid composite elements", &N, N.getRawElements()); 1076 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 1077 N.getRawVTableHolder()); 1078 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1079 "invalid reference flags", &N); 1080 unsigned DIBlockByRefStruct = 1 << 4; 1081 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, 1082 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 1083 1084 if (N.isVector()) { 1085 const DINodeArray Elements = N.getElements(); 1086 AssertDI(Elements.size() == 1 && 1087 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 1088 "invalid vector, expected one element of type subrange", &N); 1089 } 1090 1091 if (auto *Params = N.getRawTemplateParams()) 1092 visitTemplateParams(N, *Params); 1093 1094 if (auto *D = N.getRawDiscriminator()) { 1095 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1096 "discriminator can only appear on variant part"); 1097 } 1098 1099 if (N.getRawDataLocation()) { 1100 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1101 "dataLocation can only appear in array type"); 1102 } 1103 1104 if (N.getRawAssociated()) { 1105 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1106 "associated can only appear in array type"); 1107 } 1108 1109 if (N.getRawAllocated()) { 1110 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1111 "allocated can only appear in array type"); 1112 } 1113 1114 if (N.getRawRank()) { 1115 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1116 "rank can only appear in array type"); 1117 } 1118 } 1119 1120 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1121 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1122 if (auto *Types = N.getRawTypeArray()) { 1123 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1124 for (Metadata *Ty : N.getTypeArray()->operands()) { 1125 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1126 } 1127 } 1128 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1129 "invalid reference flags", &N); 1130 } 1131 1132 void Verifier::visitDIFile(const DIFile &N) { 1133 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1134 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1135 if (Checksum) { 1136 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1137 "invalid checksum kind", &N); 1138 size_t Size; 1139 switch (Checksum->Kind) { 1140 case DIFile::CSK_MD5: 1141 Size = 32; 1142 break; 1143 case DIFile::CSK_SHA1: 1144 Size = 40; 1145 break; 1146 case DIFile::CSK_SHA256: 1147 Size = 64; 1148 break; 1149 } 1150 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1151 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1152 "invalid checksum", &N); 1153 } 1154 } 1155 1156 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1157 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1158 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1159 1160 // Don't bother verifying the compilation directory or producer string 1161 // as those could be empty. 1162 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1163 N.getRawFile()); 1164 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1165 N.getFile()); 1166 1167 CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage(); 1168 1169 verifySourceDebugInfo(N, *N.getFile()); 1170 1171 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1172 "invalid emission kind", &N); 1173 1174 if (auto *Array = N.getRawEnumTypes()) { 1175 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1176 for (Metadata *Op : N.getEnumTypes()->operands()) { 1177 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1178 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1179 "invalid enum type", &N, N.getEnumTypes(), Op); 1180 } 1181 } 1182 if (auto *Array = N.getRawRetainedTypes()) { 1183 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1184 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1185 AssertDI(Op && (isa<DIType>(Op) || 1186 (isa<DISubprogram>(Op) && 1187 !cast<DISubprogram>(Op)->isDefinition())), 1188 "invalid retained type", &N, Op); 1189 } 1190 } 1191 if (auto *Array = N.getRawGlobalVariables()) { 1192 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1193 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1194 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1195 "invalid global variable ref", &N, Op); 1196 } 1197 } 1198 if (auto *Array = N.getRawImportedEntities()) { 1199 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1200 for (Metadata *Op : N.getImportedEntities()->operands()) { 1201 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1202 &N, Op); 1203 } 1204 } 1205 if (auto *Array = N.getRawMacros()) { 1206 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1207 for (Metadata *Op : N.getMacros()->operands()) { 1208 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1209 } 1210 } 1211 CUVisited.insert(&N); 1212 } 1213 1214 void Verifier::visitDISubprogram(const DISubprogram &N) { 1215 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1216 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1217 if (auto *F = N.getRawFile()) 1218 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1219 else 1220 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1221 if (auto *T = N.getRawType()) 1222 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1223 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1224 N.getRawContainingType()); 1225 if (auto *Params = N.getRawTemplateParams()) 1226 visitTemplateParams(N, *Params); 1227 if (auto *S = N.getRawDeclaration()) 1228 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1229 "invalid subprogram declaration", &N, S); 1230 if (auto *RawNode = N.getRawRetainedNodes()) { 1231 auto *Node = dyn_cast<MDTuple>(RawNode); 1232 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1233 for (Metadata *Op : Node->operands()) { 1234 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1235 "invalid retained nodes, expected DILocalVariable or DILabel", 1236 &N, Node, Op); 1237 } 1238 } 1239 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1240 "invalid reference flags", &N); 1241 1242 auto *Unit = N.getRawUnit(); 1243 if (N.isDefinition()) { 1244 // Subprogram definitions (not part of the type hierarchy). 1245 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1246 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1247 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1248 if (N.getFile()) 1249 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1250 } else { 1251 // Subprogram declarations (part of the type hierarchy). 1252 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1253 } 1254 1255 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1256 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1257 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1258 for (Metadata *Op : ThrownTypes->operands()) 1259 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1260 Op); 1261 } 1262 1263 if (N.areAllCallsDescribed()) 1264 AssertDI(N.isDefinition(), 1265 "DIFlagAllCallsDescribed must be attached to a definition"); 1266 } 1267 1268 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1269 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1270 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1271 "invalid local scope", &N, N.getRawScope()); 1272 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1273 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1274 } 1275 1276 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1277 visitDILexicalBlockBase(N); 1278 1279 AssertDI(N.getLine() || !N.getColumn(), 1280 "cannot have column info without line info", &N); 1281 } 1282 1283 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1284 visitDILexicalBlockBase(N); 1285 } 1286 1287 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1288 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1289 if (auto *S = N.getRawScope()) 1290 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1291 if (auto *S = N.getRawDecl()) 1292 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1293 } 1294 1295 void Verifier::visitDINamespace(const DINamespace &N) { 1296 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1297 if (auto *S = N.getRawScope()) 1298 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1299 } 1300 1301 void Verifier::visitDIMacro(const DIMacro &N) { 1302 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1303 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1304 "invalid macinfo type", &N); 1305 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1306 if (!N.getValue().empty()) { 1307 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1308 } 1309 } 1310 1311 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1312 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1313 "invalid macinfo type", &N); 1314 if (auto *F = N.getRawFile()) 1315 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1316 1317 if (auto *Array = N.getRawElements()) { 1318 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1319 for (Metadata *Op : N.getElements()->operands()) { 1320 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1321 } 1322 } 1323 } 1324 1325 void Verifier::visitDIArgList(const DIArgList &N) { 1326 AssertDI(!N.getNumOperands(), 1327 "DIArgList should have no operands other than a list of " 1328 "ValueAsMetadata", 1329 &N); 1330 } 1331 1332 void Verifier::visitDIModule(const DIModule &N) { 1333 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1334 AssertDI(!N.getName().empty(), "anonymous module", &N); 1335 } 1336 1337 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1338 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1339 } 1340 1341 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1342 visitDITemplateParameter(N); 1343 1344 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1345 &N); 1346 } 1347 1348 void Verifier::visitDITemplateValueParameter( 1349 const DITemplateValueParameter &N) { 1350 visitDITemplateParameter(N); 1351 1352 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1353 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1354 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1355 "invalid tag", &N); 1356 } 1357 1358 void Verifier::visitDIVariable(const DIVariable &N) { 1359 if (auto *S = N.getRawScope()) 1360 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1361 if (auto *F = N.getRawFile()) 1362 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1363 } 1364 1365 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1366 // Checks common to all variables. 1367 visitDIVariable(N); 1368 1369 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1370 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1371 // Assert only if the global variable is not an extern 1372 if (N.isDefinition()) 1373 AssertDI(N.getType(), "missing global variable type", &N); 1374 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1375 AssertDI(isa<DIDerivedType>(Member), 1376 "invalid static data member declaration", &N, Member); 1377 } 1378 } 1379 1380 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1381 // Checks common to all variables. 1382 visitDIVariable(N); 1383 1384 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1385 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1386 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1387 "local variable requires a valid scope", &N, N.getRawScope()); 1388 if (auto Ty = N.getType()) 1389 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1390 } 1391 1392 void Verifier::visitDILabel(const DILabel &N) { 1393 if (auto *S = N.getRawScope()) 1394 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1395 if (auto *F = N.getRawFile()) 1396 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1397 1398 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1399 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1400 "label requires a valid scope", &N, N.getRawScope()); 1401 } 1402 1403 void Verifier::visitDIExpression(const DIExpression &N) { 1404 AssertDI(N.isValid(), "invalid expression", &N); 1405 } 1406 1407 void Verifier::visitDIGlobalVariableExpression( 1408 const DIGlobalVariableExpression &GVE) { 1409 AssertDI(GVE.getVariable(), "missing variable"); 1410 if (auto *Var = GVE.getVariable()) 1411 visitDIGlobalVariable(*Var); 1412 if (auto *Expr = GVE.getExpression()) { 1413 visitDIExpression(*Expr); 1414 if (auto Fragment = Expr->getFragmentInfo()) 1415 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1416 } 1417 } 1418 1419 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1420 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1421 if (auto *T = N.getRawType()) 1422 AssertDI(isType(T), "invalid type ref", &N, T); 1423 if (auto *F = N.getRawFile()) 1424 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1425 } 1426 1427 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1428 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1429 N.getTag() == dwarf::DW_TAG_imported_declaration, 1430 "invalid tag", &N); 1431 if (auto *S = N.getRawScope()) 1432 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1433 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1434 N.getRawEntity()); 1435 } 1436 1437 void Verifier::visitComdat(const Comdat &C) { 1438 // In COFF the Module is invalid if the GlobalValue has private linkage. 1439 // Entities with private linkage don't have entries in the symbol table. 1440 if (TT.isOSBinFormatCOFF()) 1441 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1442 Assert(!GV->hasPrivateLinkage(), 1443 "comdat global value has private linkage", GV); 1444 } 1445 1446 void Verifier::visitModuleIdents(const Module &M) { 1447 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1448 if (!Idents) 1449 return; 1450 1451 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1452 // Scan each llvm.ident entry and make sure that this requirement is met. 1453 for (const MDNode *N : Idents->operands()) { 1454 Assert(N->getNumOperands() == 1, 1455 "incorrect number of operands in llvm.ident metadata", N); 1456 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1457 ("invalid value for llvm.ident metadata entry operand" 1458 "(the operand should be a string)"), 1459 N->getOperand(0)); 1460 } 1461 } 1462 1463 void Verifier::visitModuleCommandLines(const Module &M) { 1464 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1465 if (!CommandLines) 1466 return; 1467 1468 // llvm.commandline takes a list of metadata entry. Each entry has only one 1469 // string. Scan each llvm.commandline entry and make sure that this 1470 // requirement is met. 1471 for (const MDNode *N : CommandLines->operands()) { 1472 Assert(N->getNumOperands() == 1, 1473 "incorrect number of operands in llvm.commandline metadata", N); 1474 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1475 ("invalid value for llvm.commandline metadata entry operand" 1476 "(the operand should be a string)"), 1477 N->getOperand(0)); 1478 } 1479 } 1480 1481 void Verifier::visitModuleFlags(const Module &M) { 1482 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1483 if (!Flags) return; 1484 1485 // Scan each flag, and track the flags and requirements. 1486 DenseMap<const MDString*, const MDNode*> SeenIDs; 1487 SmallVector<const MDNode*, 16> Requirements; 1488 for (const MDNode *MDN : Flags->operands()) 1489 visitModuleFlag(MDN, SeenIDs, Requirements); 1490 1491 // Validate that the requirements in the module are valid. 1492 for (const MDNode *Requirement : Requirements) { 1493 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1494 const Metadata *ReqValue = Requirement->getOperand(1); 1495 1496 const MDNode *Op = SeenIDs.lookup(Flag); 1497 if (!Op) { 1498 CheckFailed("invalid requirement on flag, flag is not present in module", 1499 Flag); 1500 continue; 1501 } 1502 1503 if (Op->getOperand(2) != ReqValue) { 1504 CheckFailed(("invalid requirement on flag, " 1505 "flag does not have the required value"), 1506 Flag); 1507 continue; 1508 } 1509 } 1510 } 1511 1512 void 1513 Verifier::visitModuleFlag(const MDNode *Op, 1514 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1515 SmallVectorImpl<const MDNode *> &Requirements) { 1516 // Each module flag should have three arguments, the merge behavior (a 1517 // constant int), the flag ID (an MDString), and the value. 1518 Assert(Op->getNumOperands() == 3, 1519 "incorrect number of operands in module flag", Op); 1520 Module::ModFlagBehavior MFB; 1521 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1522 Assert( 1523 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1524 "invalid behavior operand in module flag (expected constant integer)", 1525 Op->getOperand(0)); 1526 Assert(false, 1527 "invalid behavior operand in module flag (unexpected constant)", 1528 Op->getOperand(0)); 1529 } 1530 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1531 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1532 Op->getOperand(1)); 1533 1534 // Sanity check the values for behaviors with additional requirements. 1535 switch (MFB) { 1536 case Module::Error: 1537 case Module::Warning: 1538 case Module::Override: 1539 // These behavior types accept any value. 1540 break; 1541 1542 case Module::Max: { 1543 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1544 "invalid value for 'max' module flag (expected constant integer)", 1545 Op->getOperand(2)); 1546 break; 1547 } 1548 1549 case Module::Require: { 1550 // The value should itself be an MDNode with two operands, a flag ID (an 1551 // MDString), and a value. 1552 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1553 Assert(Value && Value->getNumOperands() == 2, 1554 "invalid value for 'require' module flag (expected metadata pair)", 1555 Op->getOperand(2)); 1556 Assert(isa<MDString>(Value->getOperand(0)), 1557 ("invalid value for 'require' module flag " 1558 "(first value operand should be a string)"), 1559 Value->getOperand(0)); 1560 1561 // Append it to the list of requirements, to check once all module flags are 1562 // scanned. 1563 Requirements.push_back(Value); 1564 break; 1565 } 1566 1567 case Module::Append: 1568 case Module::AppendUnique: { 1569 // These behavior types require the operand be an MDNode. 1570 Assert(isa<MDNode>(Op->getOperand(2)), 1571 "invalid value for 'append'-type module flag " 1572 "(expected a metadata node)", 1573 Op->getOperand(2)); 1574 break; 1575 } 1576 } 1577 1578 // Unless this is a "requires" flag, check the ID is unique. 1579 if (MFB != Module::Require) { 1580 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1581 Assert(Inserted, 1582 "module flag identifiers must be unique (or of 'require' type)", ID); 1583 } 1584 1585 if (ID->getString() == "wchar_size") { 1586 ConstantInt *Value 1587 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1588 Assert(Value, "wchar_size metadata requires constant integer argument"); 1589 } 1590 1591 if (ID->getString() == "Linker Options") { 1592 // If the llvm.linker.options named metadata exists, we assume that the 1593 // bitcode reader has upgraded the module flag. Otherwise the flag might 1594 // have been created by a client directly. 1595 Assert(M.getNamedMetadata("llvm.linker.options"), 1596 "'Linker Options' named metadata no longer supported"); 1597 } 1598 1599 if (ID->getString() == "SemanticInterposition") { 1600 ConstantInt *Value = 1601 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1602 Assert(Value, 1603 "SemanticInterposition metadata requires constant integer argument"); 1604 } 1605 1606 if (ID->getString() == "CG Profile") { 1607 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1608 visitModuleFlagCGProfileEntry(MDO); 1609 } 1610 } 1611 1612 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1613 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1614 if (!FuncMDO) 1615 return; 1616 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1617 Assert(F && isa<Function>(F->getValue()->stripPointerCasts()), 1618 "expected a Function or null", FuncMDO); 1619 }; 1620 auto Node = dyn_cast_or_null<MDNode>(MDO); 1621 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1622 CheckFunction(Node->getOperand(0)); 1623 CheckFunction(Node->getOperand(1)); 1624 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1625 Assert(Count && Count->getType()->isIntegerTy(), 1626 "expected an integer constant", Node->getOperand(2)); 1627 } 1628 1629 /// Return true if this attribute kind only applies to functions. 1630 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { 1631 switch (Kind) { 1632 case Attribute::NoMerge: 1633 case Attribute::NoReturn: 1634 case Attribute::NoSync: 1635 case Attribute::WillReturn: 1636 case Attribute::NoCallback: 1637 case Attribute::NoCfCheck: 1638 case Attribute::NoUnwind: 1639 case Attribute::NoInline: 1640 case Attribute::AlwaysInline: 1641 case Attribute::OptimizeForSize: 1642 case Attribute::StackProtect: 1643 case Attribute::StackProtectReq: 1644 case Attribute::StackProtectStrong: 1645 case Attribute::SafeStack: 1646 case Attribute::ShadowCallStack: 1647 case Attribute::NoRedZone: 1648 case Attribute::NoImplicitFloat: 1649 case Attribute::Naked: 1650 case Attribute::InlineHint: 1651 case Attribute::StackAlignment: 1652 case Attribute::UWTable: 1653 case Attribute::VScaleRange: 1654 case Attribute::NonLazyBind: 1655 case Attribute::ReturnsTwice: 1656 case Attribute::SanitizeAddress: 1657 case Attribute::SanitizeHWAddress: 1658 case Attribute::SanitizeMemTag: 1659 case Attribute::SanitizeThread: 1660 case Attribute::SanitizeMemory: 1661 case Attribute::MinSize: 1662 case Attribute::NoDuplicate: 1663 case Attribute::Builtin: 1664 case Attribute::NoBuiltin: 1665 case Attribute::Cold: 1666 case Attribute::Hot: 1667 case Attribute::OptForFuzzing: 1668 case Attribute::OptimizeNone: 1669 case Attribute::JumpTable: 1670 case Attribute::Convergent: 1671 case Attribute::ArgMemOnly: 1672 case Attribute::NoRecurse: 1673 case Attribute::InaccessibleMemOnly: 1674 case Attribute::InaccessibleMemOrArgMemOnly: 1675 case Attribute::AllocSize: 1676 case Attribute::SpeculativeLoadHardening: 1677 case Attribute::Speculatable: 1678 case Attribute::StrictFP: 1679 case Attribute::NullPointerIsValid: 1680 case Attribute::MustProgress: 1681 case Attribute::NoProfile: 1682 return true; 1683 default: 1684 break; 1685 } 1686 return false; 1687 } 1688 1689 /// Return true if this is a function attribute that can also appear on 1690 /// arguments. 1691 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { 1692 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || 1693 Kind == Attribute::ReadNone || Kind == Attribute::NoFree || 1694 Kind == Attribute::Preallocated; 1695 } 1696 1697 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 1698 const Value *V) { 1699 for (Attribute A : Attrs) { 1700 if (A.isStringAttribute()) 1701 continue; 1702 1703 if (A.isIntAttribute() != 1704 Attribute::doesAttrKindHaveArgument(A.getKindAsEnum())) { 1705 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", 1706 V); 1707 return; 1708 } 1709 1710 if (isFuncOnlyAttr(A.getKindAsEnum())) { 1711 if (!IsFunction) { 1712 CheckFailed("Attribute '" + A.getAsString() + 1713 "' only applies to functions!", 1714 V); 1715 return; 1716 } 1717 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { 1718 CheckFailed("Attribute '" + A.getAsString() + 1719 "' does not apply to functions!", 1720 V); 1721 return; 1722 } 1723 } 1724 } 1725 1726 // VerifyParameterAttrs - Check the given attributes for an argument or return 1727 // value of the specified type. The value V is printed in error messages. 1728 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1729 const Value *V) { 1730 if (!Attrs.hasAttributes()) 1731 return; 1732 1733 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); 1734 1735 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1736 Assert(Attrs.getNumAttributes() == 1, 1737 "Attribute 'immarg' is incompatible with other attributes", V); 1738 } 1739 1740 // Check for mutually incompatible attributes. Only inreg is compatible with 1741 // sret. 1742 unsigned AttrCount = 0; 1743 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1744 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1745 AttrCount += Attrs.hasAttribute(Attribute::Preallocated); 1746 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1747 Attrs.hasAttribute(Attribute::InReg); 1748 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1749 AttrCount += Attrs.hasAttribute(Attribute::ByRef); 1750 Assert(AttrCount <= 1, 1751 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " 1752 "'byref', and 'sret' are incompatible!", 1753 V); 1754 1755 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1756 Attrs.hasAttribute(Attribute::ReadOnly)), 1757 "Attributes " 1758 "'inalloca and readonly' are incompatible!", 1759 V); 1760 1761 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1762 Attrs.hasAttribute(Attribute::Returned)), 1763 "Attributes " 1764 "'sret and returned' are incompatible!", 1765 V); 1766 1767 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1768 Attrs.hasAttribute(Attribute::SExt)), 1769 "Attributes " 1770 "'zeroext and signext' are incompatible!", 1771 V); 1772 1773 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1774 Attrs.hasAttribute(Attribute::ReadOnly)), 1775 "Attributes " 1776 "'readnone and readonly' are incompatible!", 1777 V); 1778 1779 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1780 Attrs.hasAttribute(Attribute::WriteOnly)), 1781 "Attributes " 1782 "'readnone and writeonly' are incompatible!", 1783 V); 1784 1785 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1786 Attrs.hasAttribute(Attribute::WriteOnly)), 1787 "Attributes " 1788 "'readonly and writeonly' are incompatible!", 1789 V); 1790 1791 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1792 Attrs.hasAttribute(Attribute::AlwaysInline)), 1793 "Attributes " 1794 "'noinline and alwaysinline' are incompatible!", 1795 V); 1796 1797 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1798 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), 1799 "Wrong types for attribute: " + 1800 AttributeSet::get(Context, IncompatibleAttrs).getAsString(), 1801 V); 1802 1803 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1804 SmallPtrSet<Type*, 4> Visited; 1805 if (!PTy->getElementType()->isSized(&Visited)) { 1806 Assert(!Attrs.hasAttribute(Attribute::ByVal) && 1807 !Attrs.hasAttribute(Attribute::ByRef) && 1808 !Attrs.hasAttribute(Attribute::InAlloca) && 1809 !Attrs.hasAttribute(Attribute::Preallocated), 1810 "Attributes 'byval', 'byref', 'inalloca', and 'preallocated' do not " 1811 "support unsized types!", 1812 V); 1813 } 1814 if (!isa<PointerType>(PTy->getElementType())) 1815 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1816 "Attribute 'swifterror' only applies to parameters " 1817 "with pointer to pointer type!", 1818 V); 1819 1820 if (Attrs.hasAttribute(Attribute::ByRef)) { 1821 Assert(Attrs.getByRefType() == PTy->getElementType(), 1822 "Attribute 'byref' type does not match parameter!", V); 1823 } 1824 1825 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1826 Assert(Attrs.getByValType() == PTy->getElementType(), 1827 "Attribute 'byval' type does not match parameter!", V); 1828 } 1829 1830 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1831 Assert(Attrs.getPreallocatedType() == PTy->getElementType(), 1832 "Attribute 'preallocated' type does not match parameter!", V); 1833 } 1834 1835 if (Attrs.hasAttribute(Attribute::InAlloca)) { 1836 Assert(Attrs.getInAllocaType() == PTy->getElementType(), 1837 "Attribute 'inalloca' type does not match parameter!", V); 1838 } 1839 } else { 1840 Assert(!Attrs.hasAttribute(Attribute::ByVal), 1841 "Attribute 'byval' only applies to parameters with pointer type!", 1842 V); 1843 Assert(!Attrs.hasAttribute(Attribute::ByRef), 1844 "Attribute 'byref' only applies to parameters with pointer type!", 1845 V); 1846 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1847 "Attribute 'swifterror' only applies to parameters " 1848 "with pointer type!", 1849 V); 1850 } 1851 } 1852 1853 // Check parameter attributes against a function type. 1854 // The value V is printed in error messages. 1855 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1856 const Value *V, bool IsIntrinsic) { 1857 if (Attrs.isEmpty()) 1858 return; 1859 1860 bool SawNest = false; 1861 bool SawReturned = false; 1862 bool SawSRet = false; 1863 bool SawSwiftSelf = false; 1864 bool SawSwiftError = false; 1865 1866 // Verify return value attributes. 1867 AttributeSet RetAttrs = Attrs.getRetAttributes(); 1868 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && 1869 !RetAttrs.hasAttribute(Attribute::Nest) && 1870 !RetAttrs.hasAttribute(Attribute::StructRet) && 1871 !RetAttrs.hasAttribute(Attribute::NoCapture) && 1872 !RetAttrs.hasAttribute(Attribute::NoFree) && 1873 !RetAttrs.hasAttribute(Attribute::Returned) && 1874 !RetAttrs.hasAttribute(Attribute::InAlloca) && 1875 !RetAttrs.hasAttribute(Attribute::Preallocated) && 1876 !RetAttrs.hasAttribute(Attribute::ByRef) && 1877 !RetAttrs.hasAttribute(Attribute::SwiftSelf) && 1878 !RetAttrs.hasAttribute(Attribute::SwiftError)), 1879 "Attributes 'byval', 'inalloca', 'preallocated', 'byref', " 1880 "'nest', 'sret', 'nocapture', 'nofree', " 1881 "'returned', 'swiftself', and 'swifterror' do not apply to return " 1882 "values!", 1883 V); 1884 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && 1885 !RetAttrs.hasAttribute(Attribute::WriteOnly) && 1886 !RetAttrs.hasAttribute(Attribute::ReadNone)), 1887 "Attribute '" + RetAttrs.getAsString() + 1888 "' does not apply to function returns", 1889 V); 1890 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1891 1892 // Verify parameter attributes. 1893 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1894 Type *Ty = FT->getParamType(i); 1895 AttributeSet ArgAttrs = Attrs.getParamAttributes(i); 1896 1897 if (!IsIntrinsic) { 1898 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1899 "immarg attribute only applies to intrinsics",V); 1900 } 1901 1902 verifyParameterAttrs(ArgAttrs, Ty, V); 1903 1904 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1905 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1906 SawNest = true; 1907 } 1908 1909 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1910 Assert(!SawReturned, "More than one parameter has attribute returned!", 1911 V); 1912 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1913 "Incompatible argument and return types for 'returned' attribute", 1914 V); 1915 SawReturned = true; 1916 } 1917 1918 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1919 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1920 Assert(i == 0 || i == 1, 1921 "Attribute 'sret' is not on first or second parameter!", V); 1922 SawSRet = true; 1923 } 1924 1925 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1926 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1927 SawSwiftSelf = true; 1928 } 1929 1930 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1931 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1932 V); 1933 SawSwiftError = true; 1934 } 1935 1936 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1937 Assert(i == FT->getNumParams() - 1, 1938 "inalloca isn't on the last parameter!", V); 1939 } 1940 } 1941 1942 if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) 1943 return; 1944 1945 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); 1946 1947 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1948 Attrs.hasFnAttribute(Attribute::ReadOnly)), 1949 "Attributes 'readnone and readonly' are incompatible!", V); 1950 1951 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1952 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1953 "Attributes 'readnone and writeonly' are incompatible!", V); 1954 1955 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && 1956 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1957 "Attributes 'readonly and writeonly' are incompatible!", V); 1958 1959 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1960 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), 1961 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1962 "incompatible!", 1963 V); 1964 1965 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1966 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), 1967 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1968 1969 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && 1970 Attrs.hasFnAttribute(Attribute::AlwaysInline)), 1971 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1972 1973 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { 1974 Assert(Attrs.hasFnAttribute(Attribute::NoInline), 1975 "Attribute 'optnone' requires 'noinline'!", V); 1976 1977 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), 1978 "Attributes 'optsize and optnone' are incompatible!", V); 1979 1980 Assert(!Attrs.hasFnAttribute(Attribute::MinSize), 1981 "Attributes 'minsize and optnone' are incompatible!", V); 1982 } 1983 1984 if (Attrs.hasFnAttribute(Attribute::JumpTable)) { 1985 const GlobalValue *GV = cast<GlobalValue>(V); 1986 Assert(GV->hasGlobalUnnamedAddr(), 1987 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1988 } 1989 1990 if (Attrs.hasFnAttribute(Attribute::AllocSize)) { 1991 std::pair<unsigned, Optional<unsigned>> Args = 1992 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 1993 1994 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1995 if (ParamNo >= FT->getNumParams()) { 1996 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1997 return false; 1998 } 1999 2000 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 2001 CheckFailed("'allocsize' " + Name + 2002 " argument must refer to an integer parameter", 2003 V); 2004 return false; 2005 } 2006 2007 return true; 2008 }; 2009 2010 if (!CheckParam("element size", Args.first)) 2011 return; 2012 2013 if (Args.second && !CheckParam("number of elements", *Args.second)) 2014 return; 2015 } 2016 2017 if (Attrs.hasFnAttribute(Attribute::VScaleRange)) { 2018 std::pair<unsigned, unsigned> Args = 2019 Attrs.getVScaleRangeArgs(AttributeList::FunctionIndex); 2020 2021 if (Args.first > Args.second && Args.second != 0) 2022 CheckFailed("'vscale_range' minimum cannot be greater than maximum", V); 2023 } 2024 2025 if (Attrs.hasFnAttribute("frame-pointer")) { 2026 StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex, 2027 "frame-pointer").getValueAsString(); 2028 if (FP != "all" && FP != "non-leaf" && FP != "none") 2029 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 2030 } 2031 2032 if (Attrs.hasFnAttribute("patchable-function-prefix")) { 2033 StringRef S = Attrs 2034 .getAttribute(AttributeList::FunctionIndex, 2035 "patchable-function-prefix") 2036 .getValueAsString(); 2037 unsigned N; 2038 if (S.getAsInteger(10, N)) 2039 CheckFailed( 2040 "\"patchable-function-prefix\" takes an unsigned integer: " + S, V); 2041 } 2042 if (Attrs.hasFnAttribute("patchable-function-entry")) { 2043 StringRef S = Attrs 2044 .getAttribute(AttributeList::FunctionIndex, 2045 "patchable-function-entry") 2046 .getValueAsString(); 2047 unsigned N; 2048 if (S.getAsInteger(10, N)) 2049 CheckFailed( 2050 "\"patchable-function-entry\" takes an unsigned integer: " + S, V); 2051 } 2052 } 2053 2054 void Verifier::verifyFunctionMetadata( 2055 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 2056 for (const auto &Pair : MDs) { 2057 if (Pair.first == LLVMContext::MD_prof) { 2058 MDNode *MD = Pair.second; 2059 Assert(MD->getNumOperands() >= 2, 2060 "!prof annotations should have no less than 2 operands", MD); 2061 2062 // Check first operand. 2063 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 2064 MD); 2065 Assert(isa<MDString>(MD->getOperand(0)), 2066 "expected string with name of the !prof annotation", MD); 2067 MDString *MDS = cast<MDString>(MD->getOperand(0)); 2068 StringRef ProfName = MDS->getString(); 2069 Assert(ProfName.equals("function_entry_count") || 2070 ProfName.equals("synthetic_function_entry_count"), 2071 "first operand should be 'function_entry_count'" 2072 " or 'synthetic_function_entry_count'", 2073 MD); 2074 2075 // Check second operand. 2076 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 2077 MD); 2078 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 2079 "expected integer argument to function_entry_count", MD); 2080 } 2081 } 2082 } 2083 2084 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 2085 if (!ConstantExprVisited.insert(EntryC).second) 2086 return; 2087 2088 SmallVector<const Constant *, 16> Stack; 2089 Stack.push_back(EntryC); 2090 2091 while (!Stack.empty()) { 2092 const Constant *C = Stack.pop_back_val(); 2093 2094 // Check this constant expression. 2095 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 2096 visitConstantExpr(CE); 2097 2098 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 2099 // Global Values get visited separately, but we do need to make sure 2100 // that the global value is in the correct module 2101 Assert(GV->getParent() == &M, "Referencing global in another module!", 2102 EntryC, &M, GV, GV->getParent()); 2103 continue; 2104 } 2105 2106 // Visit all sub-expressions. 2107 for (const Use &U : C->operands()) { 2108 const auto *OpC = dyn_cast<Constant>(U); 2109 if (!OpC) 2110 continue; 2111 if (!ConstantExprVisited.insert(OpC).second) 2112 continue; 2113 Stack.push_back(OpC); 2114 } 2115 } 2116 } 2117 2118 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 2119 if (CE->getOpcode() == Instruction::BitCast) 2120 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 2121 CE->getType()), 2122 "Invalid bitcast", CE); 2123 2124 if (CE->getOpcode() == Instruction::IntToPtr || 2125 CE->getOpcode() == Instruction::PtrToInt) { 2126 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 2127 ? CE->getType() 2128 : CE->getOperand(0)->getType(); 2129 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 2130 ? "inttoptr not supported for non-integral pointers" 2131 : "ptrtoint not supported for non-integral pointers"; 2132 Assert( 2133 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 2134 Msg); 2135 } 2136 } 2137 2138 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 2139 // There shouldn't be more attribute sets than there are parameters plus the 2140 // function and return value. 2141 return Attrs.getNumAttrSets() <= Params + 2; 2142 } 2143 2144 /// Verify that statepoint intrinsic is well formed. 2145 void Verifier::verifyStatepoint(const CallBase &Call) { 2146 assert(Call.getCalledFunction() && 2147 Call.getCalledFunction()->getIntrinsicID() == 2148 Intrinsic::experimental_gc_statepoint); 2149 2150 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 2151 !Call.onlyAccessesArgMemory(), 2152 "gc.statepoint must read and write all memory to preserve " 2153 "reordering restrictions required by safepoint semantics", 2154 Call); 2155 2156 const int64_t NumPatchBytes = 2157 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 2158 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 2159 Assert(NumPatchBytes >= 0, 2160 "gc.statepoint number of patchable bytes must be " 2161 "positive", 2162 Call); 2163 2164 const Value *Target = Call.getArgOperand(2); 2165 auto *PT = dyn_cast<PointerType>(Target->getType()); 2166 Assert(PT && PT->getElementType()->isFunctionTy(), 2167 "gc.statepoint callee must be of function pointer type", Call, Target); 2168 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 2169 2170 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 2171 Assert(NumCallArgs >= 0, 2172 "gc.statepoint number of arguments to underlying call " 2173 "must be positive", 2174 Call); 2175 const int NumParams = (int)TargetFuncType->getNumParams(); 2176 if (TargetFuncType->isVarArg()) { 2177 Assert(NumCallArgs >= NumParams, 2178 "gc.statepoint mismatch in number of vararg call args", Call); 2179 2180 // TODO: Remove this limitation 2181 Assert(TargetFuncType->getReturnType()->isVoidTy(), 2182 "gc.statepoint doesn't support wrapping non-void " 2183 "vararg functions yet", 2184 Call); 2185 } else 2186 Assert(NumCallArgs == NumParams, 2187 "gc.statepoint mismatch in number of call args", Call); 2188 2189 const uint64_t Flags 2190 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 2191 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 2192 "unknown flag used in gc.statepoint flags argument", Call); 2193 2194 // Verify that the types of the call parameter arguments match 2195 // the type of the wrapped callee. 2196 AttributeList Attrs = Call.getAttributes(); 2197 for (int i = 0; i < NumParams; i++) { 2198 Type *ParamType = TargetFuncType->getParamType(i); 2199 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 2200 Assert(ArgType == ParamType, 2201 "gc.statepoint call argument does not match wrapped " 2202 "function type", 2203 Call); 2204 2205 if (TargetFuncType->isVarArg()) { 2206 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); 2207 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2208 "Attribute 'sret' cannot be used for vararg call arguments!", 2209 Call); 2210 } 2211 } 2212 2213 const int EndCallArgsInx = 4 + NumCallArgs; 2214 2215 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2216 Assert(isa<ConstantInt>(NumTransitionArgsV), 2217 "gc.statepoint number of transition arguments " 2218 "must be constant integer", 2219 Call); 2220 const int NumTransitionArgs = 2221 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2222 Assert(NumTransitionArgs == 0, 2223 "gc.statepoint w/inline transition bundle is deprecated", Call); 2224 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2225 2226 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2227 Assert(isa<ConstantInt>(NumDeoptArgsV), 2228 "gc.statepoint number of deoptimization arguments " 2229 "must be constant integer", 2230 Call); 2231 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2232 Assert(NumDeoptArgs == 0, 2233 "gc.statepoint w/inline deopt operands is deprecated", Call); 2234 2235 const int ExpectedNumArgs = 7 + NumCallArgs; 2236 Assert(ExpectedNumArgs == (int)Call.arg_size(), 2237 "gc.statepoint too many arguments", Call); 2238 2239 // Check that the only uses of this gc.statepoint are gc.result or 2240 // gc.relocate calls which are tied to this statepoint and thus part 2241 // of the same statepoint sequence 2242 for (const User *U : Call.users()) { 2243 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2244 Assert(UserCall, "illegal use of statepoint token", Call, U); 2245 if (!UserCall) 2246 continue; 2247 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2248 "gc.result or gc.relocate are the only value uses " 2249 "of a gc.statepoint", 2250 Call, U); 2251 if (isa<GCResultInst>(UserCall)) { 2252 Assert(UserCall->getArgOperand(0) == &Call, 2253 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2254 } else if (isa<GCRelocateInst>(Call)) { 2255 Assert(UserCall->getArgOperand(0) == &Call, 2256 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2257 } 2258 } 2259 2260 // Note: It is legal for a single derived pointer to be listed multiple 2261 // times. It's non-optimal, but it is legal. It can also happen after 2262 // insertion if we strip a bitcast away. 2263 // Note: It is really tempting to check that each base is relocated and 2264 // that a derived pointer is never reused as a base pointer. This turns 2265 // out to be problematic since optimizations run after safepoint insertion 2266 // can recognize equality properties that the insertion logic doesn't know 2267 // about. See example statepoint.ll in the verifier subdirectory 2268 } 2269 2270 void Verifier::verifyFrameRecoverIndices() { 2271 for (auto &Counts : FrameEscapeInfo) { 2272 Function *F = Counts.first; 2273 unsigned EscapedObjectCount = Counts.second.first; 2274 unsigned MaxRecoveredIndex = Counts.second.second; 2275 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2276 "all indices passed to llvm.localrecover must be less than the " 2277 "number of arguments passed to llvm.localescape in the parent " 2278 "function", 2279 F); 2280 } 2281 } 2282 2283 static Instruction *getSuccPad(Instruction *Terminator) { 2284 BasicBlock *UnwindDest; 2285 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2286 UnwindDest = II->getUnwindDest(); 2287 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2288 UnwindDest = CSI->getUnwindDest(); 2289 else 2290 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2291 return UnwindDest->getFirstNonPHI(); 2292 } 2293 2294 void Verifier::verifySiblingFuncletUnwinds() { 2295 SmallPtrSet<Instruction *, 8> Visited; 2296 SmallPtrSet<Instruction *, 8> Active; 2297 for (const auto &Pair : SiblingFuncletInfo) { 2298 Instruction *PredPad = Pair.first; 2299 if (Visited.count(PredPad)) 2300 continue; 2301 Active.insert(PredPad); 2302 Instruction *Terminator = Pair.second; 2303 do { 2304 Instruction *SuccPad = getSuccPad(Terminator); 2305 if (Active.count(SuccPad)) { 2306 // Found a cycle; report error 2307 Instruction *CyclePad = SuccPad; 2308 SmallVector<Instruction *, 8> CycleNodes; 2309 do { 2310 CycleNodes.push_back(CyclePad); 2311 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2312 if (CycleTerminator != CyclePad) 2313 CycleNodes.push_back(CycleTerminator); 2314 CyclePad = getSuccPad(CycleTerminator); 2315 } while (CyclePad != SuccPad); 2316 Assert(false, "EH pads can't handle each other's exceptions", 2317 ArrayRef<Instruction *>(CycleNodes)); 2318 } 2319 // Don't re-walk a node we've already checked 2320 if (!Visited.insert(SuccPad).second) 2321 break; 2322 // Walk to this successor if it has a map entry. 2323 PredPad = SuccPad; 2324 auto TermI = SiblingFuncletInfo.find(PredPad); 2325 if (TermI == SiblingFuncletInfo.end()) 2326 break; 2327 Terminator = TermI->second; 2328 Active.insert(PredPad); 2329 } while (true); 2330 // Each node only has one successor, so we've walked all the active 2331 // nodes' successors. 2332 Active.clear(); 2333 } 2334 } 2335 2336 // visitFunction - Verify that a function is ok. 2337 // 2338 void Verifier::visitFunction(const Function &F) { 2339 visitGlobalValue(F); 2340 2341 // Check function arguments. 2342 FunctionType *FT = F.getFunctionType(); 2343 unsigned NumArgs = F.arg_size(); 2344 2345 Assert(&Context == &F.getContext(), 2346 "Function context does not match Module context!", &F); 2347 2348 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2349 Assert(FT->getNumParams() == NumArgs, 2350 "# formal arguments must match # of arguments for function type!", &F, 2351 FT); 2352 Assert(F.getReturnType()->isFirstClassType() || 2353 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2354 "Functions cannot return aggregate values!", &F); 2355 2356 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2357 "Invalid struct return type!", &F); 2358 2359 AttributeList Attrs = F.getAttributes(); 2360 2361 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2362 "Attribute after last parameter!", &F); 2363 2364 bool isLLVMdotName = F.getName().size() >= 5 && 2365 F.getName().substr(0, 5) == "llvm."; 2366 2367 // Check function attributes. 2368 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName); 2369 2370 // On function declarations/definitions, we do not support the builtin 2371 // attribute. We do not check this in VerifyFunctionAttrs since that is 2372 // checking for Attributes that can/can not ever be on functions. 2373 Assert(!Attrs.hasFnAttribute(Attribute::Builtin), 2374 "Attribute 'builtin' can only be applied to a callsite.", &F); 2375 2376 // Check that this function meets the restrictions on this calling convention. 2377 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2378 // restrictions can be lifted. 2379 switch (F.getCallingConv()) { 2380 default: 2381 case CallingConv::C: 2382 break; 2383 case CallingConv::X86_INTR: { 2384 Assert(F.arg_empty() || Attrs.hasParamAttribute(0, Attribute::ByVal), 2385 "Calling convention parameter requires byval", &F); 2386 break; 2387 } 2388 case CallingConv::AMDGPU_KERNEL: 2389 case CallingConv::SPIR_KERNEL: 2390 Assert(F.getReturnType()->isVoidTy(), 2391 "Calling convention requires void return type", &F); 2392 LLVM_FALLTHROUGH; 2393 case CallingConv::AMDGPU_VS: 2394 case CallingConv::AMDGPU_HS: 2395 case CallingConv::AMDGPU_GS: 2396 case CallingConv::AMDGPU_PS: 2397 case CallingConv::AMDGPU_CS: 2398 Assert(!F.hasStructRetAttr(), 2399 "Calling convention does not allow sret", &F); 2400 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) { 2401 const unsigned StackAS = DL.getAllocaAddrSpace(); 2402 unsigned i = 0; 2403 for (const Argument &Arg : F.args()) { 2404 Assert(!Attrs.hasParamAttribute(i, Attribute::ByVal), 2405 "Calling convention disallows byval", &F); 2406 Assert(!Attrs.hasParamAttribute(i, Attribute::Preallocated), 2407 "Calling convention disallows preallocated", &F); 2408 Assert(!Attrs.hasParamAttribute(i, Attribute::InAlloca), 2409 "Calling convention disallows inalloca", &F); 2410 2411 if (Attrs.hasParamAttribute(i, Attribute::ByRef)) { 2412 // FIXME: Should also disallow LDS and GDS, but we don't have the enum 2413 // value here. 2414 Assert(Arg.getType()->getPointerAddressSpace() != StackAS, 2415 "Calling convention disallows stack byref", &F); 2416 } 2417 2418 ++i; 2419 } 2420 } 2421 2422 LLVM_FALLTHROUGH; 2423 case CallingConv::Fast: 2424 case CallingConv::Cold: 2425 case CallingConv::Intel_OCL_BI: 2426 case CallingConv::PTX_Kernel: 2427 case CallingConv::PTX_Device: 2428 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2429 "perfect forwarding!", 2430 &F); 2431 break; 2432 } 2433 2434 // Check that the argument values match the function type for this function... 2435 unsigned i = 0; 2436 for (const Argument &Arg : F.args()) { 2437 Assert(Arg.getType() == FT->getParamType(i), 2438 "Argument value does not match function argument type!", &Arg, 2439 FT->getParamType(i)); 2440 Assert(Arg.getType()->isFirstClassType(), 2441 "Function arguments must have first-class types!", &Arg); 2442 if (!isLLVMdotName) { 2443 Assert(!Arg.getType()->isMetadataTy(), 2444 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2445 Assert(!Arg.getType()->isTokenTy(), 2446 "Function takes token but isn't an intrinsic", &Arg, &F); 2447 } 2448 2449 // Check that swifterror argument is only used by loads and stores. 2450 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { 2451 verifySwiftErrorValue(&Arg); 2452 } 2453 ++i; 2454 } 2455 2456 if (!isLLVMdotName) 2457 Assert(!F.getReturnType()->isTokenTy(), 2458 "Functions returns a token but isn't an intrinsic", &F); 2459 2460 // Get the function metadata attachments. 2461 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2462 F.getAllMetadata(MDs); 2463 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2464 verifyFunctionMetadata(MDs); 2465 2466 // Check validity of the personality function 2467 if (F.hasPersonalityFn()) { 2468 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2469 if (Per) 2470 Assert(Per->getParent() == F.getParent(), 2471 "Referencing personality function in another module!", 2472 &F, F.getParent(), Per, Per->getParent()); 2473 } 2474 2475 if (F.isMaterializable()) { 2476 // Function has a body somewhere we can't see. 2477 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2478 MDs.empty() ? nullptr : MDs.front().second); 2479 } else if (F.isDeclaration()) { 2480 for (const auto &I : MDs) { 2481 // This is used for call site debug information. 2482 AssertDI(I.first != LLVMContext::MD_dbg || 2483 !cast<DISubprogram>(I.second)->isDistinct(), 2484 "function declaration may only have a unique !dbg attachment", 2485 &F); 2486 Assert(I.first != LLVMContext::MD_prof, 2487 "function declaration may not have a !prof attachment", &F); 2488 2489 // Verify the metadata itself. 2490 visitMDNode(*I.second, AreDebugLocsAllowed::Yes); 2491 } 2492 Assert(!F.hasPersonalityFn(), 2493 "Function declaration shouldn't have a personality routine", &F); 2494 } else { 2495 // Verify that this function (which has a body) is not named "llvm.*". It 2496 // is not legal to define intrinsics. 2497 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 2498 2499 // Check the entry node 2500 const BasicBlock *Entry = &F.getEntryBlock(); 2501 Assert(pred_empty(Entry), 2502 "Entry block to function must not have predecessors!", Entry); 2503 2504 // The address of the entry block cannot be taken, unless it is dead. 2505 if (Entry->hasAddressTaken()) { 2506 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2507 "blockaddress may not be used with the entry block!", Entry); 2508 } 2509 2510 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2511 // Visit metadata attachments. 2512 for (const auto &I : MDs) { 2513 // Verify that the attachment is legal. 2514 auto AllowLocs = AreDebugLocsAllowed::No; 2515 switch (I.first) { 2516 default: 2517 break; 2518 case LLVMContext::MD_dbg: { 2519 ++NumDebugAttachments; 2520 AssertDI(NumDebugAttachments == 1, 2521 "function must have a single !dbg attachment", &F, I.second); 2522 AssertDI(isa<DISubprogram>(I.second), 2523 "function !dbg attachment must be a subprogram", &F, I.second); 2524 AssertDI(cast<DISubprogram>(I.second)->isDistinct(), 2525 "function definition may only have a distinct !dbg attachment", 2526 &F); 2527 2528 auto *SP = cast<DISubprogram>(I.second); 2529 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2530 AssertDI(!AttachedTo || AttachedTo == &F, 2531 "DISubprogram attached to more than one function", SP, &F); 2532 AttachedTo = &F; 2533 AllowLocs = AreDebugLocsAllowed::Yes; 2534 break; 2535 } 2536 case LLVMContext::MD_prof: 2537 ++NumProfAttachments; 2538 Assert(NumProfAttachments == 1, 2539 "function must have a single !prof attachment", &F, I.second); 2540 break; 2541 } 2542 2543 // Verify the metadata itself. 2544 visitMDNode(*I.second, AllowLocs); 2545 } 2546 } 2547 2548 // If this function is actually an intrinsic, verify that it is only used in 2549 // direct call/invokes, never having its "address taken". 2550 // Only do this if the module is materialized, otherwise we don't have all the 2551 // uses. 2552 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2553 const User *U; 2554 if (F.hasAddressTaken(&U)) 2555 Assert(false, "Invalid user of intrinsic instruction!", U); 2556 } 2557 2558 auto *N = F.getSubprogram(); 2559 HasDebugInfo = (N != nullptr); 2560 if (!HasDebugInfo) 2561 return; 2562 2563 // Check that all !dbg attachments lead to back to N. 2564 // 2565 // FIXME: Check this incrementally while visiting !dbg attachments. 2566 // FIXME: Only check when N is the canonical subprogram for F. 2567 SmallPtrSet<const MDNode *, 32> Seen; 2568 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2569 // Be careful about using DILocation here since we might be dealing with 2570 // broken code (this is the Verifier after all). 2571 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2572 if (!DL) 2573 return; 2574 if (!Seen.insert(DL).second) 2575 return; 2576 2577 Metadata *Parent = DL->getRawScope(); 2578 AssertDI(Parent && isa<DILocalScope>(Parent), 2579 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2580 Parent); 2581 2582 DILocalScope *Scope = DL->getInlinedAtScope(); 2583 Assert(Scope, "Failed to find DILocalScope", DL); 2584 2585 if (!Seen.insert(Scope).second) 2586 return; 2587 2588 DISubprogram *SP = Scope->getSubprogram(); 2589 2590 // Scope and SP could be the same MDNode and we don't want to skip 2591 // validation in that case 2592 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2593 return; 2594 2595 AssertDI(SP->describes(&F), 2596 "!dbg attachment points at wrong subprogram for function", N, &F, 2597 &I, DL, Scope, SP); 2598 }; 2599 for (auto &BB : F) 2600 for (auto &I : BB) { 2601 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2602 // The llvm.loop annotations also contain two DILocations. 2603 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2604 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2605 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2606 if (BrokenDebugInfo) 2607 return; 2608 } 2609 } 2610 2611 // verifyBasicBlock - Verify that a basic block is well formed... 2612 // 2613 void Verifier::visitBasicBlock(BasicBlock &BB) { 2614 InstsInThisBlock.clear(); 2615 2616 // Ensure that basic blocks have terminators! 2617 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2618 2619 // Check constraints that this basic block imposes on all of the PHI nodes in 2620 // it. 2621 if (isa<PHINode>(BB.front())) { 2622 SmallVector<BasicBlock *, 8> Preds(predecessors(&BB)); 2623 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2624 llvm::sort(Preds); 2625 for (const PHINode &PN : BB.phis()) { 2626 Assert(PN.getNumIncomingValues() == Preds.size(), 2627 "PHINode should have one entry for each predecessor of its " 2628 "parent basic block!", 2629 &PN); 2630 2631 // Get and sort all incoming values in the PHI node... 2632 Values.clear(); 2633 Values.reserve(PN.getNumIncomingValues()); 2634 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2635 Values.push_back( 2636 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2637 llvm::sort(Values); 2638 2639 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2640 // Check to make sure that if there is more than one entry for a 2641 // particular basic block in this PHI node, that the incoming values are 2642 // all identical. 2643 // 2644 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2645 Values[i].second == Values[i - 1].second, 2646 "PHI node has multiple entries for the same basic block with " 2647 "different incoming values!", 2648 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2649 2650 // Check to make sure that the predecessors and PHI node entries are 2651 // matched up. 2652 Assert(Values[i].first == Preds[i], 2653 "PHI node entries do not match predecessors!", &PN, 2654 Values[i].first, Preds[i]); 2655 } 2656 } 2657 } 2658 2659 // Check that all instructions have their parent pointers set up correctly. 2660 for (auto &I : BB) 2661 { 2662 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2663 } 2664 } 2665 2666 void Verifier::visitTerminator(Instruction &I) { 2667 // Ensure that terminators only exist at the end of the basic block. 2668 Assert(&I == I.getParent()->getTerminator(), 2669 "Terminator found in the middle of a basic block!", I.getParent()); 2670 visitInstruction(I); 2671 } 2672 2673 void Verifier::visitBranchInst(BranchInst &BI) { 2674 if (BI.isConditional()) { 2675 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2676 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2677 } 2678 visitTerminator(BI); 2679 } 2680 2681 void Verifier::visitReturnInst(ReturnInst &RI) { 2682 Function *F = RI.getParent()->getParent(); 2683 unsigned N = RI.getNumOperands(); 2684 if (F->getReturnType()->isVoidTy()) 2685 Assert(N == 0, 2686 "Found return instr that returns non-void in Function of void " 2687 "return type!", 2688 &RI, F->getReturnType()); 2689 else 2690 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2691 "Function return type does not match operand " 2692 "type of return inst!", 2693 &RI, F->getReturnType()); 2694 2695 // Check to make sure that the return value has necessary properties for 2696 // terminators... 2697 visitTerminator(RI); 2698 } 2699 2700 void Verifier::visitSwitchInst(SwitchInst &SI) { 2701 // Check to make sure that all of the constants in the switch instruction 2702 // have the same type as the switched-on value. 2703 Type *SwitchTy = SI.getCondition()->getType(); 2704 SmallPtrSet<ConstantInt*, 32> Constants; 2705 for (auto &Case : SI.cases()) { 2706 Assert(Case.getCaseValue()->getType() == SwitchTy, 2707 "Switch constants must all be same type as switch value!", &SI); 2708 Assert(Constants.insert(Case.getCaseValue()).second, 2709 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2710 } 2711 2712 visitTerminator(SI); 2713 } 2714 2715 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2716 Assert(BI.getAddress()->getType()->isPointerTy(), 2717 "Indirectbr operand must have pointer type!", &BI); 2718 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2719 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2720 "Indirectbr destinations must all have pointer type!", &BI); 2721 2722 visitTerminator(BI); 2723 } 2724 2725 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2726 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2727 &CBI); 2728 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2729 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2730 "Callbr successors must all have pointer type!", &CBI); 2731 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2732 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), 2733 "Using an unescaped label as a callbr argument!", &CBI); 2734 if (isa<BasicBlock>(CBI.getOperand(i))) 2735 for (unsigned j = i + 1; j != e; ++j) 2736 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2737 "Duplicate callbr destination!", &CBI); 2738 } 2739 { 2740 SmallPtrSet<BasicBlock *, 4> ArgBBs; 2741 for (Value *V : CBI.args()) 2742 if (auto *BA = dyn_cast<BlockAddress>(V)) 2743 ArgBBs.insert(BA->getBasicBlock()); 2744 for (BasicBlock *BB : CBI.getIndirectDests()) 2745 Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI); 2746 } 2747 2748 visitTerminator(CBI); 2749 } 2750 2751 void Verifier::visitSelectInst(SelectInst &SI) { 2752 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2753 SI.getOperand(2)), 2754 "Invalid operands for select instruction!", &SI); 2755 2756 Assert(SI.getTrueValue()->getType() == SI.getType(), 2757 "Select values must have same type as select instruction!", &SI); 2758 visitInstruction(SI); 2759 } 2760 2761 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2762 /// a pass, if any exist, it's an error. 2763 /// 2764 void Verifier::visitUserOp1(Instruction &I) { 2765 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2766 } 2767 2768 void Verifier::visitTruncInst(TruncInst &I) { 2769 // Get the source and destination types 2770 Type *SrcTy = I.getOperand(0)->getType(); 2771 Type *DestTy = I.getType(); 2772 2773 // Get the size of the types in bits, we'll need this later 2774 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2775 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2776 2777 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2778 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2779 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2780 "trunc source and destination must both be a vector or neither", &I); 2781 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2782 2783 visitInstruction(I); 2784 } 2785 2786 void Verifier::visitZExtInst(ZExtInst &I) { 2787 // Get the source and destination types 2788 Type *SrcTy = I.getOperand(0)->getType(); 2789 Type *DestTy = I.getType(); 2790 2791 // Get the size of the types in bits, we'll need this later 2792 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2793 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2794 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2795 "zext source and destination must both be a vector or neither", &I); 2796 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2797 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2798 2799 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2800 2801 visitInstruction(I); 2802 } 2803 2804 void Verifier::visitSExtInst(SExtInst &I) { 2805 // Get the source and destination types 2806 Type *SrcTy = I.getOperand(0)->getType(); 2807 Type *DestTy = I.getType(); 2808 2809 // Get the size of the types in bits, we'll need this later 2810 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2811 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2812 2813 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2814 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2815 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2816 "sext source and destination must both be a vector or neither", &I); 2817 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2818 2819 visitInstruction(I); 2820 } 2821 2822 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2823 // Get the source and destination types 2824 Type *SrcTy = I.getOperand(0)->getType(); 2825 Type *DestTy = I.getType(); 2826 // Get the size of the types in bits, we'll need this later 2827 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2828 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2829 2830 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2831 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2832 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2833 "fptrunc source and destination must both be a vector or neither", &I); 2834 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2835 2836 visitInstruction(I); 2837 } 2838 2839 void Verifier::visitFPExtInst(FPExtInst &I) { 2840 // Get the source and destination types 2841 Type *SrcTy = I.getOperand(0)->getType(); 2842 Type *DestTy = I.getType(); 2843 2844 // Get the size of the types in bits, we'll need this later 2845 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2846 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2847 2848 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2849 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2850 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2851 "fpext source and destination must both be a vector or neither", &I); 2852 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2853 2854 visitInstruction(I); 2855 } 2856 2857 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2858 // Get the source and destination types 2859 Type *SrcTy = I.getOperand(0)->getType(); 2860 Type *DestTy = I.getType(); 2861 2862 bool SrcVec = SrcTy->isVectorTy(); 2863 bool DstVec = DestTy->isVectorTy(); 2864 2865 Assert(SrcVec == DstVec, 2866 "UIToFP source and dest must both be vector or scalar", &I); 2867 Assert(SrcTy->isIntOrIntVectorTy(), 2868 "UIToFP source must be integer or integer vector", &I); 2869 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2870 &I); 2871 2872 if (SrcVec && DstVec) 2873 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2874 cast<VectorType>(DestTy)->getElementCount(), 2875 "UIToFP source and dest vector length mismatch", &I); 2876 2877 visitInstruction(I); 2878 } 2879 2880 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2881 // Get the source and destination types 2882 Type *SrcTy = I.getOperand(0)->getType(); 2883 Type *DestTy = I.getType(); 2884 2885 bool SrcVec = SrcTy->isVectorTy(); 2886 bool DstVec = DestTy->isVectorTy(); 2887 2888 Assert(SrcVec == DstVec, 2889 "SIToFP source and dest must both be vector or scalar", &I); 2890 Assert(SrcTy->isIntOrIntVectorTy(), 2891 "SIToFP source must be integer or integer vector", &I); 2892 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2893 &I); 2894 2895 if (SrcVec && DstVec) 2896 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2897 cast<VectorType>(DestTy)->getElementCount(), 2898 "SIToFP source and dest vector length mismatch", &I); 2899 2900 visitInstruction(I); 2901 } 2902 2903 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2904 // Get the source and destination types 2905 Type *SrcTy = I.getOperand(0)->getType(); 2906 Type *DestTy = I.getType(); 2907 2908 bool SrcVec = SrcTy->isVectorTy(); 2909 bool DstVec = DestTy->isVectorTy(); 2910 2911 Assert(SrcVec == DstVec, 2912 "FPToUI source and dest must both be vector or scalar", &I); 2913 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2914 &I); 2915 Assert(DestTy->isIntOrIntVectorTy(), 2916 "FPToUI result must be integer or integer vector", &I); 2917 2918 if (SrcVec && DstVec) 2919 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2920 cast<VectorType>(DestTy)->getElementCount(), 2921 "FPToUI source and dest vector length mismatch", &I); 2922 2923 visitInstruction(I); 2924 } 2925 2926 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2927 // Get the source and destination types 2928 Type *SrcTy = I.getOperand(0)->getType(); 2929 Type *DestTy = I.getType(); 2930 2931 bool SrcVec = SrcTy->isVectorTy(); 2932 bool DstVec = DestTy->isVectorTy(); 2933 2934 Assert(SrcVec == DstVec, 2935 "FPToSI source and dest must both be vector or scalar", &I); 2936 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2937 &I); 2938 Assert(DestTy->isIntOrIntVectorTy(), 2939 "FPToSI result must be integer or integer vector", &I); 2940 2941 if (SrcVec && DstVec) 2942 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2943 cast<VectorType>(DestTy)->getElementCount(), 2944 "FPToSI source and dest vector length mismatch", &I); 2945 2946 visitInstruction(I); 2947 } 2948 2949 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2950 // Get the source and destination types 2951 Type *SrcTy = I.getOperand(0)->getType(); 2952 Type *DestTy = I.getType(); 2953 2954 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2955 2956 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 2957 Assert(!DL.isNonIntegralPointerType(PTy), 2958 "ptrtoint not supported for non-integral pointers"); 2959 2960 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 2961 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2962 &I); 2963 2964 if (SrcTy->isVectorTy()) { 2965 auto *VSrc = cast<VectorType>(SrcTy); 2966 auto *VDest = cast<VectorType>(DestTy); 2967 Assert(VSrc->getElementCount() == VDest->getElementCount(), 2968 "PtrToInt Vector width mismatch", &I); 2969 } 2970 2971 visitInstruction(I); 2972 } 2973 2974 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2975 // Get the source and destination types 2976 Type *SrcTy = I.getOperand(0)->getType(); 2977 Type *DestTy = I.getType(); 2978 2979 Assert(SrcTy->isIntOrIntVectorTy(), 2980 "IntToPtr source must be an integral", &I); 2981 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 2982 2983 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 2984 Assert(!DL.isNonIntegralPointerType(PTy), 2985 "inttoptr not supported for non-integral pointers"); 2986 2987 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2988 &I); 2989 if (SrcTy->isVectorTy()) { 2990 auto *VSrc = cast<VectorType>(SrcTy); 2991 auto *VDest = cast<VectorType>(DestTy); 2992 Assert(VSrc->getElementCount() == VDest->getElementCount(), 2993 "IntToPtr Vector width mismatch", &I); 2994 } 2995 visitInstruction(I); 2996 } 2997 2998 void Verifier::visitBitCastInst(BitCastInst &I) { 2999 Assert( 3000 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 3001 "Invalid bitcast", &I); 3002 visitInstruction(I); 3003 } 3004 3005 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 3006 Type *SrcTy = I.getOperand(0)->getType(); 3007 Type *DestTy = I.getType(); 3008 3009 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 3010 &I); 3011 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 3012 &I); 3013 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 3014 "AddrSpaceCast must be between different address spaces", &I); 3015 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) 3016 Assert(SrcVTy->getElementCount() == 3017 cast<VectorType>(DestTy)->getElementCount(), 3018 "AddrSpaceCast vector pointer number of elements mismatch", &I); 3019 visitInstruction(I); 3020 } 3021 3022 /// visitPHINode - Ensure that a PHI node is well formed. 3023 /// 3024 void Verifier::visitPHINode(PHINode &PN) { 3025 // Ensure that the PHI nodes are all grouped together at the top of the block. 3026 // This can be tested by checking whether the instruction before this is 3027 // either nonexistent (because this is begin()) or is a PHI node. If not, 3028 // then there is some other instruction before a PHI. 3029 Assert(&PN == &PN.getParent()->front() || 3030 isa<PHINode>(--BasicBlock::iterator(&PN)), 3031 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 3032 3033 // Check that a PHI doesn't yield a Token. 3034 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 3035 3036 // Check that all of the values of the PHI node have the same type as the 3037 // result, and that the incoming blocks are really basic blocks. 3038 for (Value *IncValue : PN.incoming_values()) { 3039 Assert(PN.getType() == IncValue->getType(), 3040 "PHI node operands are not the same type as the result!", &PN); 3041 } 3042 3043 // All other PHI node constraints are checked in the visitBasicBlock method. 3044 3045 visitInstruction(PN); 3046 } 3047 3048 void Verifier::visitCallBase(CallBase &Call) { 3049 Assert(Call.getCalledOperand()->getType()->isPointerTy(), 3050 "Called function must be a pointer!", Call); 3051 PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType()); 3052 3053 Assert(FPTy->getElementType()->isFunctionTy(), 3054 "Called function is not pointer to function type!", Call); 3055 3056 Assert(FPTy->getElementType() == Call.getFunctionType(), 3057 "Called function is not the same type as the call!", Call); 3058 3059 FunctionType *FTy = Call.getFunctionType(); 3060 3061 // Verify that the correct number of arguments are being passed 3062 if (FTy->isVarArg()) 3063 Assert(Call.arg_size() >= FTy->getNumParams(), 3064 "Called function requires more parameters than were provided!", 3065 Call); 3066 else 3067 Assert(Call.arg_size() == FTy->getNumParams(), 3068 "Incorrect number of arguments passed to called function!", Call); 3069 3070 // Verify that all arguments to the call match the function type. 3071 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3072 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 3073 "Call parameter type does not match function signature!", 3074 Call.getArgOperand(i), FTy->getParamType(i), Call); 3075 3076 AttributeList Attrs = Call.getAttributes(); 3077 3078 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 3079 "Attribute after last parameter!", Call); 3080 3081 bool IsIntrinsic = Call.getCalledFunction() && 3082 Call.getCalledFunction()->getName().startswith("llvm."); 3083 3084 Function *Callee = 3085 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 3086 3087 if (Attrs.hasFnAttribute(Attribute::Speculatable)) { 3088 // Don't allow speculatable on call sites, unless the underlying function 3089 // declaration is also speculatable. 3090 Assert(Callee && Callee->isSpeculatable(), 3091 "speculatable attribute may not apply to call sites", Call); 3092 } 3093 3094 if (Attrs.hasFnAttribute(Attribute::Preallocated)) { 3095 Assert(Call.getCalledFunction()->getIntrinsicID() == 3096 Intrinsic::call_preallocated_arg, 3097 "preallocated as a call site attribute can only be on " 3098 "llvm.call.preallocated.arg"); 3099 } 3100 3101 // Verify call attributes. 3102 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 3103 3104 // Conservatively check the inalloca argument. 3105 // We have a bug if we can find that there is an underlying alloca without 3106 // inalloca. 3107 if (Call.hasInAllocaArgument()) { 3108 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 3109 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 3110 Assert(AI->isUsedWithInAlloca(), 3111 "inalloca argument for call has mismatched alloca", AI, Call); 3112 } 3113 3114 // For each argument of the callsite, if it has the swifterror argument, 3115 // make sure the underlying alloca/parameter it comes from has a swifterror as 3116 // well. 3117 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3118 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 3119 Value *SwiftErrorArg = Call.getArgOperand(i); 3120 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 3121 Assert(AI->isSwiftError(), 3122 "swifterror argument for call has mismatched alloca", AI, Call); 3123 continue; 3124 } 3125 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 3126 Assert(ArgI, 3127 "swifterror argument should come from an alloca or parameter", 3128 SwiftErrorArg, Call); 3129 Assert(ArgI->hasSwiftErrorAttr(), 3130 "swifterror argument for call has mismatched parameter", ArgI, 3131 Call); 3132 } 3133 3134 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) { 3135 // Don't allow immarg on call sites, unless the underlying declaration 3136 // also has the matching immarg. 3137 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 3138 "immarg may not apply only to call sites", 3139 Call.getArgOperand(i), Call); 3140 } 3141 3142 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 3143 Value *ArgVal = Call.getArgOperand(i); 3144 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 3145 "immarg operand has non-immediate parameter", ArgVal, Call); 3146 } 3147 3148 if (Call.paramHasAttr(i, Attribute::Preallocated)) { 3149 Value *ArgVal = Call.getArgOperand(i); 3150 bool hasOB = 3151 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0; 3152 bool isMustTail = Call.isMustTailCall(); 3153 Assert(hasOB != isMustTail, 3154 "preallocated operand either requires a preallocated bundle or " 3155 "the call to be musttail (but not both)", 3156 ArgVal, Call); 3157 } 3158 } 3159 3160 if (FTy->isVarArg()) { 3161 // FIXME? is 'nest' even legal here? 3162 bool SawNest = false; 3163 bool SawReturned = false; 3164 3165 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 3166 if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) 3167 SawNest = true; 3168 if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) 3169 SawReturned = true; 3170 } 3171 3172 // Check attributes on the varargs part. 3173 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 3174 Type *Ty = Call.getArgOperand(Idx)->getType(); 3175 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); 3176 verifyParameterAttrs(ArgAttrs, Ty, &Call); 3177 3178 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 3179 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 3180 SawNest = true; 3181 } 3182 3183 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 3184 Assert(!SawReturned, "More than one parameter has attribute returned!", 3185 Call); 3186 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 3187 "Incompatible argument and return types for 'returned' " 3188 "attribute", 3189 Call); 3190 SawReturned = true; 3191 } 3192 3193 // Statepoint intrinsic is vararg but the wrapped function may be not. 3194 // Allow sret here and check the wrapped function in verifyStatepoint. 3195 if (!Call.getCalledFunction() || 3196 Call.getCalledFunction()->getIntrinsicID() != 3197 Intrinsic::experimental_gc_statepoint) 3198 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 3199 "Attribute 'sret' cannot be used for vararg call arguments!", 3200 Call); 3201 3202 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 3203 Assert(Idx == Call.arg_size() - 1, 3204 "inalloca isn't on the last argument!", Call); 3205 } 3206 } 3207 3208 // Verify that there's no metadata unless it's a direct call to an intrinsic. 3209 if (!IsIntrinsic) { 3210 for (Type *ParamTy : FTy->params()) { 3211 Assert(!ParamTy->isMetadataTy(), 3212 "Function has metadata parameter but isn't an intrinsic", Call); 3213 Assert(!ParamTy->isTokenTy(), 3214 "Function has token parameter but isn't an intrinsic", Call); 3215 } 3216 } 3217 3218 // Verify that indirect calls don't return tokens. 3219 if (!Call.getCalledFunction()) 3220 Assert(!FTy->getReturnType()->isTokenTy(), 3221 "Return type cannot be token for indirect call!"); 3222 3223 if (Function *F = Call.getCalledFunction()) 3224 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 3225 visitIntrinsicCall(ID, Call); 3226 3227 // Verify that a callsite has at most one "deopt", at most one "funclet", at 3228 // most one "gc-transition", at most one "cfguardtarget", 3229 // and at most one "preallocated" operand bundle. 3230 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3231 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, 3232 FoundPreallocatedBundle = false, FoundGCLiveBundle = false, 3233 FoundAttachedCallBundle = false; 3234 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 3235 OperandBundleUse BU = Call.getOperandBundleAt(i); 3236 uint32_t Tag = BU.getTagID(); 3237 if (Tag == LLVMContext::OB_deopt) { 3238 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 3239 FoundDeoptBundle = true; 3240 } else if (Tag == LLVMContext::OB_gc_transition) { 3241 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 3242 Call); 3243 FoundGCTransitionBundle = true; 3244 } else if (Tag == LLVMContext::OB_funclet) { 3245 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 3246 FoundFuncletBundle = true; 3247 Assert(BU.Inputs.size() == 1, 3248 "Expected exactly one funclet bundle operand", Call); 3249 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 3250 "Funclet bundle operands should correspond to a FuncletPadInst", 3251 Call); 3252 } else if (Tag == LLVMContext::OB_cfguardtarget) { 3253 Assert(!FoundCFGuardTargetBundle, 3254 "Multiple CFGuardTarget operand bundles", Call); 3255 FoundCFGuardTargetBundle = true; 3256 Assert(BU.Inputs.size() == 1, 3257 "Expected exactly one cfguardtarget bundle operand", Call); 3258 } else if (Tag == LLVMContext::OB_preallocated) { 3259 Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles", 3260 Call); 3261 FoundPreallocatedBundle = true; 3262 Assert(BU.Inputs.size() == 1, 3263 "Expected exactly one preallocated bundle operand", Call); 3264 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); 3265 Assert(Input && 3266 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup, 3267 "\"preallocated\" argument must be a token from " 3268 "llvm.call.preallocated.setup", 3269 Call); 3270 } else if (Tag == LLVMContext::OB_gc_live) { 3271 Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles", 3272 Call); 3273 FoundGCLiveBundle = true; 3274 } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) { 3275 Assert(!FoundAttachedCallBundle, 3276 "Multiple \"clang.arc.attachedcall\" operand bundles", Call); 3277 FoundAttachedCallBundle = true; 3278 } 3279 } 3280 3281 if (FoundAttachedCallBundle) 3282 Assert(FTy->getReturnType()->isPointerTy(), 3283 "a call with operand bundle \"clang.arc.attachedcall\" must call a " 3284 "function returning a pointer", 3285 Call); 3286 3287 // Verify that each inlinable callsite of a debug-info-bearing function in a 3288 // debug-info-bearing function has a debug location attached to it. Failure to 3289 // do so causes assertion failures when the inliner sets up inline scope info. 3290 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3291 Call.getCalledFunction()->getSubprogram()) 3292 AssertDI(Call.getDebugLoc(), 3293 "inlinable function call in a function with " 3294 "debug info must have a !dbg location", 3295 Call); 3296 3297 visitInstruction(Call); 3298 } 3299 3300 /// Two types are "congruent" if they are identical, or if they are both pointer 3301 /// types with different pointee types and the same address space. 3302 static bool isTypeCongruent(Type *L, Type *R) { 3303 if (L == R) 3304 return true; 3305 PointerType *PL = dyn_cast<PointerType>(L); 3306 PointerType *PR = dyn_cast<PointerType>(R); 3307 if (!PL || !PR) 3308 return false; 3309 return PL->getAddressSpace() == PR->getAddressSpace(); 3310 } 3311 3312 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 3313 static const Attribute::AttrKind ABIAttrs[] = { 3314 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3315 Attribute::InReg, Attribute::SwiftSelf, Attribute::SwiftError, 3316 Attribute::Preallocated, Attribute::ByRef}; 3317 AttrBuilder Copy; 3318 for (auto AK : ABIAttrs) { 3319 if (Attrs.hasParamAttribute(I, AK)) 3320 Copy.addAttribute(AK); 3321 } 3322 3323 // `align` is ABI-affecting only in combination with `byval` or `byref`. 3324 if (Attrs.hasParamAttribute(I, Attribute::Alignment) && 3325 (Attrs.hasParamAttribute(I, Attribute::ByVal) || 3326 Attrs.hasParamAttribute(I, Attribute::ByRef))) 3327 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3328 return Copy; 3329 } 3330 3331 void Verifier::verifyMustTailCall(CallInst &CI) { 3332 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3333 3334 // - The caller and callee prototypes must match. Pointer types of 3335 // parameters or return types may differ in pointee type, but not 3336 // address space. 3337 Function *F = CI.getParent()->getParent(); 3338 FunctionType *CallerTy = F->getFunctionType(); 3339 FunctionType *CalleeTy = CI.getFunctionType(); 3340 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3341 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3342 "cannot guarantee tail call due to mismatched parameter counts", 3343 &CI); 3344 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3345 Assert( 3346 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3347 "cannot guarantee tail call due to mismatched parameter types", &CI); 3348 } 3349 } 3350 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3351 "cannot guarantee tail call due to mismatched varargs", &CI); 3352 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3353 "cannot guarantee tail call due to mismatched return types", &CI); 3354 3355 // - The calling conventions of the caller and callee must match. 3356 Assert(F->getCallingConv() == CI.getCallingConv(), 3357 "cannot guarantee tail call due to mismatched calling conv", &CI); 3358 3359 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3360 // returned, preallocated, and inalloca, must match. 3361 AttributeList CallerAttrs = F->getAttributes(); 3362 AttributeList CalleeAttrs = CI.getAttributes(); 3363 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3364 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3365 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3366 Assert(CallerABIAttrs == CalleeABIAttrs, 3367 "cannot guarantee tail call due to mismatched ABI impacting " 3368 "function attributes", 3369 &CI, CI.getOperand(I)); 3370 } 3371 3372 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3373 // or a pointer bitcast followed by a ret instruction. 3374 // - The ret instruction must return the (possibly bitcasted) value 3375 // produced by the call or void. 3376 Value *RetVal = &CI; 3377 Instruction *Next = CI.getNextNode(); 3378 3379 // Handle the optional bitcast. 3380 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3381 Assert(BI->getOperand(0) == RetVal, 3382 "bitcast following musttail call must use the call", BI); 3383 RetVal = BI; 3384 Next = BI->getNextNode(); 3385 } 3386 3387 // Check the return. 3388 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3389 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3390 &CI); 3391 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 3392 "musttail call result must be returned", Ret); 3393 } 3394 3395 void Verifier::visitCallInst(CallInst &CI) { 3396 visitCallBase(CI); 3397 3398 if (CI.isMustTailCall()) 3399 verifyMustTailCall(CI); 3400 } 3401 3402 void Verifier::visitInvokeInst(InvokeInst &II) { 3403 visitCallBase(II); 3404 3405 // Verify that the first non-PHI instruction of the unwind destination is an 3406 // exception handling instruction. 3407 Assert( 3408 II.getUnwindDest()->isEHPad(), 3409 "The unwind destination does not have an exception handling instruction!", 3410 &II); 3411 3412 visitTerminator(II); 3413 } 3414 3415 /// visitUnaryOperator - Check the argument to the unary operator. 3416 /// 3417 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3418 Assert(U.getType() == U.getOperand(0)->getType(), 3419 "Unary operators must have same type for" 3420 "operands and result!", 3421 &U); 3422 3423 switch (U.getOpcode()) { 3424 // Check that floating-point arithmetic operators are only used with 3425 // floating-point operands. 3426 case Instruction::FNeg: 3427 Assert(U.getType()->isFPOrFPVectorTy(), 3428 "FNeg operator only works with float types!", &U); 3429 break; 3430 default: 3431 llvm_unreachable("Unknown UnaryOperator opcode!"); 3432 } 3433 3434 visitInstruction(U); 3435 } 3436 3437 /// visitBinaryOperator - Check that both arguments to the binary operator are 3438 /// of the same type! 3439 /// 3440 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3441 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3442 "Both operands to a binary operator are not of the same type!", &B); 3443 3444 switch (B.getOpcode()) { 3445 // Check that integer arithmetic operators are only used with 3446 // integral operands. 3447 case Instruction::Add: 3448 case Instruction::Sub: 3449 case Instruction::Mul: 3450 case Instruction::SDiv: 3451 case Instruction::UDiv: 3452 case Instruction::SRem: 3453 case Instruction::URem: 3454 Assert(B.getType()->isIntOrIntVectorTy(), 3455 "Integer arithmetic operators only work with integral types!", &B); 3456 Assert(B.getType() == B.getOperand(0)->getType(), 3457 "Integer arithmetic operators must have same type " 3458 "for operands and result!", 3459 &B); 3460 break; 3461 // Check that floating-point arithmetic operators are only used with 3462 // floating-point operands. 3463 case Instruction::FAdd: 3464 case Instruction::FSub: 3465 case Instruction::FMul: 3466 case Instruction::FDiv: 3467 case Instruction::FRem: 3468 Assert(B.getType()->isFPOrFPVectorTy(), 3469 "Floating-point arithmetic operators only work with " 3470 "floating-point types!", 3471 &B); 3472 Assert(B.getType() == B.getOperand(0)->getType(), 3473 "Floating-point arithmetic operators must have same type " 3474 "for operands and result!", 3475 &B); 3476 break; 3477 // Check that logical operators are only used with integral operands. 3478 case Instruction::And: 3479 case Instruction::Or: 3480 case Instruction::Xor: 3481 Assert(B.getType()->isIntOrIntVectorTy(), 3482 "Logical operators only work with integral types!", &B); 3483 Assert(B.getType() == B.getOperand(0)->getType(), 3484 "Logical operators must have same type for operands and result!", 3485 &B); 3486 break; 3487 case Instruction::Shl: 3488 case Instruction::LShr: 3489 case Instruction::AShr: 3490 Assert(B.getType()->isIntOrIntVectorTy(), 3491 "Shifts only work with integral types!", &B); 3492 Assert(B.getType() == B.getOperand(0)->getType(), 3493 "Shift return type must be same as operands!", &B); 3494 break; 3495 default: 3496 llvm_unreachable("Unknown BinaryOperator opcode!"); 3497 } 3498 3499 visitInstruction(B); 3500 } 3501 3502 void Verifier::visitICmpInst(ICmpInst &IC) { 3503 // Check that the operands are the same type 3504 Type *Op0Ty = IC.getOperand(0)->getType(); 3505 Type *Op1Ty = IC.getOperand(1)->getType(); 3506 Assert(Op0Ty == Op1Ty, 3507 "Both operands to ICmp instruction are not of the same type!", &IC); 3508 // Check that the operands are the right type 3509 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3510 "Invalid operand types for ICmp instruction", &IC); 3511 // Check that the predicate is valid. 3512 Assert(IC.isIntPredicate(), 3513 "Invalid predicate in ICmp instruction!", &IC); 3514 3515 visitInstruction(IC); 3516 } 3517 3518 void Verifier::visitFCmpInst(FCmpInst &FC) { 3519 // Check that the operands are the same type 3520 Type *Op0Ty = FC.getOperand(0)->getType(); 3521 Type *Op1Ty = FC.getOperand(1)->getType(); 3522 Assert(Op0Ty == Op1Ty, 3523 "Both operands to FCmp instruction are not of the same type!", &FC); 3524 // Check that the operands are the right type 3525 Assert(Op0Ty->isFPOrFPVectorTy(), 3526 "Invalid operand types for FCmp instruction", &FC); 3527 // Check that the predicate is valid. 3528 Assert(FC.isFPPredicate(), 3529 "Invalid predicate in FCmp instruction!", &FC); 3530 3531 visitInstruction(FC); 3532 } 3533 3534 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3535 Assert( 3536 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3537 "Invalid extractelement operands!", &EI); 3538 visitInstruction(EI); 3539 } 3540 3541 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3542 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3543 IE.getOperand(2)), 3544 "Invalid insertelement operands!", &IE); 3545 visitInstruction(IE); 3546 } 3547 3548 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3549 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3550 SV.getShuffleMask()), 3551 "Invalid shufflevector operands!", &SV); 3552 visitInstruction(SV); 3553 } 3554 3555 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3556 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3557 3558 Assert(isa<PointerType>(TargetTy), 3559 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3560 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3561 3562 SmallVector<Value *, 16> Idxs(GEP.indices()); 3563 Assert(all_of( 3564 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3565 "GEP indexes must be integers", &GEP); 3566 Type *ElTy = 3567 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3568 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3569 3570 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3571 GEP.getResultElementType() == ElTy, 3572 "GEP is not of right type for indices!", &GEP, ElTy); 3573 3574 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { 3575 // Additional checks for vector GEPs. 3576 ElementCount GEPWidth = GEPVTy->getElementCount(); 3577 if (GEP.getPointerOperandType()->isVectorTy()) 3578 Assert( 3579 GEPWidth == 3580 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(), 3581 "Vector GEP result width doesn't match operand's", &GEP); 3582 for (Value *Idx : Idxs) { 3583 Type *IndexTy = Idx->getType(); 3584 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { 3585 ElementCount IndexWidth = IndexVTy->getElementCount(); 3586 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3587 } 3588 Assert(IndexTy->isIntOrIntVectorTy(), 3589 "All GEP indices should be of integer type"); 3590 } 3591 } 3592 3593 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3594 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3595 "GEP address space doesn't match type", &GEP); 3596 } 3597 3598 visitInstruction(GEP); 3599 } 3600 3601 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3602 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3603 } 3604 3605 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3606 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3607 "precondition violation"); 3608 3609 unsigned NumOperands = Range->getNumOperands(); 3610 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3611 unsigned NumRanges = NumOperands / 2; 3612 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3613 3614 ConstantRange LastRange(1, true); // Dummy initial value 3615 for (unsigned i = 0; i < NumRanges; ++i) { 3616 ConstantInt *Low = 3617 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3618 Assert(Low, "The lower limit must be an integer!", Low); 3619 ConstantInt *High = 3620 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3621 Assert(High, "The upper limit must be an integer!", High); 3622 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3623 "Range types must match instruction type!", &I); 3624 3625 APInt HighV = High->getValue(); 3626 APInt LowV = Low->getValue(); 3627 ConstantRange CurRange(LowV, HighV); 3628 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3629 "Range must not be empty!", Range); 3630 if (i != 0) { 3631 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3632 "Intervals are overlapping", Range); 3633 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3634 Range); 3635 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3636 Range); 3637 } 3638 LastRange = ConstantRange(LowV, HighV); 3639 } 3640 if (NumRanges > 2) { 3641 APInt FirstLow = 3642 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3643 APInt FirstHigh = 3644 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3645 ConstantRange FirstRange(FirstLow, FirstHigh); 3646 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3647 "Intervals are overlapping", Range); 3648 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3649 Range); 3650 } 3651 } 3652 3653 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3654 unsigned Size = DL.getTypeSizeInBits(Ty); 3655 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3656 Assert(!(Size & (Size - 1)), 3657 "atomic memory access' operand must have a power-of-two size", Ty, I); 3658 } 3659 3660 void Verifier::visitLoadInst(LoadInst &LI) { 3661 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3662 Assert(PTy, "Load operand must be a pointer.", &LI); 3663 Type *ElTy = LI.getType(); 3664 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3665 "huge alignment values are unsupported", &LI); 3666 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3667 if (LI.isAtomic()) { 3668 Assert(LI.getOrdering() != AtomicOrdering::Release && 3669 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3670 "Load cannot have Release ordering", &LI); 3671 Assert(LI.getAlignment() != 0, 3672 "Atomic load must specify explicit alignment", &LI); 3673 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3674 "atomic load operand must have integer, pointer, or floating point " 3675 "type!", 3676 ElTy, &LI); 3677 checkAtomicMemAccessSize(ElTy, &LI); 3678 } else { 3679 Assert(LI.getSyncScopeID() == SyncScope::System, 3680 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3681 } 3682 3683 visitInstruction(LI); 3684 } 3685 3686 void Verifier::visitStoreInst(StoreInst &SI) { 3687 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3688 Assert(PTy, "Store operand must be a pointer.", &SI); 3689 Type *ElTy = PTy->getElementType(); 3690 Assert(ElTy == SI.getOperand(0)->getType(), 3691 "Stored value type does not match pointer operand type!", &SI, ElTy); 3692 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3693 "huge alignment values are unsupported", &SI); 3694 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3695 if (SI.isAtomic()) { 3696 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3697 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3698 "Store cannot have Acquire ordering", &SI); 3699 Assert(SI.getAlignment() != 0, 3700 "Atomic store must specify explicit alignment", &SI); 3701 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3702 "atomic store operand must have integer, pointer, or floating point " 3703 "type!", 3704 ElTy, &SI); 3705 checkAtomicMemAccessSize(ElTy, &SI); 3706 } else { 3707 Assert(SI.getSyncScopeID() == SyncScope::System, 3708 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3709 } 3710 visitInstruction(SI); 3711 } 3712 3713 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3714 void Verifier::verifySwiftErrorCall(CallBase &Call, 3715 const Value *SwiftErrorVal) { 3716 for (const auto &I : llvm::enumerate(Call.args())) { 3717 if (I.value() == SwiftErrorVal) { 3718 Assert(Call.paramHasAttr(I.index(), Attribute::SwiftError), 3719 "swifterror value when used in a callsite should be marked " 3720 "with swifterror attribute", 3721 SwiftErrorVal, Call); 3722 } 3723 } 3724 } 3725 3726 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3727 // Check that swifterror value is only used by loads, stores, or as 3728 // a swifterror argument. 3729 for (const User *U : SwiftErrorVal->users()) { 3730 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3731 isa<InvokeInst>(U), 3732 "swifterror value can only be loaded and stored from, or " 3733 "as a swifterror argument!", 3734 SwiftErrorVal, U); 3735 // If it is used by a store, check it is the second operand. 3736 if (auto StoreI = dyn_cast<StoreInst>(U)) 3737 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3738 "swifterror value should be the second operand when used " 3739 "by stores", SwiftErrorVal, U); 3740 if (auto *Call = dyn_cast<CallBase>(U)) 3741 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3742 } 3743 } 3744 3745 void Verifier::visitAllocaInst(AllocaInst &AI) { 3746 SmallPtrSet<Type*, 4> Visited; 3747 PointerType *PTy = AI.getType(); 3748 // TODO: Relax this restriction? 3749 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), 3750 "Allocation instruction pointer not in the stack address space!", 3751 &AI); 3752 Assert(AI.getAllocatedType()->isSized(&Visited), 3753 "Cannot allocate unsized type", &AI); 3754 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3755 "Alloca array size must have integer type", &AI); 3756 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3757 "huge alignment values are unsupported", &AI); 3758 3759 if (AI.isSwiftError()) { 3760 verifySwiftErrorValue(&AI); 3761 } 3762 3763 visitInstruction(AI); 3764 } 3765 3766 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3767 3768 // FIXME: more conditions??? 3769 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 3770 "cmpxchg instructions must be atomic.", &CXI); 3771 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 3772 "cmpxchg instructions must be atomic.", &CXI); 3773 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 3774 "cmpxchg instructions cannot be unordered.", &CXI); 3775 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 3776 "cmpxchg instructions cannot be unordered.", &CXI); 3777 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 3778 "cmpxchg instructions failure argument shall be no stronger than the " 3779 "success argument", 3780 &CXI); 3781 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 3782 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 3783 "cmpxchg failure ordering cannot include release semantics", &CXI); 3784 3785 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 3786 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 3787 Type *ElTy = PTy->getElementType(); 3788 Assert(ElTy->isIntOrPtrTy(), 3789 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3790 checkAtomicMemAccessSize(ElTy, &CXI); 3791 Assert(ElTy == CXI.getOperand(1)->getType(), 3792 "Expected value type does not match pointer operand type!", &CXI, 3793 ElTy); 3794 Assert(ElTy == CXI.getOperand(2)->getType(), 3795 "Stored value type does not match pointer operand type!", &CXI, ElTy); 3796 visitInstruction(CXI); 3797 } 3798 3799 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3800 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 3801 "atomicrmw instructions must be atomic.", &RMWI); 3802 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3803 "atomicrmw instructions cannot be unordered.", &RMWI); 3804 auto Op = RMWI.getOperation(); 3805 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 3806 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 3807 Type *ElTy = PTy->getElementType(); 3808 if (Op == AtomicRMWInst::Xchg) { 3809 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3810 AtomicRMWInst::getOperationName(Op) + 3811 " operand must have integer or floating point type!", 3812 &RMWI, ElTy); 3813 } else if (AtomicRMWInst::isFPOperation(Op)) { 3814 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3815 AtomicRMWInst::getOperationName(Op) + 3816 " operand must have floating point type!", 3817 &RMWI, ElTy); 3818 } else { 3819 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3820 AtomicRMWInst::getOperationName(Op) + 3821 " operand must have integer type!", 3822 &RMWI, ElTy); 3823 } 3824 checkAtomicMemAccessSize(ElTy, &RMWI); 3825 Assert(ElTy == RMWI.getOperand(1)->getType(), 3826 "Argument value type does not match pointer operand type!", &RMWI, 3827 ElTy); 3828 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3829 "Invalid binary operation!", &RMWI); 3830 visitInstruction(RMWI); 3831 } 3832 3833 void Verifier::visitFenceInst(FenceInst &FI) { 3834 const AtomicOrdering Ordering = FI.getOrdering(); 3835 Assert(Ordering == AtomicOrdering::Acquire || 3836 Ordering == AtomicOrdering::Release || 3837 Ordering == AtomicOrdering::AcquireRelease || 3838 Ordering == AtomicOrdering::SequentiallyConsistent, 3839 "fence instructions may only have acquire, release, acq_rel, or " 3840 "seq_cst ordering.", 3841 &FI); 3842 visitInstruction(FI); 3843 } 3844 3845 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3846 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3847 EVI.getIndices()) == EVI.getType(), 3848 "Invalid ExtractValueInst operands!", &EVI); 3849 3850 visitInstruction(EVI); 3851 } 3852 3853 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3854 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3855 IVI.getIndices()) == 3856 IVI.getOperand(1)->getType(), 3857 "Invalid InsertValueInst operands!", &IVI); 3858 3859 visitInstruction(IVI); 3860 } 3861 3862 static Value *getParentPad(Value *EHPad) { 3863 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3864 return FPI->getParentPad(); 3865 3866 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3867 } 3868 3869 void Verifier::visitEHPadPredecessors(Instruction &I) { 3870 assert(I.isEHPad()); 3871 3872 BasicBlock *BB = I.getParent(); 3873 Function *F = BB->getParent(); 3874 3875 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3876 3877 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3878 // The landingpad instruction defines its parent as a landing pad block. The 3879 // landing pad block may be branched to only by the unwind edge of an 3880 // invoke. 3881 for (BasicBlock *PredBB : predecessors(BB)) { 3882 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3883 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3884 "Block containing LandingPadInst must be jumped to " 3885 "only by the unwind edge of an invoke.", 3886 LPI); 3887 } 3888 return; 3889 } 3890 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3891 if (!pred_empty(BB)) 3892 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3893 "Block containg CatchPadInst must be jumped to " 3894 "only by its catchswitch.", 3895 CPI); 3896 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3897 "Catchswitch cannot unwind to one of its catchpads", 3898 CPI->getCatchSwitch(), CPI); 3899 return; 3900 } 3901 3902 // Verify that each pred has a legal terminator with a legal to/from EH 3903 // pad relationship. 3904 Instruction *ToPad = &I; 3905 Value *ToPadParent = getParentPad(ToPad); 3906 for (BasicBlock *PredBB : predecessors(BB)) { 3907 Instruction *TI = PredBB->getTerminator(); 3908 Value *FromPad; 3909 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3910 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3911 "EH pad must be jumped to via an unwind edge", ToPad, II); 3912 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3913 FromPad = Bundle->Inputs[0]; 3914 else 3915 FromPad = ConstantTokenNone::get(II->getContext()); 3916 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3917 FromPad = CRI->getOperand(0); 3918 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3919 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3920 FromPad = CSI; 3921 } else { 3922 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3923 } 3924 3925 // The edge may exit from zero or more nested pads. 3926 SmallSet<Value *, 8> Seen; 3927 for (;; FromPad = getParentPad(FromPad)) { 3928 Assert(FromPad != ToPad, 3929 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3930 if (FromPad == ToPadParent) { 3931 // This is a legal unwind edge. 3932 break; 3933 } 3934 Assert(!isa<ConstantTokenNone>(FromPad), 3935 "A single unwind edge may only enter one EH pad", TI); 3936 Assert(Seen.insert(FromPad).second, 3937 "EH pad jumps through a cycle of pads", FromPad); 3938 } 3939 } 3940 } 3941 3942 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3943 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3944 // isn't a cleanup. 3945 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3946 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3947 3948 visitEHPadPredecessors(LPI); 3949 3950 if (!LandingPadResultTy) 3951 LandingPadResultTy = LPI.getType(); 3952 else 3953 Assert(LandingPadResultTy == LPI.getType(), 3954 "The landingpad instruction should have a consistent result type " 3955 "inside a function.", 3956 &LPI); 3957 3958 Function *F = LPI.getParent()->getParent(); 3959 Assert(F->hasPersonalityFn(), 3960 "LandingPadInst needs to be in a function with a personality.", &LPI); 3961 3962 // The landingpad instruction must be the first non-PHI instruction in the 3963 // block. 3964 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3965 "LandingPadInst not the first non-PHI instruction in the block.", 3966 &LPI); 3967 3968 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3969 Constant *Clause = LPI.getClause(i); 3970 if (LPI.isCatch(i)) { 3971 Assert(isa<PointerType>(Clause->getType()), 3972 "Catch operand does not have pointer type!", &LPI); 3973 } else { 3974 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3975 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3976 "Filter operand is not an array of constants!", &LPI); 3977 } 3978 } 3979 3980 visitInstruction(LPI); 3981 } 3982 3983 void Verifier::visitResumeInst(ResumeInst &RI) { 3984 Assert(RI.getFunction()->hasPersonalityFn(), 3985 "ResumeInst needs to be in a function with a personality.", &RI); 3986 3987 if (!LandingPadResultTy) 3988 LandingPadResultTy = RI.getValue()->getType(); 3989 else 3990 Assert(LandingPadResultTy == RI.getValue()->getType(), 3991 "The resume instruction should have a consistent result type " 3992 "inside a function.", 3993 &RI); 3994 3995 visitTerminator(RI); 3996 } 3997 3998 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3999 BasicBlock *BB = CPI.getParent(); 4000 4001 Function *F = BB->getParent(); 4002 Assert(F->hasPersonalityFn(), 4003 "CatchPadInst needs to be in a function with a personality.", &CPI); 4004 4005 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 4006 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 4007 CPI.getParentPad()); 4008 4009 // The catchpad instruction must be the first non-PHI instruction in the 4010 // block. 4011 Assert(BB->getFirstNonPHI() == &CPI, 4012 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 4013 4014 visitEHPadPredecessors(CPI); 4015 visitFuncletPadInst(CPI); 4016 } 4017 4018 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 4019 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 4020 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 4021 CatchReturn.getOperand(0)); 4022 4023 visitTerminator(CatchReturn); 4024 } 4025 4026 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 4027 BasicBlock *BB = CPI.getParent(); 4028 4029 Function *F = BB->getParent(); 4030 Assert(F->hasPersonalityFn(), 4031 "CleanupPadInst needs to be in a function with a personality.", &CPI); 4032 4033 // The cleanuppad instruction must be the first non-PHI instruction in the 4034 // block. 4035 Assert(BB->getFirstNonPHI() == &CPI, 4036 "CleanupPadInst not the first non-PHI instruction in the block.", 4037 &CPI); 4038 4039 auto *ParentPad = CPI.getParentPad(); 4040 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4041 "CleanupPadInst has an invalid parent.", &CPI); 4042 4043 visitEHPadPredecessors(CPI); 4044 visitFuncletPadInst(CPI); 4045 } 4046 4047 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 4048 User *FirstUser = nullptr; 4049 Value *FirstUnwindPad = nullptr; 4050 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 4051 SmallSet<FuncletPadInst *, 8> Seen; 4052 4053 while (!Worklist.empty()) { 4054 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 4055 Assert(Seen.insert(CurrentPad).second, 4056 "FuncletPadInst must not be nested within itself", CurrentPad); 4057 Value *UnresolvedAncestorPad = nullptr; 4058 for (User *U : CurrentPad->users()) { 4059 BasicBlock *UnwindDest; 4060 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 4061 UnwindDest = CRI->getUnwindDest(); 4062 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 4063 // We allow catchswitch unwind to caller to nest 4064 // within an outer pad that unwinds somewhere else, 4065 // because catchswitch doesn't have a nounwind variant. 4066 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 4067 if (CSI->unwindsToCaller()) 4068 continue; 4069 UnwindDest = CSI->getUnwindDest(); 4070 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 4071 UnwindDest = II->getUnwindDest(); 4072 } else if (isa<CallInst>(U)) { 4073 // Calls which don't unwind may be found inside funclet 4074 // pads that unwind somewhere else. We don't *require* 4075 // such calls to be annotated nounwind. 4076 continue; 4077 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 4078 // The unwind dest for a cleanup can only be found by 4079 // recursive search. Add it to the worklist, and we'll 4080 // search for its first use that determines where it unwinds. 4081 Worklist.push_back(CPI); 4082 continue; 4083 } else { 4084 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 4085 continue; 4086 } 4087 4088 Value *UnwindPad; 4089 bool ExitsFPI; 4090 if (UnwindDest) { 4091 UnwindPad = UnwindDest->getFirstNonPHI(); 4092 if (!cast<Instruction>(UnwindPad)->isEHPad()) 4093 continue; 4094 Value *UnwindParent = getParentPad(UnwindPad); 4095 // Ignore unwind edges that don't exit CurrentPad. 4096 if (UnwindParent == CurrentPad) 4097 continue; 4098 // Determine whether the original funclet pad is exited, 4099 // and if we are scanning nested pads determine how many 4100 // of them are exited so we can stop searching their 4101 // children. 4102 Value *ExitedPad = CurrentPad; 4103 ExitsFPI = false; 4104 do { 4105 if (ExitedPad == &FPI) { 4106 ExitsFPI = true; 4107 // Now we can resolve any ancestors of CurrentPad up to 4108 // FPI, but not including FPI since we need to make sure 4109 // to check all direct users of FPI for consistency. 4110 UnresolvedAncestorPad = &FPI; 4111 break; 4112 } 4113 Value *ExitedParent = getParentPad(ExitedPad); 4114 if (ExitedParent == UnwindParent) { 4115 // ExitedPad is the ancestor-most pad which this unwind 4116 // edge exits, so we can resolve up to it, meaning that 4117 // ExitedParent is the first ancestor still unresolved. 4118 UnresolvedAncestorPad = ExitedParent; 4119 break; 4120 } 4121 ExitedPad = ExitedParent; 4122 } while (!isa<ConstantTokenNone>(ExitedPad)); 4123 } else { 4124 // Unwinding to caller exits all pads. 4125 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 4126 ExitsFPI = true; 4127 UnresolvedAncestorPad = &FPI; 4128 } 4129 4130 if (ExitsFPI) { 4131 // This unwind edge exits FPI. Make sure it agrees with other 4132 // such edges. 4133 if (FirstUser) { 4134 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 4135 "pad must have the same unwind " 4136 "dest", 4137 &FPI, U, FirstUser); 4138 } else { 4139 FirstUser = U; 4140 FirstUnwindPad = UnwindPad; 4141 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 4142 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 4143 getParentPad(UnwindPad) == getParentPad(&FPI)) 4144 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 4145 } 4146 } 4147 // Make sure we visit all uses of FPI, but for nested pads stop as 4148 // soon as we know where they unwind to. 4149 if (CurrentPad != &FPI) 4150 break; 4151 } 4152 if (UnresolvedAncestorPad) { 4153 if (CurrentPad == UnresolvedAncestorPad) { 4154 // When CurrentPad is FPI itself, we don't mark it as resolved even if 4155 // we've found an unwind edge that exits it, because we need to verify 4156 // all direct uses of FPI. 4157 assert(CurrentPad == &FPI); 4158 continue; 4159 } 4160 // Pop off the worklist any nested pads that we've found an unwind 4161 // destination for. The pads on the worklist are the uncles, 4162 // great-uncles, etc. of CurrentPad. We've found an unwind destination 4163 // for all ancestors of CurrentPad up to but not including 4164 // UnresolvedAncestorPad. 4165 Value *ResolvedPad = CurrentPad; 4166 while (!Worklist.empty()) { 4167 Value *UnclePad = Worklist.back(); 4168 Value *AncestorPad = getParentPad(UnclePad); 4169 // Walk ResolvedPad up the ancestor list until we either find the 4170 // uncle's parent or the last resolved ancestor. 4171 while (ResolvedPad != AncestorPad) { 4172 Value *ResolvedParent = getParentPad(ResolvedPad); 4173 if (ResolvedParent == UnresolvedAncestorPad) { 4174 break; 4175 } 4176 ResolvedPad = ResolvedParent; 4177 } 4178 // If the resolved ancestor search didn't find the uncle's parent, 4179 // then the uncle is not yet resolved. 4180 if (ResolvedPad != AncestorPad) 4181 break; 4182 // This uncle is resolved, so pop it from the worklist. 4183 Worklist.pop_back(); 4184 } 4185 } 4186 } 4187 4188 if (FirstUnwindPad) { 4189 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 4190 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 4191 Value *SwitchUnwindPad; 4192 if (SwitchUnwindDest) 4193 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 4194 else 4195 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 4196 Assert(SwitchUnwindPad == FirstUnwindPad, 4197 "Unwind edges out of a catch must have the same unwind dest as " 4198 "the parent catchswitch", 4199 &FPI, FirstUser, CatchSwitch); 4200 } 4201 } 4202 4203 visitInstruction(FPI); 4204 } 4205 4206 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 4207 BasicBlock *BB = CatchSwitch.getParent(); 4208 4209 Function *F = BB->getParent(); 4210 Assert(F->hasPersonalityFn(), 4211 "CatchSwitchInst needs to be in a function with a personality.", 4212 &CatchSwitch); 4213 4214 // The catchswitch instruction must be the first non-PHI instruction in the 4215 // block. 4216 Assert(BB->getFirstNonPHI() == &CatchSwitch, 4217 "CatchSwitchInst not the first non-PHI instruction in the block.", 4218 &CatchSwitch); 4219 4220 auto *ParentPad = CatchSwitch.getParentPad(); 4221 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4222 "CatchSwitchInst has an invalid parent.", ParentPad); 4223 4224 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 4225 Instruction *I = UnwindDest->getFirstNonPHI(); 4226 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4227 "CatchSwitchInst must unwind to an EH block which is not a " 4228 "landingpad.", 4229 &CatchSwitch); 4230 4231 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 4232 if (getParentPad(I) == ParentPad) 4233 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 4234 } 4235 4236 Assert(CatchSwitch.getNumHandlers() != 0, 4237 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 4238 4239 for (BasicBlock *Handler : CatchSwitch.handlers()) { 4240 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 4241 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 4242 } 4243 4244 visitEHPadPredecessors(CatchSwitch); 4245 visitTerminator(CatchSwitch); 4246 } 4247 4248 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 4249 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 4250 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 4251 CRI.getOperand(0)); 4252 4253 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 4254 Instruction *I = UnwindDest->getFirstNonPHI(); 4255 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4256 "CleanupReturnInst must unwind to an EH block which is not a " 4257 "landingpad.", 4258 &CRI); 4259 } 4260 4261 visitTerminator(CRI); 4262 } 4263 4264 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 4265 Instruction *Op = cast<Instruction>(I.getOperand(i)); 4266 // If the we have an invalid invoke, don't try to compute the dominance. 4267 // We already reject it in the invoke specific checks and the dominance 4268 // computation doesn't handle multiple edges. 4269 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 4270 if (II->getNormalDest() == II->getUnwindDest()) 4271 return; 4272 } 4273 4274 // Quick check whether the def has already been encountered in the same block. 4275 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 4276 // uses are defined to happen on the incoming edge, not at the instruction. 4277 // 4278 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 4279 // wrapping an SSA value, assert that we've already encountered it. See 4280 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 4281 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 4282 return; 4283 4284 const Use &U = I.getOperandUse(i); 4285 Assert(DT.dominates(Op, U), 4286 "Instruction does not dominate all uses!", Op, &I); 4287 } 4288 4289 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4290 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 4291 "apply only to pointer types", &I); 4292 Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4293 "dereferenceable, dereferenceable_or_null apply only to load" 4294 " and inttoptr instructions, use attributes for calls or invokes", &I); 4295 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 4296 "take one operand!", &I); 4297 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4298 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 4299 "dereferenceable_or_null metadata value must be an i64!", &I); 4300 } 4301 4302 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4303 Assert(MD->getNumOperands() >= 2, 4304 "!prof annotations should have no less than 2 operands", MD); 4305 4306 // Check first operand. 4307 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4308 Assert(isa<MDString>(MD->getOperand(0)), 4309 "expected string with name of the !prof annotation", MD); 4310 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4311 StringRef ProfName = MDS->getString(); 4312 4313 // Check consistency of !prof branch_weights metadata. 4314 if (ProfName.equals("branch_weights")) { 4315 if (isa<InvokeInst>(&I)) { 4316 Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3, 4317 "Wrong number of InvokeInst branch_weights operands", MD); 4318 } else { 4319 unsigned ExpectedNumOperands = 0; 4320 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4321 ExpectedNumOperands = BI->getNumSuccessors(); 4322 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4323 ExpectedNumOperands = SI->getNumSuccessors(); 4324 else if (isa<CallInst>(&I)) 4325 ExpectedNumOperands = 1; 4326 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4327 ExpectedNumOperands = IBI->getNumDestinations(); 4328 else if (isa<SelectInst>(&I)) 4329 ExpectedNumOperands = 2; 4330 else 4331 CheckFailed("!prof branch_weights are not allowed for this instruction", 4332 MD); 4333 4334 Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, 4335 "Wrong number of operands", MD); 4336 } 4337 for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 4338 auto &MDO = MD->getOperand(i); 4339 Assert(MDO, "second operand should not be null", MD); 4340 Assert(mdconst::dyn_extract<ConstantInt>(MDO), 4341 "!prof brunch_weights operand is not a const int"); 4342 } 4343 } 4344 } 4345 4346 void Verifier::visitAnnotationMetadata(MDNode *Annotation) { 4347 Assert(isa<MDTuple>(Annotation), "annotation must be a tuple"); 4348 Assert(Annotation->getNumOperands() >= 1, 4349 "annotation must have at least one operand"); 4350 for (const MDOperand &Op : Annotation->operands()) 4351 Assert(isa<MDString>(Op.get()), "operands must be strings"); 4352 } 4353 4354 /// verifyInstruction - Verify that an instruction is well formed. 4355 /// 4356 void Verifier::visitInstruction(Instruction &I) { 4357 BasicBlock *BB = I.getParent(); 4358 Assert(BB, "Instruction not embedded in basic block!", &I); 4359 4360 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4361 for (User *U : I.users()) { 4362 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 4363 "Only PHI nodes may reference their own value!", &I); 4364 } 4365 } 4366 4367 // Check that void typed values don't have names 4368 Assert(!I.getType()->isVoidTy() || !I.hasName(), 4369 "Instruction has a name, but provides a void value!", &I); 4370 4371 // Check that the return value of the instruction is either void or a legal 4372 // value type. 4373 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4374 "Instruction returns a non-scalar type!", &I); 4375 4376 // Check that the instruction doesn't produce metadata. Calls are already 4377 // checked against the callee type. 4378 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4379 "Invalid use of metadata!", &I); 4380 4381 // Check that all uses of the instruction, if they are instructions 4382 // themselves, actually have parent basic blocks. If the use is not an 4383 // instruction, it is an error! 4384 for (Use &U : I.uses()) { 4385 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4386 Assert(Used->getParent() != nullptr, 4387 "Instruction referencing" 4388 " instruction not embedded in a basic block!", 4389 &I, Used); 4390 else { 4391 CheckFailed("Use of instruction is not an instruction!", U); 4392 return; 4393 } 4394 } 4395 4396 // Get a pointer to the call base of the instruction if it is some form of 4397 // call. 4398 const CallBase *CBI = dyn_cast<CallBase>(&I); 4399 4400 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4401 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4402 4403 // Check to make sure that only first-class-values are operands to 4404 // instructions. 4405 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4406 Assert(false, "Instruction operands must be first-class values!", &I); 4407 } 4408 4409 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4410 // Check to make sure that the "address of" an intrinsic function is never 4411 // taken. 4412 Assert(!F->isIntrinsic() || 4413 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), 4414 "Cannot take the address of an intrinsic!", &I); 4415 Assert( 4416 !F->isIntrinsic() || isa<CallInst>(I) || 4417 F->getIntrinsicID() == Intrinsic::donothing || 4418 F->getIntrinsicID() == Intrinsic::coro_resume || 4419 F->getIntrinsicID() == Intrinsic::coro_destroy || 4420 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4421 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4422 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4423 F->getIntrinsicID() == Intrinsic::wasm_rethrow, 4424 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4425 "statepoint, coro_resume or coro_destroy", 4426 &I); 4427 Assert(F->getParent() == &M, "Referencing function in another module!", 4428 &I, &M, F, F->getParent()); 4429 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4430 Assert(OpBB->getParent() == BB->getParent(), 4431 "Referring to a basic block in another function!", &I); 4432 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4433 Assert(OpArg->getParent() == BB->getParent(), 4434 "Referring to an argument in another function!", &I); 4435 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4436 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4437 &M, GV, GV->getParent()); 4438 } else if (isa<Instruction>(I.getOperand(i))) { 4439 verifyDominatesUse(I, i); 4440 } else if (isa<InlineAsm>(I.getOperand(i))) { 4441 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4442 "Cannot take the address of an inline asm!", &I); 4443 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4444 if (CE->getType()->isPtrOrPtrVectorTy() || 4445 !DL.getNonIntegralAddressSpaces().empty()) { 4446 // If we have a ConstantExpr pointer, we need to see if it came from an 4447 // illegal bitcast. If the datalayout string specifies non-integral 4448 // address spaces then we also need to check for illegal ptrtoint and 4449 // inttoptr expressions. 4450 visitConstantExprsRecursively(CE); 4451 } 4452 } 4453 } 4454 4455 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4456 Assert(I.getType()->isFPOrFPVectorTy(), 4457 "fpmath requires a floating point result!", &I); 4458 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4459 if (ConstantFP *CFP0 = 4460 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4461 const APFloat &Accuracy = CFP0->getValueAPF(); 4462 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4463 "fpmath accuracy must have float type", &I); 4464 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4465 "fpmath accuracy not a positive number!", &I); 4466 } else { 4467 Assert(false, "invalid fpmath accuracy!", &I); 4468 } 4469 } 4470 4471 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4472 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4473 "Ranges are only for loads, calls and invokes!", &I); 4474 visitRangeMetadata(I, Range, I.getType()); 4475 } 4476 4477 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4478 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4479 &I); 4480 Assert(isa<LoadInst>(I), 4481 "nonnull applies only to load instructions, use attributes" 4482 " for calls or invokes", 4483 &I); 4484 } 4485 4486 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4487 visitDereferenceableMetadata(I, MD); 4488 4489 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4490 visitDereferenceableMetadata(I, MD); 4491 4492 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4493 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4494 4495 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4496 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4497 &I); 4498 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4499 "use attributes for calls or invokes", &I); 4500 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4501 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4502 Assert(CI && CI->getType()->isIntegerTy(64), 4503 "align metadata value must be an i64!", &I); 4504 uint64_t Align = CI->getZExtValue(); 4505 Assert(isPowerOf2_64(Align), 4506 "align metadata value must be a power of 2!", &I); 4507 Assert(Align <= Value::MaximumAlignment, 4508 "alignment is larger that implementation defined limit", &I); 4509 } 4510 4511 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 4512 visitProfMetadata(I, MD); 4513 4514 if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation)) 4515 visitAnnotationMetadata(Annotation); 4516 4517 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4518 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4519 visitMDNode(*N, AreDebugLocsAllowed::Yes); 4520 } 4521 4522 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 4523 verifyFragmentExpression(*DII); 4524 verifyNotEntryValue(*DII); 4525 } 4526 4527 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 4528 I.getAllMetadata(MDs); 4529 for (auto Attachment : MDs) { 4530 unsigned Kind = Attachment.first; 4531 auto AllowLocs = 4532 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) 4533 ? AreDebugLocsAllowed::Yes 4534 : AreDebugLocsAllowed::No; 4535 visitMDNode(*Attachment.second, AllowLocs); 4536 } 4537 4538 InstsInThisBlock.insert(&I); 4539 } 4540 4541 /// Allow intrinsics to be verified in different ways. 4542 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4543 Function *IF = Call.getCalledFunction(); 4544 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4545 IF); 4546 4547 // Verify that the intrinsic prototype lines up with what the .td files 4548 // describe. 4549 FunctionType *IFTy = IF->getFunctionType(); 4550 bool IsVarArg = IFTy->isVarArg(); 4551 4552 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4553 getIntrinsicInfoTableEntries(ID, Table); 4554 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4555 4556 // Walk the descriptors to extract overloaded types. 4557 SmallVector<Type *, 4> ArgTys; 4558 Intrinsic::MatchIntrinsicTypesResult Res = 4559 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4560 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4561 "Intrinsic has incorrect return type!", IF); 4562 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4563 "Intrinsic has incorrect argument type!", IF); 4564 4565 // Verify if the intrinsic call matches the vararg property. 4566 if (IsVarArg) 4567 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4568 "Intrinsic was not defined with variable arguments!", IF); 4569 else 4570 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4571 "Callsite was not defined with variable arguments!", IF); 4572 4573 // All descriptors should be absorbed by now. 4574 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4575 4576 // Now that we have the intrinsic ID and the actual argument types (and we 4577 // know they are legal for the intrinsic!) get the intrinsic name through the 4578 // usual means. This allows us to verify the mangling of argument types into 4579 // the name. 4580 const std::string ExpectedName = 4581 Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy); 4582 Assert(ExpectedName == IF->getName(), 4583 "Intrinsic name not mangled correctly for type arguments! " 4584 "Should be: " + 4585 ExpectedName, 4586 IF); 4587 4588 // If the intrinsic takes MDNode arguments, verify that they are either global 4589 // or are local to *this* function. 4590 for (Value *V : Call.args()) 4591 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4592 visitMetadataAsValue(*MD, Call.getCaller()); 4593 4594 switch (ID) { 4595 default: 4596 break; 4597 case Intrinsic::assume: { 4598 for (auto &Elem : Call.bundle_op_infos()) { 4599 Assert(Elem.Tag->getKey() == "ignore" || 4600 Attribute::isExistingAttribute(Elem.Tag->getKey()), 4601 "tags must be valid attribute names"); 4602 Attribute::AttrKind Kind = 4603 Attribute::getAttrKindFromName(Elem.Tag->getKey()); 4604 unsigned ArgCount = Elem.End - Elem.Begin; 4605 if (Kind == Attribute::Alignment) { 4606 Assert(ArgCount <= 3 && ArgCount >= 2, 4607 "alignment assumptions should have 2 or 3 arguments"); 4608 Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(), 4609 "first argument should be a pointer"); 4610 Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(), 4611 "second argument should be an integer"); 4612 if (ArgCount == 3) 4613 Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(), 4614 "third argument should be an integer if present"); 4615 return; 4616 } 4617 Assert(ArgCount <= 2, "to many arguments"); 4618 if (Kind == Attribute::None) 4619 break; 4620 if (Attribute::doesAttrKindHaveArgument(Kind)) { 4621 Assert(ArgCount == 2, "this attribute should have 2 arguments"); 4622 Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), 4623 "the second argument should be a constant integral value"); 4624 } else if (isFuncOnlyAttr(Kind)) { 4625 Assert((ArgCount) == 0, "this attribute has no argument"); 4626 } else if (!isFuncOrArgAttr(Kind)) { 4627 Assert((ArgCount) == 1, "this attribute should have one argument"); 4628 } 4629 } 4630 break; 4631 } 4632 case Intrinsic::coro_id: { 4633 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4634 if (isa<ConstantPointerNull>(InfoArg)) 4635 break; 4636 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4637 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4638 "info argument of llvm.coro.id must refer to an initialized " 4639 "constant"); 4640 Constant *Init = GV->getInitializer(); 4641 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4642 "info argument of llvm.coro.id must refer to either a struct or " 4643 "an array"); 4644 break; 4645 } 4646 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ 4647 case Intrinsic::INTRINSIC: 4648 #include "llvm/IR/ConstrainedOps.def" 4649 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4650 break; 4651 case Intrinsic::dbg_declare: // llvm.dbg.declare 4652 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4653 "invalid llvm.dbg.declare intrinsic call 1", Call); 4654 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4655 break; 4656 case Intrinsic::dbg_addr: // llvm.dbg.addr 4657 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4658 break; 4659 case Intrinsic::dbg_value: // llvm.dbg.value 4660 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4661 break; 4662 case Intrinsic::dbg_label: // llvm.dbg.label 4663 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4664 break; 4665 case Intrinsic::memcpy: 4666 case Intrinsic::memcpy_inline: 4667 case Intrinsic::memmove: 4668 case Intrinsic::memset: { 4669 const auto *MI = cast<MemIntrinsic>(&Call); 4670 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4671 return Alignment == 0 || isPowerOf2_32(Alignment); 4672 }; 4673 Assert(IsValidAlignment(MI->getDestAlignment()), 4674 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4675 Call); 4676 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4677 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4678 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4679 Call); 4680 } 4681 4682 break; 4683 } 4684 case Intrinsic::memcpy_element_unordered_atomic: 4685 case Intrinsic::memmove_element_unordered_atomic: 4686 case Intrinsic::memset_element_unordered_atomic: { 4687 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4688 4689 ConstantInt *ElementSizeCI = 4690 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4691 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4692 Assert(ElementSizeVal.isPowerOf2(), 4693 "element size of the element-wise atomic memory intrinsic " 4694 "must be a power of 2", 4695 Call); 4696 4697 auto IsValidAlignment = [&](uint64_t Alignment) { 4698 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4699 }; 4700 uint64_t DstAlignment = AMI->getDestAlignment(); 4701 Assert(IsValidAlignment(DstAlignment), 4702 "incorrect alignment of the destination argument", Call); 4703 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4704 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4705 Assert(IsValidAlignment(SrcAlignment), 4706 "incorrect alignment of the source argument", Call); 4707 } 4708 break; 4709 } 4710 case Intrinsic::call_preallocated_setup: { 4711 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 4712 Assert(NumArgs != nullptr, 4713 "llvm.call.preallocated.setup argument must be a constant"); 4714 bool FoundCall = false; 4715 for (User *U : Call.users()) { 4716 auto *UseCall = dyn_cast<CallBase>(U); 4717 Assert(UseCall != nullptr, 4718 "Uses of llvm.call.preallocated.setup must be calls"); 4719 const Function *Fn = UseCall->getCalledFunction(); 4720 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { 4721 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); 4722 Assert(AllocArgIndex != nullptr, 4723 "llvm.call.preallocated.alloc arg index must be a constant"); 4724 auto AllocArgIndexInt = AllocArgIndex->getValue(); 4725 Assert(AllocArgIndexInt.sge(0) && 4726 AllocArgIndexInt.slt(NumArgs->getValue()), 4727 "llvm.call.preallocated.alloc arg index must be between 0 and " 4728 "corresponding " 4729 "llvm.call.preallocated.setup's argument count"); 4730 } else if (Fn && Fn->getIntrinsicID() == 4731 Intrinsic::call_preallocated_teardown) { 4732 // nothing to do 4733 } else { 4734 Assert(!FoundCall, "Can have at most one call corresponding to a " 4735 "llvm.call.preallocated.setup"); 4736 FoundCall = true; 4737 size_t NumPreallocatedArgs = 0; 4738 for (unsigned i = 0; i < UseCall->getNumArgOperands(); i++) { 4739 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { 4740 ++NumPreallocatedArgs; 4741 } 4742 } 4743 Assert(NumPreallocatedArgs != 0, 4744 "cannot use preallocated intrinsics on a call without " 4745 "preallocated arguments"); 4746 Assert(NumArgs->equalsInt(NumPreallocatedArgs), 4747 "llvm.call.preallocated.setup arg size must be equal to number " 4748 "of preallocated arguments " 4749 "at call site", 4750 Call, *UseCall); 4751 // getOperandBundle() cannot be called if more than one of the operand 4752 // bundle exists. There is already a check elsewhere for this, so skip 4753 // here if we see more than one. 4754 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > 4755 1) { 4756 return; 4757 } 4758 auto PreallocatedBundle = 4759 UseCall->getOperandBundle(LLVMContext::OB_preallocated); 4760 Assert(PreallocatedBundle, 4761 "Use of llvm.call.preallocated.setup outside intrinsics " 4762 "must be in \"preallocated\" operand bundle"); 4763 Assert(PreallocatedBundle->Inputs.front().get() == &Call, 4764 "preallocated bundle must have token from corresponding " 4765 "llvm.call.preallocated.setup"); 4766 } 4767 } 4768 break; 4769 } 4770 case Intrinsic::call_preallocated_arg: { 4771 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4772 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4773 Intrinsic::call_preallocated_setup, 4774 "llvm.call.preallocated.arg token argument must be a " 4775 "llvm.call.preallocated.setup"); 4776 Assert(Call.hasFnAttr(Attribute::Preallocated), 4777 "llvm.call.preallocated.arg must be called with a \"preallocated\" " 4778 "call site attribute"); 4779 break; 4780 } 4781 case Intrinsic::call_preallocated_teardown: { 4782 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4783 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4784 Intrinsic::call_preallocated_setup, 4785 "llvm.call.preallocated.teardown token argument must be a " 4786 "llvm.call.preallocated.setup"); 4787 break; 4788 } 4789 case Intrinsic::gcroot: 4790 case Intrinsic::gcwrite: 4791 case Intrinsic::gcread: 4792 if (ID == Intrinsic::gcroot) { 4793 AllocaInst *AI = 4794 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4795 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4796 Assert(isa<Constant>(Call.getArgOperand(1)), 4797 "llvm.gcroot parameter #2 must be a constant.", Call); 4798 if (!AI->getAllocatedType()->isPointerTy()) { 4799 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4800 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4801 "or argument #2 must be a non-null constant.", 4802 Call); 4803 } 4804 } 4805 4806 Assert(Call.getParent()->getParent()->hasGC(), 4807 "Enclosing function does not use GC.", Call); 4808 break; 4809 case Intrinsic::init_trampoline: 4810 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4811 "llvm.init_trampoline parameter #2 must resolve to a function.", 4812 Call); 4813 break; 4814 case Intrinsic::prefetch: 4815 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4816 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4817 "invalid arguments to llvm.prefetch", Call); 4818 break; 4819 case Intrinsic::stackprotector: 4820 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4821 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4822 break; 4823 case Intrinsic::localescape: { 4824 BasicBlock *BB = Call.getParent(); 4825 Assert(BB == &BB->getParent()->front(), 4826 "llvm.localescape used outside of entry block", Call); 4827 Assert(!SawFrameEscape, 4828 "multiple calls to llvm.localescape in one function", Call); 4829 for (Value *Arg : Call.args()) { 4830 if (isa<ConstantPointerNull>(Arg)) 4831 continue; // Null values are allowed as placeholders. 4832 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4833 Assert(AI && AI->isStaticAlloca(), 4834 "llvm.localescape only accepts static allocas", Call); 4835 } 4836 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); 4837 SawFrameEscape = true; 4838 break; 4839 } 4840 case Intrinsic::localrecover: { 4841 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4842 Function *Fn = dyn_cast<Function>(FnArg); 4843 Assert(Fn && !Fn->isDeclaration(), 4844 "llvm.localrecover first " 4845 "argument must be function defined in this module", 4846 Call); 4847 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 4848 auto &Entry = FrameEscapeInfo[Fn]; 4849 Entry.second = unsigned( 4850 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4851 break; 4852 } 4853 4854 case Intrinsic::experimental_gc_statepoint: 4855 if (auto *CI = dyn_cast<CallInst>(&Call)) 4856 Assert(!CI->isInlineAsm(), 4857 "gc.statepoint support for inline assembly unimplemented", CI); 4858 Assert(Call.getParent()->getParent()->hasGC(), 4859 "Enclosing function does not use GC.", Call); 4860 4861 verifyStatepoint(Call); 4862 break; 4863 case Intrinsic::experimental_gc_result: { 4864 Assert(Call.getParent()->getParent()->hasGC(), 4865 "Enclosing function does not use GC.", Call); 4866 // Are we tied to a statepoint properly? 4867 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4868 const Function *StatepointFn = 4869 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 4870 Assert(StatepointFn && StatepointFn->isDeclaration() && 4871 StatepointFn->getIntrinsicID() == 4872 Intrinsic::experimental_gc_statepoint, 4873 "gc.result operand #1 must be from a statepoint", Call, 4874 Call.getArgOperand(0)); 4875 4876 // Assert that result type matches wrapped callee. 4877 const Value *Target = StatepointCall->getArgOperand(2); 4878 auto *PT = cast<PointerType>(Target->getType()); 4879 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4880 Assert(Call.getType() == TargetFuncType->getReturnType(), 4881 "gc.result result type does not match wrapped callee", Call); 4882 break; 4883 } 4884 case Intrinsic::experimental_gc_relocate: { 4885 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); 4886 4887 Assert(isa<PointerType>(Call.getType()->getScalarType()), 4888 "gc.relocate must return a pointer or a vector of pointers", Call); 4889 4890 // Check that this relocate is correctly tied to the statepoint 4891 4892 // This is case for relocate on the unwinding path of an invoke statepoint 4893 if (LandingPadInst *LandingPad = 4894 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 4895 4896 const BasicBlock *InvokeBB = 4897 LandingPad->getParent()->getUniquePredecessor(); 4898 4899 // Landingpad relocates should have only one predecessor with invoke 4900 // statepoint terminator 4901 Assert(InvokeBB, "safepoints should have unique landingpads", 4902 LandingPad->getParent()); 4903 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4904 InvokeBB); 4905 Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()), 4906 "gc relocate should be linked to a statepoint", InvokeBB); 4907 } else { 4908 // In all other cases relocate should be tied to the statepoint directly. 4909 // This covers relocates on a normal return path of invoke statepoint and 4910 // relocates of a call statepoint. 4911 auto Token = Call.getArgOperand(0); 4912 Assert(isa<GCStatepointInst>(Token), 4913 "gc relocate is incorrectly tied to the statepoint", Call, Token); 4914 } 4915 4916 // Verify rest of the relocate arguments. 4917 const CallBase &StatepointCall = 4918 *cast<GCRelocateInst>(Call).getStatepoint(); 4919 4920 // Both the base and derived must be piped through the safepoint. 4921 Value *Base = Call.getArgOperand(1); 4922 Assert(isa<ConstantInt>(Base), 4923 "gc.relocate operand #2 must be integer offset", Call); 4924 4925 Value *Derived = Call.getArgOperand(2); 4926 Assert(isa<ConstantInt>(Derived), 4927 "gc.relocate operand #3 must be integer offset", Call); 4928 4929 const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4930 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4931 4932 // Check the bounds 4933 if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) { 4934 Assert(BaseIndex < Opt->Inputs.size(), 4935 "gc.relocate: statepoint base index out of bounds", Call); 4936 Assert(DerivedIndex < Opt->Inputs.size(), 4937 "gc.relocate: statepoint derived index out of bounds", Call); 4938 } 4939 4940 // Relocated value must be either a pointer type or vector-of-pointer type, 4941 // but gc_relocate does not need to return the same pointer type as the 4942 // relocated pointer. It can be casted to the correct type later if it's 4943 // desired. However, they must have the same address space and 'vectorness' 4944 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 4945 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 4946 "gc.relocate: relocated value must be a gc pointer", Call); 4947 4948 auto ResultType = Call.getType(); 4949 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4950 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4951 "gc.relocate: vector relocates to vector and pointer to pointer", 4952 Call); 4953 Assert( 4954 ResultType->getPointerAddressSpace() == 4955 DerivedType->getPointerAddressSpace(), 4956 "gc.relocate: relocating a pointer shouldn't change its address space", 4957 Call); 4958 break; 4959 } 4960 case Intrinsic::eh_exceptioncode: 4961 case Intrinsic::eh_exceptionpointer: { 4962 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 4963 "eh.exceptionpointer argument must be a catchpad", Call); 4964 break; 4965 } 4966 case Intrinsic::get_active_lane_mask: { 4967 Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a " 4968 "vector", Call); 4969 auto *ElemTy = Call.getType()->getScalarType(); 4970 Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not " 4971 "i1", Call); 4972 break; 4973 } 4974 case Intrinsic::masked_load: { 4975 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 4976 Call); 4977 4978 Value *Ptr = Call.getArgOperand(0); 4979 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 4980 Value *Mask = Call.getArgOperand(2); 4981 Value *PassThru = Call.getArgOperand(3); 4982 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 4983 Call); 4984 Assert(Alignment->getValue().isPowerOf2(), 4985 "masked_load: alignment must be a power of 2", Call); 4986 4987 // DataTy is the overloaded type 4988 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4989 Assert(DataTy == Call.getType(), 4990 "masked_load: return must match pointer type", Call); 4991 Assert(PassThru->getType() == DataTy, 4992 "masked_load: pass through and data type must match", Call); 4993 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 4994 cast<VectorType>(DataTy)->getElementCount(), 4995 "masked_load: vector mask must be same length as data", Call); 4996 break; 4997 } 4998 case Intrinsic::masked_store: { 4999 Value *Val = Call.getArgOperand(0); 5000 Value *Ptr = Call.getArgOperand(1); 5001 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 5002 Value *Mask = Call.getArgOperand(3); 5003 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 5004 Call); 5005 Assert(Alignment->getValue().isPowerOf2(), 5006 "masked_store: alignment must be a power of 2", Call); 5007 5008 // DataTy is the overloaded type 5009 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 5010 Assert(DataTy == Val->getType(), 5011 "masked_store: storee must match pointer type", Call); 5012 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 5013 cast<VectorType>(DataTy)->getElementCount(), 5014 "masked_store: vector mask must be same length as data", Call); 5015 break; 5016 } 5017 5018 case Intrinsic::masked_gather: { 5019 const APInt &Alignment = 5020 cast<ConstantInt>(Call.getArgOperand(1))->getValue(); 5021 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 5022 "masked_gather: alignment must be 0 or a power of 2", Call); 5023 break; 5024 } 5025 case Intrinsic::masked_scatter: { 5026 const APInt &Alignment = 5027 cast<ConstantInt>(Call.getArgOperand(2))->getValue(); 5028 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 5029 "masked_scatter: alignment must be 0 or a power of 2", Call); 5030 break; 5031 } 5032 5033 case Intrinsic::experimental_guard: { 5034 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 5035 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5036 "experimental_guard must have exactly one " 5037 "\"deopt\" operand bundle"); 5038 break; 5039 } 5040 5041 case Intrinsic::experimental_deoptimize: { 5042 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 5043 Call); 5044 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5045 "experimental_deoptimize must have exactly one " 5046 "\"deopt\" operand bundle"); 5047 Assert(Call.getType() == Call.getFunction()->getReturnType(), 5048 "experimental_deoptimize return type must match caller return type"); 5049 5050 if (isa<CallInst>(Call)) { 5051 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 5052 Assert(RI, 5053 "calls to experimental_deoptimize must be followed by a return"); 5054 5055 if (!Call.getType()->isVoidTy() && RI) 5056 Assert(RI->getReturnValue() == &Call, 5057 "calls to experimental_deoptimize must be followed by a return " 5058 "of the value computed by experimental_deoptimize"); 5059 } 5060 5061 break; 5062 } 5063 case Intrinsic::vector_reduce_and: 5064 case Intrinsic::vector_reduce_or: 5065 case Intrinsic::vector_reduce_xor: 5066 case Intrinsic::vector_reduce_add: 5067 case Intrinsic::vector_reduce_mul: 5068 case Intrinsic::vector_reduce_smax: 5069 case Intrinsic::vector_reduce_smin: 5070 case Intrinsic::vector_reduce_umax: 5071 case Intrinsic::vector_reduce_umin: { 5072 Type *ArgTy = Call.getArgOperand(0)->getType(); 5073 Assert(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(), 5074 "Intrinsic has incorrect argument type!"); 5075 break; 5076 } 5077 case Intrinsic::vector_reduce_fmax: 5078 case Intrinsic::vector_reduce_fmin: { 5079 Type *ArgTy = Call.getArgOperand(0)->getType(); 5080 Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5081 "Intrinsic has incorrect argument type!"); 5082 break; 5083 } 5084 case Intrinsic::vector_reduce_fadd: 5085 case Intrinsic::vector_reduce_fmul: { 5086 // Unlike the other reductions, the first argument is a start value. The 5087 // second argument is the vector to be reduced. 5088 Type *ArgTy = Call.getArgOperand(1)->getType(); 5089 Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5090 "Intrinsic has incorrect argument type!"); 5091 break; 5092 } 5093 case Intrinsic::smul_fix: 5094 case Intrinsic::smul_fix_sat: 5095 case Intrinsic::umul_fix: 5096 case Intrinsic::umul_fix_sat: 5097 case Intrinsic::sdiv_fix: 5098 case Intrinsic::sdiv_fix_sat: 5099 case Intrinsic::udiv_fix: 5100 case Intrinsic::udiv_fix_sat: { 5101 Value *Op1 = Call.getArgOperand(0); 5102 Value *Op2 = Call.getArgOperand(1); 5103 Assert(Op1->getType()->isIntOrIntVectorTy(), 5104 "first operand of [us][mul|div]_fix[_sat] must be an int type or " 5105 "vector of ints"); 5106 Assert(Op2->getType()->isIntOrIntVectorTy(), 5107 "second operand of [us][mul|div]_fix[_sat] must be an int type or " 5108 "vector of ints"); 5109 5110 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 5111 Assert(Op3->getType()->getBitWidth() <= 32, 5112 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); 5113 5114 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 5115 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { 5116 Assert( 5117 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 5118 "the scale of s[mul|div]_fix[_sat] must be less than the width of " 5119 "the operands"); 5120 } else { 5121 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 5122 "the scale of u[mul|div]_fix[_sat] must be less than or equal " 5123 "to the width of the operands"); 5124 } 5125 break; 5126 } 5127 case Intrinsic::lround: 5128 case Intrinsic::llround: 5129 case Intrinsic::lrint: 5130 case Intrinsic::llrint: { 5131 Type *ValTy = Call.getArgOperand(0)->getType(); 5132 Type *ResultTy = Call.getType(); 5133 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5134 "Intrinsic does not support vectors", &Call); 5135 break; 5136 } 5137 case Intrinsic::bswap: { 5138 Type *Ty = Call.getType(); 5139 unsigned Size = Ty->getScalarSizeInBits(); 5140 Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call); 5141 break; 5142 } 5143 case Intrinsic::invariant_start: { 5144 ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 5145 Assert(InvariantSize && 5146 (!InvariantSize->isNegative() || InvariantSize->isMinusOne()), 5147 "invariant_start parameter must be -1, 0 or a positive number", 5148 &Call); 5149 break; 5150 } 5151 case Intrinsic::matrix_multiply: 5152 case Intrinsic::matrix_transpose: 5153 case Intrinsic::matrix_column_major_load: 5154 case Intrinsic::matrix_column_major_store: { 5155 Function *IF = Call.getCalledFunction(); 5156 ConstantInt *Stride = nullptr; 5157 ConstantInt *NumRows; 5158 ConstantInt *NumColumns; 5159 VectorType *ResultTy; 5160 Type *Op0ElemTy = nullptr; 5161 Type *Op1ElemTy = nullptr; 5162 switch (ID) { 5163 case Intrinsic::matrix_multiply: 5164 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 5165 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5166 ResultTy = cast<VectorType>(Call.getType()); 5167 Op0ElemTy = 5168 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5169 Op1ElemTy = 5170 cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType(); 5171 break; 5172 case Intrinsic::matrix_transpose: 5173 NumRows = cast<ConstantInt>(Call.getArgOperand(1)); 5174 NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); 5175 ResultTy = cast<VectorType>(Call.getType()); 5176 Op0ElemTy = 5177 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5178 break; 5179 case Intrinsic::matrix_column_major_load: 5180 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1)); 5181 NumRows = cast<ConstantInt>(Call.getArgOperand(3)); 5182 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5183 ResultTy = cast<VectorType>(Call.getType()); 5184 Op0ElemTy = 5185 cast<PointerType>(Call.getArgOperand(0)->getType())->getElementType(); 5186 break; 5187 case Intrinsic::matrix_column_major_store: 5188 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2)); 5189 NumRows = cast<ConstantInt>(Call.getArgOperand(4)); 5190 NumColumns = cast<ConstantInt>(Call.getArgOperand(5)); 5191 ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 5192 Op0ElemTy = 5193 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5194 Op1ElemTy = 5195 cast<PointerType>(Call.getArgOperand(1)->getType())->getElementType(); 5196 break; 5197 default: 5198 llvm_unreachable("unexpected intrinsic"); 5199 } 5200 5201 Assert(ResultTy->getElementType()->isIntegerTy() || 5202 ResultTy->getElementType()->isFloatingPointTy(), 5203 "Result type must be an integer or floating-point type!", IF); 5204 5205 Assert(ResultTy->getElementType() == Op0ElemTy, 5206 "Vector element type mismatch of the result and first operand " 5207 "vector!", IF); 5208 5209 if (Op1ElemTy) 5210 Assert(ResultTy->getElementType() == Op1ElemTy, 5211 "Vector element type mismatch of the result and second operand " 5212 "vector!", IF); 5213 5214 Assert(cast<FixedVectorType>(ResultTy)->getNumElements() == 5215 NumRows->getZExtValue() * NumColumns->getZExtValue(), 5216 "Result of a matrix operation does not fit in the returned vector!"); 5217 5218 if (Stride) 5219 Assert(Stride->getZExtValue() >= NumRows->getZExtValue(), 5220 "Stride must be greater or equal than the number of rows!", IF); 5221 5222 break; 5223 } 5224 case Intrinsic::experimental_stepvector: { 5225 VectorType *VecTy = dyn_cast<VectorType>(Call.getType()); 5226 Assert(VecTy && VecTy->getScalarType()->isIntegerTy() && 5227 VecTy->getScalarSizeInBits() >= 8, 5228 "experimental_stepvector only supported for vectors of integers " 5229 "with a bitwidth of at least 8.", 5230 &Call); 5231 break; 5232 } 5233 case Intrinsic::experimental_vector_insert: { 5234 VectorType *VecTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 5235 VectorType *SubVecTy = cast<VectorType>(Call.getArgOperand(1)->getType()); 5236 5237 Assert(VecTy->getElementType() == SubVecTy->getElementType(), 5238 "experimental_vector_insert parameters must have the same element " 5239 "type.", 5240 &Call); 5241 break; 5242 } 5243 case Intrinsic::experimental_vector_extract: { 5244 VectorType *ResultTy = cast<VectorType>(Call.getType()); 5245 VectorType *VecTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 5246 5247 Assert(ResultTy->getElementType() == VecTy->getElementType(), 5248 "experimental_vector_extract result must have the same element " 5249 "type as the input vector.", 5250 &Call); 5251 break; 5252 } 5253 case Intrinsic::experimental_noalias_scope_decl: { 5254 NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call)); 5255 break; 5256 } 5257 }; 5258 } 5259 5260 /// Carefully grab the subprogram from a local scope. 5261 /// 5262 /// This carefully grabs the subprogram from a local scope, avoiding the 5263 /// built-in assertions that would typically fire. 5264 static DISubprogram *getSubprogram(Metadata *LocalScope) { 5265 if (!LocalScope) 5266 return nullptr; 5267 5268 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 5269 return SP; 5270 5271 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 5272 return getSubprogram(LB->getRawScope()); 5273 5274 // Just return null; broken scope chains are checked elsewhere. 5275 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 5276 return nullptr; 5277 } 5278 5279 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 5280 unsigned NumOperands; 5281 bool HasRoundingMD; 5282 switch (FPI.getIntrinsicID()) { 5283 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 5284 case Intrinsic::INTRINSIC: \ 5285 NumOperands = NARG; \ 5286 HasRoundingMD = ROUND_MODE; \ 5287 break; 5288 #include "llvm/IR/ConstrainedOps.def" 5289 default: 5290 llvm_unreachable("Invalid constrained FP intrinsic!"); 5291 } 5292 NumOperands += (1 + HasRoundingMD); 5293 // Compare intrinsics carry an extra predicate metadata operand. 5294 if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 5295 NumOperands += 1; 5296 Assert((FPI.getNumArgOperands() == NumOperands), 5297 "invalid arguments for constrained FP intrinsic", &FPI); 5298 5299 switch (FPI.getIntrinsicID()) { 5300 case Intrinsic::experimental_constrained_lrint: 5301 case Intrinsic::experimental_constrained_llrint: { 5302 Type *ValTy = FPI.getArgOperand(0)->getType(); 5303 Type *ResultTy = FPI.getType(); 5304 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5305 "Intrinsic does not support vectors", &FPI); 5306 } 5307 break; 5308 5309 case Intrinsic::experimental_constrained_lround: 5310 case Intrinsic::experimental_constrained_llround: { 5311 Type *ValTy = FPI.getArgOperand(0)->getType(); 5312 Type *ResultTy = FPI.getType(); 5313 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5314 "Intrinsic does not support vectors", &FPI); 5315 break; 5316 } 5317 5318 case Intrinsic::experimental_constrained_fcmp: 5319 case Intrinsic::experimental_constrained_fcmps: { 5320 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 5321 Assert(CmpInst::isFPPredicate(Pred), 5322 "invalid predicate for constrained FP comparison intrinsic", &FPI); 5323 break; 5324 } 5325 5326 case Intrinsic::experimental_constrained_fptosi: 5327 case Intrinsic::experimental_constrained_fptoui: { 5328 Value *Operand = FPI.getArgOperand(0); 5329 uint64_t NumSrcElem = 0; 5330 Assert(Operand->getType()->isFPOrFPVectorTy(), 5331 "Intrinsic first argument must be floating point", &FPI); 5332 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5333 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5334 } 5335 5336 Operand = &FPI; 5337 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5338 "Intrinsic first argument and result disagree on vector use", &FPI); 5339 Assert(Operand->getType()->isIntOrIntVectorTy(), 5340 "Intrinsic result must be an integer", &FPI); 5341 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5342 Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5343 "Intrinsic first argument and result vector lengths must be equal", 5344 &FPI); 5345 } 5346 } 5347 break; 5348 5349 case Intrinsic::experimental_constrained_sitofp: 5350 case Intrinsic::experimental_constrained_uitofp: { 5351 Value *Operand = FPI.getArgOperand(0); 5352 uint64_t NumSrcElem = 0; 5353 Assert(Operand->getType()->isIntOrIntVectorTy(), 5354 "Intrinsic first argument must be integer", &FPI); 5355 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5356 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5357 } 5358 5359 Operand = &FPI; 5360 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5361 "Intrinsic first argument and result disagree on vector use", &FPI); 5362 Assert(Operand->getType()->isFPOrFPVectorTy(), 5363 "Intrinsic result must be a floating point", &FPI); 5364 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5365 Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5366 "Intrinsic first argument and result vector lengths must be equal", 5367 &FPI); 5368 } 5369 } break; 5370 5371 case Intrinsic::experimental_constrained_fptrunc: 5372 case Intrinsic::experimental_constrained_fpext: { 5373 Value *Operand = FPI.getArgOperand(0); 5374 Type *OperandTy = Operand->getType(); 5375 Value *Result = &FPI; 5376 Type *ResultTy = Result->getType(); 5377 Assert(OperandTy->isFPOrFPVectorTy(), 5378 "Intrinsic first argument must be FP or FP vector", &FPI); 5379 Assert(ResultTy->isFPOrFPVectorTy(), 5380 "Intrinsic result must be FP or FP vector", &FPI); 5381 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 5382 "Intrinsic first argument and result disagree on vector use", &FPI); 5383 if (OperandTy->isVectorTy()) { 5384 Assert(cast<FixedVectorType>(OperandTy)->getNumElements() == 5385 cast<FixedVectorType>(ResultTy)->getNumElements(), 5386 "Intrinsic first argument and result vector lengths must be equal", 5387 &FPI); 5388 } 5389 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 5390 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 5391 "Intrinsic first argument's type must be larger than result type", 5392 &FPI); 5393 } else { 5394 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 5395 "Intrinsic first argument's type must be smaller than result type", 5396 &FPI); 5397 } 5398 } 5399 break; 5400 5401 default: 5402 break; 5403 } 5404 5405 // If a non-metadata argument is passed in a metadata slot then the 5406 // error will be caught earlier when the incorrect argument doesn't 5407 // match the specification in the intrinsic call table. Thus, no 5408 // argument type check is needed here. 5409 5410 Assert(FPI.getExceptionBehavior().hasValue(), 5411 "invalid exception behavior argument", &FPI); 5412 if (HasRoundingMD) { 5413 Assert(FPI.getRoundingMode().hasValue(), 5414 "invalid rounding mode argument", &FPI); 5415 } 5416 } 5417 5418 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 5419 auto *MD = DII.getRawLocation(); 5420 AssertDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) || 5421 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 5422 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 5423 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 5424 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 5425 DII.getRawVariable()); 5426 AssertDI(isa<DIExpression>(DII.getRawExpression()), 5427 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 5428 DII.getRawExpression()); 5429 5430 // Ignore broken !dbg attachments; they're checked elsewhere. 5431 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 5432 if (!isa<DILocation>(N)) 5433 return; 5434 5435 BasicBlock *BB = DII.getParent(); 5436 Function *F = BB ? BB->getParent() : nullptr; 5437 5438 // The scopes for variables and !dbg attachments must agree. 5439 DILocalVariable *Var = DII.getVariable(); 5440 DILocation *Loc = DII.getDebugLoc(); 5441 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5442 &DII, BB, F); 5443 5444 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 5445 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5446 if (!VarSP || !LocSP) 5447 return; // Broken scope chains are checked elsewhere. 5448 5449 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5450 " variable and !dbg attachment", 5451 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 5452 Loc->getScope()->getSubprogram()); 5453 5454 // This check is redundant with one in visitLocalVariable(). 5455 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 5456 Var->getRawType()); 5457 verifyFnArgs(DII); 5458 } 5459 5460 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 5461 AssertDI(isa<DILabel>(DLI.getRawLabel()), 5462 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 5463 DLI.getRawLabel()); 5464 5465 // Ignore broken !dbg attachments; they're checked elsewhere. 5466 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 5467 if (!isa<DILocation>(N)) 5468 return; 5469 5470 BasicBlock *BB = DLI.getParent(); 5471 Function *F = BB ? BB->getParent() : nullptr; 5472 5473 // The scopes for variables and !dbg attachments must agree. 5474 DILabel *Label = DLI.getLabel(); 5475 DILocation *Loc = DLI.getDebugLoc(); 5476 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5477 &DLI, BB, F); 5478 5479 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 5480 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5481 if (!LabelSP || !LocSP) 5482 return; 5483 5484 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5485 " label and !dbg attachment", 5486 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 5487 Loc->getScope()->getSubprogram()); 5488 } 5489 5490 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 5491 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 5492 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5493 5494 // We don't know whether this intrinsic verified correctly. 5495 if (!V || !E || !E->isValid()) 5496 return; 5497 5498 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 5499 auto Fragment = E->getFragmentInfo(); 5500 if (!Fragment) 5501 return; 5502 5503 // The frontend helps out GDB by emitting the members of local anonymous 5504 // unions as artificial local variables with shared storage. When SROA splits 5505 // the storage for artificial local variables that are smaller than the entire 5506 // union, the overhang piece will be outside of the allotted space for the 5507 // variable and this check fails. 5508 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 5509 if (V->isArtificial()) 5510 return; 5511 5512 verifyFragmentExpression(*V, *Fragment, &I); 5513 } 5514 5515 template <typename ValueOrMetadata> 5516 void Verifier::verifyFragmentExpression(const DIVariable &V, 5517 DIExpression::FragmentInfo Fragment, 5518 ValueOrMetadata *Desc) { 5519 // If there's no size, the type is broken, but that should be checked 5520 // elsewhere. 5521 auto VarSize = V.getSizeInBits(); 5522 if (!VarSize) 5523 return; 5524 5525 unsigned FragSize = Fragment.SizeInBits; 5526 unsigned FragOffset = Fragment.OffsetInBits; 5527 AssertDI(FragSize + FragOffset <= *VarSize, 5528 "fragment is larger than or outside of variable", Desc, &V); 5529 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 5530 } 5531 5532 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 5533 // This function does not take the scope of noninlined function arguments into 5534 // account. Don't run it if current function is nodebug, because it may 5535 // contain inlined debug intrinsics. 5536 if (!HasDebugInfo) 5537 return; 5538 5539 // For performance reasons only check non-inlined ones. 5540 if (I.getDebugLoc()->getInlinedAt()) 5541 return; 5542 5543 DILocalVariable *Var = I.getVariable(); 5544 AssertDI(Var, "dbg intrinsic without variable"); 5545 5546 unsigned ArgNo = Var->getArg(); 5547 if (!ArgNo) 5548 return; 5549 5550 // Verify there are no duplicate function argument debug info entries. 5551 // These will cause hard-to-debug assertions in the DWARF backend. 5552 if (DebugFnArgs.size() < ArgNo) 5553 DebugFnArgs.resize(ArgNo, nullptr); 5554 5555 auto *Prev = DebugFnArgs[ArgNo - 1]; 5556 DebugFnArgs[ArgNo - 1] = Var; 5557 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 5558 Prev, Var); 5559 } 5560 5561 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 5562 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5563 5564 // We don't know whether this intrinsic verified correctly. 5565 if (!E || !E->isValid()) 5566 return; 5567 5568 AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); 5569 } 5570 5571 void Verifier::verifyCompileUnits() { 5572 // When more than one Module is imported into the same context, such as during 5573 // an LTO build before linking the modules, ODR type uniquing may cause types 5574 // to point to a different CU. This check does not make sense in this case. 5575 if (M.getContext().isODRUniquingDebugTypes()) 5576 return; 5577 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 5578 SmallPtrSet<const Metadata *, 2> Listed; 5579 if (CUs) 5580 Listed.insert(CUs->op_begin(), CUs->op_end()); 5581 for (auto *CU : CUVisited) 5582 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 5583 CUVisited.clear(); 5584 } 5585 5586 void Verifier::verifyDeoptimizeCallingConvs() { 5587 if (DeoptimizeDeclarations.empty()) 5588 return; 5589 5590 const Function *First = DeoptimizeDeclarations[0]; 5591 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 5592 Assert(First->getCallingConv() == F->getCallingConv(), 5593 "All llvm.experimental.deoptimize declarations must have the same " 5594 "calling convention", 5595 First, F); 5596 } 5597 } 5598 5599 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 5600 bool HasSource = F.getSource().hasValue(); 5601 if (!HasSourceDebugInfo.count(&U)) 5602 HasSourceDebugInfo[&U] = HasSource; 5603 AssertDI(HasSource == HasSourceDebugInfo[&U], 5604 "inconsistent use of embedded source"); 5605 } 5606 5607 void Verifier::verifyNoAliasScopeDecl() { 5608 if (NoAliasScopeDecls.empty()) 5609 return; 5610 5611 // only a single scope must be declared at a time. 5612 for (auto *II : NoAliasScopeDecls) { 5613 assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl && 5614 "Not a llvm.experimental.noalias.scope.decl ?"); 5615 const auto *ScopeListMV = dyn_cast<MetadataAsValue>( 5616 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 5617 Assert(ScopeListMV != nullptr, 5618 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue " 5619 "argument", 5620 II); 5621 5622 const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata()); 5623 Assert(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", 5624 II); 5625 Assert(ScopeListMD->getNumOperands() == 1, 5626 "!id.scope.list must point to a list with a single scope", II); 5627 } 5628 5629 // Only check the domination rule when requested. Once all passes have been 5630 // adapted this option can go away. 5631 if (!VerifyNoAliasScopeDomination) 5632 return; 5633 5634 // Now sort the intrinsics based on the scope MDNode so that declarations of 5635 // the same scopes are next to each other. 5636 auto GetScope = [](IntrinsicInst *II) { 5637 const auto *ScopeListMV = cast<MetadataAsValue>( 5638 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 5639 return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0); 5640 }; 5641 5642 // We are sorting on MDNode pointers here. For valid input IR this is ok. 5643 // TODO: Sort on Metadata ID to avoid non-deterministic error messages. 5644 auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) { 5645 return GetScope(Lhs) < GetScope(Rhs); 5646 }; 5647 5648 llvm::sort(NoAliasScopeDecls, Compare); 5649 5650 // Go over the intrinsics and check that for the same scope, they are not 5651 // dominating each other. 5652 auto ItCurrent = NoAliasScopeDecls.begin(); 5653 while (ItCurrent != NoAliasScopeDecls.end()) { 5654 auto CurScope = GetScope(*ItCurrent); 5655 auto ItNext = ItCurrent; 5656 do { 5657 ++ItNext; 5658 } while (ItNext != NoAliasScopeDecls.end() && 5659 GetScope(*ItNext) == CurScope); 5660 5661 // [ItCurrent, ItNext) represents the declarations for the same scope. 5662 // Ensure they are not dominating each other.. but only if it is not too 5663 // expensive. 5664 if (ItNext - ItCurrent < 32) 5665 for (auto *I : llvm::make_range(ItCurrent, ItNext)) 5666 for (auto *J : llvm::make_range(ItCurrent, ItNext)) 5667 if (I != J) 5668 Assert(!DT.dominates(I, J), 5669 "llvm.experimental.noalias.scope.decl dominates another one " 5670 "with the same scope", 5671 I); 5672 ItCurrent = ItNext; 5673 } 5674 } 5675 5676 //===----------------------------------------------------------------------===// 5677 // Implement the public interfaces to this file... 5678 //===----------------------------------------------------------------------===// 5679 5680 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 5681 Function &F = const_cast<Function &>(f); 5682 5683 // Don't use a raw_null_ostream. Printing IR is expensive. 5684 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 5685 5686 // Note that this function's return value is inverted from what you would 5687 // expect of a function called "verify". 5688 return !V.verify(F); 5689 } 5690 5691 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 5692 bool *BrokenDebugInfo) { 5693 // Don't use a raw_null_ostream. Printing IR is expensive. 5694 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 5695 5696 bool Broken = false; 5697 for (const Function &F : M) 5698 Broken |= !V.verify(F); 5699 5700 Broken |= !V.verify(); 5701 if (BrokenDebugInfo) 5702 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 5703 // Note that this function's return value is inverted from what you would 5704 // expect of a function called "verify". 5705 return Broken; 5706 } 5707 5708 namespace { 5709 5710 struct VerifierLegacyPass : public FunctionPass { 5711 static char ID; 5712 5713 std::unique_ptr<Verifier> V; 5714 bool FatalErrors = true; 5715 5716 VerifierLegacyPass() : FunctionPass(ID) { 5717 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5718 } 5719 explicit VerifierLegacyPass(bool FatalErrors) 5720 : FunctionPass(ID), 5721 FatalErrors(FatalErrors) { 5722 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5723 } 5724 5725 bool doInitialization(Module &M) override { 5726 V = std::make_unique<Verifier>( 5727 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 5728 return false; 5729 } 5730 5731 bool runOnFunction(Function &F) override { 5732 if (!V->verify(F) && FatalErrors) { 5733 errs() << "in function " << F.getName() << '\n'; 5734 report_fatal_error("Broken function found, compilation aborted!"); 5735 } 5736 return false; 5737 } 5738 5739 bool doFinalization(Module &M) override { 5740 bool HasErrors = false; 5741 for (Function &F : M) 5742 if (F.isDeclaration()) 5743 HasErrors |= !V->verify(F); 5744 5745 HasErrors |= !V->verify(); 5746 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 5747 report_fatal_error("Broken module found, compilation aborted!"); 5748 return false; 5749 } 5750 5751 void getAnalysisUsage(AnalysisUsage &AU) const override { 5752 AU.setPreservesAll(); 5753 } 5754 }; 5755 5756 } // end anonymous namespace 5757 5758 /// Helper to issue failure from the TBAA verification 5759 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 5760 if (Diagnostic) 5761 return Diagnostic->CheckFailed(Args...); 5762 } 5763 5764 #define AssertTBAA(C, ...) \ 5765 do { \ 5766 if (!(C)) { \ 5767 CheckFailed(__VA_ARGS__); \ 5768 return false; \ 5769 } \ 5770 } while (false) 5771 5772 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 5773 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 5774 /// struct-type node describing an aggregate data structure (like a struct). 5775 TBAAVerifier::TBAABaseNodeSummary 5776 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 5777 bool IsNewFormat) { 5778 if (BaseNode->getNumOperands() < 2) { 5779 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 5780 return {true, ~0u}; 5781 } 5782 5783 auto Itr = TBAABaseNodes.find(BaseNode); 5784 if (Itr != TBAABaseNodes.end()) 5785 return Itr->second; 5786 5787 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 5788 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 5789 (void)InsertResult; 5790 assert(InsertResult.second && "We just checked!"); 5791 return Result; 5792 } 5793 5794 TBAAVerifier::TBAABaseNodeSummary 5795 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 5796 bool IsNewFormat) { 5797 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 5798 5799 if (BaseNode->getNumOperands() == 2) { 5800 // Scalar nodes can only be accessed at offset 0. 5801 return isValidScalarTBAANode(BaseNode) 5802 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 5803 : InvalidNode; 5804 } 5805 5806 if (IsNewFormat) { 5807 if (BaseNode->getNumOperands() % 3 != 0) { 5808 CheckFailed("Access tag nodes must have the number of operands that is a " 5809 "multiple of 3!", BaseNode); 5810 return InvalidNode; 5811 } 5812 } else { 5813 if (BaseNode->getNumOperands() % 2 != 1) { 5814 CheckFailed("Struct tag nodes must have an odd number of operands!", 5815 BaseNode); 5816 return InvalidNode; 5817 } 5818 } 5819 5820 // Check the type size field. 5821 if (IsNewFormat) { 5822 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5823 BaseNode->getOperand(1)); 5824 if (!TypeSizeNode) { 5825 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 5826 return InvalidNode; 5827 } 5828 } 5829 5830 // Check the type name field. In the new format it can be anything. 5831 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 5832 CheckFailed("Struct tag nodes have a string as their first operand", 5833 BaseNode); 5834 return InvalidNode; 5835 } 5836 5837 bool Failed = false; 5838 5839 Optional<APInt> PrevOffset; 5840 unsigned BitWidth = ~0u; 5841 5842 // We've already checked that BaseNode is not a degenerate root node with one 5843 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 5844 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5845 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5846 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5847 Idx += NumOpsPerField) { 5848 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 5849 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 5850 if (!isa<MDNode>(FieldTy)) { 5851 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 5852 Failed = true; 5853 continue; 5854 } 5855 5856 auto *OffsetEntryCI = 5857 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 5858 if (!OffsetEntryCI) { 5859 CheckFailed("Offset entries must be constants!", &I, BaseNode); 5860 Failed = true; 5861 continue; 5862 } 5863 5864 if (BitWidth == ~0u) 5865 BitWidth = OffsetEntryCI->getBitWidth(); 5866 5867 if (OffsetEntryCI->getBitWidth() != BitWidth) { 5868 CheckFailed( 5869 "Bitwidth between the offsets and struct type entries must match", &I, 5870 BaseNode); 5871 Failed = true; 5872 continue; 5873 } 5874 5875 // NB! As far as I can tell, we generate a non-strictly increasing offset 5876 // sequence only from structs that have zero size bit fields. When 5877 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 5878 // pick the field lexically the latest in struct type metadata node. This 5879 // mirrors the actual behavior of the alias analysis implementation. 5880 bool IsAscending = 5881 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 5882 5883 if (!IsAscending) { 5884 CheckFailed("Offsets must be increasing!", &I, BaseNode); 5885 Failed = true; 5886 } 5887 5888 PrevOffset = OffsetEntryCI->getValue(); 5889 5890 if (IsNewFormat) { 5891 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5892 BaseNode->getOperand(Idx + 2)); 5893 if (!MemberSizeNode) { 5894 CheckFailed("Member size entries must be constants!", &I, BaseNode); 5895 Failed = true; 5896 continue; 5897 } 5898 } 5899 } 5900 5901 return Failed ? InvalidNode 5902 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 5903 } 5904 5905 static bool IsRootTBAANode(const MDNode *MD) { 5906 return MD->getNumOperands() < 2; 5907 } 5908 5909 static bool IsScalarTBAANodeImpl(const MDNode *MD, 5910 SmallPtrSetImpl<const MDNode *> &Visited) { 5911 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 5912 return false; 5913 5914 if (!isa<MDString>(MD->getOperand(0))) 5915 return false; 5916 5917 if (MD->getNumOperands() == 3) { 5918 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 5919 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 5920 return false; 5921 } 5922 5923 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5924 return Parent && Visited.insert(Parent).second && 5925 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 5926 } 5927 5928 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 5929 auto ResultIt = TBAAScalarNodes.find(MD); 5930 if (ResultIt != TBAAScalarNodes.end()) 5931 return ResultIt->second; 5932 5933 SmallPtrSet<const MDNode *, 4> Visited; 5934 bool Result = IsScalarTBAANodeImpl(MD, Visited); 5935 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 5936 (void)InsertResult; 5937 assert(InsertResult.second && "Just checked!"); 5938 5939 return Result; 5940 } 5941 5942 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 5943 /// Offset in place to be the offset within the field node returned. 5944 /// 5945 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 5946 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 5947 const MDNode *BaseNode, 5948 APInt &Offset, 5949 bool IsNewFormat) { 5950 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 5951 5952 // Scalar nodes have only one possible "field" -- their parent in the access 5953 // hierarchy. Offset must be zero at this point, but our caller is supposed 5954 // to Assert that. 5955 if (BaseNode->getNumOperands() == 2) 5956 return cast<MDNode>(BaseNode->getOperand(1)); 5957 5958 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5959 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5960 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5961 Idx += NumOpsPerField) { 5962 auto *OffsetEntryCI = 5963 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 5964 if (OffsetEntryCI->getValue().ugt(Offset)) { 5965 if (Idx == FirstFieldOpNo) { 5966 CheckFailed("Could not find TBAA parent in struct type node", &I, 5967 BaseNode, &Offset); 5968 return nullptr; 5969 } 5970 5971 unsigned PrevIdx = Idx - NumOpsPerField; 5972 auto *PrevOffsetEntryCI = 5973 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 5974 Offset -= PrevOffsetEntryCI->getValue(); 5975 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 5976 } 5977 } 5978 5979 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 5980 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 5981 BaseNode->getOperand(LastIdx + 1)); 5982 Offset -= LastOffsetEntryCI->getValue(); 5983 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 5984 } 5985 5986 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 5987 if (!Type || Type->getNumOperands() < 3) 5988 return false; 5989 5990 // In the new format type nodes shall have a reference to the parent type as 5991 // its first operand. 5992 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 5993 if (!Parent) 5994 return false; 5995 5996 return true; 5997 } 5998 5999 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 6000 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 6001 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 6002 isa<AtomicCmpXchgInst>(I), 6003 "This instruction shall not have a TBAA access tag!", &I); 6004 6005 bool IsStructPathTBAA = 6006 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 6007 6008 AssertTBAA( 6009 IsStructPathTBAA, 6010 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 6011 6012 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 6013 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 6014 6015 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 6016 6017 if (IsNewFormat) { 6018 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 6019 "Access tag metadata must have either 4 or 5 operands", &I, MD); 6020 } else { 6021 AssertTBAA(MD->getNumOperands() < 5, 6022 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 6023 } 6024 6025 // Check the access size field. 6026 if (IsNewFormat) { 6027 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6028 MD->getOperand(3)); 6029 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 6030 } 6031 6032 // Check the immutability flag. 6033 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 6034 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 6035 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 6036 MD->getOperand(ImmutabilityFlagOpNo)); 6037 AssertTBAA(IsImmutableCI, 6038 "Immutability tag on struct tag metadata must be a constant", 6039 &I, MD); 6040 AssertTBAA( 6041 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 6042 "Immutability part of the struct tag metadata must be either 0 or 1", 6043 &I, MD); 6044 } 6045 6046 AssertTBAA(BaseNode && AccessType, 6047 "Malformed struct tag metadata: base and access-type " 6048 "should be non-null and point to Metadata nodes", 6049 &I, MD, BaseNode, AccessType); 6050 6051 if (!IsNewFormat) { 6052 AssertTBAA(isValidScalarTBAANode(AccessType), 6053 "Access type node must be a valid scalar type", &I, MD, 6054 AccessType); 6055 } 6056 6057 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 6058 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 6059 6060 APInt Offset = OffsetCI->getValue(); 6061 bool SeenAccessTypeInPath = false; 6062 6063 SmallPtrSet<MDNode *, 4> StructPath; 6064 6065 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 6066 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 6067 IsNewFormat)) { 6068 if (!StructPath.insert(BaseNode).second) { 6069 CheckFailed("Cycle detected in struct path", &I, MD); 6070 return false; 6071 } 6072 6073 bool Invalid; 6074 unsigned BaseNodeBitWidth; 6075 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 6076 IsNewFormat); 6077 6078 // If the base node is invalid in itself, then we've already printed all the 6079 // errors we wanted to print. 6080 if (Invalid) 6081 return false; 6082 6083 SeenAccessTypeInPath |= BaseNode == AccessType; 6084 6085 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 6086 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 6087 &I, MD, &Offset); 6088 6089 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 6090 (BaseNodeBitWidth == 0 && Offset == 0) || 6091 (IsNewFormat && BaseNodeBitWidth == ~0u), 6092 "Access bit-width not the same as description bit-width", &I, MD, 6093 BaseNodeBitWidth, Offset.getBitWidth()); 6094 6095 if (IsNewFormat && SeenAccessTypeInPath) 6096 break; 6097 } 6098 6099 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 6100 &I, MD); 6101 return true; 6102 } 6103 6104 char VerifierLegacyPass::ID = 0; 6105 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 6106 6107 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 6108 return new VerifierLegacyPass(FatalErrors); 6109 } 6110 6111 AnalysisKey VerifierAnalysis::Key; 6112 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 6113 ModuleAnalysisManager &) { 6114 Result Res; 6115 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 6116 return Res; 6117 } 6118 6119 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 6120 FunctionAnalysisManager &) { 6121 return { llvm::verifyFunction(F, &dbgs()), false }; 6122 } 6123 6124 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 6125 auto Res = AM.getResult<VerifierAnalysis>(M); 6126 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 6127 report_fatal_error("Broken module found, compilation aborted!"); 6128 6129 return PreservedAnalyses::all(); 6130 } 6131 6132 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 6133 auto res = AM.getResult<VerifierAnalysis>(F); 6134 if (res.IRBroken && FatalErrors) 6135 report_fatal_error("Broken function found, compilation aborted!"); 6136 6137 return PreservedAnalyses::all(); 6138 } 6139