1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // basic correctness checking of input to the system.
11 //
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
14 //
15 //  * Both of a binary operator's parameters are of the same type
16 //  * Verify that the indices of mem access instructions match other operands
17 //  * Verify that arithmetic and other things are only performed on first-class
18 //    types.  Verify that shifts & logicals only happen on integrals f.e.
19 //  * All of the constants in a switch statement are of the correct type
20 //  * The code is in valid SSA form
21 //  * It should be illegal to put a label into any other type (like a structure)
22 //    or to return one. [except constant arrays!]
23 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 //  * PHI nodes must have an entry for each predecessor, with no extras.
25 //  * PHI nodes must be the first thing in a basic block, all grouped together
26 //  * PHI nodes must have at least one entry
27 //  * All basic blocks should only end with terminator insts, not contain them
28 //  * The entry node to a function must not have predecessors
29 //  * All Instructions must be embedded into a basic block
30 //  * Functions cannot take a void-typed parameter
31 //  * Verify that a function's argument list agrees with it's declared type.
32 //  * It is illegal to specify a name for a void value.
33 //  * It is illegal to have a internal global value with no initializer
34 //  * It is illegal to have a ret instruction that returns a value that does not
35 //    agree with the function return value type.
36 //  * Function call argument types match the function prototype
37 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
38 //    only by the unwind edge of an invoke instruction.
39 //  * A landingpad instruction must be the first non-PHI instruction in the
40 //    block.
41 //  * Landingpad instructions must be in a function with a personality function.
42 //  * All other things that are tested by asserts spread about the code...
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/BinaryFormat/Dwarf.h"
62 #include "llvm/IR/Argument.h"
63 #include "llvm/IR/Attributes.h"
64 #include "llvm/IR/BasicBlock.h"
65 #include "llvm/IR/CFG.h"
66 #include "llvm/IR/CallingConv.h"
67 #include "llvm/IR/Comdat.h"
68 #include "llvm/IR/Constant.h"
69 #include "llvm/IR/ConstantRange.h"
70 #include "llvm/IR/Constants.h"
71 #include "llvm/IR/DataLayout.h"
72 #include "llvm/IR/DebugInfoMetadata.h"
73 #include "llvm/IR/DebugLoc.h"
74 #include "llvm/IR/DerivedTypes.h"
75 #include "llvm/IR/Dominators.h"
76 #include "llvm/IR/Function.h"
77 #include "llvm/IR/GlobalAlias.h"
78 #include "llvm/IR/GlobalValue.h"
79 #include "llvm/IR/GlobalVariable.h"
80 #include "llvm/IR/InlineAsm.h"
81 #include "llvm/IR/InstVisitor.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/IntrinsicsAArch64.h"
88 #include "llvm/IR/IntrinsicsARM.h"
89 #include "llvm/IR/IntrinsicsWebAssembly.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/Metadata.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/ModuleSlotTracker.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Statepoint.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/Use.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/InitializePasses.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include <algorithm>
109 #include <cassert>
110 #include <cstdint>
111 #include <memory>
112 #include <string>
113 #include <utility>
114 
115 using namespace llvm;
116 
117 static cl::opt<bool> VerifyNoAliasScopeDomination(
118     "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
119     cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
120              "scopes are not dominating"));
121 
122 namespace llvm {
123 
124 struct VerifierSupport {
125   raw_ostream *OS;
126   const Module &M;
127   ModuleSlotTracker MST;
128   Triple TT;
129   const DataLayout &DL;
130   LLVMContext &Context;
131 
132   /// Track the brokenness of the module while recursively visiting.
133   bool Broken = false;
134   /// Broken debug info can be "recovered" from by stripping the debug info.
135   bool BrokenDebugInfo = false;
136   /// Whether to treat broken debug info as an error.
137   bool TreatBrokenDebugInfoAsError = true;
138 
139   explicit VerifierSupport(raw_ostream *OS, const Module &M)
140       : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
141         Context(M.getContext()) {}
142 
143 private:
144   void Write(const Module *M) {
145     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
146   }
147 
148   void Write(const Value *V) {
149     if (V)
150       Write(*V);
151   }
152 
153   void Write(const Value &V) {
154     if (isa<Instruction>(V)) {
155       V.print(*OS, MST);
156       *OS << '\n';
157     } else {
158       V.printAsOperand(*OS, true, MST);
159       *OS << '\n';
160     }
161   }
162 
163   void Write(const Metadata *MD) {
164     if (!MD)
165       return;
166     MD->print(*OS, MST, &M);
167     *OS << '\n';
168   }
169 
170   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
171     Write(MD.get());
172   }
173 
174   void Write(const NamedMDNode *NMD) {
175     if (!NMD)
176       return;
177     NMD->print(*OS, MST);
178     *OS << '\n';
179   }
180 
181   void Write(Type *T) {
182     if (!T)
183       return;
184     *OS << ' ' << *T;
185   }
186 
187   void Write(const Comdat *C) {
188     if (!C)
189       return;
190     *OS << *C;
191   }
192 
193   void Write(const APInt *AI) {
194     if (!AI)
195       return;
196     *OS << *AI << '\n';
197   }
198 
199   void Write(const unsigned i) { *OS << i << '\n'; }
200 
201   // NOLINTNEXTLINE(readability-identifier-naming)
202   void Write(const Attribute *A) {
203     if (!A)
204       return;
205     *OS << A->getAsString() << '\n';
206   }
207 
208   // NOLINTNEXTLINE(readability-identifier-naming)
209   void Write(const AttributeSet *AS) {
210     if (!AS)
211       return;
212     *OS << AS->getAsString() << '\n';
213   }
214 
215   // NOLINTNEXTLINE(readability-identifier-naming)
216   void Write(const AttributeList *AL) {
217     if (!AL)
218       return;
219     AL->print(*OS);
220   }
221 
222   template <typename T> void Write(ArrayRef<T> Vs) {
223     for (const T &V : Vs)
224       Write(V);
225   }
226 
227   template <typename T1, typename... Ts>
228   void WriteTs(const T1 &V1, const Ts &... Vs) {
229     Write(V1);
230     WriteTs(Vs...);
231   }
232 
233   template <typename... Ts> void WriteTs() {}
234 
235 public:
236   /// A check failed, so printout out the condition and the message.
237   ///
238   /// This provides a nice place to put a breakpoint if you want to see why
239   /// something is not correct.
240   void CheckFailed(const Twine &Message) {
241     if (OS)
242       *OS << Message << '\n';
243     Broken = true;
244   }
245 
246   /// A check failed (with values to print).
247   ///
248   /// This calls the Message-only version so that the above is easier to set a
249   /// breakpoint on.
250   template <typename T1, typename... Ts>
251   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
252     CheckFailed(Message);
253     if (OS)
254       WriteTs(V1, Vs...);
255   }
256 
257   /// A debug info check failed.
258   void DebugInfoCheckFailed(const Twine &Message) {
259     if (OS)
260       *OS << Message << '\n';
261     Broken |= TreatBrokenDebugInfoAsError;
262     BrokenDebugInfo = true;
263   }
264 
265   /// A debug info check failed (with values to print).
266   template <typename T1, typename... Ts>
267   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
268                             const Ts &... Vs) {
269     DebugInfoCheckFailed(Message);
270     if (OS)
271       WriteTs(V1, Vs...);
272   }
273 };
274 
275 } // namespace llvm
276 
277 namespace {
278 
279 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
280   friend class InstVisitor<Verifier>;
281 
282   DominatorTree DT;
283 
284   /// When verifying a basic block, keep track of all of the
285   /// instructions we have seen so far.
286   ///
287   /// This allows us to do efficient dominance checks for the case when an
288   /// instruction has an operand that is an instruction in the same block.
289   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
290 
291   /// Keep track of the metadata nodes that have been checked already.
292   SmallPtrSet<const Metadata *, 32> MDNodes;
293 
294   /// Keep track which DISubprogram is attached to which function.
295   DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
296 
297   /// Track all DICompileUnits visited.
298   SmallPtrSet<const Metadata *, 2> CUVisited;
299 
300   /// The result type for a landingpad.
301   Type *LandingPadResultTy;
302 
303   /// Whether we've seen a call to @llvm.localescape in this function
304   /// already.
305   bool SawFrameEscape;
306 
307   /// Whether the current function has a DISubprogram attached to it.
308   bool HasDebugInfo = false;
309 
310   /// The current source language.
311   dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;
312 
313   /// Whether source was present on the first DIFile encountered in each CU.
314   DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
315 
316   /// Stores the count of how many objects were passed to llvm.localescape for a
317   /// given function and the largest index passed to llvm.localrecover.
318   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
319 
320   // Maps catchswitches and cleanuppads that unwind to siblings to the
321   // terminators that indicate the unwind, used to detect cycles therein.
322   MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
323 
324   /// Cache of constants visited in search of ConstantExprs.
325   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
326 
327   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
328   SmallVector<const Function *, 4> DeoptimizeDeclarations;
329 
330   /// Cache of attribute lists verified.
331   SmallPtrSet<const void *, 32> AttributeListsVisited;
332 
333   // Verify that this GlobalValue is only used in this module.
334   // This map is used to avoid visiting uses twice. We can arrive at a user
335   // twice, if they have multiple operands. In particular for very large
336   // constant expressions, we can arrive at a particular user many times.
337   SmallPtrSet<const Value *, 32> GlobalValueVisited;
338 
339   // Keeps track of duplicate function argument debug info.
340   SmallVector<const DILocalVariable *, 16> DebugFnArgs;
341 
342   TBAAVerifier TBAAVerifyHelper;
343 
344   SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
345 
346   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
347 
348 public:
349   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
350                     const Module &M)
351       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
352         SawFrameEscape(false), TBAAVerifyHelper(this) {
353     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
354   }
355 
356   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
357 
358   bool verify(const Function &F) {
359     assert(F.getParent() == &M &&
360            "An instance of this class only works with a specific module!");
361 
362     // First ensure the function is well-enough formed to compute dominance
363     // information, and directly compute a dominance tree. We don't rely on the
364     // pass manager to provide this as it isolates us from a potentially
365     // out-of-date dominator tree and makes it significantly more complex to run
366     // this code outside of a pass manager.
367     // FIXME: It's really gross that we have to cast away constness here.
368     if (!F.empty())
369       DT.recalculate(const_cast<Function &>(F));
370 
371     for (const BasicBlock &BB : F) {
372       if (!BB.empty() && BB.back().isTerminator())
373         continue;
374 
375       if (OS) {
376         *OS << "Basic Block in function '" << F.getName()
377             << "' does not have terminator!\n";
378         BB.printAsOperand(*OS, true, MST);
379         *OS << "\n";
380       }
381       return false;
382     }
383 
384     Broken = false;
385     // FIXME: We strip const here because the inst visitor strips const.
386     visit(const_cast<Function &>(F));
387     verifySiblingFuncletUnwinds();
388     InstsInThisBlock.clear();
389     DebugFnArgs.clear();
390     LandingPadResultTy = nullptr;
391     SawFrameEscape = false;
392     SiblingFuncletInfo.clear();
393     verifyNoAliasScopeDecl();
394     NoAliasScopeDecls.clear();
395 
396     return !Broken;
397   }
398 
399   /// Verify the module that this instance of \c Verifier was initialized with.
400   bool verify() {
401     Broken = false;
402 
403     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
404     for (const Function &F : M)
405       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
406         DeoptimizeDeclarations.push_back(&F);
407 
408     // Now that we've visited every function, verify that we never asked to
409     // recover a frame index that wasn't escaped.
410     verifyFrameRecoverIndices();
411     for (const GlobalVariable &GV : M.globals())
412       visitGlobalVariable(GV);
413 
414     for (const GlobalAlias &GA : M.aliases())
415       visitGlobalAlias(GA);
416 
417     for (const GlobalIFunc &GI : M.ifuncs())
418       visitGlobalIFunc(GI);
419 
420     for (const NamedMDNode &NMD : M.named_metadata())
421       visitNamedMDNode(NMD);
422 
423     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
424       visitComdat(SMEC.getValue());
425 
426     visitModuleFlags();
427     visitModuleIdents();
428     visitModuleCommandLines();
429 
430     verifyCompileUnits();
431 
432     verifyDeoptimizeCallingConvs();
433     DISubprogramAttachments.clear();
434     return !Broken;
435   }
436 
437 private:
438   /// Whether a metadata node is allowed to be, or contain, a DILocation.
439   enum class AreDebugLocsAllowed { No, Yes };
440 
441   // Verification methods...
442   void visitGlobalValue(const GlobalValue &GV);
443   void visitGlobalVariable(const GlobalVariable &GV);
444   void visitGlobalAlias(const GlobalAlias &GA);
445   void visitGlobalIFunc(const GlobalIFunc &GI);
446   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
447   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
448                            const GlobalAlias &A, const Constant &C);
449   void visitNamedMDNode(const NamedMDNode &NMD);
450   void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
451   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
452   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
453   void visitComdat(const Comdat &C);
454   void visitModuleIdents();
455   void visitModuleCommandLines();
456   void visitModuleFlags();
457   void visitModuleFlag(const MDNode *Op,
458                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
459                        SmallVectorImpl<const MDNode *> &Requirements);
460   void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
461   void visitFunction(const Function &F);
462   void visitBasicBlock(BasicBlock &BB);
463   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
464   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
465   void visitProfMetadata(Instruction &I, MDNode *MD);
466   void visitAnnotationMetadata(MDNode *Annotation);
467   void visitAliasScopeMetadata(const MDNode *MD);
468   void visitAliasScopeListMetadata(const MDNode *MD);
469   void visitAccessGroupMetadata(const MDNode *MD);
470 
471   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
472 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
473 #include "llvm/IR/Metadata.def"
474   void visitDIScope(const DIScope &N);
475   void visitDIVariable(const DIVariable &N);
476   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
477   void visitDITemplateParameter(const DITemplateParameter &N);
478 
479   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
480 
481   // InstVisitor overrides...
482   using InstVisitor<Verifier>::visit;
483   void visit(Instruction &I);
484 
485   void visitTruncInst(TruncInst &I);
486   void visitZExtInst(ZExtInst &I);
487   void visitSExtInst(SExtInst &I);
488   void visitFPTruncInst(FPTruncInst &I);
489   void visitFPExtInst(FPExtInst &I);
490   void visitFPToUIInst(FPToUIInst &I);
491   void visitFPToSIInst(FPToSIInst &I);
492   void visitUIToFPInst(UIToFPInst &I);
493   void visitSIToFPInst(SIToFPInst &I);
494   void visitIntToPtrInst(IntToPtrInst &I);
495   void visitPtrToIntInst(PtrToIntInst &I);
496   void visitBitCastInst(BitCastInst &I);
497   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
498   void visitPHINode(PHINode &PN);
499   void visitCallBase(CallBase &Call);
500   void visitUnaryOperator(UnaryOperator &U);
501   void visitBinaryOperator(BinaryOperator &B);
502   void visitICmpInst(ICmpInst &IC);
503   void visitFCmpInst(FCmpInst &FC);
504   void visitExtractElementInst(ExtractElementInst &EI);
505   void visitInsertElementInst(InsertElementInst &EI);
506   void visitShuffleVectorInst(ShuffleVectorInst &EI);
507   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
508   void visitCallInst(CallInst &CI);
509   void visitInvokeInst(InvokeInst &II);
510   void visitGetElementPtrInst(GetElementPtrInst &GEP);
511   void visitLoadInst(LoadInst &LI);
512   void visitStoreInst(StoreInst &SI);
513   void verifyDominatesUse(Instruction &I, unsigned i);
514   void visitInstruction(Instruction &I);
515   void visitTerminator(Instruction &I);
516   void visitBranchInst(BranchInst &BI);
517   void visitReturnInst(ReturnInst &RI);
518   void visitSwitchInst(SwitchInst &SI);
519   void visitIndirectBrInst(IndirectBrInst &BI);
520   void visitCallBrInst(CallBrInst &CBI);
521   void visitSelectInst(SelectInst &SI);
522   void visitUserOp1(Instruction &I);
523   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
524   void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
525   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
526   void visitVPIntrinsic(VPIntrinsic &VPI);
527   void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
528   void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
529   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
530   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
531   void visitFenceInst(FenceInst &FI);
532   void visitAllocaInst(AllocaInst &AI);
533   void visitExtractValueInst(ExtractValueInst &EVI);
534   void visitInsertValueInst(InsertValueInst &IVI);
535   void visitEHPadPredecessors(Instruction &I);
536   void visitLandingPadInst(LandingPadInst &LPI);
537   void visitResumeInst(ResumeInst &RI);
538   void visitCatchPadInst(CatchPadInst &CPI);
539   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
540   void visitCleanupPadInst(CleanupPadInst &CPI);
541   void visitFuncletPadInst(FuncletPadInst &FPI);
542   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
543   void visitCleanupReturnInst(CleanupReturnInst &CRI);
544 
545   void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
546   void verifySwiftErrorValue(const Value *SwiftErrorVal);
547   void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context);
548   void verifyMustTailCall(CallInst &CI);
549   bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
550   void verifyAttributeTypes(AttributeSet Attrs, const Value *V);
551   void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
552   void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
553                                     const Value *V);
554   void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
555                            const Value *V, bool IsIntrinsic, bool IsInlineAsm);
556   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
557 
558   void visitConstantExprsRecursively(const Constant *EntryC);
559   void visitConstantExpr(const ConstantExpr *CE);
560   void verifyInlineAsmCall(const CallBase &Call);
561   void verifyStatepoint(const CallBase &Call);
562   void verifyFrameRecoverIndices();
563   void verifySiblingFuncletUnwinds();
564 
565   void verifyFragmentExpression(const DbgVariableIntrinsic &I);
566   template <typename ValueOrMetadata>
567   void verifyFragmentExpression(const DIVariable &V,
568                                 DIExpression::FragmentInfo Fragment,
569                                 ValueOrMetadata *Desc);
570   void verifyFnArgs(const DbgVariableIntrinsic &I);
571   void verifyNotEntryValue(const DbgVariableIntrinsic &I);
572 
573   /// Module-level debug info verification...
574   void verifyCompileUnits();
575 
576   /// Module-level verification that all @llvm.experimental.deoptimize
577   /// declarations share the same calling convention.
578   void verifyDeoptimizeCallingConvs();
579 
580   void verifyAttachedCallBundle(const CallBase &Call,
581                                 const OperandBundleUse &BU);
582 
583   /// Verify all-or-nothing property of DIFile source attribute within a CU.
584   void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
585 
586   /// Verify the llvm.experimental.noalias.scope.decl declarations
587   void verifyNoAliasScopeDecl();
588 };
589 
590 } // end anonymous namespace
591 
592 /// We know that cond should be true, if not print an error message.
593 #define Assert(C, ...) \
594   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
595 
596 /// We know that a debug info condition should be true, if not print
597 /// an error message.
598 #define AssertDI(C, ...) \
599   do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
600 
601 void Verifier::visit(Instruction &I) {
602   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
603     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
604   InstVisitor<Verifier>::visit(I);
605 }
606 
607 // Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further.
608 static void forEachUser(const Value *User,
609                         SmallPtrSet<const Value *, 32> &Visited,
610                         llvm::function_ref<bool(const Value *)> Callback) {
611   if (!Visited.insert(User).second)
612     return;
613 
614   SmallVector<const Value *> WorkList;
615   append_range(WorkList, User->materialized_users());
616   while (!WorkList.empty()) {
617    const Value *Cur = WorkList.pop_back_val();
618     if (!Visited.insert(Cur).second)
619       continue;
620     if (Callback(Cur))
621       append_range(WorkList, Cur->materialized_users());
622   }
623 }
624 
625 void Verifier::visitGlobalValue(const GlobalValue &GV) {
626   Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
627          "Global is external, but doesn't have external or weak linkage!", &GV);
628 
629   if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) {
630 
631     if (MaybeAlign A = GO->getAlign()) {
632       Assert(A->value() <= Value::MaximumAlignment,
633              "huge alignment values are unsupported", GO);
634     }
635   }
636   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
637          "Only global variables can have appending linkage!", &GV);
638 
639   if (GV.hasAppendingLinkage()) {
640     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
641     Assert(GVar && GVar->getValueType()->isArrayTy(),
642            "Only global arrays can have appending linkage!", GVar);
643   }
644 
645   if (GV.isDeclarationForLinker())
646     Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
647 
648   if (GV.hasDLLImportStorageClass()) {
649     Assert(!GV.isDSOLocal(),
650            "GlobalValue with DLLImport Storage is dso_local!", &GV);
651 
652     Assert((GV.isDeclaration() &&
653             (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
654                GV.hasAvailableExternallyLinkage(),
655            "Global is marked as dllimport, but not external", &GV);
656   }
657 
658   if (GV.isImplicitDSOLocal())
659     Assert(GV.isDSOLocal(),
660            "GlobalValue with local linkage or non-default "
661            "visibility must be dso_local!",
662            &GV);
663 
664   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
665     if (const Instruction *I = dyn_cast<Instruction>(V)) {
666       if (!I->getParent() || !I->getParent()->getParent())
667         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
668                     I);
669       else if (I->getParent()->getParent()->getParent() != &M)
670         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
671                     I->getParent()->getParent(),
672                     I->getParent()->getParent()->getParent());
673       return false;
674     } else if (const Function *F = dyn_cast<Function>(V)) {
675       if (F->getParent() != &M)
676         CheckFailed("Global is used by function in a different module", &GV, &M,
677                     F, F->getParent());
678       return false;
679     }
680     return true;
681   });
682 }
683 
684 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
685   if (GV.hasInitializer()) {
686     Assert(GV.getInitializer()->getType() == GV.getValueType(),
687            "Global variable initializer type does not match global "
688            "variable type!",
689            &GV);
690     // If the global has common linkage, it must have a zero initializer and
691     // cannot be constant.
692     if (GV.hasCommonLinkage()) {
693       Assert(GV.getInitializer()->isNullValue(),
694              "'common' global must have a zero initializer!", &GV);
695       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
696              &GV);
697       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
698     }
699   }
700 
701   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
702                        GV.getName() == "llvm.global_dtors")) {
703     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
704            "invalid linkage for intrinsic global variable", &GV);
705     // Don't worry about emitting an error for it not being an array,
706     // visitGlobalValue will complain on appending non-array.
707     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
708       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
709       PointerType *FuncPtrTy =
710           FunctionType::get(Type::getVoidTy(Context), false)->
711           getPointerTo(DL.getProgramAddressSpace());
712       Assert(STy &&
713                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
714                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
715                  STy->getTypeAtIndex(1) == FuncPtrTy,
716              "wrong type for intrinsic global variable", &GV);
717       Assert(STy->getNumElements() == 3,
718              "the third field of the element type is mandatory, "
719              "specify i8* null to migrate from the obsoleted 2-field form");
720       Type *ETy = STy->getTypeAtIndex(2);
721       Type *Int8Ty = Type::getInt8Ty(ETy->getContext());
722       Assert(ETy->isPointerTy() &&
723                  cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty),
724              "wrong type for intrinsic global variable", &GV);
725     }
726   }
727 
728   if (GV.hasName() && (GV.getName() == "llvm.used" ||
729                        GV.getName() == "llvm.compiler.used")) {
730     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
731            "invalid linkage for intrinsic global variable", &GV);
732     Type *GVType = GV.getValueType();
733     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
734       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
735       Assert(PTy, "wrong type for intrinsic global variable", &GV);
736       if (GV.hasInitializer()) {
737         const Constant *Init = GV.getInitializer();
738         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
739         Assert(InitArray, "wrong initalizer for intrinsic global variable",
740                Init);
741         for (Value *Op : InitArray->operands()) {
742           Value *V = Op->stripPointerCasts();
743           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
744                      isa<GlobalAlias>(V),
745                  Twine("invalid ") + GV.getName() + " member", V);
746           Assert(V->hasName(),
747                  Twine("members of ") + GV.getName() + " must be named", V);
748         }
749       }
750     }
751   }
752 
753   // Visit any debug info attachments.
754   SmallVector<MDNode *, 1> MDs;
755   GV.getMetadata(LLVMContext::MD_dbg, MDs);
756   for (auto *MD : MDs) {
757     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
758       visitDIGlobalVariableExpression(*GVE);
759     else
760       AssertDI(false, "!dbg attachment of global variable must be a "
761                       "DIGlobalVariableExpression");
762   }
763 
764   // Scalable vectors cannot be global variables, since we don't know
765   // the runtime size. If the global is an array containing scalable vectors,
766   // that will be caught by the isValidElementType methods in StructType or
767   // ArrayType instead.
768   Assert(!isa<ScalableVectorType>(GV.getValueType()),
769          "Globals cannot contain scalable vectors", &GV);
770 
771   if (auto *STy = dyn_cast<StructType>(GV.getValueType()))
772     Assert(!STy->containsScalableVectorType(),
773            "Globals cannot contain scalable vectors", &GV);
774 
775   if (!GV.hasInitializer()) {
776     visitGlobalValue(GV);
777     return;
778   }
779 
780   // Walk any aggregate initializers looking for bitcasts between address spaces
781   visitConstantExprsRecursively(GV.getInitializer());
782 
783   visitGlobalValue(GV);
784 }
785 
786 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
787   SmallPtrSet<const GlobalAlias*, 4> Visited;
788   Visited.insert(&GA);
789   visitAliaseeSubExpr(Visited, GA, C);
790 }
791 
792 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
793                                    const GlobalAlias &GA, const Constant &C) {
794   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
795     Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
796            &GA);
797 
798     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
799       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
800 
801       Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
802              &GA);
803     } else {
804       // Only continue verifying subexpressions of GlobalAliases.
805       // Do not recurse into global initializers.
806       return;
807     }
808   }
809 
810   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
811     visitConstantExprsRecursively(CE);
812 
813   for (const Use &U : C.operands()) {
814     Value *V = &*U;
815     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
816       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
817     else if (const auto *C2 = dyn_cast<Constant>(V))
818       visitAliaseeSubExpr(Visited, GA, *C2);
819   }
820 }
821 
822 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
823   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
824          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
825          "weak_odr, or external linkage!",
826          &GA);
827   const Constant *Aliasee = GA.getAliasee();
828   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
829   Assert(GA.getType() == Aliasee->getType(),
830          "Alias and aliasee types should match!", &GA);
831 
832   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
833          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
834 
835   visitAliaseeSubExpr(GA, *Aliasee);
836 
837   visitGlobalValue(GA);
838 }
839 
840 void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) {
841   Assert(GlobalIFunc::isValidLinkage(GI.getLinkage()),
842          "IFunc should have private, internal, linkonce, weak, linkonce_odr, "
843          "weak_odr, or external linkage!",
844          &GI);
845   // Pierce through ConstantExprs and GlobalAliases and check that the resolver
846   // is a Function definition.
847   const Function *Resolver = GI.getResolverFunction();
848   Assert(Resolver, "IFunc must have a Function resolver", &GI);
849   Assert(!Resolver->isDeclarationForLinker(),
850          "IFunc resolver must be a definition", &GI);
851 
852   // Check that the immediate resolver operand (prior to any bitcasts) has the
853   // correct type.
854   const Type *ResolverTy = GI.getResolver()->getType();
855   const Type *ResolverFuncTy =
856       GlobalIFunc::getResolverFunctionType(GI.getValueType());
857   Assert(ResolverTy == ResolverFuncTy->getPointerTo(),
858          "IFunc resolver has incorrect type", &GI);
859 }
860 
861 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
862   // There used to be various other llvm.dbg.* nodes, but we don't support
863   // upgrading them and we want to reserve the namespace for future uses.
864   if (NMD.getName().startswith("llvm.dbg."))
865     AssertDI(NMD.getName() == "llvm.dbg.cu",
866              "unrecognized named metadata node in the llvm.dbg namespace",
867              &NMD);
868   for (const MDNode *MD : NMD.operands()) {
869     if (NMD.getName() == "llvm.dbg.cu")
870       AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
871 
872     if (!MD)
873       continue;
874 
875     visitMDNode(*MD, AreDebugLocsAllowed::Yes);
876   }
877 }
878 
879 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
880   // Only visit each node once.  Metadata can be mutually recursive, so this
881   // avoids infinite recursion here, as well as being an optimization.
882   if (!MDNodes.insert(&MD).second)
883     return;
884 
885   Assert(&MD.getContext() == &Context,
886          "MDNode context does not match Module context!", &MD);
887 
888   switch (MD.getMetadataID()) {
889   default:
890     llvm_unreachable("Invalid MDNode subclass");
891   case Metadata::MDTupleKind:
892     break;
893 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
894   case Metadata::CLASS##Kind:                                                  \
895     visit##CLASS(cast<CLASS>(MD));                                             \
896     break;
897 #include "llvm/IR/Metadata.def"
898   }
899 
900   for (const Metadata *Op : MD.operands()) {
901     if (!Op)
902       continue;
903     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
904            &MD, Op);
905     AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
906              "DILocation not allowed within this metadata node", &MD, Op);
907     if (auto *N = dyn_cast<MDNode>(Op)) {
908       visitMDNode(*N, AllowLocs);
909       continue;
910     }
911     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
912       visitValueAsMetadata(*V, nullptr);
913       continue;
914     }
915   }
916 
917   // Check these last, so we diagnose problems in operands first.
918   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
919   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
920 }
921 
922 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
923   Assert(MD.getValue(), "Expected valid value", &MD);
924   Assert(!MD.getValue()->getType()->isMetadataTy(),
925          "Unexpected metadata round-trip through values", &MD, MD.getValue());
926 
927   auto *L = dyn_cast<LocalAsMetadata>(&MD);
928   if (!L)
929     return;
930 
931   Assert(F, "function-local metadata used outside a function", L);
932 
933   // If this was an instruction, bb, or argument, verify that it is in the
934   // function that we expect.
935   Function *ActualF = nullptr;
936   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
937     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
938     ActualF = I->getParent()->getParent();
939   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
940     ActualF = BB->getParent();
941   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
942     ActualF = A->getParent();
943   assert(ActualF && "Unimplemented function local metadata case!");
944 
945   Assert(ActualF == F, "function-local metadata used in wrong function", L);
946 }
947 
948 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
949   Metadata *MD = MDV.getMetadata();
950   if (auto *N = dyn_cast<MDNode>(MD)) {
951     visitMDNode(*N, AreDebugLocsAllowed::No);
952     return;
953   }
954 
955   // Only visit each node once.  Metadata can be mutually recursive, so this
956   // avoids infinite recursion here, as well as being an optimization.
957   if (!MDNodes.insert(MD).second)
958     return;
959 
960   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
961     visitValueAsMetadata(*V, F);
962 }
963 
964 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
965 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
966 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
967 
968 void Verifier::visitDILocation(const DILocation &N) {
969   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
970            "location requires a valid scope", &N, N.getRawScope());
971   if (auto *IA = N.getRawInlinedAt())
972     AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
973   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
974     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
975 }
976 
977 void Verifier::visitGenericDINode(const GenericDINode &N) {
978   AssertDI(N.getTag(), "invalid tag", &N);
979 }
980 
981 void Verifier::visitDIScope(const DIScope &N) {
982   if (auto *F = N.getRawFile())
983     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
984 }
985 
986 void Verifier::visitDISubrange(const DISubrange &N) {
987   AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
988   bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang);
989   AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||
990                N.getRawUpperBound(),
991            "Subrange must contain count or upperBound", &N);
992   AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
993            "Subrange can have any one of count or upperBound", &N);
994   auto *CBound = N.getRawCountNode();
995   AssertDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
996                isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
997            "Count must be signed constant or DIVariable or DIExpression", &N);
998   auto Count = N.getCount();
999   AssertDI(!Count || !Count.is<ConstantInt *>() ||
1000                Count.get<ConstantInt *>()->getSExtValue() >= -1,
1001            "invalid subrange count", &N);
1002   auto *LBound = N.getRawLowerBound();
1003   AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
1004                isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1005            "LowerBound must be signed constant or DIVariable or DIExpression",
1006            &N);
1007   auto *UBound = N.getRawUpperBound();
1008   AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
1009                isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1010            "UpperBound must be signed constant or DIVariable or DIExpression",
1011            &N);
1012   auto *Stride = N.getRawStride();
1013   AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
1014                isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1015            "Stride must be signed constant or DIVariable or DIExpression", &N);
1016 }
1017 
1018 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
1019   AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
1020   AssertDI(N.getRawCountNode() || N.getRawUpperBound(),
1021            "GenericSubrange must contain count or upperBound", &N);
1022   AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1023            "GenericSubrange can have any one of count or upperBound", &N);
1024   auto *CBound = N.getRawCountNode();
1025   AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1026            "Count must be signed constant or DIVariable or DIExpression", &N);
1027   auto *LBound = N.getRawLowerBound();
1028   AssertDI(LBound, "GenericSubrange must contain lowerBound", &N);
1029   AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1030            "LowerBound must be signed constant or DIVariable or DIExpression",
1031            &N);
1032   auto *UBound = N.getRawUpperBound();
1033   AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1034            "UpperBound must be signed constant or DIVariable or DIExpression",
1035            &N);
1036   auto *Stride = N.getRawStride();
1037   AssertDI(Stride, "GenericSubrange must contain stride", &N);
1038   AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1039            "Stride must be signed constant or DIVariable or DIExpression", &N);
1040 }
1041 
1042 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
1043   AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
1044 }
1045 
1046 void Verifier::visitDIBasicType(const DIBasicType &N) {
1047   AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
1048                N.getTag() == dwarf::DW_TAG_unspecified_type ||
1049                N.getTag() == dwarf::DW_TAG_string_type,
1050            "invalid tag", &N);
1051 }
1052 
1053 void Verifier::visitDIStringType(const DIStringType &N) {
1054   AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
1055   AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
1056             "has conflicting flags", &N);
1057 }
1058 
1059 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
1060   // Common scope checks.
1061   visitDIScope(N);
1062 
1063   AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
1064                N.getTag() == dwarf::DW_TAG_pointer_type ||
1065                N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1066                N.getTag() == dwarf::DW_TAG_reference_type ||
1067                N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1068                N.getTag() == dwarf::DW_TAG_const_type ||
1069                N.getTag() == dwarf::DW_TAG_immutable_type ||
1070                N.getTag() == dwarf::DW_TAG_volatile_type ||
1071                N.getTag() == dwarf::DW_TAG_restrict_type ||
1072                N.getTag() == dwarf::DW_TAG_atomic_type ||
1073                N.getTag() == dwarf::DW_TAG_member ||
1074                N.getTag() == dwarf::DW_TAG_inheritance ||
1075                N.getTag() == dwarf::DW_TAG_friend ||
1076                N.getTag() == dwarf::DW_TAG_set_type,
1077            "invalid tag", &N);
1078   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1079     AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
1080              N.getRawExtraData());
1081   }
1082 
1083   if (N.getTag() == dwarf::DW_TAG_set_type) {
1084     if (auto *T = N.getRawBaseType()) {
1085       auto *Enum = dyn_cast_or_null<DICompositeType>(T);
1086       auto *Basic = dyn_cast_or_null<DIBasicType>(T);
1087       AssertDI(
1088           (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1089               (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1090                          Basic->getEncoding() == dwarf::DW_ATE_signed ||
1091                          Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1092                          Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1093                          Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1094           "invalid set base type", &N, T);
1095     }
1096   }
1097 
1098   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1099   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
1100            N.getRawBaseType());
1101 
1102   if (N.getDWARFAddressSpace()) {
1103     AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
1104                  N.getTag() == dwarf::DW_TAG_reference_type ||
1105                  N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1106              "DWARF address space only applies to pointer or reference types",
1107              &N);
1108   }
1109 }
1110 
1111 /// Detect mutually exclusive flags.
1112 static bool hasConflictingReferenceFlags(unsigned Flags) {
1113   return ((Flags & DINode::FlagLValueReference) &&
1114           (Flags & DINode::FlagRValueReference)) ||
1115          ((Flags & DINode::FlagTypePassByValue) &&
1116           (Flags & DINode::FlagTypePassByReference));
1117 }
1118 
1119 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
1120   auto *Params = dyn_cast<MDTuple>(&RawParams);
1121   AssertDI(Params, "invalid template params", &N, &RawParams);
1122   for (Metadata *Op : Params->operands()) {
1123     AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
1124              &N, Params, Op);
1125   }
1126 }
1127 
1128 void Verifier::visitDICompositeType(const DICompositeType &N) {
1129   // Common scope checks.
1130   visitDIScope(N);
1131 
1132   AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
1133                N.getTag() == dwarf::DW_TAG_structure_type ||
1134                N.getTag() == dwarf::DW_TAG_union_type ||
1135                N.getTag() == dwarf::DW_TAG_enumeration_type ||
1136                N.getTag() == dwarf::DW_TAG_class_type ||
1137                N.getTag() == dwarf::DW_TAG_variant_part ||
1138                N.getTag() == dwarf::DW_TAG_namelist,
1139            "invalid tag", &N);
1140 
1141   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1142   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
1143            N.getRawBaseType());
1144 
1145   AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
1146            "invalid composite elements", &N, N.getRawElements());
1147   AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
1148            N.getRawVTableHolder());
1149   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1150            "invalid reference flags", &N);
1151   unsigned DIBlockByRefStruct = 1 << 4;
1152   AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,
1153            "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
1154 
1155   if (N.isVector()) {
1156     const DINodeArray Elements = N.getElements();
1157     AssertDI(Elements.size() == 1 &&
1158              Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1159              "invalid vector, expected one element of type subrange", &N);
1160   }
1161 
1162   if (auto *Params = N.getRawTemplateParams())
1163     visitTemplateParams(N, *Params);
1164 
1165   if (auto *D = N.getRawDiscriminator()) {
1166     AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1167              "discriminator can only appear on variant part");
1168   }
1169 
1170   if (N.getRawDataLocation()) {
1171     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1172              "dataLocation can only appear in array type");
1173   }
1174 
1175   if (N.getRawAssociated()) {
1176     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1177              "associated can only appear in array type");
1178   }
1179 
1180   if (N.getRawAllocated()) {
1181     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1182              "allocated can only appear in array type");
1183   }
1184 
1185   if (N.getRawRank()) {
1186     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1187              "rank can only appear in array type");
1188   }
1189 }
1190 
1191 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1192   AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1193   if (auto *Types = N.getRawTypeArray()) {
1194     AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1195     for (Metadata *Ty : N.getTypeArray()->operands()) {
1196       AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1197     }
1198   }
1199   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1200            "invalid reference flags", &N);
1201 }
1202 
1203 void Verifier::visitDIFile(const DIFile &N) {
1204   AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1205   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1206   if (Checksum) {
1207     AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1208              "invalid checksum kind", &N);
1209     size_t Size;
1210     switch (Checksum->Kind) {
1211     case DIFile::CSK_MD5:
1212       Size = 32;
1213       break;
1214     case DIFile::CSK_SHA1:
1215       Size = 40;
1216       break;
1217     case DIFile::CSK_SHA256:
1218       Size = 64;
1219       break;
1220     }
1221     AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1222     AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1223              "invalid checksum", &N);
1224   }
1225 }
1226 
1227 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1228   AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1229   AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1230 
1231   // Don't bother verifying the compilation directory or producer string
1232   // as those could be empty.
1233   AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1234            N.getRawFile());
1235   AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1236            N.getFile());
1237 
1238   CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();
1239 
1240   verifySourceDebugInfo(N, *N.getFile());
1241 
1242   AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1243            "invalid emission kind", &N);
1244 
1245   if (auto *Array = N.getRawEnumTypes()) {
1246     AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1247     for (Metadata *Op : N.getEnumTypes()->operands()) {
1248       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1249       AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1250                "invalid enum type", &N, N.getEnumTypes(), Op);
1251     }
1252   }
1253   if (auto *Array = N.getRawRetainedTypes()) {
1254     AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1255     for (Metadata *Op : N.getRetainedTypes()->operands()) {
1256       AssertDI(Op && (isa<DIType>(Op) ||
1257                       (isa<DISubprogram>(Op) &&
1258                        !cast<DISubprogram>(Op)->isDefinition())),
1259                "invalid retained type", &N, Op);
1260     }
1261   }
1262   if (auto *Array = N.getRawGlobalVariables()) {
1263     AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1264     for (Metadata *Op : N.getGlobalVariables()->operands()) {
1265       AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1266                "invalid global variable ref", &N, Op);
1267     }
1268   }
1269   if (auto *Array = N.getRawImportedEntities()) {
1270     AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1271     for (Metadata *Op : N.getImportedEntities()->operands()) {
1272       AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1273                &N, Op);
1274     }
1275   }
1276   if (auto *Array = N.getRawMacros()) {
1277     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1278     for (Metadata *Op : N.getMacros()->operands()) {
1279       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1280     }
1281   }
1282   CUVisited.insert(&N);
1283 }
1284 
1285 void Verifier::visitDISubprogram(const DISubprogram &N) {
1286   AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1287   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1288   if (auto *F = N.getRawFile())
1289     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1290   else
1291     AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1292   if (auto *T = N.getRawType())
1293     AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1294   AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1295            N.getRawContainingType());
1296   if (auto *Params = N.getRawTemplateParams())
1297     visitTemplateParams(N, *Params);
1298   if (auto *S = N.getRawDeclaration())
1299     AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1300              "invalid subprogram declaration", &N, S);
1301   if (auto *RawNode = N.getRawRetainedNodes()) {
1302     auto *Node = dyn_cast<MDTuple>(RawNode);
1303     AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1304     for (Metadata *Op : Node->operands()) {
1305       AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1306                "invalid retained nodes, expected DILocalVariable or DILabel",
1307                &N, Node, Op);
1308     }
1309   }
1310   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1311            "invalid reference flags", &N);
1312 
1313   auto *Unit = N.getRawUnit();
1314   if (N.isDefinition()) {
1315     // Subprogram definitions (not part of the type hierarchy).
1316     AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1317     AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1318     AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1319     if (N.getFile())
1320       verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1321   } else {
1322     // Subprogram declarations (part of the type hierarchy).
1323     AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1324   }
1325 
1326   if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1327     auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1328     AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1329     for (Metadata *Op : ThrownTypes->operands())
1330       AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1331                Op);
1332   }
1333 
1334   if (N.areAllCallsDescribed())
1335     AssertDI(N.isDefinition(),
1336              "DIFlagAllCallsDescribed must be attached to a definition");
1337 }
1338 
1339 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1340   AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1341   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1342            "invalid local scope", &N, N.getRawScope());
1343   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1344     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1345 }
1346 
1347 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1348   visitDILexicalBlockBase(N);
1349 
1350   AssertDI(N.getLine() || !N.getColumn(),
1351            "cannot have column info without line info", &N);
1352 }
1353 
1354 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1355   visitDILexicalBlockBase(N);
1356 }
1357 
1358 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1359   AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1360   if (auto *S = N.getRawScope())
1361     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1362   if (auto *S = N.getRawDecl())
1363     AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1364 }
1365 
1366 void Verifier::visitDINamespace(const DINamespace &N) {
1367   AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1368   if (auto *S = N.getRawScope())
1369     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1370 }
1371 
1372 void Verifier::visitDIMacro(const DIMacro &N) {
1373   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1374                N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1375            "invalid macinfo type", &N);
1376   AssertDI(!N.getName().empty(), "anonymous macro", &N);
1377   if (!N.getValue().empty()) {
1378     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1379   }
1380 }
1381 
1382 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1383   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1384            "invalid macinfo type", &N);
1385   if (auto *F = N.getRawFile())
1386     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1387 
1388   if (auto *Array = N.getRawElements()) {
1389     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1390     for (Metadata *Op : N.getElements()->operands()) {
1391       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1392     }
1393   }
1394 }
1395 
1396 void Verifier::visitDIArgList(const DIArgList &N) {
1397   AssertDI(!N.getNumOperands(),
1398            "DIArgList should have no operands other than a list of "
1399            "ValueAsMetadata",
1400            &N);
1401 }
1402 
1403 void Verifier::visitDIModule(const DIModule &N) {
1404   AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1405   AssertDI(!N.getName().empty(), "anonymous module", &N);
1406 }
1407 
1408 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1409   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1410 }
1411 
1412 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1413   visitDITemplateParameter(N);
1414 
1415   AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1416            &N);
1417 }
1418 
1419 void Verifier::visitDITemplateValueParameter(
1420     const DITemplateValueParameter &N) {
1421   visitDITemplateParameter(N);
1422 
1423   AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1424                N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1425                N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1426            "invalid tag", &N);
1427 }
1428 
1429 void Verifier::visitDIVariable(const DIVariable &N) {
1430   if (auto *S = N.getRawScope())
1431     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1432   if (auto *F = N.getRawFile())
1433     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1434 }
1435 
1436 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1437   // Checks common to all variables.
1438   visitDIVariable(N);
1439 
1440   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1441   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1442   // Assert only if the global variable is not an extern
1443   if (N.isDefinition())
1444     AssertDI(N.getType(), "missing global variable type", &N);
1445   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1446     AssertDI(isa<DIDerivedType>(Member),
1447              "invalid static data member declaration", &N, Member);
1448   }
1449 }
1450 
1451 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1452   // Checks common to all variables.
1453   visitDIVariable(N);
1454 
1455   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1456   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1457   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1458            "local variable requires a valid scope", &N, N.getRawScope());
1459   if (auto Ty = N.getType())
1460     AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1461 }
1462 
1463 void Verifier::visitDILabel(const DILabel &N) {
1464   if (auto *S = N.getRawScope())
1465     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1466   if (auto *F = N.getRawFile())
1467     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1468 
1469   AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1470   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1471            "label requires a valid scope", &N, N.getRawScope());
1472 }
1473 
1474 void Verifier::visitDIExpression(const DIExpression &N) {
1475   AssertDI(N.isValid(), "invalid expression", &N);
1476 }
1477 
1478 void Verifier::visitDIGlobalVariableExpression(
1479     const DIGlobalVariableExpression &GVE) {
1480   AssertDI(GVE.getVariable(), "missing variable");
1481   if (auto *Var = GVE.getVariable())
1482     visitDIGlobalVariable(*Var);
1483   if (auto *Expr = GVE.getExpression()) {
1484     visitDIExpression(*Expr);
1485     if (auto Fragment = Expr->getFragmentInfo())
1486       verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1487   }
1488 }
1489 
1490 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1491   AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1492   if (auto *T = N.getRawType())
1493     AssertDI(isType(T), "invalid type ref", &N, T);
1494   if (auto *F = N.getRawFile())
1495     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1496 }
1497 
1498 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1499   AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1500                N.getTag() == dwarf::DW_TAG_imported_declaration,
1501            "invalid tag", &N);
1502   if (auto *S = N.getRawScope())
1503     AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1504   AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1505            N.getRawEntity());
1506 }
1507 
1508 void Verifier::visitComdat(const Comdat &C) {
1509   // In COFF the Module is invalid if the GlobalValue has private linkage.
1510   // Entities with private linkage don't have entries in the symbol table.
1511   if (TT.isOSBinFormatCOFF())
1512     if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1513       Assert(!GV->hasPrivateLinkage(),
1514              "comdat global value has private linkage", GV);
1515 }
1516 
1517 void Verifier::visitModuleIdents() {
1518   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1519   if (!Idents)
1520     return;
1521 
1522   // llvm.ident takes a list of metadata entry. Each entry has only one string.
1523   // Scan each llvm.ident entry and make sure that this requirement is met.
1524   for (const MDNode *N : Idents->operands()) {
1525     Assert(N->getNumOperands() == 1,
1526            "incorrect number of operands in llvm.ident metadata", N);
1527     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1528            ("invalid value for llvm.ident metadata entry operand"
1529             "(the operand should be a string)"),
1530            N->getOperand(0));
1531   }
1532 }
1533 
1534 void Verifier::visitModuleCommandLines() {
1535   const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1536   if (!CommandLines)
1537     return;
1538 
1539   // llvm.commandline takes a list of metadata entry. Each entry has only one
1540   // string. Scan each llvm.commandline entry and make sure that this
1541   // requirement is met.
1542   for (const MDNode *N : CommandLines->operands()) {
1543     Assert(N->getNumOperands() == 1,
1544            "incorrect number of operands in llvm.commandline metadata", N);
1545     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1546            ("invalid value for llvm.commandline metadata entry operand"
1547             "(the operand should be a string)"),
1548            N->getOperand(0));
1549   }
1550 }
1551 
1552 void Verifier::visitModuleFlags() {
1553   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1554   if (!Flags) return;
1555 
1556   // Scan each flag, and track the flags and requirements.
1557   DenseMap<const MDString*, const MDNode*> SeenIDs;
1558   SmallVector<const MDNode*, 16> Requirements;
1559   for (const MDNode *MDN : Flags->operands())
1560     visitModuleFlag(MDN, SeenIDs, Requirements);
1561 
1562   // Validate that the requirements in the module are valid.
1563   for (const MDNode *Requirement : Requirements) {
1564     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1565     const Metadata *ReqValue = Requirement->getOperand(1);
1566 
1567     const MDNode *Op = SeenIDs.lookup(Flag);
1568     if (!Op) {
1569       CheckFailed("invalid requirement on flag, flag is not present in module",
1570                   Flag);
1571       continue;
1572     }
1573 
1574     if (Op->getOperand(2) != ReqValue) {
1575       CheckFailed(("invalid requirement on flag, "
1576                    "flag does not have the required value"),
1577                   Flag);
1578       continue;
1579     }
1580   }
1581 }
1582 
1583 void
1584 Verifier::visitModuleFlag(const MDNode *Op,
1585                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
1586                           SmallVectorImpl<const MDNode *> &Requirements) {
1587   // Each module flag should have three arguments, the merge behavior (a
1588   // constant int), the flag ID (an MDString), and the value.
1589   Assert(Op->getNumOperands() == 3,
1590          "incorrect number of operands in module flag", Op);
1591   Module::ModFlagBehavior MFB;
1592   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1593     Assert(
1594         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1595         "invalid behavior operand in module flag (expected constant integer)",
1596         Op->getOperand(0));
1597     Assert(false,
1598            "invalid behavior operand in module flag (unexpected constant)",
1599            Op->getOperand(0));
1600   }
1601   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1602   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1603          Op->getOperand(1));
1604 
1605   // Check the values for behaviors with additional requirements.
1606   switch (MFB) {
1607   case Module::Error:
1608   case Module::Warning:
1609   case Module::Override:
1610     // These behavior types accept any value.
1611     break;
1612 
1613   case Module::Max: {
1614     Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1615            "invalid value for 'max' module flag (expected constant integer)",
1616            Op->getOperand(2));
1617     break;
1618   }
1619 
1620   case Module::Require: {
1621     // The value should itself be an MDNode with two operands, a flag ID (an
1622     // MDString), and a value.
1623     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1624     Assert(Value && Value->getNumOperands() == 2,
1625            "invalid value for 'require' module flag (expected metadata pair)",
1626            Op->getOperand(2));
1627     Assert(isa<MDString>(Value->getOperand(0)),
1628            ("invalid value for 'require' module flag "
1629             "(first value operand should be a string)"),
1630            Value->getOperand(0));
1631 
1632     // Append it to the list of requirements, to check once all module flags are
1633     // scanned.
1634     Requirements.push_back(Value);
1635     break;
1636   }
1637 
1638   case Module::Append:
1639   case Module::AppendUnique: {
1640     // These behavior types require the operand be an MDNode.
1641     Assert(isa<MDNode>(Op->getOperand(2)),
1642            "invalid value for 'append'-type module flag "
1643            "(expected a metadata node)",
1644            Op->getOperand(2));
1645     break;
1646   }
1647   }
1648 
1649   // Unless this is a "requires" flag, check the ID is unique.
1650   if (MFB != Module::Require) {
1651     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1652     Assert(Inserted,
1653            "module flag identifiers must be unique (or of 'require' type)", ID);
1654   }
1655 
1656   if (ID->getString() == "wchar_size") {
1657     ConstantInt *Value
1658       = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1659     Assert(Value, "wchar_size metadata requires constant integer argument");
1660   }
1661 
1662   if (ID->getString() == "Linker Options") {
1663     // If the llvm.linker.options named metadata exists, we assume that the
1664     // bitcode reader has upgraded the module flag. Otherwise the flag might
1665     // have been created by a client directly.
1666     Assert(M.getNamedMetadata("llvm.linker.options"),
1667            "'Linker Options' named metadata no longer supported");
1668   }
1669 
1670   if (ID->getString() == "SemanticInterposition") {
1671     ConstantInt *Value =
1672         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1673     Assert(Value,
1674            "SemanticInterposition metadata requires constant integer argument");
1675   }
1676 
1677   if (ID->getString() == "CG Profile") {
1678     for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1679       visitModuleFlagCGProfileEntry(MDO);
1680   }
1681 }
1682 
1683 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1684   auto CheckFunction = [&](const MDOperand &FuncMDO) {
1685     if (!FuncMDO)
1686       return;
1687     auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1688     Assert(F && isa<Function>(F->getValue()->stripPointerCasts()),
1689            "expected a Function or null", FuncMDO);
1690   };
1691   auto Node = dyn_cast_or_null<MDNode>(MDO);
1692   Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1693   CheckFunction(Node->getOperand(0));
1694   CheckFunction(Node->getOperand(1));
1695   auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1696   Assert(Count && Count->getType()->isIntegerTy(),
1697          "expected an integer constant", Node->getOperand(2));
1698 }
1699 
1700 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) {
1701   for (Attribute A : Attrs) {
1702 
1703     if (A.isStringAttribute()) {
1704 #define GET_ATTR_NAMES
1705 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1706 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME)                             \
1707   if (A.getKindAsString() == #DISPLAY_NAME) {                                  \
1708     auto V = A.getValueAsString();                                             \
1709     if (!(V.empty() || V == "true" || V == "false"))                           \
1710       CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V +    \
1711                   "");                                                         \
1712   }
1713 
1714 #include "llvm/IR/Attributes.inc"
1715       continue;
1716     }
1717 
1718     if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) {
1719       CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1720                   V);
1721       return;
1722     }
1723   }
1724 }
1725 
1726 // VerifyParameterAttrs - Check the given attributes for an argument or return
1727 // value of the specified type.  The value V is printed in error messages.
1728 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1729                                     const Value *V) {
1730   if (!Attrs.hasAttributes())
1731     return;
1732 
1733   verifyAttributeTypes(Attrs, V);
1734 
1735   for (Attribute Attr : Attrs)
1736     Assert(Attr.isStringAttribute() ||
1737            Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
1738            "Attribute '" + Attr.getAsString() +
1739                "' does not apply to parameters",
1740            V);
1741 
1742   if (Attrs.hasAttribute(Attribute::ImmArg)) {
1743     Assert(Attrs.getNumAttributes() == 1,
1744            "Attribute 'immarg' is incompatible with other attributes", V);
1745   }
1746 
1747   // Check for mutually incompatible attributes.  Only inreg is compatible with
1748   // sret.
1749   unsigned AttrCount = 0;
1750   AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1751   AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1752   AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1753   AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1754                Attrs.hasAttribute(Attribute::InReg);
1755   AttrCount += Attrs.hasAttribute(Attribute::Nest);
1756   AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1757   Assert(AttrCount <= 1,
1758          "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1759          "'byref', and 'sret' are incompatible!",
1760          V);
1761 
1762   Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1763            Attrs.hasAttribute(Attribute::ReadOnly)),
1764          "Attributes "
1765          "'inalloca and readonly' are incompatible!",
1766          V);
1767 
1768   Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1769            Attrs.hasAttribute(Attribute::Returned)),
1770          "Attributes "
1771          "'sret and returned' are incompatible!",
1772          V);
1773 
1774   Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1775            Attrs.hasAttribute(Attribute::SExt)),
1776          "Attributes "
1777          "'zeroext and signext' are incompatible!",
1778          V);
1779 
1780   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1781            Attrs.hasAttribute(Attribute::ReadOnly)),
1782          "Attributes "
1783          "'readnone and readonly' are incompatible!",
1784          V);
1785 
1786   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1787            Attrs.hasAttribute(Attribute::WriteOnly)),
1788          "Attributes "
1789          "'readnone and writeonly' are incompatible!",
1790          V);
1791 
1792   Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1793            Attrs.hasAttribute(Attribute::WriteOnly)),
1794          "Attributes "
1795          "'readonly and writeonly' are incompatible!",
1796          V);
1797 
1798   Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1799            Attrs.hasAttribute(Attribute::AlwaysInline)),
1800          "Attributes "
1801          "'noinline and alwaysinline' are incompatible!",
1802          V);
1803 
1804   AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1805   for (Attribute Attr : Attrs) {
1806     if (!Attr.isStringAttribute() &&
1807         IncompatibleAttrs.contains(Attr.getKindAsEnum())) {
1808       CheckFailed("Attribute '" + Attr.getAsString() +
1809                   "' applied to incompatible type!", V);
1810       return;
1811     }
1812   }
1813 
1814   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1815     if (Attrs.hasAttribute(Attribute::ByVal)) {
1816       SmallPtrSet<Type *, 4> Visited;
1817       Assert(Attrs.getByValType()->isSized(&Visited),
1818              "Attribute 'byval' does not support unsized types!", V);
1819     }
1820     if (Attrs.hasAttribute(Attribute::ByRef)) {
1821       SmallPtrSet<Type *, 4> Visited;
1822       Assert(Attrs.getByRefType()->isSized(&Visited),
1823              "Attribute 'byref' does not support unsized types!", V);
1824     }
1825     if (Attrs.hasAttribute(Attribute::InAlloca)) {
1826       SmallPtrSet<Type *, 4> Visited;
1827       Assert(Attrs.getInAllocaType()->isSized(&Visited),
1828              "Attribute 'inalloca' does not support unsized types!", V);
1829     }
1830     if (Attrs.hasAttribute(Attribute::Preallocated)) {
1831       SmallPtrSet<Type *, 4> Visited;
1832       Assert(Attrs.getPreallocatedType()->isSized(&Visited),
1833              "Attribute 'preallocated' does not support unsized types!", V);
1834     }
1835     if (!PTy->isOpaque()) {
1836       if (!isa<PointerType>(PTy->getNonOpaquePointerElementType()))
1837         Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1838                "Attribute 'swifterror' only applies to parameters "
1839                "with pointer to pointer type!",
1840                V);
1841       if (Attrs.hasAttribute(Attribute::ByRef)) {
1842         Assert(Attrs.getByRefType() == PTy->getNonOpaquePointerElementType(),
1843                "Attribute 'byref' type does not match parameter!", V);
1844       }
1845 
1846       if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1847         Assert(Attrs.getByValType() == PTy->getNonOpaquePointerElementType(),
1848                "Attribute 'byval' type does not match parameter!", V);
1849       }
1850 
1851       if (Attrs.hasAttribute(Attribute::Preallocated)) {
1852         Assert(Attrs.getPreallocatedType() ==
1853                    PTy->getNonOpaquePointerElementType(),
1854                "Attribute 'preallocated' type does not match parameter!", V);
1855       }
1856 
1857       if (Attrs.hasAttribute(Attribute::InAlloca)) {
1858         Assert(Attrs.getInAllocaType() == PTy->getNonOpaquePointerElementType(),
1859                "Attribute 'inalloca' type does not match parameter!", V);
1860       }
1861 
1862       if (Attrs.hasAttribute(Attribute::ElementType)) {
1863         Assert(Attrs.getElementType() == PTy->getNonOpaquePointerElementType(),
1864                "Attribute 'elementtype' type does not match parameter!", V);
1865       }
1866     }
1867   }
1868 }
1869 
1870 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
1871                                             const Value *V) {
1872   if (Attrs.hasFnAttr(Attr)) {
1873     StringRef S = Attrs.getFnAttr(Attr).getValueAsString();
1874     unsigned N;
1875     if (S.getAsInteger(10, N))
1876       CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V);
1877   }
1878 }
1879 
1880 // Check parameter attributes against a function type.
1881 // The value V is printed in error messages.
1882 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1883                                    const Value *V, bool IsIntrinsic,
1884                                    bool IsInlineAsm) {
1885   if (Attrs.isEmpty())
1886     return;
1887 
1888   if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
1889     Assert(Attrs.hasParentContext(Context),
1890            "Attribute list does not match Module context!", &Attrs, V);
1891     for (const auto &AttrSet : Attrs) {
1892       Assert(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
1893              "Attribute set does not match Module context!", &AttrSet, V);
1894       for (const auto &A : AttrSet) {
1895         Assert(A.hasParentContext(Context),
1896                "Attribute does not match Module context!", &A, V);
1897       }
1898     }
1899   }
1900 
1901   bool SawNest = false;
1902   bool SawReturned = false;
1903   bool SawSRet = false;
1904   bool SawSwiftSelf = false;
1905   bool SawSwiftAsync = false;
1906   bool SawSwiftError = false;
1907 
1908   // Verify return value attributes.
1909   AttributeSet RetAttrs = Attrs.getRetAttrs();
1910   for (Attribute RetAttr : RetAttrs)
1911     Assert(RetAttr.isStringAttribute() ||
1912            Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),
1913            "Attribute '" + RetAttr.getAsString() +
1914                "' does not apply to function return values",
1915            V);
1916 
1917   verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1918 
1919   // Verify parameter attributes.
1920   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1921     Type *Ty = FT->getParamType(i);
1922     AttributeSet ArgAttrs = Attrs.getParamAttrs(i);
1923 
1924     if (!IsIntrinsic) {
1925       Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1926              "immarg attribute only applies to intrinsics",V);
1927       if (!IsInlineAsm)
1928         Assert(!ArgAttrs.hasAttribute(Attribute::ElementType),
1929                "Attribute 'elementtype' can only be applied to intrinsics"
1930                " and inline asm.", V);
1931     }
1932 
1933     verifyParameterAttrs(ArgAttrs, Ty, V);
1934 
1935     if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1936       Assert(!SawNest, "More than one parameter has attribute nest!", V);
1937       SawNest = true;
1938     }
1939 
1940     if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1941       Assert(!SawReturned, "More than one parameter has attribute returned!",
1942              V);
1943       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1944              "Incompatible argument and return types for 'returned' attribute",
1945              V);
1946       SawReturned = true;
1947     }
1948 
1949     if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1950       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1951       Assert(i == 0 || i == 1,
1952              "Attribute 'sret' is not on first or second parameter!", V);
1953       SawSRet = true;
1954     }
1955 
1956     if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1957       Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1958       SawSwiftSelf = true;
1959     }
1960 
1961     if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
1962       Assert(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
1963       SawSwiftAsync = true;
1964     }
1965 
1966     if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1967       Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1968              V);
1969       SawSwiftError = true;
1970     }
1971 
1972     if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1973       Assert(i == FT->getNumParams() - 1,
1974              "inalloca isn't on the last parameter!", V);
1975     }
1976   }
1977 
1978   if (!Attrs.hasFnAttrs())
1979     return;
1980 
1981   verifyAttributeTypes(Attrs.getFnAttrs(), V);
1982   for (Attribute FnAttr : Attrs.getFnAttrs())
1983     Assert(FnAttr.isStringAttribute() ||
1984            Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),
1985            "Attribute '" + FnAttr.getAsString() +
1986                "' does not apply to functions!",
1987            V);
1988 
1989   Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
1990            Attrs.hasFnAttr(Attribute::ReadOnly)),
1991          "Attributes 'readnone and readonly' are incompatible!", V);
1992 
1993   Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
1994            Attrs.hasFnAttr(Attribute::WriteOnly)),
1995          "Attributes 'readnone and writeonly' are incompatible!", V);
1996 
1997   Assert(!(Attrs.hasFnAttr(Attribute::ReadOnly) &&
1998            Attrs.hasFnAttr(Attribute::WriteOnly)),
1999          "Attributes 'readonly and writeonly' are incompatible!", V);
2000 
2001   Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
2002            Attrs.hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly)),
2003          "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
2004          "incompatible!",
2005          V);
2006 
2007   Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
2008            Attrs.hasFnAttr(Attribute::InaccessibleMemOnly)),
2009          "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
2010 
2011   Assert(!(Attrs.hasFnAttr(Attribute::NoInline) &&
2012            Attrs.hasFnAttr(Attribute::AlwaysInline)),
2013          "Attributes 'noinline and alwaysinline' are incompatible!", V);
2014 
2015   if (Attrs.hasFnAttr(Attribute::OptimizeNone)) {
2016     Assert(Attrs.hasFnAttr(Attribute::NoInline),
2017            "Attribute 'optnone' requires 'noinline'!", V);
2018 
2019     Assert(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2020            "Attributes 'optsize and optnone' are incompatible!", V);
2021 
2022     Assert(!Attrs.hasFnAttr(Attribute::MinSize),
2023            "Attributes 'minsize and optnone' are incompatible!", V);
2024   }
2025 
2026   if (Attrs.hasFnAttr(Attribute::JumpTable)) {
2027     const GlobalValue *GV = cast<GlobalValue>(V);
2028     Assert(GV->hasGlobalUnnamedAddr(),
2029            "Attribute 'jumptable' requires 'unnamed_addr'", V);
2030   }
2031 
2032   if (Attrs.hasFnAttr(Attribute::AllocSize)) {
2033     std::pair<unsigned, Optional<unsigned>> Args =
2034         Attrs.getFnAttrs().getAllocSizeArgs();
2035 
2036     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
2037       if (ParamNo >= FT->getNumParams()) {
2038         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
2039         return false;
2040       }
2041 
2042       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
2043         CheckFailed("'allocsize' " + Name +
2044                         " argument must refer to an integer parameter",
2045                     V);
2046         return false;
2047       }
2048 
2049       return true;
2050     };
2051 
2052     if (!CheckParam("element size", Args.first))
2053       return;
2054 
2055     if (Args.second && !CheckParam("number of elements", *Args.second))
2056       return;
2057   }
2058 
2059   if (Attrs.hasFnAttr(Attribute::VScaleRange)) {
2060     unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin();
2061     if (VScaleMin == 0)
2062       CheckFailed("'vscale_range' minimum must be greater than 0", V);
2063 
2064     Optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax();
2065     if (VScaleMax && VScaleMin > VScaleMax)
2066       CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
2067   }
2068 
2069   if (Attrs.hasFnAttr("frame-pointer")) {
2070     StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString();
2071     if (FP != "all" && FP != "non-leaf" && FP != "none")
2072       CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
2073   }
2074 
2075   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V);
2076   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V);
2077   checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V);
2078 }
2079 
2080 void Verifier::verifyFunctionMetadata(
2081     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2082   for (const auto &Pair : MDs) {
2083     if (Pair.first == LLVMContext::MD_prof) {
2084       MDNode *MD = Pair.second;
2085       Assert(MD->getNumOperands() >= 2,
2086              "!prof annotations should have no less than 2 operands", MD);
2087 
2088       // Check first operand.
2089       Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
2090              MD);
2091       Assert(isa<MDString>(MD->getOperand(0)),
2092              "expected string with name of the !prof annotation", MD);
2093       MDString *MDS = cast<MDString>(MD->getOperand(0));
2094       StringRef ProfName = MDS->getString();
2095       Assert(ProfName.equals("function_entry_count") ||
2096                  ProfName.equals("synthetic_function_entry_count"),
2097              "first operand should be 'function_entry_count'"
2098              " or 'synthetic_function_entry_count'",
2099              MD);
2100 
2101       // Check second operand.
2102       Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
2103              MD);
2104       Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
2105              "expected integer argument to function_entry_count", MD);
2106     }
2107   }
2108 }
2109 
2110 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2111   if (!ConstantExprVisited.insert(EntryC).second)
2112     return;
2113 
2114   SmallVector<const Constant *, 16> Stack;
2115   Stack.push_back(EntryC);
2116 
2117   while (!Stack.empty()) {
2118     const Constant *C = Stack.pop_back_val();
2119 
2120     // Check this constant expression.
2121     if (const auto *CE = dyn_cast<ConstantExpr>(C))
2122       visitConstantExpr(CE);
2123 
2124     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
2125       // Global Values get visited separately, but we do need to make sure
2126       // that the global value is in the correct module
2127       Assert(GV->getParent() == &M, "Referencing global in another module!",
2128              EntryC, &M, GV, GV->getParent());
2129       continue;
2130     }
2131 
2132     // Visit all sub-expressions.
2133     for (const Use &U : C->operands()) {
2134       const auto *OpC = dyn_cast<Constant>(U);
2135       if (!OpC)
2136         continue;
2137       if (!ConstantExprVisited.insert(OpC).second)
2138         continue;
2139       Stack.push_back(OpC);
2140     }
2141   }
2142 }
2143 
2144 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2145   if (CE->getOpcode() == Instruction::BitCast)
2146     Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
2147                                  CE->getType()),
2148            "Invalid bitcast", CE);
2149 }
2150 
2151 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2152   // There shouldn't be more attribute sets than there are parameters plus the
2153   // function and return value.
2154   return Attrs.getNumAttrSets() <= Params + 2;
2155 }
2156 
2157 void Verifier::verifyInlineAsmCall(const CallBase &Call) {
2158   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
2159   unsigned ArgNo = 0;
2160   for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2161     // Only deal with constraints that correspond to call arguments.
2162     if (!CI.hasArg())
2163       continue;
2164 
2165     if (CI.isIndirect) {
2166       const Value *Arg = Call.getArgOperand(ArgNo);
2167       Assert(Arg->getType()->isPointerTy(),
2168              "Operand for indirect constraint must have pointer type",
2169              &Call);
2170 
2171       Assert(Call.getParamElementType(ArgNo),
2172              "Operand for indirect constraint must have elementtype attribute",
2173              &Call);
2174     } else {
2175       Assert(!Call.paramHasAttr(ArgNo, Attribute::ElementType),
2176              "Elementtype attribute can only be applied for indirect "
2177              "constraints", &Call);
2178     }
2179 
2180     ArgNo++;
2181   }
2182 }
2183 
2184 /// Verify that statepoint intrinsic is well formed.
2185 void Verifier::verifyStatepoint(const CallBase &Call) {
2186   assert(Call.getCalledFunction() &&
2187          Call.getCalledFunction()->getIntrinsicID() ==
2188              Intrinsic::experimental_gc_statepoint);
2189 
2190   Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
2191              !Call.onlyAccessesArgMemory(),
2192          "gc.statepoint must read and write all memory to preserve "
2193          "reordering restrictions required by safepoint semantics",
2194          Call);
2195 
2196   const int64_t NumPatchBytes =
2197       cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2198   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
2199   Assert(NumPatchBytes >= 0,
2200          "gc.statepoint number of patchable bytes must be "
2201          "positive",
2202          Call);
2203 
2204   Type *TargetElemType = Call.getParamElementType(2);
2205   Assert(TargetElemType,
2206          "gc.statepoint callee argument must have elementtype attribute", Call);
2207   FunctionType *TargetFuncType = dyn_cast<FunctionType>(TargetElemType);
2208   Assert(TargetFuncType,
2209          "gc.statepoint callee elementtype must be function type", Call);
2210 
2211   const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2212   Assert(NumCallArgs >= 0,
2213          "gc.statepoint number of arguments to underlying call "
2214          "must be positive",
2215          Call);
2216   const int NumParams = (int)TargetFuncType->getNumParams();
2217   if (TargetFuncType->isVarArg()) {
2218     Assert(NumCallArgs >= NumParams,
2219            "gc.statepoint mismatch in number of vararg call args", Call);
2220 
2221     // TODO: Remove this limitation
2222     Assert(TargetFuncType->getReturnType()->isVoidTy(),
2223            "gc.statepoint doesn't support wrapping non-void "
2224            "vararg functions yet",
2225            Call);
2226   } else
2227     Assert(NumCallArgs == NumParams,
2228            "gc.statepoint mismatch in number of call args", Call);
2229 
2230   const uint64_t Flags
2231     = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2232   Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2233          "unknown flag used in gc.statepoint flags argument", Call);
2234 
2235   // Verify that the types of the call parameter arguments match
2236   // the type of the wrapped callee.
2237   AttributeList Attrs = Call.getAttributes();
2238   for (int i = 0; i < NumParams; i++) {
2239     Type *ParamType = TargetFuncType->getParamType(i);
2240     Type *ArgType = Call.getArgOperand(5 + i)->getType();
2241     Assert(ArgType == ParamType,
2242            "gc.statepoint call argument does not match wrapped "
2243            "function type",
2244            Call);
2245 
2246     if (TargetFuncType->isVarArg()) {
2247       AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i);
2248       Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2249              "Attribute 'sret' cannot be used for vararg call arguments!",
2250              Call);
2251     }
2252   }
2253 
2254   const int EndCallArgsInx = 4 + NumCallArgs;
2255 
2256   const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2257   Assert(isa<ConstantInt>(NumTransitionArgsV),
2258          "gc.statepoint number of transition arguments "
2259          "must be constant integer",
2260          Call);
2261   const int NumTransitionArgs =
2262       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2263   Assert(NumTransitionArgs == 0,
2264          "gc.statepoint w/inline transition bundle is deprecated", Call);
2265   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2266 
2267   const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2268   Assert(isa<ConstantInt>(NumDeoptArgsV),
2269          "gc.statepoint number of deoptimization arguments "
2270          "must be constant integer",
2271          Call);
2272   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2273   Assert(NumDeoptArgs == 0,
2274          "gc.statepoint w/inline deopt operands is deprecated", Call);
2275 
2276   const int ExpectedNumArgs = 7 + NumCallArgs;
2277   Assert(ExpectedNumArgs == (int)Call.arg_size(),
2278          "gc.statepoint too many arguments", Call);
2279 
2280   // Check that the only uses of this gc.statepoint are gc.result or
2281   // gc.relocate calls which are tied to this statepoint and thus part
2282   // of the same statepoint sequence
2283   for (const User *U : Call.users()) {
2284     const CallInst *UserCall = dyn_cast<const CallInst>(U);
2285     Assert(UserCall, "illegal use of statepoint token", Call, U);
2286     if (!UserCall)
2287       continue;
2288     Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2289            "gc.result or gc.relocate are the only value uses "
2290            "of a gc.statepoint",
2291            Call, U);
2292     if (isa<GCResultInst>(UserCall)) {
2293       Assert(UserCall->getArgOperand(0) == &Call,
2294              "gc.result connected to wrong gc.statepoint", Call, UserCall);
2295     } else if (isa<GCRelocateInst>(Call)) {
2296       Assert(UserCall->getArgOperand(0) == &Call,
2297              "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2298     }
2299   }
2300 
2301   // Note: It is legal for a single derived pointer to be listed multiple
2302   // times.  It's non-optimal, but it is legal.  It can also happen after
2303   // insertion if we strip a bitcast away.
2304   // Note: It is really tempting to check that each base is relocated and
2305   // that a derived pointer is never reused as a base pointer.  This turns
2306   // out to be problematic since optimizations run after safepoint insertion
2307   // can recognize equality properties that the insertion logic doesn't know
2308   // about.  See example statepoint.ll in the verifier subdirectory
2309 }
2310 
2311 void Verifier::verifyFrameRecoverIndices() {
2312   for (auto &Counts : FrameEscapeInfo) {
2313     Function *F = Counts.first;
2314     unsigned EscapedObjectCount = Counts.second.first;
2315     unsigned MaxRecoveredIndex = Counts.second.second;
2316     Assert(MaxRecoveredIndex <= EscapedObjectCount,
2317            "all indices passed to llvm.localrecover must be less than the "
2318            "number of arguments passed to llvm.localescape in the parent "
2319            "function",
2320            F);
2321   }
2322 }
2323 
2324 static Instruction *getSuccPad(Instruction *Terminator) {
2325   BasicBlock *UnwindDest;
2326   if (auto *II = dyn_cast<InvokeInst>(Terminator))
2327     UnwindDest = II->getUnwindDest();
2328   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2329     UnwindDest = CSI->getUnwindDest();
2330   else
2331     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2332   return UnwindDest->getFirstNonPHI();
2333 }
2334 
2335 void Verifier::verifySiblingFuncletUnwinds() {
2336   SmallPtrSet<Instruction *, 8> Visited;
2337   SmallPtrSet<Instruction *, 8> Active;
2338   for (const auto &Pair : SiblingFuncletInfo) {
2339     Instruction *PredPad = Pair.first;
2340     if (Visited.count(PredPad))
2341       continue;
2342     Active.insert(PredPad);
2343     Instruction *Terminator = Pair.second;
2344     do {
2345       Instruction *SuccPad = getSuccPad(Terminator);
2346       if (Active.count(SuccPad)) {
2347         // Found a cycle; report error
2348         Instruction *CyclePad = SuccPad;
2349         SmallVector<Instruction *, 8> CycleNodes;
2350         do {
2351           CycleNodes.push_back(CyclePad);
2352           Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2353           if (CycleTerminator != CyclePad)
2354             CycleNodes.push_back(CycleTerminator);
2355           CyclePad = getSuccPad(CycleTerminator);
2356         } while (CyclePad != SuccPad);
2357         Assert(false, "EH pads can't handle each other's exceptions",
2358                ArrayRef<Instruction *>(CycleNodes));
2359       }
2360       // Don't re-walk a node we've already checked
2361       if (!Visited.insert(SuccPad).second)
2362         break;
2363       // Walk to this successor if it has a map entry.
2364       PredPad = SuccPad;
2365       auto TermI = SiblingFuncletInfo.find(PredPad);
2366       if (TermI == SiblingFuncletInfo.end())
2367         break;
2368       Terminator = TermI->second;
2369       Active.insert(PredPad);
2370     } while (true);
2371     // Each node only has one successor, so we've walked all the active
2372     // nodes' successors.
2373     Active.clear();
2374   }
2375 }
2376 
2377 // visitFunction - Verify that a function is ok.
2378 //
2379 void Verifier::visitFunction(const Function &F) {
2380   visitGlobalValue(F);
2381 
2382   // Check function arguments.
2383   FunctionType *FT = F.getFunctionType();
2384   unsigned NumArgs = F.arg_size();
2385 
2386   Assert(&Context == &F.getContext(),
2387          "Function context does not match Module context!", &F);
2388 
2389   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2390   Assert(FT->getNumParams() == NumArgs,
2391          "# formal arguments must match # of arguments for function type!", &F,
2392          FT);
2393   Assert(F.getReturnType()->isFirstClassType() ||
2394              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2395          "Functions cannot return aggregate values!", &F);
2396 
2397   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2398          "Invalid struct return type!", &F);
2399 
2400   AttributeList Attrs = F.getAttributes();
2401 
2402   Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2403          "Attribute after last parameter!", &F);
2404 
2405   bool IsIntrinsic = F.isIntrinsic();
2406 
2407   // Check function attributes.
2408   verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic, /* IsInlineAsm */ false);
2409 
2410   // On function declarations/definitions, we do not support the builtin
2411   // attribute. We do not check this in VerifyFunctionAttrs since that is
2412   // checking for Attributes that can/can not ever be on functions.
2413   Assert(!Attrs.hasFnAttr(Attribute::Builtin),
2414          "Attribute 'builtin' can only be applied to a callsite.", &F);
2415 
2416   Assert(!Attrs.hasAttrSomewhere(Attribute::ElementType),
2417          "Attribute 'elementtype' can only be applied to a callsite.", &F);
2418 
2419   // Check that this function meets the restrictions on this calling convention.
2420   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2421   // restrictions can be lifted.
2422   switch (F.getCallingConv()) {
2423   default:
2424   case CallingConv::C:
2425     break;
2426   case CallingConv::X86_INTR: {
2427     Assert(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal),
2428            "Calling convention parameter requires byval", &F);
2429     break;
2430   }
2431   case CallingConv::AMDGPU_KERNEL:
2432   case CallingConv::SPIR_KERNEL:
2433     Assert(F.getReturnType()->isVoidTy(),
2434            "Calling convention requires void return type", &F);
2435     LLVM_FALLTHROUGH;
2436   case CallingConv::AMDGPU_VS:
2437   case CallingConv::AMDGPU_HS:
2438   case CallingConv::AMDGPU_GS:
2439   case CallingConv::AMDGPU_PS:
2440   case CallingConv::AMDGPU_CS:
2441     Assert(!F.hasStructRetAttr(),
2442            "Calling convention does not allow sret", &F);
2443     if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2444       const unsigned StackAS = DL.getAllocaAddrSpace();
2445       unsigned i = 0;
2446       for (const Argument &Arg : F.args()) {
2447         Assert(!Attrs.hasParamAttr(i, Attribute::ByVal),
2448                "Calling convention disallows byval", &F);
2449         Assert(!Attrs.hasParamAttr(i, Attribute::Preallocated),
2450                "Calling convention disallows preallocated", &F);
2451         Assert(!Attrs.hasParamAttr(i, Attribute::InAlloca),
2452                "Calling convention disallows inalloca", &F);
2453 
2454         if (Attrs.hasParamAttr(i, Attribute::ByRef)) {
2455           // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2456           // value here.
2457           Assert(Arg.getType()->getPointerAddressSpace() != StackAS,
2458                  "Calling convention disallows stack byref", &F);
2459         }
2460 
2461         ++i;
2462       }
2463     }
2464 
2465     LLVM_FALLTHROUGH;
2466   case CallingConv::Fast:
2467   case CallingConv::Cold:
2468   case CallingConv::Intel_OCL_BI:
2469   case CallingConv::PTX_Kernel:
2470   case CallingConv::PTX_Device:
2471     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2472                           "perfect forwarding!",
2473            &F);
2474     break;
2475   }
2476 
2477   // Check that the argument values match the function type for this function...
2478   unsigned i = 0;
2479   for (const Argument &Arg : F.args()) {
2480     Assert(Arg.getType() == FT->getParamType(i),
2481            "Argument value does not match function argument type!", &Arg,
2482            FT->getParamType(i));
2483     Assert(Arg.getType()->isFirstClassType(),
2484            "Function arguments must have first-class types!", &Arg);
2485     if (!IsIntrinsic) {
2486       Assert(!Arg.getType()->isMetadataTy(),
2487              "Function takes metadata but isn't an intrinsic", &Arg, &F);
2488       Assert(!Arg.getType()->isTokenTy(),
2489              "Function takes token but isn't an intrinsic", &Arg, &F);
2490       Assert(!Arg.getType()->isX86_AMXTy(),
2491              "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
2492     }
2493 
2494     // Check that swifterror argument is only used by loads and stores.
2495     if (Attrs.hasParamAttr(i, Attribute::SwiftError)) {
2496       verifySwiftErrorValue(&Arg);
2497     }
2498     ++i;
2499   }
2500 
2501   if (!IsIntrinsic) {
2502     Assert(!F.getReturnType()->isTokenTy(),
2503            "Function returns a token but isn't an intrinsic", &F);
2504     Assert(!F.getReturnType()->isX86_AMXTy(),
2505            "Function returns a x86_amx but isn't an intrinsic", &F);
2506   }
2507 
2508   // Get the function metadata attachments.
2509   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2510   F.getAllMetadata(MDs);
2511   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2512   verifyFunctionMetadata(MDs);
2513 
2514   // Check validity of the personality function
2515   if (F.hasPersonalityFn()) {
2516     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2517     if (Per)
2518       Assert(Per->getParent() == F.getParent(),
2519              "Referencing personality function in another module!",
2520              &F, F.getParent(), Per, Per->getParent());
2521   }
2522 
2523   if (F.isMaterializable()) {
2524     // Function has a body somewhere we can't see.
2525     Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2526            MDs.empty() ? nullptr : MDs.front().second);
2527   } else if (F.isDeclaration()) {
2528     for (const auto &I : MDs) {
2529       // This is used for call site debug information.
2530       AssertDI(I.first != LLVMContext::MD_dbg ||
2531                    !cast<DISubprogram>(I.second)->isDistinct(),
2532                "function declaration may only have a unique !dbg attachment",
2533                &F);
2534       Assert(I.first != LLVMContext::MD_prof,
2535              "function declaration may not have a !prof attachment", &F);
2536 
2537       // Verify the metadata itself.
2538       visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2539     }
2540     Assert(!F.hasPersonalityFn(),
2541            "Function declaration shouldn't have a personality routine", &F);
2542   } else {
2543     // Verify that this function (which has a body) is not named "llvm.*".  It
2544     // is not legal to define intrinsics.
2545     Assert(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F);
2546 
2547     // Check the entry node
2548     const BasicBlock *Entry = &F.getEntryBlock();
2549     Assert(pred_empty(Entry),
2550            "Entry block to function must not have predecessors!", Entry);
2551 
2552     // The address of the entry block cannot be taken, unless it is dead.
2553     if (Entry->hasAddressTaken()) {
2554       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2555              "blockaddress may not be used with the entry block!", Entry);
2556     }
2557 
2558     unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2559     // Visit metadata attachments.
2560     for (const auto &I : MDs) {
2561       // Verify that the attachment is legal.
2562       auto AllowLocs = AreDebugLocsAllowed::No;
2563       switch (I.first) {
2564       default:
2565         break;
2566       case LLVMContext::MD_dbg: {
2567         ++NumDebugAttachments;
2568         AssertDI(NumDebugAttachments == 1,
2569                  "function must have a single !dbg attachment", &F, I.second);
2570         AssertDI(isa<DISubprogram>(I.second),
2571                  "function !dbg attachment must be a subprogram", &F, I.second);
2572         AssertDI(cast<DISubprogram>(I.second)->isDistinct(),
2573                  "function definition may only have a distinct !dbg attachment",
2574                  &F);
2575 
2576         auto *SP = cast<DISubprogram>(I.second);
2577         const Function *&AttachedTo = DISubprogramAttachments[SP];
2578         AssertDI(!AttachedTo || AttachedTo == &F,
2579                  "DISubprogram attached to more than one function", SP, &F);
2580         AttachedTo = &F;
2581         AllowLocs = AreDebugLocsAllowed::Yes;
2582         break;
2583       }
2584       case LLVMContext::MD_prof:
2585         ++NumProfAttachments;
2586         Assert(NumProfAttachments == 1,
2587                "function must have a single !prof attachment", &F, I.second);
2588         break;
2589       }
2590 
2591       // Verify the metadata itself.
2592       visitMDNode(*I.second, AllowLocs);
2593     }
2594   }
2595 
2596   // If this function is actually an intrinsic, verify that it is only used in
2597   // direct call/invokes, never having its "address taken".
2598   // Only do this if the module is materialized, otherwise we don't have all the
2599   // uses.
2600   if (F.isIntrinsic() && F.getParent()->isMaterialized()) {
2601     const User *U;
2602     if (F.hasAddressTaken(&U, false, true, false,
2603                           /*IgnoreARCAttachedCall=*/true))
2604       Assert(false, "Invalid user of intrinsic instruction!", U);
2605   }
2606 
2607   // Check intrinsics' signatures.
2608   switch (F.getIntrinsicID()) {
2609   case Intrinsic::experimental_gc_get_pointer_base: {
2610     FunctionType *FT = F.getFunctionType();
2611     Assert(FT->getNumParams() == 1, "wrong number of parameters", F);
2612     Assert(isa<PointerType>(F.getReturnType()),
2613            "gc.get.pointer.base must return a pointer", F);
2614     Assert(FT->getParamType(0) == F.getReturnType(),
2615            "gc.get.pointer.base operand and result must be of the same type",
2616            F);
2617     break;
2618   }
2619   case Intrinsic::experimental_gc_get_pointer_offset: {
2620     FunctionType *FT = F.getFunctionType();
2621     Assert(FT->getNumParams() == 1, "wrong number of parameters", F);
2622     Assert(isa<PointerType>(FT->getParamType(0)),
2623            "gc.get.pointer.offset operand must be a pointer", F);
2624     Assert(F.getReturnType()->isIntegerTy(),
2625            "gc.get.pointer.offset must return integer", F);
2626     break;
2627   }
2628   }
2629 
2630   auto *N = F.getSubprogram();
2631   HasDebugInfo = (N != nullptr);
2632   if (!HasDebugInfo)
2633     return;
2634 
2635   // Check that all !dbg attachments lead to back to N.
2636   //
2637   // FIXME: Check this incrementally while visiting !dbg attachments.
2638   // FIXME: Only check when N is the canonical subprogram for F.
2639   SmallPtrSet<const MDNode *, 32> Seen;
2640   auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2641     // Be careful about using DILocation here since we might be dealing with
2642     // broken code (this is the Verifier after all).
2643     const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2644     if (!DL)
2645       return;
2646     if (!Seen.insert(DL).second)
2647       return;
2648 
2649     Metadata *Parent = DL->getRawScope();
2650     AssertDI(Parent && isa<DILocalScope>(Parent),
2651              "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
2652              Parent);
2653 
2654     DILocalScope *Scope = DL->getInlinedAtScope();
2655     Assert(Scope, "Failed to find DILocalScope", DL);
2656 
2657     if (!Seen.insert(Scope).second)
2658       return;
2659 
2660     DISubprogram *SP = Scope->getSubprogram();
2661 
2662     // Scope and SP could be the same MDNode and we don't want to skip
2663     // validation in that case
2664     if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2665       return;
2666 
2667     AssertDI(SP->describes(&F),
2668              "!dbg attachment points at wrong subprogram for function", N, &F,
2669              &I, DL, Scope, SP);
2670   };
2671   for (auto &BB : F)
2672     for (auto &I : BB) {
2673       VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2674       // The llvm.loop annotations also contain two DILocations.
2675       if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2676         for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2677           VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2678       if (BrokenDebugInfo)
2679         return;
2680     }
2681 }
2682 
2683 // verifyBasicBlock - Verify that a basic block is well formed...
2684 //
2685 void Verifier::visitBasicBlock(BasicBlock &BB) {
2686   InstsInThisBlock.clear();
2687 
2688   // Ensure that basic blocks have terminators!
2689   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2690 
2691   // Check constraints that this basic block imposes on all of the PHI nodes in
2692   // it.
2693   if (isa<PHINode>(BB.front())) {
2694     SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
2695     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2696     llvm::sort(Preds);
2697     for (const PHINode &PN : BB.phis()) {
2698       Assert(PN.getNumIncomingValues() == Preds.size(),
2699              "PHINode should have one entry for each predecessor of its "
2700              "parent basic block!",
2701              &PN);
2702 
2703       // Get and sort all incoming values in the PHI node...
2704       Values.clear();
2705       Values.reserve(PN.getNumIncomingValues());
2706       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2707         Values.push_back(
2708             std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2709       llvm::sort(Values);
2710 
2711       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2712         // Check to make sure that if there is more than one entry for a
2713         // particular basic block in this PHI node, that the incoming values are
2714         // all identical.
2715         //
2716         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2717                    Values[i].second == Values[i - 1].second,
2718                "PHI node has multiple entries for the same basic block with "
2719                "different incoming values!",
2720                &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2721 
2722         // Check to make sure that the predecessors and PHI node entries are
2723         // matched up.
2724         Assert(Values[i].first == Preds[i],
2725                "PHI node entries do not match predecessors!", &PN,
2726                Values[i].first, Preds[i]);
2727       }
2728     }
2729   }
2730 
2731   // Check that all instructions have their parent pointers set up correctly.
2732   for (auto &I : BB)
2733   {
2734     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2735   }
2736 }
2737 
2738 void Verifier::visitTerminator(Instruction &I) {
2739   // Ensure that terminators only exist at the end of the basic block.
2740   Assert(&I == I.getParent()->getTerminator(),
2741          "Terminator found in the middle of a basic block!", I.getParent());
2742   visitInstruction(I);
2743 }
2744 
2745 void Verifier::visitBranchInst(BranchInst &BI) {
2746   if (BI.isConditional()) {
2747     Assert(BI.getCondition()->getType()->isIntegerTy(1),
2748            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2749   }
2750   visitTerminator(BI);
2751 }
2752 
2753 void Verifier::visitReturnInst(ReturnInst &RI) {
2754   Function *F = RI.getParent()->getParent();
2755   unsigned N = RI.getNumOperands();
2756   if (F->getReturnType()->isVoidTy())
2757     Assert(N == 0,
2758            "Found return instr that returns non-void in Function of void "
2759            "return type!",
2760            &RI, F->getReturnType());
2761   else
2762     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2763            "Function return type does not match operand "
2764            "type of return inst!",
2765            &RI, F->getReturnType());
2766 
2767   // Check to make sure that the return value has necessary properties for
2768   // terminators...
2769   visitTerminator(RI);
2770 }
2771 
2772 void Verifier::visitSwitchInst(SwitchInst &SI) {
2773   Assert(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI);
2774   // Check to make sure that all of the constants in the switch instruction
2775   // have the same type as the switched-on value.
2776   Type *SwitchTy = SI.getCondition()->getType();
2777   SmallPtrSet<ConstantInt*, 32> Constants;
2778   for (auto &Case : SI.cases()) {
2779     Assert(Case.getCaseValue()->getType() == SwitchTy,
2780            "Switch constants must all be same type as switch value!", &SI);
2781     Assert(Constants.insert(Case.getCaseValue()).second,
2782            "Duplicate integer as switch case", &SI, Case.getCaseValue());
2783   }
2784 
2785   visitTerminator(SI);
2786 }
2787 
2788 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2789   Assert(BI.getAddress()->getType()->isPointerTy(),
2790          "Indirectbr operand must have pointer type!", &BI);
2791   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2792     Assert(BI.getDestination(i)->getType()->isLabelTy(),
2793            "Indirectbr destinations must all have pointer type!", &BI);
2794 
2795   visitTerminator(BI);
2796 }
2797 
2798 void Verifier::visitCallBrInst(CallBrInst &CBI) {
2799   Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2800          &CBI);
2801   const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
2802   Assert(!IA->canThrow(), "Unwinding from Callbr is not allowed");
2803   for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2804     Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
2805            "Callbr successors must all have pointer type!", &CBI);
2806   for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2807     Assert(i >= CBI.arg_size() || !isa<BasicBlock>(CBI.getOperand(i)),
2808            "Using an unescaped label as a callbr argument!", &CBI);
2809     if (isa<BasicBlock>(CBI.getOperand(i)))
2810       for (unsigned j = i + 1; j != e; ++j)
2811         Assert(CBI.getOperand(i) != CBI.getOperand(j),
2812                "Duplicate callbr destination!", &CBI);
2813   }
2814   {
2815     SmallPtrSet<BasicBlock *, 4> ArgBBs;
2816     for (Value *V : CBI.args())
2817       if (auto *BA = dyn_cast<BlockAddress>(V))
2818         ArgBBs.insert(BA->getBasicBlock());
2819     for (BasicBlock *BB : CBI.getIndirectDests())
2820       Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI);
2821   }
2822 
2823   verifyInlineAsmCall(CBI);
2824   visitTerminator(CBI);
2825 }
2826 
2827 void Verifier::visitSelectInst(SelectInst &SI) {
2828   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2829                                          SI.getOperand(2)),
2830          "Invalid operands for select instruction!", &SI);
2831 
2832   Assert(SI.getTrueValue()->getType() == SI.getType(),
2833          "Select values must have same type as select instruction!", &SI);
2834   visitInstruction(SI);
2835 }
2836 
2837 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2838 /// a pass, if any exist, it's an error.
2839 ///
2840 void Verifier::visitUserOp1(Instruction &I) {
2841   Assert(false, "User-defined operators should not live outside of a pass!", &I);
2842 }
2843 
2844 void Verifier::visitTruncInst(TruncInst &I) {
2845   // Get the source and destination types
2846   Type *SrcTy = I.getOperand(0)->getType();
2847   Type *DestTy = I.getType();
2848 
2849   // Get the size of the types in bits, we'll need this later
2850   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2851   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2852 
2853   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2854   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2855   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2856          "trunc source and destination must both be a vector or neither", &I);
2857   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2858 
2859   visitInstruction(I);
2860 }
2861 
2862 void Verifier::visitZExtInst(ZExtInst &I) {
2863   // Get the source and destination types
2864   Type *SrcTy = I.getOperand(0)->getType();
2865   Type *DestTy = I.getType();
2866 
2867   // Get the size of the types in bits, we'll need this later
2868   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2869   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2870   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2871          "zext source and destination must both be a vector or neither", &I);
2872   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2873   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2874 
2875   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2876 
2877   visitInstruction(I);
2878 }
2879 
2880 void Verifier::visitSExtInst(SExtInst &I) {
2881   // Get the source and destination types
2882   Type *SrcTy = I.getOperand(0)->getType();
2883   Type *DestTy = I.getType();
2884 
2885   // Get the size of the types in bits, we'll need this later
2886   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2887   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2888 
2889   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2890   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2891   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2892          "sext source and destination must both be a vector or neither", &I);
2893   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2894 
2895   visitInstruction(I);
2896 }
2897 
2898 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2899   // Get the source and destination types
2900   Type *SrcTy = I.getOperand(0)->getType();
2901   Type *DestTy = I.getType();
2902   // Get the size of the types in bits, we'll need this later
2903   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2904   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2905 
2906   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2907   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2908   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2909          "fptrunc source and destination must both be a vector or neither", &I);
2910   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2911 
2912   visitInstruction(I);
2913 }
2914 
2915 void Verifier::visitFPExtInst(FPExtInst &I) {
2916   // Get the source and destination types
2917   Type *SrcTy = I.getOperand(0)->getType();
2918   Type *DestTy = I.getType();
2919 
2920   // Get the size of the types in bits, we'll need this later
2921   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2922   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2923 
2924   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2925   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2926   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2927          "fpext source and destination must both be a vector or neither", &I);
2928   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2929 
2930   visitInstruction(I);
2931 }
2932 
2933 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2934   // Get the source and destination types
2935   Type *SrcTy = I.getOperand(0)->getType();
2936   Type *DestTy = I.getType();
2937 
2938   bool SrcVec = SrcTy->isVectorTy();
2939   bool DstVec = DestTy->isVectorTy();
2940 
2941   Assert(SrcVec == DstVec,
2942          "UIToFP source and dest must both be vector or scalar", &I);
2943   Assert(SrcTy->isIntOrIntVectorTy(),
2944          "UIToFP source must be integer or integer vector", &I);
2945   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2946          &I);
2947 
2948   if (SrcVec && DstVec)
2949     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2950                cast<VectorType>(DestTy)->getElementCount(),
2951            "UIToFP source and dest vector length mismatch", &I);
2952 
2953   visitInstruction(I);
2954 }
2955 
2956 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2957   // Get the source and destination types
2958   Type *SrcTy = I.getOperand(0)->getType();
2959   Type *DestTy = I.getType();
2960 
2961   bool SrcVec = SrcTy->isVectorTy();
2962   bool DstVec = DestTy->isVectorTy();
2963 
2964   Assert(SrcVec == DstVec,
2965          "SIToFP source and dest must both be vector or scalar", &I);
2966   Assert(SrcTy->isIntOrIntVectorTy(),
2967          "SIToFP source must be integer or integer vector", &I);
2968   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2969          &I);
2970 
2971   if (SrcVec && DstVec)
2972     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2973                cast<VectorType>(DestTy)->getElementCount(),
2974            "SIToFP source and dest vector length mismatch", &I);
2975 
2976   visitInstruction(I);
2977 }
2978 
2979 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2980   // Get the source and destination types
2981   Type *SrcTy = I.getOperand(0)->getType();
2982   Type *DestTy = I.getType();
2983 
2984   bool SrcVec = SrcTy->isVectorTy();
2985   bool DstVec = DestTy->isVectorTy();
2986 
2987   Assert(SrcVec == DstVec,
2988          "FPToUI source and dest must both be vector or scalar", &I);
2989   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2990          &I);
2991   Assert(DestTy->isIntOrIntVectorTy(),
2992          "FPToUI result must be integer or integer vector", &I);
2993 
2994   if (SrcVec && DstVec)
2995     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2996                cast<VectorType>(DestTy)->getElementCount(),
2997            "FPToUI source and dest vector length mismatch", &I);
2998 
2999   visitInstruction(I);
3000 }
3001 
3002 void Verifier::visitFPToSIInst(FPToSIInst &I) {
3003   // Get the source and destination types
3004   Type *SrcTy = I.getOperand(0)->getType();
3005   Type *DestTy = I.getType();
3006 
3007   bool SrcVec = SrcTy->isVectorTy();
3008   bool DstVec = DestTy->isVectorTy();
3009 
3010   Assert(SrcVec == DstVec,
3011          "FPToSI source and dest must both be vector or scalar", &I);
3012   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
3013          &I);
3014   Assert(DestTy->isIntOrIntVectorTy(),
3015          "FPToSI result must be integer or integer vector", &I);
3016 
3017   if (SrcVec && DstVec)
3018     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
3019                cast<VectorType>(DestTy)->getElementCount(),
3020            "FPToSI source and dest vector length mismatch", &I);
3021 
3022   visitInstruction(I);
3023 }
3024 
3025 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
3026   // Get the source and destination types
3027   Type *SrcTy = I.getOperand(0)->getType();
3028   Type *DestTy = I.getType();
3029 
3030   Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
3031 
3032   Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
3033   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
3034          &I);
3035 
3036   if (SrcTy->isVectorTy()) {
3037     auto *VSrc = cast<VectorType>(SrcTy);
3038     auto *VDest = cast<VectorType>(DestTy);
3039     Assert(VSrc->getElementCount() == VDest->getElementCount(),
3040            "PtrToInt Vector width mismatch", &I);
3041   }
3042 
3043   visitInstruction(I);
3044 }
3045 
3046 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
3047   // Get the source and destination types
3048   Type *SrcTy = I.getOperand(0)->getType();
3049   Type *DestTy = I.getType();
3050 
3051   Assert(SrcTy->isIntOrIntVectorTy(),
3052          "IntToPtr source must be an integral", &I);
3053   Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
3054 
3055   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
3056          &I);
3057   if (SrcTy->isVectorTy()) {
3058     auto *VSrc = cast<VectorType>(SrcTy);
3059     auto *VDest = cast<VectorType>(DestTy);
3060     Assert(VSrc->getElementCount() == VDest->getElementCount(),
3061            "IntToPtr Vector width mismatch", &I);
3062   }
3063   visitInstruction(I);
3064 }
3065 
3066 void Verifier::visitBitCastInst(BitCastInst &I) {
3067   Assert(
3068       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
3069       "Invalid bitcast", &I);
3070   visitInstruction(I);
3071 }
3072 
3073 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
3074   Type *SrcTy = I.getOperand(0)->getType();
3075   Type *DestTy = I.getType();
3076 
3077   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
3078          &I);
3079   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
3080          &I);
3081   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
3082          "AddrSpaceCast must be between different address spaces", &I);
3083   if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
3084     Assert(SrcVTy->getElementCount() ==
3085                cast<VectorType>(DestTy)->getElementCount(),
3086            "AddrSpaceCast vector pointer number of elements mismatch", &I);
3087   visitInstruction(I);
3088 }
3089 
3090 /// visitPHINode - Ensure that a PHI node is well formed.
3091 ///
3092 void Verifier::visitPHINode(PHINode &PN) {
3093   // Ensure that the PHI nodes are all grouped together at the top of the block.
3094   // This can be tested by checking whether the instruction before this is
3095   // either nonexistent (because this is begin()) or is a PHI node.  If not,
3096   // then there is some other instruction before a PHI.
3097   Assert(&PN == &PN.getParent()->front() ||
3098              isa<PHINode>(--BasicBlock::iterator(&PN)),
3099          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
3100 
3101   // Check that a PHI doesn't yield a Token.
3102   Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
3103 
3104   // Check that all of the values of the PHI node have the same type as the
3105   // result, and that the incoming blocks are really basic blocks.
3106   for (Value *IncValue : PN.incoming_values()) {
3107     Assert(PN.getType() == IncValue->getType(),
3108            "PHI node operands are not the same type as the result!", &PN);
3109   }
3110 
3111   // All other PHI node constraints are checked in the visitBasicBlock method.
3112 
3113   visitInstruction(PN);
3114 }
3115 
3116 void Verifier::visitCallBase(CallBase &Call) {
3117   Assert(Call.getCalledOperand()->getType()->isPointerTy(),
3118          "Called function must be a pointer!", Call);
3119   PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType());
3120 
3121   Assert(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()),
3122          "Called function is not the same type as the call!", Call);
3123 
3124   FunctionType *FTy = Call.getFunctionType();
3125 
3126   // Verify that the correct number of arguments are being passed
3127   if (FTy->isVarArg())
3128     Assert(Call.arg_size() >= FTy->getNumParams(),
3129            "Called function requires more parameters than were provided!",
3130            Call);
3131   else
3132     Assert(Call.arg_size() == FTy->getNumParams(),
3133            "Incorrect number of arguments passed to called function!", Call);
3134 
3135   // Verify that all arguments to the call match the function type.
3136   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3137     Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
3138            "Call parameter type does not match function signature!",
3139            Call.getArgOperand(i), FTy->getParamType(i), Call);
3140 
3141   AttributeList Attrs = Call.getAttributes();
3142 
3143   Assert(verifyAttributeCount(Attrs, Call.arg_size()),
3144          "Attribute after last parameter!", Call);
3145 
3146   Function *Callee =
3147       dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3148   bool IsIntrinsic = Callee && Callee->isIntrinsic();
3149   if (IsIntrinsic)
3150     Assert(Callee->getValueType() == FTy,
3151            "Intrinsic called with incompatible signature", Call);
3152 
3153   if (Attrs.hasFnAttr(Attribute::Speculatable)) {
3154     // Don't allow speculatable on call sites, unless the underlying function
3155     // declaration is also speculatable.
3156     Assert(Callee && Callee->isSpeculatable(),
3157            "speculatable attribute may not apply to call sites", Call);
3158   }
3159 
3160   if (Attrs.hasFnAttr(Attribute::Preallocated)) {
3161     Assert(Call.getCalledFunction()->getIntrinsicID() ==
3162                Intrinsic::call_preallocated_arg,
3163            "preallocated as a call site attribute can only be on "
3164            "llvm.call.preallocated.arg");
3165   }
3166 
3167   // Verify call attributes.
3168   verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic, Call.isInlineAsm());
3169 
3170   // Conservatively check the inalloca argument.
3171   // We have a bug if we can find that there is an underlying alloca without
3172   // inalloca.
3173   if (Call.hasInAllocaArgument()) {
3174     Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
3175     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
3176       Assert(AI->isUsedWithInAlloca(),
3177              "inalloca argument for call has mismatched alloca", AI, Call);
3178   }
3179 
3180   // For each argument of the callsite, if it has the swifterror argument,
3181   // make sure the underlying alloca/parameter it comes from has a swifterror as
3182   // well.
3183   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3184     if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3185       Value *SwiftErrorArg = Call.getArgOperand(i);
3186       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
3187         Assert(AI->isSwiftError(),
3188                "swifterror argument for call has mismatched alloca", AI, Call);
3189         continue;
3190       }
3191       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3192       Assert(ArgI,
3193              "swifterror argument should come from an alloca or parameter",
3194              SwiftErrorArg, Call);
3195       Assert(ArgI->hasSwiftErrorAttr(),
3196              "swifterror argument for call has mismatched parameter", ArgI,
3197              Call);
3198     }
3199 
3200     if (Attrs.hasParamAttr(i, Attribute::ImmArg)) {
3201       // Don't allow immarg on call sites, unless the underlying declaration
3202       // also has the matching immarg.
3203       Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
3204              "immarg may not apply only to call sites",
3205              Call.getArgOperand(i), Call);
3206     }
3207 
3208     if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3209       Value *ArgVal = Call.getArgOperand(i);
3210       Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3211              "immarg operand has non-immediate parameter", ArgVal, Call);
3212     }
3213 
3214     if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3215       Value *ArgVal = Call.getArgOperand(i);
3216       bool hasOB =
3217           Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3218       bool isMustTail = Call.isMustTailCall();
3219       Assert(hasOB != isMustTail,
3220              "preallocated operand either requires a preallocated bundle or "
3221              "the call to be musttail (but not both)",
3222              ArgVal, Call);
3223     }
3224   }
3225 
3226   if (FTy->isVarArg()) {
3227     // FIXME? is 'nest' even legal here?
3228     bool SawNest = false;
3229     bool SawReturned = false;
3230 
3231     for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3232       if (Attrs.hasParamAttr(Idx, Attribute::Nest))
3233         SawNest = true;
3234       if (Attrs.hasParamAttr(Idx, Attribute::Returned))
3235         SawReturned = true;
3236     }
3237 
3238     // Check attributes on the varargs part.
3239     for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3240       Type *Ty = Call.getArgOperand(Idx)->getType();
3241       AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx);
3242       verifyParameterAttrs(ArgAttrs, Ty, &Call);
3243 
3244       if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3245         Assert(!SawNest, "More than one parameter has attribute nest!", Call);
3246         SawNest = true;
3247       }
3248 
3249       if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3250         Assert(!SawReturned, "More than one parameter has attribute returned!",
3251                Call);
3252         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
3253                "Incompatible argument and return types for 'returned' "
3254                "attribute",
3255                Call);
3256         SawReturned = true;
3257       }
3258 
3259       // Statepoint intrinsic is vararg but the wrapped function may be not.
3260       // Allow sret here and check the wrapped function in verifyStatepoint.
3261       if (!Call.getCalledFunction() ||
3262           Call.getCalledFunction()->getIntrinsicID() !=
3263               Intrinsic::experimental_gc_statepoint)
3264         Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
3265                "Attribute 'sret' cannot be used for vararg call arguments!",
3266                Call);
3267 
3268       if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3269         Assert(Idx == Call.arg_size() - 1,
3270                "inalloca isn't on the last argument!", Call);
3271     }
3272   }
3273 
3274   // Verify that there's no metadata unless it's a direct call to an intrinsic.
3275   if (!IsIntrinsic) {
3276     for (Type *ParamTy : FTy->params()) {
3277       Assert(!ParamTy->isMetadataTy(),
3278              "Function has metadata parameter but isn't an intrinsic", Call);
3279       Assert(!ParamTy->isTokenTy(),
3280              "Function has token parameter but isn't an intrinsic", Call);
3281     }
3282   }
3283 
3284   // Verify that indirect calls don't return tokens.
3285   if (!Call.getCalledFunction()) {
3286     Assert(!FTy->getReturnType()->isTokenTy(),
3287            "Return type cannot be token for indirect call!");
3288     Assert(!FTy->getReturnType()->isX86_AMXTy(),
3289            "Return type cannot be x86_amx for indirect call!");
3290   }
3291 
3292   if (Function *F = Call.getCalledFunction())
3293     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3294       visitIntrinsicCall(ID, Call);
3295 
3296   // Verify that a callsite has at most one "deopt", at most one "funclet", at
3297   // most one "gc-transition", at most one "cfguardtarget", at most one
3298   // "preallocated" operand bundle, and at most one "ptrauth" operand bundle.
3299   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3300        FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3301        FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
3302        FoundPtrauthBundle = false,
3303        FoundAttachedCallBundle = false;
3304   for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3305     OperandBundleUse BU = Call.getOperandBundleAt(i);
3306     uint32_t Tag = BU.getTagID();
3307     if (Tag == LLVMContext::OB_deopt) {
3308       Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3309       FoundDeoptBundle = true;
3310     } else if (Tag == LLVMContext::OB_gc_transition) {
3311       Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3312              Call);
3313       FoundGCTransitionBundle = true;
3314     } else if (Tag == LLVMContext::OB_funclet) {
3315       Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3316       FoundFuncletBundle = true;
3317       Assert(BU.Inputs.size() == 1,
3318              "Expected exactly one funclet bundle operand", Call);
3319       Assert(isa<FuncletPadInst>(BU.Inputs.front()),
3320              "Funclet bundle operands should correspond to a FuncletPadInst",
3321              Call);
3322     } else if (Tag == LLVMContext::OB_cfguardtarget) {
3323       Assert(!FoundCFGuardTargetBundle,
3324              "Multiple CFGuardTarget operand bundles", Call);
3325       FoundCFGuardTargetBundle = true;
3326       Assert(BU.Inputs.size() == 1,
3327              "Expected exactly one cfguardtarget bundle operand", Call);
3328     } else if (Tag == LLVMContext::OB_ptrauth) {
3329       Assert(!FoundPtrauthBundle, "Multiple ptrauth operand bundles", Call);
3330       FoundPtrauthBundle = true;
3331       Assert(BU.Inputs.size() == 2,
3332              "Expected exactly two ptrauth bundle operands", Call);
3333       Assert(isa<ConstantInt>(BU.Inputs[0]) &&
3334              BU.Inputs[0]->getType()->isIntegerTy(32),
3335              "Ptrauth bundle key operand must be an i32 constant", Call);
3336       Assert(BU.Inputs[1]->getType()->isIntegerTy(64),
3337              "Ptrauth bundle discriminator operand must be an i64", Call);
3338     } else if (Tag == LLVMContext::OB_preallocated) {
3339       Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
3340              Call);
3341       FoundPreallocatedBundle = true;
3342       Assert(BU.Inputs.size() == 1,
3343              "Expected exactly one preallocated bundle operand", Call);
3344       auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3345       Assert(Input &&
3346                  Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3347              "\"preallocated\" argument must be a token from "
3348              "llvm.call.preallocated.setup",
3349              Call);
3350     } else if (Tag == LLVMContext::OB_gc_live) {
3351       Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles",
3352              Call);
3353       FoundGCLiveBundle = true;
3354     } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
3355       Assert(!FoundAttachedCallBundle,
3356              "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
3357       FoundAttachedCallBundle = true;
3358       verifyAttachedCallBundle(Call, BU);
3359     }
3360   }
3361 
3362   // Verify that callee and callsite agree on whether to use pointer auth.
3363   Assert(!(Call.getCalledFunction() && FoundPtrauthBundle),
3364          "Direct call cannot have a ptrauth bundle", Call);
3365 
3366   // Verify that each inlinable callsite of a debug-info-bearing function in a
3367   // debug-info-bearing function has a debug location attached to it. Failure to
3368   // do so causes assertion failures when the inliner sets up inline scope info.
3369   if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3370       Call.getCalledFunction()->getSubprogram())
3371     AssertDI(Call.getDebugLoc(),
3372              "inlinable function call in a function with "
3373              "debug info must have a !dbg location",
3374              Call);
3375 
3376   if (Call.isInlineAsm())
3377     verifyInlineAsmCall(Call);
3378 
3379   visitInstruction(Call);
3380 }
3381 
3382 void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs,
3383                                          StringRef Context) {
3384   Assert(!Attrs.contains(Attribute::InAlloca),
3385          Twine("inalloca attribute not allowed in ") + Context);
3386   Assert(!Attrs.contains(Attribute::InReg),
3387          Twine("inreg attribute not allowed in ") + Context);
3388   Assert(!Attrs.contains(Attribute::SwiftError),
3389          Twine("swifterror attribute not allowed in ") + Context);
3390   Assert(!Attrs.contains(Attribute::Preallocated),
3391          Twine("preallocated attribute not allowed in ") + Context);
3392   Assert(!Attrs.contains(Attribute::ByRef),
3393          Twine("byref attribute not allowed in ") + Context);
3394 }
3395 
3396 /// Two types are "congruent" if they are identical, or if they are both pointer
3397 /// types with different pointee types and the same address space.
3398 static bool isTypeCongruent(Type *L, Type *R) {
3399   if (L == R)
3400     return true;
3401   PointerType *PL = dyn_cast<PointerType>(L);
3402   PointerType *PR = dyn_cast<PointerType>(R);
3403   if (!PL || !PR)
3404     return false;
3405   return PL->getAddressSpace() == PR->getAddressSpace();
3406 }
3407 
3408 static AttrBuilder getParameterABIAttributes(LLVMContext& C, unsigned I, AttributeList Attrs) {
3409   static const Attribute::AttrKind ABIAttrs[] = {
3410       Attribute::StructRet,  Attribute::ByVal,          Attribute::InAlloca,
3411       Attribute::InReg,      Attribute::StackAlignment, Attribute::SwiftSelf,
3412       Attribute::SwiftAsync, Attribute::SwiftError,     Attribute::Preallocated,
3413       Attribute::ByRef};
3414   AttrBuilder Copy(C);
3415   for (auto AK : ABIAttrs) {
3416     Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK);
3417     if (Attr.isValid())
3418       Copy.addAttribute(Attr);
3419   }
3420 
3421   // `align` is ABI-affecting only in combination with `byval` or `byref`.
3422   if (Attrs.hasParamAttr(I, Attribute::Alignment) &&
3423       (Attrs.hasParamAttr(I, Attribute::ByVal) ||
3424        Attrs.hasParamAttr(I, Attribute::ByRef)))
3425     Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3426   return Copy;
3427 }
3428 
3429 void Verifier::verifyMustTailCall(CallInst &CI) {
3430   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3431 
3432   Function *F = CI.getParent()->getParent();
3433   FunctionType *CallerTy = F->getFunctionType();
3434   FunctionType *CalleeTy = CI.getFunctionType();
3435   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3436          "cannot guarantee tail call due to mismatched varargs", &CI);
3437   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3438          "cannot guarantee tail call due to mismatched return types", &CI);
3439 
3440   // - The calling conventions of the caller and callee must match.
3441   Assert(F->getCallingConv() == CI.getCallingConv(),
3442          "cannot guarantee tail call due to mismatched calling conv", &CI);
3443 
3444   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3445   //   or a pointer bitcast followed by a ret instruction.
3446   // - The ret instruction must return the (possibly bitcasted) value
3447   //   produced by the call or void.
3448   Value *RetVal = &CI;
3449   Instruction *Next = CI.getNextNode();
3450 
3451   // Handle the optional bitcast.
3452   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3453     Assert(BI->getOperand(0) == RetVal,
3454            "bitcast following musttail call must use the call", BI);
3455     RetVal = BI;
3456     Next = BI->getNextNode();
3457   }
3458 
3459   // Check the return.
3460   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3461   Assert(Ret, "musttail call must precede a ret with an optional bitcast",
3462          &CI);
3463   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||
3464              isa<UndefValue>(Ret->getReturnValue()),
3465          "musttail call result must be returned", Ret);
3466 
3467   AttributeList CallerAttrs = F->getAttributes();
3468   AttributeList CalleeAttrs = CI.getAttributes();
3469   if (CI.getCallingConv() == CallingConv::SwiftTail ||
3470       CI.getCallingConv() == CallingConv::Tail) {
3471     StringRef CCName =
3472         CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc";
3473 
3474     // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
3475     //   are allowed in swifttailcc call
3476     for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3477       AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3478       SmallString<32> Context{CCName, StringRef(" musttail caller")};
3479       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3480     }
3481     for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) {
3482       AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3483       SmallString<32> Context{CCName, StringRef(" musttail callee")};
3484       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3485     }
3486     // - Varargs functions are not allowed
3487     Assert(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +
3488                                       " tail call for varargs function");
3489     return;
3490   }
3491 
3492   // - The caller and callee prototypes must match.  Pointer types of
3493   //   parameters or return types may differ in pointee type, but not
3494   //   address space.
3495   if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3496     Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3497            "cannot guarantee tail call due to mismatched parameter counts",
3498            &CI);
3499     for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3500       Assert(
3501           isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3502           "cannot guarantee tail call due to mismatched parameter types", &CI);
3503     }
3504   }
3505 
3506   // - All ABI-impacting function attributes, such as sret, byval, inreg,
3507   //   returned, preallocated, and inalloca, must match.
3508   for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3509     AttrBuilder CallerABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3510     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3511     Assert(CallerABIAttrs == CalleeABIAttrs,
3512            "cannot guarantee tail call due to mismatched ABI impacting "
3513            "function attributes",
3514            &CI, CI.getOperand(I));
3515   }
3516 }
3517 
3518 void Verifier::visitCallInst(CallInst &CI) {
3519   visitCallBase(CI);
3520 
3521   if (CI.isMustTailCall())
3522     verifyMustTailCall(CI);
3523 }
3524 
3525 void Verifier::visitInvokeInst(InvokeInst &II) {
3526   visitCallBase(II);
3527 
3528   // Verify that the first non-PHI instruction of the unwind destination is an
3529   // exception handling instruction.
3530   Assert(
3531       II.getUnwindDest()->isEHPad(),
3532       "The unwind destination does not have an exception handling instruction!",
3533       &II);
3534 
3535   visitTerminator(II);
3536 }
3537 
3538 /// visitUnaryOperator - Check the argument to the unary operator.
3539 ///
3540 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3541   Assert(U.getType() == U.getOperand(0)->getType(),
3542          "Unary operators must have same type for"
3543          "operands and result!",
3544          &U);
3545 
3546   switch (U.getOpcode()) {
3547   // Check that floating-point arithmetic operators are only used with
3548   // floating-point operands.
3549   case Instruction::FNeg:
3550     Assert(U.getType()->isFPOrFPVectorTy(),
3551            "FNeg operator only works with float types!", &U);
3552     break;
3553   default:
3554     llvm_unreachable("Unknown UnaryOperator opcode!");
3555   }
3556 
3557   visitInstruction(U);
3558 }
3559 
3560 /// visitBinaryOperator - Check that both arguments to the binary operator are
3561 /// of the same type!
3562 ///
3563 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3564   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3565          "Both operands to a binary operator are not of the same type!", &B);
3566 
3567   switch (B.getOpcode()) {
3568   // Check that integer arithmetic operators are only used with
3569   // integral operands.
3570   case Instruction::Add:
3571   case Instruction::Sub:
3572   case Instruction::Mul:
3573   case Instruction::SDiv:
3574   case Instruction::UDiv:
3575   case Instruction::SRem:
3576   case Instruction::URem:
3577     Assert(B.getType()->isIntOrIntVectorTy(),
3578            "Integer arithmetic operators only work with integral types!", &B);
3579     Assert(B.getType() == B.getOperand(0)->getType(),
3580            "Integer arithmetic operators must have same type "
3581            "for operands and result!",
3582            &B);
3583     break;
3584   // Check that floating-point arithmetic operators are only used with
3585   // floating-point operands.
3586   case Instruction::FAdd:
3587   case Instruction::FSub:
3588   case Instruction::FMul:
3589   case Instruction::FDiv:
3590   case Instruction::FRem:
3591     Assert(B.getType()->isFPOrFPVectorTy(),
3592            "Floating-point arithmetic operators only work with "
3593            "floating-point types!",
3594            &B);
3595     Assert(B.getType() == B.getOperand(0)->getType(),
3596            "Floating-point arithmetic operators must have same type "
3597            "for operands and result!",
3598            &B);
3599     break;
3600   // Check that logical operators are only used with integral operands.
3601   case Instruction::And:
3602   case Instruction::Or:
3603   case Instruction::Xor:
3604     Assert(B.getType()->isIntOrIntVectorTy(),
3605            "Logical operators only work with integral types!", &B);
3606     Assert(B.getType() == B.getOperand(0)->getType(),
3607            "Logical operators must have same type for operands and result!",
3608            &B);
3609     break;
3610   case Instruction::Shl:
3611   case Instruction::LShr:
3612   case Instruction::AShr:
3613     Assert(B.getType()->isIntOrIntVectorTy(),
3614            "Shifts only work with integral types!", &B);
3615     Assert(B.getType() == B.getOperand(0)->getType(),
3616            "Shift return type must be same as operands!", &B);
3617     break;
3618   default:
3619     llvm_unreachable("Unknown BinaryOperator opcode!");
3620   }
3621 
3622   visitInstruction(B);
3623 }
3624 
3625 void Verifier::visitICmpInst(ICmpInst &IC) {
3626   // Check that the operands are the same type
3627   Type *Op0Ty = IC.getOperand(0)->getType();
3628   Type *Op1Ty = IC.getOperand(1)->getType();
3629   Assert(Op0Ty == Op1Ty,
3630          "Both operands to ICmp instruction are not of the same type!", &IC);
3631   // Check that the operands are the right type
3632   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3633          "Invalid operand types for ICmp instruction", &IC);
3634   // Check that the predicate is valid.
3635   Assert(IC.isIntPredicate(),
3636          "Invalid predicate in ICmp instruction!", &IC);
3637 
3638   visitInstruction(IC);
3639 }
3640 
3641 void Verifier::visitFCmpInst(FCmpInst &FC) {
3642   // Check that the operands are the same type
3643   Type *Op0Ty = FC.getOperand(0)->getType();
3644   Type *Op1Ty = FC.getOperand(1)->getType();
3645   Assert(Op0Ty == Op1Ty,
3646          "Both operands to FCmp instruction are not of the same type!", &FC);
3647   // Check that the operands are the right type
3648   Assert(Op0Ty->isFPOrFPVectorTy(),
3649          "Invalid operand types for FCmp instruction", &FC);
3650   // Check that the predicate is valid.
3651   Assert(FC.isFPPredicate(),
3652          "Invalid predicate in FCmp instruction!", &FC);
3653 
3654   visitInstruction(FC);
3655 }
3656 
3657 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3658   Assert(
3659       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3660       "Invalid extractelement operands!", &EI);
3661   visitInstruction(EI);
3662 }
3663 
3664 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3665   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3666                                             IE.getOperand(2)),
3667          "Invalid insertelement operands!", &IE);
3668   visitInstruction(IE);
3669 }
3670 
3671 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3672   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3673                                             SV.getShuffleMask()),
3674          "Invalid shufflevector operands!", &SV);
3675   visitInstruction(SV);
3676 }
3677 
3678 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3679   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3680 
3681   Assert(isa<PointerType>(TargetTy),
3682          "GEP base pointer is not a vector or a vector of pointers", &GEP);
3683   Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3684 
3685   SmallVector<Value *, 16> Idxs(GEP.indices());
3686   Assert(all_of(
3687       Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3688       "GEP indexes must be integers", &GEP);
3689   Type *ElTy =
3690       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3691   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3692 
3693   Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3694              GEP.getResultElementType() == ElTy,
3695          "GEP is not of right type for indices!", &GEP, ElTy);
3696 
3697   if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
3698     // Additional checks for vector GEPs.
3699     ElementCount GEPWidth = GEPVTy->getElementCount();
3700     if (GEP.getPointerOperandType()->isVectorTy())
3701       Assert(
3702           GEPWidth ==
3703               cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
3704           "Vector GEP result width doesn't match operand's", &GEP);
3705     for (Value *Idx : Idxs) {
3706       Type *IndexTy = Idx->getType();
3707       if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
3708         ElementCount IndexWidth = IndexVTy->getElementCount();
3709         Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3710       }
3711       Assert(IndexTy->isIntOrIntVectorTy(),
3712              "All GEP indices should be of integer type");
3713     }
3714   }
3715 
3716   if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3717     Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
3718            "GEP address space doesn't match type", &GEP);
3719   }
3720 
3721   visitInstruction(GEP);
3722 }
3723 
3724 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3725   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3726 }
3727 
3728 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3729   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3730          "precondition violation");
3731 
3732   unsigned NumOperands = Range->getNumOperands();
3733   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3734   unsigned NumRanges = NumOperands / 2;
3735   Assert(NumRanges >= 1, "It should have at least one range!", Range);
3736 
3737   ConstantRange LastRange(1, true); // Dummy initial value
3738   for (unsigned i = 0; i < NumRanges; ++i) {
3739     ConstantInt *Low =
3740         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3741     Assert(Low, "The lower limit must be an integer!", Low);
3742     ConstantInt *High =
3743         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3744     Assert(High, "The upper limit must be an integer!", High);
3745     Assert(High->getType() == Low->getType() && High->getType() == Ty,
3746            "Range types must match instruction type!", &I);
3747 
3748     APInt HighV = High->getValue();
3749     APInt LowV = Low->getValue();
3750     ConstantRange CurRange(LowV, HighV);
3751     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3752            "Range must not be empty!", Range);
3753     if (i != 0) {
3754       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3755              "Intervals are overlapping", Range);
3756       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3757              Range);
3758       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3759              Range);
3760     }
3761     LastRange = ConstantRange(LowV, HighV);
3762   }
3763   if (NumRanges > 2) {
3764     APInt FirstLow =
3765         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3766     APInt FirstHigh =
3767         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3768     ConstantRange FirstRange(FirstLow, FirstHigh);
3769     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3770            "Intervals are overlapping", Range);
3771     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3772            Range);
3773   }
3774 }
3775 
3776 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3777   unsigned Size = DL.getTypeSizeInBits(Ty);
3778   Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3779   Assert(!(Size & (Size - 1)),
3780          "atomic memory access' operand must have a power-of-two size", Ty, I);
3781 }
3782 
3783 void Verifier::visitLoadInst(LoadInst &LI) {
3784   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3785   Assert(PTy, "Load operand must be a pointer.", &LI);
3786   Type *ElTy = LI.getType();
3787   if (MaybeAlign A = LI.getAlign()) {
3788     Assert(A->value() <= Value::MaximumAlignment,
3789            "huge alignment values are unsupported", &LI);
3790   }
3791   Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3792   if (LI.isAtomic()) {
3793     Assert(LI.getOrdering() != AtomicOrdering::Release &&
3794                LI.getOrdering() != AtomicOrdering::AcquireRelease,
3795            "Load cannot have Release ordering", &LI);
3796     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3797            "atomic load operand must have integer, pointer, or floating point "
3798            "type!",
3799            ElTy, &LI);
3800     checkAtomicMemAccessSize(ElTy, &LI);
3801   } else {
3802     Assert(LI.getSyncScopeID() == SyncScope::System,
3803            "Non-atomic load cannot have SynchronizationScope specified", &LI);
3804   }
3805 
3806   visitInstruction(LI);
3807 }
3808 
3809 void Verifier::visitStoreInst(StoreInst &SI) {
3810   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3811   Assert(PTy, "Store operand must be a pointer.", &SI);
3812   Type *ElTy = SI.getOperand(0)->getType();
3813   Assert(PTy->isOpaqueOrPointeeTypeMatches(ElTy),
3814          "Stored value type does not match pointer operand type!", &SI, ElTy);
3815   if (MaybeAlign A = SI.getAlign()) {
3816     Assert(A->value() <= Value::MaximumAlignment,
3817            "huge alignment values are unsupported", &SI);
3818   }
3819   Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3820   if (SI.isAtomic()) {
3821     Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3822                SI.getOrdering() != AtomicOrdering::AcquireRelease,
3823            "Store cannot have Acquire ordering", &SI);
3824     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3825            "atomic store operand must have integer, pointer, or floating point "
3826            "type!",
3827            ElTy, &SI);
3828     checkAtomicMemAccessSize(ElTy, &SI);
3829   } else {
3830     Assert(SI.getSyncScopeID() == SyncScope::System,
3831            "Non-atomic store cannot have SynchronizationScope specified", &SI);
3832   }
3833   visitInstruction(SI);
3834 }
3835 
3836 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3837 void Verifier::verifySwiftErrorCall(CallBase &Call,
3838                                     const Value *SwiftErrorVal) {
3839   for (const auto &I : llvm::enumerate(Call.args())) {
3840     if (I.value() == SwiftErrorVal) {
3841       Assert(Call.paramHasAttr(I.index(), Attribute::SwiftError),
3842              "swifterror value when used in a callsite should be marked "
3843              "with swifterror attribute",
3844              SwiftErrorVal, Call);
3845     }
3846   }
3847 }
3848 
3849 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3850   // Check that swifterror value is only used by loads, stores, or as
3851   // a swifterror argument.
3852   for (const User *U : SwiftErrorVal->users()) {
3853     Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3854            isa<InvokeInst>(U),
3855            "swifterror value can only be loaded and stored from, or "
3856            "as a swifterror argument!",
3857            SwiftErrorVal, U);
3858     // If it is used by a store, check it is the second operand.
3859     if (auto StoreI = dyn_cast<StoreInst>(U))
3860       Assert(StoreI->getOperand(1) == SwiftErrorVal,
3861              "swifterror value should be the second operand when used "
3862              "by stores", SwiftErrorVal, U);
3863     if (auto *Call = dyn_cast<CallBase>(U))
3864       verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3865   }
3866 }
3867 
3868 void Verifier::visitAllocaInst(AllocaInst &AI) {
3869   SmallPtrSet<Type*, 4> Visited;
3870   Assert(AI.getAllocatedType()->isSized(&Visited),
3871          "Cannot allocate unsized type", &AI);
3872   Assert(AI.getArraySize()->getType()->isIntegerTy(),
3873          "Alloca array size must have integer type", &AI);
3874   if (MaybeAlign A = AI.getAlign()) {
3875     Assert(A->value() <= Value::MaximumAlignment,
3876            "huge alignment values are unsupported", &AI);
3877   }
3878 
3879   if (AI.isSwiftError()) {
3880     Assert(AI.getAllocatedType()->isPointerTy(),
3881            "swifterror alloca must have pointer type", &AI);
3882     Assert(!AI.isArrayAllocation(),
3883            "swifterror alloca must not be array allocation", &AI);
3884     verifySwiftErrorValue(&AI);
3885   }
3886 
3887   visitInstruction(AI);
3888 }
3889 
3890 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3891   Type *ElTy = CXI.getOperand(1)->getType();
3892   Assert(ElTy->isIntOrPtrTy(),
3893          "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3894   checkAtomicMemAccessSize(ElTy, &CXI);
3895   visitInstruction(CXI);
3896 }
3897 
3898 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3899   Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3900          "atomicrmw instructions cannot be unordered.", &RMWI);
3901   auto Op = RMWI.getOperation();
3902   Type *ElTy = RMWI.getOperand(1)->getType();
3903   if (Op == AtomicRMWInst::Xchg) {
3904     Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
3905            AtomicRMWInst::getOperationName(Op) +
3906            " operand must have integer or floating point type!",
3907            &RMWI, ElTy);
3908   } else if (AtomicRMWInst::isFPOperation(Op)) {
3909     Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
3910            AtomicRMWInst::getOperationName(Op) +
3911            " operand must have floating point type!",
3912            &RMWI, ElTy);
3913   } else {
3914     Assert(ElTy->isIntegerTy(), "atomicrmw " +
3915            AtomicRMWInst::getOperationName(Op) +
3916            " operand must have integer type!",
3917            &RMWI, ElTy);
3918   }
3919   checkAtomicMemAccessSize(ElTy, &RMWI);
3920   Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
3921          "Invalid binary operation!", &RMWI);
3922   visitInstruction(RMWI);
3923 }
3924 
3925 void Verifier::visitFenceInst(FenceInst &FI) {
3926   const AtomicOrdering Ordering = FI.getOrdering();
3927   Assert(Ordering == AtomicOrdering::Acquire ||
3928              Ordering == AtomicOrdering::Release ||
3929              Ordering == AtomicOrdering::AcquireRelease ||
3930              Ordering == AtomicOrdering::SequentiallyConsistent,
3931          "fence instructions may only have acquire, release, acq_rel, or "
3932          "seq_cst ordering.",
3933          &FI);
3934   visitInstruction(FI);
3935 }
3936 
3937 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3938   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3939                                           EVI.getIndices()) == EVI.getType(),
3940          "Invalid ExtractValueInst operands!", &EVI);
3941 
3942   visitInstruction(EVI);
3943 }
3944 
3945 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3946   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3947                                           IVI.getIndices()) ==
3948              IVI.getOperand(1)->getType(),
3949          "Invalid InsertValueInst operands!", &IVI);
3950 
3951   visitInstruction(IVI);
3952 }
3953 
3954 static Value *getParentPad(Value *EHPad) {
3955   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3956     return FPI->getParentPad();
3957 
3958   return cast<CatchSwitchInst>(EHPad)->getParentPad();
3959 }
3960 
3961 void Verifier::visitEHPadPredecessors(Instruction &I) {
3962   assert(I.isEHPad());
3963 
3964   BasicBlock *BB = I.getParent();
3965   Function *F = BB->getParent();
3966 
3967   Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3968 
3969   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3970     // The landingpad instruction defines its parent as a landing pad block. The
3971     // landing pad block may be branched to only by the unwind edge of an
3972     // invoke.
3973     for (BasicBlock *PredBB : predecessors(BB)) {
3974       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3975       Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3976              "Block containing LandingPadInst must be jumped to "
3977              "only by the unwind edge of an invoke.",
3978              LPI);
3979     }
3980     return;
3981   }
3982   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3983     if (!pred_empty(BB))
3984       Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3985              "Block containg CatchPadInst must be jumped to "
3986              "only by its catchswitch.",
3987              CPI);
3988     Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3989            "Catchswitch cannot unwind to one of its catchpads",
3990            CPI->getCatchSwitch(), CPI);
3991     return;
3992   }
3993 
3994   // Verify that each pred has a legal terminator with a legal to/from EH
3995   // pad relationship.
3996   Instruction *ToPad = &I;
3997   Value *ToPadParent = getParentPad(ToPad);
3998   for (BasicBlock *PredBB : predecessors(BB)) {
3999     Instruction *TI = PredBB->getTerminator();
4000     Value *FromPad;
4001     if (auto *II = dyn_cast<InvokeInst>(TI)) {
4002       Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
4003              "EH pad must be jumped to via an unwind edge", ToPad, II);
4004       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
4005         FromPad = Bundle->Inputs[0];
4006       else
4007         FromPad = ConstantTokenNone::get(II->getContext());
4008     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4009       FromPad = CRI->getOperand(0);
4010       Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
4011     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4012       FromPad = CSI;
4013     } else {
4014       Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
4015     }
4016 
4017     // The edge may exit from zero or more nested pads.
4018     SmallSet<Value *, 8> Seen;
4019     for (;; FromPad = getParentPad(FromPad)) {
4020       Assert(FromPad != ToPad,
4021              "EH pad cannot handle exceptions raised within it", FromPad, TI);
4022       if (FromPad == ToPadParent) {
4023         // This is a legal unwind edge.
4024         break;
4025       }
4026       Assert(!isa<ConstantTokenNone>(FromPad),
4027              "A single unwind edge may only enter one EH pad", TI);
4028       Assert(Seen.insert(FromPad).second,
4029              "EH pad jumps through a cycle of pads", FromPad);
4030 
4031       // This will be diagnosed on the corresponding instruction already. We
4032       // need the extra check here to make sure getParentPad() works.
4033       Assert(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad),
4034              "Parent pad must be catchpad/cleanuppad/catchswitch", TI);
4035     }
4036   }
4037 }
4038 
4039 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
4040   // The landingpad instruction is ill-formed if it doesn't have any clauses and
4041   // isn't a cleanup.
4042   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
4043          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
4044 
4045   visitEHPadPredecessors(LPI);
4046 
4047   if (!LandingPadResultTy)
4048     LandingPadResultTy = LPI.getType();
4049   else
4050     Assert(LandingPadResultTy == LPI.getType(),
4051            "The landingpad instruction should have a consistent result type "
4052            "inside a function.",
4053            &LPI);
4054 
4055   Function *F = LPI.getParent()->getParent();
4056   Assert(F->hasPersonalityFn(),
4057          "LandingPadInst needs to be in a function with a personality.", &LPI);
4058 
4059   // The landingpad instruction must be the first non-PHI instruction in the
4060   // block.
4061   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
4062          "LandingPadInst not the first non-PHI instruction in the block.",
4063          &LPI);
4064 
4065   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
4066     Constant *Clause = LPI.getClause(i);
4067     if (LPI.isCatch(i)) {
4068       Assert(isa<PointerType>(Clause->getType()),
4069              "Catch operand does not have pointer type!", &LPI);
4070     } else {
4071       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
4072       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
4073              "Filter operand is not an array of constants!", &LPI);
4074     }
4075   }
4076 
4077   visitInstruction(LPI);
4078 }
4079 
4080 void Verifier::visitResumeInst(ResumeInst &RI) {
4081   Assert(RI.getFunction()->hasPersonalityFn(),
4082          "ResumeInst needs to be in a function with a personality.", &RI);
4083 
4084   if (!LandingPadResultTy)
4085     LandingPadResultTy = RI.getValue()->getType();
4086   else
4087     Assert(LandingPadResultTy == RI.getValue()->getType(),
4088            "The resume instruction should have a consistent result type "
4089            "inside a function.",
4090            &RI);
4091 
4092   visitTerminator(RI);
4093 }
4094 
4095 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
4096   BasicBlock *BB = CPI.getParent();
4097 
4098   Function *F = BB->getParent();
4099   Assert(F->hasPersonalityFn(),
4100          "CatchPadInst needs to be in a function with a personality.", &CPI);
4101 
4102   Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
4103          "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4104          CPI.getParentPad());
4105 
4106   // The catchpad instruction must be the first non-PHI instruction in the
4107   // block.
4108   Assert(BB->getFirstNonPHI() == &CPI,
4109          "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4110 
4111   visitEHPadPredecessors(CPI);
4112   visitFuncletPadInst(CPI);
4113 }
4114 
4115 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4116   Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
4117          "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4118          CatchReturn.getOperand(0));
4119 
4120   visitTerminator(CatchReturn);
4121 }
4122 
4123 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4124   BasicBlock *BB = CPI.getParent();
4125 
4126   Function *F = BB->getParent();
4127   Assert(F->hasPersonalityFn(),
4128          "CleanupPadInst needs to be in a function with a personality.", &CPI);
4129 
4130   // The cleanuppad instruction must be the first non-PHI instruction in the
4131   // block.
4132   Assert(BB->getFirstNonPHI() == &CPI,
4133          "CleanupPadInst not the first non-PHI instruction in the block.",
4134          &CPI);
4135 
4136   auto *ParentPad = CPI.getParentPad();
4137   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4138          "CleanupPadInst has an invalid parent.", &CPI);
4139 
4140   visitEHPadPredecessors(CPI);
4141   visitFuncletPadInst(CPI);
4142 }
4143 
4144 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4145   User *FirstUser = nullptr;
4146   Value *FirstUnwindPad = nullptr;
4147   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
4148   SmallSet<FuncletPadInst *, 8> Seen;
4149 
4150   while (!Worklist.empty()) {
4151     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4152     Assert(Seen.insert(CurrentPad).second,
4153            "FuncletPadInst must not be nested within itself", CurrentPad);
4154     Value *UnresolvedAncestorPad = nullptr;
4155     for (User *U : CurrentPad->users()) {
4156       BasicBlock *UnwindDest;
4157       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
4158         UnwindDest = CRI->getUnwindDest();
4159       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
4160         // We allow catchswitch unwind to caller to nest
4161         // within an outer pad that unwinds somewhere else,
4162         // because catchswitch doesn't have a nounwind variant.
4163         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
4164         if (CSI->unwindsToCaller())
4165           continue;
4166         UnwindDest = CSI->getUnwindDest();
4167       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
4168         UnwindDest = II->getUnwindDest();
4169       } else if (isa<CallInst>(U)) {
4170         // Calls which don't unwind may be found inside funclet
4171         // pads that unwind somewhere else.  We don't *require*
4172         // such calls to be annotated nounwind.
4173         continue;
4174       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
4175         // The unwind dest for a cleanup can only be found by
4176         // recursive search.  Add it to the worklist, and we'll
4177         // search for its first use that determines where it unwinds.
4178         Worklist.push_back(CPI);
4179         continue;
4180       } else {
4181         Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
4182         continue;
4183       }
4184 
4185       Value *UnwindPad;
4186       bool ExitsFPI;
4187       if (UnwindDest) {
4188         UnwindPad = UnwindDest->getFirstNonPHI();
4189         if (!cast<Instruction>(UnwindPad)->isEHPad())
4190           continue;
4191         Value *UnwindParent = getParentPad(UnwindPad);
4192         // Ignore unwind edges that don't exit CurrentPad.
4193         if (UnwindParent == CurrentPad)
4194           continue;
4195         // Determine whether the original funclet pad is exited,
4196         // and if we are scanning nested pads determine how many
4197         // of them are exited so we can stop searching their
4198         // children.
4199         Value *ExitedPad = CurrentPad;
4200         ExitsFPI = false;
4201         do {
4202           if (ExitedPad == &FPI) {
4203             ExitsFPI = true;
4204             // Now we can resolve any ancestors of CurrentPad up to
4205             // FPI, but not including FPI since we need to make sure
4206             // to check all direct users of FPI for consistency.
4207             UnresolvedAncestorPad = &FPI;
4208             break;
4209           }
4210           Value *ExitedParent = getParentPad(ExitedPad);
4211           if (ExitedParent == UnwindParent) {
4212             // ExitedPad is the ancestor-most pad which this unwind
4213             // edge exits, so we can resolve up to it, meaning that
4214             // ExitedParent is the first ancestor still unresolved.
4215             UnresolvedAncestorPad = ExitedParent;
4216             break;
4217           }
4218           ExitedPad = ExitedParent;
4219         } while (!isa<ConstantTokenNone>(ExitedPad));
4220       } else {
4221         // Unwinding to caller exits all pads.
4222         UnwindPad = ConstantTokenNone::get(FPI.getContext());
4223         ExitsFPI = true;
4224         UnresolvedAncestorPad = &FPI;
4225       }
4226 
4227       if (ExitsFPI) {
4228         // This unwind edge exits FPI.  Make sure it agrees with other
4229         // such edges.
4230         if (FirstUser) {
4231           Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
4232                                               "pad must have the same unwind "
4233                                               "dest",
4234                  &FPI, U, FirstUser);
4235         } else {
4236           FirstUser = U;
4237           FirstUnwindPad = UnwindPad;
4238           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4239           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4240               getParentPad(UnwindPad) == getParentPad(&FPI))
4241             SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4242         }
4243       }
4244       // Make sure we visit all uses of FPI, but for nested pads stop as
4245       // soon as we know where they unwind to.
4246       if (CurrentPad != &FPI)
4247         break;
4248     }
4249     if (UnresolvedAncestorPad) {
4250       if (CurrentPad == UnresolvedAncestorPad) {
4251         // When CurrentPad is FPI itself, we don't mark it as resolved even if
4252         // we've found an unwind edge that exits it, because we need to verify
4253         // all direct uses of FPI.
4254         assert(CurrentPad == &FPI);
4255         continue;
4256       }
4257       // Pop off the worklist any nested pads that we've found an unwind
4258       // destination for.  The pads on the worklist are the uncles,
4259       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
4260       // for all ancestors of CurrentPad up to but not including
4261       // UnresolvedAncestorPad.
4262       Value *ResolvedPad = CurrentPad;
4263       while (!Worklist.empty()) {
4264         Value *UnclePad = Worklist.back();
4265         Value *AncestorPad = getParentPad(UnclePad);
4266         // Walk ResolvedPad up the ancestor list until we either find the
4267         // uncle's parent or the last resolved ancestor.
4268         while (ResolvedPad != AncestorPad) {
4269           Value *ResolvedParent = getParentPad(ResolvedPad);
4270           if (ResolvedParent == UnresolvedAncestorPad) {
4271             break;
4272           }
4273           ResolvedPad = ResolvedParent;
4274         }
4275         // If the resolved ancestor search didn't find the uncle's parent,
4276         // then the uncle is not yet resolved.
4277         if (ResolvedPad != AncestorPad)
4278           break;
4279         // This uncle is resolved, so pop it from the worklist.
4280         Worklist.pop_back();
4281       }
4282     }
4283   }
4284 
4285   if (FirstUnwindPad) {
4286     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
4287       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4288       Value *SwitchUnwindPad;
4289       if (SwitchUnwindDest)
4290         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
4291       else
4292         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
4293       Assert(SwitchUnwindPad == FirstUnwindPad,
4294              "Unwind edges out of a catch must have the same unwind dest as "
4295              "the parent catchswitch",
4296              &FPI, FirstUser, CatchSwitch);
4297     }
4298   }
4299 
4300   visitInstruction(FPI);
4301 }
4302 
4303 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4304   BasicBlock *BB = CatchSwitch.getParent();
4305 
4306   Function *F = BB->getParent();
4307   Assert(F->hasPersonalityFn(),
4308          "CatchSwitchInst needs to be in a function with a personality.",
4309          &CatchSwitch);
4310 
4311   // The catchswitch instruction must be the first non-PHI instruction in the
4312   // block.
4313   Assert(BB->getFirstNonPHI() == &CatchSwitch,
4314          "CatchSwitchInst not the first non-PHI instruction in the block.",
4315          &CatchSwitch);
4316 
4317   auto *ParentPad = CatchSwitch.getParentPad();
4318   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4319          "CatchSwitchInst has an invalid parent.", ParentPad);
4320 
4321   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
4322     Instruction *I = UnwindDest->getFirstNonPHI();
4323     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
4324            "CatchSwitchInst must unwind to an EH block which is not a "
4325            "landingpad.",
4326            &CatchSwitch);
4327 
4328     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
4329     if (getParentPad(I) == ParentPad)
4330       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4331   }
4332 
4333   Assert(CatchSwitch.getNumHandlers() != 0,
4334          "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4335 
4336   for (BasicBlock *Handler : CatchSwitch.handlers()) {
4337     Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
4338            "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4339   }
4340 
4341   visitEHPadPredecessors(CatchSwitch);
4342   visitTerminator(CatchSwitch);
4343 }
4344 
4345 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4346   Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
4347          "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
4348          CRI.getOperand(0));
4349 
4350   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4351     Instruction *I = UnwindDest->getFirstNonPHI();
4352     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
4353            "CleanupReturnInst must unwind to an EH block which is not a "
4354            "landingpad.",
4355            &CRI);
4356   }
4357 
4358   visitTerminator(CRI);
4359 }
4360 
4361 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4362   Instruction *Op = cast<Instruction>(I.getOperand(i));
4363   // If the we have an invalid invoke, don't try to compute the dominance.
4364   // We already reject it in the invoke specific checks and the dominance
4365   // computation doesn't handle multiple edges.
4366   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4367     if (II->getNormalDest() == II->getUnwindDest())
4368       return;
4369   }
4370 
4371   // Quick check whether the def has already been encountered in the same block.
4372   // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4373   // uses are defined to happen on the incoming edge, not at the instruction.
4374   //
4375   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4376   // wrapping an SSA value, assert that we've already encountered it.  See
4377   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4378   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4379     return;
4380 
4381   const Use &U = I.getOperandUse(i);
4382   Assert(DT.dominates(Op, U),
4383          "Instruction does not dominate all uses!", Op, &I);
4384 }
4385 
4386 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4387   Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
4388          "apply only to pointer types", &I);
4389   Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4390          "dereferenceable, dereferenceable_or_null apply only to load"
4391          " and inttoptr instructions, use attributes for calls or invokes", &I);
4392   Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
4393          "take one operand!", &I);
4394   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4395   Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
4396          "dereferenceable_or_null metadata value must be an i64!", &I);
4397 }
4398 
4399 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4400   Assert(MD->getNumOperands() >= 2,
4401          "!prof annotations should have no less than 2 operands", MD);
4402 
4403   // Check first operand.
4404   Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4405   Assert(isa<MDString>(MD->getOperand(0)),
4406          "expected string with name of the !prof annotation", MD);
4407   MDString *MDS = cast<MDString>(MD->getOperand(0));
4408   StringRef ProfName = MDS->getString();
4409 
4410   // Check consistency of !prof branch_weights metadata.
4411   if (ProfName.equals("branch_weights")) {
4412     if (isa<InvokeInst>(&I)) {
4413       Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
4414              "Wrong number of InvokeInst branch_weights operands", MD);
4415     } else {
4416       unsigned ExpectedNumOperands = 0;
4417       if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4418         ExpectedNumOperands = BI->getNumSuccessors();
4419       else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4420         ExpectedNumOperands = SI->getNumSuccessors();
4421       else if (isa<CallInst>(&I))
4422         ExpectedNumOperands = 1;
4423       else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4424         ExpectedNumOperands = IBI->getNumDestinations();
4425       else if (isa<SelectInst>(&I))
4426         ExpectedNumOperands = 2;
4427       else
4428         CheckFailed("!prof branch_weights are not allowed for this instruction",
4429                     MD);
4430 
4431       Assert(MD->getNumOperands() == 1 + ExpectedNumOperands,
4432              "Wrong number of operands", MD);
4433     }
4434     for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4435       auto &MDO = MD->getOperand(i);
4436       Assert(MDO, "second operand should not be null", MD);
4437       Assert(mdconst::dyn_extract<ConstantInt>(MDO),
4438              "!prof brunch_weights operand is not a const int");
4439     }
4440   }
4441 }
4442 
4443 void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
4444   Assert(isa<MDTuple>(Annotation), "annotation must be a tuple");
4445   Assert(Annotation->getNumOperands() >= 1,
4446          "annotation must have at least one operand");
4447   for (const MDOperand &Op : Annotation->operands())
4448     Assert(isa<MDString>(Op.get()), "operands must be strings");
4449 }
4450 
4451 void Verifier::visitAliasScopeMetadata(const MDNode *MD) {
4452   unsigned NumOps = MD->getNumOperands();
4453   Assert(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands",
4454          MD);
4455   Assert(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)),
4456          "first scope operand must be self-referential or string", MD);
4457   if (NumOps == 3)
4458     Assert(isa<MDString>(MD->getOperand(2)),
4459            "third scope operand must be string (if used)", MD);
4460 
4461   MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1));
4462   Assert(Domain != nullptr, "second scope operand must be MDNode", MD);
4463 
4464   unsigned NumDomainOps = Domain->getNumOperands();
4465   Assert(NumDomainOps >= 1 && NumDomainOps <= 2,
4466          "domain must have one or two operands", Domain);
4467   Assert(Domain->getOperand(0).get() == Domain ||
4468              isa<MDString>(Domain->getOperand(0)),
4469          "first domain operand must be self-referential or string", Domain);
4470   if (NumDomainOps == 2)
4471     Assert(isa<MDString>(Domain->getOperand(1)),
4472            "second domain operand must be string (if used)", Domain);
4473 }
4474 
4475 void Verifier::visitAliasScopeListMetadata(const MDNode *MD) {
4476   for (const MDOperand &Op : MD->operands()) {
4477     const MDNode *OpMD = dyn_cast<MDNode>(Op);
4478     Assert(OpMD != nullptr, "scope list must consist of MDNodes", MD);
4479     visitAliasScopeMetadata(OpMD);
4480   }
4481 }
4482 
4483 void Verifier::visitAccessGroupMetadata(const MDNode *MD) {
4484   auto IsValidAccessScope = [](const MDNode *MD) {
4485     return MD->getNumOperands() == 0 && MD->isDistinct();
4486   };
4487 
4488   // It must be either an access scope itself...
4489   if (IsValidAccessScope(MD))
4490     return;
4491 
4492   // ...or a list of access scopes.
4493   for (const MDOperand &Op : MD->operands()) {
4494     const MDNode *OpMD = dyn_cast<MDNode>(Op);
4495     Assert(OpMD != nullptr, "Access scope list must consist of MDNodes", MD);
4496     Assert(IsValidAccessScope(OpMD),
4497            "Access scope list contains invalid access scope", MD);
4498   }
4499 }
4500 
4501 /// verifyInstruction - Verify that an instruction is well formed.
4502 ///
4503 void Verifier::visitInstruction(Instruction &I) {
4504   BasicBlock *BB = I.getParent();
4505   Assert(BB, "Instruction not embedded in basic block!", &I);
4506 
4507   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
4508     for (User *U : I.users()) {
4509       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
4510              "Only PHI nodes may reference their own value!", &I);
4511     }
4512   }
4513 
4514   // Check that void typed values don't have names
4515   Assert(!I.getType()->isVoidTy() || !I.hasName(),
4516          "Instruction has a name, but provides a void value!", &I);
4517 
4518   // Check that the return value of the instruction is either void or a legal
4519   // value type.
4520   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4521          "Instruction returns a non-scalar type!", &I);
4522 
4523   // Check that the instruction doesn't produce metadata. Calls are already
4524   // checked against the callee type.
4525   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4526          "Invalid use of metadata!", &I);
4527 
4528   // Check that all uses of the instruction, if they are instructions
4529   // themselves, actually have parent basic blocks.  If the use is not an
4530   // instruction, it is an error!
4531   for (Use &U : I.uses()) {
4532     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4533       Assert(Used->getParent() != nullptr,
4534              "Instruction referencing"
4535              " instruction not embedded in a basic block!",
4536              &I, Used);
4537     else {
4538       CheckFailed("Use of instruction is not an instruction!", U);
4539       return;
4540     }
4541   }
4542 
4543   // Get a pointer to the call base of the instruction if it is some form of
4544   // call.
4545   const CallBase *CBI = dyn_cast<CallBase>(&I);
4546 
4547   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4548     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4549 
4550     // Check to make sure that only first-class-values are operands to
4551     // instructions.
4552     if (!I.getOperand(i)->getType()->isFirstClassType()) {
4553       Assert(false, "Instruction operands must be first-class values!", &I);
4554     }
4555 
4556     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4557       // This code checks whether the function is used as the operand of a
4558       // clang_arc_attachedcall operand bundle.
4559       auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI,
4560                                       int Idx) {
4561         return CBI && CBI->isOperandBundleOfType(
4562                           LLVMContext::OB_clang_arc_attachedcall, Idx);
4563       };
4564 
4565       // Check to make sure that the "address of" an intrinsic function is never
4566       // taken. Ignore cases where the address of the intrinsic function is used
4567       // as the argument of operand bundle "clang.arc.attachedcall" as those
4568       // cases are handled in verifyAttachedCallBundle.
4569       Assert((!F->isIntrinsic() ||
4570               (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) ||
4571               IsAttachedCallOperand(F, CBI, i)),
4572              "Cannot take the address of an intrinsic!", &I);
4573       Assert(
4574           !F->isIntrinsic() || isa<CallInst>(I) ||
4575               F->getIntrinsicID() == Intrinsic::donothing ||
4576               F->getIntrinsicID() == Intrinsic::seh_try_begin ||
4577               F->getIntrinsicID() == Intrinsic::seh_try_end ||
4578               F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
4579               F->getIntrinsicID() == Intrinsic::seh_scope_end ||
4580               F->getIntrinsicID() == Intrinsic::coro_resume ||
4581               F->getIntrinsicID() == Intrinsic::coro_destroy ||
4582               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
4583               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4584               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4585               F->getIntrinsicID() == Intrinsic::wasm_rethrow ||
4586               IsAttachedCallOperand(F, CBI, i),
4587           "Cannot invoke an intrinsic other than donothing, patchpoint, "
4588           "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall",
4589           &I);
4590       Assert(F->getParent() == &M, "Referencing function in another module!",
4591              &I, &M, F, F->getParent());
4592     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4593       Assert(OpBB->getParent() == BB->getParent(),
4594              "Referring to a basic block in another function!", &I);
4595     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4596       Assert(OpArg->getParent() == BB->getParent(),
4597              "Referring to an argument in another function!", &I);
4598     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4599       Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
4600              &M, GV, GV->getParent());
4601     } else if (isa<Instruction>(I.getOperand(i))) {
4602       verifyDominatesUse(I, i);
4603     } else if (isa<InlineAsm>(I.getOperand(i))) {
4604       Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4605              "Cannot take the address of an inline asm!", &I);
4606     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4607       if (CE->getType()->isPtrOrPtrVectorTy()) {
4608         // If we have a ConstantExpr pointer, we need to see if it came from an
4609         // illegal bitcast.
4610         visitConstantExprsRecursively(CE);
4611       }
4612     }
4613   }
4614 
4615   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4616     Assert(I.getType()->isFPOrFPVectorTy(),
4617            "fpmath requires a floating point result!", &I);
4618     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4619     if (ConstantFP *CFP0 =
4620             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4621       const APFloat &Accuracy = CFP0->getValueAPF();
4622       Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4623              "fpmath accuracy must have float type", &I);
4624       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4625              "fpmath accuracy not a positive number!", &I);
4626     } else {
4627       Assert(false, "invalid fpmath accuracy!", &I);
4628     }
4629   }
4630 
4631   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4632     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4633            "Ranges are only for loads, calls and invokes!", &I);
4634     visitRangeMetadata(I, Range, I.getType());
4635   }
4636 
4637   if (I.hasMetadata(LLVMContext::MD_invariant_group)) {
4638     Assert(isa<LoadInst>(I) || isa<StoreInst>(I),
4639            "invariant.group metadata is only for loads and stores", &I);
4640   }
4641 
4642   if (I.getMetadata(LLVMContext::MD_nonnull)) {
4643     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4644            &I);
4645     Assert(isa<LoadInst>(I),
4646            "nonnull applies only to load instructions, use attributes"
4647            " for calls or invokes",
4648            &I);
4649   }
4650 
4651   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4652     visitDereferenceableMetadata(I, MD);
4653 
4654   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4655     visitDereferenceableMetadata(I, MD);
4656 
4657   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4658     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4659 
4660   if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias))
4661     visitAliasScopeListMetadata(MD);
4662   if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope))
4663     visitAliasScopeListMetadata(MD);
4664 
4665   if (MDNode *MD = I.getMetadata(LLVMContext::MD_access_group))
4666     visitAccessGroupMetadata(MD);
4667 
4668   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4669     Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
4670            &I);
4671     Assert(isa<LoadInst>(I), "align applies only to load instructions, "
4672            "use attributes for calls or invokes", &I);
4673     Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4674     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4675     Assert(CI && CI->getType()->isIntegerTy(64),
4676            "align metadata value must be an i64!", &I);
4677     uint64_t Align = CI->getZExtValue();
4678     Assert(isPowerOf2_64(Align),
4679            "align metadata value must be a power of 2!", &I);
4680     Assert(Align <= Value::MaximumAlignment,
4681            "alignment is larger that implementation defined limit", &I);
4682   }
4683 
4684   if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
4685     visitProfMetadata(I, MD);
4686 
4687   if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation))
4688     visitAnnotationMetadata(Annotation);
4689 
4690   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4691     AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4692     visitMDNode(*N, AreDebugLocsAllowed::Yes);
4693   }
4694 
4695   if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
4696     verifyFragmentExpression(*DII);
4697     verifyNotEntryValue(*DII);
4698   }
4699 
4700   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
4701   I.getAllMetadata(MDs);
4702   for (auto Attachment : MDs) {
4703     unsigned Kind = Attachment.first;
4704     auto AllowLocs =
4705         (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
4706             ? AreDebugLocsAllowed::Yes
4707             : AreDebugLocsAllowed::No;
4708     visitMDNode(*Attachment.second, AllowLocs);
4709   }
4710 
4711   InstsInThisBlock.insert(&I);
4712 }
4713 
4714 /// Allow intrinsics to be verified in different ways.
4715 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4716   Function *IF = Call.getCalledFunction();
4717   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4718          IF);
4719 
4720   // Verify that the intrinsic prototype lines up with what the .td files
4721   // describe.
4722   FunctionType *IFTy = IF->getFunctionType();
4723   bool IsVarArg = IFTy->isVarArg();
4724 
4725   SmallVector<Intrinsic::IITDescriptor, 8> Table;
4726   getIntrinsicInfoTableEntries(ID, Table);
4727   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4728 
4729   // Walk the descriptors to extract overloaded types.
4730   SmallVector<Type *, 4> ArgTys;
4731   Intrinsic::MatchIntrinsicTypesResult Res =
4732       Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
4733   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
4734          "Intrinsic has incorrect return type!", IF);
4735   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
4736          "Intrinsic has incorrect argument type!", IF);
4737 
4738   // Verify if the intrinsic call matches the vararg property.
4739   if (IsVarArg)
4740     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4741            "Intrinsic was not defined with variable arguments!", IF);
4742   else
4743     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4744            "Callsite was not defined with variable arguments!", IF);
4745 
4746   // All descriptors should be absorbed by now.
4747   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4748 
4749   // Now that we have the intrinsic ID and the actual argument types (and we
4750   // know they are legal for the intrinsic!) get the intrinsic name through the
4751   // usual means.  This allows us to verify the mangling of argument types into
4752   // the name.
4753   const std::string ExpectedName =
4754       Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy);
4755   Assert(ExpectedName == IF->getName(),
4756          "Intrinsic name not mangled correctly for type arguments! "
4757          "Should be: " +
4758              ExpectedName,
4759          IF);
4760 
4761   // If the intrinsic takes MDNode arguments, verify that they are either global
4762   // or are local to *this* function.
4763   for (Value *V : Call.args()) {
4764     if (auto *MD = dyn_cast<MetadataAsValue>(V))
4765       visitMetadataAsValue(*MD, Call.getCaller());
4766     if (auto *Const = dyn_cast<Constant>(V))
4767       Assert(!Const->getType()->isX86_AMXTy(),
4768              "const x86_amx is not allowed in argument!");
4769   }
4770 
4771   switch (ID) {
4772   default:
4773     break;
4774   case Intrinsic::assume: {
4775     for (auto &Elem : Call.bundle_op_infos()) {
4776       Assert(Elem.Tag->getKey() == "ignore" ||
4777                  Attribute::isExistingAttribute(Elem.Tag->getKey()),
4778              "tags must be valid attribute names", Call);
4779       Attribute::AttrKind Kind =
4780           Attribute::getAttrKindFromName(Elem.Tag->getKey());
4781       unsigned ArgCount = Elem.End - Elem.Begin;
4782       if (Kind == Attribute::Alignment) {
4783         Assert(ArgCount <= 3 && ArgCount >= 2,
4784                "alignment assumptions should have 2 or 3 arguments", Call);
4785         Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
4786                "first argument should be a pointer", Call);
4787         Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
4788                "second argument should be an integer", Call);
4789         if (ArgCount == 3)
4790           Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
4791                  "third argument should be an integer if present", Call);
4792         return;
4793       }
4794       Assert(ArgCount <= 2, "too many arguments", Call);
4795       if (Kind == Attribute::None)
4796         break;
4797       if (Attribute::isIntAttrKind(Kind)) {
4798         Assert(ArgCount == 2, "this attribute should have 2 arguments", Call);
4799         Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
4800                "the second argument should be a constant integral value", Call);
4801       } else if (Attribute::canUseAsParamAttr(Kind)) {
4802         Assert((ArgCount) == 1, "this attribute should have one argument",
4803                Call);
4804       } else if (Attribute::canUseAsFnAttr(Kind)) {
4805         Assert((ArgCount) == 0, "this attribute has no argument", Call);
4806       }
4807     }
4808     break;
4809   }
4810   case Intrinsic::coro_id: {
4811     auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4812     if (isa<ConstantPointerNull>(InfoArg))
4813       break;
4814     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4815     Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4816            "info argument of llvm.coro.id must refer to an initialized "
4817            "constant");
4818     Constant *Init = GV->getInitializer();
4819     Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4820            "info argument of llvm.coro.id must refer to either a struct or "
4821            "an array");
4822     break;
4823   }
4824   case Intrinsic::fptrunc_round: {
4825     // Check the rounding mode
4826     Metadata *MD = nullptr;
4827     auto *MAV = dyn_cast<MetadataAsValue>(Call.getOperand(1));
4828     if (MAV)
4829       MD = MAV->getMetadata();
4830 
4831     Assert(MD != nullptr, "missing rounding mode argument", Call);
4832 
4833     Assert(isa<MDString>(MD),
4834            ("invalid value for llvm.fptrunc.round metadata operand"
4835             " (the operand should be a string)"),
4836            MD);
4837 
4838     Optional<RoundingMode> RoundMode =
4839         convertStrToRoundingMode(cast<MDString>(MD)->getString());
4840     Assert(RoundMode.hasValue() &&
4841                RoundMode.getValue() != RoundingMode::Dynamic,
4842            "unsupported rounding mode argument", Call);
4843     break;
4844   }
4845 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
4846 #include "llvm/IR/VPIntrinsics.def"
4847     visitVPIntrinsic(cast<VPIntrinsic>(Call));
4848     break;
4849 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC)                        \
4850   case Intrinsic::INTRINSIC:
4851 #include "llvm/IR/ConstrainedOps.def"
4852     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4853     break;
4854   case Intrinsic::dbg_declare: // llvm.dbg.declare
4855     Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
4856            "invalid llvm.dbg.declare intrinsic call 1", Call);
4857     visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4858     break;
4859   case Intrinsic::dbg_addr: // llvm.dbg.addr
4860     visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4861     break;
4862   case Intrinsic::dbg_value: // llvm.dbg.value
4863     visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4864     break;
4865   case Intrinsic::dbg_label: // llvm.dbg.label
4866     visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4867     break;
4868   case Intrinsic::memcpy:
4869   case Intrinsic::memcpy_inline:
4870   case Intrinsic::memmove:
4871   case Intrinsic::memset: {
4872     const auto *MI = cast<MemIntrinsic>(&Call);
4873     auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4874       return Alignment == 0 || isPowerOf2_32(Alignment);
4875     };
4876     Assert(IsValidAlignment(MI->getDestAlignment()),
4877            "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4878            Call);
4879     if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4880       Assert(IsValidAlignment(MTI->getSourceAlignment()),
4881              "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4882              Call);
4883     }
4884 
4885     break;
4886   }
4887   case Intrinsic::memcpy_element_unordered_atomic:
4888   case Intrinsic::memmove_element_unordered_atomic:
4889   case Intrinsic::memset_element_unordered_atomic: {
4890     const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4891 
4892     ConstantInt *ElementSizeCI =
4893         cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4894     const APInt &ElementSizeVal = ElementSizeCI->getValue();
4895     Assert(ElementSizeVal.isPowerOf2(),
4896            "element size of the element-wise atomic memory intrinsic "
4897            "must be a power of 2",
4898            Call);
4899 
4900     auto IsValidAlignment = [&](uint64_t Alignment) {
4901       return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4902     };
4903     uint64_t DstAlignment = AMI->getDestAlignment();
4904     Assert(IsValidAlignment(DstAlignment),
4905            "incorrect alignment of the destination argument", Call);
4906     if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4907       uint64_t SrcAlignment = AMT->getSourceAlignment();
4908       Assert(IsValidAlignment(SrcAlignment),
4909              "incorrect alignment of the source argument", Call);
4910     }
4911     break;
4912   }
4913   case Intrinsic::call_preallocated_setup: {
4914     auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
4915     Assert(NumArgs != nullptr,
4916            "llvm.call.preallocated.setup argument must be a constant");
4917     bool FoundCall = false;
4918     for (User *U : Call.users()) {
4919       auto *UseCall = dyn_cast<CallBase>(U);
4920       Assert(UseCall != nullptr,
4921              "Uses of llvm.call.preallocated.setup must be calls");
4922       const Function *Fn = UseCall->getCalledFunction();
4923       if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
4924         auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
4925         Assert(AllocArgIndex != nullptr,
4926                "llvm.call.preallocated.alloc arg index must be a constant");
4927         auto AllocArgIndexInt = AllocArgIndex->getValue();
4928         Assert(AllocArgIndexInt.sge(0) &&
4929                    AllocArgIndexInt.slt(NumArgs->getValue()),
4930                "llvm.call.preallocated.alloc arg index must be between 0 and "
4931                "corresponding "
4932                "llvm.call.preallocated.setup's argument count");
4933       } else if (Fn && Fn->getIntrinsicID() ==
4934                            Intrinsic::call_preallocated_teardown) {
4935         // nothing to do
4936       } else {
4937         Assert(!FoundCall, "Can have at most one call corresponding to a "
4938                            "llvm.call.preallocated.setup");
4939         FoundCall = true;
4940         size_t NumPreallocatedArgs = 0;
4941         for (unsigned i = 0; i < UseCall->arg_size(); i++) {
4942           if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
4943             ++NumPreallocatedArgs;
4944           }
4945         }
4946         Assert(NumPreallocatedArgs != 0,
4947                "cannot use preallocated intrinsics on a call without "
4948                "preallocated arguments");
4949         Assert(NumArgs->equalsInt(NumPreallocatedArgs),
4950                "llvm.call.preallocated.setup arg size must be equal to number "
4951                "of preallocated arguments "
4952                "at call site",
4953                Call, *UseCall);
4954         // getOperandBundle() cannot be called if more than one of the operand
4955         // bundle exists. There is already a check elsewhere for this, so skip
4956         // here if we see more than one.
4957         if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
4958             1) {
4959           return;
4960         }
4961         auto PreallocatedBundle =
4962             UseCall->getOperandBundle(LLVMContext::OB_preallocated);
4963         Assert(PreallocatedBundle,
4964                "Use of llvm.call.preallocated.setup outside intrinsics "
4965                "must be in \"preallocated\" operand bundle");
4966         Assert(PreallocatedBundle->Inputs.front().get() == &Call,
4967                "preallocated bundle must have token from corresponding "
4968                "llvm.call.preallocated.setup");
4969       }
4970     }
4971     break;
4972   }
4973   case Intrinsic::call_preallocated_arg: {
4974     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
4975     Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
4976                         Intrinsic::call_preallocated_setup,
4977            "llvm.call.preallocated.arg token argument must be a "
4978            "llvm.call.preallocated.setup");
4979     Assert(Call.hasFnAttr(Attribute::Preallocated),
4980            "llvm.call.preallocated.arg must be called with a \"preallocated\" "
4981            "call site attribute");
4982     break;
4983   }
4984   case Intrinsic::call_preallocated_teardown: {
4985     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
4986     Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
4987                         Intrinsic::call_preallocated_setup,
4988            "llvm.call.preallocated.teardown token argument must be a "
4989            "llvm.call.preallocated.setup");
4990     break;
4991   }
4992   case Intrinsic::gcroot:
4993   case Intrinsic::gcwrite:
4994   case Intrinsic::gcread:
4995     if (ID == Intrinsic::gcroot) {
4996       AllocaInst *AI =
4997           dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
4998       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
4999       Assert(isa<Constant>(Call.getArgOperand(1)),
5000              "llvm.gcroot parameter #2 must be a constant.", Call);
5001       if (!AI->getAllocatedType()->isPointerTy()) {
5002         Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
5003                "llvm.gcroot parameter #1 must either be a pointer alloca, "
5004                "or argument #2 must be a non-null constant.",
5005                Call);
5006       }
5007     }
5008 
5009     Assert(Call.getParent()->getParent()->hasGC(),
5010            "Enclosing function does not use GC.", Call);
5011     break;
5012   case Intrinsic::init_trampoline:
5013     Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
5014            "llvm.init_trampoline parameter #2 must resolve to a function.",
5015            Call);
5016     break;
5017   case Intrinsic::prefetch:
5018     Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
5019            cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
5020            "invalid arguments to llvm.prefetch", Call);
5021     break;
5022   case Intrinsic::stackprotector:
5023     Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
5024            "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
5025     break;
5026   case Intrinsic::localescape: {
5027     BasicBlock *BB = Call.getParent();
5028     Assert(BB == &BB->getParent()->front(),
5029            "llvm.localescape used outside of entry block", Call);
5030     Assert(!SawFrameEscape,
5031            "multiple calls to llvm.localescape in one function", Call);
5032     for (Value *Arg : Call.args()) {
5033       if (isa<ConstantPointerNull>(Arg))
5034         continue; // Null values are allowed as placeholders.
5035       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
5036       Assert(AI && AI->isStaticAlloca(),
5037              "llvm.localescape only accepts static allocas", Call);
5038     }
5039     FrameEscapeInfo[BB->getParent()].first = Call.arg_size();
5040     SawFrameEscape = true;
5041     break;
5042   }
5043   case Intrinsic::localrecover: {
5044     Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
5045     Function *Fn = dyn_cast<Function>(FnArg);
5046     Assert(Fn && !Fn->isDeclaration(),
5047            "llvm.localrecover first "
5048            "argument must be function defined in this module",
5049            Call);
5050     auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
5051     auto &Entry = FrameEscapeInfo[Fn];
5052     Entry.second = unsigned(
5053         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
5054     break;
5055   }
5056 
5057   case Intrinsic::experimental_gc_statepoint:
5058     if (auto *CI = dyn_cast<CallInst>(&Call))
5059       Assert(!CI->isInlineAsm(),
5060              "gc.statepoint support for inline assembly unimplemented", CI);
5061     Assert(Call.getParent()->getParent()->hasGC(),
5062            "Enclosing function does not use GC.", Call);
5063 
5064     verifyStatepoint(Call);
5065     break;
5066   case Intrinsic::experimental_gc_result: {
5067     Assert(Call.getParent()->getParent()->hasGC(),
5068            "Enclosing function does not use GC.", Call);
5069     // Are we tied to a statepoint properly?
5070     const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
5071     const Function *StatepointFn =
5072         StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
5073     Assert(StatepointFn && StatepointFn->isDeclaration() &&
5074                StatepointFn->getIntrinsicID() ==
5075                    Intrinsic::experimental_gc_statepoint,
5076            "gc.result operand #1 must be from a statepoint", Call,
5077            Call.getArgOperand(0));
5078 
5079     // Assert that result type matches wrapped callee.
5080     auto *TargetFuncType =
5081         cast<FunctionType>(StatepointCall->getParamElementType(2));
5082     Assert(Call.getType() == TargetFuncType->getReturnType(),
5083            "gc.result result type does not match wrapped callee", Call);
5084     break;
5085   }
5086   case Intrinsic::experimental_gc_relocate: {
5087     Assert(Call.arg_size() == 3, "wrong number of arguments", Call);
5088 
5089     Assert(isa<PointerType>(Call.getType()->getScalarType()),
5090            "gc.relocate must return a pointer or a vector of pointers", Call);
5091 
5092     // Check that this relocate is correctly tied to the statepoint
5093 
5094     // This is case for relocate on the unwinding path of an invoke statepoint
5095     if (LandingPadInst *LandingPad =
5096             dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
5097 
5098       const BasicBlock *InvokeBB =
5099           LandingPad->getParent()->getUniquePredecessor();
5100 
5101       // Landingpad relocates should have only one predecessor with invoke
5102       // statepoint terminator
5103       Assert(InvokeBB, "safepoints should have unique landingpads",
5104              LandingPad->getParent());
5105       Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
5106              InvokeBB);
5107       Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()),
5108              "gc relocate should be linked to a statepoint", InvokeBB);
5109     } else {
5110       // In all other cases relocate should be tied to the statepoint directly.
5111       // This covers relocates on a normal return path of invoke statepoint and
5112       // relocates of a call statepoint.
5113       auto Token = Call.getArgOperand(0);
5114       Assert(isa<GCStatepointInst>(Token),
5115              "gc relocate is incorrectly tied to the statepoint", Call, Token);
5116     }
5117 
5118     // Verify rest of the relocate arguments.
5119     const CallBase &StatepointCall =
5120       *cast<GCRelocateInst>(Call).getStatepoint();
5121 
5122     // Both the base and derived must be piped through the safepoint.
5123     Value *Base = Call.getArgOperand(1);
5124     Assert(isa<ConstantInt>(Base),
5125            "gc.relocate operand #2 must be integer offset", Call);
5126 
5127     Value *Derived = Call.getArgOperand(2);
5128     Assert(isa<ConstantInt>(Derived),
5129            "gc.relocate operand #3 must be integer offset", Call);
5130 
5131     const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
5132     const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
5133 
5134     // Check the bounds
5135     if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) {
5136       Assert(BaseIndex < Opt->Inputs.size(),
5137              "gc.relocate: statepoint base index out of bounds", Call);
5138       Assert(DerivedIndex < Opt->Inputs.size(),
5139              "gc.relocate: statepoint derived index out of bounds", Call);
5140     }
5141 
5142     // Relocated value must be either a pointer type or vector-of-pointer type,
5143     // but gc_relocate does not need to return the same pointer type as the
5144     // relocated pointer. It can be casted to the correct type later if it's
5145     // desired. However, they must have the same address space and 'vectorness'
5146     GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
5147     Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
5148            "gc.relocate: relocated value must be a gc pointer", Call);
5149 
5150     auto ResultType = Call.getType();
5151     auto DerivedType = Relocate.getDerivedPtr()->getType();
5152     Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
5153            "gc.relocate: vector relocates to vector and pointer to pointer",
5154            Call);
5155     Assert(
5156         ResultType->getPointerAddressSpace() ==
5157             DerivedType->getPointerAddressSpace(),
5158         "gc.relocate: relocating a pointer shouldn't change its address space",
5159         Call);
5160     break;
5161   }
5162   case Intrinsic::eh_exceptioncode:
5163   case Intrinsic::eh_exceptionpointer: {
5164     Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
5165            "eh.exceptionpointer argument must be a catchpad", Call);
5166     break;
5167   }
5168   case Intrinsic::get_active_lane_mask: {
5169     Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a "
5170            "vector", Call);
5171     auto *ElemTy = Call.getType()->getScalarType();
5172     Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not "
5173            "i1", Call);
5174     break;
5175   }
5176   case Intrinsic::masked_load: {
5177     Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
5178            Call);
5179 
5180     Value *Ptr = Call.getArgOperand(0);
5181     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
5182     Value *Mask = Call.getArgOperand(2);
5183     Value *PassThru = Call.getArgOperand(3);
5184     Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
5185            Call);
5186     Assert(Alignment->getValue().isPowerOf2(),
5187            "masked_load: alignment must be a power of 2", Call);
5188 
5189     PointerType *PtrTy = cast<PointerType>(Ptr->getType());
5190     Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType()),
5191            "masked_load: return must match pointer type", Call);
5192     Assert(PassThru->getType() == Call.getType(),
5193            "masked_load: pass through and return type must match", Call);
5194     Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
5195                cast<VectorType>(Call.getType())->getElementCount(),
5196            "masked_load: vector mask must be same length as return", Call);
5197     break;
5198   }
5199   case Intrinsic::masked_store: {
5200     Value *Val = Call.getArgOperand(0);
5201     Value *Ptr = Call.getArgOperand(1);
5202     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
5203     Value *Mask = Call.getArgOperand(3);
5204     Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
5205            Call);
5206     Assert(Alignment->getValue().isPowerOf2(),
5207            "masked_store: alignment must be a power of 2", Call);
5208 
5209     PointerType *PtrTy = cast<PointerType>(Ptr->getType());
5210     Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType()),
5211            "masked_store: storee must match pointer type", Call);
5212     Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
5213                cast<VectorType>(Val->getType())->getElementCount(),
5214            "masked_store: vector mask must be same length as value", Call);
5215     break;
5216   }
5217 
5218   case Intrinsic::masked_gather: {
5219     const APInt &Alignment =
5220         cast<ConstantInt>(Call.getArgOperand(1))->getValue();
5221     Assert(Alignment.isZero() || Alignment.isPowerOf2(),
5222            "masked_gather: alignment must be 0 or a power of 2", Call);
5223     break;
5224   }
5225   case Intrinsic::masked_scatter: {
5226     const APInt &Alignment =
5227         cast<ConstantInt>(Call.getArgOperand(2))->getValue();
5228     Assert(Alignment.isZero() || Alignment.isPowerOf2(),
5229            "masked_scatter: alignment must be 0 or a power of 2", Call);
5230     break;
5231   }
5232 
5233   case Intrinsic::experimental_guard: {
5234     Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
5235     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5236            "experimental_guard must have exactly one "
5237            "\"deopt\" operand bundle");
5238     break;
5239   }
5240 
5241   case Intrinsic::experimental_deoptimize: {
5242     Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
5243            Call);
5244     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5245            "experimental_deoptimize must have exactly one "
5246            "\"deopt\" operand bundle");
5247     Assert(Call.getType() == Call.getFunction()->getReturnType(),
5248            "experimental_deoptimize return type must match caller return type");
5249 
5250     if (isa<CallInst>(Call)) {
5251       auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
5252       Assert(RI,
5253              "calls to experimental_deoptimize must be followed by a return");
5254 
5255       if (!Call.getType()->isVoidTy() && RI)
5256         Assert(RI->getReturnValue() == &Call,
5257                "calls to experimental_deoptimize must be followed by a return "
5258                "of the value computed by experimental_deoptimize");
5259     }
5260 
5261     break;
5262   }
5263   case Intrinsic::vector_reduce_and:
5264   case Intrinsic::vector_reduce_or:
5265   case Intrinsic::vector_reduce_xor:
5266   case Intrinsic::vector_reduce_add:
5267   case Intrinsic::vector_reduce_mul:
5268   case Intrinsic::vector_reduce_smax:
5269   case Intrinsic::vector_reduce_smin:
5270   case Intrinsic::vector_reduce_umax:
5271   case Intrinsic::vector_reduce_umin: {
5272     Type *ArgTy = Call.getArgOperand(0)->getType();
5273     Assert(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(),
5274            "Intrinsic has incorrect argument type!");
5275     break;
5276   }
5277   case Intrinsic::vector_reduce_fmax:
5278   case Intrinsic::vector_reduce_fmin: {
5279     Type *ArgTy = Call.getArgOperand(0)->getType();
5280     Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5281            "Intrinsic has incorrect argument type!");
5282     break;
5283   }
5284   case Intrinsic::vector_reduce_fadd:
5285   case Intrinsic::vector_reduce_fmul: {
5286     // Unlike the other reductions, the first argument is a start value. The
5287     // second argument is the vector to be reduced.
5288     Type *ArgTy = Call.getArgOperand(1)->getType();
5289     Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5290            "Intrinsic has incorrect argument type!");
5291     break;
5292   }
5293   case Intrinsic::smul_fix:
5294   case Intrinsic::smul_fix_sat:
5295   case Intrinsic::umul_fix:
5296   case Intrinsic::umul_fix_sat:
5297   case Intrinsic::sdiv_fix:
5298   case Intrinsic::sdiv_fix_sat:
5299   case Intrinsic::udiv_fix:
5300   case Intrinsic::udiv_fix_sat: {
5301     Value *Op1 = Call.getArgOperand(0);
5302     Value *Op2 = Call.getArgOperand(1);
5303     Assert(Op1->getType()->isIntOrIntVectorTy(),
5304            "first operand of [us][mul|div]_fix[_sat] must be an int type or "
5305            "vector of ints");
5306     Assert(Op2->getType()->isIntOrIntVectorTy(),
5307            "second operand of [us][mul|div]_fix[_sat] must be an int type or "
5308            "vector of ints");
5309 
5310     auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
5311     Assert(Op3->getType()->getBitWidth() <= 32,
5312            "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits");
5313 
5314     if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
5315         ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
5316       Assert(
5317           Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
5318           "the scale of s[mul|div]_fix[_sat] must be less than the width of "
5319           "the operands");
5320     } else {
5321       Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
5322              "the scale of u[mul|div]_fix[_sat] must be less than or equal "
5323              "to the width of the operands");
5324     }
5325     break;
5326   }
5327   case Intrinsic::lround:
5328   case Intrinsic::llround:
5329   case Intrinsic::lrint:
5330   case Intrinsic::llrint: {
5331     Type *ValTy = Call.getArgOperand(0)->getType();
5332     Type *ResultTy = Call.getType();
5333     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5334            "Intrinsic does not support vectors", &Call);
5335     break;
5336   }
5337   case Intrinsic::bswap: {
5338     Type *Ty = Call.getType();
5339     unsigned Size = Ty->getScalarSizeInBits();
5340     Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
5341     break;
5342   }
5343   case Intrinsic::invariant_start: {
5344     ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5345     Assert(InvariantSize &&
5346                (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),
5347            "invariant_start parameter must be -1, 0 or a positive number",
5348            &Call);
5349     break;
5350   }
5351   case Intrinsic::matrix_multiply:
5352   case Intrinsic::matrix_transpose:
5353   case Intrinsic::matrix_column_major_load:
5354   case Intrinsic::matrix_column_major_store: {
5355     Function *IF = Call.getCalledFunction();
5356     ConstantInt *Stride = nullptr;
5357     ConstantInt *NumRows;
5358     ConstantInt *NumColumns;
5359     VectorType *ResultTy;
5360     Type *Op0ElemTy = nullptr;
5361     Type *Op1ElemTy = nullptr;
5362     switch (ID) {
5363     case Intrinsic::matrix_multiply:
5364       NumRows = cast<ConstantInt>(Call.getArgOperand(2));
5365       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5366       ResultTy = cast<VectorType>(Call.getType());
5367       Op0ElemTy =
5368           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5369       Op1ElemTy =
5370           cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
5371       break;
5372     case Intrinsic::matrix_transpose:
5373       NumRows = cast<ConstantInt>(Call.getArgOperand(1));
5374       NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
5375       ResultTy = cast<VectorType>(Call.getType());
5376       Op0ElemTy =
5377           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5378       break;
5379     case Intrinsic::matrix_column_major_load: {
5380       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
5381       NumRows = cast<ConstantInt>(Call.getArgOperand(3));
5382       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5383       ResultTy = cast<VectorType>(Call.getType());
5384 
5385       PointerType *Op0PtrTy =
5386           cast<PointerType>(Call.getArgOperand(0)->getType());
5387       if (!Op0PtrTy->isOpaque())
5388         Op0ElemTy = Op0PtrTy->getNonOpaquePointerElementType();
5389       break;
5390     }
5391     case Intrinsic::matrix_column_major_store: {
5392       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
5393       NumRows = cast<ConstantInt>(Call.getArgOperand(4));
5394       NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
5395       ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
5396       Op0ElemTy =
5397           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5398 
5399       PointerType *Op1PtrTy =
5400           cast<PointerType>(Call.getArgOperand(1)->getType());
5401       if (!Op1PtrTy->isOpaque())
5402         Op1ElemTy = Op1PtrTy->getNonOpaquePointerElementType();
5403       break;
5404     }
5405     default:
5406       llvm_unreachable("unexpected intrinsic");
5407     }
5408 
5409     Assert(ResultTy->getElementType()->isIntegerTy() ||
5410            ResultTy->getElementType()->isFloatingPointTy(),
5411            "Result type must be an integer or floating-point type!", IF);
5412 
5413     if (Op0ElemTy)
5414       Assert(ResultTy->getElementType() == Op0ElemTy,
5415              "Vector element type mismatch of the result and first operand "
5416              "vector!", IF);
5417 
5418     if (Op1ElemTy)
5419       Assert(ResultTy->getElementType() == Op1ElemTy,
5420              "Vector element type mismatch of the result and second operand "
5421              "vector!", IF);
5422 
5423     Assert(cast<FixedVectorType>(ResultTy)->getNumElements() ==
5424                NumRows->getZExtValue() * NumColumns->getZExtValue(),
5425            "Result of a matrix operation does not fit in the returned vector!");
5426 
5427     if (Stride)
5428       Assert(Stride->getZExtValue() >= NumRows->getZExtValue(),
5429              "Stride must be greater or equal than the number of rows!", IF);
5430 
5431     break;
5432   }
5433   case Intrinsic::experimental_vector_splice: {
5434     VectorType *VecTy = cast<VectorType>(Call.getType());
5435     int64_t Idx = cast<ConstantInt>(Call.getArgOperand(2))->getSExtValue();
5436     int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue();
5437     if (Call.getParent() && Call.getParent()->getParent()) {
5438       AttributeList Attrs = Call.getParent()->getParent()->getAttributes();
5439       if (Attrs.hasFnAttr(Attribute::VScaleRange))
5440         KnownMinNumElements *= Attrs.getFnAttrs().getVScaleRangeMin();
5441     }
5442     Assert((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) ||
5443                (Idx >= 0 && Idx < KnownMinNumElements),
5444            "The splice index exceeds the range [-VL, VL-1] where VL is the "
5445            "known minimum number of elements in the vector. For scalable "
5446            "vectors the minimum number of elements is determined from "
5447            "vscale_range.",
5448            &Call);
5449     break;
5450   }
5451   case Intrinsic::experimental_stepvector: {
5452     VectorType *VecTy = dyn_cast<VectorType>(Call.getType());
5453     Assert(VecTy && VecTy->getScalarType()->isIntegerTy() &&
5454                VecTy->getScalarSizeInBits() >= 8,
5455            "experimental_stepvector only supported for vectors of integers "
5456            "with a bitwidth of at least 8.",
5457            &Call);
5458     break;
5459   }
5460   case Intrinsic::experimental_vector_insert: {
5461     Value *Vec = Call.getArgOperand(0);
5462     Value *SubVec = Call.getArgOperand(1);
5463     Value *Idx = Call.getArgOperand(2);
5464     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5465 
5466     VectorType *VecTy = cast<VectorType>(Vec->getType());
5467     VectorType *SubVecTy = cast<VectorType>(SubVec->getType());
5468 
5469     ElementCount VecEC = VecTy->getElementCount();
5470     ElementCount SubVecEC = SubVecTy->getElementCount();
5471     Assert(VecTy->getElementType() == SubVecTy->getElementType(),
5472            "experimental_vector_insert parameters must have the same element "
5473            "type.",
5474            &Call);
5475     Assert(IdxN % SubVecEC.getKnownMinValue() == 0,
5476            "experimental_vector_insert index must be a constant multiple of "
5477            "the subvector's known minimum vector length.");
5478 
5479     // If this insertion is not the 'mixed' case where a fixed vector is
5480     // inserted into a scalable vector, ensure that the insertion of the
5481     // subvector does not overrun the parent vector.
5482     if (VecEC.isScalable() == SubVecEC.isScalable()) {
5483       Assert(
5484           IdxN < VecEC.getKnownMinValue() &&
5485               IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5486           "subvector operand of experimental_vector_insert would overrun the "
5487           "vector being inserted into.");
5488     }
5489     break;
5490   }
5491   case Intrinsic::experimental_vector_extract: {
5492     Value *Vec = Call.getArgOperand(0);
5493     Value *Idx = Call.getArgOperand(1);
5494     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5495 
5496     VectorType *ResultTy = cast<VectorType>(Call.getType());
5497     VectorType *VecTy = cast<VectorType>(Vec->getType());
5498 
5499     ElementCount VecEC = VecTy->getElementCount();
5500     ElementCount ResultEC = ResultTy->getElementCount();
5501 
5502     Assert(ResultTy->getElementType() == VecTy->getElementType(),
5503            "experimental_vector_extract result must have the same element "
5504            "type as the input vector.",
5505            &Call);
5506     Assert(IdxN % ResultEC.getKnownMinValue() == 0,
5507            "experimental_vector_extract index must be a constant multiple of "
5508            "the result type's known minimum vector length.");
5509 
5510     // If this extraction is not the 'mixed' case where a fixed vector is is
5511     // extracted from a scalable vector, ensure that the extraction does not
5512     // overrun the parent vector.
5513     if (VecEC.isScalable() == ResultEC.isScalable()) {
5514       Assert(IdxN < VecEC.getKnownMinValue() &&
5515                  IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5516              "experimental_vector_extract would overrun.");
5517     }
5518     break;
5519   }
5520   case Intrinsic::experimental_noalias_scope_decl: {
5521     NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call));
5522     break;
5523   }
5524   case Intrinsic::preserve_array_access_index:
5525   case Intrinsic::preserve_struct_access_index:
5526   case Intrinsic::aarch64_ldaxr:
5527   case Intrinsic::aarch64_ldxr:
5528   case Intrinsic::arm_ldaex:
5529   case Intrinsic::arm_ldrex: {
5530     Type *ElemTy = Call.getParamElementType(0);
5531     Assert(ElemTy,
5532            "Intrinsic requires elementtype attribute on first argument.",
5533            &Call);
5534     break;
5535   }
5536   case Intrinsic::aarch64_stlxr:
5537   case Intrinsic::aarch64_stxr:
5538   case Intrinsic::arm_stlex:
5539   case Intrinsic::arm_strex: {
5540     Type *ElemTy = Call.getAttributes().getParamElementType(1);
5541     Assert(ElemTy,
5542            "Intrinsic requires elementtype attribute on second argument.",
5543            &Call);
5544     break;
5545   }
5546   };
5547 }
5548 
5549 /// Carefully grab the subprogram from a local scope.
5550 ///
5551 /// This carefully grabs the subprogram from a local scope, avoiding the
5552 /// built-in assertions that would typically fire.
5553 static DISubprogram *getSubprogram(Metadata *LocalScope) {
5554   if (!LocalScope)
5555     return nullptr;
5556 
5557   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
5558     return SP;
5559 
5560   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
5561     return getSubprogram(LB->getRawScope());
5562 
5563   // Just return null; broken scope chains are checked elsewhere.
5564   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
5565   return nullptr;
5566 }
5567 
5568 void Verifier::visitVPIntrinsic(VPIntrinsic &VPI) {
5569   if (auto *VPCast = dyn_cast<VPCastIntrinsic>(&VPI)) {
5570     auto *RetTy = cast<VectorType>(VPCast->getType());
5571     auto *ValTy = cast<VectorType>(VPCast->getOperand(0)->getType());
5572     Assert(RetTy->getElementCount() == ValTy->getElementCount(),
5573            "VP cast intrinsic first argument and result vector lengths must be "
5574            "equal",
5575            *VPCast);
5576   }
5577 }
5578 
5579 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
5580   unsigned NumOperands;
5581   bool HasRoundingMD;
5582   switch (FPI.getIntrinsicID()) {
5583 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
5584   case Intrinsic::INTRINSIC:                                                   \
5585     NumOperands = NARG;                                                        \
5586     HasRoundingMD = ROUND_MODE;                                                \
5587     break;
5588 #include "llvm/IR/ConstrainedOps.def"
5589   default:
5590     llvm_unreachable("Invalid constrained FP intrinsic!");
5591   }
5592   NumOperands += (1 + HasRoundingMD);
5593   // Compare intrinsics carry an extra predicate metadata operand.
5594   if (isa<ConstrainedFPCmpIntrinsic>(FPI))
5595     NumOperands += 1;
5596   Assert((FPI.arg_size() == NumOperands),
5597          "invalid arguments for constrained FP intrinsic", &FPI);
5598 
5599   switch (FPI.getIntrinsicID()) {
5600   case Intrinsic::experimental_constrained_lrint:
5601   case Intrinsic::experimental_constrained_llrint: {
5602     Type *ValTy = FPI.getArgOperand(0)->getType();
5603     Type *ResultTy = FPI.getType();
5604     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5605            "Intrinsic does not support vectors", &FPI);
5606   }
5607     break;
5608 
5609   case Intrinsic::experimental_constrained_lround:
5610   case Intrinsic::experimental_constrained_llround: {
5611     Type *ValTy = FPI.getArgOperand(0)->getType();
5612     Type *ResultTy = FPI.getType();
5613     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5614            "Intrinsic does not support vectors", &FPI);
5615     break;
5616   }
5617 
5618   case Intrinsic::experimental_constrained_fcmp:
5619   case Intrinsic::experimental_constrained_fcmps: {
5620     auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
5621     Assert(CmpInst::isFPPredicate(Pred),
5622            "invalid predicate for constrained FP comparison intrinsic", &FPI);
5623     break;
5624   }
5625 
5626   case Intrinsic::experimental_constrained_fptosi:
5627   case Intrinsic::experimental_constrained_fptoui: {
5628     Value *Operand = FPI.getArgOperand(0);
5629     uint64_t NumSrcElem = 0;
5630     Assert(Operand->getType()->isFPOrFPVectorTy(),
5631            "Intrinsic first argument must be floating point", &FPI);
5632     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5633       NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5634     }
5635 
5636     Operand = &FPI;
5637     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5638            "Intrinsic first argument and result disagree on vector use", &FPI);
5639     Assert(Operand->getType()->isIntOrIntVectorTy(),
5640            "Intrinsic result must be an integer", &FPI);
5641     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5642       Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5643              "Intrinsic first argument and result vector lengths must be equal",
5644              &FPI);
5645     }
5646   }
5647     break;
5648 
5649   case Intrinsic::experimental_constrained_sitofp:
5650   case Intrinsic::experimental_constrained_uitofp: {
5651     Value *Operand = FPI.getArgOperand(0);
5652     uint64_t NumSrcElem = 0;
5653     Assert(Operand->getType()->isIntOrIntVectorTy(),
5654            "Intrinsic first argument must be integer", &FPI);
5655     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5656       NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5657     }
5658 
5659     Operand = &FPI;
5660     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5661            "Intrinsic first argument and result disagree on vector use", &FPI);
5662     Assert(Operand->getType()->isFPOrFPVectorTy(),
5663            "Intrinsic result must be a floating point", &FPI);
5664     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5665       Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5666              "Intrinsic first argument and result vector lengths must be equal",
5667              &FPI);
5668     }
5669   } break;
5670 
5671   case Intrinsic::experimental_constrained_fptrunc:
5672   case Intrinsic::experimental_constrained_fpext: {
5673     Value *Operand = FPI.getArgOperand(0);
5674     Type *OperandTy = Operand->getType();
5675     Value *Result = &FPI;
5676     Type *ResultTy = Result->getType();
5677     Assert(OperandTy->isFPOrFPVectorTy(),
5678            "Intrinsic first argument must be FP or FP vector", &FPI);
5679     Assert(ResultTy->isFPOrFPVectorTy(),
5680            "Intrinsic result must be FP or FP vector", &FPI);
5681     Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
5682            "Intrinsic first argument and result disagree on vector use", &FPI);
5683     if (OperandTy->isVectorTy()) {
5684       Assert(cast<FixedVectorType>(OperandTy)->getNumElements() ==
5685                  cast<FixedVectorType>(ResultTy)->getNumElements(),
5686              "Intrinsic first argument and result vector lengths must be equal",
5687              &FPI);
5688     }
5689     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
5690       Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
5691              "Intrinsic first argument's type must be larger than result type",
5692              &FPI);
5693     } else {
5694       Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
5695              "Intrinsic first argument's type must be smaller than result type",
5696              &FPI);
5697     }
5698   }
5699     break;
5700 
5701   default:
5702     break;
5703   }
5704 
5705   // If a non-metadata argument is passed in a metadata slot then the
5706   // error will be caught earlier when the incorrect argument doesn't
5707   // match the specification in the intrinsic call table. Thus, no
5708   // argument type check is needed here.
5709 
5710   Assert(FPI.getExceptionBehavior().hasValue(),
5711          "invalid exception behavior argument", &FPI);
5712   if (HasRoundingMD) {
5713     Assert(FPI.getRoundingMode().hasValue(),
5714            "invalid rounding mode argument", &FPI);
5715   }
5716 }
5717 
5718 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
5719   auto *MD = DII.getRawLocation();
5720   AssertDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
5721                (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
5722            "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
5723   AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
5724          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
5725          DII.getRawVariable());
5726   AssertDI(isa<DIExpression>(DII.getRawExpression()),
5727          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
5728          DII.getRawExpression());
5729 
5730   // Ignore broken !dbg attachments; they're checked elsewhere.
5731   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
5732     if (!isa<DILocation>(N))
5733       return;
5734 
5735   BasicBlock *BB = DII.getParent();
5736   Function *F = BB ? BB->getParent() : nullptr;
5737 
5738   // The scopes for variables and !dbg attachments must agree.
5739   DILocalVariable *Var = DII.getVariable();
5740   DILocation *Loc = DII.getDebugLoc();
5741   AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
5742            &DII, BB, F);
5743 
5744   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
5745   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
5746   if (!VarSP || !LocSP)
5747     return; // Broken scope chains are checked elsewhere.
5748 
5749   AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
5750                                " variable and !dbg attachment",
5751            &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
5752            Loc->getScope()->getSubprogram());
5753 
5754   // This check is redundant with one in visitLocalVariable().
5755   AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
5756            Var->getRawType());
5757   verifyFnArgs(DII);
5758 }
5759 
5760 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
5761   AssertDI(isa<DILabel>(DLI.getRawLabel()),
5762          "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
5763          DLI.getRawLabel());
5764 
5765   // Ignore broken !dbg attachments; they're checked elsewhere.
5766   if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
5767     if (!isa<DILocation>(N))
5768       return;
5769 
5770   BasicBlock *BB = DLI.getParent();
5771   Function *F = BB ? BB->getParent() : nullptr;
5772 
5773   // The scopes for variables and !dbg attachments must agree.
5774   DILabel *Label = DLI.getLabel();
5775   DILocation *Loc = DLI.getDebugLoc();
5776   Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
5777          &DLI, BB, F);
5778 
5779   DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
5780   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
5781   if (!LabelSP || !LocSP)
5782     return;
5783 
5784   AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
5785                              " label and !dbg attachment",
5786            &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
5787            Loc->getScope()->getSubprogram());
5788 }
5789 
5790 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
5791   DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
5792   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5793 
5794   // We don't know whether this intrinsic verified correctly.
5795   if (!V || !E || !E->isValid())
5796     return;
5797 
5798   // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
5799   auto Fragment = E->getFragmentInfo();
5800   if (!Fragment)
5801     return;
5802 
5803   // The frontend helps out GDB by emitting the members of local anonymous
5804   // unions as artificial local variables with shared storage. When SROA splits
5805   // the storage for artificial local variables that are smaller than the entire
5806   // union, the overhang piece will be outside of the allotted space for the
5807   // variable and this check fails.
5808   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
5809   if (V->isArtificial())
5810     return;
5811 
5812   verifyFragmentExpression(*V, *Fragment, &I);
5813 }
5814 
5815 template <typename ValueOrMetadata>
5816 void Verifier::verifyFragmentExpression(const DIVariable &V,
5817                                         DIExpression::FragmentInfo Fragment,
5818                                         ValueOrMetadata *Desc) {
5819   // If there's no size, the type is broken, but that should be checked
5820   // elsewhere.
5821   auto VarSize = V.getSizeInBits();
5822   if (!VarSize)
5823     return;
5824 
5825   unsigned FragSize = Fragment.SizeInBits;
5826   unsigned FragOffset = Fragment.OffsetInBits;
5827   AssertDI(FragSize + FragOffset <= *VarSize,
5828          "fragment is larger than or outside of variable", Desc, &V);
5829   AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
5830 }
5831 
5832 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
5833   // This function does not take the scope of noninlined function arguments into
5834   // account. Don't run it if current function is nodebug, because it may
5835   // contain inlined debug intrinsics.
5836   if (!HasDebugInfo)
5837     return;
5838 
5839   // For performance reasons only check non-inlined ones.
5840   if (I.getDebugLoc()->getInlinedAt())
5841     return;
5842 
5843   DILocalVariable *Var = I.getVariable();
5844   AssertDI(Var, "dbg intrinsic without variable");
5845 
5846   unsigned ArgNo = Var->getArg();
5847   if (!ArgNo)
5848     return;
5849 
5850   // Verify there are no duplicate function argument debug info entries.
5851   // These will cause hard-to-debug assertions in the DWARF backend.
5852   if (DebugFnArgs.size() < ArgNo)
5853     DebugFnArgs.resize(ArgNo, nullptr);
5854 
5855   auto *Prev = DebugFnArgs[ArgNo - 1];
5856   DebugFnArgs[ArgNo - 1] = Var;
5857   AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
5858            Prev, Var);
5859 }
5860 
5861 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
5862   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5863 
5864   // We don't know whether this intrinsic verified correctly.
5865   if (!E || !E->isValid())
5866     return;
5867 
5868   AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I);
5869 }
5870 
5871 void Verifier::verifyCompileUnits() {
5872   // When more than one Module is imported into the same context, such as during
5873   // an LTO build before linking the modules, ODR type uniquing may cause types
5874   // to point to a different CU. This check does not make sense in this case.
5875   if (M.getContext().isODRUniquingDebugTypes())
5876     return;
5877   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
5878   SmallPtrSet<const Metadata *, 2> Listed;
5879   if (CUs)
5880     Listed.insert(CUs->op_begin(), CUs->op_end());
5881   for (auto *CU : CUVisited)
5882     AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
5883   CUVisited.clear();
5884 }
5885 
5886 void Verifier::verifyDeoptimizeCallingConvs() {
5887   if (DeoptimizeDeclarations.empty())
5888     return;
5889 
5890   const Function *First = DeoptimizeDeclarations[0];
5891   for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
5892     Assert(First->getCallingConv() == F->getCallingConv(),
5893            "All llvm.experimental.deoptimize declarations must have the same "
5894            "calling convention",
5895            First, F);
5896   }
5897 }
5898 
5899 void Verifier::verifyAttachedCallBundle(const CallBase &Call,
5900                                         const OperandBundleUse &BU) {
5901   FunctionType *FTy = Call.getFunctionType();
5902 
5903   Assert((FTy->getReturnType()->isPointerTy() ||
5904           (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),
5905          "a call with operand bundle \"clang.arc.attachedcall\" must call a "
5906          "function returning a pointer or a non-returning function that has a "
5907          "void return type",
5908          Call);
5909 
5910   Assert(BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()),
5911          "operand bundle \"clang.arc.attachedcall\" requires one function as "
5912          "an argument",
5913          Call);
5914 
5915   auto *Fn = cast<Function>(BU.Inputs.front());
5916   Intrinsic::ID IID = Fn->getIntrinsicID();
5917 
5918   if (IID) {
5919     Assert((IID == Intrinsic::objc_retainAutoreleasedReturnValue ||
5920             IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue),
5921            "invalid function argument", Call);
5922   } else {
5923     StringRef FnName = Fn->getName();
5924     Assert((FnName == "objc_retainAutoreleasedReturnValue" ||
5925             FnName == "objc_unsafeClaimAutoreleasedReturnValue"),
5926            "invalid function argument", Call);
5927   }
5928 }
5929 
5930 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
5931   bool HasSource = F.getSource().hasValue();
5932   if (!HasSourceDebugInfo.count(&U))
5933     HasSourceDebugInfo[&U] = HasSource;
5934   AssertDI(HasSource == HasSourceDebugInfo[&U],
5935            "inconsistent use of embedded source");
5936 }
5937 
5938 void Verifier::verifyNoAliasScopeDecl() {
5939   if (NoAliasScopeDecls.empty())
5940     return;
5941 
5942   // only a single scope must be declared at a time.
5943   for (auto *II : NoAliasScopeDecls) {
5944     assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
5945            "Not a llvm.experimental.noalias.scope.decl ?");
5946     const auto *ScopeListMV = dyn_cast<MetadataAsValue>(
5947         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
5948     Assert(ScopeListMV != nullptr,
5949            "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
5950            "argument",
5951            II);
5952 
5953     const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata());
5954     Assert(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode",
5955            II);
5956     Assert(ScopeListMD->getNumOperands() == 1,
5957            "!id.scope.list must point to a list with a single scope", II);
5958     visitAliasScopeListMetadata(ScopeListMD);
5959   }
5960 
5961   // Only check the domination rule when requested. Once all passes have been
5962   // adapted this option can go away.
5963   if (!VerifyNoAliasScopeDomination)
5964     return;
5965 
5966   // Now sort the intrinsics based on the scope MDNode so that declarations of
5967   // the same scopes are next to each other.
5968   auto GetScope = [](IntrinsicInst *II) {
5969     const auto *ScopeListMV = cast<MetadataAsValue>(
5970         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
5971     return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
5972   };
5973 
5974   // We are sorting on MDNode pointers here. For valid input IR this is ok.
5975   // TODO: Sort on Metadata ID to avoid non-deterministic error messages.
5976   auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
5977     return GetScope(Lhs) < GetScope(Rhs);
5978   };
5979 
5980   llvm::sort(NoAliasScopeDecls, Compare);
5981 
5982   // Go over the intrinsics and check that for the same scope, they are not
5983   // dominating each other.
5984   auto ItCurrent = NoAliasScopeDecls.begin();
5985   while (ItCurrent != NoAliasScopeDecls.end()) {
5986     auto CurScope = GetScope(*ItCurrent);
5987     auto ItNext = ItCurrent;
5988     do {
5989       ++ItNext;
5990     } while (ItNext != NoAliasScopeDecls.end() &&
5991              GetScope(*ItNext) == CurScope);
5992 
5993     // [ItCurrent, ItNext) represents the declarations for the same scope.
5994     // Ensure they are not dominating each other.. but only if it is not too
5995     // expensive.
5996     if (ItNext - ItCurrent < 32)
5997       for (auto *I : llvm::make_range(ItCurrent, ItNext))
5998         for (auto *J : llvm::make_range(ItCurrent, ItNext))
5999           if (I != J)
6000             Assert(!DT.dominates(I, J),
6001                    "llvm.experimental.noalias.scope.decl dominates another one "
6002                    "with the same scope",
6003                    I);
6004     ItCurrent = ItNext;
6005   }
6006 }
6007 
6008 //===----------------------------------------------------------------------===//
6009 //  Implement the public interfaces to this file...
6010 //===----------------------------------------------------------------------===//
6011 
6012 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
6013   Function &F = const_cast<Function &>(f);
6014 
6015   // Don't use a raw_null_ostream.  Printing IR is expensive.
6016   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
6017 
6018   // Note that this function's return value is inverted from what you would
6019   // expect of a function called "verify".
6020   return !V.verify(F);
6021 }
6022 
6023 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
6024                         bool *BrokenDebugInfo) {
6025   // Don't use a raw_null_ostream.  Printing IR is expensive.
6026   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
6027 
6028   bool Broken = false;
6029   for (const Function &F : M)
6030     Broken |= !V.verify(F);
6031 
6032   Broken |= !V.verify();
6033   if (BrokenDebugInfo)
6034     *BrokenDebugInfo = V.hasBrokenDebugInfo();
6035   // Note that this function's return value is inverted from what you would
6036   // expect of a function called "verify".
6037   return Broken;
6038 }
6039 
6040 namespace {
6041 
6042 struct VerifierLegacyPass : public FunctionPass {
6043   static char ID;
6044 
6045   std::unique_ptr<Verifier> V;
6046   bool FatalErrors = true;
6047 
6048   VerifierLegacyPass() : FunctionPass(ID) {
6049     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
6050   }
6051   explicit VerifierLegacyPass(bool FatalErrors)
6052       : FunctionPass(ID),
6053         FatalErrors(FatalErrors) {
6054     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
6055   }
6056 
6057   bool doInitialization(Module &M) override {
6058     V = std::make_unique<Verifier>(
6059         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
6060     return false;
6061   }
6062 
6063   bool runOnFunction(Function &F) override {
6064     if (!V->verify(F) && FatalErrors) {
6065       errs() << "in function " << F.getName() << '\n';
6066       report_fatal_error("Broken function found, compilation aborted!");
6067     }
6068     return false;
6069   }
6070 
6071   bool doFinalization(Module &M) override {
6072     bool HasErrors = false;
6073     for (Function &F : M)
6074       if (F.isDeclaration())
6075         HasErrors |= !V->verify(F);
6076 
6077     HasErrors |= !V->verify();
6078     if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
6079       report_fatal_error("Broken module found, compilation aborted!");
6080     return false;
6081   }
6082 
6083   void getAnalysisUsage(AnalysisUsage &AU) const override {
6084     AU.setPreservesAll();
6085   }
6086 };
6087 
6088 } // end anonymous namespace
6089 
6090 /// Helper to issue failure from the TBAA verification
6091 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
6092   if (Diagnostic)
6093     return Diagnostic->CheckFailed(Args...);
6094 }
6095 
6096 #define AssertTBAA(C, ...)                                                     \
6097   do {                                                                         \
6098     if (!(C)) {                                                                \
6099       CheckFailed(__VA_ARGS__);                                                \
6100       return false;                                                            \
6101     }                                                                          \
6102   } while (false)
6103 
6104 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
6105 /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
6106 /// struct-type node describing an aggregate data structure (like a struct).
6107 TBAAVerifier::TBAABaseNodeSummary
6108 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
6109                                  bool IsNewFormat) {
6110   if (BaseNode->getNumOperands() < 2) {
6111     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
6112     return {true, ~0u};
6113   }
6114 
6115   auto Itr = TBAABaseNodes.find(BaseNode);
6116   if (Itr != TBAABaseNodes.end())
6117     return Itr->second;
6118 
6119   auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
6120   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
6121   (void)InsertResult;
6122   assert(InsertResult.second && "We just checked!");
6123   return Result;
6124 }
6125 
6126 TBAAVerifier::TBAABaseNodeSummary
6127 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
6128                                      bool IsNewFormat) {
6129   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
6130 
6131   if (BaseNode->getNumOperands() == 2) {
6132     // Scalar nodes can only be accessed at offset 0.
6133     return isValidScalarTBAANode(BaseNode)
6134                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
6135                : InvalidNode;
6136   }
6137 
6138   if (IsNewFormat) {
6139     if (BaseNode->getNumOperands() % 3 != 0) {
6140       CheckFailed("Access tag nodes must have the number of operands that is a "
6141                   "multiple of 3!", BaseNode);
6142       return InvalidNode;
6143     }
6144   } else {
6145     if (BaseNode->getNumOperands() % 2 != 1) {
6146       CheckFailed("Struct tag nodes must have an odd number of operands!",
6147                   BaseNode);
6148       return InvalidNode;
6149     }
6150   }
6151 
6152   // Check the type size field.
6153   if (IsNewFormat) {
6154     auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6155         BaseNode->getOperand(1));
6156     if (!TypeSizeNode) {
6157       CheckFailed("Type size nodes must be constants!", &I, BaseNode);
6158       return InvalidNode;
6159     }
6160   }
6161 
6162   // Check the type name field. In the new format it can be anything.
6163   if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
6164     CheckFailed("Struct tag nodes have a string as their first operand",
6165                 BaseNode);
6166     return InvalidNode;
6167   }
6168 
6169   bool Failed = false;
6170 
6171   Optional<APInt> PrevOffset;
6172   unsigned BitWidth = ~0u;
6173 
6174   // We've already checked that BaseNode is not a degenerate root node with one
6175   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
6176   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6177   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6178   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6179            Idx += NumOpsPerField) {
6180     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
6181     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
6182     if (!isa<MDNode>(FieldTy)) {
6183       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
6184       Failed = true;
6185       continue;
6186     }
6187 
6188     auto *OffsetEntryCI =
6189         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
6190     if (!OffsetEntryCI) {
6191       CheckFailed("Offset entries must be constants!", &I, BaseNode);
6192       Failed = true;
6193       continue;
6194     }
6195 
6196     if (BitWidth == ~0u)
6197       BitWidth = OffsetEntryCI->getBitWidth();
6198 
6199     if (OffsetEntryCI->getBitWidth() != BitWidth) {
6200       CheckFailed(
6201           "Bitwidth between the offsets and struct type entries must match", &I,
6202           BaseNode);
6203       Failed = true;
6204       continue;
6205     }
6206 
6207     // NB! As far as I can tell, we generate a non-strictly increasing offset
6208     // sequence only from structs that have zero size bit fields.  When
6209     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
6210     // pick the field lexically the latest in struct type metadata node.  This
6211     // mirrors the actual behavior of the alias analysis implementation.
6212     bool IsAscending =
6213         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
6214 
6215     if (!IsAscending) {
6216       CheckFailed("Offsets must be increasing!", &I, BaseNode);
6217       Failed = true;
6218     }
6219 
6220     PrevOffset = OffsetEntryCI->getValue();
6221 
6222     if (IsNewFormat) {
6223       auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6224           BaseNode->getOperand(Idx + 2));
6225       if (!MemberSizeNode) {
6226         CheckFailed("Member size entries must be constants!", &I, BaseNode);
6227         Failed = true;
6228         continue;
6229       }
6230     }
6231   }
6232 
6233   return Failed ? InvalidNode
6234                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
6235 }
6236 
6237 static bool IsRootTBAANode(const MDNode *MD) {
6238   return MD->getNumOperands() < 2;
6239 }
6240 
6241 static bool IsScalarTBAANodeImpl(const MDNode *MD,
6242                                  SmallPtrSetImpl<const MDNode *> &Visited) {
6243   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
6244     return false;
6245 
6246   if (!isa<MDString>(MD->getOperand(0)))
6247     return false;
6248 
6249   if (MD->getNumOperands() == 3) {
6250     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
6251     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
6252       return false;
6253   }
6254 
6255   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6256   return Parent && Visited.insert(Parent).second &&
6257          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
6258 }
6259 
6260 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
6261   auto ResultIt = TBAAScalarNodes.find(MD);
6262   if (ResultIt != TBAAScalarNodes.end())
6263     return ResultIt->second;
6264 
6265   SmallPtrSet<const MDNode *, 4> Visited;
6266   bool Result = IsScalarTBAANodeImpl(MD, Visited);
6267   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
6268   (void)InsertResult;
6269   assert(InsertResult.second && "Just checked!");
6270 
6271   return Result;
6272 }
6273 
6274 /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
6275 /// Offset in place to be the offset within the field node returned.
6276 ///
6277 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
6278 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
6279                                                    const MDNode *BaseNode,
6280                                                    APInt &Offset,
6281                                                    bool IsNewFormat) {
6282   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
6283 
6284   // Scalar nodes have only one possible "field" -- their parent in the access
6285   // hierarchy.  Offset must be zero at this point, but our caller is supposed
6286   // to Assert that.
6287   if (BaseNode->getNumOperands() == 2)
6288     return cast<MDNode>(BaseNode->getOperand(1));
6289 
6290   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6291   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6292   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6293            Idx += NumOpsPerField) {
6294     auto *OffsetEntryCI =
6295         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
6296     if (OffsetEntryCI->getValue().ugt(Offset)) {
6297       if (Idx == FirstFieldOpNo) {
6298         CheckFailed("Could not find TBAA parent in struct type node", &I,
6299                     BaseNode, &Offset);
6300         return nullptr;
6301       }
6302 
6303       unsigned PrevIdx = Idx - NumOpsPerField;
6304       auto *PrevOffsetEntryCI =
6305           mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
6306       Offset -= PrevOffsetEntryCI->getValue();
6307       return cast<MDNode>(BaseNode->getOperand(PrevIdx));
6308     }
6309   }
6310 
6311   unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
6312   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
6313       BaseNode->getOperand(LastIdx + 1));
6314   Offset -= LastOffsetEntryCI->getValue();
6315   return cast<MDNode>(BaseNode->getOperand(LastIdx));
6316 }
6317 
6318 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
6319   if (!Type || Type->getNumOperands() < 3)
6320     return false;
6321 
6322   // In the new format type nodes shall have a reference to the parent type as
6323   // its first operand.
6324   return isa_and_nonnull<MDNode>(Type->getOperand(0));
6325 }
6326 
6327 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
6328   AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
6329                  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
6330                  isa<AtomicCmpXchgInst>(I),
6331              "This instruction shall not have a TBAA access tag!", &I);
6332 
6333   bool IsStructPathTBAA =
6334       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
6335 
6336   AssertTBAA(
6337       IsStructPathTBAA,
6338       "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
6339 
6340   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
6341   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6342 
6343   bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
6344 
6345   if (IsNewFormat) {
6346     AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
6347                "Access tag metadata must have either 4 or 5 operands", &I, MD);
6348   } else {
6349     AssertTBAA(MD->getNumOperands() < 5,
6350                "Struct tag metadata must have either 3 or 4 operands", &I, MD);
6351   }
6352 
6353   // Check the access size field.
6354   if (IsNewFormat) {
6355     auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6356         MD->getOperand(3));
6357     AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
6358   }
6359 
6360   // Check the immutability flag.
6361   unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
6362   if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
6363     auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
6364         MD->getOperand(ImmutabilityFlagOpNo));
6365     AssertTBAA(IsImmutableCI,
6366                "Immutability tag on struct tag metadata must be a constant",
6367                &I, MD);
6368     AssertTBAA(
6369         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
6370         "Immutability part of the struct tag metadata must be either 0 or 1",
6371         &I, MD);
6372   }
6373 
6374   AssertTBAA(BaseNode && AccessType,
6375              "Malformed struct tag metadata: base and access-type "
6376              "should be non-null and point to Metadata nodes",
6377              &I, MD, BaseNode, AccessType);
6378 
6379   if (!IsNewFormat) {
6380     AssertTBAA(isValidScalarTBAANode(AccessType),
6381                "Access type node must be a valid scalar type", &I, MD,
6382                AccessType);
6383   }
6384 
6385   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
6386   AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
6387 
6388   APInt Offset = OffsetCI->getValue();
6389   bool SeenAccessTypeInPath = false;
6390 
6391   SmallPtrSet<MDNode *, 4> StructPath;
6392 
6393   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
6394        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
6395                                                IsNewFormat)) {
6396     if (!StructPath.insert(BaseNode).second) {
6397       CheckFailed("Cycle detected in struct path", &I, MD);
6398       return false;
6399     }
6400 
6401     bool Invalid;
6402     unsigned BaseNodeBitWidth;
6403     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
6404                                                              IsNewFormat);
6405 
6406     // If the base node is invalid in itself, then we've already printed all the
6407     // errors we wanted to print.
6408     if (Invalid)
6409       return false;
6410 
6411     SeenAccessTypeInPath |= BaseNode == AccessType;
6412 
6413     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
6414       AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
6415                  &I, MD, &Offset);
6416 
6417     AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
6418                    (BaseNodeBitWidth == 0 && Offset == 0) ||
6419                    (IsNewFormat && BaseNodeBitWidth == ~0u),
6420                "Access bit-width not the same as description bit-width", &I, MD,
6421                BaseNodeBitWidth, Offset.getBitWidth());
6422 
6423     if (IsNewFormat && SeenAccessTypeInPath)
6424       break;
6425   }
6426 
6427   AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
6428              &I, MD);
6429   return true;
6430 }
6431 
6432 char VerifierLegacyPass::ID = 0;
6433 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
6434 
6435 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
6436   return new VerifierLegacyPass(FatalErrors);
6437 }
6438 
6439 AnalysisKey VerifierAnalysis::Key;
6440 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
6441                                                ModuleAnalysisManager &) {
6442   Result Res;
6443   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
6444   return Res;
6445 }
6446 
6447 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
6448                                                FunctionAnalysisManager &) {
6449   return { llvm::verifyFunction(F, &dbgs()), false };
6450 }
6451 
6452 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
6453   auto Res = AM.getResult<VerifierAnalysis>(M);
6454   if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
6455     report_fatal_error("Broken module found, compilation aborted!");
6456 
6457   return PreservedAnalyses::all();
6458 }
6459 
6460 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
6461   auto res = AM.getResult<VerifierAnalysis>(F);
6462   if (res.IRBroken && FatalErrors)
6463     report_fatal_error("Broken function found, compilation aborted!");
6464 
6465   return PreservedAnalyses::all();
6466 }
6467