1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // sanity checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/ADT/ilist.h" 62 #include "llvm/BinaryFormat/Dwarf.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstVisitor.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/LLVMContext.h" 90 #include "llvm/IR/Metadata.h" 91 #include "llvm/IR/Module.h" 92 #include "llvm/IR/ModuleSlotTracker.h" 93 #include "llvm/IR/PassManager.h" 94 #include "llvm/IR/Statepoint.h" 95 #include "llvm/IR/Type.h" 96 #include "llvm/IR/Use.h" 97 #include "llvm/IR/User.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/Pass.h" 100 #include "llvm/Support/AtomicOrdering.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MathExtras.h" 106 #include "llvm/Support/raw_ostream.h" 107 #include <algorithm> 108 #include <cassert> 109 #include <cstdint> 110 #include <memory> 111 #include <string> 112 #include <utility> 113 114 using namespace llvm; 115 116 namespace llvm { 117 118 struct VerifierSupport { 119 raw_ostream *OS; 120 const Module &M; 121 ModuleSlotTracker MST; 122 const DataLayout &DL; 123 LLVMContext &Context; 124 125 /// Track the brokenness of the module while recursively visiting. 126 bool Broken = false; 127 /// Broken debug info can be "recovered" from by stripping the debug info. 128 bool BrokenDebugInfo = false; 129 /// Whether to treat broken debug info as an error. 130 bool TreatBrokenDebugInfoAsError = true; 131 132 explicit VerifierSupport(raw_ostream *OS, const Module &M) 133 : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {} 134 135 private: 136 void Write(const Module *M) { 137 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 138 } 139 140 void Write(const Value *V) { 141 if (V) 142 Write(*V); 143 } 144 145 void Write(const Value &V) { 146 if (isa<Instruction>(V)) { 147 V.print(*OS, MST); 148 *OS << '\n'; 149 } else { 150 V.printAsOperand(*OS, true, MST); 151 *OS << '\n'; 152 } 153 } 154 155 void Write(const Metadata *MD) { 156 if (!MD) 157 return; 158 MD->print(*OS, MST, &M); 159 *OS << '\n'; 160 } 161 162 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 163 Write(MD.get()); 164 } 165 166 void Write(const NamedMDNode *NMD) { 167 if (!NMD) 168 return; 169 NMD->print(*OS, MST); 170 *OS << '\n'; 171 } 172 173 void Write(Type *T) { 174 if (!T) 175 return; 176 *OS << ' ' << *T; 177 } 178 179 void Write(const Comdat *C) { 180 if (!C) 181 return; 182 *OS << *C; 183 } 184 185 void Write(const APInt *AI) { 186 if (!AI) 187 return; 188 *OS << *AI << '\n'; 189 } 190 191 void Write(const unsigned i) { *OS << i << '\n'; } 192 193 template <typename T> void Write(ArrayRef<T> Vs) { 194 for (const T &V : Vs) 195 Write(V); 196 } 197 198 template <typename T1, typename... Ts> 199 void WriteTs(const T1 &V1, const Ts &... Vs) { 200 Write(V1); 201 WriteTs(Vs...); 202 } 203 204 template <typename... Ts> void WriteTs() {} 205 206 public: 207 /// A check failed, so printout out the condition and the message. 208 /// 209 /// This provides a nice place to put a breakpoint if you want to see why 210 /// something is not correct. 211 void CheckFailed(const Twine &Message) { 212 if (OS) 213 *OS << Message << '\n'; 214 Broken = true; 215 } 216 217 /// A check failed (with values to print). 218 /// 219 /// This calls the Message-only version so that the above is easier to set a 220 /// breakpoint on. 221 template <typename T1, typename... Ts> 222 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 223 CheckFailed(Message); 224 if (OS) 225 WriteTs(V1, Vs...); 226 } 227 228 /// A debug info check failed. 229 void DebugInfoCheckFailed(const Twine &Message) { 230 if (OS) 231 *OS << Message << '\n'; 232 Broken |= TreatBrokenDebugInfoAsError; 233 BrokenDebugInfo = true; 234 } 235 236 /// A debug info check failed (with values to print). 237 template <typename T1, typename... Ts> 238 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 239 const Ts &... Vs) { 240 DebugInfoCheckFailed(Message); 241 if (OS) 242 WriteTs(V1, Vs...); 243 } 244 }; 245 246 } // namespace llvm 247 248 namespace { 249 250 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 251 friend class InstVisitor<Verifier>; 252 253 DominatorTree DT; 254 255 /// When verifying a basic block, keep track of all of the 256 /// instructions we have seen so far. 257 /// 258 /// This allows us to do efficient dominance checks for the case when an 259 /// instruction has an operand that is an instruction in the same block. 260 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 261 262 /// Keep track of the metadata nodes that have been checked already. 263 SmallPtrSet<const Metadata *, 32> MDNodes; 264 265 /// Keep track which DISubprogram is attached to which function. 266 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 267 268 /// Track all DICompileUnits visited. 269 SmallPtrSet<const Metadata *, 2> CUVisited; 270 271 /// The result type for a landingpad. 272 Type *LandingPadResultTy; 273 274 /// Whether we've seen a call to @llvm.localescape in this function 275 /// already. 276 bool SawFrameEscape; 277 278 /// Whether the current function has a DISubprogram attached to it. 279 bool HasDebugInfo = false; 280 281 /// Whether source was present on the first DIFile encountered in each CU. 282 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 283 284 /// Stores the count of how many objects were passed to llvm.localescape for a 285 /// given function and the largest index passed to llvm.localrecover. 286 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 287 288 // Maps catchswitches and cleanuppads that unwind to siblings to the 289 // terminators that indicate the unwind, used to detect cycles therein. 290 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 291 292 /// Cache of constants visited in search of ConstantExprs. 293 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 294 295 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 296 SmallVector<const Function *, 4> DeoptimizeDeclarations; 297 298 // Verify that this GlobalValue is only used in this module. 299 // This map is used to avoid visiting uses twice. We can arrive at a user 300 // twice, if they have multiple operands. In particular for very large 301 // constant expressions, we can arrive at a particular user many times. 302 SmallPtrSet<const Value *, 32> GlobalValueVisited; 303 304 // Keeps track of duplicate function argument debug info. 305 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 306 307 TBAAVerifier TBAAVerifyHelper; 308 309 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 310 311 public: 312 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 313 const Module &M) 314 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 315 SawFrameEscape(false), TBAAVerifyHelper(this) { 316 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 317 } 318 319 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 320 321 bool verify(const Function &F) { 322 assert(F.getParent() == &M && 323 "An instance of this class only works with a specific module!"); 324 325 // First ensure the function is well-enough formed to compute dominance 326 // information, and directly compute a dominance tree. We don't rely on the 327 // pass manager to provide this as it isolates us from a potentially 328 // out-of-date dominator tree and makes it significantly more complex to run 329 // this code outside of a pass manager. 330 // FIXME: It's really gross that we have to cast away constness here. 331 if (!F.empty()) 332 DT.recalculate(const_cast<Function &>(F)); 333 334 for (const BasicBlock &BB : F) { 335 if (!BB.empty() && BB.back().isTerminator()) 336 continue; 337 338 if (OS) { 339 *OS << "Basic Block in function '" << F.getName() 340 << "' does not have terminator!\n"; 341 BB.printAsOperand(*OS, true, MST); 342 *OS << "\n"; 343 } 344 return false; 345 } 346 347 Broken = false; 348 // FIXME: We strip const here because the inst visitor strips const. 349 visit(const_cast<Function &>(F)); 350 verifySiblingFuncletUnwinds(); 351 InstsInThisBlock.clear(); 352 DebugFnArgs.clear(); 353 LandingPadResultTy = nullptr; 354 SawFrameEscape = false; 355 SiblingFuncletInfo.clear(); 356 357 return !Broken; 358 } 359 360 /// Verify the module that this instance of \c Verifier was initialized with. 361 bool verify() { 362 Broken = false; 363 364 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 365 for (const Function &F : M) 366 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 367 DeoptimizeDeclarations.push_back(&F); 368 369 // Now that we've visited every function, verify that we never asked to 370 // recover a frame index that wasn't escaped. 371 verifyFrameRecoverIndices(); 372 for (const GlobalVariable &GV : M.globals()) 373 visitGlobalVariable(GV); 374 375 for (const GlobalAlias &GA : M.aliases()) 376 visitGlobalAlias(GA); 377 378 for (const NamedMDNode &NMD : M.named_metadata()) 379 visitNamedMDNode(NMD); 380 381 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 382 visitComdat(SMEC.getValue()); 383 384 visitModuleFlags(M); 385 visitModuleIdents(M); 386 visitModuleCommandLines(M); 387 388 verifyCompileUnits(); 389 390 verifyDeoptimizeCallingConvs(); 391 DISubprogramAttachments.clear(); 392 return !Broken; 393 } 394 395 private: 396 // Verification methods... 397 void visitGlobalValue(const GlobalValue &GV); 398 void visitGlobalVariable(const GlobalVariable &GV); 399 void visitGlobalAlias(const GlobalAlias &GA); 400 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 401 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 402 const GlobalAlias &A, const Constant &C); 403 void visitNamedMDNode(const NamedMDNode &NMD); 404 void visitMDNode(const MDNode &MD); 405 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 406 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 407 void visitComdat(const Comdat &C); 408 void visitModuleIdents(const Module &M); 409 void visitModuleCommandLines(const Module &M); 410 void visitModuleFlags(const Module &M); 411 void visitModuleFlag(const MDNode *Op, 412 DenseMap<const MDString *, const MDNode *> &SeenIDs, 413 SmallVectorImpl<const MDNode *> &Requirements); 414 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 415 void visitFunction(const Function &F); 416 void visitBasicBlock(BasicBlock &BB); 417 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 418 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 419 420 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 421 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 422 #include "llvm/IR/Metadata.def" 423 void visitDIScope(const DIScope &N); 424 void visitDIVariable(const DIVariable &N); 425 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 426 void visitDITemplateParameter(const DITemplateParameter &N); 427 428 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 429 430 // InstVisitor overrides... 431 using InstVisitor<Verifier>::visit; 432 void visit(Instruction &I); 433 434 void visitTruncInst(TruncInst &I); 435 void visitZExtInst(ZExtInst &I); 436 void visitSExtInst(SExtInst &I); 437 void visitFPTruncInst(FPTruncInst &I); 438 void visitFPExtInst(FPExtInst &I); 439 void visitFPToUIInst(FPToUIInst &I); 440 void visitFPToSIInst(FPToSIInst &I); 441 void visitUIToFPInst(UIToFPInst &I); 442 void visitSIToFPInst(SIToFPInst &I); 443 void visitIntToPtrInst(IntToPtrInst &I); 444 void visitPtrToIntInst(PtrToIntInst &I); 445 void visitBitCastInst(BitCastInst &I); 446 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 447 void visitPHINode(PHINode &PN); 448 void visitCallBase(CallBase &Call); 449 void visitUnaryOperator(UnaryOperator &U); 450 void visitBinaryOperator(BinaryOperator &B); 451 void visitICmpInst(ICmpInst &IC); 452 void visitFCmpInst(FCmpInst &FC); 453 void visitExtractElementInst(ExtractElementInst &EI); 454 void visitInsertElementInst(InsertElementInst &EI); 455 void visitShuffleVectorInst(ShuffleVectorInst &EI); 456 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 457 void visitCallInst(CallInst &CI); 458 void visitInvokeInst(InvokeInst &II); 459 void visitGetElementPtrInst(GetElementPtrInst &GEP); 460 void visitLoadInst(LoadInst &LI); 461 void visitStoreInst(StoreInst &SI); 462 void verifyDominatesUse(Instruction &I, unsigned i); 463 void visitInstruction(Instruction &I); 464 void visitTerminator(Instruction &I); 465 void visitBranchInst(BranchInst &BI); 466 void visitReturnInst(ReturnInst &RI); 467 void visitSwitchInst(SwitchInst &SI); 468 void visitIndirectBrInst(IndirectBrInst &BI); 469 void visitCallBrInst(CallBrInst &CBI); 470 void visitSelectInst(SelectInst &SI); 471 void visitUserOp1(Instruction &I); 472 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 473 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 474 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 475 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 476 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 477 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 478 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 479 void visitFenceInst(FenceInst &FI); 480 void visitAllocaInst(AllocaInst &AI); 481 void visitExtractValueInst(ExtractValueInst &EVI); 482 void visitInsertValueInst(InsertValueInst &IVI); 483 void visitEHPadPredecessors(Instruction &I); 484 void visitLandingPadInst(LandingPadInst &LPI); 485 void visitResumeInst(ResumeInst &RI); 486 void visitCatchPadInst(CatchPadInst &CPI); 487 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 488 void visitCleanupPadInst(CleanupPadInst &CPI); 489 void visitFuncletPadInst(FuncletPadInst &FPI); 490 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 491 void visitCleanupReturnInst(CleanupReturnInst &CRI); 492 493 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 494 void verifySwiftErrorValue(const Value *SwiftErrorVal); 495 void verifyMustTailCall(CallInst &CI); 496 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, 497 unsigned ArgNo, std::string &Suffix); 498 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 499 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 500 const Value *V); 501 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 502 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 503 const Value *V, bool IsIntrinsic); 504 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 505 506 void visitConstantExprsRecursively(const Constant *EntryC); 507 void visitConstantExpr(const ConstantExpr *CE); 508 void verifyStatepoint(const CallBase &Call); 509 void verifyFrameRecoverIndices(); 510 void verifySiblingFuncletUnwinds(); 511 512 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 513 template <typename ValueOrMetadata> 514 void verifyFragmentExpression(const DIVariable &V, 515 DIExpression::FragmentInfo Fragment, 516 ValueOrMetadata *Desc); 517 void verifyFnArgs(const DbgVariableIntrinsic &I); 518 519 /// Module-level debug info verification... 520 void verifyCompileUnits(); 521 522 /// Module-level verification that all @llvm.experimental.deoptimize 523 /// declarations share the same calling convention. 524 void verifyDeoptimizeCallingConvs(); 525 526 /// Verify all-or-nothing property of DIFile source attribute within a CU. 527 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 528 }; 529 530 } // end anonymous namespace 531 532 /// We know that cond should be true, if not print an error message. 533 #define Assert(C, ...) \ 534 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 535 536 /// We know that a debug info condition should be true, if not print 537 /// an error message. 538 #define AssertDI(C, ...) \ 539 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 540 541 void Verifier::visit(Instruction &I) { 542 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 543 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 544 InstVisitor<Verifier>::visit(I); 545 } 546 547 // Helper to recursively iterate over indirect users. By 548 // returning false, the callback can ask to stop recursing 549 // further. 550 static void forEachUser(const Value *User, 551 SmallPtrSet<const Value *, 32> &Visited, 552 llvm::function_ref<bool(const Value *)> Callback) { 553 if (!Visited.insert(User).second) 554 return; 555 for (const Value *TheNextUser : User->materialized_users()) 556 if (Callback(TheNextUser)) 557 forEachUser(TheNextUser, Visited, Callback); 558 } 559 560 void Verifier::visitGlobalValue(const GlobalValue &GV) { 561 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 562 "Global is external, but doesn't have external or weak linkage!", &GV); 563 564 Assert(GV.getAlignment() <= Value::MaximumAlignment, 565 "huge alignment values are unsupported", &GV); 566 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 567 "Only global variables can have appending linkage!", &GV); 568 569 if (GV.hasAppendingLinkage()) { 570 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 571 Assert(GVar && GVar->getValueType()->isArrayTy(), 572 "Only global arrays can have appending linkage!", GVar); 573 } 574 575 if (GV.isDeclarationForLinker()) 576 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 577 578 if (GV.hasDLLImportStorageClass()) { 579 Assert(!GV.isDSOLocal(), 580 "GlobalValue with DLLImport Storage is dso_local!", &GV); 581 582 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) || 583 GV.hasAvailableExternallyLinkage(), 584 "Global is marked as dllimport, but not external", &GV); 585 } 586 587 if (GV.hasLocalLinkage()) 588 Assert(GV.isDSOLocal(), 589 "GlobalValue with private or internal linkage must be dso_local!", 590 &GV); 591 592 if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage()) 593 Assert(GV.isDSOLocal(), 594 "GlobalValue with non default visibility must be dso_local!", &GV); 595 596 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 597 if (const Instruction *I = dyn_cast<Instruction>(V)) { 598 if (!I->getParent() || !I->getParent()->getParent()) 599 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 600 I); 601 else if (I->getParent()->getParent()->getParent() != &M) 602 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 603 I->getParent()->getParent(), 604 I->getParent()->getParent()->getParent()); 605 return false; 606 } else if (const Function *F = dyn_cast<Function>(V)) { 607 if (F->getParent() != &M) 608 CheckFailed("Global is used by function in a different module", &GV, &M, 609 F, F->getParent()); 610 return false; 611 } 612 return true; 613 }); 614 } 615 616 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 617 if (GV.hasInitializer()) { 618 Assert(GV.getInitializer()->getType() == GV.getValueType(), 619 "Global variable initializer type does not match global " 620 "variable type!", 621 &GV); 622 // If the global has common linkage, it must have a zero initializer and 623 // cannot be constant. 624 if (GV.hasCommonLinkage()) { 625 Assert(GV.getInitializer()->isNullValue(), 626 "'common' global must have a zero initializer!", &GV); 627 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 628 &GV); 629 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 630 } 631 } 632 633 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 634 GV.getName() == "llvm.global_dtors")) { 635 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 636 "invalid linkage for intrinsic global variable", &GV); 637 // Don't worry about emitting an error for it not being an array, 638 // visitGlobalValue will complain on appending non-array. 639 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 640 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 641 PointerType *FuncPtrTy = 642 FunctionType::get(Type::getVoidTy(Context), false)-> 643 getPointerTo(DL.getProgramAddressSpace()); 644 Assert(STy && 645 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 646 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 647 STy->getTypeAtIndex(1) == FuncPtrTy, 648 "wrong type for intrinsic global variable", &GV); 649 Assert(STy->getNumElements() == 3, 650 "the third field of the element type is mandatory, " 651 "specify i8* null to migrate from the obsoleted 2-field form"); 652 Type *ETy = STy->getTypeAtIndex(2); 653 Assert(ETy->isPointerTy() && 654 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 655 "wrong type for intrinsic global variable", &GV); 656 } 657 } 658 659 if (GV.hasName() && (GV.getName() == "llvm.used" || 660 GV.getName() == "llvm.compiler.used")) { 661 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 662 "invalid linkage for intrinsic global variable", &GV); 663 Type *GVType = GV.getValueType(); 664 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 665 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 666 Assert(PTy, "wrong type for intrinsic global variable", &GV); 667 if (GV.hasInitializer()) { 668 const Constant *Init = GV.getInitializer(); 669 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 670 Assert(InitArray, "wrong initalizer for intrinsic global variable", 671 Init); 672 for (Value *Op : InitArray->operands()) { 673 Value *V = Op->stripPointerCastsNoFollowAliases(); 674 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 675 isa<GlobalAlias>(V), 676 "invalid llvm.used member", V); 677 Assert(V->hasName(), "members of llvm.used must be named", V); 678 } 679 } 680 } 681 } 682 683 // Visit any debug info attachments. 684 SmallVector<MDNode *, 1> MDs; 685 GV.getMetadata(LLVMContext::MD_dbg, MDs); 686 for (auto *MD : MDs) { 687 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 688 visitDIGlobalVariableExpression(*GVE); 689 else 690 AssertDI(false, "!dbg attachment of global variable must be a " 691 "DIGlobalVariableExpression"); 692 } 693 694 if (!GV.hasInitializer()) { 695 visitGlobalValue(GV); 696 return; 697 } 698 699 // Walk any aggregate initializers looking for bitcasts between address spaces 700 visitConstantExprsRecursively(GV.getInitializer()); 701 702 visitGlobalValue(GV); 703 } 704 705 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 706 SmallPtrSet<const GlobalAlias*, 4> Visited; 707 Visited.insert(&GA); 708 visitAliaseeSubExpr(Visited, GA, C); 709 } 710 711 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 712 const GlobalAlias &GA, const Constant &C) { 713 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 714 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 715 &GA); 716 717 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 718 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 719 720 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 721 &GA); 722 } else { 723 // Only continue verifying subexpressions of GlobalAliases. 724 // Do not recurse into global initializers. 725 return; 726 } 727 } 728 729 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 730 visitConstantExprsRecursively(CE); 731 732 for (const Use &U : C.operands()) { 733 Value *V = &*U; 734 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 735 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 736 else if (const auto *C2 = dyn_cast<Constant>(V)) 737 visitAliaseeSubExpr(Visited, GA, *C2); 738 } 739 } 740 741 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 742 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 743 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 744 "weak_odr, or external linkage!", 745 &GA); 746 const Constant *Aliasee = GA.getAliasee(); 747 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 748 Assert(GA.getType() == Aliasee->getType(), 749 "Alias and aliasee types should match!", &GA); 750 751 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 752 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 753 754 visitAliaseeSubExpr(GA, *Aliasee); 755 756 visitGlobalValue(GA); 757 } 758 759 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 760 // There used to be various other llvm.dbg.* nodes, but we don't support 761 // upgrading them and we want to reserve the namespace for future uses. 762 if (NMD.getName().startswith("llvm.dbg.")) 763 AssertDI(NMD.getName() == "llvm.dbg.cu", 764 "unrecognized named metadata node in the llvm.dbg namespace", 765 &NMD); 766 for (const MDNode *MD : NMD.operands()) { 767 if (NMD.getName() == "llvm.dbg.cu") 768 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 769 770 if (!MD) 771 continue; 772 773 visitMDNode(*MD); 774 } 775 } 776 777 void Verifier::visitMDNode(const MDNode &MD) { 778 // Only visit each node once. Metadata can be mutually recursive, so this 779 // avoids infinite recursion here, as well as being an optimization. 780 if (!MDNodes.insert(&MD).second) 781 return; 782 783 switch (MD.getMetadataID()) { 784 default: 785 llvm_unreachable("Invalid MDNode subclass"); 786 case Metadata::MDTupleKind: 787 break; 788 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 789 case Metadata::CLASS##Kind: \ 790 visit##CLASS(cast<CLASS>(MD)); \ 791 break; 792 #include "llvm/IR/Metadata.def" 793 } 794 795 for (const Metadata *Op : MD.operands()) { 796 if (!Op) 797 continue; 798 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 799 &MD, Op); 800 if (auto *N = dyn_cast<MDNode>(Op)) { 801 visitMDNode(*N); 802 continue; 803 } 804 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 805 visitValueAsMetadata(*V, nullptr); 806 continue; 807 } 808 } 809 810 // Check these last, so we diagnose problems in operands first. 811 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 812 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 813 } 814 815 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 816 Assert(MD.getValue(), "Expected valid value", &MD); 817 Assert(!MD.getValue()->getType()->isMetadataTy(), 818 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 819 820 auto *L = dyn_cast<LocalAsMetadata>(&MD); 821 if (!L) 822 return; 823 824 Assert(F, "function-local metadata used outside a function", L); 825 826 // If this was an instruction, bb, or argument, verify that it is in the 827 // function that we expect. 828 Function *ActualF = nullptr; 829 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 830 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 831 ActualF = I->getParent()->getParent(); 832 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 833 ActualF = BB->getParent(); 834 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 835 ActualF = A->getParent(); 836 assert(ActualF && "Unimplemented function local metadata case!"); 837 838 Assert(ActualF == F, "function-local metadata used in wrong function", L); 839 } 840 841 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 842 Metadata *MD = MDV.getMetadata(); 843 if (auto *N = dyn_cast<MDNode>(MD)) { 844 visitMDNode(*N); 845 return; 846 } 847 848 // Only visit each node once. Metadata can be mutually recursive, so this 849 // avoids infinite recursion here, as well as being an optimization. 850 if (!MDNodes.insert(MD).second) 851 return; 852 853 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 854 visitValueAsMetadata(*V, F); 855 } 856 857 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 858 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 859 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 860 861 void Verifier::visitDILocation(const DILocation &N) { 862 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 863 "location requires a valid scope", &N, N.getRawScope()); 864 if (auto *IA = N.getRawInlinedAt()) 865 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 866 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 867 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 868 } 869 870 void Verifier::visitGenericDINode(const GenericDINode &N) { 871 AssertDI(N.getTag(), "invalid tag", &N); 872 } 873 874 void Verifier::visitDIScope(const DIScope &N) { 875 if (auto *F = N.getRawFile()) 876 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 877 } 878 879 void Verifier::visitDISubrange(const DISubrange &N) { 880 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 881 auto Count = N.getCount(); 882 AssertDI(Count, "Count must either be a signed constant or a DIVariable", 883 &N); 884 AssertDI(!Count.is<ConstantInt*>() || 885 Count.get<ConstantInt*>()->getSExtValue() >= -1, 886 "invalid subrange count", &N); 887 } 888 889 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 890 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 891 } 892 893 void Verifier::visitDIBasicType(const DIBasicType &N) { 894 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 895 N.getTag() == dwarf::DW_TAG_unspecified_type, 896 "invalid tag", &N); 897 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 898 "has conflicting flags", &N); 899 } 900 901 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 902 // Common scope checks. 903 visitDIScope(N); 904 905 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 906 N.getTag() == dwarf::DW_TAG_pointer_type || 907 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 908 N.getTag() == dwarf::DW_TAG_reference_type || 909 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 910 N.getTag() == dwarf::DW_TAG_const_type || 911 N.getTag() == dwarf::DW_TAG_volatile_type || 912 N.getTag() == dwarf::DW_TAG_restrict_type || 913 N.getTag() == dwarf::DW_TAG_atomic_type || 914 N.getTag() == dwarf::DW_TAG_member || 915 N.getTag() == dwarf::DW_TAG_inheritance || 916 N.getTag() == dwarf::DW_TAG_friend, 917 "invalid tag", &N); 918 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 919 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 920 N.getRawExtraData()); 921 } 922 923 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 924 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 925 N.getRawBaseType()); 926 927 if (N.getDWARFAddressSpace()) { 928 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 929 N.getTag() == dwarf::DW_TAG_reference_type || 930 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 931 "DWARF address space only applies to pointer or reference types", 932 &N); 933 } 934 } 935 936 /// Detect mutually exclusive flags. 937 static bool hasConflictingReferenceFlags(unsigned Flags) { 938 return ((Flags & DINode::FlagLValueReference) && 939 (Flags & DINode::FlagRValueReference)) || 940 ((Flags & DINode::FlagTypePassByValue) && 941 (Flags & DINode::FlagTypePassByReference)); 942 } 943 944 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 945 auto *Params = dyn_cast<MDTuple>(&RawParams); 946 AssertDI(Params, "invalid template params", &N, &RawParams); 947 for (Metadata *Op : Params->operands()) { 948 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 949 &N, Params, Op); 950 } 951 } 952 953 void Verifier::visitDICompositeType(const DICompositeType &N) { 954 // Common scope checks. 955 visitDIScope(N); 956 957 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 958 N.getTag() == dwarf::DW_TAG_structure_type || 959 N.getTag() == dwarf::DW_TAG_union_type || 960 N.getTag() == dwarf::DW_TAG_enumeration_type || 961 N.getTag() == dwarf::DW_TAG_class_type || 962 N.getTag() == dwarf::DW_TAG_variant_part, 963 "invalid tag", &N); 964 965 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 966 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 967 N.getRawBaseType()); 968 969 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 970 "invalid composite elements", &N, N.getRawElements()); 971 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 972 N.getRawVTableHolder()); 973 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 974 "invalid reference flags", &N); 975 976 if (N.isVector()) { 977 const DINodeArray Elements = N.getElements(); 978 AssertDI(Elements.size() == 1 && 979 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 980 "invalid vector, expected one element of type subrange", &N); 981 } 982 983 if (auto *Params = N.getRawTemplateParams()) 984 visitTemplateParams(N, *Params); 985 986 if (N.getTag() == dwarf::DW_TAG_class_type || 987 N.getTag() == dwarf::DW_TAG_union_type) { 988 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), 989 "class/union requires a filename", &N, N.getFile()); 990 } 991 992 if (auto *D = N.getRawDiscriminator()) { 993 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 994 "discriminator can only appear on variant part"); 995 } 996 } 997 998 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 999 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1000 if (auto *Types = N.getRawTypeArray()) { 1001 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1002 for (Metadata *Ty : N.getTypeArray()->operands()) { 1003 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1004 } 1005 } 1006 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1007 "invalid reference flags", &N); 1008 } 1009 1010 void Verifier::visitDIFile(const DIFile &N) { 1011 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1012 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1013 if (Checksum) { 1014 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1015 "invalid checksum kind", &N); 1016 size_t Size; 1017 switch (Checksum->Kind) { 1018 case DIFile::CSK_MD5: 1019 Size = 32; 1020 break; 1021 case DIFile::CSK_SHA1: 1022 Size = 40; 1023 break; 1024 } 1025 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1026 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1027 "invalid checksum", &N); 1028 } 1029 } 1030 1031 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1032 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1033 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1034 1035 // Don't bother verifying the compilation directory or producer string 1036 // as those could be empty. 1037 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1038 N.getRawFile()); 1039 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1040 N.getFile()); 1041 1042 verifySourceDebugInfo(N, *N.getFile()); 1043 1044 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1045 "invalid emission kind", &N); 1046 1047 if (auto *Array = N.getRawEnumTypes()) { 1048 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1049 for (Metadata *Op : N.getEnumTypes()->operands()) { 1050 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1051 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1052 "invalid enum type", &N, N.getEnumTypes(), Op); 1053 } 1054 } 1055 if (auto *Array = N.getRawRetainedTypes()) { 1056 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1057 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1058 AssertDI(Op && (isa<DIType>(Op) || 1059 (isa<DISubprogram>(Op) && 1060 !cast<DISubprogram>(Op)->isDefinition())), 1061 "invalid retained type", &N, Op); 1062 } 1063 } 1064 if (auto *Array = N.getRawGlobalVariables()) { 1065 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1066 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1067 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1068 "invalid global variable ref", &N, Op); 1069 } 1070 } 1071 if (auto *Array = N.getRawImportedEntities()) { 1072 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1073 for (Metadata *Op : N.getImportedEntities()->operands()) { 1074 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1075 &N, Op); 1076 } 1077 } 1078 if (auto *Array = N.getRawMacros()) { 1079 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1080 for (Metadata *Op : N.getMacros()->operands()) { 1081 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1082 } 1083 } 1084 CUVisited.insert(&N); 1085 } 1086 1087 void Verifier::visitDISubprogram(const DISubprogram &N) { 1088 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1089 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1090 if (auto *F = N.getRawFile()) 1091 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1092 else 1093 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1094 if (auto *T = N.getRawType()) 1095 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1096 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1097 N.getRawContainingType()); 1098 if (auto *Params = N.getRawTemplateParams()) 1099 visitTemplateParams(N, *Params); 1100 if (auto *S = N.getRawDeclaration()) 1101 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1102 "invalid subprogram declaration", &N, S); 1103 if (auto *RawNode = N.getRawRetainedNodes()) { 1104 auto *Node = dyn_cast<MDTuple>(RawNode); 1105 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1106 for (Metadata *Op : Node->operands()) { 1107 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1108 "invalid retained nodes, expected DILocalVariable or DILabel", 1109 &N, Node, Op); 1110 } 1111 } 1112 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1113 "invalid reference flags", &N); 1114 1115 auto *Unit = N.getRawUnit(); 1116 if (N.isDefinition()) { 1117 // Subprogram definitions (not part of the type hierarchy). 1118 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1119 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1120 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1121 if (N.getFile()) 1122 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1123 } else { 1124 // Subprogram declarations (part of the type hierarchy). 1125 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1126 } 1127 1128 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1129 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1130 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1131 for (Metadata *Op : ThrownTypes->operands()) 1132 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1133 Op); 1134 } 1135 1136 if (N.areAllCallsDescribed()) 1137 AssertDI(N.isDefinition(), 1138 "DIFlagAllCallsDescribed must be attached to a definition"); 1139 } 1140 1141 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1142 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1143 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1144 "invalid local scope", &N, N.getRawScope()); 1145 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1146 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1147 } 1148 1149 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1150 visitDILexicalBlockBase(N); 1151 1152 AssertDI(N.getLine() || !N.getColumn(), 1153 "cannot have column info without line info", &N); 1154 } 1155 1156 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1157 visitDILexicalBlockBase(N); 1158 } 1159 1160 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1161 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1162 if (auto *S = N.getRawScope()) 1163 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1164 if (auto *S = N.getRawDecl()) 1165 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1166 } 1167 1168 void Verifier::visitDINamespace(const DINamespace &N) { 1169 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1170 if (auto *S = N.getRawScope()) 1171 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1172 } 1173 1174 void Verifier::visitDIMacro(const DIMacro &N) { 1175 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1176 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1177 "invalid macinfo type", &N); 1178 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1179 if (!N.getValue().empty()) { 1180 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1181 } 1182 } 1183 1184 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1185 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1186 "invalid macinfo type", &N); 1187 if (auto *F = N.getRawFile()) 1188 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1189 1190 if (auto *Array = N.getRawElements()) { 1191 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1192 for (Metadata *Op : N.getElements()->operands()) { 1193 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1194 } 1195 } 1196 } 1197 1198 void Verifier::visitDIModule(const DIModule &N) { 1199 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1200 AssertDI(!N.getName().empty(), "anonymous module", &N); 1201 } 1202 1203 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1204 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1205 } 1206 1207 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1208 visitDITemplateParameter(N); 1209 1210 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1211 &N); 1212 } 1213 1214 void Verifier::visitDITemplateValueParameter( 1215 const DITemplateValueParameter &N) { 1216 visitDITemplateParameter(N); 1217 1218 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1219 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1220 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1221 "invalid tag", &N); 1222 } 1223 1224 void Verifier::visitDIVariable(const DIVariable &N) { 1225 if (auto *S = N.getRawScope()) 1226 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1227 if (auto *F = N.getRawFile()) 1228 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1229 } 1230 1231 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1232 // Checks common to all variables. 1233 visitDIVariable(N); 1234 1235 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1236 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1237 AssertDI(N.getType(), "missing global variable type", &N); 1238 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1239 AssertDI(isa<DIDerivedType>(Member), 1240 "invalid static data member declaration", &N, Member); 1241 } 1242 } 1243 1244 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1245 // Checks common to all variables. 1246 visitDIVariable(N); 1247 1248 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1249 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1250 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1251 "local variable requires a valid scope", &N, N.getRawScope()); 1252 if (auto Ty = N.getType()) 1253 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1254 } 1255 1256 void Verifier::visitDILabel(const DILabel &N) { 1257 if (auto *S = N.getRawScope()) 1258 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1259 if (auto *F = N.getRawFile()) 1260 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1261 1262 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1263 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1264 "label requires a valid scope", &N, N.getRawScope()); 1265 } 1266 1267 void Verifier::visitDIExpression(const DIExpression &N) { 1268 AssertDI(N.isValid(), "invalid expression", &N); 1269 } 1270 1271 void Verifier::visitDIGlobalVariableExpression( 1272 const DIGlobalVariableExpression &GVE) { 1273 AssertDI(GVE.getVariable(), "missing variable"); 1274 if (auto *Var = GVE.getVariable()) 1275 visitDIGlobalVariable(*Var); 1276 if (auto *Expr = GVE.getExpression()) { 1277 visitDIExpression(*Expr); 1278 if (auto Fragment = Expr->getFragmentInfo()) 1279 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1280 } 1281 } 1282 1283 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1284 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1285 if (auto *T = N.getRawType()) 1286 AssertDI(isType(T), "invalid type ref", &N, T); 1287 if (auto *F = N.getRawFile()) 1288 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1289 } 1290 1291 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1292 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1293 N.getTag() == dwarf::DW_TAG_imported_declaration, 1294 "invalid tag", &N); 1295 if (auto *S = N.getRawScope()) 1296 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1297 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1298 N.getRawEntity()); 1299 } 1300 1301 void Verifier::visitComdat(const Comdat &C) { 1302 // The Module is invalid if the GlobalValue has private linkage. Entities 1303 // with private linkage don't have entries in the symbol table. 1304 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1305 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage", 1306 GV); 1307 } 1308 1309 void Verifier::visitModuleIdents(const Module &M) { 1310 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1311 if (!Idents) 1312 return; 1313 1314 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1315 // Scan each llvm.ident entry and make sure that this requirement is met. 1316 for (const MDNode *N : Idents->operands()) { 1317 Assert(N->getNumOperands() == 1, 1318 "incorrect number of operands in llvm.ident metadata", N); 1319 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1320 ("invalid value for llvm.ident metadata entry operand" 1321 "(the operand should be a string)"), 1322 N->getOperand(0)); 1323 } 1324 } 1325 1326 void Verifier::visitModuleCommandLines(const Module &M) { 1327 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1328 if (!CommandLines) 1329 return; 1330 1331 // llvm.commandline takes a list of metadata entry. Each entry has only one 1332 // string. Scan each llvm.commandline entry and make sure that this 1333 // requirement is met. 1334 for (const MDNode *N : CommandLines->operands()) { 1335 Assert(N->getNumOperands() == 1, 1336 "incorrect number of operands in llvm.commandline metadata", N); 1337 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1338 ("invalid value for llvm.commandline metadata entry operand" 1339 "(the operand should be a string)"), 1340 N->getOperand(0)); 1341 } 1342 } 1343 1344 void Verifier::visitModuleFlags(const Module &M) { 1345 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1346 if (!Flags) return; 1347 1348 // Scan each flag, and track the flags and requirements. 1349 DenseMap<const MDString*, const MDNode*> SeenIDs; 1350 SmallVector<const MDNode*, 16> Requirements; 1351 for (const MDNode *MDN : Flags->operands()) 1352 visitModuleFlag(MDN, SeenIDs, Requirements); 1353 1354 // Validate that the requirements in the module are valid. 1355 for (const MDNode *Requirement : Requirements) { 1356 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1357 const Metadata *ReqValue = Requirement->getOperand(1); 1358 1359 const MDNode *Op = SeenIDs.lookup(Flag); 1360 if (!Op) { 1361 CheckFailed("invalid requirement on flag, flag is not present in module", 1362 Flag); 1363 continue; 1364 } 1365 1366 if (Op->getOperand(2) != ReqValue) { 1367 CheckFailed(("invalid requirement on flag, " 1368 "flag does not have the required value"), 1369 Flag); 1370 continue; 1371 } 1372 } 1373 } 1374 1375 void 1376 Verifier::visitModuleFlag(const MDNode *Op, 1377 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1378 SmallVectorImpl<const MDNode *> &Requirements) { 1379 // Each module flag should have three arguments, the merge behavior (a 1380 // constant int), the flag ID (an MDString), and the value. 1381 Assert(Op->getNumOperands() == 3, 1382 "incorrect number of operands in module flag", Op); 1383 Module::ModFlagBehavior MFB; 1384 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1385 Assert( 1386 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1387 "invalid behavior operand in module flag (expected constant integer)", 1388 Op->getOperand(0)); 1389 Assert(false, 1390 "invalid behavior operand in module flag (unexpected constant)", 1391 Op->getOperand(0)); 1392 } 1393 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1394 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1395 Op->getOperand(1)); 1396 1397 // Sanity check the values for behaviors with additional requirements. 1398 switch (MFB) { 1399 case Module::Error: 1400 case Module::Warning: 1401 case Module::Override: 1402 // These behavior types accept any value. 1403 break; 1404 1405 case Module::Max: { 1406 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1407 "invalid value for 'max' module flag (expected constant integer)", 1408 Op->getOperand(2)); 1409 break; 1410 } 1411 1412 case Module::Require: { 1413 // The value should itself be an MDNode with two operands, a flag ID (an 1414 // MDString), and a value. 1415 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1416 Assert(Value && Value->getNumOperands() == 2, 1417 "invalid value for 'require' module flag (expected metadata pair)", 1418 Op->getOperand(2)); 1419 Assert(isa<MDString>(Value->getOperand(0)), 1420 ("invalid value for 'require' module flag " 1421 "(first value operand should be a string)"), 1422 Value->getOperand(0)); 1423 1424 // Append it to the list of requirements, to check once all module flags are 1425 // scanned. 1426 Requirements.push_back(Value); 1427 break; 1428 } 1429 1430 case Module::Append: 1431 case Module::AppendUnique: { 1432 // These behavior types require the operand be an MDNode. 1433 Assert(isa<MDNode>(Op->getOperand(2)), 1434 "invalid value for 'append'-type module flag " 1435 "(expected a metadata node)", 1436 Op->getOperand(2)); 1437 break; 1438 } 1439 } 1440 1441 // Unless this is a "requires" flag, check the ID is unique. 1442 if (MFB != Module::Require) { 1443 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1444 Assert(Inserted, 1445 "module flag identifiers must be unique (or of 'require' type)", ID); 1446 } 1447 1448 if (ID->getString() == "wchar_size") { 1449 ConstantInt *Value 1450 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1451 Assert(Value, "wchar_size metadata requires constant integer argument"); 1452 } 1453 1454 if (ID->getString() == "Linker Options") { 1455 // If the llvm.linker.options named metadata exists, we assume that the 1456 // bitcode reader has upgraded the module flag. Otherwise the flag might 1457 // have been created by a client directly. 1458 Assert(M.getNamedMetadata("llvm.linker.options"), 1459 "'Linker Options' named metadata no longer supported"); 1460 } 1461 1462 if (ID->getString() == "CG Profile") { 1463 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1464 visitModuleFlagCGProfileEntry(MDO); 1465 } 1466 } 1467 1468 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1469 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1470 if (!FuncMDO) 1471 return; 1472 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1473 Assert(F && isa<Function>(F->getValue()), "expected a Function or null", 1474 FuncMDO); 1475 }; 1476 auto Node = dyn_cast_or_null<MDNode>(MDO); 1477 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1478 CheckFunction(Node->getOperand(0)); 1479 CheckFunction(Node->getOperand(1)); 1480 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1481 Assert(Count && Count->getType()->isIntegerTy(), 1482 "expected an integer constant", Node->getOperand(2)); 1483 } 1484 1485 /// Return true if this attribute kind only applies to functions. 1486 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { 1487 switch (Kind) { 1488 case Attribute::NoReturn: 1489 case Attribute::WillReturn: 1490 case Attribute::NoCfCheck: 1491 case Attribute::NoUnwind: 1492 case Attribute::NoInline: 1493 case Attribute::AlwaysInline: 1494 case Attribute::OptimizeForSize: 1495 case Attribute::StackProtect: 1496 case Attribute::StackProtectReq: 1497 case Attribute::StackProtectStrong: 1498 case Attribute::SafeStack: 1499 case Attribute::ShadowCallStack: 1500 case Attribute::NoRedZone: 1501 case Attribute::NoImplicitFloat: 1502 case Attribute::Naked: 1503 case Attribute::InlineHint: 1504 case Attribute::StackAlignment: 1505 case Attribute::UWTable: 1506 case Attribute::NonLazyBind: 1507 case Attribute::ReturnsTwice: 1508 case Attribute::SanitizeAddress: 1509 case Attribute::SanitizeHWAddress: 1510 case Attribute::SanitizeThread: 1511 case Attribute::SanitizeMemory: 1512 case Attribute::MinSize: 1513 case Attribute::NoDuplicate: 1514 case Attribute::Builtin: 1515 case Attribute::NoBuiltin: 1516 case Attribute::Cold: 1517 case Attribute::OptForFuzzing: 1518 case Attribute::OptimizeNone: 1519 case Attribute::JumpTable: 1520 case Attribute::Convergent: 1521 case Attribute::ArgMemOnly: 1522 case Attribute::NoRecurse: 1523 case Attribute::InaccessibleMemOnly: 1524 case Attribute::InaccessibleMemOrArgMemOnly: 1525 case Attribute::AllocSize: 1526 case Attribute::SpeculativeLoadHardening: 1527 case Attribute::Speculatable: 1528 case Attribute::StrictFP: 1529 return true; 1530 default: 1531 break; 1532 } 1533 return false; 1534 } 1535 1536 /// Return true if this is a function attribute that can also appear on 1537 /// arguments. 1538 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { 1539 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || 1540 Kind == Attribute::ReadNone; 1541 } 1542 1543 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 1544 const Value *V) { 1545 for (Attribute A : Attrs) { 1546 if (A.isStringAttribute()) 1547 continue; 1548 1549 if (isFuncOnlyAttr(A.getKindAsEnum())) { 1550 if (!IsFunction) { 1551 CheckFailed("Attribute '" + A.getAsString() + 1552 "' only applies to functions!", 1553 V); 1554 return; 1555 } 1556 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { 1557 CheckFailed("Attribute '" + A.getAsString() + 1558 "' does not apply to functions!", 1559 V); 1560 return; 1561 } 1562 } 1563 } 1564 1565 // VerifyParameterAttrs - Check the given attributes for an argument or return 1566 // value of the specified type. The value V is printed in error messages. 1567 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1568 const Value *V) { 1569 if (!Attrs.hasAttributes()) 1570 return; 1571 1572 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); 1573 1574 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1575 Assert(Attrs.getNumAttributes() == 1, 1576 "Attribute 'immarg' is incompatible with other attributes", V); 1577 } 1578 1579 // Check for mutually incompatible attributes. Only inreg is compatible with 1580 // sret. 1581 unsigned AttrCount = 0; 1582 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1583 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1584 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1585 Attrs.hasAttribute(Attribute::InReg); 1586 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1587 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " 1588 "and 'sret' are incompatible!", 1589 V); 1590 1591 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1592 Attrs.hasAttribute(Attribute::ReadOnly)), 1593 "Attributes " 1594 "'inalloca and readonly' are incompatible!", 1595 V); 1596 1597 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1598 Attrs.hasAttribute(Attribute::Returned)), 1599 "Attributes " 1600 "'sret and returned' are incompatible!", 1601 V); 1602 1603 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1604 Attrs.hasAttribute(Attribute::SExt)), 1605 "Attributes " 1606 "'zeroext and signext' are incompatible!", 1607 V); 1608 1609 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1610 Attrs.hasAttribute(Attribute::ReadOnly)), 1611 "Attributes " 1612 "'readnone and readonly' are incompatible!", 1613 V); 1614 1615 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1616 Attrs.hasAttribute(Attribute::WriteOnly)), 1617 "Attributes " 1618 "'readnone and writeonly' are incompatible!", 1619 V); 1620 1621 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1622 Attrs.hasAttribute(Attribute::WriteOnly)), 1623 "Attributes " 1624 "'readonly and writeonly' are incompatible!", 1625 V); 1626 1627 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1628 Attrs.hasAttribute(Attribute::AlwaysInline)), 1629 "Attributes " 1630 "'noinline and alwaysinline' are incompatible!", 1631 V); 1632 1633 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1634 Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(), 1635 "Attribute 'byval' type does not match parameter!", V); 1636 } 1637 1638 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1639 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), 1640 "Wrong types for attribute: " + 1641 AttributeSet::get(Context, IncompatibleAttrs).getAsString(), 1642 V); 1643 1644 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1645 SmallPtrSet<Type*, 4> Visited; 1646 if (!PTy->getElementType()->isSized(&Visited)) { 1647 Assert(!Attrs.hasAttribute(Attribute::ByVal) && 1648 !Attrs.hasAttribute(Attribute::InAlloca), 1649 "Attributes 'byval' and 'inalloca' do not support unsized types!", 1650 V); 1651 } 1652 if (!isa<PointerType>(PTy->getElementType())) 1653 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1654 "Attribute 'swifterror' only applies to parameters " 1655 "with pointer to pointer type!", 1656 V); 1657 } else { 1658 Assert(!Attrs.hasAttribute(Attribute::ByVal), 1659 "Attribute 'byval' only applies to parameters with pointer type!", 1660 V); 1661 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1662 "Attribute 'swifterror' only applies to parameters " 1663 "with pointer type!", 1664 V); 1665 } 1666 } 1667 1668 // Check parameter attributes against a function type. 1669 // The value V is printed in error messages. 1670 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1671 const Value *V, bool IsIntrinsic) { 1672 if (Attrs.isEmpty()) 1673 return; 1674 1675 bool SawNest = false; 1676 bool SawReturned = false; 1677 bool SawSRet = false; 1678 bool SawSwiftSelf = false; 1679 bool SawSwiftError = false; 1680 1681 // Verify return value attributes. 1682 AttributeSet RetAttrs = Attrs.getRetAttributes(); 1683 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && 1684 !RetAttrs.hasAttribute(Attribute::Nest) && 1685 !RetAttrs.hasAttribute(Attribute::StructRet) && 1686 !RetAttrs.hasAttribute(Attribute::NoCapture) && 1687 !RetAttrs.hasAttribute(Attribute::Returned) && 1688 !RetAttrs.hasAttribute(Attribute::InAlloca) && 1689 !RetAttrs.hasAttribute(Attribute::SwiftSelf) && 1690 !RetAttrs.hasAttribute(Attribute::SwiftError)), 1691 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', " 1692 "'returned', 'swiftself', and 'swifterror' do not apply to return " 1693 "values!", 1694 V); 1695 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && 1696 !RetAttrs.hasAttribute(Attribute::WriteOnly) && 1697 !RetAttrs.hasAttribute(Attribute::ReadNone)), 1698 "Attribute '" + RetAttrs.getAsString() + 1699 "' does not apply to function returns", 1700 V); 1701 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1702 1703 // Verify parameter attributes. 1704 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1705 Type *Ty = FT->getParamType(i); 1706 AttributeSet ArgAttrs = Attrs.getParamAttributes(i); 1707 1708 if (!IsIntrinsic) { 1709 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1710 "immarg attribute only applies to intrinsics",V); 1711 } 1712 1713 verifyParameterAttrs(ArgAttrs, Ty, V); 1714 1715 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1716 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1717 SawNest = true; 1718 } 1719 1720 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1721 Assert(!SawReturned, "More than one parameter has attribute returned!", 1722 V); 1723 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1724 "Incompatible argument and return types for 'returned' attribute", 1725 V); 1726 SawReturned = true; 1727 } 1728 1729 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1730 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1731 Assert(i == 0 || i == 1, 1732 "Attribute 'sret' is not on first or second parameter!", V); 1733 SawSRet = true; 1734 } 1735 1736 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1737 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1738 SawSwiftSelf = true; 1739 } 1740 1741 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1742 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1743 V); 1744 SawSwiftError = true; 1745 } 1746 1747 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1748 Assert(i == FT->getNumParams() - 1, 1749 "inalloca isn't on the last parameter!", V); 1750 } 1751 } 1752 1753 if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) 1754 return; 1755 1756 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); 1757 1758 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1759 Attrs.hasFnAttribute(Attribute::ReadOnly)), 1760 "Attributes 'readnone and readonly' are incompatible!", V); 1761 1762 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1763 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1764 "Attributes 'readnone and writeonly' are incompatible!", V); 1765 1766 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && 1767 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1768 "Attributes 'readonly and writeonly' are incompatible!", V); 1769 1770 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1771 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), 1772 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1773 "incompatible!", 1774 V); 1775 1776 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1777 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), 1778 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1779 1780 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && 1781 Attrs.hasFnAttribute(Attribute::AlwaysInline)), 1782 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1783 1784 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { 1785 Assert(Attrs.hasFnAttribute(Attribute::NoInline), 1786 "Attribute 'optnone' requires 'noinline'!", V); 1787 1788 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), 1789 "Attributes 'optsize and optnone' are incompatible!", V); 1790 1791 Assert(!Attrs.hasFnAttribute(Attribute::MinSize), 1792 "Attributes 'minsize and optnone' are incompatible!", V); 1793 } 1794 1795 if (Attrs.hasFnAttribute(Attribute::JumpTable)) { 1796 const GlobalValue *GV = cast<GlobalValue>(V); 1797 Assert(GV->hasGlobalUnnamedAddr(), 1798 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1799 } 1800 1801 if (Attrs.hasFnAttribute(Attribute::AllocSize)) { 1802 std::pair<unsigned, Optional<unsigned>> Args = 1803 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 1804 1805 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1806 if (ParamNo >= FT->getNumParams()) { 1807 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1808 return false; 1809 } 1810 1811 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1812 CheckFailed("'allocsize' " + Name + 1813 " argument must refer to an integer parameter", 1814 V); 1815 return false; 1816 } 1817 1818 return true; 1819 }; 1820 1821 if (!CheckParam("element size", Args.first)) 1822 return; 1823 1824 if (Args.second && !CheckParam("number of elements", *Args.second)) 1825 return; 1826 } 1827 } 1828 1829 void Verifier::verifyFunctionMetadata( 1830 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 1831 for (const auto &Pair : MDs) { 1832 if (Pair.first == LLVMContext::MD_prof) { 1833 MDNode *MD = Pair.second; 1834 Assert(MD->getNumOperands() >= 2, 1835 "!prof annotations should have no less than 2 operands", MD); 1836 1837 // Check first operand. 1838 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 1839 MD); 1840 Assert(isa<MDString>(MD->getOperand(0)), 1841 "expected string with name of the !prof annotation", MD); 1842 MDString *MDS = cast<MDString>(MD->getOperand(0)); 1843 StringRef ProfName = MDS->getString(); 1844 Assert(ProfName.equals("function_entry_count") || 1845 ProfName.equals("synthetic_function_entry_count"), 1846 "first operand should be 'function_entry_count'" 1847 " or 'synthetic_function_entry_count'", 1848 MD); 1849 1850 // Check second operand. 1851 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 1852 MD); 1853 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 1854 "expected integer argument to function_entry_count", MD); 1855 } 1856 } 1857 } 1858 1859 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 1860 if (!ConstantExprVisited.insert(EntryC).second) 1861 return; 1862 1863 SmallVector<const Constant *, 16> Stack; 1864 Stack.push_back(EntryC); 1865 1866 while (!Stack.empty()) { 1867 const Constant *C = Stack.pop_back_val(); 1868 1869 // Check this constant expression. 1870 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 1871 visitConstantExpr(CE); 1872 1873 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 1874 // Global Values get visited separately, but we do need to make sure 1875 // that the global value is in the correct module 1876 Assert(GV->getParent() == &M, "Referencing global in another module!", 1877 EntryC, &M, GV, GV->getParent()); 1878 continue; 1879 } 1880 1881 // Visit all sub-expressions. 1882 for (const Use &U : C->operands()) { 1883 const auto *OpC = dyn_cast<Constant>(U); 1884 if (!OpC) 1885 continue; 1886 if (!ConstantExprVisited.insert(OpC).second) 1887 continue; 1888 Stack.push_back(OpC); 1889 } 1890 } 1891 } 1892 1893 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 1894 if (CE->getOpcode() == Instruction::BitCast) 1895 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 1896 CE->getType()), 1897 "Invalid bitcast", CE); 1898 1899 if (CE->getOpcode() == Instruction::IntToPtr || 1900 CE->getOpcode() == Instruction::PtrToInt) { 1901 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 1902 ? CE->getType() 1903 : CE->getOperand(0)->getType(); 1904 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 1905 ? "inttoptr not supported for non-integral pointers" 1906 : "ptrtoint not supported for non-integral pointers"; 1907 Assert( 1908 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 1909 Msg); 1910 } 1911 } 1912 1913 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 1914 // There shouldn't be more attribute sets than there are parameters plus the 1915 // function and return value. 1916 return Attrs.getNumAttrSets() <= Params + 2; 1917 } 1918 1919 /// Verify that statepoint intrinsic is well formed. 1920 void Verifier::verifyStatepoint(const CallBase &Call) { 1921 assert(Call.getCalledFunction() && 1922 Call.getCalledFunction()->getIntrinsicID() == 1923 Intrinsic::experimental_gc_statepoint); 1924 1925 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 1926 !Call.onlyAccessesArgMemory(), 1927 "gc.statepoint must read and write all memory to preserve " 1928 "reordering restrictions required by safepoint semantics", 1929 Call); 1930 1931 const int64_t NumPatchBytes = 1932 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 1933 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 1934 Assert(NumPatchBytes >= 0, 1935 "gc.statepoint number of patchable bytes must be " 1936 "positive", 1937 Call); 1938 1939 const Value *Target = Call.getArgOperand(2); 1940 auto *PT = dyn_cast<PointerType>(Target->getType()); 1941 Assert(PT && PT->getElementType()->isFunctionTy(), 1942 "gc.statepoint callee must be of function pointer type", Call, Target); 1943 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 1944 1945 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 1946 Assert(NumCallArgs >= 0, 1947 "gc.statepoint number of arguments to underlying call " 1948 "must be positive", 1949 Call); 1950 const int NumParams = (int)TargetFuncType->getNumParams(); 1951 if (TargetFuncType->isVarArg()) { 1952 Assert(NumCallArgs >= NumParams, 1953 "gc.statepoint mismatch in number of vararg call args", Call); 1954 1955 // TODO: Remove this limitation 1956 Assert(TargetFuncType->getReturnType()->isVoidTy(), 1957 "gc.statepoint doesn't support wrapping non-void " 1958 "vararg functions yet", 1959 Call); 1960 } else 1961 Assert(NumCallArgs == NumParams, 1962 "gc.statepoint mismatch in number of call args", Call); 1963 1964 const uint64_t Flags 1965 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 1966 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 1967 "unknown flag used in gc.statepoint flags argument", Call); 1968 1969 // Verify that the types of the call parameter arguments match 1970 // the type of the wrapped callee. 1971 AttributeList Attrs = Call.getAttributes(); 1972 for (int i = 0; i < NumParams; i++) { 1973 Type *ParamType = TargetFuncType->getParamType(i); 1974 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 1975 Assert(ArgType == ParamType, 1976 "gc.statepoint call argument does not match wrapped " 1977 "function type", 1978 Call); 1979 1980 if (TargetFuncType->isVarArg()) { 1981 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); 1982 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 1983 "Attribute 'sret' cannot be used for vararg call arguments!", 1984 Call); 1985 } 1986 } 1987 1988 const int EndCallArgsInx = 4 + NumCallArgs; 1989 1990 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 1991 Assert(isa<ConstantInt>(NumTransitionArgsV), 1992 "gc.statepoint number of transition arguments " 1993 "must be constant integer", 1994 Call); 1995 const int NumTransitionArgs = 1996 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 1997 Assert(NumTransitionArgs >= 0, 1998 "gc.statepoint number of transition arguments must be positive", Call); 1999 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2000 2001 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2002 Assert(isa<ConstantInt>(NumDeoptArgsV), 2003 "gc.statepoint number of deoptimization arguments " 2004 "must be constant integer", 2005 Call); 2006 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2007 Assert(NumDeoptArgs >= 0, 2008 "gc.statepoint number of deoptimization arguments " 2009 "must be positive", 2010 Call); 2011 2012 const int ExpectedNumArgs = 2013 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; 2014 Assert(ExpectedNumArgs <= (int)Call.arg_size(), 2015 "gc.statepoint too few arguments according to length fields", Call); 2016 2017 // Check that the only uses of this gc.statepoint are gc.result or 2018 // gc.relocate calls which are tied to this statepoint and thus part 2019 // of the same statepoint sequence 2020 for (const User *U : Call.users()) { 2021 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2022 Assert(UserCall, "illegal use of statepoint token", Call, U); 2023 if (!UserCall) 2024 continue; 2025 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2026 "gc.result or gc.relocate are the only value uses " 2027 "of a gc.statepoint", 2028 Call, U); 2029 if (isa<GCResultInst>(UserCall)) { 2030 Assert(UserCall->getArgOperand(0) == &Call, 2031 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2032 } else if (isa<GCRelocateInst>(Call)) { 2033 Assert(UserCall->getArgOperand(0) == &Call, 2034 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2035 } 2036 } 2037 2038 // Note: It is legal for a single derived pointer to be listed multiple 2039 // times. It's non-optimal, but it is legal. It can also happen after 2040 // insertion if we strip a bitcast away. 2041 // Note: It is really tempting to check that each base is relocated and 2042 // that a derived pointer is never reused as a base pointer. This turns 2043 // out to be problematic since optimizations run after safepoint insertion 2044 // can recognize equality properties that the insertion logic doesn't know 2045 // about. See example statepoint.ll in the verifier subdirectory 2046 } 2047 2048 void Verifier::verifyFrameRecoverIndices() { 2049 for (auto &Counts : FrameEscapeInfo) { 2050 Function *F = Counts.first; 2051 unsigned EscapedObjectCount = Counts.second.first; 2052 unsigned MaxRecoveredIndex = Counts.second.second; 2053 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2054 "all indices passed to llvm.localrecover must be less than the " 2055 "number of arguments passed to llvm.localescape in the parent " 2056 "function", 2057 F); 2058 } 2059 } 2060 2061 static Instruction *getSuccPad(Instruction *Terminator) { 2062 BasicBlock *UnwindDest; 2063 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2064 UnwindDest = II->getUnwindDest(); 2065 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2066 UnwindDest = CSI->getUnwindDest(); 2067 else 2068 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2069 return UnwindDest->getFirstNonPHI(); 2070 } 2071 2072 void Verifier::verifySiblingFuncletUnwinds() { 2073 SmallPtrSet<Instruction *, 8> Visited; 2074 SmallPtrSet<Instruction *, 8> Active; 2075 for (const auto &Pair : SiblingFuncletInfo) { 2076 Instruction *PredPad = Pair.first; 2077 if (Visited.count(PredPad)) 2078 continue; 2079 Active.insert(PredPad); 2080 Instruction *Terminator = Pair.second; 2081 do { 2082 Instruction *SuccPad = getSuccPad(Terminator); 2083 if (Active.count(SuccPad)) { 2084 // Found a cycle; report error 2085 Instruction *CyclePad = SuccPad; 2086 SmallVector<Instruction *, 8> CycleNodes; 2087 do { 2088 CycleNodes.push_back(CyclePad); 2089 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2090 if (CycleTerminator != CyclePad) 2091 CycleNodes.push_back(CycleTerminator); 2092 CyclePad = getSuccPad(CycleTerminator); 2093 } while (CyclePad != SuccPad); 2094 Assert(false, "EH pads can't handle each other's exceptions", 2095 ArrayRef<Instruction *>(CycleNodes)); 2096 } 2097 // Don't re-walk a node we've already checked 2098 if (!Visited.insert(SuccPad).second) 2099 break; 2100 // Walk to this successor if it has a map entry. 2101 PredPad = SuccPad; 2102 auto TermI = SiblingFuncletInfo.find(PredPad); 2103 if (TermI == SiblingFuncletInfo.end()) 2104 break; 2105 Terminator = TermI->second; 2106 Active.insert(PredPad); 2107 } while (true); 2108 // Each node only has one successor, so we've walked all the active 2109 // nodes' successors. 2110 Active.clear(); 2111 } 2112 } 2113 2114 // visitFunction - Verify that a function is ok. 2115 // 2116 void Verifier::visitFunction(const Function &F) { 2117 visitGlobalValue(F); 2118 2119 // Check function arguments. 2120 FunctionType *FT = F.getFunctionType(); 2121 unsigned NumArgs = F.arg_size(); 2122 2123 Assert(&Context == &F.getContext(), 2124 "Function context does not match Module context!", &F); 2125 2126 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2127 Assert(FT->getNumParams() == NumArgs, 2128 "# formal arguments must match # of arguments for function type!", &F, 2129 FT); 2130 Assert(F.getReturnType()->isFirstClassType() || 2131 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2132 "Functions cannot return aggregate values!", &F); 2133 2134 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2135 "Invalid struct return type!", &F); 2136 2137 AttributeList Attrs = F.getAttributes(); 2138 2139 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2140 "Attribute after last parameter!", &F); 2141 2142 bool isLLVMdotName = F.getName().size() >= 5 && 2143 F.getName().substr(0, 5) == "llvm."; 2144 2145 // Check function attributes. 2146 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName); 2147 2148 // On function declarations/definitions, we do not support the builtin 2149 // attribute. We do not check this in VerifyFunctionAttrs since that is 2150 // checking for Attributes that can/can not ever be on functions. 2151 Assert(!Attrs.hasFnAttribute(Attribute::Builtin), 2152 "Attribute 'builtin' can only be applied to a callsite.", &F); 2153 2154 // Check that this function meets the restrictions on this calling convention. 2155 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2156 // restrictions can be lifted. 2157 switch (F.getCallingConv()) { 2158 default: 2159 case CallingConv::C: 2160 break; 2161 case CallingConv::AMDGPU_KERNEL: 2162 case CallingConv::SPIR_KERNEL: 2163 Assert(F.getReturnType()->isVoidTy(), 2164 "Calling convention requires void return type", &F); 2165 LLVM_FALLTHROUGH; 2166 case CallingConv::AMDGPU_VS: 2167 case CallingConv::AMDGPU_HS: 2168 case CallingConv::AMDGPU_GS: 2169 case CallingConv::AMDGPU_PS: 2170 case CallingConv::AMDGPU_CS: 2171 Assert(!F.hasStructRetAttr(), 2172 "Calling convention does not allow sret", &F); 2173 LLVM_FALLTHROUGH; 2174 case CallingConv::Fast: 2175 case CallingConv::Cold: 2176 case CallingConv::Intel_OCL_BI: 2177 case CallingConv::PTX_Kernel: 2178 case CallingConv::PTX_Device: 2179 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2180 "perfect forwarding!", 2181 &F); 2182 break; 2183 } 2184 2185 // Check that the argument values match the function type for this function... 2186 unsigned i = 0; 2187 for (const Argument &Arg : F.args()) { 2188 Assert(Arg.getType() == FT->getParamType(i), 2189 "Argument value does not match function argument type!", &Arg, 2190 FT->getParamType(i)); 2191 Assert(Arg.getType()->isFirstClassType(), 2192 "Function arguments must have first-class types!", &Arg); 2193 if (!isLLVMdotName) { 2194 Assert(!Arg.getType()->isMetadataTy(), 2195 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2196 Assert(!Arg.getType()->isTokenTy(), 2197 "Function takes token but isn't an intrinsic", &Arg, &F); 2198 } 2199 2200 // Check that swifterror argument is only used by loads and stores. 2201 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { 2202 verifySwiftErrorValue(&Arg); 2203 } 2204 ++i; 2205 } 2206 2207 if (!isLLVMdotName) 2208 Assert(!F.getReturnType()->isTokenTy(), 2209 "Functions returns a token but isn't an intrinsic", &F); 2210 2211 // Get the function metadata attachments. 2212 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2213 F.getAllMetadata(MDs); 2214 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2215 verifyFunctionMetadata(MDs); 2216 2217 // Check validity of the personality function 2218 if (F.hasPersonalityFn()) { 2219 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2220 if (Per) 2221 Assert(Per->getParent() == F.getParent(), 2222 "Referencing personality function in another module!", 2223 &F, F.getParent(), Per, Per->getParent()); 2224 } 2225 2226 if (F.isMaterializable()) { 2227 // Function has a body somewhere we can't see. 2228 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2229 MDs.empty() ? nullptr : MDs.front().second); 2230 } else if (F.isDeclaration()) { 2231 for (const auto &I : MDs) { 2232 // This is used for call site debug information. 2233 AssertDI(I.first != LLVMContext::MD_dbg || 2234 !cast<DISubprogram>(I.second)->isDistinct(), 2235 "function declaration may only have a unique !dbg attachment", 2236 &F); 2237 Assert(I.first != LLVMContext::MD_prof, 2238 "function declaration may not have a !prof attachment", &F); 2239 2240 // Verify the metadata itself. 2241 visitMDNode(*I.second); 2242 } 2243 Assert(!F.hasPersonalityFn(), 2244 "Function declaration shouldn't have a personality routine", &F); 2245 } else { 2246 // Verify that this function (which has a body) is not named "llvm.*". It 2247 // is not legal to define intrinsics. 2248 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 2249 2250 // Check the entry node 2251 const BasicBlock *Entry = &F.getEntryBlock(); 2252 Assert(pred_empty(Entry), 2253 "Entry block to function must not have predecessors!", Entry); 2254 2255 // The address of the entry block cannot be taken, unless it is dead. 2256 if (Entry->hasAddressTaken()) { 2257 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2258 "blockaddress may not be used with the entry block!", Entry); 2259 } 2260 2261 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2262 // Visit metadata attachments. 2263 for (const auto &I : MDs) { 2264 // Verify that the attachment is legal. 2265 switch (I.first) { 2266 default: 2267 break; 2268 case LLVMContext::MD_dbg: { 2269 ++NumDebugAttachments; 2270 AssertDI(NumDebugAttachments == 1, 2271 "function must have a single !dbg attachment", &F, I.second); 2272 AssertDI(isa<DISubprogram>(I.second), 2273 "function !dbg attachment must be a subprogram", &F, I.second); 2274 auto *SP = cast<DISubprogram>(I.second); 2275 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2276 AssertDI(!AttachedTo || AttachedTo == &F, 2277 "DISubprogram attached to more than one function", SP, &F); 2278 AttachedTo = &F; 2279 break; 2280 } 2281 case LLVMContext::MD_prof: 2282 ++NumProfAttachments; 2283 Assert(NumProfAttachments == 1, 2284 "function must have a single !prof attachment", &F, I.second); 2285 break; 2286 } 2287 2288 // Verify the metadata itself. 2289 visitMDNode(*I.second); 2290 } 2291 } 2292 2293 // If this function is actually an intrinsic, verify that it is only used in 2294 // direct call/invokes, never having its "address taken". 2295 // Only do this if the module is materialized, otherwise we don't have all the 2296 // uses. 2297 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2298 const User *U; 2299 if (F.hasAddressTaken(&U)) 2300 Assert(false, "Invalid user of intrinsic instruction!", U); 2301 } 2302 2303 auto *N = F.getSubprogram(); 2304 HasDebugInfo = (N != nullptr); 2305 if (!HasDebugInfo) 2306 return; 2307 2308 // Check that all !dbg attachments lead to back to N (or, at least, another 2309 // subprogram that describes the same function). 2310 // 2311 // FIXME: Check this incrementally while visiting !dbg attachments. 2312 // FIXME: Only check when N is the canonical subprogram for F. 2313 SmallPtrSet<const MDNode *, 32> Seen; 2314 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2315 // Be careful about using DILocation here since we might be dealing with 2316 // broken code (this is the Verifier after all). 2317 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2318 if (!DL) 2319 return; 2320 if (!Seen.insert(DL).second) 2321 return; 2322 2323 Metadata *Parent = DL->getRawScope(); 2324 AssertDI(Parent && isa<DILocalScope>(Parent), 2325 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2326 Parent); 2327 DILocalScope *Scope = DL->getInlinedAtScope(); 2328 if (Scope && !Seen.insert(Scope).second) 2329 return; 2330 2331 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr; 2332 2333 // Scope and SP could be the same MDNode and we don't want to skip 2334 // validation in that case 2335 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2336 return; 2337 2338 // FIXME: Once N is canonical, check "SP == &N". 2339 AssertDI(SP->describes(&F), 2340 "!dbg attachment points at wrong subprogram for function", N, &F, 2341 &I, DL, Scope, SP); 2342 }; 2343 for (auto &BB : F) 2344 for (auto &I : BB) { 2345 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2346 // The llvm.loop annotations also contain two DILocations. 2347 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2348 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2349 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2350 if (BrokenDebugInfo) 2351 return; 2352 } 2353 } 2354 2355 // verifyBasicBlock - Verify that a basic block is well formed... 2356 // 2357 void Verifier::visitBasicBlock(BasicBlock &BB) { 2358 InstsInThisBlock.clear(); 2359 2360 // Ensure that basic blocks have terminators! 2361 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2362 2363 // Check constraints that this basic block imposes on all of the PHI nodes in 2364 // it. 2365 if (isa<PHINode>(BB.front())) { 2366 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 2367 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2368 llvm::sort(Preds); 2369 for (const PHINode &PN : BB.phis()) { 2370 // Ensure that PHI nodes have at least one entry! 2371 Assert(PN.getNumIncomingValues() != 0, 2372 "PHI nodes must have at least one entry. If the block is dead, " 2373 "the PHI should be removed!", 2374 &PN); 2375 Assert(PN.getNumIncomingValues() == Preds.size(), 2376 "PHINode should have one entry for each predecessor of its " 2377 "parent basic block!", 2378 &PN); 2379 2380 // Get and sort all incoming values in the PHI node... 2381 Values.clear(); 2382 Values.reserve(PN.getNumIncomingValues()); 2383 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2384 Values.push_back( 2385 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2386 llvm::sort(Values); 2387 2388 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2389 // Check to make sure that if there is more than one entry for a 2390 // particular basic block in this PHI node, that the incoming values are 2391 // all identical. 2392 // 2393 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2394 Values[i].second == Values[i - 1].second, 2395 "PHI node has multiple entries for the same basic block with " 2396 "different incoming values!", 2397 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2398 2399 // Check to make sure that the predecessors and PHI node entries are 2400 // matched up. 2401 Assert(Values[i].first == Preds[i], 2402 "PHI node entries do not match predecessors!", &PN, 2403 Values[i].first, Preds[i]); 2404 } 2405 } 2406 } 2407 2408 // Check that all instructions have their parent pointers set up correctly. 2409 for (auto &I : BB) 2410 { 2411 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2412 } 2413 } 2414 2415 void Verifier::visitTerminator(Instruction &I) { 2416 // Ensure that terminators only exist at the end of the basic block. 2417 Assert(&I == I.getParent()->getTerminator(), 2418 "Terminator found in the middle of a basic block!", I.getParent()); 2419 visitInstruction(I); 2420 } 2421 2422 void Verifier::visitBranchInst(BranchInst &BI) { 2423 if (BI.isConditional()) { 2424 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2425 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2426 } 2427 visitTerminator(BI); 2428 } 2429 2430 void Verifier::visitReturnInst(ReturnInst &RI) { 2431 Function *F = RI.getParent()->getParent(); 2432 unsigned N = RI.getNumOperands(); 2433 if (F->getReturnType()->isVoidTy()) 2434 Assert(N == 0, 2435 "Found return instr that returns non-void in Function of void " 2436 "return type!", 2437 &RI, F->getReturnType()); 2438 else 2439 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2440 "Function return type does not match operand " 2441 "type of return inst!", 2442 &RI, F->getReturnType()); 2443 2444 // Check to make sure that the return value has necessary properties for 2445 // terminators... 2446 visitTerminator(RI); 2447 } 2448 2449 void Verifier::visitSwitchInst(SwitchInst &SI) { 2450 // Check to make sure that all of the constants in the switch instruction 2451 // have the same type as the switched-on value. 2452 Type *SwitchTy = SI.getCondition()->getType(); 2453 SmallPtrSet<ConstantInt*, 32> Constants; 2454 for (auto &Case : SI.cases()) { 2455 Assert(Case.getCaseValue()->getType() == SwitchTy, 2456 "Switch constants must all be same type as switch value!", &SI); 2457 Assert(Constants.insert(Case.getCaseValue()).second, 2458 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2459 } 2460 2461 visitTerminator(SI); 2462 } 2463 2464 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2465 Assert(BI.getAddress()->getType()->isPointerTy(), 2466 "Indirectbr operand must have pointer type!", &BI); 2467 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2468 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2469 "Indirectbr destinations must all have pointer type!", &BI); 2470 2471 visitTerminator(BI); 2472 } 2473 2474 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2475 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2476 &CBI); 2477 Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!", 2478 &CBI); 2479 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2480 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2481 "Callbr successors must all have pointer type!", &CBI); 2482 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2483 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), 2484 "Using an unescaped label as a callbr argument!", &CBI); 2485 if (isa<BasicBlock>(CBI.getOperand(i))) 2486 for (unsigned j = i + 1; j != e; ++j) 2487 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2488 "Duplicate callbr destination!", &CBI); 2489 } 2490 2491 visitTerminator(CBI); 2492 } 2493 2494 void Verifier::visitSelectInst(SelectInst &SI) { 2495 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2496 SI.getOperand(2)), 2497 "Invalid operands for select instruction!", &SI); 2498 2499 Assert(SI.getTrueValue()->getType() == SI.getType(), 2500 "Select values must have same type as select instruction!", &SI); 2501 visitInstruction(SI); 2502 } 2503 2504 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2505 /// a pass, if any exist, it's an error. 2506 /// 2507 void Verifier::visitUserOp1(Instruction &I) { 2508 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2509 } 2510 2511 void Verifier::visitTruncInst(TruncInst &I) { 2512 // Get the source and destination types 2513 Type *SrcTy = I.getOperand(0)->getType(); 2514 Type *DestTy = I.getType(); 2515 2516 // Get the size of the types in bits, we'll need this later 2517 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2518 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2519 2520 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2521 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2522 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2523 "trunc source and destination must both be a vector or neither", &I); 2524 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2525 2526 visitInstruction(I); 2527 } 2528 2529 void Verifier::visitZExtInst(ZExtInst &I) { 2530 // Get the source and destination types 2531 Type *SrcTy = I.getOperand(0)->getType(); 2532 Type *DestTy = I.getType(); 2533 2534 // Get the size of the types in bits, we'll need this later 2535 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2536 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2537 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2538 "zext source and destination must both be a vector or neither", &I); 2539 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2540 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2541 2542 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2543 2544 visitInstruction(I); 2545 } 2546 2547 void Verifier::visitSExtInst(SExtInst &I) { 2548 // Get the source and destination types 2549 Type *SrcTy = I.getOperand(0)->getType(); 2550 Type *DestTy = I.getType(); 2551 2552 // Get the size of the types in bits, we'll need this later 2553 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2554 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2555 2556 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2557 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2558 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2559 "sext source and destination must both be a vector or neither", &I); 2560 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2561 2562 visitInstruction(I); 2563 } 2564 2565 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2566 // Get the source and destination types 2567 Type *SrcTy = I.getOperand(0)->getType(); 2568 Type *DestTy = I.getType(); 2569 // Get the size of the types in bits, we'll need this later 2570 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2571 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2572 2573 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2574 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2575 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2576 "fptrunc source and destination must both be a vector or neither", &I); 2577 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2578 2579 visitInstruction(I); 2580 } 2581 2582 void Verifier::visitFPExtInst(FPExtInst &I) { 2583 // Get the source and destination types 2584 Type *SrcTy = I.getOperand(0)->getType(); 2585 Type *DestTy = I.getType(); 2586 2587 // Get the size of the types in bits, we'll need this later 2588 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2589 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2590 2591 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2592 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2593 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2594 "fpext source and destination must both be a vector or neither", &I); 2595 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2596 2597 visitInstruction(I); 2598 } 2599 2600 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2601 // Get the source and destination types 2602 Type *SrcTy = I.getOperand(0)->getType(); 2603 Type *DestTy = I.getType(); 2604 2605 bool SrcVec = SrcTy->isVectorTy(); 2606 bool DstVec = DestTy->isVectorTy(); 2607 2608 Assert(SrcVec == DstVec, 2609 "UIToFP source and dest must both be vector or scalar", &I); 2610 Assert(SrcTy->isIntOrIntVectorTy(), 2611 "UIToFP source must be integer or integer vector", &I); 2612 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2613 &I); 2614 2615 if (SrcVec && DstVec) 2616 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2617 cast<VectorType>(DestTy)->getNumElements(), 2618 "UIToFP source and dest vector length mismatch", &I); 2619 2620 visitInstruction(I); 2621 } 2622 2623 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2624 // Get the source and destination types 2625 Type *SrcTy = I.getOperand(0)->getType(); 2626 Type *DestTy = I.getType(); 2627 2628 bool SrcVec = SrcTy->isVectorTy(); 2629 bool DstVec = DestTy->isVectorTy(); 2630 2631 Assert(SrcVec == DstVec, 2632 "SIToFP source and dest must both be vector or scalar", &I); 2633 Assert(SrcTy->isIntOrIntVectorTy(), 2634 "SIToFP source must be integer or integer vector", &I); 2635 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2636 &I); 2637 2638 if (SrcVec && DstVec) 2639 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2640 cast<VectorType>(DestTy)->getNumElements(), 2641 "SIToFP source and dest vector length mismatch", &I); 2642 2643 visitInstruction(I); 2644 } 2645 2646 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2647 // Get the source and destination types 2648 Type *SrcTy = I.getOperand(0)->getType(); 2649 Type *DestTy = I.getType(); 2650 2651 bool SrcVec = SrcTy->isVectorTy(); 2652 bool DstVec = DestTy->isVectorTy(); 2653 2654 Assert(SrcVec == DstVec, 2655 "FPToUI source and dest must both be vector or scalar", &I); 2656 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2657 &I); 2658 Assert(DestTy->isIntOrIntVectorTy(), 2659 "FPToUI result must be integer or integer vector", &I); 2660 2661 if (SrcVec && DstVec) 2662 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2663 cast<VectorType>(DestTy)->getNumElements(), 2664 "FPToUI source and dest vector length mismatch", &I); 2665 2666 visitInstruction(I); 2667 } 2668 2669 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2670 // Get the source and destination types 2671 Type *SrcTy = I.getOperand(0)->getType(); 2672 Type *DestTy = I.getType(); 2673 2674 bool SrcVec = SrcTy->isVectorTy(); 2675 bool DstVec = DestTy->isVectorTy(); 2676 2677 Assert(SrcVec == DstVec, 2678 "FPToSI source and dest must both be vector or scalar", &I); 2679 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2680 &I); 2681 Assert(DestTy->isIntOrIntVectorTy(), 2682 "FPToSI result must be integer or integer vector", &I); 2683 2684 if (SrcVec && DstVec) 2685 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2686 cast<VectorType>(DestTy)->getNumElements(), 2687 "FPToSI source and dest vector length mismatch", &I); 2688 2689 visitInstruction(I); 2690 } 2691 2692 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2693 // Get the source and destination types 2694 Type *SrcTy = I.getOperand(0)->getType(); 2695 Type *DestTy = I.getType(); 2696 2697 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2698 2699 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 2700 Assert(!DL.isNonIntegralPointerType(PTy), 2701 "ptrtoint not supported for non-integral pointers"); 2702 2703 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 2704 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2705 &I); 2706 2707 if (SrcTy->isVectorTy()) { 2708 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 2709 VectorType *VDest = dyn_cast<VectorType>(DestTy); 2710 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2711 "PtrToInt Vector width mismatch", &I); 2712 } 2713 2714 visitInstruction(I); 2715 } 2716 2717 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2718 // Get the source and destination types 2719 Type *SrcTy = I.getOperand(0)->getType(); 2720 Type *DestTy = I.getType(); 2721 2722 Assert(SrcTy->isIntOrIntVectorTy(), 2723 "IntToPtr source must be an integral", &I); 2724 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 2725 2726 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 2727 Assert(!DL.isNonIntegralPointerType(PTy), 2728 "inttoptr not supported for non-integral pointers"); 2729 2730 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2731 &I); 2732 if (SrcTy->isVectorTy()) { 2733 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 2734 VectorType *VDest = dyn_cast<VectorType>(DestTy); 2735 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2736 "IntToPtr Vector width mismatch", &I); 2737 } 2738 visitInstruction(I); 2739 } 2740 2741 void Verifier::visitBitCastInst(BitCastInst &I) { 2742 Assert( 2743 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2744 "Invalid bitcast", &I); 2745 visitInstruction(I); 2746 } 2747 2748 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2749 Type *SrcTy = I.getOperand(0)->getType(); 2750 Type *DestTy = I.getType(); 2751 2752 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2753 &I); 2754 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 2755 &I); 2756 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 2757 "AddrSpaceCast must be between different address spaces", &I); 2758 if (SrcTy->isVectorTy()) 2759 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), 2760 "AddrSpaceCast vector pointer number of elements mismatch", &I); 2761 visitInstruction(I); 2762 } 2763 2764 /// visitPHINode - Ensure that a PHI node is well formed. 2765 /// 2766 void Verifier::visitPHINode(PHINode &PN) { 2767 // Ensure that the PHI nodes are all grouped together at the top of the block. 2768 // This can be tested by checking whether the instruction before this is 2769 // either nonexistent (because this is begin()) or is a PHI node. If not, 2770 // then there is some other instruction before a PHI. 2771 Assert(&PN == &PN.getParent()->front() || 2772 isa<PHINode>(--BasicBlock::iterator(&PN)), 2773 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 2774 2775 // Check that a PHI doesn't yield a Token. 2776 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 2777 2778 // Check that all of the values of the PHI node have the same type as the 2779 // result, and that the incoming blocks are really basic blocks. 2780 for (Value *IncValue : PN.incoming_values()) { 2781 Assert(PN.getType() == IncValue->getType(), 2782 "PHI node operands are not the same type as the result!", &PN); 2783 } 2784 2785 // All other PHI node constraints are checked in the visitBasicBlock method. 2786 2787 visitInstruction(PN); 2788 } 2789 2790 void Verifier::visitCallBase(CallBase &Call) { 2791 Assert(Call.getCalledValue()->getType()->isPointerTy(), 2792 "Called function must be a pointer!", Call); 2793 PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType()); 2794 2795 Assert(FPTy->getElementType()->isFunctionTy(), 2796 "Called function is not pointer to function type!", Call); 2797 2798 Assert(FPTy->getElementType() == Call.getFunctionType(), 2799 "Called function is not the same type as the call!", Call); 2800 2801 FunctionType *FTy = Call.getFunctionType(); 2802 2803 // Verify that the correct number of arguments are being passed 2804 if (FTy->isVarArg()) 2805 Assert(Call.arg_size() >= FTy->getNumParams(), 2806 "Called function requires more parameters than were provided!", 2807 Call); 2808 else 2809 Assert(Call.arg_size() == FTy->getNumParams(), 2810 "Incorrect number of arguments passed to called function!", Call); 2811 2812 // Verify that all arguments to the call match the function type. 2813 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2814 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 2815 "Call parameter type does not match function signature!", 2816 Call.getArgOperand(i), FTy->getParamType(i), Call); 2817 2818 AttributeList Attrs = Call.getAttributes(); 2819 2820 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 2821 "Attribute after last parameter!", Call); 2822 2823 bool IsIntrinsic = Call.getCalledFunction() && 2824 Call.getCalledFunction()->getName().startswith("llvm."); 2825 2826 Function *Callee 2827 = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts()); 2828 2829 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) { 2830 // Don't allow speculatable on call sites, unless the underlying function 2831 // declaration is also speculatable. 2832 Assert(Callee && Callee->isSpeculatable(), 2833 "speculatable attribute may not apply to call sites", Call); 2834 } 2835 2836 // Verify call attributes. 2837 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 2838 2839 // Conservatively check the inalloca argument. 2840 // We have a bug if we can find that there is an underlying alloca without 2841 // inalloca. 2842 if (Call.hasInAllocaArgument()) { 2843 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 2844 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 2845 Assert(AI->isUsedWithInAlloca(), 2846 "inalloca argument for call has mismatched alloca", AI, Call); 2847 } 2848 2849 // For each argument of the callsite, if it has the swifterror argument, 2850 // make sure the underlying alloca/parameter it comes from has a swifterror as 2851 // well. 2852 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2853 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 2854 Value *SwiftErrorArg = Call.getArgOperand(i); 2855 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 2856 Assert(AI->isSwiftError(), 2857 "swifterror argument for call has mismatched alloca", AI, Call); 2858 continue; 2859 } 2860 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 2861 Assert(ArgI, 2862 "swifterror argument should come from an alloca or parameter", 2863 SwiftErrorArg, Call); 2864 Assert(ArgI->hasSwiftErrorAttr(), 2865 "swifterror argument for call has mismatched parameter", ArgI, 2866 Call); 2867 } 2868 2869 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) { 2870 // Don't allow immarg on call sites, unless the underlying declaration 2871 // also has the matching immarg. 2872 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 2873 "immarg may not apply only to call sites", 2874 Call.getArgOperand(i), Call); 2875 } 2876 2877 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 2878 Value *ArgVal = Call.getArgOperand(i); 2879 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 2880 "immarg operand has non-immediate parameter", ArgVal, Call); 2881 } 2882 } 2883 2884 if (FTy->isVarArg()) { 2885 // FIXME? is 'nest' even legal here? 2886 bool SawNest = false; 2887 bool SawReturned = false; 2888 2889 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 2890 if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) 2891 SawNest = true; 2892 if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) 2893 SawReturned = true; 2894 } 2895 2896 // Check attributes on the varargs part. 2897 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 2898 Type *Ty = Call.getArgOperand(Idx)->getType(); 2899 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); 2900 verifyParameterAttrs(ArgAttrs, Ty, &Call); 2901 2902 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 2903 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 2904 SawNest = true; 2905 } 2906 2907 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 2908 Assert(!SawReturned, "More than one parameter has attribute returned!", 2909 Call); 2910 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 2911 "Incompatible argument and return types for 'returned' " 2912 "attribute", 2913 Call); 2914 SawReturned = true; 2915 } 2916 2917 // Statepoint intrinsic is vararg but the wrapped function may be not. 2918 // Allow sret here and check the wrapped function in verifyStatepoint. 2919 if (!Call.getCalledFunction() || 2920 Call.getCalledFunction()->getIntrinsicID() != 2921 Intrinsic::experimental_gc_statepoint) 2922 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2923 "Attribute 'sret' cannot be used for vararg call arguments!", 2924 Call); 2925 2926 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 2927 Assert(Idx == Call.arg_size() - 1, 2928 "inalloca isn't on the last argument!", Call); 2929 } 2930 } 2931 2932 // Verify that there's no metadata unless it's a direct call to an intrinsic. 2933 if (!IsIntrinsic) { 2934 for (Type *ParamTy : FTy->params()) { 2935 Assert(!ParamTy->isMetadataTy(), 2936 "Function has metadata parameter but isn't an intrinsic", Call); 2937 Assert(!ParamTy->isTokenTy(), 2938 "Function has token parameter but isn't an intrinsic", Call); 2939 } 2940 } 2941 2942 // Verify that indirect calls don't return tokens. 2943 if (!Call.getCalledFunction()) 2944 Assert(!FTy->getReturnType()->isTokenTy(), 2945 "Return type cannot be token for indirect call!"); 2946 2947 if (Function *F = Call.getCalledFunction()) 2948 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 2949 visitIntrinsicCall(ID, Call); 2950 2951 // Verify that a callsite has at most one "deopt", at most one "funclet" and 2952 // at most one "gc-transition" operand bundle. 2953 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 2954 FoundGCTransitionBundle = false; 2955 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 2956 OperandBundleUse BU = Call.getOperandBundleAt(i); 2957 uint32_t Tag = BU.getTagID(); 2958 if (Tag == LLVMContext::OB_deopt) { 2959 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 2960 FoundDeoptBundle = true; 2961 } else if (Tag == LLVMContext::OB_gc_transition) { 2962 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 2963 Call); 2964 FoundGCTransitionBundle = true; 2965 } else if (Tag == LLVMContext::OB_funclet) { 2966 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 2967 FoundFuncletBundle = true; 2968 Assert(BU.Inputs.size() == 1, 2969 "Expected exactly one funclet bundle operand", Call); 2970 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 2971 "Funclet bundle operands should correspond to a FuncletPadInst", 2972 Call); 2973 } 2974 } 2975 2976 // Verify that each inlinable callsite of a debug-info-bearing function in a 2977 // debug-info-bearing function has a debug location attached to it. Failure to 2978 // do so causes assertion failures when the inliner sets up inline scope info. 2979 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 2980 Call.getCalledFunction()->getSubprogram()) 2981 AssertDI(Call.getDebugLoc(), 2982 "inlinable function call in a function with " 2983 "debug info must have a !dbg location", 2984 Call); 2985 2986 visitInstruction(Call); 2987 } 2988 2989 /// Two types are "congruent" if they are identical, or if they are both pointer 2990 /// types with different pointee types and the same address space. 2991 static bool isTypeCongruent(Type *L, Type *R) { 2992 if (L == R) 2993 return true; 2994 PointerType *PL = dyn_cast<PointerType>(L); 2995 PointerType *PR = dyn_cast<PointerType>(R); 2996 if (!PL || !PR) 2997 return false; 2998 return PL->getAddressSpace() == PR->getAddressSpace(); 2999 } 3000 3001 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 3002 static const Attribute::AttrKind ABIAttrs[] = { 3003 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3004 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf, 3005 Attribute::SwiftError}; 3006 AttrBuilder Copy; 3007 for (auto AK : ABIAttrs) { 3008 if (Attrs.hasParamAttribute(I, AK)) 3009 Copy.addAttribute(AK); 3010 } 3011 if (Attrs.hasParamAttribute(I, Attribute::Alignment)) 3012 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3013 return Copy; 3014 } 3015 3016 void Verifier::verifyMustTailCall(CallInst &CI) { 3017 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3018 3019 // - The caller and callee prototypes must match. Pointer types of 3020 // parameters or return types may differ in pointee type, but not 3021 // address space. 3022 Function *F = CI.getParent()->getParent(); 3023 FunctionType *CallerTy = F->getFunctionType(); 3024 FunctionType *CalleeTy = CI.getFunctionType(); 3025 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3026 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3027 "cannot guarantee tail call due to mismatched parameter counts", 3028 &CI); 3029 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3030 Assert( 3031 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3032 "cannot guarantee tail call due to mismatched parameter types", &CI); 3033 } 3034 } 3035 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3036 "cannot guarantee tail call due to mismatched varargs", &CI); 3037 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3038 "cannot guarantee tail call due to mismatched return types", &CI); 3039 3040 // - The calling conventions of the caller and callee must match. 3041 Assert(F->getCallingConv() == CI.getCallingConv(), 3042 "cannot guarantee tail call due to mismatched calling conv", &CI); 3043 3044 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3045 // returned, and inalloca, must match. 3046 AttributeList CallerAttrs = F->getAttributes(); 3047 AttributeList CalleeAttrs = CI.getAttributes(); 3048 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3049 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3050 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3051 Assert(CallerABIAttrs == CalleeABIAttrs, 3052 "cannot guarantee tail call due to mismatched ABI impacting " 3053 "function attributes", 3054 &CI, CI.getOperand(I)); 3055 } 3056 3057 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3058 // or a pointer bitcast followed by a ret instruction. 3059 // - The ret instruction must return the (possibly bitcasted) value 3060 // produced by the call or void. 3061 Value *RetVal = &CI; 3062 Instruction *Next = CI.getNextNode(); 3063 3064 // Handle the optional bitcast. 3065 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3066 Assert(BI->getOperand(0) == RetVal, 3067 "bitcast following musttail call must use the call", BI); 3068 RetVal = BI; 3069 Next = BI->getNextNode(); 3070 } 3071 3072 // Check the return. 3073 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3074 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3075 &CI); 3076 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 3077 "musttail call result must be returned", Ret); 3078 } 3079 3080 void Verifier::visitCallInst(CallInst &CI) { 3081 visitCallBase(CI); 3082 3083 if (CI.isMustTailCall()) 3084 verifyMustTailCall(CI); 3085 } 3086 3087 void Verifier::visitInvokeInst(InvokeInst &II) { 3088 visitCallBase(II); 3089 3090 // Verify that the first non-PHI instruction of the unwind destination is an 3091 // exception handling instruction. 3092 Assert( 3093 II.getUnwindDest()->isEHPad(), 3094 "The unwind destination does not have an exception handling instruction!", 3095 &II); 3096 3097 visitTerminator(II); 3098 } 3099 3100 /// visitUnaryOperator - Check the argument to the unary operator. 3101 /// 3102 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3103 Assert(U.getType() == U.getOperand(0)->getType(), 3104 "Unary operators must have same type for" 3105 "operands and result!", 3106 &U); 3107 3108 switch (U.getOpcode()) { 3109 // Check that floating-point arithmetic operators are only used with 3110 // floating-point operands. 3111 case Instruction::FNeg: 3112 Assert(U.getType()->isFPOrFPVectorTy(), 3113 "FNeg operator only works with float types!", &U); 3114 break; 3115 default: 3116 llvm_unreachable("Unknown UnaryOperator opcode!"); 3117 } 3118 3119 visitInstruction(U); 3120 } 3121 3122 /// visitBinaryOperator - Check that both arguments to the binary operator are 3123 /// of the same type! 3124 /// 3125 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3126 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3127 "Both operands to a binary operator are not of the same type!", &B); 3128 3129 switch (B.getOpcode()) { 3130 // Check that integer arithmetic operators are only used with 3131 // integral operands. 3132 case Instruction::Add: 3133 case Instruction::Sub: 3134 case Instruction::Mul: 3135 case Instruction::SDiv: 3136 case Instruction::UDiv: 3137 case Instruction::SRem: 3138 case Instruction::URem: 3139 Assert(B.getType()->isIntOrIntVectorTy(), 3140 "Integer arithmetic operators only work with integral types!", &B); 3141 Assert(B.getType() == B.getOperand(0)->getType(), 3142 "Integer arithmetic operators must have same type " 3143 "for operands and result!", 3144 &B); 3145 break; 3146 // Check that floating-point arithmetic operators are only used with 3147 // floating-point operands. 3148 case Instruction::FAdd: 3149 case Instruction::FSub: 3150 case Instruction::FMul: 3151 case Instruction::FDiv: 3152 case Instruction::FRem: 3153 Assert(B.getType()->isFPOrFPVectorTy(), 3154 "Floating-point arithmetic operators only work with " 3155 "floating-point types!", 3156 &B); 3157 Assert(B.getType() == B.getOperand(0)->getType(), 3158 "Floating-point arithmetic operators must have same type " 3159 "for operands and result!", 3160 &B); 3161 break; 3162 // Check that logical operators are only used with integral operands. 3163 case Instruction::And: 3164 case Instruction::Or: 3165 case Instruction::Xor: 3166 Assert(B.getType()->isIntOrIntVectorTy(), 3167 "Logical operators only work with integral types!", &B); 3168 Assert(B.getType() == B.getOperand(0)->getType(), 3169 "Logical operators must have same type for operands and result!", 3170 &B); 3171 break; 3172 case Instruction::Shl: 3173 case Instruction::LShr: 3174 case Instruction::AShr: 3175 Assert(B.getType()->isIntOrIntVectorTy(), 3176 "Shifts only work with integral types!", &B); 3177 Assert(B.getType() == B.getOperand(0)->getType(), 3178 "Shift return type must be same as operands!", &B); 3179 break; 3180 default: 3181 llvm_unreachable("Unknown BinaryOperator opcode!"); 3182 } 3183 3184 visitInstruction(B); 3185 } 3186 3187 void Verifier::visitICmpInst(ICmpInst &IC) { 3188 // Check that the operands are the same type 3189 Type *Op0Ty = IC.getOperand(0)->getType(); 3190 Type *Op1Ty = IC.getOperand(1)->getType(); 3191 Assert(Op0Ty == Op1Ty, 3192 "Both operands to ICmp instruction are not of the same type!", &IC); 3193 // Check that the operands are the right type 3194 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3195 "Invalid operand types for ICmp instruction", &IC); 3196 // Check that the predicate is valid. 3197 Assert(IC.isIntPredicate(), 3198 "Invalid predicate in ICmp instruction!", &IC); 3199 3200 visitInstruction(IC); 3201 } 3202 3203 void Verifier::visitFCmpInst(FCmpInst &FC) { 3204 // Check that the operands are the same type 3205 Type *Op0Ty = FC.getOperand(0)->getType(); 3206 Type *Op1Ty = FC.getOperand(1)->getType(); 3207 Assert(Op0Ty == Op1Ty, 3208 "Both operands to FCmp instruction are not of the same type!", &FC); 3209 // Check that the operands are the right type 3210 Assert(Op0Ty->isFPOrFPVectorTy(), 3211 "Invalid operand types for FCmp instruction", &FC); 3212 // Check that the predicate is valid. 3213 Assert(FC.isFPPredicate(), 3214 "Invalid predicate in FCmp instruction!", &FC); 3215 3216 visitInstruction(FC); 3217 } 3218 3219 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3220 Assert( 3221 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3222 "Invalid extractelement operands!", &EI); 3223 visitInstruction(EI); 3224 } 3225 3226 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3227 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3228 IE.getOperand(2)), 3229 "Invalid insertelement operands!", &IE); 3230 visitInstruction(IE); 3231 } 3232 3233 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3234 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3235 SV.getOperand(2)), 3236 "Invalid shufflevector operands!", &SV); 3237 visitInstruction(SV); 3238 } 3239 3240 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3241 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3242 3243 Assert(isa<PointerType>(TargetTy), 3244 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3245 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3246 3247 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 3248 Assert(all_of( 3249 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3250 "GEP indexes must be integers", &GEP); 3251 Type *ElTy = 3252 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3253 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3254 3255 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3256 GEP.getResultElementType() == ElTy, 3257 "GEP is not of right type for indices!", &GEP, ElTy); 3258 3259 if (GEP.getType()->isVectorTy()) { 3260 // Additional checks for vector GEPs. 3261 unsigned GEPWidth = GEP.getType()->getVectorNumElements(); 3262 if (GEP.getPointerOperandType()->isVectorTy()) 3263 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(), 3264 "Vector GEP result width doesn't match operand's", &GEP); 3265 for (Value *Idx : Idxs) { 3266 Type *IndexTy = Idx->getType(); 3267 if (IndexTy->isVectorTy()) { 3268 unsigned IndexWidth = IndexTy->getVectorNumElements(); 3269 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3270 } 3271 Assert(IndexTy->isIntOrIntVectorTy(), 3272 "All GEP indices should be of integer type"); 3273 } 3274 } 3275 3276 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3277 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3278 "GEP address space doesn't match type", &GEP); 3279 } 3280 3281 visitInstruction(GEP); 3282 } 3283 3284 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3285 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3286 } 3287 3288 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3289 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3290 "precondition violation"); 3291 3292 unsigned NumOperands = Range->getNumOperands(); 3293 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3294 unsigned NumRanges = NumOperands / 2; 3295 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3296 3297 ConstantRange LastRange(1, true); // Dummy initial value 3298 for (unsigned i = 0; i < NumRanges; ++i) { 3299 ConstantInt *Low = 3300 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3301 Assert(Low, "The lower limit must be an integer!", Low); 3302 ConstantInt *High = 3303 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3304 Assert(High, "The upper limit must be an integer!", High); 3305 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3306 "Range types must match instruction type!", &I); 3307 3308 APInt HighV = High->getValue(); 3309 APInt LowV = Low->getValue(); 3310 ConstantRange CurRange(LowV, HighV); 3311 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3312 "Range must not be empty!", Range); 3313 if (i != 0) { 3314 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3315 "Intervals are overlapping", Range); 3316 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3317 Range); 3318 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3319 Range); 3320 } 3321 LastRange = ConstantRange(LowV, HighV); 3322 } 3323 if (NumRanges > 2) { 3324 APInt FirstLow = 3325 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3326 APInt FirstHigh = 3327 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3328 ConstantRange FirstRange(FirstLow, FirstHigh); 3329 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3330 "Intervals are overlapping", Range); 3331 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3332 Range); 3333 } 3334 } 3335 3336 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3337 unsigned Size = DL.getTypeSizeInBits(Ty); 3338 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3339 Assert(!(Size & (Size - 1)), 3340 "atomic memory access' operand must have a power-of-two size", Ty, I); 3341 } 3342 3343 void Verifier::visitLoadInst(LoadInst &LI) { 3344 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3345 Assert(PTy, "Load operand must be a pointer.", &LI); 3346 Type *ElTy = LI.getType(); 3347 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3348 "huge alignment values are unsupported", &LI); 3349 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3350 if (LI.isAtomic()) { 3351 Assert(LI.getOrdering() != AtomicOrdering::Release && 3352 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3353 "Load cannot have Release ordering", &LI); 3354 Assert(LI.getAlignment() != 0, 3355 "Atomic load must specify explicit alignment", &LI); 3356 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3357 "atomic load operand must have integer, pointer, or floating point " 3358 "type!", 3359 ElTy, &LI); 3360 checkAtomicMemAccessSize(ElTy, &LI); 3361 } else { 3362 Assert(LI.getSyncScopeID() == SyncScope::System, 3363 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3364 } 3365 3366 visitInstruction(LI); 3367 } 3368 3369 void Verifier::visitStoreInst(StoreInst &SI) { 3370 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3371 Assert(PTy, "Store operand must be a pointer.", &SI); 3372 Type *ElTy = PTy->getElementType(); 3373 Assert(ElTy == SI.getOperand(0)->getType(), 3374 "Stored value type does not match pointer operand type!", &SI, ElTy); 3375 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3376 "huge alignment values are unsupported", &SI); 3377 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3378 if (SI.isAtomic()) { 3379 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3380 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3381 "Store cannot have Acquire ordering", &SI); 3382 Assert(SI.getAlignment() != 0, 3383 "Atomic store must specify explicit alignment", &SI); 3384 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3385 "atomic store operand must have integer, pointer, or floating point " 3386 "type!", 3387 ElTy, &SI); 3388 checkAtomicMemAccessSize(ElTy, &SI); 3389 } else { 3390 Assert(SI.getSyncScopeID() == SyncScope::System, 3391 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3392 } 3393 visitInstruction(SI); 3394 } 3395 3396 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3397 void Verifier::verifySwiftErrorCall(CallBase &Call, 3398 const Value *SwiftErrorVal) { 3399 unsigned Idx = 0; 3400 for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) { 3401 if (*I == SwiftErrorVal) { 3402 Assert(Call.paramHasAttr(Idx, Attribute::SwiftError), 3403 "swifterror value when used in a callsite should be marked " 3404 "with swifterror attribute", 3405 SwiftErrorVal, Call); 3406 } 3407 } 3408 } 3409 3410 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3411 // Check that swifterror value is only used by loads, stores, or as 3412 // a swifterror argument. 3413 for (const User *U : SwiftErrorVal->users()) { 3414 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3415 isa<InvokeInst>(U), 3416 "swifterror value can only be loaded and stored from, or " 3417 "as a swifterror argument!", 3418 SwiftErrorVal, U); 3419 // If it is used by a store, check it is the second operand. 3420 if (auto StoreI = dyn_cast<StoreInst>(U)) 3421 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3422 "swifterror value should be the second operand when used " 3423 "by stores", SwiftErrorVal, U); 3424 if (auto *Call = dyn_cast<CallBase>(U)) 3425 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3426 } 3427 } 3428 3429 void Verifier::visitAllocaInst(AllocaInst &AI) { 3430 SmallPtrSet<Type*, 4> Visited; 3431 PointerType *PTy = AI.getType(); 3432 // TODO: Relax this restriction? 3433 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), 3434 "Allocation instruction pointer not in the stack address space!", 3435 &AI); 3436 Assert(AI.getAllocatedType()->isSized(&Visited), 3437 "Cannot allocate unsized type", &AI); 3438 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3439 "Alloca array size must have integer type", &AI); 3440 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3441 "huge alignment values are unsupported", &AI); 3442 3443 if (AI.isSwiftError()) { 3444 verifySwiftErrorValue(&AI); 3445 } 3446 3447 visitInstruction(AI); 3448 } 3449 3450 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3451 3452 // FIXME: more conditions??? 3453 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 3454 "cmpxchg instructions must be atomic.", &CXI); 3455 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 3456 "cmpxchg instructions must be atomic.", &CXI); 3457 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 3458 "cmpxchg instructions cannot be unordered.", &CXI); 3459 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 3460 "cmpxchg instructions cannot be unordered.", &CXI); 3461 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 3462 "cmpxchg instructions failure argument shall be no stronger than the " 3463 "success argument", 3464 &CXI); 3465 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 3466 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 3467 "cmpxchg failure ordering cannot include release semantics", &CXI); 3468 3469 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 3470 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 3471 Type *ElTy = PTy->getElementType(); 3472 Assert(ElTy->isIntOrPtrTy(), 3473 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3474 checkAtomicMemAccessSize(ElTy, &CXI); 3475 Assert(ElTy == CXI.getOperand(1)->getType(), 3476 "Expected value type does not match pointer operand type!", &CXI, 3477 ElTy); 3478 Assert(ElTy == CXI.getOperand(2)->getType(), 3479 "Stored value type does not match pointer operand type!", &CXI, ElTy); 3480 visitInstruction(CXI); 3481 } 3482 3483 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3484 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 3485 "atomicrmw instructions must be atomic.", &RMWI); 3486 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3487 "atomicrmw instructions cannot be unordered.", &RMWI); 3488 auto Op = RMWI.getOperation(); 3489 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 3490 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 3491 Type *ElTy = PTy->getElementType(); 3492 if (Op == AtomicRMWInst::Xchg) { 3493 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3494 AtomicRMWInst::getOperationName(Op) + 3495 " operand must have integer or floating point type!", 3496 &RMWI, ElTy); 3497 } else if (AtomicRMWInst::isFPOperation(Op)) { 3498 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3499 AtomicRMWInst::getOperationName(Op) + 3500 " operand must have floating point type!", 3501 &RMWI, ElTy); 3502 } else { 3503 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3504 AtomicRMWInst::getOperationName(Op) + 3505 " operand must have integer type!", 3506 &RMWI, ElTy); 3507 } 3508 checkAtomicMemAccessSize(ElTy, &RMWI); 3509 Assert(ElTy == RMWI.getOperand(1)->getType(), 3510 "Argument value type does not match pointer operand type!", &RMWI, 3511 ElTy); 3512 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3513 "Invalid binary operation!", &RMWI); 3514 visitInstruction(RMWI); 3515 } 3516 3517 void Verifier::visitFenceInst(FenceInst &FI) { 3518 const AtomicOrdering Ordering = FI.getOrdering(); 3519 Assert(Ordering == AtomicOrdering::Acquire || 3520 Ordering == AtomicOrdering::Release || 3521 Ordering == AtomicOrdering::AcquireRelease || 3522 Ordering == AtomicOrdering::SequentiallyConsistent, 3523 "fence instructions may only have acquire, release, acq_rel, or " 3524 "seq_cst ordering.", 3525 &FI); 3526 visitInstruction(FI); 3527 } 3528 3529 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3530 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3531 EVI.getIndices()) == EVI.getType(), 3532 "Invalid ExtractValueInst operands!", &EVI); 3533 3534 visitInstruction(EVI); 3535 } 3536 3537 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3538 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3539 IVI.getIndices()) == 3540 IVI.getOperand(1)->getType(), 3541 "Invalid InsertValueInst operands!", &IVI); 3542 3543 visitInstruction(IVI); 3544 } 3545 3546 static Value *getParentPad(Value *EHPad) { 3547 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3548 return FPI->getParentPad(); 3549 3550 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3551 } 3552 3553 void Verifier::visitEHPadPredecessors(Instruction &I) { 3554 assert(I.isEHPad()); 3555 3556 BasicBlock *BB = I.getParent(); 3557 Function *F = BB->getParent(); 3558 3559 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3560 3561 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3562 // The landingpad instruction defines its parent as a landing pad block. The 3563 // landing pad block may be branched to only by the unwind edge of an 3564 // invoke. 3565 for (BasicBlock *PredBB : predecessors(BB)) { 3566 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3567 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3568 "Block containing LandingPadInst must be jumped to " 3569 "only by the unwind edge of an invoke.", 3570 LPI); 3571 } 3572 return; 3573 } 3574 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3575 if (!pred_empty(BB)) 3576 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3577 "Block containg CatchPadInst must be jumped to " 3578 "only by its catchswitch.", 3579 CPI); 3580 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3581 "Catchswitch cannot unwind to one of its catchpads", 3582 CPI->getCatchSwitch(), CPI); 3583 return; 3584 } 3585 3586 // Verify that each pred has a legal terminator with a legal to/from EH 3587 // pad relationship. 3588 Instruction *ToPad = &I; 3589 Value *ToPadParent = getParentPad(ToPad); 3590 for (BasicBlock *PredBB : predecessors(BB)) { 3591 Instruction *TI = PredBB->getTerminator(); 3592 Value *FromPad; 3593 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3594 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3595 "EH pad must be jumped to via an unwind edge", ToPad, II); 3596 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3597 FromPad = Bundle->Inputs[0]; 3598 else 3599 FromPad = ConstantTokenNone::get(II->getContext()); 3600 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3601 FromPad = CRI->getOperand(0); 3602 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3603 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3604 FromPad = CSI; 3605 } else { 3606 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3607 } 3608 3609 // The edge may exit from zero or more nested pads. 3610 SmallSet<Value *, 8> Seen; 3611 for (;; FromPad = getParentPad(FromPad)) { 3612 Assert(FromPad != ToPad, 3613 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3614 if (FromPad == ToPadParent) { 3615 // This is a legal unwind edge. 3616 break; 3617 } 3618 Assert(!isa<ConstantTokenNone>(FromPad), 3619 "A single unwind edge may only enter one EH pad", TI); 3620 Assert(Seen.insert(FromPad).second, 3621 "EH pad jumps through a cycle of pads", FromPad); 3622 } 3623 } 3624 } 3625 3626 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3627 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3628 // isn't a cleanup. 3629 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3630 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3631 3632 visitEHPadPredecessors(LPI); 3633 3634 if (!LandingPadResultTy) 3635 LandingPadResultTy = LPI.getType(); 3636 else 3637 Assert(LandingPadResultTy == LPI.getType(), 3638 "The landingpad instruction should have a consistent result type " 3639 "inside a function.", 3640 &LPI); 3641 3642 Function *F = LPI.getParent()->getParent(); 3643 Assert(F->hasPersonalityFn(), 3644 "LandingPadInst needs to be in a function with a personality.", &LPI); 3645 3646 // The landingpad instruction must be the first non-PHI instruction in the 3647 // block. 3648 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3649 "LandingPadInst not the first non-PHI instruction in the block.", 3650 &LPI); 3651 3652 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3653 Constant *Clause = LPI.getClause(i); 3654 if (LPI.isCatch(i)) { 3655 Assert(isa<PointerType>(Clause->getType()), 3656 "Catch operand does not have pointer type!", &LPI); 3657 } else { 3658 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3659 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3660 "Filter operand is not an array of constants!", &LPI); 3661 } 3662 } 3663 3664 visitInstruction(LPI); 3665 } 3666 3667 void Verifier::visitResumeInst(ResumeInst &RI) { 3668 Assert(RI.getFunction()->hasPersonalityFn(), 3669 "ResumeInst needs to be in a function with a personality.", &RI); 3670 3671 if (!LandingPadResultTy) 3672 LandingPadResultTy = RI.getValue()->getType(); 3673 else 3674 Assert(LandingPadResultTy == RI.getValue()->getType(), 3675 "The resume instruction should have a consistent result type " 3676 "inside a function.", 3677 &RI); 3678 3679 visitTerminator(RI); 3680 } 3681 3682 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3683 BasicBlock *BB = CPI.getParent(); 3684 3685 Function *F = BB->getParent(); 3686 Assert(F->hasPersonalityFn(), 3687 "CatchPadInst needs to be in a function with a personality.", &CPI); 3688 3689 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 3690 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 3691 CPI.getParentPad()); 3692 3693 // The catchpad instruction must be the first non-PHI instruction in the 3694 // block. 3695 Assert(BB->getFirstNonPHI() == &CPI, 3696 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 3697 3698 visitEHPadPredecessors(CPI); 3699 visitFuncletPadInst(CPI); 3700 } 3701 3702 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 3703 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 3704 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 3705 CatchReturn.getOperand(0)); 3706 3707 visitTerminator(CatchReturn); 3708 } 3709 3710 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 3711 BasicBlock *BB = CPI.getParent(); 3712 3713 Function *F = BB->getParent(); 3714 Assert(F->hasPersonalityFn(), 3715 "CleanupPadInst needs to be in a function with a personality.", &CPI); 3716 3717 // The cleanuppad instruction must be the first non-PHI instruction in the 3718 // block. 3719 Assert(BB->getFirstNonPHI() == &CPI, 3720 "CleanupPadInst not the first non-PHI instruction in the block.", 3721 &CPI); 3722 3723 auto *ParentPad = CPI.getParentPad(); 3724 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3725 "CleanupPadInst has an invalid parent.", &CPI); 3726 3727 visitEHPadPredecessors(CPI); 3728 visitFuncletPadInst(CPI); 3729 } 3730 3731 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 3732 User *FirstUser = nullptr; 3733 Value *FirstUnwindPad = nullptr; 3734 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 3735 SmallSet<FuncletPadInst *, 8> Seen; 3736 3737 while (!Worklist.empty()) { 3738 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 3739 Assert(Seen.insert(CurrentPad).second, 3740 "FuncletPadInst must not be nested within itself", CurrentPad); 3741 Value *UnresolvedAncestorPad = nullptr; 3742 for (User *U : CurrentPad->users()) { 3743 BasicBlock *UnwindDest; 3744 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 3745 UnwindDest = CRI->getUnwindDest(); 3746 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 3747 // We allow catchswitch unwind to caller to nest 3748 // within an outer pad that unwinds somewhere else, 3749 // because catchswitch doesn't have a nounwind variant. 3750 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 3751 if (CSI->unwindsToCaller()) 3752 continue; 3753 UnwindDest = CSI->getUnwindDest(); 3754 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 3755 UnwindDest = II->getUnwindDest(); 3756 } else if (isa<CallInst>(U)) { 3757 // Calls which don't unwind may be found inside funclet 3758 // pads that unwind somewhere else. We don't *require* 3759 // such calls to be annotated nounwind. 3760 continue; 3761 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 3762 // The unwind dest for a cleanup can only be found by 3763 // recursive search. Add it to the worklist, and we'll 3764 // search for its first use that determines where it unwinds. 3765 Worklist.push_back(CPI); 3766 continue; 3767 } else { 3768 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 3769 continue; 3770 } 3771 3772 Value *UnwindPad; 3773 bool ExitsFPI; 3774 if (UnwindDest) { 3775 UnwindPad = UnwindDest->getFirstNonPHI(); 3776 if (!cast<Instruction>(UnwindPad)->isEHPad()) 3777 continue; 3778 Value *UnwindParent = getParentPad(UnwindPad); 3779 // Ignore unwind edges that don't exit CurrentPad. 3780 if (UnwindParent == CurrentPad) 3781 continue; 3782 // Determine whether the original funclet pad is exited, 3783 // and if we are scanning nested pads determine how many 3784 // of them are exited so we can stop searching their 3785 // children. 3786 Value *ExitedPad = CurrentPad; 3787 ExitsFPI = false; 3788 do { 3789 if (ExitedPad == &FPI) { 3790 ExitsFPI = true; 3791 // Now we can resolve any ancestors of CurrentPad up to 3792 // FPI, but not including FPI since we need to make sure 3793 // to check all direct users of FPI for consistency. 3794 UnresolvedAncestorPad = &FPI; 3795 break; 3796 } 3797 Value *ExitedParent = getParentPad(ExitedPad); 3798 if (ExitedParent == UnwindParent) { 3799 // ExitedPad is the ancestor-most pad which this unwind 3800 // edge exits, so we can resolve up to it, meaning that 3801 // ExitedParent is the first ancestor still unresolved. 3802 UnresolvedAncestorPad = ExitedParent; 3803 break; 3804 } 3805 ExitedPad = ExitedParent; 3806 } while (!isa<ConstantTokenNone>(ExitedPad)); 3807 } else { 3808 // Unwinding to caller exits all pads. 3809 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 3810 ExitsFPI = true; 3811 UnresolvedAncestorPad = &FPI; 3812 } 3813 3814 if (ExitsFPI) { 3815 // This unwind edge exits FPI. Make sure it agrees with other 3816 // such edges. 3817 if (FirstUser) { 3818 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 3819 "pad must have the same unwind " 3820 "dest", 3821 &FPI, U, FirstUser); 3822 } else { 3823 FirstUser = U; 3824 FirstUnwindPad = UnwindPad; 3825 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 3826 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 3827 getParentPad(UnwindPad) == getParentPad(&FPI)) 3828 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 3829 } 3830 } 3831 // Make sure we visit all uses of FPI, but for nested pads stop as 3832 // soon as we know where they unwind to. 3833 if (CurrentPad != &FPI) 3834 break; 3835 } 3836 if (UnresolvedAncestorPad) { 3837 if (CurrentPad == UnresolvedAncestorPad) { 3838 // When CurrentPad is FPI itself, we don't mark it as resolved even if 3839 // we've found an unwind edge that exits it, because we need to verify 3840 // all direct uses of FPI. 3841 assert(CurrentPad == &FPI); 3842 continue; 3843 } 3844 // Pop off the worklist any nested pads that we've found an unwind 3845 // destination for. The pads on the worklist are the uncles, 3846 // great-uncles, etc. of CurrentPad. We've found an unwind destination 3847 // for all ancestors of CurrentPad up to but not including 3848 // UnresolvedAncestorPad. 3849 Value *ResolvedPad = CurrentPad; 3850 while (!Worklist.empty()) { 3851 Value *UnclePad = Worklist.back(); 3852 Value *AncestorPad = getParentPad(UnclePad); 3853 // Walk ResolvedPad up the ancestor list until we either find the 3854 // uncle's parent or the last resolved ancestor. 3855 while (ResolvedPad != AncestorPad) { 3856 Value *ResolvedParent = getParentPad(ResolvedPad); 3857 if (ResolvedParent == UnresolvedAncestorPad) { 3858 break; 3859 } 3860 ResolvedPad = ResolvedParent; 3861 } 3862 // If the resolved ancestor search didn't find the uncle's parent, 3863 // then the uncle is not yet resolved. 3864 if (ResolvedPad != AncestorPad) 3865 break; 3866 // This uncle is resolved, so pop it from the worklist. 3867 Worklist.pop_back(); 3868 } 3869 } 3870 } 3871 3872 if (FirstUnwindPad) { 3873 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 3874 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 3875 Value *SwitchUnwindPad; 3876 if (SwitchUnwindDest) 3877 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 3878 else 3879 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 3880 Assert(SwitchUnwindPad == FirstUnwindPad, 3881 "Unwind edges out of a catch must have the same unwind dest as " 3882 "the parent catchswitch", 3883 &FPI, FirstUser, CatchSwitch); 3884 } 3885 } 3886 3887 visitInstruction(FPI); 3888 } 3889 3890 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 3891 BasicBlock *BB = CatchSwitch.getParent(); 3892 3893 Function *F = BB->getParent(); 3894 Assert(F->hasPersonalityFn(), 3895 "CatchSwitchInst needs to be in a function with a personality.", 3896 &CatchSwitch); 3897 3898 // The catchswitch instruction must be the first non-PHI instruction in the 3899 // block. 3900 Assert(BB->getFirstNonPHI() == &CatchSwitch, 3901 "CatchSwitchInst not the first non-PHI instruction in the block.", 3902 &CatchSwitch); 3903 3904 auto *ParentPad = CatchSwitch.getParentPad(); 3905 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3906 "CatchSwitchInst has an invalid parent.", ParentPad); 3907 3908 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 3909 Instruction *I = UnwindDest->getFirstNonPHI(); 3910 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3911 "CatchSwitchInst must unwind to an EH block which is not a " 3912 "landingpad.", 3913 &CatchSwitch); 3914 3915 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 3916 if (getParentPad(I) == ParentPad) 3917 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 3918 } 3919 3920 Assert(CatchSwitch.getNumHandlers() != 0, 3921 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 3922 3923 for (BasicBlock *Handler : CatchSwitch.handlers()) { 3924 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 3925 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 3926 } 3927 3928 visitEHPadPredecessors(CatchSwitch); 3929 visitTerminator(CatchSwitch); 3930 } 3931 3932 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 3933 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 3934 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 3935 CRI.getOperand(0)); 3936 3937 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 3938 Instruction *I = UnwindDest->getFirstNonPHI(); 3939 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3940 "CleanupReturnInst must unwind to an EH block which is not a " 3941 "landingpad.", 3942 &CRI); 3943 } 3944 3945 visitTerminator(CRI); 3946 } 3947 3948 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 3949 Instruction *Op = cast<Instruction>(I.getOperand(i)); 3950 // If the we have an invalid invoke, don't try to compute the dominance. 3951 // We already reject it in the invoke specific checks and the dominance 3952 // computation doesn't handle multiple edges. 3953 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 3954 if (II->getNormalDest() == II->getUnwindDest()) 3955 return; 3956 } 3957 3958 // Quick check whether the def has already been encountered in the same block. 3959 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 3960 // uses are defined to happen on the incoming edge, not at the instruction. 3961 // 3962 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 3963 // wrapping an SSA value, assert that we've already encountered it. See 3964 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 3965 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 3966 return; 3967 3968 const Use &U = I.getOperandUse(i); 3969 Assert(DT.dominates(Op, U), 3970 "Instruction does not dominate all uses!", Op, &I); 3971 } 3972 3973 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 3974 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 3975 "apply only to pointer types", &I); 3976 Assert(isa<LoadInst>(I), 3977 "dereferenceable, dereferenceable_or_null apply only to load" 3978 " instructions, use attributes for calls or invokes", &I); 3979 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 3980 "take one operand!", &I); 3981 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 3982 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 3983 "dereferenceable_or_null metadata value must be an i64!", &I); 3984 } 3985 3986 /// verifyInstruction - Verify that an instruction is well formed. 3987 /// 3988 void Verifier::visitInstruction(Instruction &I) { 3989 BasicBlock *BB = I.getParent(); 3990 Assert(BB, "Instruction not embedded in basic block!", &I); 3991 3992 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 3993 for (User *U : I.users()) { 3994 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 3995 "Only PHI nodes may reference their own value!", &I); 3996 } 3997 } 3998 3999 // Check that void typed values don't have names 4000 Assert(!I.getType()->isVoidTy() || !I.hasName(), 4001 "Instruction has a name, but provides a void value!", &I); 4002 4003 // Check that the return value of the instruction is either void or a legal 4004 // value type. 4005 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4006 "Instruction returns a non-scalar type!", &I); 4007 4008 // Check that the instruction doesn't produce metadata. Calls are already 4009 // checked against the callee type. 4010 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4011 "Invalid use of metadata!", &I); 4012 4013 // Check that all uses of the instruction, if they are instructions 4014 // themselves, actually have parent basic blocks. If the use is not an 4015 // instruction, it is an error! 4016 for (Use &U : I.uses()) { 4017 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4018 Assert(Used->getParent() != nullptr, 4019 "Instruction referencing" 4020 " instruction not embedded in a basic block!", 4021 &I, Used); 4022 else { 4023 CheckFailed("Use of instruction is not an instruction!", U); 4024 return; 4025 } 4026 } 4027 4028 // Get a pointer to the call base of the instruction if it is some form of 4029 // call. 4030 const CallBase *CBI = dyn_cast<CallBase>(&I); 4031 4032 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4033 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4034 4035 // Check to make sure that only first-class-values are operands to 4036 // instructions. 4037 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4038 Assert(false, "Instruction operands must be first-class values!", &I); 4039 } 4040 4041 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4042 // Check to make sure that the "address of" an intrinsic function is never 4043 // taken. 4044 Assert(!F->isIntrinsic() || 4045 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), 4046 "Cannot take the address of an intrinsic!", &I); 4047 Assert( 4048 !F->isIntrinsic() || isa<CallInst>(I) || 4049 F->getIntrinsicID() == Intrinsic::donothing || 4050 F->getIntrinsicID() == Intrinsic::coro_resume || 4051 F->getIntrinsicID() == Intrinsic::coro_destroy || 4052 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4053 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4054 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4055 F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch, 4056 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4057 "statepoint, coro_resume or coro_destroy", 4058 &I); 4059 Assert(F->getParent() == &M, "Referencing function in another module!", 4060 &I, &M, F, F->getParent()); 4061 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4062 Assert(OpBB->getParent() == BB->getParent(), 4063 "Referring to a basic block in another function!", &I); 4064 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4065 Assert(OpArg->getParent() == BB->getParent(), 4066 "Referring to an argument in another function!", &I); 4067 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4068 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4069 &M, GV, GV->getParent()); 4070 } else if (isa<Instruction>(I.getOperand(i))) { 4071 verifyDominatesUse(I, i); 4072 } else if (isa<InlineAsm>(I.getOperand(i))) { 4073 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4074 "Cannot take the address of an inline asm!", &I); 4075 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4076 if (CE->getType()->isPtrOrPtrVectorTy() || 4077 !DL.getNonIntegralAddressSpaces().empty()) { 4078 // If we have a ConstantExpr pointer, we need to see if it came from an 4079 // illegal bitcast. If the datalayout string specifies non-integral 4080 // address spaces then we also need to check for illegal ptrtoint and 4081 // inttoptr expressions. 4082 visitConstantExprsRecursively(CE); 4083 } 4084 } 4085 } 4086 4087 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4088 Assert(I.getType()->isFPOrFPVectorTy(), 4089 "fpmath requires a floating point result!", &I); 4090 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4091 if (ConstantFP *CFP0 = 4092 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4093 const APFloat &Accuracy = CFP0->getValueAPF(); 4094 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4095 "fpmath accuracy must have float type", &I); 4096 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4097 "fpmath accuracy not a positive number!", &I); 4098 } else { 4099 Assert(false, "invalid fpmath accuracy!", &I); 4100 } 4101 } 4102 4103 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4104 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4105 "Ranges are only for loads, calls and invokes!", &I); 4106 visitRangeMetadata(I, Range, I.getType()); 4107 } 4108 4109 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4110 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4111 &I); 4112 Assert(isa<LoadInst>(I), 4113 "nonnull applies only to load instructions, use attributes" 4114 " for calls or invokes", 4115 &I); 4116 } 4117 4118 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4119 visitDereferenceableMetadata(I, MD); 4120 4121 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4122 visitDereferenceableMetadata(I, MD); 4123 4124 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4125 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4126 4127 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4128 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4129 &I); 4130 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4131 "use attributes for calls or invokes", &I); 4132 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4133 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4134 Assert(CI && CI->getType()->isIntegerTy(64), 4135 "align metadata value must be an i64!", &I); 4136 uint64_t Align = CI->getZExtValue(); 4137 Assert(isPowerOf2_64(Align), 4138 "align metadata value must be a power of 2!", &I); 4139 Assert(Align <= Value::MaximumAlignment, 4140 "alignment is larger that implementation defined limit", &I); 4141 } 4142 4143 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4144 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4145 visitMDNode(*N); 4146 } 4147 4148 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) 4149 verifyFragmentExpression(*DII); 4150 4151 InstsInThisBlock.insert(&I); 4152 } 4153 4154 /// Allow intrinsics to be verified in different ways. 4155 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4156 Function *IF = Call.getCalledFunction(); 4157 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4158 IF); 4159 4160 // Verify that the intrinsic prototype lines up with what the .td files 4161 // describe. 4162 FunctionType *IFTy = IF->getFunctionType(); 4163 bool IsVarArg = IFTy->isVarArg(); 4164 4165 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4166 getIntrinsicInfoTableEntries(ID, Table); 4167 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4168 4169 // Walk the descriptors to extract overloaded types. 4170 SmallVector<Type *, 4> ArgTys; 4171 Intrinsic::MatchIntrinsicTypesResult Res = 4172 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4173 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4174 "Intrinsic has incorrect return type!", IF); 4175 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4176 "Intrinsic has incorrect argument type!", IF); 4177 4178 // Verify if the intrinsic call matches the vararg property. 4179 if (IsVarArg) 4180 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4181 "Intrinsic was not defined with variable arguments!", IF); 4182 else 4183 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4184 "Callsite was not defined with variable arguments!", IF); 4185 4186 // All descriptors should be absorbed by now. 4187 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4188 4189 // Now that we have the intrinsic ID and the actual argument types (and we 4190 // know they are legal for the intrinsic!) get the intrinsic name through the 4191 // usual means. This allows us to verify the mangling of argument types into 4192 // the name. 4193 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 4194 Assert(ExpectedName == IF->getName(), 4195 "Intrinsic name not mangled correctly for type arguments! " 4196 "Should be: " + 4197 ExpectedName, 4198 IF); 4199 4200 // If the intrinsic takes MDNode arguments, verify that they are either global 4201 // or are local to *this* function. 4202 for (Value *V : Call.args()) 4203 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4204 visitMetadataAsValue(*MD, Call.getCaller()); 4205 4206 switch (ID) { 4207 default: 4208 break; 4209 case Intrinsic::coro_id: { 4210 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4211 if (isa<ConstantPointerNull>(InfoArg)) 4212 break; 4213 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4214 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4215 "info argument of llvm.coro.begin must refer to an initialized " 4216 "constant"); 4217 Constant *Init = GV->getInitializer(); 4218 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4219 "info argument of llvm.coro.begin must refer to either a struct or " 4220 "an array"); 4221 break; 4222 } 4223 case Intrinsic::experimental_constrained_fadd: 4224 case Intrinsic::experimental_constrained_fsub: 4225 case Intrinsic::experimental_constrained_fmul: 4226 case Intrinsic::experimental_constrained_fdiv: 4227 case Intrinsic::experimental_constrained_frem: 4228 case Intrinsic::experimental_constrained_fma: 4229 case Intrinsic::experimental_constrained_fptrunc: 4230 case Intrinsic::experimental_constrained_fpext: 4231 case Intrinsic::experimental_constrained_sqrt: 4232 case Intrinsic::experimental_constrained_pow: 4233 case Intrinsic::experimental_constrained_powi: 4234 case Intrinsic::experimental_constrained_sin: 4235 case Intrinsic::experimental_constrained_cos: 4236 case Intrinsic::experimental_constrained_exp: 4237 case Intrinsic::experimental_constrained_exp2: 4238 case Intrinsic::experimental_constrained_log: 4239 case Intrinsic::experimental_constrained_log10: 4240 case Intrinsic::experimental_constrained_log2: 4241 case Intrinsic::experimental_constrained_rint: 4242 case Intrinsic::experimental_constrained_nearbyint: 4243 case Intrinsic::experimental_constrained_maxnum: 4244 case Intrinsic::experimental_constrained_minnum: 4245 case Intrinsic::experimental_constrained_ceil: 4246 case Intrinsic::experimental_constrained_floor: 4247 case Intrinsic::experimental_constrained_round: 4248 case Intrinsic::experimental_constrained_trunc: 4249 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4250 break; 4251 case Intrinsic::dbg_declare: // llvm.dbg.declare 4252 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4253 "invalid llvm.dbg.declare intrinsic call 1", Call); 4254 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4255 break; 4256 case Intrinsic::dbg_addr: // llvm.dbg.addr 4257 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4258 break; 4259 case Intrinsic::dbg_value: // llvm.dbg.value 4260 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4261 break; 4262 case Intrinsic::dbg_label: // llvm.dbg.label 4263 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4264 break; 4265 case Intrinsic::memcpy: 4266 case Intrinsic::memmove: 4267 case Intrinsic::memset: { 4268 const auto *MI = cast<MemIntrinsic>(&Call); 4269 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4270 return Alignment == 0 || isPowerOf2_32(Alignment); 4271 }; 4272 Assert(IsValidAlignment(MI->getDestAlignment()), 4273 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4274 Call); 4275 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4276 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4277 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4278 Call); 4279 } 4280 4281 break; 4282 } 4283 case Intrinsic::memcpy_element_unordered_atomic: 4284 case Intrinsic::memmove_element_unordered_atomic: 4285 case Intrinsic::memset_element_unordered_atomic: { 4286 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4287 4288 ConstantInt *ElementSizeCI = 4289 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4290 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4291 Assert(ElementSizeVal.isPowerOf2(), 4292 "element size of the element-wise atomic memory intrinsic " 4293 "must be a power of 2", 4294 Call); 4295 4296 if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) { 4297 uint64_t Length = LengthCI->getZExtValue(); 4298 uint64_t ElementSize = AMI->getElementSizeInBytes(); 4299 Assert((Length % ElementSize) == 0, 4300 "constant length must be a multiple of the element size in the " 4301 "element-wise atomic memory intrinsic", 4302 Call); 4303 } 4304 4305 auto IsValidAlignment = [&](uint64_t Alignment) { 4306 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4307 }; 4308 uint64_t DstAlignment = AMI->getDestAlignment(); 4309 Assert(IsValidAlignment(DstAlignment), 4310 "incorrect alignment of the destination argument", Call); 4311 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4312 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4313 Assert(IsValidAlignment(SrcAlignment), 4314 "incorrect alignment of the source argument", Call); 4315 } 4316 break; 4317 } 4318 case Intrinsic::gcroot: 4319 case Intrinsic::gcwrite: 4320 case Intrinsic::gcread: 4321 if (ID == Intrinsic::gcroot) { 4322 AllocaInst *AI = 4323 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4324 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4325 Assert(isa<Constant>(Call.getArgOperand(1)), 4326 "llvm.gcroot parameter #2 must be a constant.", Call); 4327 if (!AI->getAllocatedType()->isPointerTy()) { 4328 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4329 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4330 "or argument #2 must be a non-null constant.", 4331 Call); 4332 } 4333 } 4334 4335 Assert(Call.getParent()->getParent()->hasGC(), 4336 "Enclosing function does not use GC.", Call); 4337 break; 4338 case Intrinsic::init_trampoline: 4339 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4340 "llvm.init_trampoline parameter #2 must resolve to a function.", 4341 Call); 4342 break; 4343 case Intrinsic::prefetch: 4344 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4345 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4346 "invalid arguments to llvm.prefetch", Call); 4347 break; 4348 case Intrinsic::stackprotector: 4349 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4350 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4351 break; 4352 case Intrinsic::localescape: { 4353 BasicBlock *BB = Call.getParent(); 4354 Assert(BB == &BB->getParent()->front(), 4355 "llvm.localescape used outside of entry block", Call); 4356 Assert(!SawFrameEscape, 4357 "multiple calls to llvm.localescape in one function", Call); 4358 for (Value *Arg : Call.args()) { 4359 if (isa<ConstantPointerNull>(Arg)) 4360 continue; // Null values are allowed as placeholders. 4361 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4362 Assert(AI && AI->isStaticAlloca(), 4363 "llvm.localescape only accepts static allocas", Call); 4364 } 4365 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); 4366 SawFrameEscape = true; 4367 break; 4368 } 4369 case Intrinsic::localrecover: { 4370 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4371 Function *Fn = dyn_cast<Function>(FnArg); 4372 Assert(Fn && !Fn->isDeclaration(), 4373 "llvm.localrecover first " 4374 "argument must be function defined in this module", 4375 Call); 4376 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 4377 auto &Entry = FrameEscapeInfo[Fn]; 4378 Entry.second = unsigned( 4379 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4380 break; 4381 } 4382 4383 case Intrinsic::experimental_gc_statepoint: 4384 if (auto *CI = dyn_cast<CallInst>(&Call)) 4385 Assert(!CI->isInlineAsm(), 4386 "gc.statepoint support for inline assembly unimplemented", CI); 4387 Assert(Call.getParent()->getParent()->hasGC(), 4388 "Enclosing function does not use GC.", Call); 4389 4390 verifyStatepoint(Call); 4391 break; 4392 case Intrinsic::experimental_gc_result: { 4393 Assert(Call.getParent()->getParent()->hasGC(), 4394 "Enclosing function does not use GC.", Call); 4395 // Are we tied to a statepoint properly? 4396 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4397 const Function *StatepointFn = 4398 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 4399 Assert(StatepointFn && StatepointFn->isDeclaration() && 4400 StatepointFn->getIntrinsicID() == 4401 Intrinsic::experimental_gc_statepoint, 4402 "gc.result operand #1 must be from a statepoint", Call, 4403 Call.getArgOperand(0)); 4404 4405 // Assert that result type matches wrapped callee. 4406 const Value *Target = StatepointCall->getArgOperand(2); 4407 auto *PT = cast<PointerType>(Target->getType()); 4408 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4409 Assert(Call.getType() == TargetFuncType->getReturnType(), 4410 "gc.result result type does not match wrapped callee", Call); 4411 break; 4412 } 4413 case Intrinsic::experimental_gc_relocate: { 4414 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); 4415 4416 Assert(isa<PointerType>(Call.getType()->getScalarType()), 4417 "gc.relocate must return a pointer or a vector of pointers", Call); 4418 4419 // Check that this relocate is correctly tied to the statepoint 4420 4421 // This is case for relocate on the unwinding path of an invoke statepoint 4422 if (LandingPadInst *LandingPad = 4423 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 4424 4425 const BasicBlock *InvokeBB = 4426 LandingPad->getParent()->getUniquePredecessor(); 4427 4428 // Landingpad relocates should have only one predecessor with invoke 4429 // statepoint terminator 4430 Assert(InvokeBB, "safepoints should have unique landingpads", 4431 LandingPad->getParent()); 4432 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4433 InvokeBB); 4434 Assert(isStatepoint(InvokeBB->getTerminator()), 4435 "gc relocate should be linked to a statepoint", InvokeBB); 4436 } else { 4437 // In all other cases relocate should be tied to the statepoint directly. 4438 // This covers relocates on a normal return path of invoke statepoint and 4439 // relocates of a call statepoint. 4440 auto Token = Call.getArgOperand(0); 4441 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)), 4442 "gc relocate is incorrectly tied to the statepoint", Call, Token); 4443 } 4444 4445 // Verify rest of the relocate arguments. 4446 const CallBase &StatepointCall = 4447 *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint()); 4448 4449 // Both the base and derived must be piped through the safepoint. 4450 Value *Base = Call.getArgOperand(1); 4451 Assert(isa<ConstantInt>(Base), 4452 "gc.relocate operand #2 must be integer offset", Call); 4453 4454 Value *Derived = Call.getArgOperand(2); 4455 Assert(isa<ConstantInt>(Derived), 4456 "gc.relocate operand #3 must be integer offset", Call); 4457 4458 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4459 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4460 // Check the bounds 4461 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(), 4462 "gc.relocate: statepoint base index out of bounds", Call); 4463 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(), 4464 "gc.relocate: statepoint derived index out of bounds", Call); 4465 4466 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' 4467 // section of the statepoint's argument. 4468 Assert(StatepointCall.arg_size() > 0, 4469 "gc.statepoint: insufficient arguments"); 4470 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)), 4471 "gc.statement: number of call arguments must be constant integer"); 4472 const unsigned NumCallArgs = 4473 cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue(); 4474 Assert(StatepointCall.arg_size() > NumCallArgs + 5, 4475 "gc.statepoint: mismatch in number of call arguments"); 4476 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)), 4477 "gc.statepoint: number of transition arguments must be " 4478 "a constant integer"); 4479 const int NumTransitionArgs = 4480 cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)) 4481 ->getZExtValue(); 4482 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; 4483 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)), 4484 "gc.statepoint: number of deoptimization arguments must be " 4485 "a constant integer"); 4486 const int NumDeoptArgs = 4487 cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)) 4488 ->getZExtValue(); 4489 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; 4490 const int GCParamArgsEnd = StatepointCall.arg_size(); 4491 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, 4492 "gc.relocate: statepoint base index doesn't fall within the " 4493 "'gc parameters' section of the statepoint call", 4494 Call); 4495 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, 4496 "gc.relocate: statepoint derived index doesn't fall within the " 4497 "'gc parameters' section of the statepoint call", 4498 Call); 4499 4500 // Relocated value must be either a pointer type or vector-of-pointer type, 4501 // but gc_relocate does not need to return the same pointer type as the 4502 // relocated pointer. It can be casted to the correct type later if it's 4503 // desired. However, they must have the same address space and 'vectorness' 4504 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 4505 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 4506 "gc.relocate: relocated value must be a gc pointer", Call); 4507 4508 auto ResultType = Call.getType(); 4509 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4510 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4511 "gc.relocate: vector relocates to vector and pointer to pointer", 4512 Call); 4513 Assert( 4514 ResultType->getPointerAddressSpace() == 4515 DerivedType->getPointerAddressSpace(), 4516 "gc.relocate: relocating a pointer shouldn't change its address space", 4517 Call); 4518 break; 4519 } 4520 case Intrinsic::eh_exceptioncode: 4521 case Intrinsic::eh_exceptionpointer: { 4522 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 4523 "eh.exceptionpointer argument must be a catchpad", Call); 4524 break; 4525 } 4526 case Intrinsic::masked_load: { 4527 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 4528 Call); 4529 4530 Value *Ptr = Call.getArgOperand(0); 4531 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 4532 Value *Mask = Call.getArgOperand(2); 4533 Value *PassThru = Call.getArgOperand(3); 4534 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 4535 Call); 4536 Assert(Alignment->getValue().isPowerOf2(), 4537 "masked_load: alignment must be a power of 2", Call); 4538 4539 // DataTy is the overloaded type 4540 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4541 Assert(DataTy == Call.getType(), 4542 "masked_load: return must match pointer type", Call); 4543 Assert(PassThru->getType() == DataTy, 4544 "masked_load: pass through and data type must match", Call); 4545 Assert(Mask->getType()->getVectorNumElements() == 4546 DataTy->getVectorNumElements(), 4547 "masked_load: vector mask must be same length as data", Call); 4548 break; 4549 } 4550 case Intrinsic::masked_store: { 4551 Value *Val = Call.getArgOperand(0); 4552 Value *Ptr = Call.getArgOperand(1); 4553 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 4554 Value *Mask = Call.getArgOperand(3); 4555 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 4556 Call); 4557 Assert(Alignment->getValue().isPowerOf2(), 4558 "masked_store: alignment must be a power of 2", Call); 4559 4560 // DataTy is the overloaded type 4561 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4562 Assert(DataTy == Val->getType(), 4563 "masked_store: storee must match pointer type", Call); 4564 Assert(Mask->getType()->getVectorNumElements() == 4565 DataTy->getVectorNumElements(), 4566 "masked_store: vector mask must be same length as data", Call); 4567 break; 4568 } 4569 4570 case Intrinsic::experimental_guard: { 4571 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 4572 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4573 "experimental_guard must have exactly one " 4574 "\"deopt\" operand bundle"); 4575 break; 4576 } 4577 4578 case Intrinsic::experimental_deoptimize: { 4579 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 4580 Call); 4581 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4582 "experimental_deoptimize must have exactly one " 4583 "\"deopt\" operand bundle"); 4584 Assert(Call.getType() == Call.getFunction()->getReturnType(), 4585 "experimental_deoptimize return type must match caller return type"); 4586 4587 if (isa<CallInst>(Call)) { 4588 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 4589 Assert(RI, 4590 "calls to experimental_deoptimize must be followed by a return"); 4591 4592 if (!Call.getType()->isVoidTy() && RI) 4593 Assert(RI->getReturnValue() == &Call, 4594 "calls to experimental_deoptimize must be followed by a return " 4595 "of the value computed by experimental_deoptimize"); 4596 } 4597 4598 break; 4599 } 4600 case Intrinsic::sadd_sat: 4601 case Intrinsic::uadd_sat: 4602 case Intrinsic::ssub_sat: 4603 case Intrinsic::usub_sat: { 4604 Value *Op1 = Call.getArgOperand(0); 4605 Value *Op2 = Call.getArgOperand(1); 4606 Assert(Op1->getType()->isIntOrIntVectorTy(), 4607 "first operand of [us][add|sub]_sat must be an int type or vector " 4608 "of ints"); 4609 Assert(Op2->getType()->isIntOrIntVectorTy(), 4610 "second operand of [us][add|sub]_sat must be an int type or vector " 4611 "of ints"); 4612 break; 4613 } 4614 case Intrinsic::smul_fix: 4615 case Intrinsic::smul_fix_sat: 4616 case Intrinsic::umul_fix: { 4617 Value *Op1 = Call.getArgOperand(0); 4618 Value *Op2 = Call.getArgOperand(1); 4619 Assert(Op1->getType()->isIntOrIntVectorTy(), 4620 "first operand of [us]mul_fix[_sat] must be an int type or vector " 4621 "of ints"); 4622 Assert(Op2->getType()->isIntOrIntVectorTy(), 4623 "second operand of [us]mul_fix_[sat] must be an int type or vector " 4624 "of ints"); 4625 4626 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 4627 Assert(Op3->getType()->getBitWidth() <= 32, 4628 "third argument of [us]mul_fix[_sat] must fit within 32 bits"); 4629 4630 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat) { 4631 Assert( 4632 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 4633 "the scale of smul_fix[_sat] must be less than the width of the operands"); 4634 } else { 4635 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 4636 "the scale of umul_fix[_sat] must be less than or equal to the width of " 4637 "the operands"); 4638 } 4639 break; 4640 } 4641 case Intrinsic::lround: 4642 case Intrinsic::llround: 4643 case Intrinsic::lrint: 4644 case Intrinsic::llrint: { 4645 Type *ValTy = Call.getArgOperand(0)->getType(); 4646 Type *ResultTy = Call.getType(); 4647 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 4648 "Intrinsic does not support vectors", &Call); 4649 break; 4650 } 4651 }; 4652 } 4653 4654 /// Carefully grab the subprogram from a local scope. 4655 /// 4656 /// This carefully grabs the subprogram from a local scope, avoiding the 4657 /// built-in assertions that would typically fire. 4658 static DISubprogram *getSubprogram(Metadata *LocalScope) { 4659 if (!LocalScope) 4660 return nullptr; 4661 4662 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 4663 return SP; 4664 4665 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 4666 return getSubprogram(LB->getRawScope()); 4667 4668 // Just return null; broken scope chains are checked elsewhere. 4669 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 4670 return nullptr; 4671 } 4672 4673 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 4674 unsigned NumOperands = FPI.getNumArgOperands(); 4675 bool HasExceptionMD = false; 4676 bool HasRoundingMD = false; 4677 switch (FPI.getIntrinsicID()) { 4678 case Intrinsic::experimental_constrained_sqrt: 4679 case Intrinsic::experimental_constrained_sin: 4680 case Intrinsic::experimental_constrained_cos: 4681 case Intrinsic::experimental_constrained_exp: 4682 case Intrinsic::experimental_constrained_exp2: 4683 case Intrinsic::experimental_constrained_log: 4684 case Intrinsic::experimental_constrained_log10: 4685 case Intrinsic::experimental_constrained_log2: 4686 case Intrinsic::experimental_constrained_rint: 4687 case Intrinsic::experimental_constrained_nearbyint: 4688 case Intrinsic::experimental_constrained_ceil: 4689 case Intrinsic::experimental_constrained_floor: 4690 case Intrinsic::experimental_constrained_round: 4691 case Intrinsic::experimental_constrained_trunc: 4692 Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic", 4693 &FPI); 4694 HasExceptionMD = true; 4695 HasRoundingMD = true; 4696 break; 4697 4698 case Intrinsic::experimental_constrained_fma: 4699 Assert((NumOperands == 5), "invalid arguments for constrained FP intrinsic", 4700 &FPI); 4701 HasExceptionMD = true; 4702 HasRoundingMD = true; 4703 break; 4704 4705 case Intrinsic::experimental_constrained_fadd: 4706 case Intrinsic::experimental_constrained_fsub: 4707 case Intrinsic::experimental_constrained_fmul: 4708 case Intrinsic::experimental_constrained_fdiv: 4709 case Intrinsic::experimental_constrained_frem: 4710 case Intrinsic::experimental_constrained_pow: 4711 case Intrinsic::experimental_constrained_powi: 4712 case Intrinsic::experimental_constrained_maxnum: 4713 case Intrinsic::experimental_constrained_minnum: 4714 Assert((NumOperands == 4), "invalid arguments for constrained FP intrinsic", 4715 &FPI); 4716 HasExceptionMD = true; 4717 HasRoundingMD = true; 4718 break; 4719 4720 case Intrinsic::experimental_constrained_fptrunc: 4721 case Intrinsic::experimental_constrained_fpext: { 4722 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 4723 Assert((NumOperands == 3), 4724 "invalid arguments for constrained FP intrinsic", &FPI); 4725 HasRoundingMD = true; 4726 } else { 4727 Assert((NumOperands == 2), 4728 "invalid arguments for constrained FP intrinsic", &FPI); 4729 } 4730 HasExceptionMD = true; 4731 4732 Value *Operand = FPI.getArgOperand(0); 4733 Type *OperandTy = Operand->getType(); 4734 Value *Result = &FPI; 4735 Type *ResultTy = Result->getType(); 4736 Assert(OperandTy->isFPOrFPVectorTy(), 4737 "Intrinsic first argument must be FP or FP vector", &FPI); 4738 Assert(ResultTy->isFPOrFPVectorTy(), 4739 "Intrinsic result must be FP or FP vector", &FPI); 4740 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 4741 "Intrinsic first argument and result disagree on vector use", &FPI); 4742 if (OperandTy->isVectorTy()) { 4743 auto *OperandVecTy = cast<VectorType>(OperandTy); 4744 auto *ResultVecTy = cast<VectorType>(ResultTy); 4745 Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(), 4746 "Intrinsic first argument and result vector lengths must be equal", 4747 &FPI); 4748 } 4749 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 4750 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 4751 "Intrinsic first argument's type must be larger than result type", 4752 &FPI); 4753 } else { 4754 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 4755 "Intrinsic first argument's type must be smaller than result type", 4756 &FPI); 4757 } 4758 } 4759 break; 4760 4761 default: 4762 llvm_unreachable("Invalid constrained FP intrinsic!"); 4763 } 4764 4765 // If a non-metadata argument is passed in a metadata slot then the 4766 // error will be caught earlier when the incorrect argument doesn't 4767 // match the specification in the intrinsic call table. Thus, no 4768 // argument type check is needed here. 4769 4770 if (HasExceptionMD) { 4771 Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid, 4772 "invalid exception behavior argument", &FPI); 4773 } 4774 if (HasRoundingMD) { 4775 Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid, 4776 "invalid rounding mode argument", &FPI); 4777 } 4778 } 4779 4780 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 4781 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); 4782 AssertDI(isa<ValueAsMetadata>(MD) || 4783 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 4784 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 4785 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 4786 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 4787 DII.getRawVariable()); 4788 AssertDI(isa<DIExpression>(DII.getRawExpression()), 4789 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 4790 DII.getRawExpression()); 4791 4792 // Ignore broken !dbg attachments; they're checked elsewhere. 4793 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 4794 if (!isa<DILocation>(N)) 4795 return; 4796 4797 BasicBlock *BB = DII.getParent(); 4798 Function *F = BB ? BB->getParent() : nullptr; 4799 4800 // The scopes for variables and !dbg attachments must agree. 4801 DILocalVariable *Var = DII.getVariable(); 4802 DILocation *Loc = DII.getDebugLoc(); 4803 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4804 &DII, BB, F); 4805 4806 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 4807 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4808 if (!VarSP || !LocSP) 4809 return; // Broken scope chains are checked elsewhere. 4810 4811 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4812 " variable and !dbg attachment", 4813 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 4814 Loc->getScope()->getSubprogram()); 4815 4816 // This check is redundant with one in visitLocalVariable(). 4817 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 4818 Var->getRawType()); 4819 if (auto *Type = dyn_cast_or_null<DIType>(Var->getRawType())) 4820 if (Type->isBlockByrefStruct()) 4821 AssertDI(DII.getExpression() && DII.getExpression()->getNumElements(), 4822 "BlockByRef variable without complex expression", Var, &DII); 4823 4824 verifyFnArgs(DII); 4825 } 4826 4827 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 4828 AssertDI(isa<DILabel>(DLI.getRawLabel()), 4829 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 4830 DLI.getRawLabel()); 4831 4832 // Ignore broken !dbg attachments; they're checked elsewhere. 4833 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 4834 if (!isa<DILocation>(N)) 4835 return; 4836 4837 BasicBlock *BB = DLI.getParent(); 4838 Function *F = BB ? BB->getParent() : nullptr; 4839 4840 // The scopes for variables and !dbg attachments must agree. 4841 DILabel *Label = DLI.getLabel(); 4842 DILocation *Loc = DLI.getDebugLoc(); 4843 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4844 &DLI, BB, F); 4845 4846 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 4847 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4848 if (!LabelSP || !LocSP) 4849 return; 4850 4851 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4852 " label and !dbg attachment", 4853 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 4854 Loc->getScope()->getSubprogram()); 4855 } 4856 4857 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 4858 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 4859 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 4860 4861 // We don't know whether this intrinsic verified correctly. 4862 if (!V || !E || !E->isValid()) 4863 return; 4864 4865 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 4866 auto Fragment = E->getFragmentInfo(); 4867 if (!Fragment) 4868 return; 4869 4870 // The frontend helps out GDB by emitting the members of local anonymous 4871 // unions as artificial local variables with shared storage. When SROA splits 4872 // the storage for artificial local variables that are smaller than the entire 4873 // union, the overhang piece will be outside of the allotted space for the 4874 // variable and this check fails. 4875 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 4876 if (V->isArtificial()) 4877 return; 4878 4879 verifyFragmentExpression(*V, *Fragment, &I); 4880 } 4881 4882 template <typename ValueOrMetadata> 4883 void Verifier::verifyFragmentExpression(const DIVariable &V, 4884 DIExpression::FragmentInfo Fragment, 4885 ValueOrMetadata *Desc) { 4886 // If there's no size, the type is broken, but that should be checked 4887 // elsewhere. 4888 auto VarSize = V.getSizeInBits(); 4889 if (!VarSize) 4890 return; 4891 4892 unsigned FragSize = Fragment.SizeInBits; 4893 unsigned FragOffset = Fragment.OffsetInBits; 4894 AssertDI(FragSize + FragOffset <= *VarSize, 4895 "fragment is larger than or outside of variable", Desc, &V); 4896 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 4897 } 4898 4899 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 4900 // This function does not take the scope of noninlined function arguments into 4901 // account. Don't run it if current function is nodebug, because it may 4902 // contain inlined debug intrinsics. 4903 if (!HasDebugInfo) 4904 return; 4905 4906 // For performance reasons only check non-inlined ones. 4907 if (I.getDebugLoc()->getInlinedAt()) 4908 return; 4909 4910 DILocalVariable *Var = I.getVariable(); 4911 AssertDI(Var, "dbg intrinsic without variable"); 4912 4913 unsigned ArgNo = Var->getArg(); 4914 if (!ArgNo) 4915 return; 4916 4917 // Verify there are no duplicate function argument debug info entries. 4918 // These will cause hard-to-debug assertions in the DWARF backend. 4919 if (DebugFnArgs.size() < ArgNo) 4920 DebugFnArgs.resize(ArgNo, nullptr); 4921 4922 auto *Prev = DebugFnArgs[ArgNo - 1]; 4923 DebugFnArgs[ArgNo - 1] = Var; 4924 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 4925 Prev, Var); 4926 } 4927 4928 void Verifier::verifyCompileUnits() { 4929 // When more than one Module is imported into the same context, such as during 4930 // an LTO build before linking the modules, ODR type uniquing may cause types 4931 // to point to a different CU. This check does not make sense in this case. 4932 if (M.getContext().isODRUniquingDebugTypes()) 4933 return; 4934 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 4935 SmallPtrSet<const Metadata *, 2> Listed; 4936 if (CUs) 4937 Listed.insert(CUs->op_begin(), CUs->op_end()); 4938 for (auto *CU : CUVisited) 4939 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 4940 CUVisited.clear(); 4941 } 4942 4943 void Verifier::verifyDeoptimizeCallingConvs() { 4944 if (DeoptimizeDeclarations.empty()) 4945 return; 4946 4947 const Function *First = DeoptimizeDeclarations[0]; 4948 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 4949 Assert(First->getCallingConv() == F->getCallingConv(), 4950 "All llvm.experimental.deoptimize declarations must have the same " 4951 "calling convention", 4952 First, F); 4953 } 4954 } 4955 4956 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 4957 bool HasSource = F.getSource().hasValue(); 4958 if (!HasSourceDebugInfo.count(&U)) 4959 HasSourceDebugInfo[&U] = HasSource; 4960 AssertDI(HasSource == HasSourceDebugInfo[&U], 4961 "inconsistent use of embedded source"); 4962 } 4963 4964 //===----------------------------------------------------------------------===// 4965 // Implement the public interfaces to this file... 4966 //===----------------------------------------------------------------------===// 4967 4968 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 4969 Function &F = const_cast<Function &>(f); 4970 4971 // Don't use a raw_null_ostream. Printing IR is expensive. 4972 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 4973 4974 // Note that this function's return value is inverted from what you would 4975 // expect of a function called "verify". 4976 return !V.verify(F); 4977 } 4978 4979 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 4980 bool *BrokenDebugInfo) { 4981 // Don't use a raw_null_ostream. Printing IR is expensive. 4982 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 4983 4984 bool Broken = false; 4985 for (const Function &F : M) 4986 Broken |= !V.verify(F); 4987 4988 Broken |= !V.verify(); 4989 if (BrokenDebugInfo) 4990 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 4991 // Note that this function's return value is inverted from what you would 4992 // expect of a function called "verify". 4993 return Broken; 4994 } 4995 4996 namespace { 4997 4998 struct VerifierLegacyPass : public FunctionPass { 4999 static char ID; 5000 5001 std::unique_ptr<Verifier> V; 5002 bool FatalErrors = true; 5003 5004 VerifierLegacyPass() : FunctionPass(ID) { 5005 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5006 } 5007 explicit VerifierLegacyPass(bool FatalErrors) 5008 : FunctionPass(ID), 5009 FatalErrors(FatalErrors) { 5010 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5011 } 5012 5013 bool doInitialization(Module &M) override { 5014 V = llvm::make_unique<Verifier>( 5015 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 5016 return false; 5017 } 5018 5019 bool runOnFunction(Function &F) override { 5020 if (!V->verify(F) && FatalErrors) { 5021 errs() << "in function " << F.getName() << '\n'; 5022 report_fatal_error("Broken function found, compilation aborted!"); 5023 } 5024 return false; 5025 } 5026 5027 bool doFinalization(Module &M) override { 5028 bool HasErrors = false; 5029 for (Function &F : M) 5030 if (F.isDeclaration()) 5031 HasErrors |= !V->verify(F); 5032 5033 HasErrors |= !V->verify(); 5034 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 5035 report_fatal_error("Broken module found, compilation aborted!"); 5036 return false; 5037 } 5038 5039 void getAnalysisUsage(AnalysisUsage &AU) const override { 5040 AU.setPreservesAll(); 5041 } 5042 }; 5043 5044 } // end anonymous namespace 5045 5046 /// Helper to issue failure from the TBAA verification 5047 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 5048 if (Diagnostic) 5049 return Diagnostic->CheckFailed(Args...); 5050 } 5051 5052 #define AssertTBAA(C, ...) \ 5053 do { \ 5054 if (!(C)) { \ 5055 CheckFailed(__VA_ARGS__); \ 5056 return false; \ 5057 } \ 5058 } while (false) 5059 5060 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 5061 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 5062 /// struct-type node describing an aggregate data structure (like a struct). 5063 TBAAVerifier::TBAABaseNodeSummary 5064 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 5065 bool IsNewFormat) { 5066 if (BaseNode->getNumOperands() < 2) { 5067 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 5068 return {true, ~0u}; 5069 } 5070 5071 auto Itr = TBAABaseNodes.find(BaseNode); 5072 if (Itr != TBAABaseNodes.end()) 5073 return Itr->second; 5074 5075 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 5076 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 5077 (void)InsertResult; 5078 assert(InsertResult.second && "We just checked!"); 5079 return Result; 5080 } 5081 5082 TBAAVerifier::TBAABaseNodeSummary 5083 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 5084 bool IsNewFormat) { 5085 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 5086 5087 if (BaseNode->getNumOperands() == 2) { 5088 // Scalar nodes can only be accessed at offset 0. 5089 return isValidScalarTBAANode(BaseNode) 5090 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 5091 : InvalidNode; 5092 } 5093 5094 if (IsNewFormat) { 5095 if (BaseNode->getNumOperands() % 3 != 0) { 5096 CheckFailed("Access tag nodes must have the number of operands that is a " 5097 "multiple of 3!", BaseNode); 5098 return InvalidNode; 5099 } 5100 } else { 5101 if (BaseNode->getNumOperands() % 2 != 1) { 5102 CheckFailed("Struct tag nodes must have an odd number of operands!", 5103 BaseNode); 5104 return InvalidNode; 5105 } 5106 } 5107 5108 // Check the type size field. 5109 if (IsNewFormat) { 5110 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5111 BaseNode->getOperand(1)); 5112 if (!TypeSizeNode) { 5113 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 5114 return InvalidNode; 5115 } 5116 } 5117 5118 // Check the type name field. In the new format it can be anything. 5119 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 5120 CheckFailed("Struct tag nodes have a string as their first operand", 5121 BaseNode); 5122 return InvalidNode; 5123 } 5124 5125 bool Failed = false; 5126 5127 Optional<APInt> PrevOffset; 5128 unsigned BitWidth = ~0u; 5129 5130 // We've already checked that BaseNode is not a degenerate root node with one 5131 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 5132 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5133 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5134 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5135 Idx += NumOpsPerField) { 5136 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 5137 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 5138 if (!isa<MDNode>(FieldTy)) { 5139 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 5140 Failed = true; 5141 continue; 5142 } 5143 5144 auto *OffsetEntryCI = 5145 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 5146 if (!OffsetEntryCI) { 5147 CheckFailed("Offset entries must be constants!", &I, BaseNode); 5148 Failed = true; 5149 continue; 5150 } 5151 5152 if (BitWidth == ~0u) 5153 BitWidth = OffsetEntryCI->getBitWidth(); 5154 5155 if (OffsetEntryCI->getBitWidth() != BitWidth) { 5156 CheckFailed( 5157 "Bitwidth between the offsets and struct type entries must match", &I, 5158 BaseNode); 5159 Failed = true; 5160 continue; 5161 } 5162 5163 // NB! As far as I can tell, we generate a non-strictly increasing offset 5164 // sequence only from structs that have zero size bit fields. When 5165 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 5166 // pick the field lexically the latest in struct type metadata node. This 5167 // mirrors the actual behavior of the alias analysis implementation. 5168 bool IsAscending = 5169 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 5170 5171 if (!IsAscending) { 5172 CheckFailed("Offsets must be increasing!", &I, BaseNode); 5173 Failed = true; 5174 } 5175 5176 PrevOffset = OffsetEntryCI->getValue(); 5177 5178 if (IsNewFormat) { 5179 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5180 BaseNode->getOperand(Idx + 2)); 5181 if (!MemberSizeNode) { 5182 CheckFailed("Member size entries must be constants!", &I, BaseNode); 5183 Failed = true; 5184 continue; 5185 } 5186 } 5187 } 5188 5189 return Failed ? InvalidNode 5190 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 5191 } 5192 5193 static bool IsRootTBAANode(const MDNode *MD) { 5194 return MD->getNumOperands() < 2; 5195 } 5196 5197 static bool IsScalarTBAANodeImpl(const MDNode *MD, 5198 SmallPtrSetImpl<const MDNode *> &Visited) { 5199 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 5200 return false; 5201 5202 if (!isa<MDString>(MD->getOperand(0))) 5203 return false; 5204 5205 if (MD->getNumOperands() == 3) { 5206 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 5207 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 5208 return false; 5209 } 5210 5211 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5212 return Parent && Visited.insert(Parent).second && 5213 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 5214 } 5215 5216 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 5217 auto ResultIt = TBAAScalarNodes.find(MD); 5218 if (ResultIt != TBAAScalarNodes.end()) 5219 return ResultIt->second; 5220 5221 SmallPtrSet<const MDNode *, 4> Visited; 5222 bool Result = IsScalarTBAANodeImpl(MD, Visited); 5223 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 5224 (void)InsertResult; 5225 assert(InsertResult.second && "Just checked!"); 5226 5227 return Result; 5228 } 5229 5230 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 5231 /// Offset in place to be the offset within the field node returned. 5232 /// 5233 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 5234 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 5235 const MDNode *BaseNode, 5236 APInt &Offset, 5237 bool IsNewFormat) { 5238 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 5239 5240 // Scalar nodes have only one possible "field" -- their parent in the access 5241 // hierarchy. Offset must be zero at this point, but our caller is supposed 5242 // to Assert that. 5243 if (BaseNode->getNumOperands() == 2) 5244 return cast<MDNode>(BaseNode->getOperand(1)); 5245 5246 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5247 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5248 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5249 Idx += NumOpsPerField) { 5250 auto *OffsetEntryCI = 5251 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 5252 if (OffsetEntryCI->getValue().ugt(Offset)) { 5253 if (Idx == FirstFieldOpNo) { 5254 CheckFailed("Could not find TBAA parent in struct type node", &I, 5255 BaseNode, &Offset); 5256 return nullptr; 5257 } 5258 5259 unsigned PrevIdx = Idx - NumOpsPerField; 5260 auto *PrevOffsetEntryCI = 5261 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 5262 Offset -= PrevOffsetEntryCI->getValue(); 5263 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 5264 } 5265 } 5266 5267 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 5268 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 5269 BaseNode->getOperand(LastIdx + 1)); 5270 Offset -= LastOffsetEntryCI->getValue(); 5271 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 5272 } 5273 5274 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 5275 if (!Type || Type->getNumOperands() < 3) 5276 return false; 5277 5278 // In the new format type nodes shall have a reference to the parent type as 5279 // its first operand. 5280 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 5281 if (!Parent) 5282 return false; 5283 5284 return true; 5285 } 5286 5287 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 5288 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 5289 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 5290 isa<AtomicCmpXchgInst>(I), 5291 "This instruction shall not have a TBAA access tag!", &I); 5292 5293 bool IsStructPathTBAA = 5294 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 5295 5296 AssertTBAA( 5297 IsStructPathTBAA, 5298 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 5299 5300 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 5301 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5302 5303 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 5304 5305 if (IsNewFormat) { 5306 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 5307 "Access tag metadata must have either 4 or 5 operands", &I, MD); 5308 } else { 5309 AssertTBAA(MD->getNumOperands() < 5, 5310 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 5311 } 5312 5313 // Check the access size field. 5314 if (IsNewFormat) { 5315 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5316 MD->getOperand(3)); 5317 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 5318 } 5319 5320 // Check the immutability flag. 5321 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 5322 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 5323 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 5324 MD->getOperand(ImmutabilityFlagOpNo)); 5325 AssertTBAA(IsImmutableCI, 5326 "Immutability tag on struct tag metadata must be a constant", 5327 &I, MD); 5328 AssertTBAA( 5329 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 5330 "Immutability part of the struct tag metadata must be either 0 or 1", 5331 &I, MD); 5332 } 5333 5334 AssertTBAA(BaseNode && AccessType, 5335 "Malformed struct tag metadata: base and access-type " 5336 "should be non-null and point to Metadata nodes", 5337 &I, MD, BaseNode, AccessType); 5338 5339 if (!IsNewFormat) { 5340 AssertTBAA(isValidScalarTBAANode(AccessType), 5341 "Access type node must be a valid scalar type", &I, MD, 5342 AccessType); 5343 } 5344 5345 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 5346 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 5347 5348 APInt Offset = OffsetCI->getValue(); 5349 bool SeenAccessTypeInPath = false; 5350 5351 SmallPtrSet<MDNode *, 4> StructPath; 5352 5353 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 5354 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 5355 IsNewFormat)) { 5356 if (!StructPath.insert(BaseNode).second) { 5357 CheckFailed("Cycle detected in struct path", &I, MD); 5358 return false; 5359 } 5360 5361 bool Invalid; 5362 unsigned BaseNodeBitWidth; 5363 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 5364 IsNewFormat); 5365 5366 // If the base node is invalid in itself, then we've already printed all the 5367 // errors we wanted to print. 5368 if (Invalid) 5369 return false; 5370 5371 SeenAccessTypeInPath |= BaseNode == AccessType; 5372 5373 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 5374 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 5375 &I, MD, &Offset); 5376 5377 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 5378 (BaseNodeBitWidth == 0 && Offset == 0) || 5379 (IsNewFormat && BaseNodeBitWidth == ~0u), 5380 "Access bit-width not the same as description bit-width", &I, MD, 5381 BaseNodeBitWidth, Offset.getBitWidth()); 5382 5383 if (IsNewFormat && SeenAccessTypeInPath) 5384 break; 5385 } 5386 5387 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 5388 &I, MD); 5389 return true; 5390 } 5391 5392 char VerifierLegacyPass::ID = 0; 5393 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 5394 5395 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 5396 return new VerifierLegacyPass(FatalErrors); 5397 } 5398 5399 AnalysisKey VerifierAnalysis::Key; 5400 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 5401 ModuleAnalysisManager &) { 5402 Result Res; 5403 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 5404 return Res; 5405 } 5406 5407 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 5408 FunctionAnalysisManager &) { 5409 return { llvm::verifyFunction(F, &dbgs()), false }; 5410 } 5411 5412 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 5413 auto Res = AM.getResult<VerifierAnalysis>(M); 5414 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 5415 report_fatal_error("Broken module found, compilation aborted!"); 5416 5417 return PreservedAnalyses::all(); 5418 } 5419 5420 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 5421 auto res = AM.getResult<VerifierAnalysis>(F); 5422 if (res.IRBroken && FatalErrors) 5423 report_fatal_error("Broken function found, compilation aborted!"); 5424 5425 return PreservedAnalyses::all(); 5426 } 5427