1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // sanity checking of input to the system.
11 //
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
14 //
15 //  * Both of a binary operator's parameters are of the same type
16 //  * Verify that the indices of mem access instructions match other operands
17 //  * Verify that arithmetic and other things are only performed on first-class
18 //    types.  Verify that shifts & logicals only happen on integrals f.e.
19 //  * All of the constants in a switch statement are of the correct type
20 //  * The code is in valid SSA form
21 //  * It should be illegal to put a label into any other type (like a structure)
22 //    or to return one. [except constant arrays!]
23 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 //  * PHI nodes must have an entry for each predecessor, with no extras.
25 //  * PHI nodes must be the first thing in a basic block, all grouped together
26 //  * PHI nodes must have at least one entry
27 //  * All basic blocks should only end with terminator insts, not contain them
28 //  * The entry node to a function must not have predecessors
29 //  * All Instructions must be embedded into a basic block
30 //  * Functions cannot take a void-typed parameter
31 //  * Verify that a function's argument list agrees with it's declared type.
32 //  * It is illegal to specify a name for a void value.
33 //  * It is illegal to have a internal global value with no initializer
34 //  * It is illegal to have a ret instruction that returns a value that does not
35 //    agree with the function return value type.
36 //  * Function call argument types match the function prototype
37 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
38 //    only by the unwind edge of an invoke instruction.
39 //  * A landingpad instruction must be the first non-PHI instruction in the
40 //    block.
41 //  * Landingpad instructions must be in a function with a personality function.
42 //  * All other things that are tested by asserts spread about the code...
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/ilist.h"
62 #include "llvm/BinaryFormat/Dwarf.h"
63 #include "llvm/IR/Argument.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Comdat.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DebugInfo.h"
74 #include "llvm/IR/DebugInfoMetadata.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstVisitor.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/LLVMContext.h"
90 #include "llvm/IR/Metadata.h"
91 #include "llvm/IR/Module.h"
92 #include "llvm/IR/ModuleSlotTracker.h"
93 #include "llvm/IR/PassManager.h"
94 #include "llvm/IR/Statepoint.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Use.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/Pass.h"
100 #include "llvm/Support/AtomicOrdering.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MathExtras.h"
106 #include "llvm/Support/raw_ostream.h"
107 #include <algorithm>
108 #include <cassert>
109 #include <cstdint>
110 #include <memory>
111 #include <string>
112 #include <utility>
113 
114 using namespace llvm;
115 
116 namespace llvm {
117 
118 struct VerifierSupport {
119   raw_ostream *OS;
120   const Module &M;
121   ModuleSlotTracker MST;
122   const DataLayout &DL;
123   LLVMContext &Context;
124 
125   /// Track the brokenness of the module while recursively visiting.
126   bool Broken = false;
127   /// Broken debug info can be "recovered" from by stripping the debug info.
128   bool BrokenDebugInfo = false;
129   /// Whether to treat broken debug info as an error.
130   bool TreatBrokenDebugInfoAsError = true;
131 
132   explicit VerifierSupport(raw_ostream *OS, const Module &M)
133       : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
134 
135 private:
136   void Write(const Module *M) {
137     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
138   }
139 
140   void Write(const Value *V) {
141     if (V)
142       Write(*V);
143   }
144 
145   void Write(const Value &V) {
146     if (isa<Instruction>(V)) {
147       V.print(*OS, MST);
148       *OS << '\n';
149     } else {
150       V.printAsOperand(*OS, true, MST);
151       *OS << '\n';
152     }
153   }
154 
155   void Write(const Metadata *MD) {
156     if (!MD)
157       return;
158     MD->print(*OS, MST, &M);
159     *OS << '\n';
160   }
161 
162   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
163     Write(MD.get());
164   }
165 
166   void Write(const NamedMDNode *NMD) {
167     if (!NMD)
168       return;
169     NMD->print(*OS, MST);
170     *OS << '\n';
171   }
172 
173   void Write(Type *T) {
174     if (!T)
175       return;
176     *OS << ' ' << *T;
177   }
178 
179   void Write(const Comdat *C) {
180     if (!C)
181       return;
182     *OS << *C;
183   }
184 
185   void Write(const APInt *AI) {
186     if (!AI)
187       return;
188     *OS << *AI << '\n';
189   }
190 
191   void Write(const unsigned i) { *OS << i << '\n'; }
192 
193   template <typename T> void Write(ArrayRef<T> Vs) {
194     for (const T &V : Vs)
195       Write(V);
196   }
197 
198   template <typename T1, typename... Ts>
199   void WriteTs(const T1 &V1, const Ts &... Vs) {
200     Write(V1);
201     WriteTs(Vs...);
202   }
203 
204   template <typename... Ts> void WriteTs() {}
205 
206 public:
207   /// A check failed, so printout out the condition and the message.
208   ///
209   /// This provides a nice place to put a breakpoint if you want to see why
210   /// something is not correct.
211   void CheckFailed(const Twine &Message) {
212     if (OS)
213       *OS << Message << '\n';
214     Broken = true;
215   }
216 
217   /// A check failed (with values to print).
218   ///
219   /// This calls the Message-only version so that the above is easier to set a
220   /// breakpoint on.
221   template <typename T1, typename... Ts>
222   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
223     CheckFailed(Message);
224     if (OS)
225       WriteTs(V1, Vs...);
226   }
227 
228   /// A debug info check failed.
229   void DebugInfoCheckFailed(const Twine &Message) {
230     if (OS)
231       *OS << Message << '\n';
232     Broken |= TreatBrokenDebugInfoAsError;
233     BrokenDebugInfo = true;
234   }
235 
236   /// A debug info check failed (with values to print).
237   template <typename T1, typename... Ts>
238   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
239                             const Ts &... Vs) {
240     DebugInfoCheckFailed(Message);
241     if (OS)
242       WriteTs(V1, Vs...);
243   }
244 };
245 
246 } // namespace llvm
247 
248 namespace {
249 
250 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
251   friend class InstVisitor<Verifier>;
252 
253   DominatorTree DT;
254 
255   /// When verifying a basic block, keep track of all of the
256   /// instructions we have seen so far.
257   ///
258   /// This allows us to do efficient dominance checks for the case when an
259   /// instruction has an operand that is an instruction in the same block.
260   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
261 
262   /// Keep track of the metadata nodes that have been checked already.
263   SmallPtrSet<const Metadata *, 32> MDNodes;
264 
265   /// Keep track which DISubprogram is attached to which function.
266   DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
267 
268   /// Track all DICompileUnits visited.
269   SmallPtrSet<const Metadata *, 2> CUVisited;
270 
271   /// The result type for a landingpad.
272   Type *LandingPadResultTy;
273 
274   /// Whether we've seen a call to @llvm.localescape in this function
275   /// already.
276   bool SawFrameEscape;
277 
278   /// Whether the current function has a DISubprogram attached to it.
279   bool HasDebugInfo = false;
280 
281   /// Whether source was present on the first DIFile encountered in each CU.
282   DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
283 
284   /// Stores the count of how many objects were passed to llvm.localescape for a
285   /// given function and the largest index passed to llvm.localrecover.
286   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
287 
288   // Maps catchswitches and cleanuppads that unwind to siblings to the
289   // terminators that indicate the unwind, used to detect cycles therein.
290   MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
291 
292   /// Cache of constants visited in search of ConstantExprs.
293   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
294 
295   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
296   SmallVector<const Function *, 4> DeoptimizeDeclarations;
297 
298   // Verify that this GlobalValue is only used in this module.
299   // This map is used to avoid visiting uses twice. We can arrive at a user
300   // twice, if they have multiple operands. In particular for very large
301   // constant expressions, we can arrive at a particular user many times.
302   SmallPtrSet<const Value *, 32> GlobalValueVisited;
303 
304   // Keeps track of duplicate function argument debug info.
305   SmallVector<const DILocalVariable *, 16> DebugFnArgs;
306 
307   TBAAVerifier TBAAVerifyHelper;
308 
309   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
310 
311 public:
312   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
313                     const Module &M)
314       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
315         SawFrameEscape(false), TBAAVerifyHelper(this) {
316     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
317   }
318 
319   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
320 
321   bool verify(const Function &F) {
322     assert(F.getParent() == &M &&
323            "An instance of this class only works with a specific module!");
324 
325     // First ensure the function is well-enough formed to compute dominance
326     // information, and directly compute a dominance tree. We don't rely on the
327     // pass manager to provide this as it isolates us from a potentially
328     // out-of-date dominator tree and makes it significantly more complex to run
329     // this code outside of a pass manager.
330     // FIXME: It's really gross that we have to cast away constness here.
331     if (!F.empty())
332       DT.recalculate(const_cast<Function &>(F));
333 
334     for (const BasicBlock &BB : F) {
335       if (!BB.empty() && BB.back().isTerminator())
336         continue;
337 
338       if (OS) {
339         *OS << "Basic Block in function '" << F.getName()
340             << "' does not have terminator!\n";
341         BB.printAsOperand(*OS, true, MST);
342         *OS << "\n";
343       }
344       return false;
345     }
346 
347     Broken = false;
348     // FIXME: We strip const here because the inst visitor strips const.
349     visit(const_cast<Function &>(F));
350     verifySiblingFuncletUnwinds();
351     InstsInThisBlock.clear();
352     DebugFnArgs.clear();
353     LandingPadResultTy = nullptr;
354     SawFrameEscape = false;
355     SiblingFuncletInfo.clear();
356 
357     return !Broken;
358   }
359 
360   /// Verify the module that this instance of \c Verifier was initialized with.
361   bool verify() {
362     Broken = false;
363 
364     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
365     for (const Function &F : M)
366       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
367         DeoptimizeDeclarations.push_back(&F);
368 
369     // Now that we've visited every function, verify that we never asked to
370     // recover a frame index that wasn't escaped.
371     verifyFrameRecoverIndices();
372     for (const GlobalVariable &GV : M.globals())
373       visitGlobalVariable(GV);
374 
375     for (const GlobalAlias &GA : M.aliases())
376       visitGlobalAlias(GA);
377 
378     for (const NamedMDNode &NMD : M.named_metadata())
379       visitNamedMDNode(NMD);
380 
381     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
382       visitComdat(SMEC.getValue());
383 
384     visitModuleFlags(M);
385     visitModuleIdents(M);
386     visitModuleCommandLines(M);
387 
388     verifyCompileUnits();
389 
390     verifyDeoptimizeCallingConvs();
391     DISubprogramAttachments.clear();
392     return !Broken;
393   }
394 
395 private:
396   // Verification methods...
397   void visitGlobalValue(const GlobalValue &GV);
398   void visitGlobalVariable(const GlobalVariable &GV);
399   void visitGlobalAlias(const GlobalAlias &GA);
400   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
401   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
402                            const GlobalAlias &A, const Constant &C);
403   void visitNamedMDNode(const NamedMDNode &NMD);
404   void visitMDNode(const MDNode &MD);
405   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
406   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
407   void visitComdat(const Comdat &C);
408   void visitModuleIdents(const Module &M);
409   void visitModuleCommandLines(const Module &M);
410   void visitModuleFlags(const Module &M);
411   void visitModuleFlag(const MDNode *Op,
412                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
413                        SmallVectorImpl<const MDNode *> &Requirements);
414   void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
415   void visitFunction(const Function &F);
416   void visitBasicBlock(BasicBlock &BB);
417   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
418   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
419 
420   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
421 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
422 #include "llvm/IR/Metadata.def"
423   void visitDIScope(const DIScope &N);
424   void visitDIVariable(const DIVariable &N);
425   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
426   void visitDITemplateParameter(const DITemplateParameter &N);
427 
428   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
429 
430   // InstVisitor overrides...
431   using InstVisitor<Verifier>::visit;
432   void visit(Instruction &I);
433 
434   void visitTruncInst(TruncInst &I);
435   void visitZExtInst(ZExtInst &I);
436   void visitSExtInst(SExtInst &I);
437   void visitFPTruncInst(FPTruncInst &I);
438   void visitFPExtInst(FPExtInst &I);
439   void visitFPToUIInst(FPToUIInst &I);
440   void visitFPToSIInst(FPToSIInst &I);
441   void visitUIToFPInst(UIToFPInst &I);
442   void visitSIToFPInst(SIToFPInst &I);
443   void visitIntToPtrInst(IntToPtrInst &I);
444   void visitPtrToIntInst(PtrToIntInst &I);
445   void visitBitCastInst(BitCastInst &I);
446   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
447   void visitPHINode(PHINode &PN);
448   void visitCallBase(CallBase &Call);
449   void visitUnaryOperator(UnaryOperator &U);
450   void visitBinaryOperator(BinaryOperator &B);
451   void visitICmpInst(ICmpInst &IC);
452   void visitFCmpInst(FCmpInst &FC);
453   void visitExtractElementInst(ExtractElementInst &EI);
454   void visitInsertElementInst(InsertElementInst &EI);
455   void visitShuffleVectorInst(ShuffleVectorInst &EI);
456   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
457   void visitCallInst(CallInst &CI);
458   void visitInvokeInst(InvokeInst &II);
459   void visitGetElementPtrInst(GetElementPtrInst &GEP);
460   void visitLoadInst(LoadInst &LI);
461   void visitStoreInst(StoreInst &SI);
462   void verifyDominatesUse(Instruction &I, unsigned i);
463   void visitInstruction(Instruction &I);
464   void visitTerminator(Instruction &I);
465   void visitBranchInst(BranchInst &BI);
466   void visitReturnInst(ReturnInst &RI);
467   void visitSwitchInst(SwitchInst &SI);
468   void visitIndirectBrInst(IndirectBrInst &BI);
469   void visitCallBrInst(CallBrInst &CBI);
470   void visitSelectInst(SelectInst &SI);
471   void visitUserOp1(Instruction &I);
472   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
473   void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
474   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
475   void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
476   void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
477   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
478   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
479   void visitFenceInst(FenceInst &FI);
480   void visitAllocaInst(AllocaInst &AI);
481   void visitExtractValueInst(ExtractValueInst &EVI);
482   void visitInsertValueInst(InsertValueInst &IVI);
483   void visitEHPadPredecessors(Instruction &I);
484   void visitLandingPadInst(LandingPadInst &LPI);
485   void visitResumeInst(ResumeInst &RI);
486   void visitCatchPadInst(CatchPadInst &CPI);
487   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
488   void visitCleanupPadInst(CleanupPadInst &CPI);
489   void visitFuncletPadInst(FuncletPadInst &FPI);
490   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
491   void visitCleanupReturnInst(CleanupReturnInst &CRI);
492 
493   void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
494   void verifySwiftErrorValue(const Value *SwiftErrorVal);
495   void verifyMustTailCall(CallInst &CI);
496   bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
497                         unsigned ArgNo, std::string &Suffix);
498   bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
499   void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
500                             const Value *V);
501   void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
502   void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
503                            const Value *V, bool IsIntrinsic);
504   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
505 
506   void visitConstantExprsRecursively(const Constant *EntryC);
507   void visitConstantExpr(const ConstantExpr *CE);
508   void verifyStatepoint(const CallBase &Call);
509   void verifyFrameRecoverIndices();
510   void verifySiblingFuncletUnwinds();
511 
512   void verifyFragmentExpression(const DbgVariableIntrinsic &I);
513   template <typename ValueOrMetadata>
514   void verifyFragmentExpression(const DIVariable &V,
515                                 DIExpression::FragmentInfo Fragment,
516                                 ValueOrMetadata *Desc);
517   void verifyFnArgs(const DbgVariableIntrinsic &I);
518 
519   /// Module-level debug info verification...
520   void verifyCompileUnits();
521 
522   /// Module-level verification that all @llvm.experimental.deoptimize
523   /// declarations share the same calling convention.
524   void verifyDeoptimizeCallingConvs();
525 
526   /// Verify all-or-nothing property of DIFile source attribute within a CU.
527   void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
528 };
529 
530 } // end anonymous namespace
531 
532 /// We know that cond should be true, if not print an error message.
533 #define Assert(C, ...) \
534   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
535 
536 /// We know that a debug info condition should be true, if not print
537 /// an error message.
538 #define AssertDI(C, ...) \
539   do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
540 
541 void Verifier::visit(Instruction &I) {
542   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
543     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
544   InstVisitor<Verifier>::visit(I);
545 }
546 
547 // Helper to recursively iterate over indirect users. By
548 // returning false, the callback can ask to stop recursing
549 // further.
550 static void forEachUser(const Value *User,
551                         SmallPtrSet<const Value *, 32> &Visited,
552                         llvm::function_ref<bool(const Value *)> Callback) {
553   if (!Visited.insert(User).second)
554     return;
555   for (const Value *TheNextUser : User->materialized_users())
556     if (Callback(TheNextUser))
557       forEachUser(TheNextUser, Visited, Callback);
558 }
559 
560 void Verifier::visitGlobalValue(const GlobalValue &GV) {
561   Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
562          "Global is external, but doesn't have external or weak linkage!", &GV);
563 
564   Assert(GV.getAlignment() <= Value::MaximumAlignment,
565          "huge alignment values are unsupported", &GV);
566   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
567          "Only global variables can have appending linkage!", &GV);
568 
569   if (GV.hasAppendingLinkage()) {
570     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
571     Assert(GVar && GVar->getValueType()->isArrayTy(),
572            "Only global arrays can have appending linkage!", GVar);
573   }
574 
575   if (GV.isDeclarationForLinker())
576     Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
577 
578   if (GV.hasDLLImportStorageClass()) {
579     Assert(!GV.isDSOLocal(),
580            "GlobalValue with DLLImport Storage is dso_local!", &GV);
581 
582     Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||
583                GV.hasAvailableExternallyLinkage(),
584            "Global is marked as dllimport, but not external", &GV);
585   }
586 
587   if (GV.hasLocalLinkage())
588     Assert(GV.isDSOLocal(),
589            "GlobalValue with private or internal linkage must be dso_local!",
590            &GV);
591 
592   if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage())
593     Assert(GV.isDSOLocal(),
594            "GlobalValue with non default visibility must be dso_local!", &GV);
595 
596   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
597     if (const Instruction *I = dyn_cast<Instruction>(V)) {
598       if (!I->getParent() || !I->getParent()->getParent())
599         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
600                     I);
601       else if (I->getParent()->getParent()->getParent() != &M)
602         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
603                     I->getParent()->getParent(),
604                     I->getParent()->getParent()->getParent());
605       return false;
606     } else if (const Function *F = dyn_cast<Function>(V)) {
607       if (F->getParent() != &M)
608         CheckFailed("Global is used by function in a different module", &GV, &M,
609                     F, F->getParent());
610       return false;
611     }
612     return true;
613   });
614 }
615 
616 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
617   if (GV.hasInitializer()) {
618     Assert(GV.getInitializer()->getType() == GV.getValueType(),
619            "Global variable initializer type does not match global "
620            "variable type!",
621            &GV);
622     // If the global has common linkage, it must have a zero initializer and
623     // cannot be constant.
624     if (GV.hasCommonLinkage()) {
625       Assert(GV.getInitializer()->isNullValue(),
626              "'common' global must have a zero initializer!", &GV);
627       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
628              &GV);
629       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
630     }
631   }
632 
633   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
634                        GV.getName() == "llvm.global_dtors")) {
635     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
636            "invalid linkage for intrinsic global variable", &GV);
637     // Don't worry about emitting an error for it not being an array,
638     // visitGlobalValue will complain on appending non-array.
639     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
640       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
641       PointerType *FuncPtrTy =
642           FunctionType::get(Type::getVoidTy(Context), false)->
643           getPointerTo(DL.getProgramAddressSpace());
644       Assert(STy &&
645                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
646                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
647                  STy->getTypeAtIndex(1) == FuncPtrTy,
648              "wrong type for intrinsic global variable", &GV);
649       Assert(STy->getNumElements() == 3,
650              "the third field of the element type is mandatory, "
651              "specify i8* null to migrate from the obsoleted 2-field form");
652       Type *ETy = STy->getTypeAtIndex(2);
653       Assert(ETy->isPointerTy() &&
654                  cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
655              "wrong type for intrinsic global variable", &GV);
656     }
657   }
658 
659   if (GV.hasName() && (GV.getName() == "llvm.used" ||
660                        GV.getName() == "llvm.compiler.used")) {
661     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
662            "invalid linkage for intrinsic global variable", &GV);
663     Type *GVType = GV.getValueType();
664     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
665       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
666       Assert(PTy, "wrong type for intrinsic global variable", &GV);
667       if (GV.hasInitializer()) {
668         const Constant *Init = GV.getInitializer();
669         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
670         Assert(InitArray, "wrong initalizer for intrinsic global variable",
671                Init);
672         for (Value *Op : InitArray->operands()) {
673           Value *V = Op->stripPointerCastsNoFollowAliases();
674           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
675                      isa<GlobalAlias>(V),
676                  "invalid llvm.used member", V);
677           Assert(V->hasName(), "members of llvm.used must be named", V);
678         }
679       }
680     }
681   }
682 
683   // Visit any debug info attachments.
684   SmallVector<MDNode *, 1> MDs;
685   GV.getMetadata(LLVMContext::MD_dbg, MDs);
686   for (auto *MD : MDs) {
687     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
688       visitDIGlobalVariableExpression(*GVE);
689     else
690       AssertDI(false, "!dbg attachment of global variable must be a "
691                       "DIGlobalVariableExpression");
692   }
693 
694   if (!GV.hasInitializer()) {
695     visitGlobalValue(GV);
696     return;
697   }
698 
699   // Walk any aggregate initializers looking for bitcasts between address spaces
700   visitConstantExprsRecursively(GV.getInitializer());
701 
702   visitGlobalValue(GV);
703 }
704 
705 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
706   SmallPtrSet<const GlobalAlias*, 4> Visited;
707   Visited.insert(&GA);
708   visitAliaseeSubExpr(Visited, GA, C);
709 }
710 
711 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
712                                    const GlobalAlias &GA, const Constant &C) {
713   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
714     Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
715            &GA);
716 
717     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
718       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
719 
720       Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
721              &GA);
722     } else {
723       // Only continue verifying subexpressions of GlobalAliases.
724       // Do not recurse into global initializers.
725       return;
726     }
727   }
728 
729   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
730     visitConstantExprsRecursively(CE);
731 
732   for (const Use &U : C.operands()) {
733     Value *V = &*U;
734     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
735       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
736     else if (const auto *C2 = dyn_cast<Constant>(V))
737       visitAliaseeSubExpr(Visited, GA, *C2);
738   }
739 }
740 
741 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
742   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
743          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
744          "weak_odr, or external linkage!",
745          &GA);
746   const Constant *Aliasee = GA.getAliasee();
747   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
748   Assert(GA.getType() == Aliasee->getType(),
749          "Alias and aliasee types should match!", &GA);
750 
751   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
752          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
753 
754   visitAliaseeSubExpr(GA, *Aliasee);
755 
756   visitGlobalValue(GA);
757 }
758 
759 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
760   // There used to be various other llvm.dbg.* nodes, but we don't support
761   // upgrading them and we want to reserve the namespace for future uses.
762   if (NMD.getName().startswith("llvm.dbg."))
763     AssertDI(NMD.getName() == "llvm.dbg.cu",
764              "unrecognized named metadata node in the llvm.dbg namespace",
765              &NMD);
766   for (const MDNode *MD : NMD.operands()) {
767     if (NMD.getName() == "llvm.dbg.cu")
768       AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
769 
770     if (!MD)
771       continue;
772 
773     visitMDNode(*MD);
774   }
775 }
776 
777 void Verifier::visitMDNode(const MDNode &MD) {
778   // Only visit each node once.  Metadata can be mutually recursive, so this
779   // avoids infinite recursion here, as well as being an optimization.
780   if (!MDNodes.insert(&MD).second)
781     return;
782 
783   switch (MD.getMetadataID()) {
784   default:
785     llvm_unreachable("Invalid MDNode subclass");
786   case Metadata::MDTupleKind:
787     break;
788 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
789   case Metadata::CLASS##Kind:                                                  \
790     visit##CLASS(cast<CLASS>(MD));                                             \
791     break;
792 #include "llvm/IR/Metadata.def"
793   }
794 
795   for (const Metadata *Op : MD.operands()) {
796     if (!Op)
797       continue;
798     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
799            &MD, Op);
800     if (auto *N = dyn_cast<MDNode>(Op)) {
801       visitMDNode(*N);
802       continue;
803     }
804     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
805       visitValueAsMetadata(*V, nullptr);
806       continue;
807     }
808   }
809 
810   // Check these last, so we diagnose problems in operands first.
811   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
812   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
813 }
814 
815 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
816   Assert(MD.getValue(), "Expected valid value", &MD);
817   Assert(!MD.getValue()->getType()->isMetadataTy(),
818          "Unexpected metadata round-trip through values", &MD, MD.getValue());
819 
820   auto *L = dyn_cast<LocalAsMetadata>(&MD);
821   if (!L)
822     return;
823 
824   Assert(F, "function-local metadata used outside a function", L);
825 
826   // If this was an instruction, bb, or argument, verify that it is in the
827   // function that we expect.
828   Function *ActualF = nullptr;
829   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
830     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
831     ActualF = I->getParent()->getParent();
832   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
833     ActualF = BB->getParent();
834   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
835     ActualF = A->getParent();
836   assert(ActualF && "Unimplemented function local metadata case!");
837 
838   Assert(ActualF == F, "function-local metadata used in wrong function", L);
839 }
840 
841 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
842   Metadata *MD = MDV.getMetadata();
843   if (auto *N = dyn_cast<MDNode>(MD)) {
844     visitMDNode(*N);
845     return;
846   }
847 
848   // Only visit each node once.  Metadata can be mutually recursive, so this
849   // avoids infinite recursion here, as well as being an optimization.
850   if (!MDNodes.insert(MD).second)
851     return;
852 
853   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
854     visitValueAsMetadata(*V, F);
855 }
856 
857 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
858 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
859 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
860 
861 void Verifier::visitDILocation(const DILocation &N) {
862   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
863            "location requires a valid scope", &N, N.getRawScope());
864   if (auto *IA = N.getRawInlinedAt())
865     AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
866   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
867     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
868 }
869 
870 void Verifier::visitGenericDINode(const GenericDINode &N) {
871   AssertDI(N.getTag(), "invalid tag", &N);
872 }
873 
874 void Verifier::visitDIScope(const DIScope &N) {
875   if (auto *F = N.getRawFile())
876     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
877 }
878 
879 void Verifier::visitDISubrange(const DISubrange &N) {
880   AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
881   auto Count = N.getCount();
882   AssertDI(Count, "Count must either be a signed constant or a DIVariable",
883            &N);
884   AssertDI(!Count.is<ConstantInt*>() ||
885                Count.get<ConstantInt*>()->getSExtValue() >= -1,
886            "invalid subrange count", &N);
887 }
888 
889 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
890   AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
891 }
892 
893 void Verifier::visitDIBasicType(const DIBasicType &N) {
894   AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
895                N.getTag() == dwarf::DW_TAG_unspecified_type,
896            "invalid tag", &N);
897   AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
898             "has conflicting flags", &N);
899 }
900 
901 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
902   // Common scope checks.
903   visitDIScope(N);
904 
905   AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
906                N.getTag() == dwarf::DW_TAG_pointer_type ||
907                N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
908                N.getTag() == dwarf::DW_TAG_reference_type ||
909                N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
910                N.getTag() == dwarf::DW_TAG_const_type ||
911                N.getTag() == dwarf::DW_TAG_volatile_type ||
912                N.getTag() == dwarf::DW_TAG_restrict_type ||
913                N.getTag() == dwarf::DW_TAG_atomic_type ||
914                N.getTag() == dwarf::DW_TAG_member ||
915                N.getTag() == dwarf::DW_TAG_inheritance ||
916                N.getTag() == dwarf::DW_TAG_friend,
917            "invalid tag", &N);
918   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
919     AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
920              N.getRawExtraData());
921   }
922 
923   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
924   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
925            N.getRawBaseType());
926 
927   if (N.getDWARFAddressSpace()) {
928     AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
929                  N.getTag() == dwarf::DW_TAG_reference_type ||
930                  N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
931              "DWARF address space only applies to pointer or reference types",
932              &N);
933   }
934 }
935 
936 /// Detect mutually exclusive flags.
937 static bool hasConflictingReferenceFlags(unsigned Flags) {
938   return ((Flags & DINode::FlagLValueReference) &&
939           (Flags & DINode::FlagRValueReference)) ||
940          ((Flags & DINode::FlagTypePassByValue) &&
941           (Flags & DINode::FlagTypePassByReference));
942 }
943 
944 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
945   auto *Params = dyn_cast<MDTuple>(&RawParams);
946   AssertDI(Params, "invalid template params", &N, &RawParams);
947   for (Metadata *Op : Params->operands()) {
948     AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
949              &N, Params, Op);
950   }
951 }
952 
953 void Verifier::visitDICompositeType(const DICompositeType &N) {
954   // Common scope checks.
955   visitDIScope(N);
956 
957   AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
958                N.getTag() == dwarf::DW_TAG_structure_type ||
959                N.getTag() == dwarf::DW_TAG_union_type ||
960                N.getTag() == dwarf::DW_TAG_enumeration_type ||
961                N.getTag() == dwarf::DW_TAG_class_type ||
962                N.getTag() == dwarf::DW_TAG_variant_part,
963            "invalid tag", &N);
964 
965   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
966   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
967            N.getRawBaseType());
968 
969   AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
970            "invalid composite elements", &N, N.getRawElements());
971   AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
972            N.getRawVTableHolder());
973   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
974            "invalid reference flags", &N);
975 
976   if (N.isVector()) {
977     const DINodeArray Elements = N.getElements();
978     AssertDI(Elements.size() == 1 &&
979              Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
980              "invalid vector, expected one element of type subrange", &N);
981   }
982 
983   if (auto *Params = N.getRawTemplateParams())
984     visitTemplateParams(N, *Params);
985 
986   if (N.getTag() == dwarf::DW_TAG_class_type ||
987       N.getTag() == dwarf::DW_TAG_union_type) {
988     AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
989              "class/union requires a filename", &N, N.getFile());
990   }
991 
992   if (auto *D = N.getRawDiscriminator()) {
993     AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
994              "discriminator can only appear on variant part");
995   }
996 }
997 
998 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
999   AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1000   if (auto *Types = N.getRawTypeArray()) {
1001     AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1002     for (Metadata *Ty : N.getTypeArray()->operands()) {
1003       AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1004     }
1005   }
1006   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1007            "invalid reference flags", &N);
1008 }
1009 
1010 void Verifier::visitDIFile(const DIFile &N) {
1011   AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1012   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1013   if (Checksum) {
1014     AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1015              "invalid checksum kind", &N);
1016     size_t Size;
1017     switch (Checksum->Kind) {
1018     case DIFile::CSK_MD5:
1019       Size = 32;
1020       break;
1021     case DIFile::CSK_SHA1:
1022       Size = 40;
1023       break;
1024     }
1025     AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1026     AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1027              "invalid checksum", &N);
1028   }
1029 }
1030 
1031 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1032   AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1033   AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1034 
1035   // Don't bother verifying the compilation directory or producer string
1036   // as those could be empty.
1037   AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1038            N.getRawFile());
1039   AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1040            N.getFile());
1041 
1042   verifySourceDebugInfo(N, *N.getFile());
1043 
1044   AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1045            "invalid emission kind", &N);
1046 
1047   if (auto *Array = N.getRawEnumTypes()) {
1048     AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1049     for (Metadata *Op : N.getEnumTypes()->operands()) {
1050       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1051       AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1052                "invalid enum type", &N, N.getEnumTypes(), Op);
1053     }
1054   }
1055   if (auto *Array = N.getRawRetainedTypes()) {
1056     AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1057     for (Metadata *Op : N.getRetainedTypes()->operands()) {
1058       AssertDI(Op && (isa<DIType>(Op) ||
1059                       (isa<DISubprogram>(Op) &&
1060                        !cast<DISubprogram>(Op)->isDefinition())),
1061                "invalid retained type", &N, Op);
1062     }
1063   }
1064   if (auto *Array = N.getRawGlobalVariables()) {
1065     AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1066     for (Metadata *Op : N.getGlobalVariables()->operands()) {
1067       AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1068                "invalid global variable ref", &N, Op);
1069     }
1070   }
1071   if (auto *Array = N.getRawImportedEntities()) {
1072     AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1073     for (Metadata *Op : N.getImportedEntities()->operands()) {
1074       AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1075                &N, Op);
1076     }
1077   }
1078   if (auto *Array = N.getRawMacros()) {
1079     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1080     for (Metadata *Op : N.getMacros()->operands()) {
1081       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1082     }
1083   }
1084   CUVisited.insert(&N);
1085 }
1086 
1087 void Verifier::visitDISubprogram(const DISubprogram &N) {
1088   AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1089   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1090   if (auto *F = N.getRawFile())
1091     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1092   else
1093     AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1094   if (auto *T = N.getRawType())
1095     AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1096   AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1097            N.getRawContainingType());
1098   if (auto *Params = N.getRawTemplateParams())
1099     visitTemplateParams(N, *Params);
1100   if (auto *S = N.getRawDeclaration())
1101     AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1102              "invalid subprogram declaration", &N, S);
1103   if (auto *RawNode = N.getRawRetainedNodes()) {
1104     auto *Node = dyn_cast<MDTuple>(RawNode);
1105     AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1106     for (Metadata *Op : Node->operands()) {
1107       AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1108                "invalid retained nodes, expected DILocalVariable or DILabel",
1109                &N, Node, Op);
1110     }
1111   }
1112   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1113            "invalid reference flags", &N);
1114 
1115   auto *Unit = N.getRawUnit();
1116   if (N.isDefinition()) {
1117     // Subprogram definitions (not part of the type hierarchy).
1118     AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1119     AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1120     AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1121     if (N.getFile())
1122       verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1123   } else {
1124     // Subprogram declarations (part of the type hierarchy).
1125     AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1126   }
1127 
1128   if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1129     auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1130     AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1131     for (Metadata *Op : ThrownTypes->operands())
1132       AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1133                Op);
1134   }
1135 
1136   if (N.areAllCallsDescribed())
1137     AssertDI(N.isDefinition(),
1138              "DIFlagAllCallsDescribed must be attached to a definition");
1139 }
1140 
1141 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1142   AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1143   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1144            "invalid local scope", &N, N.getRawScope());
1145   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1146     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1147 }
1148 
1149 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1150   visitDILexicalBlockBase(N);
1151 
1152   AssertDI(N.getLine() || !N.getColumn(),
1153            "cannot have column info without line info", &N);
1154 }
1155 
1156 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1157   visitDILexicalBlockBase(N);
1158 }
1159 
1160 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1161   AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1162   if (auto *S = N.getRawScope())
1163     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1164   if (auto *S = N.getRawDecl())
1165     AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1166 }
1167 
1168 void Verifier::visitDINamespace(const DINamespace &N) {
1169   AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1170   if (auto *S = N.getRawScope())
1171     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1172 }
1173 
1174 void Verifier::visitDIMacro(const DIMacro &N) {
1175   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1176                N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1177            "invalid macinfo type", &N);
1178   AssertDI(!N.getName().empty(), "anonymous macro", &N);
1179   if (!N.getValue().empty()) {
1180     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1181   }
1182 }
1183 
1184 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1185   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1186            "invalid macinfo type", &N);
1187   if (auto *F = N.getRawFile())
1188     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1189 
1190   if (auto *Array = N.getRawElements()) {
1191     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1192     for (Metadata *Op : N.getElements()->operands()) {
1193       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1194     }
1195   }
1196 }
1197 
1198 void Verifier::visitDIModule(const DIModule &N) {
1199   AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1200   AssertDI(!N.getName().empty(), "anonymous module", &N);
1201 }
1202 
1203 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1204   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1205 }
1206 
1207 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1208   visitDITemplateParameter(N);
1209 
1210   AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1211            &N);
1212 }
1213 
1214 void Verifier::visitDITemplateValueParameter(
1215     const DITemplateValueParameter &N) {
1216   visitDITemplateParameter(N);
1217 
1218   AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1219                N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1220                N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1221            "invalid tag", &N);
1222 }
1223 
1224 void Verifier::visitDIVariable(const DIVariable &N) {
1225   if (auto *S = N.getRawScope())
1226     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1227   if (auto *F = N.getRawFile())
1228     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1229 }
1230 
1231 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1232   // Checks common to all variables.
1233   visitDIVariable(N);
1234 
1235   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1236   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1237   AssertDI(N.getType(), "missing global variable type", &N);
1238   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1239     AssertDI(isa<DIDerivedType>(Member),
1240              "invalid static data member declaration", &N, Member);
1241   }
1242 }
1243 
1244 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1245   // Checks common to all variables.
1246   visitDIVariable(N);
1247 
1248   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1249   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1250   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1251            "local variable requires a valid scope", &N, N.getRawScope());
1252   if (auto Ty = N.getType())
1253     AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1254 }
1255 
1256 void Verifier::visitDILabel(const DILabel &N) {
1257   if (auto *S = N.getRawScope())
1258     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1259   if (auto *F = N.getRawFile())
1260     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1261 
1262   AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1263   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1264            "label requires a valid scope", &N, N.getRawScope());
1265 }
1266 
1267 void Verifier::visitDIExpression(const DIExpression &N) {
1268   AssertDI(N.isValid(), "invalid expression", &N);
1269 }
1270 
1271 void Verifier::visitDIGlobalVariableExpression(
1272     const DIGlobalVariableExpression &GVE) {
1273   AssertDI(GVE.getVariable(), "missing variable");
1274   if (auto *Var = GVE.getVariable())
1275     visitDIGlobalVariable(*Var);
1276   if (auto *Expr = GVE.getExpression()) {
1277     visitDIExpression(*Expr);
1278     if (auto Fragment = Expr->getFragmentInfo())
1279       verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1280   }
1281 }
1282 
1283 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1284   AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1285   if (auto *T = N.getRawType())
1286     AssertDI(isType(T), "invalid type ref", &N, T);
1287   if (auto *F = N.getRawFile())
1288     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1289 }
1290 
1291 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1292   AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1293                N.getTag() == dwarf::DW_TAG_imported_declaration,
1294            "invalid tag", &N);
1295   if (auto *S = N.getRawScope())
1296     AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1297   AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1298            N.getRawEntity());
1299 }
1300 
1301 void Verifier::visitComdat(const Comdat &C) {
1302   // The Module is invalid if the GlobalValue has private linkage.  Entities
1303   // with private linkage don't have entries in the symbol table.
1304   if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1305     Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1306            GV);
1307 }
1308 
1309 void Verifier::visitModuleIdents(const Module &M) {
1310   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1311   if (!Idents)
1312     return;
1313 
1314   // llvm.ident takes a list of metadata entry. Each entry has only one string.
1315   // Scan each llvm.ident entry and make sure that this requirement is met.
1316   for (const MDNode *N : Idents->operands()) {
1317     Assert(N->getNumOperands() == 1,
1318            "incorrect number of operands in llvm.ident metadata", N);
1319     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1320            ("invalid value for llvm.ident metadata entry operand"
1321             "(the operand should be a string)"),
1322            N->getOperand(0));
1323   }
1324 }
1325 
1326 void Verifier::visitModuleCommandLines(const Module &M) {
1327   const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1328   if (!CommandLines)
1329     return;
1330 
1331   // llvm.commandline takes a list of metadata entry. Each entry has only one
1332   // string. Scan each llvm.commandline entry and make sure that this
1333   // requirement is met.
1334   for (const MDNode *N : CommandLines->operands()) {
1335     Assert(N->getNumOperands() == 1,
1336            "incorrect number of operands in llvm.commandline metadata", N);
1337     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1338            ("invalid value for llvm.commandline metadata entry operand"
1339             "(the operand should be a string)"),
1340            N->getOperand(0));
1341   }
1342 }
1343 
1344 void Verifier::visitModuleFlags(const Module &M) {
1345   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1346   if (!Flags) return;
1347 
1348   // Scan each flag, and track the flags and requirements.
1349   DenseMap<const MDString*, const MDNode*> SeenIDs;
1350   SmallVector<const MDNode*, 16> Requirements;
1351   for (const MDNode *MDN : Flags->operands())
1352     visitModuleFlag(MDN, SeenIDs, Requirements);
1353 
1354   // Validate that the requirements in the module are valid.
1355   for (const MDNode *Requirement : Requirements) {
1356     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1357     const Metadata *ReqValue = Requirement->getOperand(1);
1358 
1359     const MDNode *Op = SeenIDs.lookup(Flag);
1360     if (!Op) {
1361       CheckFailed("invalid requirement on flag, flag is not present in module",
1362                   Flag);
1363       continue;
1364     }
1365 
1366     if (Op->getOperand(2) != ReqValue) {
1367       CheckFailed(("invalid requirement on flag, "
1368                    "flag does not have the required value"),
1369                   Flag);
1370       continue;
1371     }
1372   }
1373 }
1374 
1375 void
1376 Verifier::visitModuleFlag(const MDNode *Op,
1377                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
1378                           SmallVectorImpl<const MDNode *> &Requirements) {
1379   // Each module flag should have three arguments, the merge behavior (a
1380   // constant int), the flag ID (an MDString), and the value.
1381   Assert(Op->getNumOperands() == 3,
1382          "incorrect number of operands in module flag", Op);
1383   Module::ModFlagBehavior MFB;
1384   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1385     Assert(
1386         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1387         "invalid behavior operand in module flag (expected constant integer)",
1388         Op->getOperand(0));
1389     Assert(false,
1390            "invalid behavior operand in module flag (unexpected constant)",
1391            Op->getOperand(0));
1392   }
1393   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1394   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1395          Op->getOperand(1));
1396 
1397   // Sanity check the values for behaviors with additional requirements.
1398   switch (MFB) {
1399   case Module::Error:
1400   case Module::Warning:
1401   case Module::Override:
1402     // These behavior types accept any value.
1403     break;
1404 
1405   case Module::Max: {
1406     Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1407            "invalid value for 'max' module flag (expected constant integer)",
1408            Op->getOperand(2));
1409     break;
1410   }
1411 
1412   case Module::Require: {
1413     // The value should itself be an MDNode with two operands, a flag ID (an
1414     // MDString), and a value.
1415     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1416     Assert(Value && Value->getNumOperands() == 2,
1417            "invalid value for 'require' module flag (expected metadata pair)",
1418            Op->getOperand(2));
1419     Assert(isa<MDString>(Value->getOperand(0)),
1420            ("invalid value for 'require' module flag "
1421             "(first value operand should be a string)"),
1422            Value->getOperand(0));
1423 
1424     // Append it to the list of requirements, to check once all module flags are
1425     // scanned.
1426     Requirements.push_back(Value);
1427     break;
1428   }
1429 
1430   case Module::Append:
1431   case Module::AppendUnique: {
1432     // These behavior types require the operand be an MDNode.
1433     Assert(isa<MDNode>(Op->getOperand(2)),
1434            "invalid value for 'append'-type module flag "
1435            "(expected a metadata node)",
1436            Op->getOperand(2));
1437     break;
1438   }
1439   }
1440 
1441   // Unless this is a "requires" flag, check the ID is unique.
1442   if (MFB != Module::Require) {
1443     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1444     Assert(Inserted,
1445            "module flag identifiers must be unique (or of 'require' type)", ID);
1446   }
1447 
1448   if (ID->getString() == "wchar_size") {
1449     ConstantInt *Value
1450       = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1451     Assert(Value, "wchar_size metadata requires constant integer argument");
1452   }
1453 
1454   if (ID->getString() == "Linker Options") {
1455     // If the llvm.linker.options named metadata exists, we assume that the
1456     // bitcode reader has upgraded the module flag. Otherwise the flag might
1457     // have been created by a client directly.
1458     Assert(M.getNamedMetadata("llvm.linker.options"),
1459            "'Linker Options' named metadata no longer supported");
1460   }
1461 
1462   if (ID->getString() == "CG Profile") {
1463     for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1464       visitModuleFlagCGProfileEntry(MDO);
1465   }
1466 }
1467 
1468 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1469   auto CheckFunction = [&](const MDOperand &FuncMDO) {
1470     if (!FuncMDO)
1471       return;
1472     auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1473     Assert(F && isa<Function>(F->getValue()), "expected a Function or null",
1474            FuncMDO);
1475   };
1476   auto Node = dyn_cast_or_null<MDNode>(MDO);
1477   Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1478   CheckFunction(Node->getOperand(0));
1479   CheckFunction(Node->getOperand(1));
1480   auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1481   Assert(Count && Count->getType()->isIntegerTy(),
1482          "expected an integer constant", Node->getOperand(2));
1483 }
1484 
1485 /// Return true if this attribute kind only applies to functions.
1486 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1487   switch (Kind) {
1488   case Attribute::NoReturn:
1489   case Attribute::NoCfCheck:
1490   case Attribute::NoUnwind:
1491   case Attribute::NoInline:
1492   case Attribute::AlwaysInline:
1493   case Attribute::OptimizeForSize:
1494   case Attribute::StackProtect:
1495   case Attribute::StackProtectReq:
1496   case Attribute::StackProtectStrong:
1497   case Attribute::SafeStack:
1498   case Attribute::ShadowCallStack:
1499   case Attribute::NoRedZone:
1500   case Attribute::NoImplicitFloat:
1501   case Attribute::Naked:
1502   case Attribute::InlineHint:
1503   case Attribute::StackAlignment:
1504   case Attribute::UWTable:
1505   case Attribute::NonLazyBind:
1506   case Attribute::ReturnsTwice:
1507   case Attribute::SanitizeAddress:
1508   case Attribute::SanitizeHWAddress:
1509   case Attribute::SanitizeThread:
1510   case Attribute::SanitizeMemory:
1511   case Attribute::MinSize:
1512   case Attribute::NoDuplicate:
1513   case Attribute::Builtin:
1514   case Attribute::NoBuiltin:
1515   case Attribute::Cold:
1516   case Attribute::OptForFuzzing:
1517   case Attribute::OptimizeNone:
1518   case Attribute::JumpTable:
1519   case Attribute::Convergent:
1520   case Attribute::ArgMemOnly:
1521   case Attribute::NoRecurse:
1522   case Attribute::InaccessibleMemOnly:
1523   case Attribute::InaccessibleMemOrArgMemOnly:
1524   case Attribute::AllocSize:
1525   case Attribute::SpeculativeLoadHardening:
1526   case Attribute::Speculatable:
1527   case Attribute::StrictFP:
1528     return true;
1529   default:
1530     break;
1531   }
1532   return false;
1533 }
1534 
1535 /// Return true if this is a function attribute that can also appear on
1536 /// arguments.
1537 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1538   return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1539          Kind == Attribute::ReadNone;
1540 }
1541 
1542 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1543                                     const Value *V) {
1544   for (Attribute A : Attrs) {
1545     if (A.isStringAttribute())
1546       continue;
1547 
1548     if (isFuncOnlyAttr(A.getKindAsEnum())) {
1549       if (!IsFunction) {
1550         CheckFailed("Attribute '" + A.getAsString() +
1551                         "' only applies to functions!",
1552                     V);
1553         return;
1554       }
1555     } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1556       CheckFailed("Attribute '" + A.getAsString() +
1557                       "' does not apply to functions!",
1558                   V);
1559       return;
1560     }
1561   }
1562 }
1563 
1564 // VerifyParameterAttrs - Check the given attributes for an argument or return
1565 // value of the specified type.  The value V is printed in error messages.
1566 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1567                                     const Value *V) {
1568   if (!Attrs.hasAttributes())
1569     return;
1570 
1571   verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1572 
1573   if (Attrs.hasAttribute(Attribute::ImmArg)) {
1574     Assert(Attrs.getNumAttributes() == 1,
1575            "Attribute 'immarg' is incompatible with other attributes", V);
1576   }
1577 
1578   // Check for mutually incompatible attributes.  Only inreg is compatible with
1579   // sret.
1580   unsigned AttrCount = 0;
1581   AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1582   AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1583   AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1584                Attrs.hasAttribute(Attribute::InReg);
1585   AttrCount += Attrs.hasAttribute(Attribute::Nest);
1586   Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1587                          "and 'sret' are incompatible!",
1588          V);
1589 
1590   Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1591            Attrs.hasAttribute(Attribute::ReadOnly)),
1592          "Attributes "
1593          "'inalloca and readonly' are incompatible!",
1594          V);
1595 
1596   Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1597            Attrs.hasAttribute(Attribute::Returned)),
1598          "Attributes "
1599          "'sret and returned' are incompatible!",
1600          V);
1601 
1602   Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1603            Attrs.hasAttribute(Attribute::SExt)),
1604          "Attributes "
1605          "'zeroext and signext' are incompatible!",
1606          V);
1607 
1608   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1609            Attrs.hasAttribute(Attribute::ReadOnly)),
1610          "Attributes "
1611          "'readnone and readonly' are incompatible!",
1612          V);
1613 
1614   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1615            Attrs.hasAttribute(Attribute::WriteOnly)),
1616          "Attributes "
1617          "'readnone and writeonly' are incompatible!",
1618          V);
1619 
1620   Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1621            Attrs.hasAttribute(Attribute::WriteOnly)),
1622          "Attributes "
1623          "'readonly and writeonly' are incompatible!",
1624          V);
1625 
1626   Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1627            Attrs.hasAttribute(Attribute::AlwaysInline)),
1628          "Attributes "
1629          "'noinline and alwaysinline' are incompatible!",
1630          V);
1631 
1632   if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1633     Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(),
1634            "Attribute 'byval' type does not match parameter!");
1635   }
1636 
1637   AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1638   Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1639          "Wrong types for attribute: " +
1640              AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1641          V);
1642 
1643   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1644     SmallPtrSet<Type*, 4> Visited;
1645     if (!PTy->getElementType()->isSized(&Visited)) {
1646       Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1647                  !Attrs.hasAttribute(Attribute::InAlloca),
1648              "Attributes 'byval' and 'inalloca' do not support unsized types!",
1649              V);
1650     }
1651     if (!isa<PointerType>(PTy->getElementType()))
1652       Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1653              "Attribute 'swifterror' only applies to parameters "
1654              "with pointer to pointer type!",
1655              V);
1656   } else {
1657     Assert(!Attrs.hasAttribute(Attribute::ByVal),
1658            "Attribute 'byval' only applies to parameters with pointer type!",
1659            V);
1660     Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1661            "Attribute 'swifterror' only applies to parameters "
1662            "with pointer type!",
1663            V);
1664   }
1665 }
1666 
1667 // Check parameter attributes against a function type.
1668 // The value V is printed in error messages.
1669 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1670                                    const Value *V, bool IsIntrinsic) {
1671   if (Attrs.isEmpty())
1672     return;
1673 
1674   bool SawNest = false;
1675   bool SawReturned = false;
1676   bool SawSRet = false;
1677   bool SawSwiftSelf = false;
1678   bool SawSwiftError = false;
1679 
1680   // Verify return value attributes.
1681   AttributeSet RetAttrs = Attrs.getRetAttributes();
1682   Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1683           !RetAttrs.hasAttribute(Attribute::Nest) &&
1684           !RetAttrs.hasAttribute(Attribute::StructRet) &&
1685           !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1686           !RetAttrs.hasAttribute(Attribute::Returned) &&
1687           !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1688           !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1689           !RetAttrs.hasAttribute(Attribute::SwiftError)),
1690          "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1691          "'returned', 'swiftself', and 'swifterror' do not apply to return "
1692          "values!",
1693          V);
1694   Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1695           !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1696           !RetAttrs.hasAttribute(Attribute::ReadNone)),
1697          "Attribute '" + RetAttrs.getAsString() +
1698              "' does not apply to function returns",
1699          V);
1700   verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1701 
1702   // Verify parameter attributes.
1703   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1704     Type *Ty = FT->getParamType(i);
1705     AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1706 
1707     if (!IsIntrinsic) {
1708       Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1709              "immarg attribute only applies to intrinsics",V);
1710     }
1711 
1712     verifyParameterAttrs(ArgAttrs, Ty, V);
1713 
1714     if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1715       Assert(!SawNest, "More than one parameter has attribute nest!", V);
1716       SawNest = true;
1717     }
1718 
1719     if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1720       Assert(!SawReturned, "More than one parameter has attribute returned!",
1721              V);
1722       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1723              "Incompatible argument and return types for 'returned' attribute",
1724              V);
1725       SawReturned = true;
1726     }
1727 
1728     if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1729       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1730       Assert(i == 0 || i == 1,
1731              "Attribute 'sret' is not on first or second parameter!", V);
1732       SawSRet = true;
1733     }
1734 
1735     if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1736       Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1737       SawSwiftSelf = true;
1738     }
1739 
1740     if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1741       Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1742              V);
1743       SawSwiftError = true;
1744     }
1745 
1746     if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1747       Assert(i == FT->getNumParams() - 1,
1748              "inalloca isn't on the last parameter!", V);
1749     }
1750   }
1751 
1752   if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1753     return;
1754 
1755   verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1756 
1757   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1758            Attrs.hasFnAttribute(Attribute::ReadOnly)),
1759          "Attributes 'readnone and readonly' are incompatible!", V);
1760 
1761   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1762            Attrs.hasFnAttribute(Attribute::WriteOnly)),
1763          "Attributes 'readnone and writeonly' are incompatible!", V);
1764 
1765   Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1766            Attrs.hasFnAttribute(Attribute::WriteOnly)),
1767          "Attributes 'readonly and writeonly' are incompatible!", V);
1768 
1769   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1770            Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1771          "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1772          "incompatible!",
1773          V);
1774 
1775   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1776            Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1777          "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1778 
1779   Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1780            Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1781          "Attributes 'noinline and alwaysinline' are incompatible!", V);
1782 
1783   if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1784     Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1785            "Attribute 'optnone' requires 'noinline'!", V);
1786 
1787     Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1788            "Attributes 'optsize and optnone' are incompatible!", V);
1789 
1790     Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1791            "Attributes 'minsize and optnone' are incompatible!", V);
1792   }
1793 
1794   if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1795     const GlobalValue *GV = cast<GlobalValue>(V);
1796     Assert(GV->hasGlobalUnnamedAddr(),
1797            "Attribute 'jumptable' requires 'unnamed_addr'", V);
1798   }
1799 
1800   if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1801     std::pair<unsigned, Optional<unsigned>> Args =
1802         Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1803 
1804     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1805       if (ParamNo >= FT->getNumParams()) {
1806         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1807         return false;
1808       }
1809 
1810       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1811         CheckFailed("'allocsize' " + Name +
1812                         " argument must refer to an integer parameter",
1813                     V);
1814         return false;
1815       }
1816 
1817       return true;
1818     };
1819 
1820     if (!CheckParam("element size", Args.first))
1821       return;
1822 
1823     if (Args.second && !CheckParam("number of elements", *Args.second))
1824       return;
1825   }
1826 }
1827 
1828 void Verifier::verifyFunctionMetadata(
1829     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1830   for (const auto &Pair : MDs) {
1831     if (Pair.first == LLVMContext::MD_prof) {
1832       MDNode *MD = Pair.second;
1833       Assert(MD->getNumOperands() >= 2,
1834              "!prof annotations should have no less than 2 operands", MD);
1835 
1836       // Check first operand.
1837       Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1838              MD);
1839       Assert(isa<MDString>(MD->getOperand(0)),
1840              "expected string with name of the !prof annotation", MD);
1841       MDString *MDS = cast<MDString>(MD->getOperand(0));
1842       StringRef ProfName = MDS->getString();
1843       Assert(ProfName.equals("function_entry_count") ||
1844                  ProfName.equals("synthetic_function_entry_count"),
1845              "first operand should be 'function_entry_count'"
1846              " or 'synthetic_function_entry_count'",
1847              MD);
1848 
1849       // Check second operand.
1850       Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1851              MD);
1852       Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1853              "expected integer argument to function_entry_count", MD);
1854     }
1855   }
1856 }
1857 
1858 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1859   if (!ConstantExprVisited.insert(EntryC).second)
1860     return;
1861 
1862   SmallVector<const Constant *, 16> Stack;
1863   Stack.push_back(EntryC);
1864 
1865   while (!Stack.empty()) {
1866     const Constant *C = Stack.pop_back_val();
1867 
1868     // Check this constant expression.
1869     if (const auto *CE = dyn_cast<ConstantExpr>(C))
1870       visitConstantExpr(CE);
1871 
1872     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1873       // Global Values get visited separately, but we do need to make sure
1874       // that the global value is in the correct module
1875       Assert(GV->getParent() == &M, "Referencing global in another module!",
1876              EntryC, &M, GV, GV->getParent());
1877       continue;
1878     }
1879 
1880     // Visit all sub-expressions.
1881     for (const Use &U : C->operands()) {
1882       const auto *OpC = dyn_cast<Constant>(U);
1883       if (!OpC)
1884         continue;
1885       if (!ConstantExprVisited.insert(OpC).second)
1886         continue;
1887       Stack.push_back(OpC);
1888     }
1889   }
1890 }
1891 
1892 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1893   if (CE->getOpcode() == Instruction::BitCast)
1894     Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1895                                  CE->getType()),
1896            "Invalid bitcast", CE);
1897 
1898   if (CE->getOpcode() == Instruction::IntToPtr ||
1899       CE->getOpcode() == Instruction::PtrToInt) {
1900     auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1901                       ? CE->getType()
1902                       : CE->getOperand(0)->getType();
1903     StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1904                         ? "inttoptr not supported for non-integral pointers"
1905                         : "ptrtoint not supported for non-integral pointers";
1906     Assert(
1907         !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
1908         Msg);
1909   }
1910 }
1911 
1912 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1913   // There shouldn't be more attribute sets than there are parameters plus the
1914   // function and return value.
1915   return Attrs.getNumAttrSets() <= Params + 2;
1916 }
1917 
1918 /// Verify that statepoint intrinsic is well formed.
1919 void Verifier::verifyStatepoint(const CallBase &Call) {
1920   assert(Call.getCalledFunction() &&
1921          Call.getCalledFunction()->getIntrinsicID() ==
1922              Intrinsic::experimental_gc_statepoint);
1923 
1924   Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
1925              !Call.onlyAccessesArgMemory(),
1926          "gc.statepoint must read and write all memory to preserve "
1927          "reordering restrictions required by safepoint semantics",
1928          Call);
1929 
1930   const int64_t NumPatchBytes =
1931       cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
1932   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1933   Assert(NumPatchBytes >= 0,
1934          "gc.statepoint number of patchable bytes must be "
1935          "positive",
1936          Call);
1937 
1938   const Value *Target = Call.getArgOperand(2);
1939   auto *PT = dyn_cast<PointerType>(Target->getType());
1940   Assert(PT && PT->getElementType()->isFunctionTy(),
1941          "gc.statepoint callee must be of function pointer type", Call, Target);
1942   FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1943 
1944   const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
1945   Assert(NumCallArgs >= 0,
1946          "gc.statepoint number of arguments to underlying call "
1947          "must be positive",
1948          Call);
1949   const int NumParams = (int)TargetFuncType->getNumParams();
1950   if (TargetFuncType->isVarArg()) {
1951     Assert(NumCallArgs >= NumParams,
1952            "gc.statepoint mismatch in number of vararg call args", Call);
1953 
1954     // TODO: Remove this limitation
1955     Assert(TargetFuncType->getReturnType()->isVoidTy(),
1956            "gc.statepoint doesn't support wrapping non-void "
1957            "vararg functions yet",
1958            Call);
1959   } else
1960     Assert(NumCallArgs == NumParams,
1961            "gc.statepoint mismatch in number of call args", Call);
1962 
1963   const uint64_t Flags
1964     = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
1965   Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1966          "unknown flag used in gc.statepoint flags argument", Call);
1967 
1968   // Verify that the types of the call parameter arguments match
1969   // the type of the wrapped callee.
1970   AttributeList Attrs = Call.getAttributes();
1971   for (int i = 0; i < NumParams; i++) {
1972     Type *ParamType = TargetFuncType->getParamType(i);
1973     Type *ArgType = Call.getArgOperand(5 + i)->getType();
1974     Assert(ArgType == ParamType,
1975            "gc.statepoint call argument does not match wrapped "
1976            "function type",
1977            Call);
1978 
1979     if (TargetFuncType->isVarArg()) {
1980       AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
1981       Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
1982              "Attribute 'sret' cannot be used for vararg call arguments!",
1983              Call);
1984     }
1985   }
1986 
1987   const int EndCallArgsInx = 4 + NumCallArgs;
1988 
1989   const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
1990   Assert(isa<ConstantInt>(NumTransitionArgsV),
1991          "gc.statepoint number of transition arguments "
1992          "must be constant integer",
1993          Call);
1994   const int NumTransitionArgs =
1995       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1996   Assert(NumTransitionArgs >= 0,
1997          "gc.statepoint number of transition arguments must be positive", Call);
1998   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1999 
2000   const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2001   Assert(isa<ConstantInt>(NumDeoptArgsV),
2002          "gc.statepoint number of deoptimization arguments "
2003          "must be constant integer",
2004          Call);
2005   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2006   Assert(NumDeoptArgs >= 0,
2007          "gc.statepoint number of deoptimization arguments "
2008          "must be positive",
2009          Call);
2010 
2011   const int ExpectedNumArgs =
2012       7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
2013   Assert(ExpectedNumArgs <= (int)Call.arg_size(),
2014          "gc.statepoint too few arguments according to length fields", Call);
2015 
2016   // Check that the only uses of this gc.statepoint are gc.result or
2017   // gc.relocate calls which are tied to this statepoint and thus part
2018   // of the same statepoint sequence
2019   for (const User *U : Call.users()) {
2020     const CallInst *UserCall = dyn_cast<const CallInst>(U);
2021     Assert(UserCall, "illegal use of statepoint token", Call, U);
2022     if (!UserCall)
2023       continue;
2024     Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2025            "gc.result or gc.relocate are the only value uses "
2026            "of a gc.statepoint",
2027            Call, U);
2028     if (isa<GCResultInst>(UserCall)) {
2029       Assert(UserCall->getArgOperand(0) == &Call,
2030              "gc.result connected to wrong gc.statepoint", Call, UserCall);
2031     } else if (isa<GCRelocateInst>(Call)) {
2032       Assert(UserCall->getArgOperand(0) == &Call,
2033              "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2034     }
2035   }
2036 
2037   // Note: It is legal for a single derived pointer to be listed multiple
2038   // times.  It's non-optimal, but it is legal.  It can also happen after
2039   // insertion if we strip a bitcast away.
2040   // Note: It is really tempting to check that each base is relocated and
2041   // that a derived pointer is never reused as a base pointer.  This turns
2042   // out to be problematic since optimizations run after safepoint insertion
2043   // can recognize equality properties that the insertion logic doesn't know
2044   // about.  See example statepoint.ll in the verifier subdirectory
2045 }
2046 
2047 void Verifier::verifyFrameRecoverIndices() {
2048   for (auto &Counts : FrameEscapeInfo) {
2049     Function *F = Counts.first;
2050     unsigned EscapedObjectCount = Counts.second.first;
2051     unsigned MaxRecoveredIndex = Counts.second.second;
2052     Assert(MaxRecoveredIndex <= EscapedObjectCount,
2053            "all indices passed to llvm.localrecover must be less than the "
2054            "number of arguments passed to llvm.localescape in the parent "
2055            "function",
2056            F);
2057   }
2058 }
2059 
2060 static Instruction *getSuccPad(Instruction *Terminator) {
2061   BasicBlock *UnwindDest;
2062   if (auto *II = dyn_cast<InvokeInst>(Terminator))
2063     UnwindDest = II->getUnwindDest();
2064   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2065     UnwindDest = CSI->getUnwindDest();
2066   else
2067     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2068   return UnwindDest->getFirstNonPHI();
2069 }
2070 
2071 void Verifier::verifySiblingFuncletUnwinds() {
2072   SmallPtrSet<Instruction *, 8> Visited;
2073   SmallPtrSet<Instruction *, 8> Active;
2074   for (const auto &Pair : SiblingFuncletInfo) {
2075     Instruction *PredPad = Pair.first;
2076     if (Visited.count(PredPad))
2077       continue;
2078     Active.insert(PredPad);
2079     Instruction *Terminator = Pair.second;
2080     do {
2081       Instruction *SuccPad = getSuccPad(Terminator);
2082       if (Active.count(SuccPad)) {
2083         // Found a cycle; report error
2084         Instruction *CyclePad = SuccPad;
2085         SmallVector<Instruction *, 8> CycleNodes;
2086         do {
2087           CycleNodes.push_back(CyclePad);
2088           Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2089           if (CycleTerminator != CyclePad)
2090             CycleNodes.push_back(CycleTerminator);
2091           CyclePad = getSuccPad(CycleTerminator);
2092         } while (CyclePad != SuccPad);
2093         Assert(false, "EH pads can't handle each other's exceptions",
2094                ArrayRef<Instruction *>(CycleNodes));
2095       }
2096       // Don't re-walk a node we've already checked
2097       if (!Visited.insert(SuccPad).second)
2098         break;
2099       // Walk to this successor if it has a map entry.
2100       PredPad = SuccPad;
2101       auto TermI = SiblingFuncletInfo.find(PredPad);
2102       if (TermI == SiblingFuncletInfo.end())
2103         break;
2104       Terminator = TermI->second;
2105       Active.insert(PredPad);
2106     } while (true);
2107     // Each node only has one successor, so we've walked all the active
2108     // nodes' successors.
2109     Active.clear();
2110   }
2111 }
2112 
2113 // visitFunction - Verify that a function is ok.
2114 //
2115 void Verifier::visitFunction(const Function &F) {
2116   visitGlobalValue(F);
2117 
2118   // Check function arguments.
2119   FunctionType *FT = F.getFunctionType();
2120   unsigned NumArgs = F.arg_size();
2121 
2122   Assert(&Context == &F.getContext(),
2123          "Function context does not match Module context!", &F);
2124 
2125   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2126   Assert(FT->getNumParams() == NumArgs,
2127          "# formal arguments must match # of arguments for function type!", &F,
2128          FT);
2129   Assert(F.getReturnType()->isFirstClassType() ||
2130              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2131          "Functions cannot return aggregate values!", &F);
2132 
2133   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2134          "Invalid struct return type!", &F);
2135 
2136   AttributeList Attrs = F.getAttributes();
2137 
2138   Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2139          "Attribute after last parameter!", &F);
2140 
2141   bool isLLVMdotName = F.getName().size() >= 5 &&
2142                        F.getName().substr(0, 5) == "llvm.";
2143 
2144   // Check function attributes.
2145   verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName);
2146 
2147   // On function declarations/definitions, we do not support the builtin
2148   // attribute. We do not check this in VerifyFunctionAttrs since that is
2149   // checking for Attributes that can/can not ever be on functions.
2150   Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2151          "Attribute 'builtin' can only be applied to a callsite.", &F);
2152 
2153   // Check that this function meets the restrictions on this calling convention.
2154   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2155   // restrictions can be lifted.
2156   switch (F.getCallingConv()) {
2157   default:
2158   case CallingConv::C:
2159     break;
2160   case CallingConv::AMDGPU_KERNEL:
2161   case CallingConv::SPIR_KERNEL:
2162     Assert(F.getReturnType()->isVoidTy(),
2163            "Calling convention requires void return type", &F);
2164     LLVM_FALLTHROUGH;
2165   case CallingConv::AMDGPU_VS:
2166   case CallingConv::AMDGPU_HS:
2167   case CallingConv::AMDGPU_GS:
2168   case CallingConv::AMDGPU_PS:
2169   case CallingConv::AMDGPU_CS:
2170     Assert(!F.hasStructRetAttr(),
2171            "Calling convention does not allow sret", &F);
2172     LLVM_FALLTHROUGH;
2173   case CallingConv::Fast:
2174   case CallingConv::Cold:
2175   case CallingConv::Intel_OCL_BI:
2176   case CallingConv::PTX_Kernel:
2177   case CallingConv::PTX_Device:
2178     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2179                           "perfect forwarding!",
2180            &F);
2181     break;
2182   }
2183 
2184   // Check that the argument values match the function type for this function...
2185   unsigned i = 0;
2186   for (const Argument &Arg : F.args()) {
2187     Assert(Arg.getType() == FT->getParamType(i),
2188            "Argument value does not match function argument type!", &Arg,
2189            FT->getParamType(i));
2190     Assert(Arg.getType()->isFirstClassType(),
2191            "Function arguments must have first-class types!", &Arg);
2192     if (!isLLVMdotName) {
2193       Assert(!Arg.getType()->isMetadataTy(),
2194              "Function takes metadata but isn't an intrinsic", &Arg, &F);
2195       Assert(!Arg.getType()->isTokenTy(),
2196              "Function takes token but isn't an intrinsic", &Arg, &F);
2197     }
2198 
2199     // Check that swifterror argument is only used by loads and stores.
2200     if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2201       verifySwiftErrorValue(&Arg);
2202     }
2203     ++i;
2204   }
2205 
2206   if (!isLLVMdotName)
2207     Assert(!F.getReturnType()->isTokenTy(),
2208            "Functions returns a token but isn't an intrinsic", &F);
2209 
2210   // Get the function metadata attachments.
2211   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2212   F.getAllMetadata(MDs);
2213   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2214   verifyFunctionMetadata(MDs);
2215 
2216   // Check validity of the personality function
2217   if (F.hasPersonalityFn()) {
2218     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2219     if (Per)
2220       Assert(Per->getParent() == F.getParent(),
2221              "Referencing personality function in another module!",
2222              &F, F.getParent(), Per, Per->getParent());
2223   }
2224 
2225   if (F.isMaterializable()) {
2226     // Function has a body somewhere we can't see.
2227     Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2228            MDs.empty() ? nullptr : MDs.front().second);
2229   } else if (F.isDeclaration()) {
2230     for (const auto &I : MDs) {
2231       AssertDI(I.first != LLVMContext::MD_dbg,
2232                "function declaration may not have a !dbg attachment", &F);
2233       Assert(I.first != LLVMContext::MD_prof,
2234              "function declaration may not have a !prof attachment", &F);
2235 
2236       // Verify the metadata itself.
2237       visitMDNode(*I.second);
2238     }
2239     Assert(!F.hasPersonalityFn(),
2240            "Function declaration shouldn't have a personality routine", &F);
2241   } else {
2242     // Verify that this function (which has a body) is not named "llvm.*".  It
2243     // is not legal to define intrinsics.
2244     Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2245 
2246     // Check the entry node
2247     const BasicBlock *Entry = &F.getEntryBlock();
2248     Assert(pred_empty(Entry),
2249            "Entry block to function must not have predecessors!", Entry);
2250 
2251     // The address of the entry block cannot be taken, unless it is dead.
2252     if (Entry->hasAddressTaken()) {
2253       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2254              "blockaddress may not be used with the entry block!", Entry);
2255     }
2256 
2257     unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2258     // Visit metadata attachments.
2259     for (const auto &I : MDs) {
2260       // Verify that the attachment is legal.
2261       switch (I.first) {
2262       default:
2263         break;
2264       case LLVMContext::MD_dbg: {
2265         ++NumDebugAttachments;
2266         AssertDI(NumDebugAttachments == 1,
2267                  "function must have a single !dbg attachment", &F, I.second);
2268         AssertDI(isa<DISubprogram>(I.second),
2269                  "function !dbg attachment must be a subprogram", &F, I.second);
2270         auto *SP = cast<DISubprogram>(I.second);
2271         const Function *&AttachedTo = DISubprogramAttachments[SP];
2272         AssertDI(!AttachedTo || AttachedTo == &F,
2273                  "DISubprogram attached to more than one function", SP, &F);
2274         AttachedTo = &F;
2275         break;
2276       }
2277       case LLVMContext::MD_prof:
2278         ++NumProfAttachments;
2279         Assert(NumProfAttachments == 1,
2280                "function must have a single !prof attachment", &F, I.second);
2281         break;
2282       }
2283 
2284       // Verify the metadata itself.
2285       visitMDNode(*I.second);
2286     }
2287   }
2288 
2289   // If this function is actually an intrinsic, verify that it is only used in
2290   // direct call/invokes, never having its "address taken".
2291   // Only do this if the module is materialized, otherwise we don't have all the
2292   // uses.
2293   if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2294     const User *U;
2295     if (F.hasAddressTaken(&U))
2296       Assert(false, "Invalid user of intrinsic instruction!", U);
2297   }
2298 
2299   auto *N = F.getSubprogram();
2300   HasDebugInfo = (N != nullptr);
2301   if (!HasDebugInfo)
2302     return;
2303 
2304   // Check that all !dbg attachments lead to back to N (or, at least, another
2305   // subprogram that describes the same function).
2306   //
2307   // FIXME: Check this incrementally while visiting !dbg attachments.
2308   // FIXME: Only check when N is the canonical subprogram for F.
2309   SmallPtrSet<const MDNode *, 32> Seen;
2310   for (auto &BB : F)
2311     for (auto &I : BB) {
2312       // Be careful about using DILocation here since we might be dealing with
2313       // broken code (this is the Verifier after all).
2314       DILocation *DL =
2315           dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2316       if (!DL)
2317         continue;
2318       if (!Seen.insert(DL).second)
2319         continue;
2320 
2321       Metadata *Parent = DL->getRawScope();
2322       AssertDI(Parent && isa<DILocalScope>(Parent),
2323                "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
2324                Parent);
2325       DILocalScope *Scope = DL->getInlinedAtScope();
2326       if (Scope && !Seen.insert(Scope).second)
2327         continue;
2328 
2329       DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2330 
2331       // Scope and SP could be the same MDNode and we don't want to skip
2332       // validation in that case
2333       if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2334         continue;
2335 
2336       // FIXME: Once N is canonical, check "SP == &N".
2337       AssertDI(SP->describes(&F),
2338                "!dbg attachment points at wrong subprogram for function", N, &F,
2339                &I, DL, Scope, SP);
2340     }
2341 }
2342 
2343 // verifyBasicBlock - Verify that a basic block is well formed...
2344 //
2345 void Verifier::visitBasicBlock(BasicBlock &BB) {
2346   InstsInThisBlock.clear();
2347 
2348   // Ensure that basic blocks have terminators!
2349   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2350 
2351   // Check constraints that this basic block imposes on all of the PHI nodes in
2352   // it.
2353   if (isa<PHINode>(BB.front())) {
2354     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2355     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2356     llvm::sort(Preds);
2357     for (const PHINode &PN : BB.phis()) {
2358       // Ensure that PHI nodes have at least one entry!
2359       Assert(PN.getNumIncomingValues() != 0,
2360              "PHI nodes must have at least one entry.  If the block is dead, "
2361              "the PHI should be removed!",
2362              &PN);
2363       Assert(PN.getNumIncomingValues() == Preds.size(),
2364              "PHINode should have one entry for each predecessor of its "
2365              "parent basic block!",
2366              &PN);
2367 
2368       // Get and sort all incoming values in the PHI node...
2369       Values.clear();
2370       Values.reserve(PN.getNumIncomingValues());
2371       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2372         Values.push_back(
2373             std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2374       llvm::sort(Values);
2375 
2376       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2377         // Check to make sure that if there is more than one entry for a
2378         // particular basic block in this PHI node, that the incoming values are
2379         // all identical.
2380         //
2381         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2382                    Values[i].second == Values[i - 1].second,
2383                "PHI node has multiple entries for the same basic block with "
2384                "different incoming values!",
2385                &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2386 
2387         // Check to make sure that the predecessors and PHI node entries are
2388         // matched up.
2389         Assert(Values[i].first == Preds[i],
2390                "PHI node entries do not match predecessors!", &PN,
2391                Values[i].first, Preds[i]);
2392       }
2393     }
2394   }
2395 
2396   // Check that all instructions have their parent pointers set up correctly.
2397   for (auto &I : BB)
2398   {
2399     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2400   }
2401 }
2402 
2403 void Verifier::visitTerminator(Instruction &I) {
2404   // Ensure that terminators only exist at the end of the basic block.
2405   Assert(&I == I.getParent()->getTerminator(),
2406          "Terminator found in the middle of a basic block!", I.getParent());
2407   visitInstruction(I);
2408 }
2409 
2410 void Verifier::visitBranchInst(BranchInst &BI) {
2411   if (BI.isConditional()) {
2412     Assert(BI.getCondition()->getType()->isIntegerTy(1),
2413            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2414   }
2415   visitTerminator(BI);
2416 }
2417 
2418 void Verifier::visitReturnInst(ReturnInst &RI) {
2419   Function *F = RI.getParent()->getParent();
2420   unsigned N = RI.getNumOperands();
2421   if (F->getReturnType()->isVoidTy())
2422     Assert(N == 0,
2423            "Found return instr that returns non-void in Function of void "
2424            "return type!",
2425            &RI, F->getReturnType());
2426   else
2427     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2428            "Function return type does not match operand "
2429            "type of return inst!",
2430            &RI, F->getReturnType());
2431 
2432   // Check to make sure that the return value has necessary properties for
2433   // terminators...
2434   visitTerminator(RI);
2435 }
2436 
2437 void Verifier::visitSwitchInst(SwitchInst &SI) {
2438   // Check to make sure that all of the constants in the switch instruction
2439   // have the same type as the switched-on value.
2440   Type *SwitchTy = SI.getCondition()->getType();
2441   SmallPtrSet<ConstantInt*, 32> Constants;
2442   for (auto &Case : SI.cases()) {
2443     Assert(Case.getCaseValue()->getType() == SwitchTy,
2444            "Switch constants must all be same type as switch value!", &SI);
2445     Assert(Constants.insert(Case.getCaseValue()).second,
2446            "Duplicate integer as switch case", &SI, Case.getCaseValue());
2447   }
2448 
2449   visitTerminator(SI);
2450 }
2451 
2452 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2453   Assert(BI.getAddress()->getType()->isPointerTy(),
2454          "Indirectbr operand must have pointer type!", &BI);
2455   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2456     Assert(BI.getDestination(i)->getType()->isLabelTy(),
2457            "Indirectbr destinations must all have pointer type!", &BI);
2458 
2459   visitTerminator(BI);
2460 }
2461 
2462 void Verifier::visitCallBrInst(CallBrInst &CBI) {
2463   Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2464          &CBI);
2465   Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!",
2466          &CBI);
2467   for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2468     Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
2469            "Callbr successors must all have pointer type!", &CBI);
2470   for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2471     Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),
2472            "Using an unescaped label as a callbr argument!", &CBI);
2473     if (isa<BasicBlock>(CBI.getOperand(i)))
2474       for (unsigned j = i + 1; j != e; ++j)
2475         Assert(CBI.getOperand(i) != CBI.getOperand(j),
2476                "Duplicate callbr destination!", &CBI);
2477   }
2478 
2479   visitTerminator(CBI);
2480 }
2481 
2482 void Verifier::visitSelectInst(SelectInst &SI) {
2483   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2484                                          SI.getOperand(2)),
2485          "Invalid operands for select instruction!", &SI);
2486 
2487   Assert(SI.getTrueValue()->getType() == SI.getType(),
2488          "Select values must have same type as select instruction!", &SI);
2489   visitInstruction(SI);
2490 }
2491 
2492 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2493 /// a pass, if any exist, it's an error.
2494 ///
2495 void Verifier::visitUserOp1(Instruction &I) {
2496   Assert(false, "User-defined operators should not live outside of a pass!", &I);
2497 }
2498 
2499 void Verifier::visitTruncInst(TruncInst &I) {
2500   // Get the source and destination types
2501   Type *SrcTy = I.getOperand(0)->getType();
2502   Type *DestTy = I.getType();
2503 
2504   // Get the size of the types in bits, we'll need this later
2505   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2506   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2507 
2508   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2509   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2510   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2511          "trunc source and destination must both be a vector or neither", &I);
2512   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2513 
2514   visitInstruction(I);
2515 }
2516 
2517 void Verifier::visitZExtInst(ZExtInst &I) {
2518   // Get the source and destination types
2519   Type *SrcTy = I.getOperand(0)->getType();
2520   Type *DestTy = I.getType();
2521 
2522   // Get the size of the types in bits, we'll need this later
2523   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2524   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2525   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2526          "zext source and destination must both be a vector or neither", &I);
2527   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2528   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2529 
2530   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2531 
2532   visitInstruction(I);
2533 }
2534 
2535 void Verifier::visitSExtInst(SExtInst &I) {
2536   // Get the source and destination types
2537   Type *SrcTy = I.getOperand(0)->getType();
2538   Type *DestTy = I.getType();
2539 
2540   // Get the size of the types in bits, we'll need this later
2541   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2542   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2543 
2544   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2545   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2546   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2547          "sext source and destination must both be a vector or neither", &I);
2548   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2549 
2550   visitInstruction(I);
2551 }
2552 
2553 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2554   // Get the source and destination types
2555   Type *SrcTy = I.getOperand(0)->getType();
2556   Type *DestTy = I.getType();
2557   // Get the size of the types in bits, we'll need this later
2558   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2559   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2560 
2561   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2562   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2563   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2564          "fptrunc source and destination must both be a vector or neither", &I);
2565   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2566 
2567   visitInstruction(I);
2568 }
2569 
2570 void Verifier::visitFPExtInst(FPExtInst &I) {
2571   // Get the source and destination types
2572   Type *SrcTy = I.getOperand(0)->getType();
2573   Type *DestTy = I.getType();
2574 
2575   // Get the size of the types in bits, we'll need this later
2576   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2577   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2578 
2579   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2580   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2581   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2582          "fpext source and destination must both be a vector or neither", &I);
2583   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2584 
2585   visitInstruction(I);
2586 }
2587 
2588 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2589   // Get the source and destination types
2590   Type *SrcTy = I.getOperand(0)->getType();
2591   Type *DestTy = I.getType();
2592 
2593   bool SrcVec = SrcTy->isVectorTy();
2594   bool DstVec = DestTy->isVectorTy();
2595 
2596   Assert(SrcVec == DstVec,
2597          "UIToFP source and dest must both be vector or scalar", &I);
2598   Assert(SrcTy->isIntOrIntVectorTy(),
2599          "UIToFP source must be integer or integer vector", &I);
2600   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2601          &I);
2602 
2603   if (SrcVec && DstVec)
2604     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2605                cast<VectorType>(DestTy)->getNumElements(),
2606            "UIToFP source and dest vector length mismatch", &I);
2607 
2608   visitInstruction(I);
2609 }
2610 
2611 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2612   // Get the source and destination types
2613   Type *SrcTy = I.getOperand(0)->getType();
2614   Type *DestTy = I.getType();
2615 
2616   bool SrcVec = SrcTy->isVectorTy();
2617   bool DstVec = DestTy->isVectorTy();
2618 
2619   Assert(SrcVec == DstVec,
2620          "SIToFP source and dest must both be vector or scalar", &I);
2621   Assert(SrcTy->isIntOrIntVectorTy(),
2622          "SIToFP source must be integer or integer vector", &I);
2623   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2624          &I);
2625 
2626   if (SrcVec && DstVec)
2627     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2628                cast<VectorType>(DestTy)->getNumElements(),
2629            "SIToFP source and dest vector length mismatch", &I);
2630 
2631   visitInstruction(I);
2632 }
2633 
2634 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2635   // Get the source and destination types
2636   Type *SrcTy = I.getOperand(0)->getType();
2637   Type *DestTy = I.getType();
2638 
2639   bool SrcVec = SrcTy->isVectorTy();
2640   bool DstVec = DestTy->isVectorTy();
2641 
2642   Assert(SrcVec == DstVec,
2643          "FPToUI source and dest must both be vector or scalar", &I);
2644   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2645          &I);
2646   Assert(DestTy->isIntOrIntVectorTy(),
2647          "FPToUI result must be integer or integer vector", &I);
2648 
2649   if (SrcVec && DstVec)
2650     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2651                cast<VectorType>(DestTy)->getNumElements(),
2652            "FPToUI source and dest vector length mismatch", &I);
2653 
2654   visitInstruction(I);
2655 }
2656 
2657 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2658   // Get the source and destination types
2659   Type *SrcTy = I.getOperand(0)->getType();
2660   Type *DestTy = I.getType();
2661 
2662   bool SrcVec = SrcTy->isVectorTy();
2663   bool DstVec = DestTy->isVectorTy();
2664 
2665   Assert(SrcVec == DstVec,
2666          "FPToSI source and dest must both be vector or scalar", &I);
2667   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2668          &I);
2669   Assert(DestTy->isIntOrIntVectorTy(),
2670          "FPToSI result must be integer or integer vector", &I);
2671 
2672   if (SrcVec && DstVec)
2673     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2674                cast<VectorType>(DestTy)->getNumElements(),
2675            "FPToSI source and dest vector length mismatch", &I);
2676 
2677   visitInstruction(I);
2678 }
2679 
2680 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2681   // Get the source and destination types
2682   Type *SrcTy = I.getOperand(0)->getType();
2683   Type *DestTy = I.getType();
2684 
2685   Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2686 
2687   if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2688     Assert(!DL.isNonIntegralPointerType(PTy),
2689            "ptrtoint not supported for non-integral pointers");
2690 
2691   Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2692   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2693          &I);
2694 
2695   if (SrcTy->isVectorTy()) {
2696     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2697     VectorType *VDest = dyn_cast<VectorType>(DestTy);
2698     Assert(VSrc->getNumElements() == VDest->getNumElements(),
2699            "PtrToInt Vector width mismatch", &I);
2700   }
2701 
2702   visitInstruction(I);
2703 }
2704 
2705 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2706   // Get the source and destination types
2707   Type *SrcTy = I.getOperand(0)->getType();
2708   Type *DestTy = I.getType();
2709 
2710   Assert(SrcTy->isIntOrIntVectorTy(),
2711          "IntToPtr source must be an integral", &I);
2712   Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2713 
2714   if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2715     Assert(!DL.isNonIntegralPointerType(PTy),
2716            "inttoptr not supported for non-integral pointers");
2717 
2718   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2719          &I);
2720   if (SrcTy->isVectorTy()) {
2721     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2722     VectorType *VDest = dyn_cast<VectorType>(DestTy);
2723     Assert(VSrc->getNumElements() == VDest->getNumElements(),
2724            "IntToPtr Vector width mismatch", &I);
2725   }
2726   visitInstruction(I);
2727 }
2728 
2729 void Verifier::visitBitCastInst(BitCastInst &I) {
2730   Assert(
2731       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2732       "Invalid bitcast", &I);
2733   visitInstruction(I);
2734 }
2735 
2736 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2737   Type *SrcTy = I.getOperand(0)->getType();
2738   Type *DestTy = I.getType();
2739 
2740   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2741          &I);
2742   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2743          &I);
2744   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2745          "AddrSpaceCast must be between different address spaces", &I);
2746   if (SrcTy->isVectorTy())
2747     Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2748            "AddrSpaceCast vector pointer number of elements mismatch", &I);
2749   visitInstruction(I);
2750 }
2751 
2752 /// visitPHINode - Ensure that a PHI node is well formed.
2753 ///
2754 void Verifier::visitPHINode(PHINode &PN) {
2755   // Ensure that the PHI nodes are all grouped together at the top of the block.
2756   // This can be tested by checking whether the instruction before this is
2757   // either nonexistent (because this is begin()) or is a PHI node.  If not,
2758   // then there is some other instruction before a PHI.
2759   Assert(&PN == &PN.getParent()->front() ||
2760              isa<PHINode>(--BasicBlock::iterator(&PN)),
2761          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2762 
2763   // Check that a PHI doesn't yield a Token.
2764   Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2765 
2766   // Check that all of the values of the PHI node have the same type as the
2767   // result, and that the incoming blocks are really basic blocks.
2768   for (Value *IncValue : PN.incoming_values()) {
2769     Assert(PN.getType() == IncValue->getType(),
2770            "PHI node operands are not the same type as the result!", &PN);
2771   }
2772 
2773   // All other PHI node constraints are checked in the visitBasicBlock method.
2774 
2775   visitInstruction(PN);
2776 }
2777 
2778 void Verifier::visitCallBase(CallBase &Call) {
2779   Assert(Call.getCalledValue()->getType()->isPointerTy(),
2780          "Called function must be a pointer!", Call);
2781   PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType());
2782 
2783   Assert(FPTy->getElementType()->isFunctionTy(),
2784          "Called function is not pointer to function type!", Call);
2785 
2786   Assert(FPTy->getElementType() == Call.getFunctionType(),
2787          "Called function is not the same type as the call!", Call);
2788 
2789   FunctionType *FTy = Call.getFunctionType();
2790 
2791   // Verify that the correct number of arguments are being passed
2792   if (FTy->isVarArg())
2793     Assert(Call.arg_size() >= FTy->getNumParams(),
2794            "Called function requires more parameters than were provided!",
2795            Call);
2796   else
2797     Assert(Call.arg_size() == FTy->getNumParams(),
2798            "Incorrect number of arguments passed to called function!", Call);
2799 
2800   // Verify that all arguments to the call match the function type.
2801   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2802     Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
2803            "Call parameter type does not match function signature!",
2804            Call.getArgOperand(i), FTy->getParamType(i), Call);
2805 
2806   AttributeList Attrs = Call.getAttributes();
2807 
2808   Assert(verifyAttributeCount(Attrs, Call.arg_size()),
2809          "Attribute after last parameter!", Call);
2810 
2811   bool IsIntrinsic = Call.getCalledFunction() &&
2812                      Call.getCalledFunction()->getName().startswith("llvm.");
2813 
2814   Function *Callee
2815     = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts());
2816 
2817   if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2818     // Don't allow speculatable on call sites, unless the underlying function
2819     // declaration is also speculatable.
2820     Assert(Callee && Callee->isSpeculatable(),
2821            "speculatable attribute may not apply to call sites", Call);
2822   }
2823 
2824   // Verify call attributes.
2825   verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
2826 
2827   // Conservatively check the inalloca argument.
2828   // We have a bug if we can find that there is an underlying alloca without
2829   // inalloca.
2830   if (Call.hasInAllocaArgument()) {
2831     Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
2832     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2833       Assert(AI->isUsedWithInAlloca(),
2834              "inalloca argument for call has mismatched alloca", AI, Call);
2835   }
2836 
2837   // For each argument of the callsite, if it has the swifterror argument,
2838   // make sure the underlying alloca/parameter it comes from has a swifterror as
2839   // well.
2840   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2841     if (Call.paramHasAttr(i, Attribute::SwiftError)) {
2842       Value *SwiftErrorArg = Call.getArgOperand(i);
2843       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2844         Assert(AI->isSwiftError(),
2845                "swifterror argument for call has mismatched alloca", AI, Call);
2846         continue;
2847       }
2848       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2849       Assert(ArgI,
2850              "swifterror argument should come from an alloca or parameter",
2851              SwiftErrorArg, Call);
2852       Assert(ArgI->hasSwiftErrorAttr(),
2853              "swifterror argument for call has mismatched parameter", ArgI,
2854              Call);
2855     }
2856 
2857     if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
2858       // Don't allow immarg on call sites, unless the underlying declaration
2859       // also has the matching immarg.
2860       Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
2861              "immarg may not apply only to call sites",
2862              Call.getArgOperand(i), Call);
2863     }
2864 
2865     if (Call.paramHasAttr(i, Attribute::ImmArg)) {
2866       Value *ArgVal = Call.getArgOperand(i);
2867       Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
2868              "immarg operand has non-immediate parameter", ArgVal, Call);
2869     }
2870   }
2871 
2872   if (FTy->isVarArg()) {
2873     // FIXME? is 'nest' even legal here?
2874     bool SawNest = false;
2875     bool SawReturned = false;
2876 
2877     for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2878       if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2879         SawNest = true;
2880       if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2881         SawReturned = true;
2882     }
2883 
2884     // Check attributes on the varargs part.
2885     for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
2886       Type *Ty = Call.getArgOperand(Idx)->getType();
2887       AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2888       verifyParameterAttrs(ArgAttrs, Ty, &Call);
2889 
2890       if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2891         Assert(!SawNest, "More than one parameter has attribute nest!", Call);
2892         SawNest = true;
2893       }
2894 
2895       if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2896         Assert(!SawReturned, "More than one parameter has attribute returned!",
2897                Call);
2898         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2899                "Incompatible argument and return types for 'returned' "
2900                "attribute",
2901                Call);
2902         SawReturned = true;
2903       }
2904 
2905       // Statepoint intrinsic is vararg but the wrapped function may be not.
2906       // Allow sret here and check the wrapped function in verifyStatepoint.
2907       if (!Call.getCalledFunction() ||
2908           Call.getCalledFunction()->getIntrinsicID() !=
2909               Intrinsic::experimental_gc_statepoint)
2910         Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2911                "Attribute 'sret' cannot be used for vararg call arguments!",
2912                Call);
2913 
2914       if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2915         Assert(Idx == Call.arg_size() - 1,
2916                "inalloca isn't on the last argument!", Call);
2917     }
2918   }
2919 
2920   // Verify that there's no metadata unless it's a direct call to an intrinsic.
2921   if (!IsIntrinsic) {
2922     for (Type *ParamTy : FTy->params()) {
2923       Assert(!ParamTy->isMetadataTy(),
2924              "Function has metadata parameter but isn't an intrinsic", Call);
2925       Assert(!ParamTy->isTokenTy(),
2926              "Function has token parameter but isn't an intrinsic", Call);
2927     }
2928   }
2929 
2930   // Verify that indirect calls don't return tokens.
2931   if (!Call.getCalledFunction())
2932     Assert(!FTy->getReturnType()->isTokenTy(),
2933            "Return type cannot be token for indirect call!");
2934 
2935   if (Function *F = Call.getCalledFunction())
2936     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2937       visitIntrinsicCall(ID, Call);
2938 
2939   // Verify that a callsite has at most one "deopt", at most one "funclet" and
2940   // at most one "gc-transition" operand bundle.
2941   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2942        FoundGCTransitionBundle = false;
2943   for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
2944     OperandBundleUse BU = Call.getOperandBundleAt(i);
2945     uint32_t Tag = BU.getTagID();
2946     if (Tag == LLVMContext::OB_deopt) {
2947       Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
2948       FoundDeoptBundle = true;
2949     } else if (Tag == LLVMContext::OB_gc_transition) {
2950       Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
2951              Call);
2952       FoundGCTransitionBundle = true;
2953     } else if (Tag == LLVMContext::OB_funclet) {
2954       Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
2955       FoundFuncletBundle = true;
2956       Assert(BU.Inputs.size() == 1,
2957              "Expected exactly one funclet bundle operand", Call);
2958       Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2959              "Funclet bundle operands should correspond to a FuncletPadInst",
2960              Call);
2961     }
2962   }
2963 
2964   // Verify that each inlinable callsite of a debug-info-bearing function in a
2965   // debug-info-bearing function has a debug location attached to it. Failure to
2966   // do so causes assertion failures when the inliner sets up inline scope info.
2967   if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
2968       Call.getCalledFunction()->getSubprogram())
2969     AssertDI(Call.getDebugLoc(),
2970              "inlinable function call in a function with "
2971              "debug info must have a !dbg location",
2972              Call);
2973 
2974   visitInstruction(Call);
2975 }
2976 
2977 /// Two types are "congruent" if they are identical, or if they are both pointer
2978 /// types with different pointee types and the same address space.
2979 static bool isTypeCongruent(Type *L, Type *R) {
2980   if (L == R)
2981     return true;
2982   PointerType *PL = dyn_cast<PointerType>(L);
2983   PointerType *PR = dyn_cast<PointerType>(R);
2984   if (!PL || !PR)
2985     return false;
2986   return PL->getAddressSpace() == PR->getAddressSpace();
2987 }
2988 
2989 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
2990   static const Attribute::AttrKind ABIAttrs[] = {
2991       Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2992       Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2993       Attribute::SwiftError};
2994   AttrBuilder Copy;
2995   for (auto AK : ABIAttrs) {
2996     if (Attrs.hasParamAttribute(I, AK))
2997       Copy.addAttribute(AK);
2998   }
2999   if (Attrs.hasParamAttribute(I, Attribute::Alignment))
3000     Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3001   return Copy;
3002 }
3003 
3004 void Verifier::verifyMustTailCall(CallInst &CI) {
3005   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3006 
3007   // - The caller and callee prototypes must match.  Pointer types of
3008   //   parameters or return types may differ in pointee type, but not
3009   //   address space.
3010   Function *F = CI.getParent()->getParent();
3011   FunctionType *CallerTy = F->getFunctionType();
3012   FunctionType *CalleeTy = CI.getFunctionType();
3013   if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3014     Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3015            "cannot guarantee tail call due to mismatched parameter counts",
3016            &CI);
3017     for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3018       Assert(
3019           isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3020           "cannot guarantee tail call due to mismatched parameter types", &CI);
3021     }
3022   }
3023   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3024          "cannot guarantee tail call due to mismatched varargs", &CI);
3025   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3026          "cannot guarantee tail call due to mismatched return types", &CI);
3027 
3028   // - The calling conventions of the caller and callee must match.
3029   Assert(F->getCallingConv() == CI.getCallingConv(),
3030          "cannot guarantee tail call due to mismatched calling conv", &CI);
3031 
3032   // - All ABI-impacting function attributes, such as sret, byval, inreg,
3033   //   returned, and inalloca, must match.
3034   AttributeList CallerAttrs = F->getAttributes();
3035   AttributeList CalleeAttrs = CI.getAttributes();
3036   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3037     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3038     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3039     Assert(CallerABIAttrs == CalleeABIAttrs,
3040            "cannot guarantee tail call due to mismatched ABI impacting "
3041            "function attributes",
3042            &CI, CI.getOperand(I));
3043   }
3044 
3045   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3046   //   or a pointer bitcast followed by a ret instruction.
3047   // - The ret instruction must return the (possibly bitcasted) value
3048   //   produced by the call or void.
3049   Value *RetVal = &CI;
3050   Instruction *Next = CI.getNextNode();
3051 
3052   // Handle the optional bitcast.
3053   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3054     Assert(BI->getOperand(0) == RetVal,
3055            "bitcast following musttail call must use the call", BI);
3056     RetVal = BI;
3057     Next = BI->getNextNode();
3058   }
3059 
3060   // Check the return.
3061   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3062   Assert(Ret, "musttail call must precede a ret with an optional bitcast",
3063          &CI);
3064   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
3065          "musttail call result must be returned", Ret);
3066 }
3067 
3068 void Verifier::visitCallInst(CallInst &CI) {
3069   visitCallBase(CI);
3070 
3071   if (CI.isMustTailCall())
3072     verifyMustTailCall(CI);
3073 }
3074 
3075 void Verifier::visitInvokeInst(InvokeInst &II) {
3076   visitCallBase(II);
3077 
3078   // Verify that the first non-PHI instruction of the unwind destination is an
3079   // exception handling instruction.
3080   Assert(
3081       II.getUnwindDest()->isEHPad(),
3082       "The unwind destination does not have an exception handling instruction!",
3083       &II);
3084 
3085   visitTerminator(II);
3086 }
3087 
3088 /// visitUnaryOperator - Check the argument to the unary operator.
3089 ///
3090 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3091   Assert(U.getType() == U.getOperand(0)->getType(),
3092          "Unary operators must have same type for"
3093          "operands and result!",
3094          &U);
3095 
3096   switch (U.getOpcode()) {
3097   // Check that floating-point arithmetic operators are only used with
3098   // floating-point operands.
3099   case Instruction::FNeg:
3100     Assert(U.getType()->isFPOrFPVectorTy(),
3101            "FNeg operator only works with float types!", &U);
3102     break;
3103   default:
3104     llvm_unreachable("Unknown UnaryOperator opcode!");
3105   }
3106 
3107   visitInstruction(U);
3108 }
3109 
3110 /// visitBinaryOperator - Check that both arguments to the binary operator are
3111 /// of the same type!
3112 ///
3113 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3114   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3115          "Both operands to a binary operator are not of the same type!", &B);
3116 
3117   switch (B.getOpcode()) {
3118   // Check that integer arithmetic operators are only used with
3119   // integral operands.
3120   case Instruction::Add:
3121   case Instruction::Sub:
3122   case Instruction::Mul:
3123   case Instruction::SDiv:
3124   case Instruction::UDiv:
3125   case Instruction::SRem:
3126   case Instruction::URem:
3127     Assert(B.getType()->isIntOrIntVectorTy(),
3128            "Integer arithmetic operators only work with integral types!", &B);
3129     Assert(B.getType() == B.getOperand(0)->getType(),
3130            "Integer arithmetic operators must have same type "
3131            "for operands and result!",
3132            &B);
3133     break;
3134   // Check that floating-point arithmetic operators are only used with
3135   // floating-point operands.
3136   case Instruction::FAdd:
3137   case Instruction::FSub:
3138   case Instruction::FMul:
3139   case Instruction::FDiv:
3140   case Instruction::FRem:
3141     Assert(B.getType()->isFPOrFPVectorTy(),
3142            "Floating-point arithmetic operators only work with "
3143            "floating-point types!",
3144            &B);
3145     Assert(B.getType() == B.getOperand(0)->getType(),
3146            "Floating-point arithmetic operators must have same type "
3147            "for operands and result!",
3148            &B);
3149     break;
3150   // Check that logical operators are only used with integral operands.
3151   case Instruction::And:
3152   case Instruction::Or:
3153   case Instruction::Xor:
3154     Assert(B.getType()->isIntOrIntVectorTy(),
3155            "Logical operators only work with integral types!", &B);
3156     Assert(B.getType() == B.getOperand(0)->getType(),
3157            "Logical operators must have same type for operands and result!",
3158            &B);
3159     break;
3160   case Instruction::Shl:
3161   case Instruction::LShr:
3162   case Instruction::AShr:
3163     Assert(B.getType()->isIntOrIntVectorTy(),
3164            "Shifts only work with integral types!", &B);
3165     Assert(B.getType() == B.getOperand(0)->getType(),
3166            "Shift return type must be same as operands!", &B);
3167     break;
3168   default:
3169     llvm_unreachable("Unknown BinaryOperator opcode!");
3170   }
3171 
3172   visitInstruction(B);
3173 }
3174 
3175 void Verifier::visitICmpInst(ICmpInst &IC) {
3176   // Check that the operands are the same type
3177   Type *Op0Ty = IC.getOperand(0)->getType();
3178   Type *Op1Ty = IC.getOperand(1)->getType();
3179   Assert(Op0Ty == Op1Ty,
3180          "Both operands to ICmp instruction are not of the same type!", &IC);
3181   // Check that the operands are the right type
3182   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3183          "Invalid operand types for ICmp instruction", &IC);
3184   // Check that the predicate is valid.
3185   Assert(IC.isIntPredicate(),
3186          "Invalid predicate in ICmp instruction!", &IC);
3187 
3188   visitInstruction(IC);
3189 }
3190 
3191 void Verifier::visitFCmpInst(FCmpInst &FC) {
3192   // Check that the operands are the same type
3193   Type *Op0Ty = FC.getOperand(0)->getType();
3194   Type *Op1Ty = FC.getOperand(1)->getType();
3195   Assert(Op0Ty == Op1Ty,
3196          "Both operands to FCmp instruction are not of the same type!", &FC);
3197   // Check that the operands are the right type
3198   Assert(Op0Ty->isFPOrFPVectorTy(),
3199          "Invalid operand types for FCmp instruction", &FC);
3200   // Check that the predicate is valid.
3201   Assert(FC.isFPPredicate(),
3202          "Invalid predicate in FCmp instruction!", &FC);
3203 
3204   visitInstruction(FC);
3205 }
3206 
3207 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3208   Assert(
3209       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3210       "Invalid extractelement operands!", &EI);
3211   visitInstruction(EI);
3212 }
3213 
3214 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3215   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3216                                             IE.getOperand(2)),
3217          "Invalid insertelement operands!", &IE);
3218   visitInstruction(IE);
3219 }
3220 
3221 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3222   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3223                                             SV.getOperand(2)),
3224          "Invalid shufflevector operands!", &SV);
3225   visitInstruction(SV);
3226 }
3227 
3228 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3229   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3230 
3231   Assert(isa<PointerType>(TargetTy),
3232          "GEP base pointer is not a vector or a vector of pointers", &GEP);
3233   Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3234 
3235   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3236   Assert(all_of(
3237       Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3238       "GEP indexes must be integers", &GEP);
3239   Type *ElTy =
3240       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3241   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3242 
3243   Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3244              GEP.getResultElementType() == ElTy,
3245          "GEP is not of right type for indices!", &GEP, ElTy);
3246 
3247   if (GEP.getType()->isVectorTy()) {
3248     // Additional checks for vector GEPs.
3249     unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3250     if (GEP.getPointerOperandType()->isVectorTy())
3251       Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
3252              "Vector GEP result width doesn't match operand's", &GEP);
3253     for (Value *Idx : Idxs) {
3254       Type *IndexTy = Idx->getType();
3255       if (IndexTy->isVectorTy()) {
3256         unsigned IndexWidth = IndexTy->getVectorNumElements();
3257         Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3258       }
3259       Assert(IndexTy->isIntOrIntVectorTy(),
3260              "All GEP indices should be of integer type");
3261     }
3262   }
3263 
3264   if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3265     Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
3266            "GEP address space doesn't match type", &GEP);
3267   }
3268 
3269   visitInstruction(GEP);
3270 }
3271 
3272 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3273   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3274 }
3275 
3276 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3277   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3278          "precondition violation");
3279 
3280   unsigned NumOperands = Range->getNumOperands();
3281   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3282   unsigned NumRanges = NumOperands / 2;
3283   Assert(NumRanges >= 1, "It should have at least one range!", Range);
3284 
3285   ConstantRange LastRange(1, true); // Dummy initial value
3286   for (unsigned i = 0; i < NumRanges; ++i) {
3287     ConstantInt *Low =
3288         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3289     Assert(Low, "The lower limit must be an integer!", Low);
3290     ConstantInt *High =
3291         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3292     Assert(High, "The upper limit must be an integer!", High);
3293     Assert(High->getType() == Low->getType() && High->getType() == Ty,
3294            "Range types must match instruction type!", &I);
3295 
3296     APInt HighV = High->getValue();
3297     APInt LowV = Low->getValue();
3298     ConstantRange CurRange(LowV, HighV);
3299     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3300            "Range must not be empty!", Range);
3301     if (i != 0) {
3302       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3303              "Intervals are overlapping", Range);
3304       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3305              Range);
3306       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3307              Range);
3308     }
3309     LastRange = ConstantRange(LowV, HighV);
3310   }
3311   if (NumRanges > 2) {
3312     APInt FirstLow =
3313         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3314     APInt FirstHigh =
3315         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3316     ConstantRange FirstRange(FirstLow, FirstHigh);
3317     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3318            "Intervals are overlapping", Range);
3319     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3320            Range);
3321   }
3322 }
3323 
3324 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3325   unsigned Size = DL.getTypeSizeInBits(Ty);
3326   Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3327   Assert(!(Size & (Size - 1)),
3328          "atomic memory access' operand must have a power-of-two size", Ty, I);
3329 }
3330 
3331 void Verifier::visitLoadInst(LoadInst &LI) {
3332   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3333   Assert(PTy, "Load operand must be a pointer.", &LI);
3334   Type *ElTy = LI.getType();
3335   Assert(LI.getAlignment() <= Value::MaximumAlignment,
3336          "huge alignment values are unsupported", &LI);
3337   Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3338   if (LI.isAtomic()) {
3339     Assert(LI.getOrdering() != AtomicOrdering::Release &&
3340                LI.getOrdering() != AtomicOrdering::AcquireRelease,
3341            "Load cannot have Release ordering", &LI);
3342     Assert(LI.getAlignment() != 0,
3343            "Atomic load must specify explicit alignment", &LI);
3344     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3345            "atomic load operand must have integer, pointer, or floating point "
3346            "type!",
3347            ElTy, &LI);
3348     checkAtomicMemAccessSize(ElTy, &LI);
3349   } else {
3350     Assert(LI.getSyncScopeID() == SyncScope::System,
3351            "Non-atomic load cannot have SynchronizationScope specified", &LI);
3352   }
3353 
3354   visitInstruction(LI);
3355 }
3356 
3357 void Verifier::visitStoreInst(StoreInst &SI) {
3358   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3359   Assert(PTy, "Store operand must be a pointer.", &SI);
3360   Type *ElTy = PTy->getElementType();
3361   Assert(ElTy == SI.getOperand(0)->getType(),
3362          "Stored value type does not match pointer operand type!", &SI, ElTy);
3363   Assert(SI.getAlignment() <= Value::MaximumAlignment,
3364          "huge alignment values are unsupported", &SI);
3365   Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3366   if (SI.isAtomic()) {
3367     Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3368                SI.getOrdering() != AtomicOrdering::AcquireRelease,
3369            "Store cannot have Acquire ordering", &SI);
3370     Assert(SI.getAlignment() != 0,
3371            "Atomic store must specify explicit alignment", &SI);
3372     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3373            "atomic store operand must have integer, pointer, or floating point "
3374            "type!",
3375            ElTy, &SI);
3376     checkAtomicMemAccessSize(ElTy, &SI);
3377   } else {
3378     Assert(SI.getSyncScopeID() == SyncScope::System,
3379            "Non-atomic store cannot have SynchronizationScope specified", &SI);
3380   }
3381   visitInstruction(SI);
3382 }
3383 
3384 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3385 void Verifier::verifySwiftErrorCall(CallBase &Call,
3386                                     const Value *SwiftErrorVal) {
3387   unsigned Idx = 0;
3388   for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) {
3389     if (*I == SwiftErrorVal) {
3390       Assert(Call.paramHasAttr(Idx, Attribute::SwiftError),
3391              "swifterror value when used in a callsite should be marked "
3392              "with swifterror attribute",
3393              SwiftErrorVal, Call);
3394     }
3395   }
3396 }
3397 
3398 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3399   // Check that swifterror value is only used by loads, stores, or as
3400   // a swifterror argument.
3401   for (const User *U : SwiftErrorVal->users()) {
3402     Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3403            isa<InvokeInst>(U),
3404            "swifterror value can only be loaded and stored from, or "
3405            "as a swifterror argument!",
3406            SwiftErrorVal, U);
3407     // If it is used by a store, check it is the second operand.
3408     if (auto StoreI = dyn_cast<StoreInst>(U))
3409       Assert(StoreI->getOperand(1) == SwiftErrorVal,
3410              "swifterror value should be the second operand when used "
3411              "by stores", SwiftErrorVal, U);
3412     if (auto *Call = dyn_cast<CallBase>(U))
3413       verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3414   }
3415 }
3416 
3417 void Verifier::visitAllocaInst(AllocaInst &AI) {
3418   SmallPtrSet<Type*, 4> Visited;
3419   PointerType *PTy = AI.getType();
3420   // TODO: Relax this restriction?
3421   Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),
3422          "Allocation instruction pointer not in the stack address space!",
3423          &AI);
3424   Assert(AI.getAllocatedType()->isSized(&Visited),
3425          "Cannot allocate unsized type", &AI);
3426   Assert(AI.getArraySize()->getType()->isIntegerTy(),
3427          "Alloca array size must have integer type", &AI);
3428   Assert(AI.getAlignment() <= Value::MaximumAlignment,
3429          "huge alignment values are unsupported", &AI);
3430 
3431   if (AI.isSwiftError()) {
3432     verifySwiftErrorValue(&AI);
3433   }
3434 
3435   visitInstruction(AI);
3436 }
3437 
3438 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3439 
3440   // FIXME: more conditions???
3441   Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
3442          "cmpxchg instructions must be atomic.", &CXI);
3443   Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
3444          "cmpxchg instructions must be atomic.", &CXI);
3445   Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
3446          "cmpxchg instructions cannot be unordered.", &CXI);
3447   Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
3448          "cmpxchg instructions cannot be unordered.", &CXI);
3449   Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
3450          "cmpxchg instructions failure argument shall be no stronger than the "
3451          "success argument",
3452          &CXI);
3453   Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
3454              CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
3455          "cmpxchg failure ordering cannot include release semantics", &CXI);
3456 
3457   PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3458   Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3459   Type *ElTy = PTy->getElementType();
3460   Assert(ElTy->isIntOrPtrTy(),
3461          "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3462   checkAtomicMemAccessSize(ElTy, &CXI);
3463   Assert(ElTy == CXI.getOperand(1)->getType(),
3464          "Expected value type does not match pointer operand type!", &CXI,
3465          ElTy);
3466   Assert(ElTy == CXI.getOperand(2)->getType(),
3467          "Stored value type does not match pointer operand type!", &CXI, ElTy);
3468   visitInstruction(CXI);
3469 }
3470 
3471 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3472   Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
3473          "atomicrmw instructions must be atomic.", &RMWI);
3474   Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3475          "atomicrmw instructions cannot be unordered.", &RMWI);
3476   auto Op = RMWI.getOperation();
3477   PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3478   Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3479   Type *ElTy = PTy->getElementType();
3480   if (Op == AtomicRMWInst::Xchg) {
3481     Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
3482            AtomicRMWInst::getOperationName(Op) +
3483            " operand must have integer or floating point type!",
3484            &RMWI, ElTy);
3485   } else if (AtomicRMWInst::isFPOperation(Op)) {
3486     Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
3487            AtomicRMWInst::getOperationName(Op) +
3488            " operand must have floating point type!",
3489            &RMWI, ElTy);
3490   } else {
3491     Assert(ElTy->isIntegerTy(), "atomicrmw " +
3492            AtomicRMWInst::getOperationName(Op) +
3493            " operand must have integer type!",
3494            &RMWI, ElTy);
3495   }
3496   checkAtomicMemAccessSize(ElTy, &RMWI);
3497   Assert(ElTy == RMWI.getOperand(1)->getType(),
3498          "Argument value type does not match pointer operand type!", &RMWI,
3499          ElTy);
3500   Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
3501          "Invalid binary operation!", &RMWI);
3502   visitInstruction(RMWI);
3503 }
3504 
3505 void Verifier::visitFenceInst(FenceInst &FI) {
3506   const AtomicOrdering Ordering = FI.getOrdering();
3507   Assert(Ordering == AtomicOrdering::Acquire ||
3508              Ordering == AtomicOrdering::Release ||
3509              Ordering == AtomicOrdering::AcquireRelease ||
3510              Ordering == AtomicOrdering::SequentiallyConsistent,
3511          "fence instructions may only have acquire, release, acq_rel, or "
3512          "seq_cst ordering.",
3513          &FI);
3514   visitInstruction(FI);
3515 }
3516 
3517 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3518   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3519                                           EVI.getIndices()) == EVI.getType(),
3520          "Invalid ExtractValueInst operands!", &EVI);
3521 
3522   visitInstruction(EVI);
3523 }
3524 
3525 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3526   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3527                                           IVI.getIndices()) ==
3528              IVI.getOperand(1)->getType(),
3529          "Invalid InsertValueInst operands!", &IVI);
3530 
3531   visitInstruction(IVI);
3532 }
3533 
3534 static Value *getParentPad(Value *EHPad) {
3535   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3536     return FPI->getParentPad();
3537 
3538   return cast<CatchSwitchInst>(EHPad)->getParentPad();
3539 }
3540 
3541 void Verifier::visitEHPadPredecessors(Instruction &I) {
3542   assert(I.isEHPad());
3543 
3544   BasicBlock *BB = I.getParent();
3545   Function *F = BB->getParent();
3546 
3547   Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3548 
3549   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3550     // The landingpad instruction defines its parent as a landing pad block. The
3551     // landing pad block may be branched to only by the unwind edge of an
3552     // invoke.
3553     for (BasicBlock *PredBB : predecessors(BB)) {
3554       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3555       Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3556              "Block containing LandingPadInst must be jumped to "
3557              "only by the unwind edge of an invoke.",
3558              LPI);
3559     }
3560     return;
3561   }
3562   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3563     if (!pred_empty(BB))
3564       Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3565              "Block containg CatchPadInst must be jumped to "
3566              "only by its catchswitch.",
3567              CPI);
3568     Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3569            "Catchswitch cannot unwind to one of its catchpads",
3570            CPI->getCatchSwitch(), CPI);
3571     return;
3572   }
3573 
3574   // Verify that each pred has a legal terminator with a legal to/from EH
3575   // pad relationship.
3576   Instruction *ToPad = &I;
3577   Value *ToPadParent = getParentPad(ToPad);
3578   for (BasicBlock *PredBB : predecessors(BB)) {
3579     Instruction *TI = PredBB->getTerminator();
3580     Value *FromPad;
3581     if (auto *II = dyn_cast<InvokeInst>(TI)) {
3582       Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3583              "EH pad must be jumped to via an unwind edge", ToPad, II);
3584       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3585         FromPad = Bundle->Inputs[0];
3586       else
3587         FromPad = ConstantTokenNone::get(II->getContext());
3588     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3589       FromPad = CRI->getOperand(0);
3590       Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3591     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3592       FromPad = CSI;
3593     } else {
3594       Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3595     }
3596 
3597     // The edge may exit from zero or more nested pads.
3598     SmallSet<Value *, 8> Seen;
3599     for (;; FromPad = getParentPad(FromPad)) {
3600       Assert(FromPad != ToPad,
3601              "EH pad cannot handle exceptions raised within it", FromPad, TI);
3602       if (FromPad == ToPadParent) {
3603         // This is a legal unwind edge.
3604         break;
3605       }
3606       Assert(!isa<ConstantTokenNone>(FromPad),
3607              "A single unwind edge may only enter one EH pad", TI);
3608       Assert(Seen.insert(FromPad).second,
3609              "EH pad jumps through a cycle of pads", FromPad);
3610     }
3611   }
3612 }
3613 
3614 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3615   // The landingpad instruction is ill-formed if it doesn't have any clauses and
3616   // isn't a cleanup.
3617   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3618          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3619 
3620   visitEHPadPredecessors(LPI);
3621 
3622   if (!LandingPadResultTy)
3623     LandingPadResultTy = LPI.getType();
3624   else
3625     Assert(LandingPadResultTy == LPI.getType(),
3626            "The landingpad instruction should have a consistent result type "
3627            "inside a function.",
3628            &LPI);
3629 
3630   Function *F = LPI.getParent()->getParent();
3631   Assert(F->hasPersonalityFn(),
3632          "LandingPadInst needs to be in a function with a personality.", &LPI);
3633 
3634   // The landingpad instruction must be the first non-PHI instruction in the
3635   // block.
3636   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3637          "LandingPadInst not the first non-PHI instruction in the block.",
3638          &LPI);
3639 
3640   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3641     Constant *Clause = LPI.getClause(i);
3642     if (LPI.isCatch(i)) {
3643       Assert(isa<PointerType>(Clause->getType()),
3644              "Catch operand does not have pointer type!", &LPI);
3645     } else {
3646       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3647       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3648              "Filter operand is not an array of constants!", &LPI);
3649     }
3650   }
3651 
3652   visitInstruction(LPI);
3653 }
3654 
3655 void Verifier::visitResumeInst(ResumeInst &RI) {
3656   Assert(RI.getFunction()->hasPersonalityFn(),
3657          "ResumeInst needs to be in a function with a personality.", &RI);
3658 
3659   if (!LandingPadResultTy)
3660     LandingPadResultTy = RI.getValue()->getType();
3661   else
3662     Assert(LandingPadResultTy == RI.getValue()->getType(),
3663            "The resume instruction should have a consistent result type "
3664            "inside a function.",
3665            &RI);
3666 
3667   visitTerminator(RI);
3668 }
3669 
3670 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3671   BasicBlock *BB = CPI.getParent();
3672 
3673   Function *F = BB->getParent();
3674   Assert(F->hasPersonalityFn(),
3675          "CatchPadInst needs to be in a function with a personality.", &CPI);
3676 
3677   Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3678          "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3679          CPI.getParentPad());
3680 
3681   // The catchpad instruction must be the first non-PHI instruction in the
3682   // block.
3683   Assert(BB->getFirstNonPHI() == &CPI,
3684          "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3685 
3686   visitEHPadPredecessors(CPI);
3687   visitFuncletPadInst(CPI);
3688 }
3689 
3690 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3691   Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3692          "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3693          CatchReturn.getOperand(0));
3694 
3695   visitTerminator(CatchReturn);
3696 }
3697 
3698 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3699   BasicBlock *BB = CPI.getParent();
3700 
3701   Function *F = BB->getParent();
3702   Assert(F->hasPersonalityFn(),
3703          "CleanupPadInst needs to be in a function with a personality.", &CPI);
3704 
3705   // The cleanuppad instruction must be the first non-PHI instruction in the
3706   // block.
3707   Assert(BB->getFirstNonPHI() == &CPI,
3708          "CleanupPadInst not the first non-PHI instruction in the block.",
3709          &CPI);
3710 
3711   auto *ParentPad = CPI.getParentPad();
3712   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3713          "CleanupPadInst has an invalid parent.", &CPI);
3714 
3715   visitEHPadPredecessors(CPI);
3716   visitFuncletPadInst(CPI);
3717 }
3718 
3719 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3720   User *FirstUser = nullptr;
3721   Value *FirstUnwindPad = nullptr;
3722   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3723   SmallSet<FuncletPadInst *, 8> Seen;
3724 
3725   while (!Worklist.empty()) {
3726     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3727     Assert(Seen.insert(CurrentPad).second,
3728            "FuncletPadInst must not be nested within itself", CurrentPad);
3729     Value *UnresolvedAncestorPad = nullptr;
3730     for (User *U : CurrentPad->users()) {
3731       BasicBlock *UnwindDest;
3732       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3733         UnwindDest = CRI->getUnwindDest();
3734       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3735         // We allow catchswitch unwind to caller to nest
3736         // within an outer pad that unwinds somewhere else,
3737         // because catchswitch doesn't have a nounwind variant.
3738         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3739         if (CSI->unwindsToCaller())
3740           continue;
3741         UnwindDest = CSI->getUnwindDest();
3742       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3743         UnwindDest = II->getUnwindDest();
3744       } else if (isa<CallInst>(U)) {
3745         // Calls which don't unwind may be found inside funclet
3746         // pads that unwind somewhere else.  We don't *require*
3747         // such calls to be annotated nounwind.
3748         continue;
3749       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3750         // The unwind dest for a cleanup can only be found by
3751         // recursive search.  Add it to the worklist, and we'll
3752         // search for its first use that determines where it unwinds.
3753         Worklist.push_back(CPI);
3754         continue;
3755       } else {
3756         Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3757         continue;
3758       }
3759 
3760       Value *UnwindPad;
3761       bool ExitsFPI;
3762       if (UnwindDest) {
3763         UnwindPad = UnwindDest->getFirstNonPHI();
3764         if (!cast<Instruction>(UnwindPad)->isEHPad())
3765           continue;
3766         Value *UnwindParent = getParentPad(UnwindPad);
3767         // Ignore unwind edges that don't exit CurrentPad.
3768         if (UnwindParent == CurrentPad)
3769           continue;
3770         // Determine whether the original funclet pad is exited,
3771         // and if we are scanning nested pads determine how many
3772         // of them are exited so we can stop searching their
3773         // children.
3774         Value *ExitedPad = CurrentPad;
3775         ExitsFPI = false;
3776         do {
3777           if (ExitedPad == &FPI) {
3778             ExitsFPI = true;
3779             // Now we can resolve any ancestors of CurrentPad up to
3780             // FPI, but not including FPI since we need to make sure
3781             // to check all direct users of FPI for consistency.
3782             UnresolvedAncestorPad = &FPI;
3783             break;
3784           }
3785           Value *ExitedParent = getParentPad(ExitedPad);
3786           if (ExitedParent == UnwindParent) {
3787             // ExitedPad is the ancestor-most pad which this unwind
3788             // edge exits, so we can resolve up to it, meaning that
3789             // ExitedParent is the first ancestor still unresolved.
3790             UnresolvedAncestorPad = ExitedParent;
3791             break;
3792           }
3793           ExitedPad = ExitedParent;
3794         } while (!isa<ConstantTokenNone>(ExitedPad));
3795       } else {
3796         // Unwinding to caller exits all pads.
3797         UnwindPad = ConstantTokenNone::get(FPI.getContext());
3798         ExitsFPI = true;
3799         UnresolvedAncestorPad = &FPI;
3800       }
3801 
3802       if (ExitsFPI) {
3803         // This unwind edge exits FPI.  Make sure it agrees with other
3804         // such edges.
3805         if (FirstUser) {
3806           Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3807                                               "pad must have the same unwind "
3808                                               "dest",
3809                  &FPI, U, FirstUser);
3810         } else {
3811           FirstUser = U;
3812           FirstUnwindPad = UnwindPad;
3813           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3814           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3815               getParentPad(UnwindPad) == getParentPad(&FPI))
3816             SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
3817         }
3818       }
3819       // Make sure we visit all uses of FPI, but for nested pads stop as
3820       // soon as we know where they unwind to.
3821       if (CurrentPad != &FPI)
3822         break;
3823     }
3824     if (UnresolvedAncestorPad) {
3825       if (CurrentPad == UnresolvedAncestorPad) {
3826         // When CurrentPad is FPI itself, we don't mark it as resolved even if
3827         // we've found an unwind edge that exits it, because we need to verify
3828         // all direct uses of FPI.
3829         assert(CurrentPad == &FPI);
3830         continue;
3831       }
3832       // Pop off the worklist any nested pads that we've found an unwind
3833       // destination for.  The pads on the worklist are the uncles,
3834       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
3835       // for all ancestors of CurrentPad up to but not including
3836       // UnresolvedAncestorPad.
3837       Value *ResolvedPad = CurrentPad;
3838       while (!Worklist.empty()) {
3839         Value *UnclePad = Worklist.back();
3840         Value *AncestorPad = getParentPad(UnclePad);
3841         // Walk ResolvedPad up the ancestor list until we either find the
3842         // uncle's parent or the last resolved ancestor.
3843         while (ResolvedPad != AncestorPad) {
3844           Value *ResolvedParent = getParentPad(ResolvedPad);
3845           if (ResolvedParent == UnresolvedAncestorPad) {
3846             break;
3847           }
3848           ResolvedPad = ResolvedParent;
3849         }
3850         // If the resolved ancestor search didn't find the uncle's parent,
3851         // then the uncle is not yet resolved.
3852         if (ResolvedPad != AncestorPad)
3853           break;
3854         // This uncle is resolved, so pop it from the worklist.
3855         Worklist.pop_back();
3856       }
3857     }
3858   }
3859 
3860   if (FirstUnwindPad) {
3861     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3862       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3863       Value *SwitchUnwindPad;
3864       if (SwitchUnwindDest)
3865         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3866       else
3867         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3868       Assert(SwitchUnwindPad == FirstUnwindPad,
3869              "Unwind edges out of a catch must have the same unwind dest as "
3870              "the parent catchswitch",
3871              &FPI, FirstUser, CatchSwitch);
3872     }
3873   }
3874 
3875   visitInstruction(FPI);
3876 }
3877 
3878 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3879   BasicBlock *BB = CatchSwitch.getParent();
3880 
3881   Function *F = BB->getParent();
3882   Assert(F->hasPersonalityFn(),
3883          "CatchSwitchInst needs to be in a function with a personality.",
3884          &CatchSwitch);
3885 
3886   // The catchswitch instruction must be the first non-PHI instruction in the
3887   // block.
3888   Assert(BB->getFirstNonPHI() == &CatchSwitch,
3889          "CatchSwitchInst not the first non-PHI instruction in the block.",
3890          &CatchSwitch);
3891 
3892   auto *ParentPad = CatchSwitch.getParentPad();
3893   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3894          "CatchSwitchInst has an invalid parent.", ParentPad);
3895 
3896   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3897     Instruction *I = UnwindDest->getFirstNonPHI();
3898     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3899            "CatchSwitchInst must unwind to an EH block which is not a "
3900            "landingpad.",
3901            &CatchSwitch);
3902 
3903     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3904     if (getParentPad(I) == ParentPad)
3905       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3906   }
3907 
3908   Assert(CatchSwitch.getNumHandlers() != 0,
3909          "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3910 
3911   for (BasicBlock *Handler : CatchSwitch.handlers()) {
3912     Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3913            "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3914   }
3915 
3916   visitEHPadPredecessors(CatchSwitch);
3917   visitTerminator(CatchSwitch);
3918 }
3919 
3920 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3921   Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3922          "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3923          CRI.getOperand(0));
3924 
3925   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3926     Instruction *I = UnwindDest->getFirstNonPHI();
3927     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3928            "CleanupReturnInst must unwind to an EH block which is not a "
3929            "landingpad.",
3930            &CRI);
3931   }
3932 
3933   visitTerminator(CRI);
3934 }
3935 
3936 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3937   Instruction *Op = cast<Instruction>(I.getOperand(i));
3938   // If the we have an invalid invoke, don't try to compute the dominance.
3939   // We already reject it in the invoke specific checks and the dominance
3940   // computation doesn't handle multiple edges.
3941   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3942     if (II->getNormalDest() == II->getUnwindDest())
3943       return;
3944   }
3945 
3946   // Quick check whether the def has already been encountered in the same block.
3947   // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
3948   // uses are defined to happen on the incoming edge, not at the instruction.
3949   //
3950   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3951   // wrapping an SSA value, assert that we've already encountered it.  See
3952   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3953   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3954     return;
3955 
3956   const Use &U = I.getOperandUse(i);
3957   Assert(DT.dominates(Op, U),
3958          "Instruction does not dominate all uses!", Op, &I);
3959 }
3960 
3961 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3962   Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3963          "apply only to pointer types", &I);
3964   Assert(isa<LoadInst>(I),
3965          "dereferenceable, dereferenceable_or_null apply only to load"
3966          " instructions, use attributes for calls or invokes", &I);
3967   Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3968          "take one operand!", &I);
3969   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3970   Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3971          "dereferenceable_or_null metadata value must be an i64!", &I);
3972 }
3973 
3974 /// verifyInstruction - Verify that an instruction is well formed.
3975 ///
3976 void Verifier::visitInstruction(Instruction &I) {
3977   BasicBlock *BB = I.getParent();
3978   Assert(BB, "Instruction not embedded in basic block!", &I);
3979 
3980   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
3981     for (User *U : I.users()) {
3982       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
3983              "Only PHI nodes may reference their own value!", &I);
3984     }
3985   }
3986 
3987   // Check that void typed values don't have names
3988   Assert(!I.getType()->isVoidTy() || !I.hasName(),
3989          "Instruction has a name, but provides a void value!", &I);
3990 
3991   // Check that the return value of the instruction is either void or a legal
3992   // value type.
3993   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
3994          "Instruction returns a non-scalar type!", &I);
3995 
3996   // Check that the instruction doesn't produce metadata. Calls are already
3997   // checked against the callee type.
3998   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
3999          "Invalid use of metadata!", &I);
4000 
4001   // Check that all uses of the instruction, if they are instructions
4002   // themselves, actually have parent basic blocks.  If the use is not an
4003   // instruction, it is an error!
4004   for (Use &U : I.uses()) {
4005     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4006       Assert(Used->getParent() != nullptr,
4007              "Instruction referencing"
4008              " instruction not embedded in a basic block!",
4009              &I, Used);
4010     else {
4011       CheckFailed("Use of instruction is not an instruction!", U);
4012       return;
4013     }
4014   }
4015 
4016   // Get a pointer to the call base of the instruction if it is some form of
4017   // call.
4018   const CallBase *CBI = dyn_cast<CallBase>(&I);
4019 
4020   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4021     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4022 
4023     // Check to make sure that only first-class-values are operands to
4024     // instructions.
4025     if (!I.getOperand(i)->getType()->isFirstClassType()) {
4026       Assert(false, "Instruction operands must be first-class values!", &I);
4027     }
4028 
4029     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4030       // Check to make sure that the "address of" an intrinsic function is never
4031       // taken.
4032       Assert(!F->isIntrinsic() ||
4033                  (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),
4034              "Cannot take the address of an intrinsic!", &I);
4035       Assert(
4036           !F->isIntrinsic() || isa<CallInst>(I) ||
4037               F->getIntrinsicID() == Intrinsic::donothing ||
4038               F->getIntrinsicID() == Intrinsic::coro_resume ||
4039               F->getIntrinsicID() == Intrinsic::coro_destroy ||
4040               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
4041               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4042               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4043               F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch,
4044           "Cannot invoke an intrinsic other than donothing, patchpoint, "
4045           "statepoint, coro_resume or coro_destroy",
4046           &I);
4047       Assert(F->getParent() == &M, "Referencing function in another module!",
4048              &I, &M, F, F->getParent());
4049     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4050       Assert(OpBB->getParent() == BB->getParent(),
4051              "Referring to a basic block in another function!", &I);
4052     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4053       Assert(OpArg->getParent() == BB->getParent(),
4054              "Referring to an argument in another function!", &I);
4055     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4056       Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
4057              &M, GV, GV->getParent());
4058     } else if (isa<Instruction>(I.getOperand(i))) {
4059       verifyDominatesUse(I, i);
4060     } else if (isa<InlineAsm>(I.getOperand(i))) {
4061       Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4062              "Cannot take the address of an inline asm!", &I);
4063     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4064       if (CE->getType()->isPtrOrPtrVectorTy() ||
4065           !DL.getNonIntegralAddressSpaces().empty()) {
4066         // If we have a ConstantExpr pointer, we need to see if it came from an
4067         // illegal bitcast.  If the datalayout string specifies non-integral
4068         // address spaces then we also need to check for illegal ptrtoint and
4069         // inttoptr expressions.
4070         visitConstantExprsRecursively(CE);
4071       }
4072     }
4073   }
4074 
4075   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4076     Assert(I.getType()->isFPOrFPVectorTy(),
4077            "fpmath requires a floating point result!", &I);
4078     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4079     if (ConstantFP *CFP0 =
4080             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4081       const APFloat &Accuracy = CFP0->getValueAPF();
4082       Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4083              "fpmath accuracy must have float type", &I);
4084       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4085              "fpmath accuracy not a positive number!", &I);
4086     } else {
4087       Assert(false, "invalid fpmath accuracy!", &I);
4088     }
4089   }
4090 
4091   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4092     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4093            "Ranges are only for loads, calls and invokes!", &I);
4094     visitRangeMetadata(I, Range, I.getType());
4095   }
4096 
4097   if (I.getMetadata(LLVMContext::MD_nonnull)) {
4098     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4099            &I);
4100     Assert(isa<LoadInst>(I),
4101            "nonnull applies only to load instructions, use attributes"
4102            " for calls or invokes",
4103            &I);
4104   }
4105 
4106   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4107     visitDereferenceableMetadata(I, MD);
4108 
4109   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4110     visitDereferenceableMetadata(I, MD);
4111 
4112   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4113     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4114 
4115   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4116     Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
4117            &I);
4118     Assert(isa<LoadInst>(I), "align applies only to load instructions, "
4119            "use attributes for calls or invokes", &I);
4120     Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4121     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4122     Assert(CI && CI->getType()->isIntegerTy(64),
4123            "align metadata value must be an i64!", &I);
4124     uint64_t Align = CI->getZExtValue();
4125     Assert(isPowerOf2_64(Align),
4126            "align metadata value must be a power of 2!", &I);
4127     Assert(Align <= Value::MaximumAlignment,
4128            "alignment is larger that implementation defined limit", &I);
4129   }
4130 
4131   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4132     AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4133     visitMDNode(*N);
4134   }
4135 
4136   if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I))
4137     verifyFragmentExpression(*DII);
4138 
4139   InstsInThisBlock.insert(&I);
4140 }
4141 
4142 /// Allow intrinsics to be verified in different ways.
4143 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4144   Function *IF = Call.getCalledFunction();
4145   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4146          IF);
4147 
4148   // Verify that the intrinsic prototype lines up with what the .td files
4149   // describe.
4150   FunctionType *IFTy = IF->getFunctionType();
4151   bool IsVarArg = IFTy->isVarArg();
4152 
4153   SmallVector<Intrinsic::IITDescriptor, 8> Table;
4154   getIntrinsicInfoTableEntries(ID, Table);
4155   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4156 
4157   // Walk the descriptors to extract overloaded types.
4158   SmallVector<Type *, 4> ArgTys;
4159   Intrinsic::MatchIntrinsicTypesResult Res =
4160       Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
4161   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
4162          "Intrinsic has incorrect return type!", IF);
4163   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
4164          "Intrinsic has incorrect argument type!", IF);
4165 
4166   // Verify if the intrinsic call matches the vararg property.
4167   if (IsVarArg)
4168     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4169            "Intrinsic was not defined with variable arguments!", IF);
4170   else
4171     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4172            "Callsite was not defined with variable arguments!", IF);
4173 
4174   // All descriptors should be absorbed by now.
4175   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4176 
4177   // Now that we have the intrinsic ID and the actual argument types (and we
4178   // know they are legal for the intrinsic!) get the intrinsic name through the
4179   // usual means.  This allows us to verify the mangling of argument types into
4180   // the name.
4181   const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
4182   Assert(ExpectedName == IF->getName(),
4183          "Intrinsic name not mangled correctly for type arguments! "
4184          "Should be: " +
4185              ExpectedName,
4186          IF);
4187 
4188   // If the intrinsic takes MDNode arguments, verify that they are either global
4189   // or are local to *this* function.
4190   for (Value *V : Call.args())
4191     if (auto *MD = dyn_cast<MetadataAsValue>(V))
4192       visitMetadataAsValue(*MD, Call.getCaller());
4193 
4194   switch (ID) {
4195   default:
4196     break;
4197   case Intrinsic::coro_id: {
4198     auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4199     if (isa<ConstantPointerNull>(InfoArg))
4200       break;
4201     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4202     Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4203       "info argument of llvm.coro.begin must refer to an initialized "
4204       "constant");
4205     Constant *Init = GV->getInitializer();
4206     Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4207       "info argument of llvm.coro.begin must refer to either a struct or "
4208       "an array");
4209     break;
4210   }
4211   case Intrinsic::experimental_constrained_fadd:
4212   case Intrinsic::experimental_constrained_fsub:
4213   case Intrinsic::experimental_constrained_fmul:
4214   case Intrinsic::experimental_constrained_fdiv:
4215   case Intrinsic::experimental_constrained_frem:
4216   case Intrinsic::experimental_constrained_fma:
4217   case Intrinsic::experimental_constrained_fptrunc:
4218   case Intrinsic::experimental_constrained_fpext:
4219   case Intrinsic::experimental_constrained_sqrt:
4220   case Intrinsic::experimental_constrained_pow:
4221   case Intrinsic::experimental_constrained_powi:
4222   case Intrinsic::experimental_constrained_sin:
4223   case Intrinsic::experimental_constrained_cos:
4224   case Intrinsic::experimental_constrained_exp:
4225   case Intrinsic::experimental_constrained_exp2:
4226   case Intrinsic::experimental_constrained_log:
4227   case Intrinsic::experimental_constrained_log10:
4228   case Intrinsic::experimental_constrained_log2:
4229   case Intrinsic::experimental_constrained_rint:
4230   case Intrinsic::experimental_constrained_nearbyint:
4231   case Intrinsic::experimental_constrained_maxnum:
4232   case Intrinsic::experimental_constrained_minnum:
4233   case Intrinsic::experimental_constrained_ceil:
4234   case Intrinsic::experimental_constrained_floor:
4235   case Intrinsic::experimental_constrained_round:
4236   case Intrinsic::experimental_constrained_trunc:
4237     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4238     break;
4239   case Intrinsic::dbg_declare: // llvm.dbg.declare
4240     Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
4241            "invalid llvm.dbg.declare intrinsic call 1", Call);
4242     visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4243     break;
4244   case Intrinsic::dbg_addr: // llvm.dbg.addr
4245     visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4246     break;
4247   case Intrinsic::dbg_value: // llvm.dbg.value
4248     visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4249     break;
4250   case Intrinsic::dbg_label: // llvm.dbg.label
4251     visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4252     break;
4253   case Intrinsic::memcpy:
4254   case Intrinsic::memmove:
4255   case Intrinsic::memset: {
4256     const auto *MI = cast<MemIntrinsic>(&Call);
4257     auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4258       return Alignment == 0 || isPowerOf2_32(Alignment);
4259     };
4260     Assert(IsValidAlignment(MI->getDestAlignment()),
4261            "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4262            Call);
4263     if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4264       Assert(IsValidAlignment(MTI->getSourceAlignment()),
4265              "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4266              Call);
4267     }
4268 
4269     break;
4270   }
4271   case Intrinsic::memcpy_element_unordered_atomic:
4272   case Intrinsic::memmove_element_unordered_atomic:
4273   case Intrinsic::memset_element_unordered_atomic: {
4274     const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4275 
4276     ConstantInt *ElementSizeCI =
4277         cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4278     const APInt &ElementSizeVal = ElementSizeCI->getValue();
4279     Assert(ElementSizeVal.isPowerOf2(),
4280            "element size of the element-wise atomic memory intrinsic "
4281            "must be a power of 2",
4282            Call);
4283 
4284     if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) {
4285       uint64_t Length = LengthCI->getZExtValue();
4286       uint64_t ElementSize = AMI->getElementSizeInBytes();
4287       Assert((Length % ElementSize) == 0,
4288              "constant length must be a multiple of the element size in the "
4289              "element-wise atomic memory intrinsic",
4290              Call);
4291     }
4292 
4293     auto IsValidAlignment = [&](uint64_t Alignment) {
4294       return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4295     };
4296     uint64_t DstAlignment = AMI->getDestAlignment();
4297     Assert(IsValidAlignment(DstAlignment),
4298            "incorrect alignment of the destination argument", Call);
4299     if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4300       uint64_t SrcAlignment = AMT->getSourceAlignment();
4301       Assert(IsValidAlignment(SrcAlignment),
4302              "incorrect alignment of the source argument", Call);
4303     }
4304     break;
4305   }
4306   case Intrinsic::gcroot:
4307   case Intrinsic::gcwrite:
4308   case Intrinsic::gcread:
4309     if (ID == Intrinsic::gcroot) {
4310       AllocaInst *AI =
4311           dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
4312       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
4313       Assert(isa<Constant>(Call.getArgOperand(1)),
4314              "llvm.gcroot parameter #2 must be a constant.", Call);
4315       if (!AI->getAllocatedType()->isPointerTy()) {
4316         Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
4317                "llvm.gcroot parameter #1 must either be a pointer alloca, "
4318                "or argument #2 must be a non-null constant.",
4319                Call);
4320       }
4321     }
4322 
4323     Assert(Call.getParent()->getParent()->hasGC(),
4324            "Enclosing function does not use GC.", Call);
4325     break;
4326   case Intrinsic::init_trampoline:
4327     Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
4328            "llvm.init_trampoline parameter #2 must resolve to a function.",
4329            Call);
4330     break;
4331   case Intrinsic::prefetch:
4332     Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
4333            cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
4334            "invalid arguments to llvm.prefetch", Call);
4335     break;
4336   case Intrinsic::stackprotector:
4337     Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
4338            "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
4339     break;
4340   case Intrinsic::localescape: {
4341     BasicBlock *BB = Call.getParent();
4342     Assert(BB == &BB->getParent()->front(),
4343            "llvm.localescape used outside of entry block", Call);
4344     Assert(!SawFrameEscape,
4345            "multiple calls to llvm.localescape in one function", Call);
4346     for (Value *Arg : Call.args()) {
4347       if (isa<ConstantPointerNull>(Arg))
4348         continue; // Null values are allowed as placeholders.
4349       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4350       Assert(AI && AI->isStaticAlloca(),
4351              "llvm.localescape only accepts static allocas", Call);
4352     }
4353     FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands();
4354     SawFrameEscape = true;
4355     break;
4356   }
4357   case Intrinsic::localrecover: {
4358     Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
4359     Function *Fn = dyn_cast<Function>(FnArg);
4360     Assert(Fn && !Fn->isDeclaration(),
4361            "llvm.localrecover first "
4362            "argument must be function defined in this module",
4363            Call);
4364     auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
4365     auto &Entry = FrameEscapeInfo[Fn];
4366     Entry.second = unsigned(
4367         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4368     break;
4369   }
4370 
4371   case Intrinsic::experimental_gc_statepoint:
4372     if (auto *CI = dyn_cast<CallInst>(&Call))
4373       Assert(!CI->isInlineAsm(),
4374              "gc.statepoint support for inline assembly unimplemented", CI);
4375     Assert(Call.getParent()->getParent()->hasGC(),
4376            "Enclosing function does not use GC.", Call);
4377 
4378     verifyStatepoint(Call);
4379     break;
4380   case Intrinsic::experimental_gc_result: {
4381     Assert(Call.getParent()->getParent()->hasGC(),
4382            "Enclosing function does not use GC.", Call);
4383     // Are we tied to a statepoint properly?
4384     const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
4385     const Function *StatepointFn =
4386         StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
4387     Assert(StatepointFn && StatepointFn->isDeclaration() &&
4388                StatepointFn->getIntrinsicID() ==
4389                    Intrinsic::experimental_gc_statepoint,
4390            "gc.result operand #1 must be from a statepoint", Call,
4391            Call.getArgOperand(0));
4392 
4393     // Assert that result type matches wrapped callee.
4394     const Value *Target = StatepointCall->getArgOperand(2);
4395     auto *PT = cast<PointerType>(Target->getType());
4396     auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4397     Assert(Call.getType() == TargetFuncType->getReturnType(),
4398            "gc.result result type does not match wrapped callee", Call);
4399     break;
4400   }
4401   case Intrinsic::experimental_gc_relocate: {
4402     Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call);
4403 
4404     Assert(isa<PointerType>(Call.getType()->getScalarType()),
4405            "gc.relocate must return a pointer or a vector of pointers", Call);
4406 
4407     // Check that this relocate is correctly tied to the statepoint
4408 
4409     // This is case for relocate on the unwinding path of an invoke statepoint
4410     if (LandingPadInst *LandingPad =
4411             dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
4412 
4413       const BasicBlock *InvokeBB =
4414           LandingPad->getParent()->getUniquePredecessor();
4415 
4416       // Landingpad relocates should have only one predecessor with invoke
4417       // statepoint terminator
4418       Assert(InvokeBB, "safepoints should have unique landingpads",
4419              LandingPad->getParent());
4420       Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4421              InvokeBB);
4422       Assert(isStatepoint(InvokeBB->getTerminator()),
4423              "gc relocate should be linked to a statepoint", InvokeBB);
4424     } else {
4425       // In all other cases relocate should be tied to the statepoint directly.
4426       // This covers relocates on a normal return path of invoke statepoint and
4427       // relocates of a call statepoint.
4428       auto Token = Call.getArgOperand(0);
4429       Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
4430              "gc relocate is incorrectly tied to the statepoint", Call, Token);
4431     }
4432 
4433     // Verify rest of the relocate arguments.
4434     const CallBase &StatepointCall =
4435         *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint());
4436 
4437     // Both the base and derived must be piped through the safepoint.
4438     Value *Base = Call.getArgOperand(1);
4439     Assert(isa<ConstantInt>(Base),
4440            "gc.relocate operand #2 must be integer offset", Call);
4441 
4442     Value *Derived = Call.getArgOperand(2);
4443     Assert(isa<ConstantInt>(Derived),
4444            "gc.relocate operand #3 must be integer offset", Call);
4445 
4446     const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4447     const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4448     // Check the bounds
4449     Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(),
4450            "gc.relocate: statepoint base index out of bounds", Call);
4451     Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(),
4452            "gc.relocate: statepoint derived index out of bounds", Call);
4453 
4454     // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4455     // section of the statepoint's argument.
4456     Assert(StatepointCall.arg_size() > 0,
4457            "gc.statepoint: insufficient arguments");
4458     Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)),
4459            "gc.statement: number of call arguments must be constant integer");
4460     const unsigned NumCallArgs =
4461         cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue();
4462     Assert(StatepointCall.arg_size() > NumCallArgs + 5,
4463            "gc.statepoint: mismatch in number of call arguments");
4464     Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)),
4465            "gc.statepoint: number of transition arguments must be "
4466            "a constant integer");
4467     const int NumTransitionArgs =
4468         cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5))
4469             ->getZExtValue();
4470     const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4471     Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)),
4472            "gc.statepoint: number of deoptimization arguments must be "
4473            "a constant integer");
4474     const int NumDeoptArgs =
4475         cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart))
4476             ->getZExtValue();
4477     const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4478     const int GCParamArgsEnd = StatepointCall.arg_size();
4479     Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4480            "gc.relocate: statepoint base index doesn't fall within the "
4481            "'gc parameters' section of the statepoint call",
4482            Call);
4483     Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4484            "gc.relocate: statepoint derived index doesn't fall within the "
4485            "'gc parameters' section of the statepoint call",
4486            Call);
4487 
4488     // Relocated value must be either a pointer type or vector-of-pointer type,
4489     // but gc_relocate does not need to return the same pointer type as the
4490     // relocated pointer. It can be casted to the correct type later if it's
4491     // desired. However, they must have the same address space and 'vectorness'
4492     GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
4493     Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
4494            "gc.relocate: relocated value must be a gc pointer", Call);
4495 
4496     auto ResultType = Call.getType();
4497     auto DerivedType = Relocate.getDerivedPtr()->getType();
4498     Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4499            "gc.relocate: vector relocates to vector and pointer to pointer",
4500            Call);
4501     Assert(
4502         ResultType->getPointerAddressSpace() ==
4503             DerivedType->getPointerAddressSpace(),
4504         "gc.relocate: relocating a pointer shouldn't change its address space",
4505         Call);
4506     break;
4507   }
4508   case Intrinsic::eh_exceptioncode:
4509   case Intrinsic::eh_exceptionpointer: {
4510     Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
4511            "eh.exceptionpointer argument must be a catchpad", Call);
4512     break;
4513   }
4514   case Intrinsic::masked_load: {
4515     Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
4516            Call);
4517 
4518     Value *Ptr = Call.getArgOperand(0);
4519     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
4520     Value *Mask = Call.getArgOperand(2);
4521     Value *PassThru = Call.getArgOperand(3);
4522     Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
4523            Call);
4524     Assert(Alignment->getValue().isPowerOf2(),
4525            "masked_load: alignment must be a power of 2", Call);
4526 
4527     // DataTy is the overloaded type
4528     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4529     Assert(DataTy == Call.getType(),
4530            "masked_load: return must match pointer type", Call);
4531     Assert(PassThru->getType() == DataTy,
4532            "masked_load: pass through and data type must match", Call);
4533     Assert(Mask->getType()->getVectorNumElements() ==
4534                DataTy->getVectorNumElements(),
4535            "masked_load: vector mask must be same length as data", Call);
4536     break;
4537   }
4538   case Intrinsic::masked_store: {
4539     Value *Val = Call.getArgOperand(0);
4540     Value *Ptr = Call.getArgOperand(1);
4541     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
4542     Value *Mask = Call.getArgOperand(3);
4543     Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
4544            Call);
4545     Assert(Alignment->getValue().isPowerOf2(),
4546            "masked_store: alignment must be a power of 2", Call);
4547 
4548     // DataTy is the overloaded type
4549     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4550     Assert(DataTy == Val->getType(),
4551            "masked_store: storee must match pointer type", Call);
4552     Assert(Mask->getType()->getVectorNumElements() ==
4553                DataTy->getVectorNumElements(),
4554            "masked_store: vector mask must be same length as data", Call);
4555     break;
4556   }
4557 
4558   case Intrinsic::experimental_guard: {
4559     Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
4560     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4561            "experimental_guard must have exactly one "
4562            "\"deopt\" operand bundle");
4563     break;
4564   }
4565 
4566   case Intrinsic::experimental_deoptimize: {
4567     Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
4568            Call);
4569     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4570            "experimental_deoptimize must have exactly one "
4571            "\"deopt\" operand bundle");
4572     Assert(Call.getType() == Call.getFunction()->getReturnType(),
4573            "experimental_deoptimize return type must match caller return type");
4574 
4575     if (isa<CallInst>(Call)) {
4576       auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
4577       Assert(RI,
4578              "calls to experimental_deoptimize must be followed by a return");
4579 
4580       if (!Call.getType()->isVoidTy() && RI)
4581         Assert(RI->getReturnValue() == &Call,
4582                "calls to experimental_deoptimize must be followed by a return "
4583                "of the value computed by experimental_deoptimize");
4584     }
4585 
4586     break;
4587   }
4588   case Intrinsic::sadd_sat:
4589   case Intrinsic::uadd_sat:
4590   case Intrinsic::ssub_sat:
4591   case Intrinsic::usub_sat: {
4592     Value *Op1 = Call.getArgOperand(0);
4593     Value *Op2 = Call.getArgOperand(1);
4594     Assert(Op1->getType()->isIntOrIntVectorTy(),
4595            "first operand of [us][add|sub]_sat must be an int type or vector "
4596            "of ints");
4597     Assert(Op2->getType()->isIntOrIntVectorTy(),
4598            "second operand of [us][add|sub]_sat must be an int type or vector "
4599            "of ints");
4600     break;
4601   }
4602   case Intrinsic::smul_fix:
4603   case Intrinsic::smul_fix_sat:
4604   case Intrinsic::umul_fix: {
4605     Value *Op1 = Call.getArgOperand(0);
4606     Value *Op2 = Call.getArgOperand(1);
4607     Assert(Op1->getType()->isIntOrIntVectorTy(),
4608            "first operand of [us]mul_fix[_sat] must be an int type or vector "
4609            "of ints");
4610     Assert(Op2->getType()->isIntOrIntVectorTy(),
4611            "second operand of [us]mul_fix_[sat] must be an int type or vector "
4612            "of ints");
4613 
4614     auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
4615     Assert(Op3->getType()->getBitWidth() <= 32,
4616            "third argument of [us]mul_fix[_sat] must fit within 32 bits");
4617 
4618     if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat) {
4619       Assert(
4620           Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
4621           "the scale of smul_fix[_sat] must be less than the width of the operands");
4622     } else {
4623       Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
4624              "the scale of umul_fix[_sat] must be less than or equal to the width of "
4625              "the operands");
4626     }
4627     break;
4628   }
4629   case Intrinsic::lround:
4630   case Intrinsic::llround:
4631   case Intrinsic::lrint:
4632   case Intrinsic::llrint: {
4633     Type *ValTy = Call.getArgOperand(0)->getType();
4634     Type *ResultTy = Call.getType();
4635     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
4636            "Intrinsic does not support vectors", &Call);
4637     break;
4638   }
4639   };
4640 }
4641 
4642 /// Carefully grab the subprogram from a local scope.
4643 ///
4644 /// This carefully grabs the subprogram from a local scope, avoiding the
4645 /// built-in assertions that would typically fire.
4646 static DISubprogram *getSubprogram(Metadata *LocalScope) {
4647   if (!LocalScope)
4648     return nullptr;
4649 
4650   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4651     return SP;
4652 
4653   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4654     return getSubprogram(LB->getRawScope());
4655 
4656   // Just return null; broken scope chains are checked elsewhere.
4657   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4658   return nullptr;
4659 }
4660 
4661 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4662   unsigned NumOperands = FPI.getNumArgOperands();
4663   bool HasExceptionMD = false;
4664   bool HasRoundingMD = false;
4665   switch (FPI.getIntrinsicID()) {
4666   case Intrinsic::experimental_constrained_sqrt:
4667   case Intrinsic::experimental_constrained_sin:
4668   case Intrinsic::experimental_constrained_cos:
4669   case Intrinsic::experimental_constrained_exp:
4670   case Intrinsic::experimental_constrained_exp2:
4671   case Intrinsic::experimental_constrained_log:
4672   case Intrinsic::experimental_constrained_log10:
4673   case Intrinsic::experimental_constrained_log2:
4674   case Intrinsic::experimental_constrained_rint:
4675   case Intrinsic::experimental_constrained_nearbyint:
4676   case Intrinsic::experimental_constrained_ceil:
4677   case Intrinsic::experimental_constrained_floor:
4678   case Intrinsic::experimental_constrained_round:
4679   case Intrinsic::experimental_constrained_trunc:
4680     Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic",
4681            &FPI);
4682     HasExceptionMD = true;
4683     HasRoundingMD = true;
4684     break;
4685 
4686   case Intrinsic::experimental_constrained_fma:
4687     Assert((NumOperands == 5), "invalid arguments for constrained FP intrinsic",
4688            &FPI);
4689     HasExceptionMD = true;
4690     HasRoundingMD = true;
4691     break;
4692 
4693   case Intrinsic::experimental_constrained_fadd:
4694   case Intrinsic::experimental_constrained_fsub:
4695   case Intrinsic::experimental_constrained_fmul:
4696   case Intrinsic::experimental_constrained_fdiv:
4697   case Intrinsic::experimental_constrained_frem:
4698   case Intrinsic::experimental_constrained_pow:
4699   case Intrinsic::experimental_constrained_powi:
4700   case Intrinsic::experimental_constrained_maxnum:
4701   case Intrinsic::experimental_constrained_minnum:
4702     Assert((NumOperands == 4), "invalid arguments for constrained FP intrinsic",
4703            &FPI);
4704     HasExceptionMD = true;
4705     HasRoundingMD = true;
4706     break;
4707 
4708   case Intrinsic::experimental_constrained_fptrunc:
4709   case Intrinsic::experimental_constrained_fpext: {
4710     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
4711       Assert((NumOperands == 3),
4712              "invalid arguments for constrained FP intrinsic", &FPI);
4713       HasRoundingMD = true;
4714     } else {
4715       Assert((NumOperands == 2),
4716              "invalid arguments for constrained FP intrinsic", &FPI);
4717     }
4718     HasExceptionMD = true;
4719 
4720     Value *Operand = FPI.getArgOperand(0);
4721     Type *OperandTy = Operand->getType();
4722     Value *Result = &FPI;
4723     Type *ResultTy = Result->getType();
4724     Assert(OperandTy->isFPOrFPVectorTy(),
4725            "Intrinsic first argument must be FP or FP vector", &FPI);
4726     Assert(ResultTy->isFPOrFPVectorTy(),
4727            "Intrinsic result must be FP or FP vector", &FPI);
4728     Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
4729            "Intrinsic first argument and result disagree on vector use", &FPI);
4730     if (OperandTy->isVectorTy()) {
4731       auto *OperandVecTy = cast<VectorType>(OperandTy);
4732       auto *ResultVecTy = cast<VectorType>(ResultTy);
4733       Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(),
4734              "Intrinsic first argument and result vector lengths must be equal",
4735              &FPI);
4736     }
4737     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
4738       Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
4739              "Intrinsic first argument's type must be larger than result type",
4740              &FPI);
4741     } else {
4742       Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
4743              "Intrinsic first argument's type must be smaller than result type",
4744              &FPI);
4745     }
4746   }
4747     break;
4748 
4749   default:
4750     llvm_unreachable("Invalid constrained FP intrinsic!");
4751   }
4752 
4753   // If a non-metadata argument is passed in a metadata slot then the
4754   // error will be caught earlier when the incorrect argument doesn't
4755   // match the specification in the intrinsic call table. Thus, no
4756   // argument type check is needed here.
4757 
4758   if (HasExceptionMD) {
4759     Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid,
4760            "invalid exception behavior argument", &FPI);
4761   }
4762   if (HasRoundingMD) {
4763     Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid,
4764            "invalid rounding mode argument", &FPI);
4765   }
4766 }
4767 
4768 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
4769   auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4770   AssertDI(isa<ValueAsMetadata>(MD) ||
4771              (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4772          "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4773   AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4774          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4775          DII.getRawVariable());
4776   AssertDI(isa<DIExpression>(DII.getRawExpression()),
4777          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4778          DII.getRawExpression());
4779 
4780   // Ignore broken !dbg attachments; they're checked elsewhere.
4781   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4782     if (!isa<DILocation>(N))
4783       return;
4784 
4785   BasicBlock *BB = DII.getParent();
4786   Function *F = BB ? BB->getParent() : nullptr;
4787 
4788   // The scopes for variables and !dbg attachments must agree.
4789   DILocalVariable *Var = DII.getVariable();
4790   DILocation *Loc = DII.getDebugLoc();
4791   AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4792            &DII, BB, F);
4793 
4794   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4795   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4796   if (!VarSP || !LocSP)
4797     return; // Broken scope chains are checked elsewhere.
4798 
4799   AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4800                                " variable and !dbg attachment",
4801            &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4802            Loc->getScope()->getSubprogram());
4803 
4804   // This check is redundant with one in visitLocalVariable().
4805   AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
4806            Var->getRawType());
4807   if (auto *Type = dyn_cast_or_null<DIType>(Var->getRawType()))
4808     if (Type->isBlockByrefStruct())
4809       AssertDI(DII.getExpression() && DII.getExpression()->getNumElements(),
4810                "BlockByRef variable without complex expression", Var, &DII);
4811 
4812   verifyFnArgs(DII);
4813 }
4814 
4815 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
4816   AssertDI(isa<DILabel>(DLI.getRawLabel()),
4817          "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
4818          DLI.getRawLabel());
4819 
4820   // Ignore broken !dbg attachments; they're checked elsewhere.
4821   if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
4822     if (!isa<DILocation>(N))
4823       return;
4824 
4825   BasicBlock *BB = DLI.getParent();
4826   Function *F = BB ? BB->getParent() : nullptr;
4827 
4828   // The scopes for variables and !dbg attachments must agree.
4829   DILabel *Label = DLI.getLabel();
4830   DILocation *Loc = DLI.getDebugLoc();
4831   Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4832          &DLI, BB, F);
4833 
4834   DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
4835   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4836   if (!LabelSP || !LocSP)
4837     return;
4838 
4839   AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4840                              " label and !dbg attachment",
4841            &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
4842            Loc->getScope()->getSubprogram());
4843 }
4844 
4845 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
4846   DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
4847   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
4848 
4849   // We don't know whether this intrinsic verified correctly.
4850   if (!V || !E || !E->isValid())
4851     return;
4852 
4853   // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4854   auto Fragment = E->getFragmentInfo();
4855   if (!Fragment)
4856     return;
4857 
4858   // The frontend helps out GDB by emitting the members of local anonymous
4859   // unions as artificial local variables with shared storage. When SROA splits
4860   // the storage for artificial local variables that are smaller than the entire
4861   // union, the overhang piece will be outside of the allotted space for the
4862   // variable and this check fails.
4863   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4864   if (V->isArtificial())
4865     return;
4866 
4867   verifyFragmentExpression(*V, *Fragment, &I);
4868 }
4869 
4870 template <typename ValueOrMetadata>
4871 void Verifier::verifyFragmentExpression(const DIVariable &V,
4872                                         DIExpression::FragmentInfo Fragment,
4873                                         ValueOrMetadata *Desc) {
4874   // If there's no size, the type is broken, but that should be checked
4875   // elsewhere.
4876   auto VarSize = V.getSizeInBits();
4877   if (!VarSize)
4878     return;
4879 
4880   unsigned FragSize = Fragment.SizeInBits;
4881   unsigned FragOffset = Fragment.OffsetInBits;
4882   AssertDI(FragSize + FragOffset <= *VarSize,
4883          "fragment is larger than or outside of variable", Desc, &V);
4884   AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
4885 }
4886 
4887 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
4888   // This function does not take the scope of noninlined function arguments into
4889   // account. Don't run it if current function is nodebug, because it may
4890   // contain inlined debug intrinsics.
4891   if (!HasDebugInfo)
4892     return;
4893 
4894   // For performance reasons only check non-inlined ones.
4895   if (I.getDebugLoc()->getInlinedAt())
4896     return;
4897 
4898   DILocalVariable *Var = I.getVariable();
4899   AssertDI(Var, "dbg intrinsic without variable");
4900 
4901   unsigned ArgNo = Var->getArg();
4902   if (!ArgNo)
4903     return;
4904 
4905   // Verify there are no duplicate function argument debug info entries.
4906   // These will cause hard-to-debug assertions in the DWARF backend.
4907   if (DebugFnArgs.size() < ArgNo)
4908     DebugFnArgs.resize(ArgNo, nullptr);
4909 
4910   auto *Prev = DebugFnArgs[ArgNo - 1];
4911   DebugFnArgs[ArgNo - 1] = Var;
4912   AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
4913            Prev, Var);
4914 }
4915 
4916 void Verifier::verifyCompileUnits() {
4917   // When more than one Module is imported into the same context, such as during
4918   // an LTO build before linking the modules, ODR type uniquing may cause types
4919   // to point to a different CU. This check does not make sense in this case.
4920   if (M.getContext().isODRUniquingDebugTypes())
4921     return;
4922   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4923   SmallPtrSet<const Metadata *, 2> Listed;
4924   if (CUs)
4925     Listed.insert(CUs->op_begin(), CUs->op_end());
4926   for (auto *CU : CUVisited)
4927     AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
4928   CUVisited.clear();
4929 }
4930 
4931 void Verifier::verifyDeoptimizeCallingConvs() {
4932   if (DeoptimizeDeclarations.empty())
4933     return;
4934 
4935   const Function *First = DeoptimizeDeclarations[0];
4936   for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4937     Assert(First->getCallingConv() == F->getCallingConv(),
4938            "All llvm.experimental.deoptimize declarations must have the same "
4939            "calling convention",
4940            First, F);
4941   }
4942 }
4943 
4944 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
4945   bool HasSource = F.getSource().hasValue();
4946   if (!HasSourceDebugInfo.count(&U))
4947     HasSourceDebugInfo[&U] = HasSource;
4948   AssertDI(HasSource == HasSourceDebugInfo[&U],
4949            "inconsistent use of embedded source");
4950 }
4951 
4952 //===----------------------------------------------------------------------===//
4953 //  Implement the public interfaces to this file...
4954 //===----------------------------------------------------------------------===//
4955 
4956 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4957   Function &F = const_cast<Function &>(f);
4958 
4959   // Don't use a raw_null_ostream.  Printing IR is expensive.
4960   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4961 
4962   // Note that this function's return value is inverted from what you would
4963   // expect of a function called "verify".
4964   return !V.verify(F);
4965 }
4966 
4967 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
4968                         bool *BrokenDebugInfo) {
4969   // Don't use a raw_null_ostream.  Printing IR is expensive.
4970   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4971 
4972   bool Broken = false;
4973   for (const Function &F : M)
4974     Broken |= !V.verify(F);
4975 
4976   Broken |= !V.verify();
4977   if (BrokenDebugInfo)
4978     *BrokenDebugInfo = V.hasBrokenDebugInfo();
4979   // Note that this function's return value is inverted from what you would
4980   // expect of a function called "verify".
4981   return Broken;
4982 }
4983 
4984 namespace {
4985 
4986 struct VerifierLegacyPass : public FunctionPass {
4987   static char ID;
4988 
4989   std::unique_ptr<Verifier> V;
4990   bool FatalErrors = true;
4991 
4992   VerifierLegacyPass() : FunctionPass(ID) {
4993     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4994   }
4995   explicit VerifierLegacyPass(bool FatalErrors)
4996       : FunctionPass(ID),
4997         FatalErrors(FatalErrors) {
4998     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4999   }
5000 
5001   bool doInitialization(Module &M) override {
5002     V = llvm::make_unique<Verifier>(
5003         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
5004     return false;
5005   }
5006 
5007   bool runOnFunction(Function &F) override {
5008     if (!V->verify(F) && FatalErrors) {
5009       errs() << "in function " << F.getName() << '\n';
5010       report_fatal_error("Broken function found, compilation aborted!");
5011     }
5012     return false;
5013   }
5014 
5015   bool doFinalization(Module &M) override {
5016     bool HasErrors = false;
5017     for (Function &F : M)
5018       if (F.isDeclaration())
5019         HasErrors |= !V->verify(F);
5020 
5021     HasErrors |= !V->verify();
5022     if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
5023       report_fatal_error("Broken module found, compilation aborted!");
5024     return false;
5025   }
5026 
5027   void getAnalysisUsage(AnalysisUsage &AU) const override {
5028     AU.setPreservesAll();
5029   }
5030 };
5031 
5032 } // end anonymous namespace
5033 
5034 /// Helper to issue failure from the TBAA verification
5035 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
5036   if (Diagnostic)
5037     return Diagnostic->CheckFailed(Args...);
5038 }
5039 
5040 #define AssertTBAA(C, ...)                                                     \
5041   do {                                                                         \
5042     if (!(C)) {                                                                \
5043       CheckFailed(__VA_ARGS__);                                                \
5044       return false;                                                            \
5045     }                                                                          \
5046   } while (false)
5047 
5048 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
5049 /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
5050 /// struct-type node describing an aggregate data structure (like a struct).
5051 TBAAVerifier::TBAABaseNodeSummary
5052 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
5053                                  bool IsNewFormat) {
5054   if (BaseNode->getNumOperands() < 2) {
5055     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
5056     return {true, ~0u};
5057   }
5058 
5059   auto Itr = TBAABaseNodes.find(BaseNode);
5060   if (Itr != TBAABaseNodes.end())
5061     return Itr->second;
5062 
5063   auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
5064   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
5065   (void)InsertResult;
5066   assert(InsertResult.second && "We just checked!");
5067   return Result;
5068 }
5069 
5070 TBAAVerifier::TBAABaseNodeSummary
5071 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
5072                                      bool IsNewFormat) {
5073   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
5074 
5075   if (BaseNode->getNumOperands() == 2) {
5076     // Scalar nodes can only be accessed at offset 0.
5077     return isValidScalarTBAANode(BaseNode)
5078                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
5079                : InvalidNode;
5080   }
5081 
5082   if (IsNewFormat) {
5083     if (BaseNode->getNumOperands() % 3 != 0) {
5084       CheckFailed("Access tag nodes must have the number of operands that is a "
5085                   "multiple of 3!", BaseNode);
5086       return InvalidNode;
5087     }
5088   } else {
5089     if (BaseNode->getNumOperands() % 2 != 1) {
5090       CheckFailed("Struct tag nodes must have an odd number of operands!",
5091                   BaseNode);
5092       return InvalidNode;
5093     }
5094   }
5095 
5096   // Check the type size field.
5097   if (IsNewFormat) {
5098     auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5099         BaseNode->getOperand(1));
5100     if (!TypeSizeNode) {
5101       CheckFailed("Type size nodes must be constants!", &I, BaseNode);
5102       return InvalidNode;
5103     }
5104   }
5105 
5106   // Check the type name field. In the new format it can be anything.
5107   if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
5108     CheckFailed("Struct tag nodes have a string as their first operand",
5109                 BaseNode);
5110     return InvalidNode;
5111   }
5112 
5113   bool Failed = false;
5114 
5115   Optional<APInt> PrevOffset;
5116   unsigned BitWidth = ~0u;
5117 
5118   // We've already checked that BaseNode is not a degenerate root node with one
5119   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
5120   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5121   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5122   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5123            Idx += NumOpsPerField) {
5124     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
5125     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
5126     if (!isa<MDNode>(FieldTy)) {
5127       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
5128       Failed = true;
5129       continue;
5130     }
5131 
5132     auto *OffsetEntryCI =
5133         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
5134     if (!OffsetEntryCI) {
5135       CheckFailed("Offset entries must be constants!", &I, BaseNode);
5136       Failed = true;
5137       continue;
5138     }
5139 
5140     if (BitWidth == ~0u)
5141       BitWidth = OffsetEntryCI->getBitWidth();
5142 
5143     if (OffsetEntryCI->getBitWidth() != BitWidth) {
5144       CheckFailed(
5145           "Bitwidth between the offsets and struct type entries must match", &I,
5146           BaseNode);
5147       Failed = true;
5148       continue;
5149     }
5150 
5151     // NB! As far as I can tell, we generate a non-strictly increasing offset
5152     // sequence only from structs that have zero size bit fields.  When
5153     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
5154     // pick the field lexically the latest in struct type metadata node.  This
5155     // mirrors the actual behavior of the alias analysis implementation.
5156     bool IsAscending =
5157         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
5158 
5159     if (!IsAscending) {
5160       CheckFailed("Offsets must be increasing!", &I, BaseNode);
5161       Failed = true;
5162     }
5163 
5164     PrevOffset = OffsetEntryCI->getValue();
5165 
5166     if (IsNewFormat) {
5167       auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5168           BaseNode->getOperand(Idx + 2));
5169       if (!MemberSizeNode) {
5170         CheckFailed("Member size entries must be constants!", &I, BaseNode);
5171         Failed = true;
5172         continue;
5173       }
5174     }
5175   }
5176 
5177   return Failed ? InvalidNode
5178                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
5179 }
5180 
5181 static bool IsRootTBAANode(const MDNode *MD) {
5182   return MD->getNumOperands() < 2;
5183 }
5184 
5185 static bool IsScalarTBAANodeImpl(const MDNode *MD,
5186                                  SmallPtrSetImpl<const MDNode *> &Visited) {
5187   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
5188     return false;
5189 
5190   if (!isa<MDString>(MD->getOperand(0)))
5191     return false;
5192 
5193   if (MD->getNumOperands() == 3) {
5194     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
5195     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
5196       return false;
5197   }
5198 
5199   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5200   return Parent && Visited.insert(Parent).second &&
5201          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
5202 }
5203 
5204 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
5205   auto ResultIt = TBAAScalarNodes.find(MD);
5206   if (ResultIt != TBAAScalarNodes.end())
5207     return ResultIt->second;
5208 
5209   SmallPtrSet<const MDNode *, 4> Visited;
5210   bool Result = IsScalarTBAANodeImpl(MD, Visited);
5211   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
5212   (void)InsertResult;
5213   assert(InsertResult.second && "Just checked!");
5214 
5215   return Result;
5216 }
5217 
5218 /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
5219 /// Offset in place to be the offset within the field node returned.
5220 ///
5221 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
5222 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
5223                                                    const MDNode *BaseNode,
5224                                                    APInt &Offset,
5225                                                    bool IsNewFormat) {
5226   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
5227 
5228   // Scalar nodes have only one possible "field" -- their parent in the access
5229   // hierarchy.  Offset must be zero at this point, but our caller is supposed
5230   // to Assert that.
5231   if (BaseNode->getNumOperands() == 2)
5232     return cast<MDNode>(BaseNode->getOperand(1));
5233 
5234   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5235   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5236   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5237            Idx += NumOpsPerField) {
5238     auto *OffsetEntryCI =
5239         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
5240     if (OffsetEntryCI->getValue().ugt(Offset)) {
5241       if (Idx == FirstFieldOpNo) {
5242         CheckFailed("Could not find TBAA parent in struct type node", &I,
5243                     BaseNode, &Offset);
5244         return nullptr;
5245       }
5246 
5247       unsigned PrevIdx = Idx - NumOpsPerField;
5248       auto *PrevOffsetEntryCI =
5249           mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
5250       Offset -= PrevOffsetEntryCI->getValue();
5251       return cast<MDNode>(BaseNode->getOperand(PrevIdx));
5252     }
5253   }
5254 
5255   unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
5256   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
5257       BaseNode->getOperand(LastIdx + 1));
5258   Offset -= LastOffsetEntryCI->getValue();
5259   return cast<MDNode>(BaseNode->getOperand(LastIdx));
5260 }
5261 
5262 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
5263   if (!Type || Type->getNumOperands() < 3)
5264     return false;
5265 
5266   // In the new format type nodes shall have a reference to the parent type as
5267   // its first operand.
5268   MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
5269   if (!Parent)
5270     return false;
5271 
5272   return true;
5273 }
5274 
5275 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
5276   AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
5277                  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
5278                  isa<AtomicCmpXchgInst>(I),
5279              "This instruction shall not have a TBAA access tag!", &I);
5280 
5281   bool IsStructPathTBAA =
5282       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
5283 
5284   AssertTBAA(
5285       IsStructPathTBAA,
5286       "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
5287 
5288   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
5289   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5290 
5291   bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
5292 
5293   if (IsNewFormat) {
5294     AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
5295                "Access tag metadata must have either 4 or 5 operands", &I, MD);
5296   } else {
5297     AssertTBAA(MD->getNumOperands() < 5,
5298                "Struct tag metadata must have either 3 or 4 operands", &I, MD);
5299   }
5300 
5301   // Check the access size field.
5302   if (IsNewFormat) {
5303     auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5304         MD->getOperand(3));
5305     AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
5306   }
5307 
5308   // Check the immutability flag.
5309   unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
5310   if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
5311     auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
5312         MD->getOperand(ImmutabilityFlagOpNo));
5313     AssertTBAA(IsImmutableCI,
5314                "Immutability tag on struct tag metadata must be a constant",
5315                &I, MD);
5316     AssertTBAA(
5317         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
5318         "Immutability part of the struct tag metadata must be either 0 or 1",
5319         &I, MD);
5320   }
5321 
5322   AssertTBAA(BaseNode && AccessType,
5323              "Malformed struct tag metadata: base and access-type "
5324              "should be non-null and point to Metadata nodes",
5325              &I, MD, BaseNode, AccessType);
5326 
5327   if (!IsNewFormat) {
5328     AssertTBAA(isValidScalarTBAANode(AccessType),
5329                "Access type node must be a valid scalar type", &I, MD,
5330                AccessType);
5331   }
5332 
5333   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
5334   AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
5335 
5336   APInt Offset = OffsetCI->getValue();
5337   bool SeenAccessTypeInPath = false;
5338 
5339   SmallPtrSet<MDNode *, 4> StructPath;
5340 
5341   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
5342        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
5343                                                IsNewFormat)) {
5344     if (!StructPath.insert(BaseNode).second) {
5345       CheckFailed("Cycle detected in struct path", &I, MD);
5346       return false;
5347     }
5348 
5349     bool Invalid;
5350     unsigned BaseNodeBitWidth;
5351     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
5352                                                              IsNewFormat);
5353 
5354     // If the base node is invalid in itself, then we've already printed all the
5355     // errors we wanted to print.
5356     if (Invalid)
5357       return false;
5358 
5359     SeenAccessTypeInPath |= BaseNode == AccessType;
5360 
5361     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
5362       AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
5363                  &I, MD, &Offset);
5364 
5365     AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
5366                    (BaseNodeBitWidth == 0 && Offset == 0) ||
5367                    (IsNewFormat && BaseNodeBitWidth == ~0u),
5368                "Access bit-width not the same as description bit-width", &I, MD,
5369                BaseNodeBitWidth, Offset.getBitWidth());
5370 
5371     if (IsNewFormat && SeenAccessTypeInPath)
5372       break;
5373   }
5374 
5375   AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
5376              &I, MD);
5377   return true;
5378 }
5379 
5380 char VerifierLegacyPass::ID = 0;
5381 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
5382 
5383 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
5384   return new VerifierLegacyPass(FatalErrors);
5385 }
5386 
5387 AnalysisKey VerifierAnalysis::Key;
5388 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
5389                                                ModuleAnalysisManager &) {
5390   Result Res;
5391   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
5392   return Res;
5393 }
5394 
5395 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
5396                                                FunctionAnalysisManager &) {
5397   return { llvm::verifyFunction(F, &dbgs()), false };
5398 }
5399 
5400 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
5401   auto Res = AM.getResult<VerifierAnalysis>(M);
5402   if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
5403     report_fatal_error("Broken module found, compilation aborted!");
5404 
5405   return PreservedAnalyses::all();
5406 }
5407 
5408 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
5409   auto res = AM.getResult<VerifierAnalysis>(F);
5410   if (res.IRBroken && FatalErrors)
5411     report_fatal_error("Broken function found, compilation aborted!");
5412 
5413   return PreservedAnalyses::all();
5414 }
5415