1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // sanity checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/ADT/ilist.h" 62 #include "llvm/BinaryFormat/Dwarf.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstVisitor.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/LLVMContext.h" 90 #include "llvm/IR/Metadata.h" 91 #include "llvm/IR/Module.h" 92 #include "llvm/IR/ModuleSlotTracker.h" 93 #include "llvm/IR/PassManager.h" 94 #include "llvm/IR/Statepoint.h" 95 #include "llvm/IR/Type.h" 96 #include "llvm/IR/Use.h" 97 #include "llvm/IR/User.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/Pass.h" 100 #include "llvm/Support/AtomicOrdering.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MathExtras.h" 106 #include "llvm/Support/raw_ostream.h" 107 #include <algorithm> 108 #include <cassert> 109 #include <cstdint> 110 #include <memory> 111 #include <string> 112 #include <utility> 113 114 using namespace llvm; 115 116 namespace llvm { 117 118 struct VerifierSupport { 119 raw_ostream *OS; 120 const Module &M; 121 ModuleSlotTracker MST; 122 const DataLayout &DL; 123 LLVMContext &Context; 124 125 /// Track the brokenness of the module while recursively visiting. 126 bool Broken = false; 127 /// Broken debug info can be "recovered" from by stripping the debug info. 128 bool BrokenDebugInfo = false; 129 /// Whether to treat broken debug info as an error. 130 bool TreatBrokenDebugInfoAsError = true; 131 132 explicit VerifierSupport(raw_ostream *OS, const Module &M) 133 : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {} 134 135 private: 136 void Write(const Module *M) { 137 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 138 } 139 140 void Write(const Value *V) { 141 if (V) 142 Write(*V); 143 } 144 145 void Write(const Value &V) { 146 if (isa<Instruction>(V)) { 147 V.print(*OS, MST); 148 *OS << '\n'; 149 } else { 150 V.printAsOperand(*OS, true, MST); 151 *OS << '\n'; 152 } 153 } 154 155 void Write(const Metadata *MD) { 156 if (!MD) 157 return; 158 MD->print(*OS, MST, &M); 159 *OS << '\n'; 160 } 161 162 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 163 Write(MD.get()); 164 } 165 166 void Write(const NamedMDNode *NMD) { 167 if (!NMD) 168 return; 169 NMD->print(*OS, MST); 170 *OS << '\n'; 171 } 172 173 void Write(Type *T) { 174 if (!T) 175 return; 176 *OS << ' ' << *T; 177 } 178 179 void Write(const Comdat *C) { 180 if (!C) 181 return; 182 *OS << *C; 183 } 184 185 void Write(const APInt *AI) { 186 if (!AI) 187 return; 188 *OS << *AI << '\n'; 189 } 190 191 void Write(const unsigned i) { *OS << i << '\n'; } 192 193 template <typename T> void Write(ArrayRef<T> Vs) { 194 for (const T &V : Vs) 195 Write(V); 196 } 197 198 template <typename T1, typename... Ts> 199 void WriteTs(const T1 &V1, const Ts &... Vs) { 200 Write(V1); 201 WriteTs(Vs...); 202 } 203 204 template <typename... Ts> void WriteTs() {} 205 206 public: 207 /// A check failed, so printout out the condition and the message. 208 /// 209 /// This provides a nice place to put a breakpoint if you want to see why 210 /// something is not correct. 211 void CheckFailed(const Twine &Message) { 212 if (OS) 213 *OS << Message << '\n'; 214 Broken = true; 215 } 216 217 /// A check failed (with values to print). 218 /// 219 /// This calls the Message-only version so that the above is easier to set a 220 /// breakpoint on. 221 template <typename T1, typename... Ts> 222 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 223 CheckFailed(Message); 224 if (OS) 225 WriteTs(V1, Vs...); 226 } 227 228 /// A debug info check failed. 229 void DebugInfoCheckFailed(const Twine &Message) { 230 if (OS) 231 *OS << Message << '\n'; 232 Broken |= TreatBrokenDebugInfoAsError; 233 BrokenDebugInfo = true; 234 } 235 236 /// A debug info check failed (with values to print). 237 template <typename T1, typename... Ts> 238 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 239 const Ts &... Vs) { 240 DebugInfoCheckFailed(Message); 241 if (OS) 242 WriteTs(V1, Vs...); 243 } 244 }; 245 246 } // namespace llvm 247 248 namespace { 249 250 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 251 friend class InstVisitor<Verifier>; 252 253 DominatorTree DT; 254 255 /// When verifying a basic block, keep track of all of the 256 /// instructions we have seen so far. 257 /// 258 /// This allows us to do efficient dominance checks for the case when an 259 /// instruction has an operand that is an instruction in the same block. 260 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 261 262 /// Keep track of the metadata nodes that have been checked already. 263 SmallPtrSet<const Metadata *, 32> MDNodes; 264 265 /// Keep track which DISubprogram is attached to which function. 266 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 267 268 /// Track all DICompileUnits visited. 269 SmallPtrSet<const Metadata *, 2> CUVisited; 270 271 /// The result type for a landingpad. 272 Type *LandingPadResultTy; 273 274 /// Whether we've seen a call to @llvm.localescape in this function 275 /// already. 276 bool SawFrameEscape; 277 278 /// Whether the current function has a DISubprogram attached to it. 279 bool HasDebugInfo = false; 280 281 /// Whether source was present on the first DIFile encountered in each CU. 282 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 283 284 /// Stores the count of how many objects were passed to llvm.localescape for a 285 /// given function and the largest index passed to llvm.localrecover. 286 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 287 288 // Maps catchswitches and cleanuppads that unwind to siblings to the 289 // terminators that indicate the unwind, used to detect cycles therein. 290 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 291 292 /// Cache of constants visited in search of ConstantExprs. 293 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 294 295 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 296 SmallVector<const Function *, 4> DeoptimizeDeclarations; 297 298 // Verify that this GlobalValue is only used in this module. 299 // This map is used to avoid visiting uses twice. We can arrive at a user 300 // twice, if they have multiple operands. In particular for very large 301 // constant expressions, we can arrive at a particular user many times. 302 SmallPtrSet<const Value *, 32> GlobalValueVisited; 303 304 // Keeps track of duplicate function argument debug info. 305 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 306 307 TBAAVerifier TBAAVerifyHelper; 308 309 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 310 311 public: 312 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 313 const Module &M) 314 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 315 SawFrameEscape(false), TBAAVerifyHelper(this) { 316 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 317 } 318 319 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 320 321 bool verify(const Function &F) { 322 assert(F.getParent() == &M && 323 "An instance of this class only works with a specific module!"); 324 325 // First ensure the function is well-enough formed to compute dominance 326 // information, and directly compute a dominance tree. We don't rely on the 327 // pass manager to provide this as it isolates us from a potentially 328 // out-of-date dominator tree and makes it significantly more complex to run 329 // this code outside of a pass manager. 330 // FIXME: It's really gross that we have to cast away constness here. 331 if (!F.empty()) 332 DT.recalculate(const_cast<Function &>(F)); 333 334 for (const BasicBlock &BB : F) { 335 if (!BB.empty() && BB.back().isTerminator()) 336 continue; 337 338 if (OS) { 339 *OS << "Basic Block in function '" << F.getName() 340 << "' does not have terminator!\n"; 341 BB.printAsOperand(*OS, true, MST); 342 *OS << "\n"; 343 } 344 return false; 345 } 346 347 Broken = false; 348 // FIXME: We strip const here because the inst visitor strips const. 349 visit(const_cast<Function &>(F)); 350 verifySiblingFuncletUnwinds(); 351 InstsInThisBlock.clear(); 352 DebugFnArgs.clear(); 353 LandingPadResultTy = nullptr; 354 SawFrameEscape = false; 355 SiblingFuncletInfo.clear(); 356 357 return !Broken; 358 } 359 360 /// Verify the module that this instance of \c Verifier was initialized with. 361 bool verify() { 362 Broken = false; 363 364 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 365 for (const Function &F : M) 366 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 367 DeoptimizeDeclarations.push_back(&F); 368 369 // Now that we've visited every function, verify that we never asked to 370 // recover a frame index that wasn't escaped. 371 verifyFrameRecoverIndices(); 372 for (const GlobalVariable &GV : M.globals()) 373 visitGlobalVariable(GV); 374 375 for (const GlobalAlias &GA : M.aliases()) 376 visitGlobalAlias(GA); 377 378 for (const NamedMDNode &NMD : M.named_metadata()) 379 visitNamedMDNode(NMD); 380 381 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 382 visitComdat(SMEC.getValue()); 383 384 visitModuleFlags(M); 385 visitModuleIdents(M); 386 visitModuleCommandLines(M); 387 388 verifyCompileUnits(); 389 390 verifyDeoptimizeCallingConvs(); 391 DISubprogramAttachments.clear(); 392 return !Broken; 393 } 394 395 private: 396 // Verification methods... 397 void visitGlobalValue(const GlobalValue &GV); 398 void visitGlobalVariable(const GlobalVariable &GV); 399 void visitGlobalAlias(const GlobalAlias &GA); 400 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 401 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 402 const GlobalAlias &A, const Constant &C); 403 void visitNamedMDNode(const NamedMDNode &NMD); 404 void visitMDNode(const MDNode &MD); 405 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 406 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 407 void visitComdat(const Comdat &C); 408 void visitModuleIdents(const Module &M); 409 void visitModuleCommandLines(const Module &M); 410 void visitModuleFlags(const Module &M); 411 void visitModuleFlag(const MDNode *Op, 412 DenseMap<const MDString *, const MDNode *> &SeenIDs, 413 SmallVectorImpl<const MDNode *> &Requirements); 414 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 415 void visitFunction(const Function &F); 416 void visitBasicBlock(BasicBlock &BB); 417 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 418 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 419 420 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 421 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 422 #include "llvm/IR/Metadata.def" 423 void visitDIScope(const DIScope &N); 424 void visitDIVariable(const DIVariable &N); 425 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 426 void visitDITemplateParameter(const DITemplateParameter &N); 427 428 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 429 430 // InstVisitor overrides... 431 using InstVisitor<Verifier>::visit; 432 void visit(Instruction &I); 433 434 void visitTruncInst(TruncInst &I); 435 void visitZExtInst(ZExtInst &I); 436 void visitSExtInst(SExtInst &I); 437 void visitFPTruncInst(FPTruncInst &I); 438 void visitFPExtInst(FPExtInst &I); 439 void visitFPToUIInst(FPToUIInst &I); 440 void visitFPToSIInst(FPToSIInst &I); 441 void visitUIToFPInst(UIToFPInst &I); 442 void visitSIToFPInst(SIToFPInst &I); 443 void visitIntToPtrInst(IntToPtrInst &I); 444 void visitPtrToIntInst(PtrToIntInst &I); 445 void visitBitCastInst(BitCastInst &I); 446 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 447 void visitPHINode(PHINode &PN); 448 void visitCallBase(CallBase &Call); 449 void visitUnaryOperator(UnaryOperator &U); 450 void visitBinaryOperator(BinaryOperator &B); 451 void visitICmpInst(ICmpInst &IC); 452 void visitFCmpInst(FCmpInst &FC); 453 void visitExtractElementInst(ExtractElementInst &EI); 454 void visitInsertElementInst(InsertElementInst &EI); 455 void visitShuffleVectorInst(ShuffleVectorInst &EI); 456 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 457 void visitCallInst(CallInst &CI); 458 void visitInvokeInst(InvokeInst &II); 459 void visitGetElementPtrInst(GetElementPtrInst &GEP); 460 void visitLoadInst(LoadInst &LI); 461 void visitStoreInst(StoreInst &SI); 462 void verifyDominatesUse(Instruction &I, unsigned i); 463 void visitInstruction(Instruction &I); 464 void visitTerminator(Instruction &I); 465 void visitBranchInst(BranchInst &BI); 466 void visitReturnInst(ReturnInst &RI); 467 void visitSwitchInst(SwitchInst &SI); 468 void visitIndirectBrInst(IndirectBrInst &BI); 469 void visitCallBrInst(CallBrInst &CBI); 470 void visitSelectInst(SelectInst &SI); 471 void visitUserOp1(Instruction &I); 472 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 473 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 474 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 475 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 476 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 477 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 478 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 479 void visitFenceInst(FenceInst &FI); 480 void visitAllocaInst(AllocaInst &AI); 481 void visitExtractValueInst(ExtractValueInst &EVI); 482 void visitInsertValueInst(InsertValueInst &IVI); 483 void visitEHPadPredecessors(Instruction &I); 484 void visitLandingPadInst(LandingPadInst &LPI); 485 void visitResumeInst(ResumeInst &RI); 486 void visitCatchPadInst(CatchPadInst &CPI); 487 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 488 void visitCleanupPadInst(CleanupPadInst &CPI); 489 void visitFuncletPadInst(FuncletPadInst &FPI); 490 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 491 void visitCleanupReturnInst(CleanupReturnInst &CRI); 492 493 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 494 void verifySwiftErrorValue(const Value *SwiftErrorVal); 495 void verifyMustTailCall(CallInst &CI); 496 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, 497 unsigned ArgNo, std::string &Suffix); 498 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 499 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 500 const Value *V); 501 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 502 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 503 const Value *V, bool IsIntrinsic); 504 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 505 506 void visitConstantExprsRecursively(const Constant *EntryC); 507 void visitConstantExpr(const ConstantExpr *CE); 508 void verifyStatepoint(const CallBase &Call); 509 void verifyFrameRecoverIndices(); 510 void verifySiblingFuncletUnwinds(); 511 512 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 513 template <typename ValueOrMetadata> 514 void verifyFragmentExpression(const DIVariable &V, 515 DIExpression::FragmentInfo Fragment, 516 ValueOrMetadata *Desc); 517 void verifyFnArgs(const DbgVariableIntrinsic &I); 518 519 /// Module-level debug info verification... 520 void verifyCompileUnits(); 521 522 /// Module-level verification that all @llvm.experimental.deoptimize 523 /// declarations share the same calling convention. 524 void verifyDeoptimizeCallingConvs(); 525 526 /// Verify all-or-nothing property of DIFile source attribute within a CU. 527 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 528 }; 529 530 } // end anonymous namespace 531 532 /// We know that cond should be true, if not print an error message. 533 #define Assert(C, ...) \ 534 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 535 536 /// We know that a debug info condition should be true, if not print 537 /// an error message. 538 #define AssertDI(C, ...) \ 539 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 540 541 void Verifier::visit(Instruction &I) { 542 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 543 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 544 InstVisitor<Verifier>::visit(I); 545 } 546 547 // Helper to recursively iterate over indirect users. By 548 // returning false, the callback can ask to stop recursing 549 // further. 550 static void forEachUser(const Value *User, 551 SmallPtrSet<const Value *, 32> &Visited, 552 llvm::function_ref<bool(const Value *)> Callback) { 553 if (!Visited.insert(User).second) 554 return; 555 for (const Value *TheNextUser : User->materialized_users()) 556 if (Callback(TheNextUser)) 557 forEachUser(TheNextUser, Visited, Callback); 558 } 559 560 void Verifier::visitGlobalValue(const GlobalValue &GV) { 561 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 562 "Global is external, but doesn't have external or weak linkage!", &GV); 563 564 Assert(GV.getAlignment() <= Value::MaximumAlignment, 565 "huge alignment values are unsupported", &GV); 566 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 567 "Only global variables can have appending linkage!", &GV); 568 569 if (GV.hasAppendingLinkage()) { 570 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 571 Assert(GVar && GVar->getValueType()->isArrayTy(), 572 "Only global arrays can have appending linkage!", GVar); 573 } 574 575 if (GV.isDeclarationForLinker()) 576 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 577 578 if (GV.hasDLLImportStorageClass()) { 579 Assert(!GV.isDSOLocal(), 580 "GlobalValue with DLLImport Storage is dso_local!", &GV); 581 582 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) || 583 GV.hasAvailableExternallyLinkage(), 584 "Global is marked as dllimport, but not external", &GV); 585 } 586 587 if (GV.hasLocalLinkage()) 588 Assert(GV.isDSOLocal(), 589 "GlobalValue with private or internal linkage must be dso_local!", 590 &GV); 591 592 if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage()) 593 Assert(GV.isDSOLocal(), 594 "GlobalValue with non default visibility must be dso_local!", &GV); 595 596 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 597 if (const Instruction *I = dyn_cast<Instruction>(V)) { 598 if (!I->getParent() || !I->getParent()->getParent()) 599 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 600 I); 601 else if (I->getParent()->getParent()->getParent() != &M) 602 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 603 I->getParent()->getParent(), 604 I->getParent()->getParent()->getParent()); 605 return false; 606 } else if (const Function *F = dyn_cast<Function>(V)) { 607 if (F->getParent() != &M) 608 CheckFailed("Global is used by function in a different module", &GV, &M, 609 F, F->getParent()); 610 return false; 611 } 612 return true; 613 }); 614 } 615 616 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 617 if (GV.hasInitializer()) { 618 Assert(GV.getInitializer()->getType() == GV.getValueType(), 619 "Global variable initializer type does not match global " 620 "variable type!", 621 &GV); 622 // If the global has common linkage, it must have a zero initializer and 623 // cannot be constant. 624 if (GV.hasCommonLinkage()) { 625 Assert(GV.getInitializer()->isNullValue(), 626 "'common' global must have a zero initializer!", &GV); 627 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 628 &GV); 629 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 630 } 631 } 632 633 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 634 GV.getName() == "llvm.global_dtors")) { 635 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 636 "invalid linkage for intrinsic global variable", &GV); 637 // Don't worry about emitting an error for it not being an array, 638 // visitGlobalValue will complain on appending non-array. 639 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 640 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 641 PointerType *FuncPtrTy = 642 FunctionType::get(Type::getVoidTy(Context), false)-> 643 getPointerTo(DL.getProgramAddressSpace()); 644 Assert(STy && 645 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 646 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 647 STy->getTypeAtIndex(1) == FuncPtrTy, 648 "wrong type for intrinsic global variable", &GV); 649 Assert(STy->getNumElements() == 3, 650 "the third field of the element type is mandatory, " 651 "specify i8* null to migrate from the obsoleted 2-field form"); 652 Type *ETy = STy->getTypeAtIndex(2); 653 Assert(ETy->isPointerTy() && 654 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 655 "wrong type for intrinsic global variable", &GV); 656 } 657 } 658 659 if (GV.hasName() && (GV.getName() == "llvm.used" || 660 GV.getName() == "llvm.compiler.used")) { 661 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 662 "invalid linkage for intrinsic global variable", &GV); 663 Type *GVType = GV.getValueType(); 664 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 665 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 666 Assert(PTy, "wrong type for intrinsic global variable", &GV); 667 if (GV.hasInitializer()) { 668 const Constant *Init = GV.getInitializer(); 669 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 670 Assert(InitArray, "wrong initalizer for intrinsic global variable", 671 Init); 672 for (Value *Op : InitArray->operands()) { 673 Value *V = Op->stripPointerCastsNoFollowAliases(); 674 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 675 isa<GlobalAlias>(V), 676 "invalid llvm.used member", V); 677 Assert(V->hasName(), "members of llvm.used must be named", V); 678 } 679 } 680 } 681 } 682 683 // Visit any debug info attachments. 684 SmallVector<MDNode *, 1> MDs; 685 GV.getMetadata(LLVMContext::MD_dbg, MDs); 686 for (auto *MD : MDs) { 687 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 688 visitDIGlobalVariableExpression(*GVE); 689 else 690 AssertDI(false, "!dbg attachment of global variable must be a " 691 "DIGlobalVariableExpression"); 692 } 693 694 if (!GV.hasInitializer()) { 695 visitGlobalValue(GV); 696 return; 697 } 698 699 // Walk any aggregate initializers looking for bitcasts between address spaces 700 visitConstantExprsRecursively(GV.getInitializer()); 701 702 visitGlobalValue(GV); 703 } 704 705 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 706 SmallPtrSet<const GlobalAlias*, 4> Visited; 707 Visited.insert(&GA); 708 visitAliaseeSubExpr(Visited, GA, C); 709 } 710 711 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 712 const GlobalAlias &GA, const Constant &C) { 713 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 714 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 715 &GA); 716 717 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 718 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 719 720 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 721 &GA); 722 } else { 723 // Only continue verifying subexpressions of GlobalAliases. 724 // Do not recurse into global initializers. 725 return; 726 } 727 } 728 729 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 730 visitConstantExprsRecursively(CE); 731 732 for (const Use &U : C.operands()) { 733 Value *V = &*U; 734 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 735 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 736 else if (const auto *C2 = dyn_cast<Constant>(V)) 737 visitAliaseeSubExpr(Visited, GA, *C2); 738 } 739 } 740 741 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 742 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 743 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 744 "weak_odr, or external linkage!", 745 &GA); 746 const Constant *Aliasee = GA.getAliasee(); 747 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 748 Assert(GA.getType() == Aliasee->getType(), 749 "Alias and aliasee types should match!", &GA); 750 751 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 752 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 753 754 visitAliaseeSubExpr(GA, *Aliasee); 755 756 visitGlobalValue(GA); 757 } 758 759 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 760 // There used to be various other llvm.dbg.* nodes, but we don't support 761 // upgrading them and we want to reserve the namespace for future uses. 762 if (NMD.getName().startswith("llvm.dbg.")) 763 AssertDI(NMD.getName() == "llvm.dbg.cu", 764 "unrecognized named metadata node in the llvm.dbg namespace", 765 &NMD); 766 for (const MDNode *MD : NMD.operands()) { 767 if (NMD.getName() == "llvm.dbg.cu") 768 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 769 770 if (!MD) 771 continue; 772 773 visitMDNode(*MD); 774 } 775 } 776 777 void Verifier::visitMDNode(const MDNode &MD) { 778 // Only visit each node once. Metadata can be mutually recursive, so this 779 // avoids infinite recursion here, as well as being an optimization. 780 if (!MDNodes.insert(&MD).second) 781 return; 782 783 switch (MD.getMetadataID()) { 784 default: 785 llvm_unreachable("Invalid MDNode subclass"); 786 case Metadata::MDTupleKind: 787 break; 788 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 789 case Metadata::CLASS##Kind: \ 790 visit##CLASS(cast<CLASS>(MD)); \ 791 break; 792 #include "llvm/IR/Metadata.def" 793 } 794 795 for (const Metadata *Op : MD.operands()) { 796 if (!Op) 797 continue; 798 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 799 &MD, Op); 800 if (auto *N = dyn_cast<MDNode>(Op)) { 801 visitMDNode(*N); 802 continue; 803 } 804 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 805 visitValueAsMetadata(*V, nullptr); 806 continue; 807 } 808 } 809 810 // Check these last, so we diagnose problems in operands first. 811 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 812 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 813 } 814 815 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 816 Assert(MD.getValue(), "Expected valid value", &MD); 817 Assert(!MD.getValue()->getType()->isMetadataTy(), 818 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 819 820 auto *L = dyn_cast<LocalAsMetadata>(&MD); 821 if (!L) 822 return; 823 824 Assert(F, "function-local metadata used outside a function", L); 825 826 // If this was an instruction, bb, or argument, verify that it is in the 827 // function that we expect. 828 Function *ActualF = nullptr; 829 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 830 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 831 ActualF = I->getParent()->getParent(); 832 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 833 ActualF = BB->getParent(); 834 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 835 ActualF = A->getParent(); 836 assert(ActualF && "Unimplemented function local metadata case!"); 837 838 Assert(ActualF == F, "function-local metadata used in wrong function", L); 839 } 840 841 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 842 Metadata *MD = MDV.getMetadata(); 843 if (auto *N = dyn_cast<MDNode>(MD)) { 844 visitMDNode(*N); 845 return; 846 } 847 848 // Only visit each node once. Metadata can be mutually recursive, so this 849 // avoids infinite recursion here, as well as being an optimization. 850 if (!MDNodes.insert(MD).second) 851 return; 852 853 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 854 visitValueAsMetadata(*V, F); 855 } 856 857 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 858 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 859 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 860 861 void Verifier::visitDILocation(const DILocation &N) { 862 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 863 "location requires a valid scope", &N, N.getRawScope()); 864 if (auto *IA = N.getRawInlinedAt()) 865 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 866 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 867 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 868 } 869 870 void Verifier::visitGenericDINode(const GenericDINode &N) { 871 AssertDI(N.getTag(), "invalid tag", &N); 872 } 873 874 void Verifier::visitDIScope(const DIScope &N) { 875 if (auto *F = N.getRawFile()) 876 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 877 } 878 879 void Verifier::visitDISubrange(const DISubrange &N) { 880 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 881 auto Count = N.getCount(); 882 AssertDI(Count, "Count must either be a signed constant or a DIVariable", 883 &N); 884 AssertDI(!Count.is<ConstantInt*>() || 885 Count.get<ConstantInt*>()->getSExtValue() >= -1, 886 "invalid subrange count", &N); 887 } 888 889 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 890 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 891 } 892 893 void Verifier::visitDIBasicType(const DIBasicType &N) { 894 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 895 N.getTag() == dwarf::DW_TAG_unspecified_type, 896 "invalid tag", &N); 897 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 898 "has conflicting flags", &N); 899 } 900 901 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 902 // Common scope checks. 903 visitDIScope(N); 904 905 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 906 N.getTag() == dwarf::DW_TAG_pointer_type || 907 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 908 N.getTag() == dwarf::DW_TAG_reference_type || 909 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 910 N.getTag() == dwarf::DW_TAG_const_type || 911 N.getTag() == dwarf::DW_TAG_volatile_type || 912 N.getTag() == dwarf::DW_TAG_restrict_type || 913 N.getTag() == dwarf::DW_TAG_atomic_type || 914 N.getTag() == dwarf::DW_TAG_member || 915 N.getTag() == dwarf::DW_TAG_inheritance || 916 N.getTag() == dwarf::DW_TAG_friend, 917 "invalid tag", &N); 918 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 919 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 920 N.getRawExtraData()); 921 } 922 923 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 924 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 925 N.getRawBaseType()); 926 927 if (N.getDWARFAddressSpace()) { 928 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 929 N.getTag() == dwarf::DW_TAG_reference_type || 930 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 931 "DWARF address space only applies to pointer or reference types", 932 &N); 933 } 934 } 935 936 /// Detect mutually exclusive flags. 937 static bool hasConflictingReferenceFlags(unsigned Flags) { 938 return ((Flags & DINode::FlagLValueReference) && 939 (Flags & DINode::FlagRValueReference)) || 940 ((Flags & DINode::FlagTypePassByValue) && 941 (Flags & DINode::FlagTypePassByReference)); 942 } 943 944 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 945 auto *Params = dyn_cast<MDTuple>(&RawParams); 946 AssertDI(Params, "invalid template params", &N, &RawParams); 947 for (Metadata *Op : Params->operands()) { 948 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 949 &N, Params, Op); 950 } 951 } 952 953 void Verifier::visitDICompositeType(const DICompositeType &N) { 954 // Common scope checks. 955 visitDIScope(N); 956 957 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 958 N.getTag() == dwarf::DW_TAG_structure_type || 959 N.getTag() == dwarf::DW_TAG_union_type || 960 N.getTag() == dwarf::DW_TAG_enumeration_type || 961 N.getTag() == dwarf::DW_TAG_class_type || 962 N.getTag() == dwarf::DW_TAG_variant_part, 963 "invalid tag", &N); 964 965 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 966 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 967 N.getRawBaseType()); 968 969 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 970 "invalid composite elements", &N, N.getRawElements()); 971 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 972 N.getRawVTableHolder()); 973 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 974 "invalid reference flags", &N); 975 976 if (N.isVector()) { 977 const DINodeArray Elements = N.getElements(); 978 AssertDI(Elements.size() == 1 && 979 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 980 "invalid vector, expected one element of type subrange", &N); 981 } 982 983 if (auto *Params = N.getRawTemplateParams()) 984 visitTemplateParams(N, *Params); 985 986 if (N.getTag() == dwarf::DW_TAG_class_type || 987 N.getTag() == dwarf::DW_TAG_union_type) { 988 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), 989 "class/union requires a filename", &N, N.getFile()); 990 } 991 992 if (auto *D = N.getRawDiscriminator()) { 993 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 994 "discriminator can only appear on variant part"); 995 } 996 } 997 998 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 999 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1000 if (auto *Types = N.getRawTypeArray()) { 1001 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1002 for (Metadata *Ty : N.getTypeArray()->operands()) { 1003 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1004 } 1005 } 1006 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1007 "invalid reference flags", &N); 1008 } 1009 1010 void Verifier::visitDIFile(const DIFile &N) { 1011 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1012 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1013 if (Checksum) { 1014 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1015 "invalid checksum kind", &N); 1016 size_t Size; 1017 switch (Checksum->Kind) { 1018 case DIFile::CSK_MD5: 1019 Size = 32; 1020 break; 1021 case DIFile::CSK_SHA1: 1022 Size = 40; 1023 break; 1024 } 1025 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1026 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1027 "invalid checksum", &N); 1028 } 1029 } 1030 1031 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1032 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1033 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1034 1035 // Don't bother verifying the compilation directory or producer string 1036 // as those could be empty. 1037 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1038 N.getRawFile()); 1039 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1040 N.getFile()); 1041 1042 verifySourceDebugInfo(N, *N.getFile()); 1043 1044 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1045 "invalid emission kind", &N); 1046 1047 if (auto *Array = N.getRawEnumTypes()) { 1048 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1049 for (Metadata *Op : N.getEnumTypes()->operands()) { 1050 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1051 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1052 "invalid enum type", &N, N.getEnumTypes(), Op); 1053 } 1054 } 1055 if (auto *Array = N.getRawRetainedTypes()) { 1056 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1057 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1058 AssertDI(Op && (isa<DIType>(Op) || 1059 (isa<DISubprogram>(Op) && 1060 !cast<DISubprogram>(Op)->isDefinition())), 1061 "invalid retained type", &N, Op); 1062 } 1063 } 1064 if (auto *Array = N.getRawGlobalVariables()) { 1065 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1066 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1067 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1068 "invalid global variable ref", &N, Op); 1069 } 1070 } 1071 if (auto *Array = N.getRawImportedEntities()) { 1072 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1073 for (Metadata *Op : N.getImportedEntities()->operands()) { 1074 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1075 &N, Op); 1076 } 1077 } 1078 if (auto *Array = N.getRawMacros()) { 1079 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1080 for (Metadata *Op : N.getMacros()->operands()) { 1081 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1082 } 1083 } 1084 CUVisited.insert(&N); 1085 } 1086 1087 void Verifier::visitDISubprogram(const DISubprogram &N) { 1088 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1089 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1090 if (auto *F = N.getRawFile()) 1091 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1092 else 1093 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1094 if (auto *T = N.getRawType()) 1095 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1096 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1097 N.getRawContainingType()); 1098 if (auto *Params = N.getRawTemplateParams()) 1099 visitTemplateParams(N, *Params); 1100 if (auto *S = N.getRawDeclaration()) 1101 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1102 "invalid subprogram declaration", &N, S); 1103 if (auto *RawNode = N.getRawRetainedNodes()) { 1104 auto *Node = dyn_cast<MDTuple>(RawNode); 1105 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1106 for (Metadata *Op : Node->operands()) { 1107 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1108 "invalid retained nodes, expected DILocalVariable or DILabel", 1109 &N, Node, Op); 1110 } 1111 } 1112 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1113 "invalid reference flags", &N); 1114 1115 auto *Unit = N.getRawUnit(); 1116 if (N.isDefinition()) { 1117 // Subprogram definitions (not part of the type hierarchy). 1118 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1119 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1120 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1121 if (N.getFile()) 1122 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1123 } else { 1124 // Subprogram declarations (part of the type hierarchy). 1125 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1126 } 1127 1128 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1129 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1130 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1131 for (Metadata *Op : ThrownTypes->operands()) 1132 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1133 Op); 1134 } 1135 1136 if (N.areAllCallsDescribed()) 1137 AssertDI(N.isDefinition(), 1138 "DIFlagAllCallsDescribed must be attached to a definition"); 1139 } 1140 1141 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1142 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1143 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1144 "invalid local scope", &N, N.getRawScope()); 1145 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1146 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1147 } 1148 1149 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1150 visitDILexicalBlockBase(N); 1151 1152 AssertDI(N.getLine() || !N.getColumn(), 1153 "cannot have column info without line info", &N); 1154 } 1155 1156 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1157 visitDILexicalBlockBase(N); 1158 } 1159 1160 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1161 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1162 if (auto *S = N.getRawScope()) 1163 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1164 if (auto *S = N.getRawDecl()) 1165 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1166 } 1167 1168 void Verifier::visitDINamespace(const DINamespace &N) { 1169 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1170 if (auto *S = N.getRawScope()) 1171 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1172 } 1173 1174 void Verifier::visitDIMacro(const DIMacro &N) { 1175 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1176 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1177 "invalid macinfo type", &N); 1178 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1179 if (!N.getValue().empty()) { 1180 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1181 } 1182 } 1183 1184 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1185 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1186 "invalid macinfo type", &N); 1187 if (auto *F = N.getRawFile()) 1188 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1189 1190 if (auto *Array = N.getRawElements()) { 1191 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1192 for (Metadata *Op : N.getElements()->operands()) { 1193 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1194 } 1195 } 1196 } 1197 1198 void Verifier::visitDIModule(const DIModule &N) { 1199 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1200 AssertDI(!N.getName().empty(), "anonymous module", &N); 1201 } 1202 1203 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1204 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1205 } 1206 1207 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1208 visitDITemplateParameter(N); 1209 1210 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1211 &N); 1212 } 1213 1214 void Verifier::visitDITemplateValueParameter( 1215 const DITemplateValueParameter &N) { 1216 visitDITemplateParameter(N); 1217 1218 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1219 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1220 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1221 "invalid tag", &N); 1222 } 1223 1224 void Verifier::visitDIVariable(const DIVariable &N) { 1225 if (auto *S = N.getRawScope()) 1226 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1227 if (auto *F = N.getRawFile()) 1228 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1229 } 1230 1231 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1232 // Checks common to all variables. 1233 visitDIVariable(N); 1234 1235 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1236 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1237 AssertDI(N.getType(), "missing global variable type", &N); 1238 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1239 AssertDI(isa<DIDerivedType>(Member), 1240 "invalid static data member declaration", &N, Member); 1241 } 1242 } 1243 1244 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1245 // Checks common to all variables. 1246 visitDIVariable(N); 1247 1248 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1249 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1250 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1251 "local variable requires a valid scope", &N, N.getRawScope()); 1252 if (auto Ty = N.getType()) 1253 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1254 } 1255 1256 void Verifier::visitDILabel(const DILabel &N) { 1257 if (auto *S = N.getRawScope()) 1258 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1259 if (auto *F = N.getRawFile()) 1260 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1261 1262 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1263 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1264 "label requires a valid scope", &N, N.getRawScope()); 1265 } 1266 1267 void Verifier::visitDIExpression(const DIExpression &N) { 1268 AssertDI(N.isValid(), "invalid expression", &N); 1269 } 1270 1271 void Verifier::visitDIGlobalVariableExpression( 1272 const DIGlobalVariableExpression &GVE) { 1273 AssertDI(GVE.getVariable(), "missing variable"); 1274 if (auto *Var = GVE.getVariable()) 1275 visitDIGlobalVariable(*Var); 1276 if (auto *Expr = GVE.getExpression()) { 1277 visitDIExpression(*Expr); 1278 if (auto Fragment = Expr->getFragmentInfo()) 1279 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1280 } 1281 } 1282 1283 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1284 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1285 if (auto *T = N.getRawType()) 1286 AssertDI(isType(T), "invalid type ref", &N, T); 1287 if (auto *F = N.getRawFile()) 1288 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1289 } 1290 1291 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1292 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1293 N.getTag() == dwarf::DW_TAG_imported_declaration, 1294 "invalid tag", &N); 1295 if (auto *S = N.getRawScope()) 1296 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1297 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1298 N.getRawEntity()); 1299 } 1300 1301 void Verifier::visitComdat(const Comdat &C) { 1302 // The Module is invalid if the GlobalValue has private linkage. Entities 1303 // with private linkage don't have entries in the symbol table. 1304 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1305 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage", 1306 GV); 1307 } 1308 1309 void Verifier::visitModuleIdents(const Module &M) { 1310 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1311 if (!Idents) 1312 return; 1313 1314 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1315 // Scan each llvm.ident entry and make sure that this requirement is met. 1316 for (const MDNode *N : Idents->operands()) { 1317 Assert(N->getNumOperands() == 1, 1318 "incorrect number of operands in llvm.ident metadata", N); 1319 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1320 ("invalid value for llvm.ident metadata entry operand" 1321 "(the operand should be a string)"), 1322 N->getOperand(0)); 1323 } 1324 } 1325 1326 void Verifier::visitModuleCommandLines(const Module &M) { 1327 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1328 if (!CommandLines) 1329 return; 1330 1331 // llvm.commandline takes a list of metadata entry. Each entry has only one 1332 // string. Scan each llvm.commandline entry and make sure that this 1333 // requirement is met. 1334 for (const MDNode *N : CommandLines->operands()) { 1335 Assert(N->getNumOperands() == 1, 1336 "incorrect number of operands in llvm.commandline metadata", N); 1337 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1338 ("invalid value for llvm.commandline metadata entry operand" 1339 "(the operand should be a string)"), 1340 N->getOperand(0)); 1341 } 1342 } 1343 1344 void Verifier::visitModuleFlags(const Module &M) { 1345 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1346 if (!Flags) return; 1347 1348 // Scan each flag, and track the flags and requirements. 1349 DenseMap<const MDString*, const MDNode*> SeenIDs; 1350 SmallVector<const MDNode*, 16> Requirements; 1351 for (const MDNode *MDN : Flags->operands()) 1352 visitModuleFlag(MDN, SeenIDs, Requirements); 1353 1354 // Validate that the requirements in the module are valid. 1355 for (const MDNode *Requirement : Requirements) { 1356 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1357 const Metadata *ReqValue = Requirement->getOperand(1); 1358 1359 const MDNode *Op = SeenIDs.lookup(Flag); 1360 if (!Op) { 1361 CheckFailed("invalid requirement on flag, flag is not present in module", 1362 Flag); 1363 continue; 1364 } 1365 1366 if (Op->getOperand(2) != ReqValue) { 1367 CheckFailed(("invalid requirement on flag, " 1368 "flag does not have the required value"), 1369 Flag); 1370 continue; 1371 } 1372 } 1373 } 1374 1375 void 1376 Verifier::visitModuleFlag(const MDNode *Op, 1377 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1378 SmallVectorImpl<const MDNode *> &Requirements) { 1379 // Each module flag should have three arguments, the merge behavior (a 1380 // constant int), the flag ID (an MDString), and the value. 1381 Assert(Op->getNumOperands() == 3, 1382 "incorrect number of operands in module flag", Op); 1383 Module::ModFlagBehavior MFB; 1384 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1385 Assert( 1386 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1387 "invalid behavior operand in module flag (expected constant integer)", 1388 Op->getOperand(0)); 1389 Assert(false, 1390 "invalid behavior operand in module flag (unexpected constant)", 1391 Op->getOperand(0)); 1392 } 1393 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1394 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1395 Op->getOperand(1)); 1396 1397 // Sanity check the values for behaviors with additional requirements. 1398 switch (MFB) { 1399 case Module::Error: 1400 case Module::Warning: 1401 case Module::Override: 1402 // These behavior types accept any value. 1403 break; 1404 1405 case Module::Max: { 1406 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1407 "invalid value for 'max' module flag (expected constant integer)", 1408 Op->getOperand(2)); 1409 break; 1410 } 1411 1412 case Module::Require: { 1413 // The value should itself be an MDNode with two operands, a flag ID (an 1414 // MDString), and a value. 1415 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1416 Assert(Value && Value->getNumOperands() == 2, 1417 "invalid value for 'require' module flag (expected metadata pair)", 1418 Op->getOperand(2)); 1419 Assert(isa<MDString>(Value->getOperand(0)), 1420 ("invalid value for 'require' module flag " 1421 "(first value operand should be a string)"), 1422 Value->getOperand(0)); 1423 1424 // Append it to the list of requirements, to check once all module flags are 1425 // scanned. 1426 Requirements.push_back(Value); 1427 break; 1428 } 1429 1430 case Module::Append: 1431 case Module::AppendUnique: { 1432 // These behavior types require the operand be an MDNode. 1433 Assert(isa<MDNode>(Op->getOperand(2)), 1434 "invalid value for 'append'-type module flag " 1435 "(expected a metadata node)", 1436 Op->getOperand(2)); 1437 break; 1438 } 1439 } 1440 1441 // Unless this is a "requires" flag, check the ID is unique. 1442 if (MFB != Module::Require) { 1443 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1444 Assert(Inserted, 1445 "module flag identifiers must be unique (or of 'require' type)", ID); 1446 } 1447 1448 if (ID->getString() == "wchar_size") { 1449 ConstantInt *Value 1450 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1451 Assert(Value, "wchar_size metadata requires constant integer argument"); 1452 } 1453 1454 if (ID->getString() == "Linker Options") { 1455 // If the llvm.linker.options named metadata exists, we assume that the 1456 // bitcode reader has upgraded the module flag. Otherwise the flag might 1457 // have been created by a client directly. 1458 Assert(M.getNamedMetadata("llvm.linker.options"), 1459 "'Linker Options' named metadata no longer supported"); 1460 } 1461 1462 if (ID->getString() == "CG Profile") { 1463 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1464 visitModuleFlagCGProfileEntry(MDO); 1465 } 1466 } 1467 1468 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1469 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1470 if (!FuncMDO) 1471 return; 1472 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1473 Assert(F && isa<Function>(F->getValue()), "expected a Function or null", 1474 FuncMDO); 1475 }; 1476 auto Node = dyn_cast_or_null<MDNode>(MDO); 1477 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1478 CheckFunction(Node->getOperand(0)); 1479 CheckFunction(Node->getOperand(1)); 1480 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1481 Assert(Count && Count->getType()->isIntegerTy(), 1482 "expected an integer constant", Node->getOperand(2)); 1483 } 1484 1485 /// Return true if this attribute kind only applies to functions. 1486 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { 1487 switch (Kind) { 1488 case Attribute::NoReturn: 1489 case Attribute::NoCfCheck: 1490 case Attribute::NoUnwind: 1491 case Attribute::NoInline: 1492 case Attribute::AlwaysInline: 1493 case Attribute::OptimizeForSize: 1494 case Attribute::StackProtect: 1495 case Attribute::StackProtectReq: 1496 case Attribute::StackProtectStrong: 1497 case Attribute::SafeStack: 1498 case Attribute::ShadowCallStack: 1499 case Attribute::NoRedZone: 1500 case Attribute::NoImplicitFloat: 1501 case Attribute::Naked: 1502 case Attribute::InlineHint: 1503 case Attribute::StackAlignment: 1504 case Attribute::UWTable: 1505 case Attribute::NonLazyBind: 1506 case Attribute::ReturnsTwice: 1507 case Attribute::SanitizeAddress: 1508 case Attribute::SanitizeHWAddress: 1509 case Attribute::SanitizeThread: 1510 case Attribute::SanitizeMemory: 1511 case Attribute::MinSize: 1512 case Attribute::NoDuplicate: 1513 case Attribute::Builtin: 1514 case Attribute::NoBuiltin: 1515 case Attribute::Cold: 1516 case Attribute::OptForFuzzing: 1517 case Attribute::OptimizeNone: 1518 case Attribute::JumpTable: 1519 case Attribute::Convergent: 1520 case Attribute::ArgMemOnly: 1521 case Attribute::NoRecurse: 1522 case Attribute::InaccessibleMemOnly: 1523 case Attribute::InaccessibleMemOrArgMemOnly: 1524 case Attribute::AllocSize: 1525 case Attribute::SpeculativeLoadHardening: 1526 case Attribute::Speculatable: 1527 case Attribute::StrictFP: 1528 return true; 1529 default: 1530 break; 1531 } 1532 return false; 1533 } 1534 1535 /// Return true if this is a function attribute that can also appear on 1536 /// arguments. 1537 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { 1538 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || 1539 Kind == Attribute::ReadNone; 1540 } 1541 1542 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 1543 const Value *V) { 1544 for (Attribute A : Attrs) { 1545 if (A.isStringAttribute()) 1546 continue; 1547 1548 if (isFuncOnlyAttr(A.getKindAsEnum())) { 1549 if (!IsFunction) { 1550 CheckFailed("Attribute '" + A.getAsString() + 1551 "' only applies to functions!", 1552 V); 1553 return; 1554 } 1555 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { 1556 CheckFailed("Attribute '" + A.getAsString() + 1557 "' does not apply to functions!", 1558 V); 1559 return; 1560 } 1561 } 1562 } 1563 1564 // VerifyParameterAttrs - Check the given attributes for an argument or return 1565 // value of the specified type. The value V is printed in error messages. 1566 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1567 const Value *V) { 1568 if (!Attrs.hasAttributes()) 1569 return; 1570 1571 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); 1572 1573 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1574 Assert(Attrs.getNumAttributes() == 1, 1575 "Attribute 'immarg' is incompatible with other attributes", V); 1576 } 1577 1578 // Check for mutually incompatible attributes. Only inreg is compatible with 1579 // sret. 1580 unsigned AttrCount = 0; 1581 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1582 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1583 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1584 Attrs.hasAttribute(Attribute::InReg); 1585 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1586 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " 1587 "and 'sret' are incompatible!", 1588 V); 1589 1590 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1591 Attrs.hasAttribute(Attribute::ReadOnly)), 1592 "Attributes " 1593 "'inalloca and readonly' are incompatible!", 1594 V); 1595 1596 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1597 Attrs.hasAttribute(Attribute::Returned)), 1598 "Attributes " 1599 "'sret and returned' are incompatible!", 1600 V); 1601 1602 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1603 Attrs.hasAttribute(Attribute::SExt)), 1604 "Attributes " 1605 "'zeroext and signext' are incompatible!", 1606 V); 1607 1608 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1609 Attrs.hasAttribute(Attribute::ReadOnly)), 1610 "Attributes " 1611 "'readnone and readonly' are incompatible!", 1612 V); 1613 1614 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1615 Attrs.hasAttribute(Attribute::WriteOnly)), 1616 "Attributes " 1617 "'readnone and writeonly' are incompatible!", 1618 V); 1619 1620 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1621 Attrs.hasAttribute(Attribute::WriteOnly)), 1622 "Attributes " 1623 "'readonly and writeonly' are incompatible!", 1624 V); 1625 1626 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1627 Attrs.hasAttribute(Attribute::AlwaysInline)), 1628 "Attributes " 1629 "'noinline and alwaysinline' are incompatible!", 1630 V); 1631 1632 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1633 Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(), 1634 "Attribute 'byval' type does not match parameter!"); 1635 } 1636 1637 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1638 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), 1639 "Wrong types for attribute: " + 1640 AttributeSet::get(Context, IncompatibleAttrs).getAsString(), 1641 V); 1642 1643 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1644 SmallPtrSet<Type*, 4> Visited; 1645 if (!PTy->getElementType()->isSized(&Visited)) { 1646 Assert(!Attrs.hasAttribute(Attribute::ByVal) && 1647 !Attrs.hasAttribute(Attribute::InAlloca), 1648 "Attributes 'byval' and 'inalloca' do not support unsized types!", 1649 V); 1650 } 1651 if (!isa<PointerType>(PTy->getElementType())) 1652 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1653 "Attribute 'swifterror' only applies to parameters " 1654 "with pointer to pointer type!", 1655 V); 1656 } else { 1657 Assert(!Attrs.hasAttribute(Attribute::ByVal), 1658 "Attribute 'byval' only applies to parameters with pointer type!", 1659 V); 1660 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1661 "Attribute 'swifterror' only applies to parameters " 1662 "with pointer type!", 1663 V); 1664 } 1665 } 1666 1667 // Check parameter attributes against a function type. 1668 // The value V is printed in error messages. 1669 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1670 const Value *V, bool IsIntrinsic) { 1671 if (Attrs.isEmpty()) 1672 return; 1673 1674 bool SawNest = false; 1675 bool SawReturned = false; 1676 bool SawSRet = false; 1677 bool SawSwiftSelf = false; 1678 bool SawSwiftError = false; 1679 1680 // Verify return value attributes. 1681 AttributeSet RetAttrs = Attrs.getRetAttributes(); 1682 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && 1683 !RetAttrs.hasAttribute(Attribute::Nest) && 1684 !RetAttrs.hasAttribute(Attribute::StructRet) && 1685 !RetAttrs.hasAttribute(Attribute::NoCapture) && 1686 !RetAttrs.hasAttribute(Attribute::Returned) && 1687 !RetAttrs.hasAttribute(Attribute::InAlloca) && 1688 !RetAttrs.hasAttribute(Attribute::SwiftSelf) && 1689 !RetAttrs.hasAttribute(Attribute::SwiftError)), 1690 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', " 1691 "'returned', 'swiftself', and 'swifterror' do not apply to return " 1692 "values!", 1693 V); 1694 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && 1695 !RetAttrs.hasAttribute(Attribute::WriteOnly) && 1696 !RetAttrs.hasAttribute(Attribute::ReadNone)), 1697 "Attribute '" + RetAttrs.getAsString() + 1698 "' does not apply to function returns", 1699 V); 1700 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1701 1702 // Verify parameter attributes. 1703 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1704 Type *Ty = FT->getParamType(i); 1705 AttributeSet ArgAttrs = Attrs.getParamAttributes(i); 1706 1707 if (!IsIntrinsic) { 1708 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1709 "immarg attribute only applies to intrinsics",V); 1710 } 1711 1712 verifyParameterAttrs(ArgAttrs, Ty, V); 1713 1714 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1715 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1716 SawNest = true; 1717 } 1718 1719 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1720 Assert(!SawReturned, "More than one parameter has attribute returned!", 1721 V); 1722 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1723 "Incompatible argument and return types for 'returned' attribute", 1724 V); 1725 SawReturned = true; 1726 } 1727 1728 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1729 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1730 Assert(i == 0 || i == 1, 1731 "Attribute 'sret' is not on first or second parameter!", V); 1732 SawSRet = true; 1733 } 1734 1735 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1736 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1737 SawSwiftSelf = true; 1738 } 1739 1740 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1741 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1742 V); 1743 SawSwiftError = true; 1744 } 1745 1746 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1747 Assert(i == FT->getNumParams() - 1, 1748 "inalloca isn't on the last parameter!", V); 1749 } 1750 } 1751 1752 if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) 1753 return; 1754 1755 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); 1756 1757 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1758 Attrs.hasFnAttribute(Attribute::ReadOnly)), 1759 "Attributes 'readnone and readonly' are incompatible!", V); 1760 1761 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1762 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1763 "Attributes 'readnone and writeonly' are incompatible!", V); 1764 1765 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && 1766 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1767 "Attributes 'readonly and writeonly' are incompatible!", V); 1768 1769 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1770 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), 1771 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1772 "incompatible!", 1773 V); 1774 1775 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1776 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), 1777 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1778 1779 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && 1780 Attrs.hasFnAttribute(Attribute::AlwaysInline)), 1781 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1782 1783 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { 1784 Assert(Attrs.hasFnAttribute(Attribute::NoInline), 1785 "Attribute 'optnone' requires 'noinline'!", V); 1786 1787 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), 1788 "Attributes 'optsize and optnone' are incompatible!", V); 1789 1790 Assert(!Attrs.hasFnAttribute(Attribute::MinSize), 1791 "Attributes 'minsize and optnone' are incompatible!", V); 1792 } 1793 1794 if (Attrs.hasFnAttribute(Attribute::JumpTable)) { 1795 const GlobalValue *GV = cast<GlobalValue>(V); 1796 Assert(GV->hasGlobalUnnamedAddr(), 1797 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1798 } 1799 1800 if (Attrs.hasFnAttribute(Attribute::AllocSize)) { 1801 std::pair<unsigned, Optional<unsigned>> Args = 1802 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 1803 1804 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1805 if (ParamNo >= FT->getNumParams()) { 1806 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1807 return false; 1808 } 1809 1810 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1811 CheckFailed("'allocsize' " + Name + 1812 " argument must refer to an integer parameter", 1813 V); 1814 return false; 1815 } 1816 1817 return true; 1818 }; 1819 1820 if (!CheckParam("element size", Args.first)) 1821 return; 1822 1823 if (Args.second && !CheckParam("number of elements", *Args.second)) 1824 return; 1825 } 1826 } 1827 1828 void Verifier::verifyFunctionMetadata( 1829 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 1830 for (const auto &Pair : MDs) { 1831 if (Pair.first == LLVMContext::MD_prof) { 1832 MDNode *MD = Pair.second; 1833 Assert(MD->getNumOperands() >= 2, 1834 "!prof annotations should have no less than 2 operands", MD); 1835 1836 // Check first operand. 1837 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 1838 MD); 1839 Assert(isa<MDString>(MD->getOperand(0)), 1840 "expected string with name of the !prof annotation", MD); 1841 MDString *MDS = cast<MDString>(MD->getOperand(0)); 1842 StringRef ProfName = MDS->getString(); 1843 Assert(ProfName.equals("function_entry_count") || 1844 ProfName.equals("synthetic_function_entry_count"), 1845 "first operand should be 'function_entry_count'" 1846 " or 'synthetic_function_entry_count'", 1847 MD); 1848 1849 // Check second operand. 1850 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 1851 MD); 1852 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 1853 "expected integer argument to function_entry_count", MD); 1854 } 1855 } 1856 } 1857 1858 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 1859 if (!ConstantExprVisited.insert(EntryC).second) 1860 return; 1861 1862 SmallVector<const Constant *, 16> Stack; 1863 Stack.push_back(EntryC); 1864 1865 while (!Stack.empty()) { 1866 const Constant *C = Stack.pop_back_val(); 1867 1868 // Check this constant expression. 1869 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 1870 visitConstantExpr(CE); 1871 1872 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 1873 // Global Values get visited separately, but we do need to make sure 1874 // that the global value is in the correct module 1875 Assert(GV->getParent() == &M, "Referencing global in another module!", 1876 EntryC, &M, GV, GV->getParent()); 1877 continue; 1878 } 1879 1880 // Visit all sub-expressions. 1881 for (const Use &U : C->operands()) { 1882 const auto *OpC = dyn_cast<Constant>(U); 1883 if (!OpC) 1884 continue; 1885 if (!ConstantExprVisited.insert(OpC).second) 1886 continue; 1887 Stack.push_back(OpC); 1888 } 1889 } 1890 } 1891 1892 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 1893 if (CE->getOpcode() == Instruction::BitCast) 1894 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 1895 CE->getType()), 1896 "Invalid bitcast", CE); 1897 1898 if (CE->getOpcode() == Instruction::IntToPtr || 1899 CE->getOpcode() == Instruction::PtrToInt) { 1900 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 1901 ? CE->getType() 1902 : CE->getOperand(0)->getType(); 1903 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 1904 ? "inttoptr not supported for non-integral pointers" 1905 : "ptrtoint not supported for non-integral pointers"; 1906 Assert( 1907 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 1908 Msg); 1909 } 1910 } 1911 1912 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 1913 // There shouldn't be more attribute sets than there are parameters plus the 1914 // function and return value. 1915 return Attrs.getNumAttrSets() <= Params + 2; 1916 } 1917 1918 /// Verify that statepoint intrinsic is well formed. 1919 void Verifier::verifyStatepoint(const CallBase &Call) { 1920 assert(Call.getCalledFunction() && 1921 Call.getCalledFunction()->getIntrinsicID() == 1922 Intrinsic::experimental_gc_statepoint); 1923 1924 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 1925 !Call.onlyAccessesArgMemory(), 1926 "gc.statepoint must read and write all memory to preserve " 1927 "reordering restrictions required by safepoint semantics", 1928 Call); 1929 1930 const int64_t NumPatchBytes = 1931 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 1932 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 1933 Assert(NumPatchBytes >= 0, 1934 "gc.statepoint number of patchable bytes must be " 1935 "positive", 1936 Call); 1937 1938 const Value *Target = Call.getArgOperand(2); 1939 auto *PT = dyn_cast<PointerType>(Target->getType()); 1940 Assert(PT && PT->getElementType()->isFunctionTy(), 1941 "gc.statepoint callee must be of function pointer type", Call, Target); 1942 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 1943 1944 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 1945 Assert(NumCallArgs >= 0, 1946 "gc.statepoint number of arguments to underlying call " 1947 "must be positive", 1948 Call); 1949 const int NumParams = (int)TargetFuncType->getNumParams(); 1950 if (TargetFuncType->isVarArg()) { 1951 Assert(NumCallArgs >= NumParams, 1952 "gc.statepoint mismatch in number of vararg call args", Call); 1953 1954 // TODO: Remove this limitation 1955 Assert(TargetFuncType->getReturnType()->isVoidTy(), 1956 "gc.statepoint doesn't support wrapping non-void " 1957 "vararg functions yet", 1958 Call); 1959 } else 1960 Assert(NumCallArgs == NumParams, 1961 "gc.statepoint mismatch in number of call args", Call); 1962 1963 const uint64_t Flags 1964 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 1965 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 1966 "unknown flag used in gc.statepoint flags argument", Call); 1967 1968 // Verify that the types of the call parameter arguments match 1969 // the type of the wrapped callee. 1970 AttributeList Attrs = Call.getAttributes(); 1971 for (int i = 0; i < NumParams; i++) { 1972 Type *ParamType = TargetFuncType->getParamType(i); 1973 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 1974 Assert(ArgType == ParamType, 1975 "gc.statepoint call argument does not match wrapped " 1976 "function type", 1977 Call); 1978 1979 if (TargetFuncType->isVarArg()) { 1980 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); 1981 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 1982 "Attribute 'sret' cannot be used for vararg call arguments!", 1983 Call); 1984 } 1985 } 1986 1987 const int EndCallArgsInx = 4 + NumCallArgs; 1988 1989 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 1990 Assert(isa<ConstantInt>(NumTransitionArgsV), 1991 "gc.statepoint number of transition arguments " 1992 "must be constant integer", 1993 Call); 1994 const int NumTransitionArgs = 1995 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 1996 Assert(NumTransitionArgs >= 0, 1997 "gc.statepoint number of transition arguments must be positive", Call); 1998 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 1999 2000 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2001 Assert(isa<ConstantInt>(NumDeoptArgsV), 2002 "gc.statepoint number of deoptimization arguments " 2003 "must be constant integer", 2004 Call); 2005 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2006 Assert(NumDeoptArgs >= 0, 2007 "gc.statepoint number of deoptimization arguments " 2008 "must be positive", 2009 Call); 2010 2011 const int ExpectedNumArgs = 2012 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; 2013 Assert(ExpectedNumArgs <= (int)Call.arg_size(), 2014 "gc.statepoint too few arguments according to length fields", Call); 2015 2016 // Check that the only uses of this gc.statepoint are gc.result or 2017 // gc.relocate calls which are tied to this statepoint and thus part 2018 // of the same statepoint sequence 2019 for (const User *U : Call.users()) { 2020 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2021 Assert(UserCall, "illegal use of statepoint token", Call, U); 2022 if (!UserCall) 2023 continue; 2024 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2025 "gc.result or gc.relocate are the only value uses " 2026 "of a gc.statepoint", 2027 Call, U); 2028 if (isa<GCResultInst>(UserCall)) { 2029 Assert(UserCall->getArgOperand(0) == &Call, 2030 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2031 } else if (isa<GCRelocateInst>(Call)) { 2032 Assert(UserCall->getArgOperand(0) == &Call, 2033 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2034 } 2035 } 2036 2037 // Note: It is legal for a single derived pointer to be listed multiple 2038 // times. It's non-optimal, but it is legal. It can also happen after 2039 // insertion if we strip a bitcast away. 2040 // Note: It is really tempting to check that each base is relocated and 2041 // that a derived pointer is never reused as a base pointer. This turns 2042 // out to be problematic since optimizations run after safepoint insertion 2043 // can recognize equality properties that the insertion logic doesn't know 2044 // about. See example statepoint.ll in the verifier subdirectory 2045 } 2046 2047 void Verifier::verifyFrameRecoverIndices() { 2048 for (auto &Counts : FrameEscapeInfo) { 2049 Function *F = Counts.first; 2050 unsigned EscapedObjectCount = Counts.second.first; 2051 unsigned MaxRecoveredIndex = Counts.second.second; 2052 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2053 "all indices passed to llvm.localrecover must be less than the " 2054 "number of arguments passed to llvm.localescape in the parent " 2055 "function", 2056 F); 2057 } 2058 } 2059 2060 static Instruction *getSuccPad(Instruction *Terminator) { 2061 BasicBlock *UnwindDest; 2062 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2063 UnwindDest = II->getUnwindDest(); 2064 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2065 UnwindDest = CSI->getUnwindDest(); 2066 else 2067 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2068 return UnwindDest->getFirstNonPHI(); 2069 } 2070 2071 void Verifier::verifySiblingFuncletUnwinds() { 2072 SmallPtrSet<Instruction *, 8> Visited; 2073 SmallPtrSet<Instruction *, 8> Active; 2074 for (const auto &Pair : SiblingFuncletInfo) { 2075 Instruction *PredPad = Pair.first; 2076 if (Visited.count(PredPad)) 2077 continue; 2078 Active.insert(PredPad); 2079 Instruction *Terminator = Pair.second; 2080 do { 2081 Instruction *SuccPad = getSuccPad(Terminator); 2082 if (Active.count(SuccPad)) { 2083 // Found a cycle; report error 2084 Instruction *CyclePad = SuccPad; 2085 SmallVector<Instruction *, 8> CycleNodes; 2086 do { 2087 CycleNodes.push_back(CyclePad); 2088 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2089 if (CycleTerminator != CyclePad) 2090 CycleNodes.push_back(CycleTerminator); 2091 CyclePad = getSuccPad(CycleTerminator); 2092 } while (CyclePad != SuccPad); 2093 Assert(false, "EH pads can't handle each other's exceptions", 2094 ArrayRef<Instruction *>(CycleNodes)); 2095 } 2096 // Don't re-walk a node we've already checked 2097 if (!Visited.insert(SuccPad).second) 2098 break; 2099 // Walk to this successor if it has a map entry. 2100 PredPad = SuccPad; 2101 auto TermI = SiblingFuncletInfo.find(PredPad); 2102 if (TermI == SiblingFuncletInfo.end()) 2103 break; 2104 Terminator = TermI->second; 2105 Active.insert(PredPad); 2106 } while (true); 2107 // Each node only has one successor, so we've walked all the active 2108 // nodes' successors. 2109 Active.clear(); 2110 } 2111 } 2112 2113 // visitFunction - Verify that a function is ok. 2114 // 2115 void Verifier::visitFunction(const Function &F) { 2116 visitGlobalValue(F); 2117 2118 // Check function arguments. 2119 FunctionType *FT = F.getFunctionType(); 2120 unsigned NumArgs = F.arg_size(); 2121 2122 Assert(&Context == &F.getContext(), 2123 "Function context does not match Module context!", &F); 2124 2125 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2126 Assert(FT->getNumParams() == NumArgs, 2127 "# formal arguments must match # of arguments for function type!", &F, 2128 FT); 2129 Assert(F.getReturnType()->isFirstClassType() || 2130 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2131 "Functions cannot return aggregate values!", &F); 2132 2133 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2134 "Invalid struct return type!", &F); 2135 2136 AttributeList Attrs = F.getAttributes(); 2137 2138 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2139 "Attribute after last parameter!", &F); 2140 2141 bool isLLVMdotName = F.getName().size() >= 5 && 2142 F.getName().substr(0, 5) == "llvm."; 2143 2144 // Check function attributes. 2145 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName); 2146 2147 // On function declarations/definitions, we do not support the builtin 2148 // attribute. We do not check this in VerifyFunctionAttrs since that is 2149 // checking for Attributes that can/can not ever be on functions. 2150 Assert(!Attrs.hasFnAttribute(Attribute::Builtin), 2151 "Attribute 'builtin' can only be applied to a callsite.", &F); 2152 2153 // Check that this function meets the restrictions on this calling convention. 2154 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2155 // restrictions can be lifted. 2156 switch (F.getCallingConv()) { 2157 default: 2158 case CallingConv::C: 2159 break; 2160 case CallingConv::AMDGPU_KERNEL: 2161 case CallingConv::SPIR_KERNEL: 2162 Assert(F.getReturnType()->isVoidTy(), 2163 "Calling convention requires void return type", &F); 2164 LLVM_FALLTHROUGH; 2165 case CallingConv::AMDGPU_VS: 2166 case CallingConv::AMDGPU_HS: 2167 case CallingConv::AMDGPU_GS: 2168 case CallingConv::AMDGPU_PS: 2169 case CallingConv::AMDGPU_CS: 2170 Assert(!F.hasStructRetAttr(), 2171 "Calling convention does not allow sret", &F); 2172 LLVM_FALLTHROUGH; 2173 case CallingConv::Fast: 2174 case CallingConv::Cold: 2175 case CallingConv::Intel_OCL_BI: 2176 case CallingConv::PTX_Kernel: 2177 case CallingConv::PTX_Device: 2178 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2179 "perfect forwarding!", 2180 &F); 2181 break; 2182 } 2183 2184 // Check that the argument values match the function type for this function... 2185 unsigned i = 0; 2186 for (const Argument &Arg : F.args()) { 2187 Assert(Arg.getType() == FT->getParamType(i), 2188 "Argument value does not match function argument type!", &Arg, 2189 FT->getParamType(i)); 2190 Assert(Arg.getType()->isFirstClassType(), 2191 "Function arguments must have first-class types!", &Arg); 2192 if (!isLLVMdotName) { 2193 Assert(!Arg.getType()->isMetadataTy(), 2194 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2195 Assert(!Arg.getType()->isTokenTy(), 2196 "Function takes token but isn't an intrinsic", &Arg, &F); 2197 } 2198 2199 // Check that swifterror argument is only used by loads and stores. 2200 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { 2201 verifySwiftErrorValue(&Arg); 2202 } 2203 ++i; 2204 } 2205 2206 if (!isLLVMdotName) 2207 Assert(!F.getReturnType()->isTokenTy(), 2208 "Functions returns a token but isn't an intrinsic", &F); 2209 2210 // Get the function metadata attachments. 2211 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2212 F.getAllMetadata(MDs); 2213 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2214 verifyFunctionMetadata(MDs); 2215 2216 // Check validity of the personality function 2217 if (F.hasPersonalityFn()) { 2218 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2219 if (Per) 2220 Assert(Per->getParent() == F.getParent(), 2221 "Referencing personality function in another module!", 2222 &F, F.getParent(), Per, Per->getParent()); 2223 } 2224 2225 if (F.isMaterializable()) { 2226 // Function has a body somewhere we can't see. 2227 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2228 MDs.empty() ? nullptr : MDs.front().second); 2229 } else if (F.isDeclaration()) { 2230 for (const auto &I : MDs) { 2231 AssertDI(I.first != LLVMContext::MD_dbg, 2232 "function declaration may not have a !dbg attachment", &F); 2233 Assert(I.first != LLVMContext::MD_prof, 2234 "function declaration may not have a !prof attachment", &F); 2235 2236 // Verify the metadata itself. 2237 visitMDNode(*I.second); 2238 } 2239 Assert(!F.hasPersonalityFn(), 2240 "Function declaration shouldn't have a personality routine", &F); 2241 } else { 2242 // Verify that this function (which has a body) is not named "llvm.*". It 2243 // is not legal to define intrinsics. 2244 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 2245 2246 // Check the entry node 2247 const BasicBlock *Entry = &F.getEntryBlock(); 2248 Assert(pred_empty(Entry), 2249 "Entry block to function must not have predecessors!", Entry); 2250 2251 // The address of the entry block cannot be taken, unless it is dead. 2252 if (Entry->hasAddressTaken()) { 2253 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2254 "blockaddress may not be used with the entry block!", Entry); 2255 } 2256 2257 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2258 // Visit metadata attachments. 2259 for (const auto &I : MDs) { 2260 // Verify that the attachment is legal. 2261 switch (I.first) { 2262 default: 2263 break; 2264 case LLVMContext::MD_dbg: { 2265 ++NumDebugAttachments; 2266 AssertDI(NumDebugAttachments == 1, 2267 "function must have a single !dbg attachment", &F, I.second); 2268 AssertDI(isa<DISubprogram>(I.second), 2269 "function !dbg attachment must be a subprogram", &F, I.second); 2270 auto *SP = cast<DISubprogram>(I.second); 2271 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2272 AssertDI(!AttachedTo || AttachedTo == &F, 2273 "DISubprogram attached to more than one function", SP, &F); 2274 AttachedTo = &F; 2275 break; 2276 } 2277 case LLVMContext::MD_prof: 2278 ++NumProfAttachments; 2279 Assert(NumProfAttachments == 1, 2280 "function must have a single !prof attachment", &F, I.second); 2281 break; 2282 } 2283 2284 // Verify the metadata itself. 2285 visitMDNode(*I.second); 2286 } 2287 } 2288 2289 // If this function is actually an intrinsic, verify that it is only used in 2290 // direct call/invokes, never having its "address taken". 2291 // Only do this if the module is materialized, otherwise we don't have all the 2292 // uses. 2293 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2294 const User *U; 2295 if (F.hasAddressTaken(&U)) 2296 Assert(false, "Invalid user of intrinsic instruction!", U); 2297 } 2298 2299 auto *N = F.getSubprogram(); 2300 HasDebugInfo = (N != nullptr); 2301 if (!HasDebugInfo) 2302 return; 2303 2304 // Check that all !dbg attachments lead to back to N (or, at least, another 2305 // subprogram that describes the same function). 2306 // 2307 // FIXME: Check this incrementally while visiting !dbg attachments. 2308 // FIXME: Only check when N is the canonical subprogram for F. 2309 SmallPtrSet<const MDNode *, 32> Seen; 2310 for (auto &BB : F) 2311 for (auto &I : BB) { 2312 // Be careful about using DILocation here since we might be dealing with 2313 // broken code (this is the Verifier after all). 2314 DILocation *DL = 2315 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode()); 2316 if (!DL) 2317 continue; 2318 if (!Seen.insert(DL).second) 2319 continue; 2320 2321 Metadata *Parent = DL->getRawScope(); 2322 AssertDI(Parent && isa<DILocalScope>(Parent), 2323 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2324 Parent); 2325 DILocalScope *Scope = DL->getInlinedAtScope(); 2326 if (Scope && !Seen.insert(Scope).second) 2327 continue; 2328 2329 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr; 2330 2331 // Scope and SP could be the same MDNode and we don't want to skip 2332 // validation in that case 2333 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2334 continue; 2335 2336 // FIXME: Once N is canonical, check "SP == &N". 2337 AssertDI(SP->describes(&F), 2338 "!dbg attachment points at wrong subprogram for function", N, &F, 2339 &I, DL, Scope, SP); 2340 } 2341 } 2342 2343 // verifyBasicBlock - Verify that a basic block is well formed... 2344 // 2345 void Verifier::visitBasicBlock(BasicBlock &BB) { 2346 InstsInThisBlock.clear(); 2347 2348 // Ensure that basic blocks have terminators! 2349 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2350 2351 // Check constraints that this basic block imposes on all of the PHI nodes in 2352 // it. 2353 if (isa<PHINode>(BB.front())) { 2354 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 2355 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2356 llvm::sort(Preds); 2357 for (const PHINode &PN : BB.phis()) { 2358 // Ensure that PHI nodes have at least one entry! 2359 Assert(PN.getNumIncomingValues() != 0, 2360 "PHI nodes must have at least one entry. If the block is dead, " 2361 "the PHI should be removed!", 2362 &PN); 2363 Assert(PN.getNumIncomingValues() == Preds.size(), 2364 "PHINode should have one entry for each predecessor of its " 2365 "parent basic block!", 2366 &PN); 2367 2368 // Get and sort all incoming values in the PHI node... 2369 Values.clear(); 2370 Values.reserve(PN.getNumIncomingValues()); 2371 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2372 Values.push_back( 2373 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2374 llvm::sort(Values); 2375 2376 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2377 // Check to make sure that if there is more than one entry for a 2378 // particular basic block in this PHI node, that the incoming values are 2379 // all identical. 2380 // 2381 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2382 Values[i].second == Values[i - 1].second, 2383 "PHI node has multiple entries for the same basic block with " 2384 "different incoming values!", 2385 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2386 2387 // Check to make sure that the predecessors and PHI node entries are 2388 // matched up. 2389 Assert(Values[i].first == Preds[i], 2390 "PHI node entries do not match predecessors!", &PN, 2391 Values[i].first, Preds[i]); 2392 } 2393 } 2394 } 2395 2396 // Check that all instructions have their parent pointers set up correctly. 2397 for (auto &I : BB) 2398 { 2399 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2400 } 2401 } 2402 2403 void Verifier::visitTerminator(Instruction &I) { 2404 // Ensure that terminators only exist at the end of the basic block. 2405 Assert(&I == I.getParent()->getTerminator(), 2406 "Terminator found in the middle of a basic block!", I.getParent()); 2407 visitInstruction(I); 2408 } 2409 2410 void Verifier::visitBranchInst(BranchInst &BI) { 2411 if (BI.isConditional()) { 2412 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2413 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2414 } 2415 visitTerminator(BI); 2416 } 2417 2418 void Verifier::visitReturnInst(ReturnInst &RI) { 2419 Function *F = RI.getParent()->getParent(); 2420 unsigned N = RI.getNumOperands(); 2421 if (F->getReturnType()->isVoidTy()) 2422 Assert(N == 0, 2423 "Found return instr that returns non-void in Function of void " 2424 "return type!", 2425 &RI, F->getReturnType()); 2426 else 2427 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2428 "Function return type does not match operand " 2429 "type of return inst!", 2430 &RI, F->getReturnType()); 2431 2432 // Check to make sure that the return value has necessary properties for 2433 // terminators... 2434 visitTerminator(RI); 2435 } 2436 2437 void Verifier::visitSwitchInst(SwitchInst &SI) { 2438 // Check to make sure that all of the constants in the switch instruction 2439 // have the same type as the switched-on value. 2440 Type *SwitchTy = SI.getCondition()->getType(); 2441 SmallPtrSet<ConstantInt*, 32> Constants; 2442 for (auto &Case : SI.cases()) { 2443 Assert(Case.getCaseValue()->getType() == SwitchTy, 2444 "Switch constants must all be same type as switch value!", &SI); 2445 Assert(Constants.insert(Case.getCaseValue()).second, 2446 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2447 } 2448 2449 visitTerminator(SI); 2450 } 2451 2452 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2453 Assert(BI.getAddress()->getType()->isPointerTy(), 2454 "Indirectbr operand must have pointer type!", &BI); 2455 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2456 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2457 "Indirectbr destinations must all have pointer type!", &BI); 2458 2459 visitTerminator(BI); 2460 } 2461 2462 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2463 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2464 &CBI); 2465 Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!", 2466 &CBI); 2467 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2468 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2469 "Callbr successors must all have pointer type!", &CBI); 2470 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2471 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), 2472 "Using an unescaped label as a callbr argument!", &CBI); 2473 if (isa<BasicBlock>(CBI.getOperand(i))) 2474 for (unsigned j = i + 1; j != e; ++j) 2475 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2476 "Duplicate callbr destination!", &CBI); 2477 } 2478 2479 visitTerminator(CBI); 2480 } 2481 2482 void Verifier::visitSelectInst(SelectInst &SI) { 2483 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2484 SI.getOperand(2)), 2485 "Invalid operands for select instruction!", &SI); 2486 2487 Assert(SI.getTrueValue()->getType() == SI.getType(), 2488 "Select values must have same type as select instruction!", &SI); 2489 visitInstruction(SI); 2490 } 2491 2492 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2493 /// a pass, if any exist, it's an error. 2494 /// 2495 void Verifier::visitUserOp1(Instruction &I) { 2496 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2497 } 2498 2499 void Verifier::visitTruncInst(TruncInst &I) { 2500 // Get the source and destination types 2501 Type *SrcTy = I.getOperand(0)->getType(); 2502 Type *DestTy = I.getType(); 2503 2504 // Get the size of the types in bits, we'll need this later 2505 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2506 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2507 2508 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2509 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2510 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2511 "trunc source and destination must both be a vector or neither", &I); 2512 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2513 2514 visitInstruction(I); 2515 } 2516 2517 void Verifier::visitZExtInst(ZExtInst &I) { 2518 // Get the source and destination types 2519 Type *SrcTy = I.getOperand(0)->getType(); 2520 Type *DestTy = I.getType(); 2521 2522 // Get the size of the types in bits, we'll need this later 2523 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2524 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2525 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2526 "zext source and destination must both be a vector or neither", &I); 2527 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2528 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2529 2530 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2531 2532 visitInstruction(I); 2533 } 2534 2535 void Verifier::visitSExtInst(SExtInst &I) { 2536 // Get the source and destination types 2537 Type *SrcTy = I.getOperand(0)->getType(); 2538 Type *DestTy = I.getType(); 2539 2540 // Get the size of the types in bits, we'll need this later 2541 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2542 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2543 2544 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2545 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2546 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2547 "sext source and destination must both be a vector or neither", &I); 2548 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2549 2550 visitInstruction(I); 2551 } 2552 2553 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2554 // Get the source and destination types 2555 Type *SrcTy = I.getOperand(0)->getType(); 2556 Type *DestTy = I.getType(); 2557 // Get the size of the types in bits, we'll need this later 2558 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2559 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2560 2561 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2562 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2563 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2564 "fptrunc source and destination must both be a vector or neither", &I); 2565 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2566 2567 visitInstruction(I); 2568 } 2569 2570 void Verifier::visitFPExtInst(FPExtInst &I) { 2571 // Get the source and destination types 2572 Type *SrcTy = I.getOperand(0)->getType(); 2573 Type *DestTy = I.getType(); 2574 2575 // Get the size of the types in bits, we'll need this later 2576 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2577 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2578 2579 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2580 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2581 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2582 "fpext source and destination must both be a vector or neither", &I); 2583 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2584 2585 visitInstruction(I); 2586 } 2587 2588 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2589 // Get the source and destination types 2590 Type *SrcTy = I.getOperand(0)->getType(); 2591 Type *DestTy = I.getType(); 2592 2593 bool SrcVec = SrcTy->isVectorTy(); 2594 bool DstVec = DestTy->isVectorTy(); 2595 2596 Assert(SrcVec == DstVec, 2597 "UIToFP source and dest must both be vector or scalar", &I); 2598 Assert(SrcTy->isIntOrIntVectorTy(), 2599 "UIToFP source must be integer or integer vector", &I); 2600 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2601 &I); 2602 2603 if (SrcVec && DstVec) 2604 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2605 cast<VectorType>(DestTy)->getNumElements(), 2606 "UIToFP source and dest vector length mismatch", &I); 2607 2608 visitInstruction(I); 2609 } 2610 2611 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2612 // Get the source and destination types 2613 Type *SrcTy = I.getOperand(0)->getType(); 2614 Type *DestTy = I.getType(); 2615 2616 bool SrcVec = SrcTy->isVectorTy(); 2617 bool DstVec = DestTy->isVectorTy(); 2618 2619 Assert(SrcVec == DstVec, 2620 "SIToFP source and dest must both be vector or scalar", &I); 2621 Assert(SrcTy->isIntOrIntVectorTy(), 2622 "SIToFP source must be integer or integer vector", &I); 2623 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2624 &I); 2625 2626 if (SrcVec && DstVec) 2627 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2628 cast<VectorType>(DestTy)->getNumElements(), 2629 "SIToFP source and dest vector length mismatch", &I); 2630 2631 visitInstruction(I); 2632 } 2633 2634 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2635 // Get the source and destination types 2636 Type *SrcTy = I.getOperand(0)->getType(); 2637 Type *DestTy = I.getType(); 2638 2639 bool SrcVec = SrcTy->isVectorTy(); 2640 bool DstVec = DestTy->isVectorTy(); 2641 2642 Assert(SrcVec == DstVec, 2643 "FPToUI source and dest must both be vector or scalar", &I); 2644 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2645 &I); 2646 Assert(DestTy->isIntOrIntVectorTy(), 2647 "FPToUI result must be integer or integer vector", &I); 2648 2649 if (SrcVec && DstVec) 2650 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2651 cast<VectorType>(DestTy)->getNumElements(), 2652 "FPToUI source and dest vector length mismatch", &I); 2653 2654 visitInstruction(I); 2655 } 2656 2657 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2658 // Get the source and destination types 2659 Type *SrcTy = I.getOperand(0)->getType(); 2660 Type *DestTy = I.getType(); 2661 2662 bool SrcVec = SrcTy->isVectorTy(); 2663 bool DstVec = DestTy->isVectorTy(); 2664 2665 Assert(SrcVec == DstVec, 2666 "FPToSI source and dest must both be vector or scalar", &I); 2667 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2668 &I); 2669 Assert(DestTy->isIntOrIntVectorTy(), 2670 "FPToSI result must be integer or integer vector", &I); 2671 2672 if (SrcVec && DstVec) 2673 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2674 cast<VectorType>(DestTy)->getNumElements(), 2675 "FPToSI source and dest vector length mismatch", &I); 2676 2677 visitInstruction(I); 2678 } 2679 2680 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2681 // Get the source and destination types 2682 Type *SrcTy = I.getOperand(0)->getType(); 2683 Type *DestTy = I.getType(); 2684 2685 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2686 2687 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 2688 Assert(!DL.isNonIntegralPointerType(PTy), 2689 "ptrtoint not supported for non-integral pointers"); 2690 2691 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 2692 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2693 &I); 2694 2695 if (SrcTy->isVectorTy()) { 2696 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 2697 VectorType *VDest = dyn_cast<VectorType>(DestTy); 2698 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2699 "PtrToInt Vector width mismatch", &I); 2700 } 2701 2702 visitInstruction(I); 2703 } 2704 2705 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2706 // Get the source and destination types 2707 Type *SrcTy = I.getOperand(0)->getType(); 2708 Type *DestTy = I.getType(); 2709 2710 Assert(SrcTy->isIntOrIntVectorTy(), 2711 "IntToPtr source must be an integral", &I); 2712 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 2713 2714 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 2715 Assert(!DL.isNonIntegralPointerType(PTy), 2716 "inttoptr not supported for non-integral pointers"); 2717 2718 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2719 &I); 2720 if (SrcTy->isVectorTy()) { 2721 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 2722 VectorType *VDest = dyn_cast<VectorType>(DestTy); 2723 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2724 "IntToPtr Vector width mismatch", &I); 2725 } 2726 visitInstruction(I); 2727 } 2728 2729 void Verifier::visitBitCastInst(BitCastInst &I) { 2730 Assert( 2731 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2732 "Invalid bitcast", &I); 2733 visitInstruction(I); 2734 } 2735 2736 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2737 Type *SrcTy = I.getOperand(0)->getType(); 2738 Type *DestTy = I.getType(); 2739 2740 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2741 &I); 2742 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 2743 &I); 2744 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 2745 "AddrSpaceCast must be between different address spaces", &I); 2746 if (SrcTy->isVectorTy()) 2747 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), 2748 "AddrSpaceCast vector pointer number of elements mismatch", &I); 2749 visitInstruction(I); 2750 } 2751 2752 /// visitPHINode - Ensure that a PHI node is well formed. 2753 /// 2754 void Verifier::visitPHINode(PHINode &PN) { 2755 // Ensure that the PHI nodes are all grouped together at the top of the block. 2756 // This can be tested by checking whether the instruction before this is 2757 // either nonexistent (because this is begin()) or is a PHI node. If not, 2758 // then there is some other instruction before a PHI. 2759 Assert(&PN == &PN.getParent()->front() || 2760 isa<PHINode>(--BasicBlock::iterator(&PN)), 2761 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 2762 2763 // Check that a PHI doesn't yield a Token. 2764 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 2765 2766 // Check that all of the values of the PHI node have the same type as the 2767 // result, and that the incoming blocks are really basic blocks. 2768 for (Value *IncValue : PN.incoming_values()) { 2769 Assert(PN.getType() == IncValue->getType(), 2770 "PHI node operands are not the same type as the result!", &PN); 2771 } 2772 2773 // All other PHI node constraints are checked in the visitBasicBlock method. 2774 2775 visitInstruction(PN); 2776 } 2777 2778 void Verifier::visitCallBase(CallBase &Call) { 2779 Assert(Call.getCalledValue()->getType()->isPointerTy(), 2780 "Called function must be a pointer!", Call); 2781 PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType()); 2782 2783 Assert(FPTy->getElementType()->isFunctionTy(), 2784 "Called function is not pointer to function type!", Call); 2785 2786 Assert(FPTy->getElementType() == Call.getFunctionType(), 2787 "Called function is not the same type as the call!", Call); 2788 2789 FunctionType *FTy = Call.getFunctionType(); 2790 2791 // Verify that the correct number of arguments are being passed 2792 if (FTy->isVarArg()) 2793 Assert(Call.arg_size() >= FTy->getNumParams(), 2794 "Called function requires more parameters than were provided!", 2795 Call); 2796 else 2797 Assert(Call.arg_size() == FTy->getNumParams(), 2798 "Incorrect number of arguments passed to called function!", Call); 2799 2800 // Verify that all arguments to the call match the function type. 2801 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2802 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 2803 "Call parameter type does not match function signature!", 2804 Call.getArgOperand(i), FTy->getParamType(i), Call); 2805 2806 AttributeList Attrs = Call.getAttributes(); 2807 2808 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 2809 "Attribute after last parameter!", Call); 2810 2811 bool IsIntrinsic = Call.getCalledFunction() && 2812 Call.getCalledFunction()->getName().startswith("llvm."); 2813 2814 Function *Callee 2815 = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts()); 2816 2817 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) { 2818 // Don't allow speculatable on call sites, unless the underlying function 2819 // declaration is also speculatable. 2820 Assert(Callee && Callee->isSpeculatable(), 2821 "speculatable attribute may not apply to call sites", Call); 2822 } 2823 2824 // Verify call attributes. 2825 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 2826 2827 // Conservatively check the inalloca argument. 2828 // We have a bug if we can find that there is an underlying alloca without 2829 // inalloca. 2830 if (Call.hasInAllocaArgument()) { 2831 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 2832 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 2833 Assert(AI->isUsedWithInAlloca(), 2834 "inalloca argument for call has mismatched alloca", AI, Call); 2835 } 2836 2837 // For each argument of the callsite, if it has the swifterror argument, 2838 // make sure the underlying alloca/parameter it comes from has a swifterror as 2839 // well. 2840 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2841 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 2842 Value *SwiftErrorArg = Call.getArgOperand(i); 2843 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 2844 Assert(AI->isSwiftError(), 2845 "swifterror argument for call has mismatched alloca", AI, Call); 2846 continue; 2847 } 2848 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 2849 Assert(ArgI, 2850 "swifterror argument should come from an alloca or parameter", 2851 SwiftErrorArg, Call); 2852 Assert(ArgI->hasSwiftErrorAttr(), 2853 "swifterror argument for call has mismatched parameter", ArgI, 2854 Call); 2855 } 2856 2857 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) { 2858 // Don't allow immarg on call sites, unless the underlying declaration 2859 // also has the matching immarg. 2860 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 2861 "immarg may not apply only to call sites", 2862 Call.getArgOperand(i), Call); 2863 } 2864 2865 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 2866 Value *ArgVal = Call.getArgOperand(i); 2867 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 2868 "immarg operand has non-immediate parameter", ArgVal, Call); 2869 } 2870 } 2871 2872 if (FTy->isVarArg()) { 2873 // FIXME? is 'nest' even legal here? 2874 bool SawNest = false; 2875 bool SawReturned = false; 2876 2877 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 2878 if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) 2879 SawNest = true; 2880 if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) 2881 SawReturned = true; 2882 } 2883 2884 // Check attributes on the varargs part. 2885 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 2886 Type *Ty = Call.getArgOperand(Idx)->getType(); 2887 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); 2888 verifyParameterAttrs(ArgAttrs, Ty, &Call); 2889 2890 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 2891 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 2892 SawNest = true; 2893 } 2894 2895 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 2896 Assert(!SawReturned, "More than one parameter has attribute returned!", 2897 Call); 2898 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 2899 "Incompatible argument and return types for 'returned' " 2900 "attribute", 2901 Call); 2902 SawReturned = true; 2903 } 2904 2905 // Statepoint intrinsic is vararg but the wrapped function may be not. 2906 // Allow sret here and check the wrapped function in verifyStatepoint. 2907 if (!Call.getCalledFunction() || 2908 Call.getCalledFunction()->getIntrinsicID() != 2909 Intrinsic::experimental_gc_statepoint) 2910 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2911 "Attribute 'sret' cannot be used for vararg call arguments!", 2912 Call); 2913 2914 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 2915 Assert(Idx == Call.arg_size() - 1, 2916 "inalloca isn't on the last argument!", Call); 2917 } 2918 } 2919 2920 // Verify that there's no metadata unless it's a direct call to an intrinsic. 2921 if (!IsIntrinsic) { 2922 for (Type *ParamTy : FTy->params()) { 2923 Assert(!ParamTy->isMetadataTy(), 2924 "Function has metadata parameter but isn't an intrinsic", Call); 2925 Assert(!ParamTy->isTokenTy(), 2926 "Function has token parameter but isn't an intrinsic", Call); 2927 } 2928 } 2929 2930 // Verify that indirect calls don't return tokens. 2931 if (!Call.getCalledFunction()) 2932 Assert(!FTy->getReturnType()->isTokenTy(), 2933 "Return type cannot be token for indirect call!"); 2934 2935 if (Function *F = Call.getCalledFunction()) 2936 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 2937 visitIntrinsicCall(ID, Call); 2938 2939 // Verify that a callsite has at most one "deopt", at most one "funclet" and 2940 // at most one "gc-transition" operand bundle. 2941 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 2942 FoundGCTransitionBundle = false; 2943 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 2944 OperandBundleUse BU = Call.getOperandBundleAt(i); 2945 uint32_t Tag = BU.getTagID(); 2946 if (Tag == LLVMContext::OB_deopt) { 2947 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 2948 FoundDeoptBundle = true; 2949 } else if (Tag == LLVMContext::OB_gc_transition) { 2950 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 2951 Call); 2952 FoundGCTransitionBundle = true; 2953 } else if (Tag == LLVMContext::OB_funclet) { 2954 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 2955 FoundFuncletBundle = true; 2956 Assert(BU.Inputs.size() == 1, 2957 "Expected exactly one funclet bundle operand", Call); 2958 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 2959 "Funclet bundle operands should correspond to a FuncletPadInst", 2960 Call); 2961 } 2962 } 2963 2964 // Verify that each inlinable callsite of a debug-info-bearing function in a 2965 // debug-info-bearing function has a debug location attached to it. Failure to 2966 // do so causes assertion failures when the inliner sets up inline scope info. 2967 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 2968 Call.getCalledFunction()->getSubprogram()) 2969 AssertDI(Call.getDebugLoc(), 2970 "inlinable function call in a function with " 2971 "debug info must have a !dbg location", 2972 Call); 2973 2974 visitInstruction(Call); 2975 } 2976 2977 /// Two types are "congruent" if they are identical, or if they are both pointer 2978 /// types with different pointee types and the same address space. 2979 static bool isTypeCongruent(Type *L, Type *R) { 2980 if (L == R) 2981 return true; 2982 PointerType *PL = dyn_cast<PointerType>(L); 2983 PointerType *PR = dyn_cast<PointerType>(R); 2984 if (!PL || !PR) 2985 return false; 2986 return PL->getAddressSpace() == PR->getAddressSpace(); 2987 } 2988 2989 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 2990 static const Attribute::AttrKind ABIAttrs[] = { 2991 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 2992 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf, 2993 Attribute::SwiftError}; 2994 AttrBuilder Copy; 2995 for (auto AK : ABIAttrs) { 2996 if (Attrs.hasParamAttribute(I, AK)) 2997 Copy.addAttribute(AK); 2998 } 2999 if (Attrs.hasParamAttribute(I, Attribute::Alignment)) 3000 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3001 return Copy; 3002 } 3003 3004 void Verifier::verifyMustTailCall(CallInst &CI) { 3005 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3006 3007 // - The caller and callee prototypes must match. Pointer types of 3008 // parameters or return types may differ in pointee type, but not 3009 // address space. 3010 Function *F = CI.getParent()->getParent(); 3011 FunctionType *CallerTy = F->getFunctionType(); 3012 FunctionType *CalleeTy = CI.getFunctionType(); 3013 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3014 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3015 "cannot guarantee tail call due to mismatched parameter counts", 3016 &CI); 3017 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3018 Assert( 3019 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3020 "cannot guarantee tail call due to mismatched parameter types", &CI); 3021 } 3022 } 3023 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3024 "cannot guarantee tail call due to mismatched varargs", &CI); 3025 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3026 "cannot guarantee tail call due to mismatched return types", &CI); 3027 3028 // - The calling conventions of the caller and callee must match. 3029 Assert(F->getCallingConv() == CI.getCallingConv(), 3030 "cannot guarantee tail call due to mismatched calling conv", &CI); 3031 3032 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3033 // returned, and inalloca, must match. 3034 AttributeList CallerAttrs = F->getAttributes(); 3035 AttributeList CalleeAttrs = CI.getAttributes(); 3036 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3037 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3038 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3039 Assert(CallerABIAttrs == CalleeABIAttrs, 3040 "cannot guarantee tail call due to mismatched ABI impacting " 3041 "function attributes", 3042 &CI, CI.getOperand(I)); 3043 } 3044 3045 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3046 // or a pointer bitcast followed by a ret instruction. 3047 // - The ret instruction must return the (possibly bitcasted) value 3048 // produced by the call or void. 3049 Value *RetVal = &CI; 3050 Instruction *Next = CI.getNextNode(); 3051 3052 // Handle the optional bitcast. 3053 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3054 Assert(BI->getOperand(0) == RetVal, 3055 "bitcast following musttail call must use the call", BI); 3056 RetVal = BI; 3057 Next = BI->getNextNode(); 3058 } 3059 3060 // Check the return. 3061 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3062 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3063 &CI); 3064 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 3065 "musttail call result must be returned", Ret); 3066 } 3067 3068 void Verifier::visitCallInst(CallInst &CI) { 3069 visitCallBase(CI); 3070 3071 if (CI.isMustTailCall()) 3072 verifyMustTailCall(CI); 3073 } 3074 3075 void Verifier::visitInvokeInst(InvokeInst &II) { 3076 visitCallBase(II); 3077 3078 // Verify that the first non-PHI instruction of the unwind destination is an 3079 // exception handling instruction. 3080 Assert( 3081 II.getUnwindDest()->isEHPad(), 3082 "The unwind destination does not have an exception handling instruction!", 3083 &II); 3084 3085 visitTerminator(II); 3086 } 3087 3088 /// visitUnaryOperator - Check the argument to the unary operator. 3089 /// 3090 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3091 Assert(U.getType() == U.getOperand(0)->getType(), 3092 "Unary operators must have same type for" 3093 "operands and result!", 3094 &U); 3095 3096 switch (U.getOpcode()) { 3097 // Check that floating-point arithmetic operators are only used with 3098 // floating-point operands. 3099 case Instruction::FNeg: 3100 Assert(U.getType()->isFPOrFPVectorTy(), 3101 "FNeg operator only works with float types!", &U); 3102 break; 3103 default: 3104 llvm_unreachable("Unknown UnaryOperator opcode!"); 3105 } 3106 3107 visitInstruction(U); 3108 } 3109 3110 /// visitBinaryOperator - Check that both arguments to the binary operator are 3111 /// of the same type! 3112 /// 3113 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3114 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3115 "Both operands to a binary operator are not of the same type!", &B); 3116 3117 switch (B.getOpcode()) { 3118 // Check that integer arithmetic operators are only used with 3119 // integral operands. 3120 case Instruction::Add: 3121 case Instruction::Sub: 3122 case Instruction::Mul: 3123 case Instruction::SDiv: 3124 case Instruction::UDiv: 3125 case Instruction::SRem: 3126 case Instruction::URem: 3127 Assert(B.getType()->isIntOrIntVectorTy(), 3128 "Integer arithmetic operators only work with integral types!", &B); 3129 Assert(B.getType() == B.getOperand(0)->getType(), 3130 "Integer arithmetic operators must have same type " 3131 "for operands and result!", 3132 &B); 3133 break; 3134 // Check that floating-point arithmetic operators are only used with 3135 // floating-point operands. 3136 case Instruction::FAdd: 3137 case Instruction::FSub: 3138 case Instruction::FMul: 3139 case Instruction::FDiv: 3140 case Instruction::FRem: 3141 Assert(B.getType()->isFPOrFPVectorTy(), 3142 "Floating-point arithmetic operators only work with " 3143 "floating-point types!", 3144 &B); 3145 Assert(B.getType() == B.getOperand(0)->getType(), 3146 "Floating-point arithmetic operators must have same type " 3147 "for operands and result!", 3148 &B); 3149 break; 3150 // Check that logical operators are only used with integral operands. 3151 case Instruction::And: 3152 case Instruction::Or: 3153 case Instruction::Xor: 3154 Assert(B.getType()->isIntOrIntVectorTy(), 3155 "Logical operators only work with integral types!", &B); 3156 Assert(B.getType() == B.getOperand(0)->getType(), 3157 "Logical operators must have same type for operands and result!", 3158 &B); 3159 break; 3160 case Instruction::Shl: 3161 case Instruction::LShr: 3162 case Instruction::AShr: 3163 Assert(B.getType()->isIntOrIntVectorTy(), 3164 "Shifts only work with integral types!", &B); 3165 Assert(B.getType() == B.getOperand(0)->getType(), 3166 "Shift return type must be same as operands!", &B); 3167 break; 3168 default: 3169 llvm_unreachable("Unknown BinaryOperator opcode!"); 3170 } 3171 3172 visitInstruction(B); 3173 } 3174 3175 void Verifier::visitICmpInst(ICmpInst &IC) { 3176 // Check that the operands are the same type 3177 Type *Op0Ty = IC.getOperand(0)->getType(); 3178 Type *Op1Ty = IC.getOperand(1)->getType(); 3179 Assert(Op0Ty == Op1Ty, 3180 "Both operands to ICmp instruction are not of the same type!", &IC); 3181 // Check that the operands are the right type 3182 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3183 "Invalid operand types for ICmp instruction", &IC); 3184 // Check that the predicate is valid. 3185 Assert(IC.isIntPredicate(), 3186 "Invalid predicate in ICmp instruction!", &IC); 3187 3188 visitInstruction(IC); 3189 } 3190 3191 void Verifier::visitFCmpInst(FCmpInst &FC) { 3192 // Check that the operands are the same type 3193 Type *Op0Ty = FC.getOperand(0)->getType(); 3194 Type *Op1Ty = FC.getOperand(1)->getType(); 3195 Assert(Op0Ty == Op1Ty, 3196 "Both operands to FCmp instruction are not of the same type!", &FC); 3197 // Check that the operands are the right type 3198 Assert(Op0Ty->isFPOrFPVectorTy(), 3199 "Invalid operand types for FCmp instruction", &FC); 3200 // Check that the predicate is valid. 3201 Assert(FC.isFPPredicate(), 3202 "Invalid predicate in FCmp instruction!", &FC); 3203 3204 visitInstruction(FC); 3205 } 3206 3207 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3208 Assert( 3209 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3210 "Invalid extractelement operands!", &EI); 3211 visitInstruction(EI); 3212 } 3213 3214 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3215 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3216 IE.getOperand(2)), 3217 "Invalid insertelement operands!", &IE); 3218 visitInstruction(IE); 3219 } 3220 3221 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3222 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3223 SV.getOperand(2)), 3224 "Invalid shufflevector operands!", &SV); 3225 visitInstruction(SV); 3226 } 3227 3228 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3229 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3230 3231 Assert(isa<PointerType>(TargetTy), 3232 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3233 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3234 3235 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 3236 Assert(all_of( 3237 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3238 "GEP indexes must be integers", &GEP); 3239 Type *ElTy = 3240 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3241 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3242 3243 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3244 GEP.getResultElementType() == ElTy, 3245 "GEP is not of right type for indices!", &GEP, ElTy); 3246 3247 if (GEP.getType()->isVectorTy()) { 3248 // Additional checks for vector GEPs. 3249 unsigned GEPWidth = GEP.getType()->getVectorNumElements(); 3250 if (GEP.getPointerOperandType()->isVectorTy()) 3251 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(), 3252 "Vector GEP result width doesn't match operand's", &GEP); 3253 for (Value *Idx : Idxs) { 3254 Type *IndexTy = Idx->getType(); 3255 if (IndexTy->isVectorTy()) { 3256 unsigned IndexWidth = IndexTy->getVectorNumElements(); 3257 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3258 } 3259 Assert(IndexTy->isIntOrIntVectorTy(), 3260 "All GEP indices should be of integer type"); 3261 } 3262 } 3263 3264 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3265 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3266 "GEP address space doesn't match type", &GEP); 3267 } 3268 3269 visitInstruction(GEP); 3270 } 3271 3272 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3273 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3274 } 3275 3276 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3277 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3278 "precondition violation"); 3279 3280 unsigned NumOperands = Range->getNumOperands(); 3281 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3282 unsigned NumRanges = NumOperands / 2; 3283 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3284 3285 ConstantRange LastRange(1, true); // Dummy initial value 3286 for (unsigned i = 0; i < NumRanges; ++i) { 3287 ConstantInt *Low = 3288 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3289 Assert(Low, "The lower limit must be an integer!", Low); 3290 ConstantInt *High = 3291 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3292 Assert(High, "The upper limit must be an integer!", High); 3293 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3294 "Range types must match instruction type!", &I); 3295 3296 APInt HighV = High->getValue(); 3297 APInt LowV = Low->getValue(); 3298 ConstantRange CurRange(LowV, HighV); 3299 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3300 "Range must not be empty!", Range); 3301 if (i != 0) { 3302 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3303 "Intervals are overlapping", Range); 3304 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3305 Range); 3306 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3307 Range); 3308 } 3309 LastRange = ConstantRange(LowV, HighV); 3310 } 3311 if (NumRanges > 2) { 3312 APInt FirstLow = 3313 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3314 APInt FirstHigh = 3315 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3316 ConstantRange FirstRange(FirstLow, FirstHigh); 3317 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3318 "Intervals are overlapping", Range); 3319 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3320 Range); 3321 } 3322 } 3323 3324 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3325 unsigned Size = DL.getTypeSizeInBits(Ty); 3326 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3327 Assert(!(Size & (Size - 1)), 3328 "atomic memory access' operand must have a power-of-two size", Ty, I); 3329 } 3330 3331 void Verifier::visitLoadInst(LoadInst &LI) { 3332 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3333 Assert(PTy, "Load operand must be a pointer.", &LI); 3334 Type *ElTy = LI.getType(); 3335 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3336 "huge alignment values are unsupported", &LI); 3337 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3338 if (LI.isAtomic()) { 3339 Assert(LI.getOrdering() != AtomicOrdering::Release && 3340 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3341 "Load cannot have Release ordering", &LI); 3342 Assert(LI.getAlignment() != 0, 3343 "Atomic load must specify explicit alignment", &LI); 3344 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3345 "atomic load operand must have integer, pointer, or floating point " 3346 "type!", 3347 ElTy, &LI); 3348 checkAtomicMemAccessSize(ElTy, &LI); 3349 } else { 3350 Assert(LI.getSyncScopeID() == SyncScope::System, 3351 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3352 } 3353 3354 visitInstruction(LI); 3355 } 3356 3357 void Verifier::visitStoreInst(StoreInst &SI) { 3358 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3359 Assert(PTy, "Store operand must be a pointer.", &SI); 3360 Type *ElTy = PTy->getElementType(); 3361 Assert(ElTy == SI.getOperand(0)->getType(), 3362 "Stored value type does not match pointer operand type!", &SI, ElTy); 3363 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3364 "huge alignment values are unsupported", &SI); 3365 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3366 if (SI.isAtomic()) { 3367 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3368 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3369 "Store cannot have Acquire ordering", &SI); 3370 Assert(SI.getAlignment() != 0, 3371 "Atomic store must specify explicit alignment", &SI); 3372 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3373 "atomic store operand must have integer, pointer, or floating point " 3374 "type!", 3375 ElTy, &SI); 3376 checkAtomicMemAccessSize(ElTy, &SI); 3377 } else { 3378 Assert(SI.getSyncScopeID() == SyncScope::System, 3379 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3380 } 3381 visitInstruction(SI); 3382 } 3383 3384 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3385 void Verifier::verifySwiftErrorCall(CallBase &Call, 3386 const Value *SwiftErrorVal) { 3387 unsigned Idx = 0; 3388 for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) { 3389 if (*I == SwiftErrorVal) { 3390 Assert(Call.paramHasAttr(Idx, Attribute::SwiftError), 3391 "swifterror value when used in a callsite should be marked " 3392 "with swifterror attribute", 3393 SwiftErrorVal, Call); 3394 } 3395 } 3396 } 3397 3398 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3399 // Check that swifterror value is only used by loads, stores, or as 3400 // a swifterror argument. 3401 for (const User *U : SwiftErrorVal->users()) { 3402 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3403 isa<InvokeInst>(U), 3404 "swifterror value can only be loaded and stored from, or " 3405 "as a swifterror argument!", 3406 SwiftErrorVal, U); 3407 // If it is used by a store, check it is the second operand. 3408 if (auto StoreI = dyn_cast<StoreInst>(U)) 3409 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3410 "swifterror value should be the second operand when used " 3411 "by stores", SwiftErrorVal, U); 3412 if (auto *Call = dyn_cast<CallBase>(U)) 3413 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3414 } 3415 } 3416 3417 void Verifier::visitAllocaInst(AllocaInst &AI) { 3418 SmallPtrSet<Type*, 4> Visited; 3419 PointerType *PTy = AI.getType(); 3420 // TODO: Relax this restriction? 3421 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), 3422 "Allocation instruction pointer not in the stack address space!", 3423 &AI); 3424 Assert(AI.getAllocatedType()->isSized(&Visited), 3425 "Cannot allocate unsized type", &AI); 3426 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3427 "Alloca array size must have integer type", &AI); 3428 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3429 "huge alignment values are unsupported", &AI); 3430 3431 if (AI.isSwiftError()) { 3432 verifySwiftErrorValue(&AI); 3433 } 3434 3435 visitInstruction(AI); 3436 } 3437 3438 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3439 3440 // FIXME: more conditions??? 3441 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 3442 "cmpxchg instructions must be atomic.", &CXI); 3443 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 3444 "cmpxchg instructions must be atomic.", &CXI); 3445 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 3446 "cmpxchg instructions cannot be unordered.", &CXI); 3447 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 3448 "cmpxchg instructions cannot be unordered.", &CXI); 3449 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 3450 "cmpxchg instructions failure argument shall be no stronger than the " 3451 "success argument", 3452 &CXI); 3453 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 3454 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 3455 "cmpxchg failure ordering cannot include release semantics", &CXI); 3456 3457 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 3458 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 3459 Type *ElTy = PTy->getElementType(); 3460 Assert(ElTy->isIntOrPtrTy(), 3461 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3462 checkAtomicMemAccessSize(ElTy, &CXI); 3463 Assert(ElTy == CXI.getOperand(1)->getType(), 3464 "Expected value type does not match pointer operand type!", &CXI, 3465 ElTy); 3466 Assert(ElTy == CXI.getOperand(2)->getType(), 3467 "Stored value type does not match pointer operand type!", &CXI, ElTy); 3468 visitInstruction(CXI); 3469 } 3470 3471 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3472 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 3473 "atomicrmw instructions must be atomic.", &RMWI); 3474 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3475 "atomicrmw instructions cannot be unordered.", &RMWI); 3476 auto Op = RMWI.getOperation(); 3477 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 3478 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 3479 Type *ElTy = PTy->getElementType(); 3480 if (Op == AtomicRMWInst::Xchg) { 3481 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3482 AtomicRMWInst::getOperationName(Op) + 3483 " operand must have integer or floating point type!", 3484 &RMWI, ElTy); 3485 } else if (AtomicRMWInst::isFPOperation(Op)) { 3486 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3487 AtomicRMWInst::getOperationName(Op) + 3488 " operand must have floating point type!", 3489 &RMWI, ElTy); 3490 } else { 3491 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3492 AtomicRMWInst::getOperationName(Op) + 3493 " operand must have integer type!", 3494 &RMWI, ElTy); 3495 } 3496 checkAtomicMemAccessSize(ElTy, &RMWI); 3497 Assert(ElTy == RMWI.getOperand(1)->getType(), 3498 "Argument value type does not match pointer operand type!", &RMWI, 3499 ElTy); 3500 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3501 "Invalid binary operation!", &RMWI); 3502 visitInstruction(RMWI); 3503 } 3504 3505 void Verifier::visitFenceInst(FenceInst &FI) { 3506 const AtomicOrdering Ordering = FI.getOrdering(); 3507 Assert(Ordering == AtomicOrdering::Acquire || 3508 Ordering == AtomicOrdering::Release || 3509 Ordering == AtomicOrdering::AcquireRelease || 3510 Ordering == AtomicOrdering::SequentiallyConsistent, 3511 "fence instructions may only have acquire, release, acq_rel, or " 3512 "seq_cst ordering.", 3513 &FI); 3514 visitInstruction(FI); 3515 } 3516 3517 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3518 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3519 EVI.getIndices()) == EVI.getType(), 3520 "Invalid ExtractValueInst operands!", &EVI); 3521 3522 visitInstruction(EVI); 3523 } 3524 3525 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3526 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3527 IVI.getIndices()) == 3528 IVI.getOperand(1)->getType(), 3529 "Invalid InsertValueInst operands!", &IVI); 3530 3531 visitInstruction(IVI); 3532 } 3533 3534 static Value *getParentPad(Value *EHPad) { 3535 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3536 return FPI->getParentPad(); 3537 3538 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3539 } 3540 3541 void Verifier::visitEHPadPredecessors(Instruction &I) { 3542 assert(I.isEHPad()); 3543 3544 BasicBlock *BB = I.getParent(); 3545 Function *F = BB->getParent(); 3546 3547 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3548 3549 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3550 // The landingpad instruction defines its parent as a landing pad block. The 3551 // landing pad block may be branched to only by the unwind edge of an 3552 // invoke. 3553 for (BasicBlock *PredBB : predecessors(BB)) { 3554 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3555 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3556 "Block containing LandingPadInst must be jumped to " 3557 "only by the unwind edge of an invoke.", 3558 LPI); 3559 } 3560 return; 3561 } 3562 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3563 if (!pred_empty(BB)) 3564 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3565 "Block containg CatchPadInst must be jumped to " 3566 "only by its catchswitch.", 3567 CPI); 3568 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3569 "Catchswitch cannot unwind to one of its catchpads", 3570 CPI->getCatchSwitch(), CPI); 3571 return; 3572 } 3573 3574 // Verify that each pred has a legal terminator with a legal to/from EH 3575 // pad relationship. 3576 Instruction *ToPad = &I; 3577 Value *ToPadParent = getParentPad(ToPad); 3578 for (BasicBlock *PredBB : predecessors(BB)) { 3579 Instruction *TI = PredBB->getTerminator(); 3580 Value *FromPad; 3581 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3582 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3583 "EH pad must be jumped to via an unwind edge", ToPad, II); 3584 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3585 FromPad = Bundle->Inputs[0]; 3586 else 3587 FromPad = ConstantTokenNone::get(II->getContext()); 3588 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3589 FromPad = CRI->getOperand(0); 3590 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3591 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3592 FromPad = CSI; 3593 } else { 3594 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3595 } 3596 3597 // The edge may exit from zero or more nested pads. 3598 SmallSet<Value *, 8> Seen; 3599 for (;; FromPad = getParentPad(FromPad)) { 3600 Assert(FromPad != ToPad, 3601 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3602 if (FromPad == ToPadParent) { 3603 // This is a legal unwind edge. 3604 break; 3605 } 3606 Assert(!isa<ConstantTokenNone>(FromPad), 3607 "A single unwind edge may only enter one EH pad", TI); 3608 Assert(Seen.insert(FromPad).second, 3609 "EH pad jumps through a cycle of pads", FromPad); 3610 } 3611 } 3612 } 3613 3614 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3615 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3616 // isn't a cleanup. 3617 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3618 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3619 3620 visitEHPadPredecessors(LPI); 3621 3622 if (!LandingPadResultTy) 3623 LandingPadResultTy = LPI.getType(); 3624 else 3625 Assert(LandingPadResultTy == LPI.getType(), 3626 "The landingpad instruction should have a consistent result type " 3627 "inside a function.", 3628 &LPI); 3629 3630 Function *F = LPI.getParent()->getParent(); 3631 Assert(F->hasPersonalityFn(), 3632 "LandingPadInst needs to be in a function with a personality.", &LPI); 3633 3634 // The landingpad instruction must be the first non-PHI instruction in the 3635 // block. 3636 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3637 "LandingPadInst not the first non-PHI instruction in the block.", 3638 &LPI); 3639 3640 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3641 Constant *Clause = LPI.getClause(i); 3642 if (LPI.isCatch(i)) { 3643 Assert(isa<PointerType>(Clause->getType()), 3644 "Catch operand does not have pointer type!", &LPI); 3645 } else { 3646 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3647 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3648 "Filter operand is not an array of constants!", &LPI); 3649 } 3650 } 3651 3652 visitInstruction(LPI); 3653 } 3654 3655 void Verifier::visitResumeInst(ResumeInst &RI) { 3656 Assert(RI.getFunction()->hasPersonalityFn(), 3657 "ResumeInst needs to be in a function with a personality.", &RI); 3658 3659 if (!LandingPadResultTy) 3660 LandingPadResultTy = RI.getValue()->getType(); 3661 else 3662 Assert(LandingPadResultTy == RI.getValue()->getType(), 3663 "The resume instruction should have a consistent result type " 3664 "inside a function.", 3665 &RI); 3666 3667 visitTerminator(RI); 3668 } 3669 3670 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3671 BasicBlock *BB = CPI.getParent(); 3672 3673 Function *F = BB->getParent(); 3674 Assert(F->hasPersonalityFn(), 3675 "CatchPadInst needs to be in a function with a personality.", &CPI); 3676 3677 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 3678 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 3679 CPI.getParentPad()); 3680 3681 // The catchpad instruction must be the first non-PHI instruction in the 3682 // block. 3683 Assert(BB->getFirstNonPHI() == &CPI, 3684 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 3685 3686 visitEHPadPredecessors(CPI); 3687 visitFuncletPadInst(CPI); 3688 } 3689 3690 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 3691 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 3692 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 3693 CatchReturn.getOperand(0)); 3694 3695 visitTerminator(CatchReturn); 3696 } 3697 3698 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 3699 BasicBlock *BB = CPI.getParent(); 3700 3701 Function *F = BB->getParent(); 3702 Assert(F->hasPersonalityFn(), 3703 "CleanupPadInst needs to be in a function with a personality.", &CPI); 3704 3705 // The cleanuppad instruction must be the first non-PHI instruction in the 3706 // block. 3707 Assert(BB->getFirstNonPHI() == &CPI, 3708 "CleanupPadInst not the first non-PHI instruction in the block.", 3709 &CPI); 3710 3711 auto *ParentPad = CPI.getParentPad(); 3712 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3713 "CleanupPadInst has an invalid parent.", &CPI); 3714 3715 visitEHPadPredecessors(CPI); 3716 visitFuncletPadInst(CPI); 3717 } 3718 3719 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 3720 User *FirstUser = nullptr; 3721 Value *FirstUnwindPad = nullptr; 3722 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 3723 SmallSet<FuncletPadInst *, 8> Seen; 3724 3725 while (!Worklist.empty()) { 3726 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 3727 Assert(Seen.insert(CurrentPad).second, 3728 "FuncletPadInst must not be nested within itself", CurrentPad); 3729 Value *UnresolvedAncestorPad = nullptr; 3730 for (User *U : CurrentPad->users()) { 3731 BasicBlock *UnwindDest; 3732 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 3733 UnwindDest = CRI->getUnwindDest(); 3734 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 3735 // We allow catchswitch unwind to caller to nest 3736 // within an outer pad that unwinds somewhere else, 3737 // because catchswitch doesn't have a nounwind variant. 3738 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 3739 if (CSI->unwindsToCaller()) 3740 continue; 3741 UnwindDest = CSI->getUnwindDest(); 3742 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 3743 UnwindDest = II->getUnwindDest(); 3744 } else if (isa<CallInst>(U)) { 3745 // Calls which don't unwind may be found inside funclet 3746 // pads that unwind somewhere else. We don't *require* 3747 // such calls to be annotated nounwind. 3748 continue; 3749 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 3750 // The unwind dest for a cleanup can only be found by 3751 // recursive search. Add it to the worklist, and we'll 3752 // search for its first use that determines where it unwinds. 3753 Worklist.push_back(CPI); 3754 continue; 3755 } else { 3756 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 3757 continue; 3758 } 3759 3760 Value *UnwindPad; 3761 bool ExitsFPI; 3762 if (UnwindDest) { 3763 UnwindPad = UnwindDest->getFirstNonPHI(); 3764 if (!cast<Instruction>(UnwindPad)->isEHPad()) 3765 continue; 3766 Value *UnwindParent = getParentPad(UnwindPad); 3767 // Ignore unwind edges that don't exit CurrentPad. 3768 if (UnwindParent == CurrentPad) 3769 continue; 3770 // Determine whether the original funclet pad is exited, 3771 // and if we are scanning nested pads determine how many 3772 // of them are exited so we can stop searching their 3773 // children. 3774 Value *ExitedPad = CurrentPad; 3775 ExitsFPI = false; 3776 do { 3777 if (ExitedPad == &FPI) { 3778 ExitsFPI = true; 3779 // Now we can resolve any ancestors of CurrentPad up to 3780 // FPI, but not including FPI since we need to make sure 3781 // to check all direct users of FPI for consistency. 3782 UnresolvedAncestorPad = &FPI; 3783 break; 3784 } 3785 Value *ExitedParent = getParentPad(ExitedPad); 3786 if (ExitedParent == UnwindParent) { 3787 // ExitedPad is the ancestor-most pad which this unwind 3788 // edge exits, so we can resolve up to it, meaning that 3789 // ExitedParent is the first ancestor still unresolved. 3790 UnresolvedAncestorPad = ExitedParent; 3791 break; 3792 } 3793 ExitedPad = ExitedParent; 3794 } while (!isa<ConstantTokenNone>(ExitedPad)); 3795 } else { 3796 // Unwinding to caller exits all pads. 3797 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 3798 ExitsFPI = true; 3799 UnresolvedAncestorPad = &FPI; 3800 } 3801 3802 if (ExitsFPI) { 3803 // This unwind edge exits FPI. Make sure it agrees with other 3804 // such edges. 3805 if (FirstUser) { 3806 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 3807 "pad must have the same unwind " 3808 "dest", 3809 &FPI, U, FirstUser); 3810 } else { 3811 FirstUser = U; 3812 FirstUnwindPad = UnwindPad; 3813 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 3814 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 3815 getParentPad(UnwindPad) == getParentPad(&FPI)) 3816 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 3817 } 3818 } 3819 // Make sure we visit all uses of FPI, but for nested pads stop as 3820 // soon as we know where they unwind to. 3821 if (CurrentPad != &FPI) 3822 break; 3823 } 3824 if (UnresolvedAncestorPad) { 3825 if (CurrentPad == UnresolvedAncestorPad) { 3826 // When CurrentPad is FPI itself, we don't mark it as resolved even if 3827 // we've found an unwind edge that exits it, because we need to verify 3828 // all direct uses of FPI. 3829 assert(CurrentPad == &FPI); 3830 continue; 3831 } 3832 // Pop off the worklist any nested pads that we've found an unwind 3833 // destination for. The pads on the worklist are the uncles, 3834 // great-uncles, etc. of CurrentPad. We've found an unwind destination 3835 // for all ancestors of CurrentPad up to but not including 3836 // UnresolvedAncestorPad. 3837 Value *ResolvedPad = CurrentPad; 3838 while (!Worklist.empty()) { 3839 Value *UnclePad = Worklist.back(); 3840 Value *AncestorPad = getParentPad(UnclePad); 3841 // Walk ResolvedPad up the ancestor list until we either find the 3842 // uncle's parent or the last resolved ancestor. 3843 while (ResolvedPad != AncestorPad) { 3844 Value *ResolvedParent = getParentPad(ResolvedPad); 3845 if (ResolvedParent == UnresolvedAncestorPad) { 3846 break; 3847 } 3848 ResolvedPad = ResolvedParent; 3849 } 3850 // If the resolved ancestor search didn't find the uncle's parent, 3851 // then the uncle is not yet resolved. 3852 if (ResolvedPad != AncestorPad) 3853 break; 3854 // This uncle is resolved, so pop it from the worklist. 3855 Worklist.pop_back(); 3856 } 3857 } 3858 } 3859 3860 if (FirstUnwindPad) { 3861 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 3862 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 3863 Value *SwitchUnwindPad; 3864 if (SwitchUnwindDest) 3865 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 3866 else 3867 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 3868 Assert(SwitchUnwindPad == FirstUnwindPad, 3869 "Unwind edges out of a catch must have the same unwind dest as " 3870 "the parent catchswitch", 3871 &FPI, FirstUser, CatchSwitch); 3872 } 3873 } 3874 3875 visitInstruction(FPI); 3876 } 3877 3878 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 3879 BasicBlock *BB = CatchSwitch.getParent(); 3880 3881 Function *F = BB->getParent(); 3882 Assert(F->hasPersonalityFn(), 3883 "CatchSwitchInst needs to be in a function with a personality.", 3884 &CatchSwitch); 3885 3886 // The catchswitch instruction must be the first non-PHI instruction in the 3887 // block. 3888 Assert(BB->getFirstNonPHI() == &CatchSwitch, 3889 "CatchSwitchInst not the first non-PHI instruction in the block.", 3890 &CatchSwitch); 3891 3892 auto *ParentPad = CatchSwitch.getParentPad(); 3893 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3894 "CatchSwitchInst has an invalid parent.", ParentPad); 3895 3896 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 3897 Instruction *I = UnwindDest->getFirstNonPHI(); 3898 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3899 "CatchSwitchInst must unwind to an EH block which is not a " 3900 "landingpad.", 3901 &CatchSwitch); 3902 3903 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 3904 if (getParentPad(I) == ParentPad) 3905 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 3906 } 3907 3908 Assert(CatchSwitch.getNumHandlers() != 0, 3909 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 3910 3911 for (BasicBlock *Handler : CatchSwitch.handlers()) { 3912 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 3913 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 3914 } 3915 3916 visitEHPadPredecessors(CatchSwitch); 3917 visitTerminator(CatchSwitch); 3918 } 3919 3920 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 3921 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 3922 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 3923 CRI.getOperand(0)); 3924 3925 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 3926 Instruction *I = UnwindDest->getFirstNonPHI(); 3927 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3928 "CleanupReturnInst must unwind to an EH block which is not a " 3929 "landingpad.", 3930 &CRI); 3931 } 3932 3933 visitTerminator(CRI); 3934 } 3935 3936 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 3937 Instruction *Op = cast<Instruction>(I.getOperand(i)); 3938 // If the we have an invalid invoke, don't try to compute the dominance. 3939 // We already reject it in the invoke specific checks and the dominance 3940 // computation doesn't handle multiple edges. 3941 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 3942 if (II->getNormalDest() == II->getUnwindDest()) 3943 return; 3944 } 3945 3946 // Quick check whether the def has already been encountered in the same block. 3947 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 3948 // uses are defined to happen on the incoming edge, not at the instruction. 3949 // 3950 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 3951 // wrapping an SSA value, assert that we've already encountered it. See 3952 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 3953 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 3954 return; 3955 3956 const Use &U = I.getOperandUse(i); 3957 Assert(DT.dominates(Op, U), 3958 "Instruction does not dominate all uses!", Op, &I); 3959 } 3960 3961 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 3962 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 3963 "apply only to pointer types", &I); 3964 Assert(isa<LoadInst>(I), 3965 "dereferenceable, dereferenceable_or_null apply only to load" 3966 " instructions, use attributes for calls or invokes", &I); 3967 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 3968 "take one operand!", &I); 3969 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 3970 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 3971 "dereferenceable_or_null metadata value must be an i64!", &I); 3972 } 3973 3974 /// verifyInstruction - Verify that an instruction is well formed. 3975 /// 3976 void Verifier::visitInstruction(Instruction &I) { 3977 BasicBlock *BB = I.getParent(); 3978 Assert(BB, "Instruction not embedded in basic block!", &I); 3979 3980 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 3981 for (User *U : I.users()) { 3982 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 3983 "Only PHI nodes may reference their own value!", &I); 3984 } 3985 } 3986 3987 // Check that void typed values don't have names 3988 Assert(!I.getType()->isVoidTy() || !I.hasName(), 3989 "Instruction has a name, but provides a void value!", &I); 3990 3991 // Check that the return value of the instruction is either void or a legal 3992 // value type. 3993 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 3994 "Instruction returns a non-scalar type!", &I); 3995 3996 // Check that the instruction doesn't produce metadata. Calls are already 3997 // checked against the callee type. 3998 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 3999 "Invalid use of metadata!", &I); 4000 4001 // Check that all uses of the instruction, if they are instructions 4002 // themselves, actually have parent basic blocks. If the use is not an 4003 // instruction, it is an error! 4004 for (Use &U : I.uses()) { 4005 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4006 Assert(Used->getParent() != nullptr, 4007 "Instruction referencing" 4008 " instruction not embedded in a basic block!", 4009 &I, Used); 4010 else { 4011 CheckFailed("Use of instruction is not an instruction!", U); 4012 return; 4013 } 4014 } 4015 4016 // Get a pointer to the call base of the instruction if it is some form of 4017 // call. 4018 const CallBase *CBI = dyn_cast<CallBase>(&I); 4019 4020 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4021 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4022 4023 // Check to make sure that only first-class-values are operands to 4024 // instructions. 4025 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4026 Assert(false, "Instruction operands must be first-class values!", &I); 4027 } 4028 4029 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4030 // Check to make sure that the "address of" an intrinsic function is never 4031 // taken. 4032 Assert(!F->isIntrinsic() || 4033 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), 4034 "Cannot take the address of an intrinsic!", &I); 4035 Assert( 4036 !F->isIntrinsic() || isa<CallInst>(I) || 4037 F->getIntrinsicID() == Intrinsic::donothing || 4038 F->getIntrinsicID() == Intrinsic::coro_resume || 4039 F->getIntrinsicID() == Intrinsic::coro_destroy || 4040 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4041 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4042 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4043 F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch, 4044 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4045 "statepoint, coro_resume or coro_destroy", 4046 &I); 4047 Assert(F->getParent() == &M, "Referencing function in another module!", 4048 &I, &M, F, F->getParent()); 4049 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4050 Assert(OpBB->getParent() == BB->getParent(), 4051 "Referring to a basic block in another function!", &I); 4052 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4053 Assert(OpArg->getParent() == BB->getParent(), 4054 "Referring to an argument in another function!", &I); 4055 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4056 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4057 &M, GV, GV->getParent()); 4058 } else if (isa<Instruction>(I.getOperand(i))) { 4059 verifyDominatesUse(I, i); 4060 } else if (isa<InlineAsm>(I.getOperand(i))) { 4061 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4062 "Cannot take the address of an inline asm!", &I); 4063 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4064 if (CE->getType()->isPtrOrPtrVectorTy() || 4065 !DL.getNonIntegralAddressSpaces().empty()) { 4066 // If we have a ConstantExpr pointer, we need to see if it came from an 4067 // illegal bitcast. If the datalayout string specifies non-integral 4068 // address spaces then we also need to check for illegal ptrtoint and 4069 // inttoptr expressions. 4070 visitConstantExprsRecursively(CE); 4071 } 4072 } 4073 } 4074 4075 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4076 Assert(I.getType()->isFPOrFPVectorTy(), 4077 "fpmath requires a floating point result!", &I); 4078 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4079 if (ConstantFP *CFP0 = 4080 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4081 const APFloat &Accuracy = CFP0->getValueAPF(); 4082 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4083 "fpmath accuracy must have float type", &I); 4084 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4085 "fpmath accuracy not a positive number!", &I); 4086 } else { 4087 Assert(false, "invalid fpmath accuracy!", &I); 4088 } 4089 } 4090 4091 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4092 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4093 "Ranges are only for loads, calls and invokes!", &I); 4094 visitRangeMetadata(I, Range, I.getType()); 4095 } 4096 4097 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4098 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4099 &I); 4100 Assert(isa<LoadInst>(I), 4101 "nonnull applies only to load instructions, use attributes" 4102 " for calls or invokes", 4103 &I); 4104 } 4105 4106 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4107 visitDereferenceableMetadata(I, MD); 4108 4109 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4110 visitDereferenceableMetadata(I, MD); 4111 4112 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4113 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4114 4115 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4116 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4117 &I); 4118 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4119 "use attributes for calls or invokes", &I); 4120 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4121 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4122 Assert(CI && CI->getType()->isIntegerTy(64), 4123 "align metadata value must be an i64!", &I); 4124 uint64_t Align = CI->getZExtValue(); 4125 Assert(isPowerOf2_64(Align), 4126 "align metadata value must be a power of 2!", &I); 4127 Assert(Align <= Value::MaximumAlignment, 4128 "alignment is larger that implementation defined limit", &I); 4129 } 4130 4131 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4132 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4133 visitMDNode(*N); 4134 } 4135 4136 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) 4137 verifyFragmentExpression(*DII); 4138 4139 InstsInThisBlock.insert(&I); 4140 } 4141 4142 /// Allow intrinsics to be verified in different ways. 4143 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4144 Function *IF = Call.getCalledFunction(); 4145 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4146 IF); 4147 4148 // Verify that the intrinsic prototype lines up with what the .td files 4149 // describe. 4150 FunctionType *IFTy = IF->getFunctionType(); 4151 bool IsVarArg = IFTy->isVarArg(); 4152 4153 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4154 getIntrinsicInfoTableEntries(ID, Table); 4155 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4156 4157 // Walk the descriptors to extract overloaded types. 4158 SmallVector<Type *, 4> ArgTys; 4159 Intrinsic::MatchIntrinsicTypesResult Res = 4160 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4161 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4162 "Intrinsic has incorrect return type!", IF); 4163 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4164 "Intrinsic has incorrect argument type!", IF); 4165 4166 // Verify if the intrinsic call matches the vararg property. 4167 if (IsVarArg) 4168 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4169 "Intrinsic was not defined with variable arguments!", IF); 4170 else 4171 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4172 "Callsite was not defined with variable arguments!", IF); 4173 4174 // All descriptors should be absorbed by now. 4175 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4176 4177 // Now that we have the intrinsic ID and the actual argument types (and we 4178 // know they are legal for the intrinsic!) get the intrinsic name through the 4179 // usual means. This allows us to verify the mangling of argument types into 4180 // the name. 4181 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 4182 Assert(ExpectedName == IF->getName(), 4183 "Intrinsic name not mangled correctly for type arguments! " 4184 "Should be: " + 4185 ExpectedName, 4186 IF); 4187 4188 // If the intrinsic takes MDNode arguments, verify that they are either global 4189 // or are local to *this* function. 4190 for (Value *V : Call.args()) 4191 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4192 visitMetadataAsValue(*MD, Call.getCaller()); 4193 4194 switch (ID) { 4195 default: 4196 break; 4197 case Intrinsic::coro_id: { 4198 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4199 if (isa<ConstantPointerNull>(InfoArg)) 4200 break; 4201 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4202 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4203 "info argument of llvm.coro.begin must refer to an initialized " 4204 "constant"); 4205 Constant *Init = GV->getInitializer(); 4206 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4207 "info argument of llvm.coro.begin must refer to either a struct or " 4208 "an array"); 4209 break; 4210 } 4211 case Intrinsic::experimental_constrained_fadd: 4212 case Intrinsic::experimental_constrained_fsub: 4213 case Intrinsic::experimental_constrained_fmul: 4214 case Intrinsic::experimental_constrained_fdiv: 4215 case Intrinsic::experimental_constrained_frem: 4216 case Intrinsic::experimental_constrained_fma: 4217 case Intrinsic::experimental_constrained_fptrunc: 4218 case Intrinsic::experimental_constrained_fpext: 4219 case Intrinsic::experimental_constrained_sqrt: 4220 case Intrinsic::experimental_constrained_pow: 4221 case Intrinsic::experimental_constrained_powi: 4222 case Intrinsic::experimental_constrained_sin: 4223 case Intrinsic::experimental_constrained_cos: 4224 case Intrinsic::experimental_constrained_exp: 4225 case Intrinsic::experimental_constrained_exp2: 4226 case Intrinsic::experimental_constrained_log: 4227 case Intrinsic::experimental_constrained_log10: 4228 case Intrinsic::experimental_constrained_log2: 4229 case Intrinsic::experimental_constrained_rint: 4230 case Intrinsic::experimental_constrained_nearbyint: 4231 case Intrinsic::experimental_constrained_maxnum: 4232 case Intrinsic::experimental_constrained_minnum: 4233 case Intrinsic::experimental_constrained_ceil: 4234 case Intrinsic::experimental_constrained_floor: 4235 case Intrinsic::experimental_constrained_round: 4236 case Intrinsic::experimental_constrained_trunc: 4237 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4238 break; 4239 case Intrinsic::dbg_declare: // llvm.dbg.declare 4240 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4241 "invalid llvm.dbg.declare intrinsic call 1", Call); 4242 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4243 break; 4244 case Intrinsic::dbg_addr: // llvm.dbg.addr 4245 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4246 break; 4247 case Intrinsic::dbg_value: // llvm.dbg.value 4248 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4249 break; 4250 case Intrinsic::dbg_label: // llvm.dbg.label 4251 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4252 break; 4253 case Intrinsic::memcpy: 4254 case Intrinsic::memmove: 4255 case Intrinsic::memset: { 4256 const auto *MI = cast<MemIntrinsic>(&Call); 4257 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4258 return Alignment == 0 || isPowerOf2_32(Alignment); 4259 }; 4260 Assert(IsValidAlignment(MI->getDestAlignment()), 4261 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4262 Call); 4263 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4264 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4265 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4266 Call); 4267 } 4268 4269 break; 4270 } 4271 case Intrinsic::memcpy_element_unordered_atomic: 4272 case Intrinsic::memmove_element_unordered_atomic: 4273 case Intrinsic::memset_element_unordered_atomic: { 4274 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4275 4276 ConstantInt *ElementSizeCI = 4277 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4278 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4279 Assert(ElementSizeVal.isPowerOf2(), 4280 "element size of the element-wise atomic memory intrinsic " 4281 "must be a power of 2", 4282 Call); 4283 4284 if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) { 4285 uint64_t Length = LengthCI->getZExtValue(); 4286 uint64_t ElementSize = AMI->getElementSizeInBytes(); 4287 Assert((Length % ElementSize) == 0, 4288 "constant length must be a multiple of the element size in the " 4289 "element-wise atomic memory intrinsic", 4290 Call); 4291 } 4292 4293 auto IsValidAlignment = [&](uint64_t Alignment) { 4294 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4295 }; 4296 uint64_t DstAlignment = AMI->getDestAlignment(); 4297 Assert(IsValidAlignment(DstAlignment), 4298 "incorrect alignment of the destination argument", Call); 4299 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4300 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4301 Assert(IsValidAlignment(SrcAlignment), 4302 "incorrect alignment of the source argument", Call); 4303 } 4304 break; 4305 } 4306 case Intrinsic::gcroot: 4307 case Intrinsic::gcwrite: 4308 case Intrinsic::gcread: 4309 if (ID == Intrinsic::gcroot) { 4310 AllocaInst *AI = 4311 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4312 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4313 Assert(isa<Constant>(Call.getArgOperand(1)), 4314 "llvm.gcroot parameter #2 must be a constant.", Call); 4315 if (!AI->getAllocatedType()->isPointerTy()) { 4316 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4317 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4318 "or argument #2 must be a non-null constant.", 4319 Call); 4320 } 4321 } 4322 4323 Assert(Call.getParent()->getParent()->hasGC(), 4324 "Enclosing function does not use GC.", Call); 4325 break; 4326 case Intrinsic::init_trampoline: 4327 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4328 "llvm.init_trampoline parameter #2 must resolve to a function.", 4329 Call); 4330 break; 4331 case Intrinsic::prefetch: 4332 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4333 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4334 "invalid arguments to llvm.prefetch", Call); 4335 break; 4336 case Intrinsic::stackprotector: 4337 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4338 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4339 break; 4340 case Intrinsic::localescape: { 4341 BasicBlock *BB = Call.getParent(); 4342 Assert(BB == &BB->getParent()->front(), 4343 "llvm.localescape used outside of entry block", Call); 4344 Assert(!SawFrameEscape, 4345 "multiple calls to llvm.localescape in one function", Call); 4346 for (Value *Arg : Call.args()) { 4347 if (isa<ConstantPointerNull>(Arg)) 4348 continue; // Null values are allowed as placeholders. 4349 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4350 Assert(AI && AI->isStaticAlloca(), 4351 "llvm.localescape only accepts static allocas", Call); 4352 } 4353 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); 4354 SawFrameEscape = true; 4355 break; 4356 } 4357 case Intrinsic::localrecover: { 4358 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4359 Function *Fn = dyn_cast<Function>(FnArg); 4360 Assert(Fn && !Fn->isDeclaration(), 4361 "llvm.localrecover first " 4362 "argument must be function defined in this module", 4363 Call); 4364 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 4365 auto &Entry = FrameEscapeInfo[Fn]; 4366 Entry.second = unsigned( 4367 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4368 break; 4369 } 4370 4371 case Intrinsic::experimental_gc_statepoint: 4372 if (auto *CI = dyn_cast<CallInst>(&Call)) 4373 Assert(!CI->isInlineAsm(), 4374 "gc.statepoint support for inline assembly unimplemented", CI); 4375 Assert(Call.getParent()->getParent()->hasGC(), 4376 "Enclosing function does not use GC.", Call); 4377 4378 verifyStatepoint(Call); 4379 break; 4380 case Intrinsic::experimental_gc_result: { 4381 Assert(Call.getParent()->getParent()->hasGC(), 4382 "Enclosing function does not use GC.", Call); 4383 // Are we tied to a statepoint properly? 4384 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4385 const Function *StatepointFn = 4386 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 4387 Assert(StatepointFn && StatepointFn->isDeclaration() && 4388 StatepointFn->getIntrinsicID() == 4389 Intrinsic::experimental_gc_statepoint, 4390 "gc.result operand #1 must be from a statepoint", Call, 4391 Call.getArgOperand(0)); 4392 4393 // Assert that result type matches wrapped callee. 4394 const Value *Target = StatepointCall->getArgOperand(2); 4395 auto *PT = cast<PointerType>(Target->getType()); 4396 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4397 Assert(Call.getType() == TargetFuncType->getReturnType(), 4398 "gc.result result type does not match wrapped callee", Call); 4399 break; 4400 } 4401 case Intrinsic::experimental_gc_relocate: { 4402 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); 4403 4404 Assert(isa<PointerType>(Call.getType()->getScalarType()), 4405 "gc.relocate must return a pointer or a vector of pointers", Call); 4406 4407 // Check that this relocate is correctly tied to the statepoint 4408 4409 // This is case for relocate on the unwinding path of an invoke statepoint 4410 if (LandingPadInst *LandingPad = 4411 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 4412 4413 const BasicBlock *InvokeBB = 4414 LandingPad->getParent()->getUniquePredecessor(); 4415 4416 // Landingpad relocates should have only one predecessor with invoke 4417 // statepoint terminator 4418 Assert(InvokeBB, "safepoints should have unique landingpads", 4419 LandingPad->getParent()); 4420 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4421 InvokeBB); 4422 Assert(isStatepoint(InvokeBB->getTerminator()), 4423 "gc relocate should be linked to a statepoint", InvokeBB); 4424 } else { 4425 // In all other cases relocate should be tied to the statepoint directly. 4426 // This covers relocates on a normal return path of invoke statepoint and 4427 // relocates of a call statepoint. 4428 auto Token = Call.getArgOperand(0); 4429 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)), 4430 "gc relocate is incorrectly tied to the statepoint", Call, Token); 4431 } 4432 4433 // Verify rest of the relocate arguments. 4434 const CallBase &StatepointCall = 4435 *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint()); 4436 4437 // Both the base and derived must be piped through the safepoint. 4438 Value *Base = Call.getArgOperand(1); 4439 Assert(isa<ConstantInt>(Base), 4440 "gc.relocate operand #2 must be integer offset", Call); 4441 4442 Value *Derived = Call.getArgOperand(2); 4443 Assert(isa<ConstantInt>(Derived), 4444 "gc.relocate operand #3 must be integer offset", Call); 4445 4446 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4447 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4448 // Check the bounds 4449 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(), 4450 "gc.relocate: statepoint base index out of bounds", Call); 4451 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(), 4452 "gc.relocate: statepoint derived index out of bounds", Call); 4453 4454 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' 4455 // section of the statepoint's argument. 4456 Assert(StatepointCall.arg_size() > 0, 4457 "gc.statepoint: insufficient arguments"); 4458 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)), 4459 "gc.statement: number of call arguments must be constant integer"); 4460 const unsigned NumCallArgs = 4461 cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue(); 4462 Assert(StatepointCall.arg_size() > NumCallArgs + 5, 4463 "gc.statepoint: mismatch in number of call arguments"); 4464 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)), 4465 "gc.statepoint: number of transition arguments must be " 4466 "a constant integer"); 4467 const int NumTransitionArgs = 4468 cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)) 4469 ->getZExtValue(); 4470 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; 4471 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)), 4472 "gc.statepoint: number of deoptimization arguments must be " 4473 "a constant integer"); 4474 const int NumDeoptArgs = 4475 cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)) 4476 ->getZExtValue(); 4477 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; 4478 const int GCParamArgsEnd = StatepointCall.arg_size(); 4479 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, 4480 "gc.relocate: statepoint base index doesn't fall within the " 4481 "'gc parameters' section of the statepoint call", 4482 Call); 4483 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, 4484 "gc.relocate: statepoint derived index doesn't fall within the " 4485 "'gc parameters' section of the statepoint call", 4486 Call); 4487 4488 // Relocated value must be either a pointer type or vector-of-pointer type, 4489 // but gc_relocate does not need to return the same pointer type as the 4490 // relocated pointer. It can be casted to the correct type later if it's 4491 // desired. However, they must have the same address space and 'vectorness' 4492 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 4493 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 4494 "gc.relocate: relocated value must be a gc pointer", Call); 4495 4496 auto ResultType = Call.getType(); 4497 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4498 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4499 "gc.relocate: vector relocates to vector and pointer to pointer", 4500 Call); 4501 Assert( 4502 ResultType->getPointerAddressSpace() == 4503 DerivedType->getPointerAddressSpace(), 4504 "gc.relocate: relocating a pointer shouldn't change its address space", 4505 Call); 4506 break; 4507 } 4508 case Intrinsic::eh_exceptioncode: 4509 case Intrinsic::eh_exceptionpointer: { 4510 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 4511 "eh.exceptionpointer argument must be a catchpad", Call); 4512 break; 4513 } 4514 case Intrinsic::masked_load: { 4515 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 4516 Call); 4517 4518 Value *Ptr = Call.getArgOperand(0); 4519 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 4520 Value *Mask = Call.getArgOperand(2); 4521 Value *PassThru = Call.getArgOperand(3); 4522 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 4523 Call); 4524 Assert(Alignment->getValue().isPowerOf2(), 4525 "masked_load: alignment must be a power of 2", Call); 4526 4527 // DataTy is the overloaded type 4528 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4529 Assert(DataTy == Call.getType(), 4530 "masked_load: return must match pointer type", Call); 4531 Assert(PassThru->getType() == DataTy, 4532 "masked_load: pass through and data type must match", Call); 4533 Assert(Mask->getType()->getVectorNumElements() == 4534 DataTy->getVectorNumElements(), 4535 "masked_load: vector mask must be same length as data", Call); 4536 break; 4537 } 4538 case Intrinsic::masked_store: { 4539 Value *Val = Call.getArgOperand(0); 4540 Value *Ptr = Call.getArgOperand(1); 4541 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 4542 Value *Mask = Call.getArgOperand(3); 4543 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 4544 Call); 4545 Assert(Alignment->getValue().isPowerOf2(), 4546 "masked_store: alignment must be a power of 2", Call); 4547 4548 // DataTy is the overloaded type 4549 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4550 Assert(DataTy == Val->getType(), 4551 "masked_store: storee must match pointer type", Call); 4552 Assert(Mask->getType()->getVectorNumElements() == 4553 DataTy->getVectorNumElements(), 4554 "masked_store: vector mask must be same length as data", Call); 4555 break; 4556 } 4557 4558 case Intrinsic::experimental_guard: { 4559 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 4560 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4561 "experimental_guard must have exactly one " 4562 "\"deopt\" operand bundle"); 4563 break; 4564 } 4565 4566 case Intrinsic::experimental_deoptimize: { 4567 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 4568 Call); 4569 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4570 "experimental_deoptimize must have exactly one " 4571 "\"deopt\" operand bundle"); 4572 Assert(Call.getType() == Call.getFunction()->getReturnType(), 4573 "experimental_deoptimize return type must match caller return type"); 4574 4575 if (isa<CallInst>(Call)) { 4576 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 4577 Assert(RI, 4578 "calls to experimental_deoptimize must be followed by a return"); 4579 4580 if (!Call.getType()->isVoidTy() && RI) 4581 Assert(RI->getReturnValue() == &Call, 4582 "calls to experimental_deoptimize must be followed by a return " 4583 "of the value computed by experimental_deoptimize"); 4584 } 4585 4586 break; 4587 } 4588 case Intrinsic::sadd_sat: 4589 case Intrinsic::uadd_sat: 4590 case Intrinsic::ssub_sat: 4591 case Intrinsic::usub_sat: { 4592 Value *Op1 = Call.getArgOperand(0); 4593 Value *Op2 = Call.getArgOperand(1); 4594 Assert(Op1->getType()->isIntOrIntVectorTy(), 4595 "first operand of [us][add|sub]_sat must be an int type or vector " 4596 "of ints"); 4597 Assert(Op2->getType()->isIntOrIntVectorTy(), 4598 "second operand of [us][add|sub]_sat must be an int type or vector " 4599 "of ints"); 4600 break; 4601 } 4602 case Intrinsic::smul_fix: 4603 case Intrinsic::smul_fix_sat: 4604 case Intrinsic::umul_fix: { 4605 Value *Op1 = Call.getArgOperand(0); 4606 Value *Op2 = Call.getArgOperand(1); 4607 Assert(Op1->getType()->isIntOrIntVectorTy(), 4608 "first operand of [us]mul_fix[_sat] must be an int type or vector " 4609 "of ints"); 4610 Assert(Op2->getType()->isIntOrIntVectorTy(), 4611 "second operand of [us]mul_fix_[sat] must be an int type or vector " 4612 "of ints"); 4613 4614 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 4615 Assert(Op3->getType()->getBitWidth() <= 32, 4616 "third argument of [us]mul_fix[_sat] must fit within 32 bits"); 4617 4618 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat) { 4619 Assert( 4620 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 4621 "the scale of smul_fix[_sat] must be less than the width of the operands"); 4622 } else { 4623 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 4624 "the scale of umul_fix[_sat] must be less than or equal to the width of " 4625 "the operands"); 4626 } 4627 break; 4628 } 4629 case Intrinsic::lround: 4630 case Intrinsic::llround: 4631 case Intrinsic::lrint: 4632 case Intrinsic::llrint: { 4633 Type *ValTy = Call.getArgOperand(0)->getType(); 4634 Type *ResultTy = Call.getType(); 4635 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 4636 "Intrinsic does not support vectors", &Call); 4637 break; 4638 } 4639 }; 4640 } 4641 4642 /// Carefully grab the subprogram from a local scope. 4643 /// 4644 /// This carefully grabs the subprogram from a local scope, avoiding the 4645 /// built-in assertions that would typically fire. 4646 static DISubprogram *getSubprogram(Metadata *LocalScope) { 4647 if (!LocalScope) 4648 return nullptr; 4649 4650 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 4651 return SP; 4652 4653 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 4654 return getSubprogram(LB->getRawScope()); 4655 4656 // Just return null; broken scope chains are checked elsewhere. 4657 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 4658 return nullptr; 4659 } 4660 4661 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 4662 unsigned NumOperands = FPI.getNumArgOperands(); 4663 bool HasExceptionMD = false; 4664 bool HasRoundingMD = false; 4665 switch (FPI.getIntrinsicID()) { 4666 case Intrinsic::experimental_constrained_sqrt: 4667 case Intrinsic::experimental_constrained_sin: 4668 case Intrinsic::experimental_constrained_cos: 4669 case Intrinsic::experimental_constrained_exp: 4670 case Intrinsic::experimental_constrained_exp2: 4671 case Intrinsic::experimental_constrained_log: 4672 case Intrinsic::experimental_constrained_log10: 4673 case Intrinsic::experimental_constrained_log2: 4674 case Intrinsic::experimental_constrained_rint: 4675 case Intrinsic::experimental_constrained_nearbyint: 4676 case Intrinsic::experimental_constrained_ceil: 4677 case Intrinsic::experimental_constrained_floor: 4678 case Intrinsic::experimental_constrained_round: 4679 case Intrinsic::experimental_constrained_trunc: 4680 Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic", 4681 &FPI); 4682 HasExceptionMD = true; 4683 HasRoundingMD = true; 4684 break; 4685 4686 case Intrinsic::experimental_constrained_fma: 4687 Assert((NumOperands == 5), "invalid arguments for constrained FP intrinsic", 4688 &FPI); 4689 HasExceptionMD = true; 4690 HasRoundingMD = true; 4691 break; 4692 4693 case Intrinsic::experimental_constrained_fadd: 4694 case Intrinsic::experimental_constrained_fsub: 4695 case Intrinsic::experimental_constrained_fmul: 4696 case Intrinsic::experimental_constrained_fdiv: 4697 case Intrinsic::experimental_constrained_frem: 4698 case Intrinsic::experimental_constrained_pow: 4699 case Intrinsic::experimental_constrained_powi: 4700 case Intrinsic::experimental_constrained_maxnum: 4701 case Intrinsic::experimental_constrained_minnum: 4702 Assert((NumOperands == 4), "invalid arguments for constrained FP intrinsic", 4703 &FPI); 4704 HasExceptionMD = true; 4705 HasRoundingMD = true; 4706 break; 4707 4708 case Intrinsic::experimental_constrained_fptrunc: 4709 case Intrinsic::experimental_constrained_fpext: { 4710 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 4711 Assert((NumOperands == 3), 4712 "invalid arguments for constrained FP intrinsic", &FPI); 4713 HasRoundingMD = true; 4714 } else { 4715 Assert((NumOperands == 2), 4716 "invalid arguments for constrained FP intrinsic", &FPI); 4717 } 4718 HasExceptionMD = true; 4719 4720 Value *Operand = FPI.getArgOperand(0); 4721 Type *OperandTy = Operand->getType(); 4722 Value *Result = &FPI; 4723 Type *ResultTy = Result->getType(); 4724 Assert(OperandTy->isFPOrFPVectorTy(), 4725 "Intrinsic first argument must be FP or FP vector", &FPI); 4726 Assert(ResultTy->isFPOrFPVectorTy(), 4727 "Intrinsic result must be FP or FP vector", &FPI); 4728 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 4729 "Intrinsic first argument and result disagree on vector use", &FPI); 4730 if (OperandTy->isVectorTy()) { 4731 auto *OperandVecTy = cast<VectorType>(OperandTy); 4732 auto *ResultVecTy = cast<VectorType>(ResultTy); 4733 Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(), 4734 "Intrinsic first argument and result vector lengths must be equal", 4735 &FPI); 4736 } 4737 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 4738 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 4739 "Intrinsic first argument's type must be larger than result type", 4740 &FPI); 4741 } else { 4742 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 4743 "Intrinsic first argument's type must be smaller than result type", 4744 &FPI); 4745 } 4746 } 4747 break; 4748 4749 default: 4750 llvm_unreachable("Invalid constrained FP intrinsic!"); 4751 } 4752 4753 // If a non-metadata argument is passed in a metadata slot then the 4754 // error will be caught earlier when the incorrect argument doesn't 4755 // match the specification in the intrinsic call table. Thus, no 4756 // argument type check is needed here. 4757 4758 if (HasExceptionMD) { 4759 Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid, 4760 "invalid exception behavior argument", &FPI); 4761 } 4762 if (HasRoundingMD) { 4763 Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid, 4764 "invalid rounding mode argument", &FPI); 4765 } 4766 } 4767 4768 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 4769 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); 4770 AssertDI(isa<ValueAsMetadata>(MD) || 4771 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 4772 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 4773 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 4774 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 4775 DII.getRawVariable()); 4776 AssertDI(isa<DIExpression>(DII.getRawExpression()), 4777 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 4778 DII.getRawExpression()); 4779 4780 // Ignore broken !dbg attachments; they're checked elsewhere. 4781 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 4782 if (!isa<DILocation>(N)) 4783 return; 4784 4785 BasicBlock *BB = DII.getParent(); 4786 Function *F = BB ? BB->getParent() : nullptr; 4787 4788 // The scopes for variables and !dbg attachments must agree. 4789 DILocalVariable *Var = DII.getVariable(); 4790 DILocation *Loc = DII.getDebugLoc(); 4791 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4792 &DII, BB, F); 4793 4794 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 4795 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4796 if (!VarSP || !LocSP) 4797 return; // Broken scope chains are checked elsewhere. 4798 4799 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4800 " variable and !dbg attachment", 4801 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 4802 Loc->getScope()->getSubprogram()); 4803 4804 // This check is redundant with one in visitLocalVariable(). 4805 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 4806 Var->getRawType()); 4807 if (auto *Type = dyn_cast_or_null<DIType>(Var->getRawType())) 4808 if (Type->isBlockByrefStruct()) 4809 AssertDI(DII.getExpression() && DII.getExpression()->getNumElements(), 4810 "BlockByRef variable without complex expression", Var, &DII); 4811 4812 verifyFnArgs(DII); 4813 } 4814 4815 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 4816 AssertDI(isa<DILabel>(DLI.getRawLabel()), 4817 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 4818 DLI.getRawLabel()); 4819 4820 // Ignore broken !dbg attachments; they're checked elsewhere. 4821 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 4822 if (!isa<DILocation>(N)) 4823 return; 4824 4825 BasicBlock *BB = DLI.getParent(); 4826 Function *F = BB ? BB->getParent() : nullptr; 4827 4828 // The scopes for variables and !dbg attachments must agree. 4829 DILabel *Label = DLI.getLabel(); 4830 DILocation *Loc = DLI.getDebugLoc(); 4831 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4832 &DLI, BB, F); 4833 4834 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 4835 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4836 if (!LabelSP || !LocSP) 4837 return; 4838 4839 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4840 " label and !dbg attachment", 4841 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 4842 Loc->getScope()->getSubprogram()); 4843 } 4844 4845 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 4846 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 4847 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 4848 4849 // We don't know whether this intrinsic verified correctly. 4850 if (!V || !E || !E->isValid()) 4851 return; 4852 4853 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 4854 auto Fragment = E->getFragmentInfo(); 4855 if (!Fragment) 4856 return; 4857 4858 // The frontend helps out GDB by emitting the members of local anonymous 4859 // unions as artificial local variables with shared storage. When SROA splits 4860 // the storage for artificial local variables that are smaller than the entire 4861 // union, the overhang piece will be outside of the allotted space for the 4862 // variable and this check fails. 4863 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 4864 if (V->isArtificial()) 4865 return; 4866 4867 verifyFragmentExpression(*V, *Fragment, &I); 4868 } 4869 4870 template <typename ValueOrMetadata> 4871 void Verifier::verifyFragmentExpression(const DIVariable &V, 4872 DIExpression::FragmentInfo Fragment, 4873 ValueOrMetadata *Desc) { 4874 // If there's no size, the type is broken, but that should be checked 4875 // elsewhere. 4876 auto VarSize = V.getSizeInBits(); 4877 if (!VarSize) 4878 return; 4879 4880 unsigned FragSize = Fragment.SizeInBits; 4881 unsigned FragOffset = Fragment.OffsetInBits; 4882 AssertDI(FragSize + FragOffset <= *VarSize, 4883 "fragment is larger than or outside of variable", Desc, &V); 4884 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 4885 } 4886 4887 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 4888 // This function does not take the scope of noninlined function arguments into 4889 // account. Don't run it if current function is nodebug, because it may 4890 // contain inlined debug intrinsics. 4891 if (!HasDebugInfo) 4892 return; 4893 4894 // For performance reasons only check non-inlined ones. 4895 if (I.getDebugLoc()->getInlinedAt()) 4896 return; 4897 4898 DILocalVariable *Var = I.getVariable(); 4899 AssertDI(Var, "dbg intrinsic without variable"); 4900 4901 unsigned ArgNo = Var->getArg(); 4902 if (!ArgNo) 4903 return; 4904 4905 // Verify there are no duplicate function argument debug info entries. 4906 // These will cause hard-to-debug assertions in the DWARF backend. 4907 if (DebugFnArgs.size() < ArgNo) 4908 DebugFnArgs.resize(ArgNo, nullptr); 4909 4910 auto *Prev = DebugFnArgs[ArgNo - 1]; 4911 DebugFnArgs[ArgNo - 1] = Var; 4912 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 4913 Prev, Var); 4914 } 4915 4916 void Verifier::verifyCompileUnits() { 4917 // When more than one Module is imported into the same context, such as during 4918 // an LTO build before linking the modules, ODR type uniquing may cause types 4919 // to point to a different CU. This check does not make sense in this case. 4920 if (M.getContext().isODRUniquingDebugTypes()) 4921 return; 4922 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 4923 SmallPtrSet<const Metadata *, 2> Listed; 4924 if (CUs) 4925 Listed.insert(CUs->op_begin(), CUs->op_end()); 4926 for (auto *CU : CUVisited) 4927 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 4928 CUVisited.clear(); 4929 } 4930 4931 void Verifier::verifyDeoptimizeCallingConvs() { 4932 if (DeoptimizeDeclarations.empty()) 4933 return; 4934 4935 const Function *First = DeoptimizeDeclarations[0]; 4936 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 4937 Assert(First->getCallingConv() == F->getCallingConv(), 4938 "All llvm.experimental.deoptimize declarations must have the same " 4939 "calling convention", 4940 First, F); 4941 } 4942 } 4943 4944 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 4945 bool HasSource = F.getSource().hasValue(); 4946 if (!HasSourceDebugInfo.count(&U)) 4947 HasSourceDebugInfo[&U] = HasSource; 4948 AssertDI(HasSource == HasSourceDebugInfo[&U], 4949 "inconsistent use of embedded source"); 4950 } 4951 4952 //===----------------------------------------------------------------------===// 4953 // Implement the public interfaces to this file... 4954 //===----------------------------------------------------------------------===// 4955 4956 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 4957 Function &F = const_cast<Function &>(f); 4958 4959 // Don't use a raw_null_ostream. Printing IR is expensive. 4960 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 4961 4962 // Note that this function's return value is inverted from what you would 4963 // expect of a function called "verify". 4964 return !V.verify(F); 4965 } 4966 4967 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 4968 bool *BrokenDebugInfo) { 4969 // Don't use a raw_null_ostream. Printing IR is expensive. 4970 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 4971 4972 bool Broken = false; 4973 for (const Function &F : M) 4974 Broken |= !V.verify(F); 4975 4976 Broken |= !V.verify(); 4977 if (BrokenDebugInfo) 4978 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 4979 // Note that this function's return value is inverted from what you would 4980 // expect of a function called "verify". 4981 return Broken; 4982 } 4983 4984 namespace { 4985 4986 struct VerifierLegacyPass : public FunctionPass { 4987 static char ID; 4988 4989 std::unique_ptr<Verifier> V; 4990 bool FatalErrors = true; 4991 4992 VerifierLegacyPass() : FunctionPass(ID) { 4993 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 4994 } 4995 explicit VerifierLegacyPass(bool FatalErrors) 4996 : FunctionPass(ID), 4997 FatalErrors(FatalErrors) { 4998 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 4999 } 5000 5001 bool doInitialization(Module &M) override { 5002 V = llvm::make_unique<Verifier>( 5003 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 5004 return false; 5005 } 5006 5007 bool runOnFunction(Function &F) override { 5008 if (!V->verify(F) && FatalErrors) { 5009 errs() << "in function " << F.getName() << '\n'; 5010 report_fatal_error("Broken function found, compilation aborted!"); 5011 } 5012 return false; 5013 } 5014 5015 bool doFinalization(Module &M) override { 5016 bool HasErrors = false; 5017 for (Function &F : M) 5018 if (F.isDeclaration()) 5019 HasErrors |= !V->verify(F); 5020 5021 HasErrors |= !V->verify(); 5022 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 5023 report_fatal_error("Broken module found, compilation aborted!"); 5024 return false; 5025 } 5026 5027 void getAnalysisUsage(AnalysisUsage &AU) const override { 5028 AU.setPreservesAll(); 5029 } 5030 }; 5031 5032 } // end anonymous namespace 5033 5034 /// Helper to issue failure from the TBAA verification 5035 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 5036 if (Diagnostic) 5037 return Diagnostic->CheckFailed(Args...); 5038 } 5039 5040 #define AssertTBAA(C, ...) \ 5041 do { \ 5042 if (!(C)) { \ 5043 CheckFailed(__VA_ARGS__); \ 5044 return false; \ 5045 } \ 5046 } while (false) 5047 5048 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 5049 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 5050 /// struct-type node describing an aggregate data structure (like a struct). 5051 TBAAVerifier::TBAABaseNodeSummary 5052 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 5053 bool IsNewFormat) { 5054 if (BaseNode->getNumOperands() < 2) { 5055 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 5056 return {true, ~0u}; 5057 } 5058 5059 auto Itr = TBAABaseNodes.find(BaseNode); 5060 if (Itr != TBAABaseNodes.end()) 5061 return Itr->second; 5062 5063 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 5064 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 5065 (void)InsertResult; 5066 assert(InsertResult.second && "We just checked!"); 5067 return Result; 5068 } 5069 5070 TBAAVerifier::TBAABaseNodeSummary 5071 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 5072 bool IsNewFormat) { 5073 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 5074 5075 if (BaseNode->getNumOperands() == 2) { 5076 // Scalar nodes can only be accessed at offset 0. 5077 return isValidScalarTBAANode(BaseNode) 5078 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 5079 : InvalidNode; 5080 } 5081 5082 if (IsNewFormat) { 5083 if (BaseNode->getNumOperands() % 3 != 0) { 5084 CheckFailed("Access tag nodes must have the number of operands that is a " 5085 "multiple of 3!", BaseNode); 5086 return InvalidNode; 5087 } 5088 } else { 5089 if (BaseNode->getNumOperands() % 2 != 1) { 5090 CheckFailed("Struct tag nodes must have an odd number of operands!", 5091 BaseNode); 5092 return InvalidNode; 5093 } 5094 } 5095 5096 // Check the type size field. 5097 if (IsNewFormat) { 5098 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5099 BaseNode->getOperand(1)); 5100 if (!TypeSizeNode) { 5101 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 5102 return InvalidNode; 5103 } 5104 } 5105 5106 // Check the type name field. In the new format it can be anything. 5107 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 5108 CheckFailed("Struct tag nodes have a string as their first operand", 5109 BaseNode); 5110 return InvalidNode; 5111 } 5112 5113 bool Failed = false; 5114 5115 Optional<APInt> PrevOffset; 5116 unsigned BitWidth = ~0u; 5117 5118 // We've already checked that BaseNode is not a degenerate root node with one 5119 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 5120 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5121 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5122 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5123 Idx += NumOpsPerField) { 5124 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 5125 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 5126 if (!isa<MDNode>(FieldTy)) { 5127 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 5128 Failed = true; 5129 continue; 5130 } 5131 5132 auto *OffsetEntryCI = 5133 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 5134 if (!OffsetEntryCI) { 5135 CheckFailed("Offset entries must be constants!", &I, BaseNode); 5136 Failed = true; 5137 continue; 5138 } 5139 5140 if (BitWidth == ~0u) 5141 BitWidth = OffsetEntryCI->getBitWidth(); 5142 5143 if (OffsetEntryCI->getBitWidth() != BitWidth) { 5144 CheckFailed( 5145 "Bitwidth between the offsets and struct type entries must match", &I, 5146 BaseNode); 5147 Failed = true; 5148 continue; 5149 } 5150 5151 // NB! As far as I can tell, we generate a non-strictly increasing offset 5152 // sequence only from structs that have zero size bit fields. When 5153 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 5154 // pick the field lexically the latest in struct type metadata node. This 5155 // mirrors the actual behavior of the alias analysis implementation. 5156 bool IsAscending = 5157 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 5158 5159 if (!IsAscending) { 5160 CheckFailed("Offsets must be increasing!", &I, BaseNode); 5161 Failed = true; 5162 } 5163 5164 PrevOffset = OffsetEntryCI->getValue(); 5165 5166 if (IsNewFormat) { 5167 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5168 BaseNode->getOperand(Idx + 2)); 5169 if (!MemberSizeNode) { 5170 CheckFailed("Member size entries must be constants!", &I, BaseNode); 5171 Failed = true; 5172 continue; 5173 } 5174 } 5175 } 5176 5177 return Failed ? InvalidNode 5178 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 5179 } 5180 5181 static bool IsRootTBAANode(const MDNode *MD) { 5182 return MD->getNumOperands() < 2; 5183 } 5184 5185 static bool IsScalarTBAANodeImpl(const MDNode *MD, 5186 SmallPtrSetImpl<const MDNode *> &Visited) { 5187 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 5188 return false; 5189 5190 if (!isa<MDString>(MD->getOperand(0))) 5191 return false; 5192 5193 if (MD->getNumOperands() == 3) { 5194 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 5195 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 5196 return false; 5197 } 5198 5199 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5200 return Parent && Visited.insert(Parent).second && 5201 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 5202 } 5203 5204 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 5205 auto ResultIt = TBAAScalarNodes.find(MD); 5206 if (ResultIt != TBAAScalarNodes.end()) 5207 return ResultIt->second; 5208 5209 SmallPtrSet<const MDNode *, 4> Visited; 5210 bool Result = IsScalarTBAANodeImpl(MD, Visited); 5211 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 5212 (void)InsertResult; 5213 assert(InsertResult.second && "Just checked!"); 5214 5215 return Result; 5216 } 5217 5218 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 5219 /// Offset in place to be the offset within the field node returned. 5220 /// 5221 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 5222 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 5223 const MDNode *BaseNode, 5224 APInt &Offset, 5225 bool IsNewFormat) { 5226 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 5227 5228 // Scalar nodes have only one possible "field" -- their parent in the access 5229 // hierarchy. Offset must be zero at this point, but our caller is supposed 5230 // to Assert that. 5231 if (BaseNode->getNumOperands() == 2) 5232 return cast<MDNode>(BaseNode->getOperand(1)); 5233 5234 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5235 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5236 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5237 Idx += NumOpsPerField) { 5238 auto *OffsetEntryCI = 5239 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 5240 if (OffsetEntryCI->getValue().ugt(Offset)) { 5241 if (Idx == FirstFieldOpNo) { 5242 CheckFailed("Could not find TBAA parent in struct type node", &I, 5243 BaseNode, &Offset); 5244 return nullptr; 5245 } 5246 5247 unsigned PrevIdx = Idx - NumOpsPerField; 5248 auto *PrevOffsetEntryCI = 5249 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 5250 Offset -= PrevOffsetEntryCI->getValue(); 5251 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 5252 } 5253 } 5254 5255 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 5256 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 5257 BaseNode->getOperand(LastIdx + 1)); 5258 Offset -= LastOffsetEntryCI->getValue(); 5259 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 5260 } 5261 5262 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 5263 if (!Type || Type->getNumOperands() < 3) 5264 return false; 5265 5266 // In the new format type nodes shall have a reference to the parent type as 5267 // its first operand. 5268 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 5269 if (!Parent) 5270 return false; 5271 5272 return true; 5273 } 5274 5275 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 5276 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 5277 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 5278 isa<AtomicCmpXchgInst>(I), 5279 "This instruction shall not have a TBAA access tag!", &I); 5280 5281 bool IsStructPathTBAA = 5282 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 5283 5284 AssertTBAA( 5285 IsStructPathTBAA, 5286 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 5287 5288 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 5289 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5290 5291 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 5292 5293 if (IsNewFormat) { 5294 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 5295 "Access tag metadata must have either 4 or 5 operands", &I, MD); 5296 } else { 5297 AssertTBAA(MD->getNumOperands() < 5, 5298 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 5299 } 5300 5301 // Check the access size field. 5302 if (IsNewFormat) { 5303 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5304 MD->getOperand(3)); 5305 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 5306 } 5307 5308 // Check the immutability flag. 5309 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 5310 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 5311 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 5312 MD->getOperand(ImmutabilityFlagOpNo)); 5313 AssertTBAA(IsImmutableCI, 5314 "Immutability tag on struct tag metadata must be a constant", 5315 &I, MD); 5316 AssertTBAA( 5317 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 5318 "Immutability part of the struct tag metadata must be either 0 or 1", 5319 &I, MD); 5320 } 5321 5322 AssertTBAA(BaseNode && AccessType, 5323 "Malformed struct tag metadata: base and access-type " 5324 "should be non-null and point to Metadata nodes", 5325 &I, MD, BaseNode, AccessType); 5326 5327 if (!IsNewFormat) { 5328 AssertTBAA(isValidScalarTBAANode(AccessType), 5329 "Access type node must be a valid scalar type", &I, MD, 5330 AccessType); 5331 } 5332 5333 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 5334 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 5335 5336 APInt Offset = OffsetCI->getValue(); 5337 bool SeenAccessTypeInPath = false; 5338 5339 SmallPtrSet<MDNode *, 4> StructPath; 5340 5341 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 5342 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 5343 IsNewFormat)) { 5344 if (!StructPath.insert(BaseNode).second) { 5345 CheckFailed("Cycle detected in struct path", &I, MD); 5346 return false; 5347 } 5348 5349 bool Invalid; 5350 unsigned BaseNodeBitWidth; 5351 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 5352 IsNewFormat); 5353 5354 // If the base node is invalid in itself, then we've already printed all the 5355 // errors we wanted to print. 5356 if (Invalid) 5357 return false; 5358 5359 SeenAccessTypeInPath |= BaseNode == AccessType; 5360 5361 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 5362 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 5363 &I, MD, &Offset); 5364 5365 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 5366 (BaseNodeBitWidth == 0 && Offset == 0) || 5367 (IsNewFormat && BaseNodeBitWidth == ~0u), 5368 "Access bit-width not the same as description bit-width", &I, MD, 5369 BaseNodeBitWidth, Offset.getBitWidth()); 5370 5371 if (IsNewFormat && SeenAccessTypeInPath) 5372 break; 5373 } 5374 5375 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 5376 &I, MD); 5377 return true; 5378 } 5379 5380 char VerifierLegacyPass::ID = 0; 5381 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 5382 5383 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 5384 return new VerifierLegacyPass(FatalErrors); 5385 } 5386 5387 AnalysisKey VerifierAnalysis::Key; 5388 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 5389 ModuleAnalysisManager &) { 5390 Result Res; 5391 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 5392 return Res; 5393 } 5394 5395 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 5396 FunctionAnalysisManager &) { 5397 return { llvm::verifyFunction(F, &dbgs()), false }; 5398 } 5399 5400 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 5401 auto Res = AM.getResult<VerifierAnalysis>(M); 5402 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 5403 report_fatal_error("Broken module found, compilation aborted!"); 5404 5405 return PreservedAnalyses::all(); 5406 } 5407 5408 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 5409 auto res = AM.getResult<VerifierAnalysis>(F); 5410 if (res.IRBroken && FatalErrors) 5411 report_fatal_error("Broken function found, compilation aborted!"); 5412 5413 return PreservedAnalyses::all(); 5414 } 5415