1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // sanity checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/ADT/ilist.h" 62 #include "llvm/BinaryFormat/Dwarf.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstVisitor.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/ModuleSlotTracker.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/InitializePasses.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Debug.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <cstdint> 112 #include <memory> 113 #include <string> 114 #include <utility> 115 116 using namespace llvm; 117 118 namespace llvm { 119 120 struct VerifierSupport { 121 raw_ostream *OS; 122 const Module &M; 123 ModuleSlotTracker MST; 124 Triple TT; 125 const DataLayout &DL; 126 LLVMContext &Context; 127 128 /// Track the brokenness of the module while recursively visiting. 129 bool Broken = false; 130 /// Broken debug info can be "recovered" from by stripping the debug info. 131 bool BrokenDebugInfo = false; 132 /// Whether to treat broken debug info as an error. 133 bool TreatBrokenDebugInfoAsError = true; 134 135 explicit VerifierSupport(raw_ostream *OS, const Module &M) 136 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 137 Context(M.getContext()) {} 138 139 private: 140 void Write(const Module *M) { 141 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 142 } 143 144 void Write(const Value *V) { 145 if (V) 146 Write(*V); 147 } 148 149 void Write(const Value &V) { 150 if (isa<Instruction>(V)) { 151 V.print(*OS, MST); 152 *OS << '\n'; 153 } else { 154 V.printAsOperand(*OS, true, MST); 155 *OS << '\n'; 156 } 157 } 158 159 void Write(const Metadata *MD) { 160 if (!MD) 161 return; 162 MD->print(*OS, MST, &M); 163 *OS << '\n'; 164 } 165 166 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 167 Write(MD.get()); 168 } 169 170 void Write(const NamedMDNode *NMD) { 171 if (!NMD) 172 return; 173 NMD->print(*OS, MST); 174 *OS << '\n'; 175 } 176 177 void Write(Type *T) { 178 if (!T) 179 return; 180 *OS << ' ' << *T; 181 } 182 183 void Write(const Comdat *C) { 184 if (!C) 185 return; 186 *OS << *C; 187 } 188 189 void Write(const APInt *AI) { 190 if (!AI) 191 return; 192 *OS << *AI << '\n'; 193 } 194 195 void Write(const unsigned i) { *OS << i << '\n'; } 196 197 template <typename T> void Write(ArrayRef<T> Vs) { 198 for (const T &V : Vs) 199 Write(V); 200 } 201 202 template <typename T1, typename... Ts> 203 void WriteTs(const T1 &V1, const Ts &... Vs) { 204 Write(V1); 205 WriteTs(Vs...); 206 } 207 208 template <typename... Ts> void WriteTs() {} 209 210 public: 211 /// A check failed, so printout out the condition and the message. 212 /// 213 /// This provides a nice place to put a breakpoint if you want to see why 214 /// something is not correct. 215 void CheckFailed(const Twine &Message) { 216 if (OS) 217 *OS << Message << '\n'; 218 Broken = true; 219 } 220 221 /// A check failed (with values to print). 222 /// 223 /// This calls the Message-only version so that the above is easier to set a 224 /// breakpoint on. 225 template <typename T1, typename... Ts> 226 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 227 CheckFailed(Message); 228 if (OS) 229 WriteTs(V1, Vs...); 230 } 231 232 /// A debug info check failed. 233 void DebugInfoCheckFailed(const Twine &Message) { 234 if (OS) 235 *OS << Message << '\n'; 236 Broken |= TreatBrokenDebugInfoAsError; 237 BrokenDebugInfo = true; 238 } 239 240 /// A debug info check failed (with values to print). 241 template <typename T1, typename... Ts> 242 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 243 const Ts &... Vs) { 244 DebugInfoCheckFailed(Message); 245 if (OS) 246 WriteTs(V1, Vs...); 247 } 248 }; 249 250 } // namespace llvm 251 252 namespace { 253 254 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 255 friend class InstVisitor<Verifier>; 256 257 DominatorTree DT; 258 259 /// When verifying a basic block, keep track of all of the 260 /// instructions we have seen so far. 261 /// 262 /// This allows us to do efficient dominance checks for the case when an 263 /// instruction has an operand that is an instruction in the same block. 264 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 265 266 /// Keep track of the metadata nodes that have been checked already. 267 SmallPtrSet<const Metadata *, 32> MDNodes; 268 269 /// Keep track which DISubprogram is attached to which function. 270 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 271 272 /// Track all DICompileUnits visited. 273 SmallPtrSet<const Metadata *, 2> CUVisited; 274 275 /// The result type for a landingpad. 276 Type *LandingPadResultTy; 277 278 /// Whether we've seen a call to @llvm.localescape in this function 279 /// already. 280 bool SawFrameEscape; 281 282 /// Whether the current function has a DISubprogram attached to it. 283 bool HasDebugInfo = false; 284 285 /// Whether source was present on the first DIFile encountered in each CU. 286 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 287 288 /// Stores the count of how many objects were passed to llvm.localescape for a 289 /// given function and the largest index passed to llvm.localrecover. 290 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 291 292 // Maps catchswitches and cleanuppads that unwind to siblings to the 293 // terminators that indicate the unwind, used to detect cycles therein. 294 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 295 296 /// Cache of constants visited in search of ConstantExprs. 297 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 298 299 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 300 SmallVector<const Function *, 4> DeoptimizeDeclarations; 301 302 // Verify that this GlobalValue is only used in this module. 303 // This map is used to avoid visiting uses twice. We can arrive at a user 304 // twice, if they have multiple operands. In particular for very large 305 // constant expressions, we can arrive at a particular user many times. 306 SmallPtrSet<const Value *, 32> GlobalValueVisited; 307 308 // Keeps track of duplicate function argument debug info. 309 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 310 311 TBAAVerifier TBAAVerifyHelper; 312 313 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 314 315 public: 316 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 317 const Module &M) 318 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 319 SawFrameEscape(false), TBAAVerifyHelper(this) { 320 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 321 } 322 323 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 324 325 bool verify(const Function &F) { 326 assert(F.getParent() == &M && 327 "An instance of this class only works with a specific module!"); 328 329 // First ensure the function is well-enough formed to compute dominance 330 // information, and directly compute a dominance tree. We don't rely on the 331 // pass manager to provide this as it isolates us from a potentially 332 // out-of-date dominator tree and makes it significantly more complex to run 333 // this code outside of a pass manager. 334 // FIXME: It's really gross that we have to cast away constness here. 335 if (!F.empty()) 336 DT.recalculate(const_cast<Function &>(F)); 337 338 for (const BasicBlock &BB : F) { 339 if (!BB.empty() && BB.back().isTerminator()) 340 continue; 341 342 if (OS) { 343 *OS << "Basic Block in function '" << F.getName() 344 << "' does not have terminator!\n"; 345 BB.printAsOperand(*OS, true, MST); 346 *OS << "\n"; 347 } 348 return false; 349 } 350 351 Broken = false; 352 // FIXME: We strip const here because the inst visitor strips const. 353 visit(const_cast<Function &>(F)); 354 verifySiblingFuncletUnwinds(); 355 InstsInThisBlock.clear(); 356 DebugFnArgs.clear(); 357 LandingPadResultTy = nullptr; 358 SawFrameEscape = false; 359 SiblingFuncletInfo.clear(); 360 361 return !Broken; 362 } 363 364 /// Verify the module that this instance of \c Verifier was initialized with. 365 bool verify() { 366 Broken = false; 367 368 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 369 for (const Function &F : M) 370 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 371 DeoptimizeDeclarations.push_back(&F); 372 373 // Now that we've visited every function, verify that we never asked to 374 // recover a frame index that wasn't escaped. 375 verifyFrameRecoverIndices(); 376 for (const GlobalVariable &GV : M.globals()) 377 visitGlobalVariable(GV); 378 379 for (const GlobalAlias &GA : M.aliases()) 380 visitGlobalAlias(GA); 381 382 for (const NamedMDNode &NMD : M.named_metadata()) 383 visitNamedMDNode(NMD); 384 385 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 386 visitComdat(SMEC.getValue()); 387 388 visitModuleFlags(M); 389 visitModuleIdents(M); 390 visitModuleCommandLines(M); 391 392 verifyCompileUnits(); 393 394 verifyDeoptimizeCallingConvs(); 395 DISubprogramAttachments.clear(); 396 return !Broken; 397 } 398 399 private: 400 /// Whether a metadata node is allowed to be, or contain, a DILocation. 401 enum class AreDebugLocsAllowed { No, Yes }; 402 403 // Verification methods... 404 void visitGlobalValue(const GlobalValue &GV); 405 void visitGlobalVariable(const GlobalVariable &GV); 406 void visitGlobalAlias(const GlobalAlias &GA); 407 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 408 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 409 const GlobalAlias &A, const Constant &C); 410 void visitNamedMDNode(const NamedMDNode &NMD); 411 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); 412 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 413 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 414 void visitComdat(const Comdat &C); 415 void visitModuleIdents(const Module &M); 416 void visitModuleCommandLines(const Module &M); 417 void visitModuleFlags(const Module &M); 418 void visitModuleFlag(const MDNode *Op, 419 DenseMap<const MDString *, const MDNode *> &SeenIDs, 420 SmallVectorImpl<const MDNode *> &Requirements); 421 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 422 void visitFunction(const Function &F); 423 void visitBasicBlock(BasicBlock &BB); 424 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 425 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 426 void visitProfMetadata(Instruction &I, MDNode *MD); 427 428 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 429 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 430 #include "llvm/IR/Metadata.def" 431 void visitDIScope(const DIScope &N); 432 void visitDIVariable(const DIVariable &N); 433 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 434 void visitDITemplateParameter(const DITemplateParameter &N); 435 436 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 437 438 // InstVisitor overrides... 439 using InstVisitor<Verifier>::visit; 440 void visit(Instruction &I); 441 442 void visitTruncInst(TruncInst &I); 443 void visitZExtInst(ZExtInst &I); 444 void visitSExtInst(SExtInst &I); 445 void visitFPTruncInst(FPTruncInst &I); 446 void visitFPExtInst(FPExtInst &I); 447 void visitFPToUIInst(FPToUIInst &I); 448 void visitFPToSIInst(FPToSIInst &I); 449 void visitUIToFPInst(UIToFPInst &I); 450 void visitSIToFPInst(SIToFPInst &I); 451 void visitIntToPtrInst(IntToPtrInst &I); 452 void visitPtrToIntInst(PtrToIntInst &I); 453 void visitBitCastInst(BitCastInst &I); 454 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 455 void visitPHINode(PHINode &PN); 456 void visitCallBase(CallBase &Call); 457 void visitUnaryOperator(UnaryOperator &U); 458 void visitBinaryOperator(BinaryOperator &B); 459 void visitICmpInst(ICmpInst &IC); 460 void visitFCmpInst(FCmpInst &FC); 461 void visitExtractElementInst(ExtractElementInst &EI); 462 void visitInsertElementInst(InsertElementInst &EI); 463 void visitShuffleVectorInst(ShuffleVectorInst &EI); 464 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 465 void visitCallInst(CallInst &CI); 466 void visitInvokeInst(InvokeInst &II); 467 void visitGetElementPtrInst(GetElementPtrInst &GEP); 468 void visitLoadInst(LoadInst &LI); 469 void visitStoreInst(StoreInst &SI); 470 void verifyDominatesUse(Instruction &I, unsigned i); 471 void visitInstruction(Instruction &I); 472 void visitTerminator(Instruction &I); 473 void visitBranchInst(BranchInst &BI); 474 void visitReturnInst(ReturnInst &RI); 475 void visitSwitchInst(SwitchInst &SI); 476 void visitIndirectBrInst(IndirectBrInst &BI); 477 void visitCallBrInst(CallBrInst &CBI); 478 void visitSelectInst(SelectInst &SI); 479 void visitUserOp1(Instruction &I); 480 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 481 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 482 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 483 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 484 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 485 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 486 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 487 void visitFenceInst(FenceInst &FI); 488 void visitAllocaInst(AllocaInst &AI); 489 void visitExtractValueInst(ExtractValueInst &EVI); 490 void visitInsertValueInst(InsertValueInst &IVI); 491 void visitEHPadPredecessors(Instruction &I); 492 void visitLandingPadInst(LandingPadInst &LPI); 493 void visitResumeInst(ResumeInst &RI); 494 void visitCatchPadInst(CatchPadInst &CPI); 495 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 496 void visitCleanupPadInst(CleanupPadInst &CPI); 497 void visitFuncletPadInst(FuncletPadInst &FPI); 498 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 499 void visitCleanupReturnInst(CleanupReturnInst &CRI); 500 501 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 502 void verifySwiftErrorValue(const Value *SwiftErrorVal); 503 void verifyMustTailCall(CallInst &CI); 504 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, 505 unsigned ArgNo, std::string &Suffix); 506 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 507 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 508 const Value *V); 509 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 510 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 511 const Value *V, bool IsIntrinsic); 512 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 513 514 void visitConstantExprsRecursively(const Constant *EntryC); 515 void visitConstantExpr(const ConstantExpr *CE); 516 void verifyStatepoint(const CallBase &Call); 517 void verifyFrameRecoverIndices(); 518 void verifySiblingFuncletUnwinds(); 519 520 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 521 template <typename ValueOrMetadata> 522 void verifyFragmentExpression(const DIVariable &V, 523 DIExpression::FragmentInfo Fragment, 524 ValueOrMetadata *Desc); 525 void verifyFnArgs(const DbgVariableIntrinsic &I); 526 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 527 528 /// Module-level debug info verification... 529 void verifyCompileUnits(); 530 531 /// Module-level verification that all @llvm.experimental.deoptimize 532 /// declarations share the same calling convention. 533 void verifyDeoptimizeCallingConvs(); 534 535 /// Verify all-or-nothing property of DIFile source attribute within a CU. 536 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 537 }; 538 539 } // end anonymous namespace 540 541 /// We know that cond should be true, if not print an error message. 542 #define Assert(C, ...) \ 543 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 544 545 /// We know that a debug info condition should be true, if not print 546 /// an error message. 547 #define AssertDI(C, ...) \ 548 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 549 550 void Verifier::visit(Instruction &I) { 551 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 552 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 553 InstVisitor<Verifier>::visit(I); 554 } 555 556 // Helper to recursively iterate over indirect users. By 557 // returning false, the callback can ask to stop recursing 558 // further. 559 static void forEachUser(const Value *User, 560 SmallPtrSet<const Value *, 32> &Visited, 561 llvm::function_ref<bool(const Value *)> Callback) { 562 if (!Visited.insert(User).second) 563 return; 564 for (const Value *TheNextUser : User->materialized_users()) 565 if (Callback(TheNextUser)) 566 forEachUser(TheNextUser, Visited, Callback); 567 } 568 569 void Verifier::visitGlobalValue(const GlobalValue &GV) { 570 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 571 "Global is external, but doesn't have external or weak linkage!", &GV); 572 573 Assert(GV.getAlignment() <= Value::MaximumAlignment, 574 "huge alignment values are unsupported", &GV); 575 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 576 "Only global variables can have appending linkage!", &GV); 577 578 if (GV.hasAppendingLinkage()) { 579 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 580 Assert(GVar && GVar->getValueType()->isArrayTy(), 581 "Only global arrays can have appending linkage!", GVar); 582 } 583 584 if (GV.isDeclarationForLinker()) 585 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 586 587 if (GV.hasDLLImportStorageClass()) { 588 Assert(!GV.isDSOLocal(), 589 "GlobalValue with DLLImport Storage is dso_local!", &GV); 590 591 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) || 592 GV.hasAvailableExternallyLinkage(), 593 "Global is marked as dllimport, but not external", &GV); 594 } 595 596 if (GV.isImplicitDSOLocal()) 597 Assert(GV.isDSOLocal(), 598 "GlobalValue with local linkage or non-default " 599 "visibility must be dso_local!", 600 &GV); 601 602 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 603 if (const Instruction *I = dyn_cast<Instruction>(V)) { 604 if (!I->getParent() || !I->getParent()->getParent()) 605 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 606 I); 607 else if (I->getParent()->getParent()->getParent() != &M) 608 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 609 I->getParent()->getParent(), 610 I->getParent()->getParent()->getParent()); 611 return false; 612 } else if (const Function *F = dyn_cast<Function>(V)) { 613 if (F->getParent() != &M) 614 CheckFailed("Global is used by function in a different module", &GV, &M, 615 F, F->getParent()); 616 return false; 617 } 618 return true; 619 }); 620 } 621 622 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 623 if (GV.hasInitializer()) { 624 Assert(GV.getInitializer()->getType() == GV.getValueType(), 625 "Global variable initializer type does not match global " 626 "variable type!", 627 &GV); 628 // If the global has common linkage, it must have a zero initializer and 629 // cannot be constant. 630 if (GV.hasCommonLinkage()) { 631 Assert(GV.getInitializer()->isNullValue(), 632 "'common' global must have a zero initializer!", &GV); 633 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 634 &GV); 635 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 636 } 637 } 638 639 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 640 GV.getName() == "llvm.global_dtors")) { 641 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 642 "invalid linkage for intrinsic global variable", &GV); 643 // Don't worry about emitting an error for it not being an array, 644 // visitGlobalValue will complain on appending non-array. 645 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 646 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 647 PointerType *FuncPtrTy = 648 FunctionType::get(Type::getVoidTy(Context), false)-> 649 getPointerTo(DL.getProgramAddressSpace()); 650 Assert(STy && 651 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 652 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 653 STy->getTypeAtIndex(1) == FuncPtrTy, 654 "wrong type for intrinsic global variable", &GV); 655 Assert(STy->getNumElements() == 3, 656 "the third field of the element type is mandatory, " 657 "specify i8* null to migrate from the obsoleted 2-field form"); 658 Type *ETy = STy->getTypeAtIndex(2); 659 Assert(ETy->isPointerTy() && 660 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 661 "wrong type for intrinsic global variable", &GV); 662 } 663 } 664 665 if (GV.hasName() && (GV.getName() == "llvm.used" || 666 GV.getName() == "llvm.compiler.used")) { 667 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 668 "invalid linkage for intrinsic global variable", &GV); 669 Type *GVType = GV.getValueType(); 670 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 671 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 672 Assert(PTy, "wrong type for intrinsic global variable", &GV); 673 if (GV.hasInitializer()) { 674 const Constant *Init = GV.getInitializer(); 675 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 676 Assert(InitArray, "wrong initalizer for intrinsic global variable", 677 Init); 678 for (Value *Op : InitArray->operands()) { 679 Value *V = Op->stripPointerCasts(); 680 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 681 isa<GlobalAlias>(V), 682 "invalid llvm.used member", V); 683 Assert(V->hasName(), "members of llvm.used must be named", V); 684 } 685 } 686 } 687 } 688 689 // Visit any debug info attachments. 690 SmallVector<MDNode *, 1> MDs; 691 GV.getMetadata(LLVMContext::MD_dbg, MDs); 692 for (auto *MD : MDs) { 693 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 694 visitDIGlobalVariableExpression(*GVE); 695 else 696 AssertDI(false, "!dbg attachment of global variable must be a " 697 "DIGlobalVariableExpression"); 698 } 699 700 // Scalable vectors cannot be global variables, since we don't know 701 // the runtime size. If the global is a struct or an array containing 702 // scalable vectors, that will be caught by the isValidElementType methods 703 // in StructType or ArrayType instead. 704 Assert(!isa<ScalableVectorType>(GV.getValueType()), 705 "Globals cannot contain scalable vectors", &GV); 706 707 if (!GV.hasInitializer()) { 708 visitGlobalValue(GV); 709 return; 710 } 711 712 // Walk any aggregate initializers looking for bitcasts between address spaces 713 visitConstantExprsRecursively(GV.getInitializer()); 714 715 visitGlobalValue(GV); 716 } 717 718 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 719 SmallPtrSet<const GlobalAlias*, 4> Visited; 720 Visited.insert(&GA); 721 visitAliaseeSubExpr(Visited, GA, C); 722 } 723 724 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 725 const GlobalAlias &GA, const Constant &C) { 726 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 727 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 728 &GA); 729 730 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 731 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 732 733 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 734 &GA); 735 } else { 736 // Only continue verifying subexpressions of GlobalAliases. 737 // Do not recurse into global initializers. 738 return; 739 } 740 } 741 742 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 743 visitConstantExprsRecursively(CE); 744 745 for (const Use &U : C.operands()) { 746 Value *V = &*U; 747 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 748 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 749 else if (const auto *C2 = dyn_cast<Constant>(V)) 750 visitAliaseeSubExpr(Visited, GA, *C2); 751 } 752 } 753 754 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 755 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 756 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 757 "weak_odr, or external linkage!", 758 &GA); 759 const Constant *Aliasee = GA.getAliasee(); 760 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 761 Assert(GA.getType() == Aliasee->getType(), 762 "Alias and aliasee types should match!", &GA); 763 764 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 765 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 766 767 visitAliaseeSubExpr(GA, *Aliasee); 768 769 visitGlobalValue(GA); 770 } 771 772 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 773 // There used to be various other llvm.dbg.* nodes, but we don't support 774 // upgrading them and we want to reserve the namespace for future uses. 775 if (NMD.getName().startswith("llvm.dbg.")) 776 AssertDI(NMD.getName() == "llvm.dbg.cu", 777 "unrecognized named metadata node in the llvm.dbg namespace", 778 &NMD); 779 for (const MDNode *MD : NMD.operands()) { 780 if (NMD.getName() == "llvm.dbg.cu") 781 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 782 783 if (!MD) 784 continue; 785 786 visitMDNode(*MD, AreDebugLocsAllowed::Yes); 787 } 788 } 789 790 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { 791 // Only visit each node once. Metadata can be mutually recursive, so this 792 // avoids infinite recursion here, as well as being an optimization. 793 if (!MDNodes.insert(&MD).second) 794 return; 795 796 switch (MD.getMetadataID()) { 797 default: 798 llvm_unreachable("Invalid MDNode subclass"); 799 case Metadata::MDTupleKind: 800 break; 801 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 802 case Metadata::CLASS##Kind: \ 803 visit##CLASS(cast<CLASS>(MD)); \ 804 break; 805 #include "llvm/IR/Metadata.def" 806 } 807 808 for (const Metadata *Op : MD.operands()) { 809 if (!Op) 810 continue; 811 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 812 &MD, Op); 813 AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes, 814 "DILocation not allowed within this metadata node", &MD, Op); 815 if (auto *N = dyn_cast<MDNode>(Op)) { 816 visitMDNode(*N, AllowLocs); 817 continue; 818 } 819 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 820 visitValueAsMetadata(*V, nullptr); 821 continue; 822 } 823 } 824 825 // Check these last, so we diagnose problems in operands first. 826 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 827 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 828 } 829 830 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 831 Assert(MD.getValue(), "Expected valid value", &MD); 832 Assert(!MD.getValue()->getType()->isMetadataTy(), 833 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 834 835 auto *L = dyn_cast<LocalAsMetadata>(&MD); 836 if (!L) 837 return; 838 839 Assert(F, "function-local metadata used outside a function", L); 840 841 // If this was an instruction, bb, or argument, verify that it is in the 842 // function that we expect. 843 Function *ActualF = nullptr; 844 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 845 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 846 ActualF = I->getParent()->getParent(); 847 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 848 ActualF = BB->getParent(); 849 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 850 ActualF = A->getParent(); 851 assert(ActualF && "Unimplemented function local metadata case!"); 852 853 Assert(ActualF == F, "function-local metadata used in wrong function", L); 854 } 855 856 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 857 Metadata *MD = MDV.getMetadata(); 858 if (auto *N = dyn_cast<MDNode>(MD)) { 859 visitMDNode(*N, AreDebugLocsAllowed::No); 860 return; 861 } 862 863 // Only visit each node once. Metadata can be mutually recursive, so this 864 // avoids infinite recursion here, as well as being an optimization. 865 if (!MDNodes.insert(MD).second) 866 return; 867 868 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 869 visitValueAsMetadata(*V, F); 870 } 871 872 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 873 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 874 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 875 876 void Verifier::visitDILocation(const DILocation &N) { 877 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 878 "location requires a valid scope", &N, N.getRawScope()); 879 if (auto *IA = N.getRawInlinedAt()) 880 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 881 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 882 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 883 } 884 885 void Verifier::visitGenericDINode(const GenericDINode &N) { 886 AssertDI(N.getTag(), "invalid tag", &N); 887 } 888 889 void Verifier::visitDIScope(const DIScope &N) { 890 if (auto *F = N.getRawFile()) 891 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 892 } 893 894 void Verifier::visitDISubrange(const DISubrange &N) { 895 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 896 AssertDI(N.getRawCountNode() || N.getRawUpperBound(), 897 "Subrange must contain count or upperBound", &N); 898 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 899 "Subrange can have any one of count or upperBound", &N); 900 AssertDI(!N.getRawCountNode() || N.getCount(), 901 "Count must either be a signed constant or a DIVariable", &N); 902 auto Count = N.getCount(); 903 AssertDI(!Count || !Count.is<ConstantInt *>() || 904 Count.get<ConstantInt *>()->getSExtValue() >= -1, 905 "invalid subrange count", &N); 906 auto *LBound = N.getRawLowerBound(); 907 AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) || 908 isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 909 "LowerBound must be signed constant or DIVariable or DIExpression", 910 &N); 911 auto *UBound = N.getRawUpperBound(); 912 AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) || 913 isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 914 "UpperBound must be signed constant or DIVariable or DIExpression", 915 &N); 916 auto *Stride = N.getRawStride(); 917 AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) || 918 isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 919 "Stride must be signed constant or DIVariable or DIExpression", &N); 920 } 921 922 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 923 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 924 } 925 926 void Verifier::visitDIBasicType(const DIBasicType &N) { 927 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 928 N.getTag() == dwarf::DW_TAG_unspecified_type, 929 "invalid tag", &N); 930 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 931 "has conflicting flags", &N); 932 } 933 934 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 935 // Common scope checks. 936 visitDIScope(N); 937 938 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 939 N.getTag() == dwarf::DW_TAG_pointer_type || 940 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 941 N.getTag() == dwarf::DW_TAG_reference_type || 942 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 943 N.getTag() == dwarf::DW_TAG_const_type || 944 N.getTag() == dwarf::DW_TAG_volatile_type || 945 N.getTag() == dwarf::DW_TAG_restrict_type || 946 N.getTag() == dwarf::DW_TAG_atomic_type || 947 N.getTag() == dwarf::DW_TAG_member || 948 N.getTag() == dwarf::DW_TAG_inheritance || 949 N.getTag() == dwarf::DW_TAG_friend, 950 "invalid tag", &N); 951 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 952 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 953 N.getRawExtraData()); 954 } 955 956 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 957 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 958 N.getRawBaseType()); 959 960 if (N.getDWARFAddressSpace()) { 961 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 962 N.getTag() == dwarf::DW_TAG_reference_type || 963 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 964 "DWARF address space only applies to pointer or reference types", 965 &N); 966 } 967 } 968 969 /// Detect mutually exclusive flags. 970 static bool hasConflictingReferenceFlags(unsigned Flags) { 971 return ((Flags & DINode::FlagLValueReference) && 972 (Flags & DINode::FlagRValueReference)) || 973 ((Flags & DINode::FlagTypePassByValue) && 974 (Flags & DINode::FlagTypePassByReference)); 975 } 976 977 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 978 auto *Params = dyn_cast<MDTuple>(&RawParams); 979 AssertDI(Params, "invalid template params", &N, &RawParams); 980 for (Metadata *Op : Params->operands()) { 981 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 982 &N, Params, Op); 983 } 984 } 985 986 void Verifier::visitDICompositeType(const DICompositeType &N) { 987 // Common scope checks. 988 visitDIScope(N); 989 990 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 991 N.getTag() == dwarf::DW_TAG_structure_type || 992 N.getTag() == dwarf::DW_TAG_union_type || 993 N.getTag() == dwarf::DW_TAG_enumeration_type || 994 N.getTag() == dwarf::DW_TAG_class_type || 995 N.getTag() == dwarf::DW_TAG_variant_part, 996 "invalid tag", &N); 997 998 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 999 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1000 N.getRawBaseType()); 1001 1002 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 1003 "invalid composite elements", &N, N.getRawElements()); 1004 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 1005 N.getRawVTableHolder()); 1006 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1007 "invalid reference flags", &N); 1008 unsigned DIBlockByRefStruct = 1 << 4; 1009 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, 1010 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 1011 1012 if (N.isVector()) { 1013 const DINodeArray Elements = N.getElements(); 1014 AssertDI(Elements.size() == 1 && 1015 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 1016 "invalid vector, expected one element of type subrange", &N); 1017 } 1018 1019 if (auto *Params = N.getRawTemplateParams()) 1020 visitTemplateParams(N, *Params); 1021 1022 if (N.getTag() == dwarf::DW_TAG_class_type || 1023 N.getTag() == dwarf::DW_TAG_union_type) { 1024 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), 1025 "class/union requires a filename", &N, N.getFile()); 1026 } 1027 1028 if (auto *D = N.getRawDiscriminator()) { 1029 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1030 "discriminator can only appear on variant part"); 1031 } 1032 1033 if (N.getRawDataLocation()) { 1034 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1035 "dataLocation can only appear in array type"); 1036 } 1037 } 1038 1039 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1040 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1041 if (auto *Types = N.getRawTypeArray()) { 1042 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1043 for (Metadata *Ty : N.getTypeArray()->operands()) { 1044 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1045 } 1046 } 1047 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1048 "invalid reference flags", &N); 1049 } 1050 1051 void Verifier::visitDIFile(const DIFile &N) { 1052 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1053 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1054 if (Checksum) { 1055 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1056 "invalid checksum kind", &N); 1057 size_t Size; 1058 switch (Checksum->Kind) { 1059 case DIFile::CSK_MD5: 1060 Size = 32; 1061 break; 1062 case DIFile::CSK_SHA1: 1063 Size = 40; 1064 break; 1065 case DIFile::CSK_SHA256: 1066 Size = 64; 1067 break; 1068 } 1069 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1070 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1071 "invalid checksum", &N); 1072 } 1073 } 1074 1075 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1076 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1077 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1078 1079 // Don't bother verifying the compilation directory or producer string 1080 // as those could be empty. 1081 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1082 N.getRawFile()); 1083 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1084 N.getFile()); 1085 1086 verifySourceDebugInfo(N, *N.getFile()); 1087 1088 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1089 "invalid emission kind", &N); 1090 1091 if (auto *Array = N.getRawEnumTypes()) { 1092 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1093 for (Metadata *Op : N.getEnumTypes()->operands()) { 1094 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1095 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1096 "invalid enum type", &N, N.getEnumTypes(), Op); 1097 } 1098 } 1099 if (auto *Array = N.getRawRetainedTypes()) { 1100 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1101 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1102 AssertDI(Op && (isa<DIType>(Op) || 1103 (isa<DISubprogram>(Op) && 1104 !cast<DISubprogram>(Op)->isDefinition())), 1105 "invalid retained type", &N, Op); 1106 } 1107 } 1108 if (auto *Array = N.getRawGlobalVariables()) { 1109 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1110 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1111 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1112 "invalid global variable ref", &N, Op); 1113 } 1114 } 1115 if (auto *Array = N.getRawImportedEntities()) { 1116 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1117 for (Metadata *Op : N.getImportedEntities()->operands()) { 1118 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1119 &N, Op); 1120 } 1121 } 1122 if (auto *Array = N.getRawMacros()) { 1123 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1124 for (Metadata *Op : N.getMacros()->operands()) { 1125 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1126 } 1127 } 1128 CUVisited.insert(&N); 1129 } 1130 1131 void Verifier::visitDISubprogram(const DISubprogram &N) { 1132 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1133 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1134 if (auto *F = N.getRawFile()) 1135 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1136 else 1137 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1138 if (auto *T = N.getRawType()) 1139 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1140 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1141 N.getRawContainingType()); 1142 if (auto *Params = N.getRawTemplateParams()) 1143 visitTemplateParams(N, *Params); 1144 if (auto *S = N.getRawDeclaration()) 1145 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1146 "invalid subprogram declaration", &N, S); 1147 if (auto *RawNode = N.getRawRetainedNodes()) { 1148 auto *Node = dyn_cast<MDTuple>(RawNode); 1149 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1150 for (Metadata *Op : Node->operands()) { 1151 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1152 "invalid retained nodes, expected DILocalVariable or DILabel", 1153 &N, Node, Op); 1154 } 1155 } 1156 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1157 "invalid reference flags", &N); 1158 1159 auto *Unit = N.getRawUnit(); 1160 if (N.isDefinition()) { 1161 // Subprogram definitions (not part of the type hierarchy). 1162 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1163 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1164 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1165 if (N.getFile()) 1166 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1167 } else { 1168 // Subprogram declarations (part of the type hierarchy). 1169 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1170 } 1171 1172 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1173 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1174 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1175 for (Metadata *Op : ThrownTypes->operands()) 1176 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1177 Op); 1178 } 1179 1180 if (N.areAllCallsDescribed()) 1181 AssertDI(N.isDefinition(), 1182 "DIFlagAllCallsDescribed must be attached to a definition"); 1183 } 1184 1185 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1186 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1187 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1188 "invalid local scope", &N, N.getRawScope()); 1189 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1190 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1191 } 1192 1193 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1194 visitDILexicalBlockBase(N); 1195 1196 AssertDI(N.getLine() || !N.getColumn(), 1197 "cannot have column info without line info", &N); 1198 } 1199 1200 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1201 visitDILexicalBlockBase(N); 1202 } 1203 1204 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1205 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1206 if (auto *S = N.getRawScope()) 1207 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1208 if (auto *S = N.getRawDecl()) 1209 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1210 } 1211 1212 void Verifier::visitDINamespace(const DINamespace &N) { 1213 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1214 if (auto *S = N.getRawScope()) 1215 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1216 } 1217 1218 void Verifier::visitDIMacro(const DIMacro &N) { 1219 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1220 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1221 "invalid macinfo type", &N); 1222 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1223 if (!N.getValue().empty()) { 1224 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1225 } 1226 } 1227 1228 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1229 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1230 "invalid macinfo type", &N); 1231 if (auto *F = N.getRawFile()) 1232 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1233 1234 if (auto *Array = N.getRawElements()) { 1235 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1236 for (Metadata *Op : N.getElements()->operands()) { 1237 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1238 } 1239 } 1240 } 1241 1242 void Verifier::visitDIModule(const DIModule &N) { 1243 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1244 AssertDI(!N.getName().empty(), "anonymous module", &N); 1245 } 1246 1247 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1248 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1249 } 1250 1251 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1252 visitDITemplateParameter(N); 1253 1254 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1255 &N); 1256 } 1257 1258 void Verifier::visitDITemplateValueParameter( 1259 const DITemplateValueParameter &N) { 1260 visitDITemplateParameter(N); 1261 1262 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1263 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1264 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1265 "invalid tag", &N); 1266 } 1267 1268 void Verifier::visitDIVariable(const DIVariable &N) { 1269 if (auto *S = N.getRawScope()) 1270 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1271 if (auto *F = N.getRawFile()) 1272 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1273 } 1274 1275 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1276 // Checks common to all variables. 1277 visitDIVariable(N); 1278 1279 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1280 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1281 // Assert only if the global variable is not an extern 1282 if (N.isDefinition()) 1283 AssertDI(N.getType(), "missing global variable type", &N); 1284 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1285 AssertDI(isa<DIDerivedType>(Member), 1286 "invalid static data member declaration", &N, Member); 1287 } 1288 } 1289 1290 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1291 // Checks common to all variables. 1292 visitDIVariable(N); 1293 1294 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1295 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1296 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1297 "local variable requires a valid scope", &N, N.getRawScope()); 1298 if (auto Ty = N.getType()) 1299 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1300 } 1301 1302 void Verifier::visitDILabel(const DILabel &N) { 1303 if (auto *S = N.getRawScope()) 1304 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1305 if (auto *F = N.getRawFile()) 1306 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1307 1308 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1309 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1310 "label requires a valid scope", &N, N.getRawScope()); 1311 } 1312 1313 void Verifier::visitDIExpression(const DIExpression &N) { 1314 AssertDI(N.isValid(), "invalid expression", &N); 1315 } 1316 1317 void Verifier::visitDIGlobalVariableExpression( 1318 const DIGlobalVariableExpression &GVE) { 1319 AssertDI(GVE.getVariable(), "missing variable"); 1320 if (auto *Var = GVE.getVariable()) 1321 visitDIGlobalVariable(*Var); 1322 if (auto *Expr = GVE.getExpression()) { 1323 visitDIExpression(*Expr); 1324 if (auto Fragment = Expr->getFragmentInfo()) 1325 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1326 } 1327 } 1328 1329 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1330 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1331 if (auto *T = N.getRawType()) 1332 AssertDI(isType(T), "invalid type ref", &N, T); 1333 if (auto *F = N.getRawFile()) 1334 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1335 } 1336 1337 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1338 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1339 N.getTag() == dwarf::DW_TAG_imported_declaration, 1340 "invalid tag", &N); 1341 if (auto *S = N.getRawScope()) 1342 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1343 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1344 N.getRawEntity()); 1345 } 1346 1347 void Verifier::visitComdat(const Comdat &C) { 1348 // In COFF the Module is invalid if the GlobalValue has private linkage. 1349 // Entities with private linkage don't have entries in the symbol table. 1350 if (TT.isOSBinFormatCOFF()) 1351 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1352 Assert(!GV->hasPrivateLinkage(), 1353 "comdat global value has private linkage", GV); 1354 } 1355 1356 void Verifier::visitModuleIdents(const Module &M) { 1357 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1358 if (!Idents) 1359 return; 1360 1361 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1362 // Scan each llvm.ident entry and make sure that this requirement is met. 1363 for (const MDNode *N : Idents->operands()) { 1364 Assert(N->getNumOperands() == 1, 1365 "incorrect number of operands in llvm.ident metadata", N); 1366 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1367 ("invalid value for llvm.ident metadata entry operand" 1368 "(the operand should be a string)"), 1369 N->getOperand(0)); 1370 } 1371 } 1372 1373 void Verifier::visitModuleCommandLines(const Module &M) { 1374 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1375 if (!CommandLines) 1376 return; 1377 1378 // llvm.commandline takes a list of metadata entry. Each entry has only one 1379 // string. Scan each llvm.commandline entry and make sure that this 1380 // requirement is met. 1381 for (const MDNode *N : CommandLines->operands()) { 1382 Assert(N->getNumOperands() == 1, 1383 "incorrect number of operands in llvm.commandline metadata", N); 1384 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1385 ("invalid value for llvm.commandline metadata entry operand" 1386 "(the operand should be a string)"), 1387 N->getOperand(0)); 1388 } 1389 } 1390 1391 void Verifier::visitModuleFlags(const Module &M) { 1392 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1393 if (!Flags) return; 1394 1395 // Scan each flag, and track the flags and requirements. 1396 DenseMap<const MDString*, const MDNode*> SeenIDs; 1397 SmallVector<const MDNode*, 16> Requirements; 1398 for (const MDNode *MDN : Flags->operands()) 1399 visitModuleFlag(MDN, SeenIDs, Requirements); 1400 1401 // Validate that the requirements in the module are valid. 1402 for (const MDNode *Requirement : Requirements) { 1403 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1404 const Metadata *ReqValue = Requirement->getOperand(1); 1405 1406 const MDNode *Op = SeenIDs.lookup(Flag); 1407 if (!Op) { 1408 CheckFailed("invalid requirement on flag, flag is not present in module", 1409 Flag); 1410 continue; 1411 } 1412 1413 if (Op->getOperand(2) != ReqValue) { 1414 CheckFailed(("invalid requirement on flag, " 1415 "flag does not have the required value"), 1416 Flag); 1417 continue; 1418 } 1419 } 1420 } 1421 1422 void 1423 Verifier::visitModuleFlag(const MDNode *Op, 1424 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1425 SmallVectorImpl<const MDNode *> &Requirements) { 1426 // Each module flag should have three arguments, the merge behavior (a 1427 // constant int), the flag ID (an MDString), and the value. 1428 Assert(Op->getNumOperands() == 3, 1429 "incorrect number of operands in module flag", Op); 1430 Module::ModFlagBehavior MFB; 1431 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1432 Assert( 1433 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1434 "invalid behavior operand in module flag (expected constant integer)", 1435 Op->getOperand(0)); 1436 Assert(false, 1437 "invalid behavior operand in module flag (unexpected constant)", 1438 Op->getOperand(0)); 1439 } 1440 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1441 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1442 Op->getOperand(1)); 1443 1444 // Sanity check the values for behaviors with additional requirements. 1445 switch (MFB) { 1446 case Module::Error: 1447 case Module::Warning: 1448 case Module::Override: 1449 // These behavior types accept any value. 1450 break; 1451 1452 case Module::Max: { 1453 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1454 "invalid value for 'max' module flag (expected constant integer)", 1455 Op->getOperand(2)); 1456 break; 1457 } 1458 1459 case Module::Require: { 1460 // The value should itself be an MDNode with two operands, a flag ID (an 1461 // MDString), and a value. 1462 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1463 Assert(Value && Value->getNumOperands() == 2, 1464 "invalid value for 'require' module flag (expected metadata pair)", 1465 Op->getOperand(2)); 1466 Assert(isa<MDString>(Value->getOperand(0)), 1467 ("invalid value for 'require' module flag " 1468 "(first value operand should be a string)"), 1469 Value->getOperand(0)); 1470 1471 // Append it to the list of requirements, to check once all module flags are 1472 // scanned. 1473 Requirements.push_back(Value); 1474 break; 1475 } 1476 1477 case Module::Append: 1478 case Module::AppendUnique: { 1479 // These behavior types require the operand be an MDNode. 1480 Assert(isa<MDNode>(Op->getOperand(2)), 1481 "invalid value for 'append'-type module flag " 1482 "(expected a metadata node)", 1483 Op->getOperand(2)); 1484 break; 1485 } 1486 } 1487 1488 // Unless this is a "requires" flag, check the ID is unique. 1489 if (MFB != Module::Require) { 1490 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1491 Assert(Inserted, 1492 "module flag identifiers must be unique (or of 'require' type)", ID); 1493 } 1494 1495 if (ID->getString() == "wchar_size") { 1496 ConstantInt *Value 1497 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1498 Assert(Value, "wchar_size metadata requires constant integer argument"); 1499 } 1500 1501 if (ID->getString() == "Linker Options") { 1502 // If the llvm.linker.options named metadata exists, we assume that the 1503 // bitcode reader has upgraded the module flag. Otherwise the flag might 1504 // have been created by a client directly. 1505 Assert(M.getNamedMetadata("llvm.linker.options"), 1506 "'Linker Options' named metadata no longer supported"); 1507 } 1508 1509 if (ID->getString() == "SemanticInterposition") { 1510 ConstantInt *Value = 1511 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1512 Assert(Value, 1513 "SemanticInterposition metadata requires constant integer argument"); 1514 } 1515 1516 if (ID->getString() == "CG Profile") { 1517 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1518 visitModuleFlagCGProfileEntry(MDO); 1519 } 1520 } 1521 1522 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1523 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1524 if (!FuncMDO) 1525 return; 1526 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1527 Assert(F && isa<Function>(F->getValue()), "expected a Function or null", 1528 FuncMDO); 1529 }; 1530 auto Node = dyn_cast_or_null<MDNode>(MDO); 1531 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1532 CheckFunction(Node->getOperand(0)); 1533 CheckFunction(Node->getOperand(1)); 1534 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1535 Assert(Count && Count->getType()->isIntegerTy(), 1536 "expected an integer constant", Node->getOperand(2)); 1537 } 1538 1539 /// Return true if this attribute kind only applies to functions. 1540 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { 1541 switch (Kind) { 1542 case Attribute::NoMerge: 1543 case Attribute::NoReturn: 1544 case Attribute::NoSync: 1545 case Attribute::WillReturn: 1546 case Attribute::NoCfCheck: 1547 case Attribute::NoUnwind: 1548 case Attribute::NoInline: 1549 case Attribute::AlwaysInline: 1550 case Attribute::OptimizeForSize: 1551 case Attribute::StackProtect: 1552 case Attribute::StackProtectReq: 1553 case Attribute::StackProtectStrong: 1554 case Attribute::SafeStack: 1555 case Attribute::ShadowCallStack: 1556 case Attribute::NoRedZone: 1557 case Attribute::NoImplicitFloat: 1558 case Attribute::Naked: 1559 case Attribute::InlineHint: 1560 case Attribute::StackAlignment: 1561 case Attribute::UWTable: 1562 case Attribute::NonLazyBind: 1563 case Attribute::ReturnsTwice: 1564 case Attribute::SanitizeAddress: 1565 case Attribute::SanitizeHWAddress: 1566 case Attribute::SanitizeMemTag: 1567 case Attribute::SanitizeThread: 1568 case Attribute::SanitizeMemory: 1569 case Attribute::MinSize: 1570 case Attribute::NoDuplicate: 1571 case Attribute::Builtin: 1572 case Attribute::NoBuiltin: 1573 case Attribute::Cold: 1574 case Attribute::OptForFuzzing: 1575 case Attribute::OptimizeNone: 1576 case Attribute::JumpTable: 1577 case Attribute::Convergent: 1578 case Attribute::ArgMemOnly: 1579 case Attribute::NoRecurse: 1580 case Attribute::InaccessibleMemOnly: 1581 case Attribute::InaccessibleMemOrArgMemOnly: 1582 case Attribute::AllocSize: 1583 case Attribute::SpeculativeLoadHardening: 1584 case Attribute::Speculatable: 1585 case Attribute::StrictFP: 1586 case Attribute::NullPointerIsValid: 1587 return true; 1588 default: 1589 break; 1590 } 1591 return false; 1592 } 1593 1594 /// Return true if this is a function attribute that can also appear on 1595 /// arguments. 1596 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { 1597 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || 1598 Kind == Attribute::ReadNone || Kind == Attribute::NoFree || 1599 Kind == Attribute::Preallocated; 1600 } 1601 1602 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 1603 const Value *V) { 1604 for (Attribute A : Attrs) { 1605 if (A.isStringAttribute()) 1606 continue; 1607 1608 if (A.isIntAttribute() != 1609 Attribute::doesAttrKindHaveArgument(A.getKindAsEnum())) { 1610 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", 1611 V); 1612 return; 1613 } 1614 1615 if (isFuncOnlyAttr(A.getKindAsEnum())) { 1616 if (!IsFunction) { 1617 CheckFailed("Attribute '" + A.getAsString() + 1618 "' only applies to functions!", 1619 V); 1620 return; 1621 } 1622 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { 1623 CheckFailed("Attribute '" + A.getAsString() + 1624 "' does not apply to functions!", 1625 V); 1626 return; 1627 } 1628 } 1629 } 1630 1631 // VerifyParameterAttrs - Check the given attributes for an argument or return 1632 // value of the specified type. The value V is printed in error messages. 1633 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1634 const Value *V) { 1635 if (!Attrs.hasAttributes()) 1636 return; 1637 1638 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); 1639 1640 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1641 Assert(Attrs.getNumAttributes() == 1, 1642 "Attribute 'immarg' is incompatible with other attributes", V); 1643 } 1644 1645 // Check for mutually incompatible attributes. Only inreg is compatible with 1646 // sret. 1647 unsigned AttrCount = 0; 1648 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1649 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1650 AttrCount += Attrs.hasAttribute(Attribute::Preallocated); 1651 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1652 Attrs.hasAttribute(Attribute::InReg); 1653 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1654 Assert(AttrCount <= 1, 1655 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " 1656 "and 'sret' are incompatible!", 1657 V); 1658 1659 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1660 Attrs.hasAttribute(Attribute::ReadOnly)), 1661 "Attributes " 1662 "'inalloca and readonly' are incompatible!", 1663 V); 1664 1665 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1666 Attrs.hasAttribute(Attribute::Returned)), 1667 "Attributes " 1668 "'sret and returned' are incompatible!", 1669 V); 1670 1671 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1672 Attrs.hasAttribute(Attribute::SExt)), 1673 "Attributes " 1674 "'zeroext and signext' are incompatible!", 1675 V); 1676 1677 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1678 Attrs.hasAttribute(Attribute::ReadOnly)), 1679 "Attributes " 1680 "'readnone and readonly' are incompatible!", 1681 V); 1682 1683 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1684 Attrs.hasAttribute(Attribute::WriteOnly)), 1685 "Attributes " 1686 "'readnone and writeonly' are incompatible!", 1687 V); 1688 1689 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1690 Attrs.hasAttribute(Attribute::WriteOnly)), 1691 "Attributes " 1692 "'readonly and writeonly' are incompatible!", 1693 V); 1694 1695 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1696 Attrs.hasAttribute(Attribute::AlwaysInline)), 1697 "Attributes " 1698 "'noinline and alwaysinline' are incompatible!", 1699 V); 1700 1701 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1702 Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(), 1703 "Attribute 'byval' type does not match parameter!", V); 1704 } 1705 1706 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1707 Assert(Attrs.getPreallocatedType() == 1708 cast<PointerType>(Ty)->getElementType(), 1709 "Attribute 'preallocated' type does not match parameter!", V); 1710 } 1711 1712 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1713 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), 1714 "Wrong types for attribute: " + 1715 AttributeSet::get(Context, IncompatibleAttrs).getAsString(), 1716 V); 1717 1718 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1719 SmallPtrSet<Type*, 4> Visited; 1720 if (!PTy->getElementType()->isSized(&Visited)) { 1721 Assert(!Attrs.hasAttribute(Attribute::ByVal) && 1722 !Attrs.hasAttribute(Attribute::InAlloca) && 1723 !Attrs.hasAttribute(Attribute::Preallocated), 1724 "Attributes 'byval', 'inalloca', and 'preallocated' do not " 1725 "support unsized types!", 1726 V); 1727 } 1728 if (!isa<PointerType>(PTy->getElementType())) 1729 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1730 "Attribute 'swifterror' only applies to parameters " 1731 "with pointer to pointer type!", 1732 V); 1733 } else { 1734 Assert(!Attrs.hasAttribute(Attribute::ByVal), 1735 "Attribute 'byval' only applies to parameters with pointer type!", 1736 V); 1737 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1738 "Attribute 'swifterror' only applies to parameters " 1739 "with pointer type!", 1740 V); 1741 } 1742 } 1743 1744 // Check parameter attributes against a function type. 1745 // The value V is printed in error messages. 1746 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1747 const Value *V, bool IsIntrinsic) { 1748 if (Attrs.isEmpty()) 1749 return; 1750 1751 bool SawNest = false; 1752 bool SawReturned = false; 1753 bool SawSRet = false; 1754 bool SawSwiftSelf = false; 1755 bool SawSwiftError = false; 1756 1757 // Verify return value attributes. 1758 AttributeSet RetAttrs = Attrs.getRetAttributes(); 1759 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && 1760 !RetAttrs.hasAttribute(Attribute::Nest) && 1761 !RetAttrs.hasAttribute(Attribute::StructRet) && 1762 !RetAttrs.hasAttribute(Attribute::NoCapture) && 1763 !RetAttrs.hasAttribute(Attribute::NoFree) && 1764 !RetAttrs.hasAttribute(Attribute::Returned) && 1765 !RetAttrs.hasAttribute(Attribute::InAlloca) && 1766 !RetAttrs.hasAttribute(Attribute::Preallocated) && 1767 !RetAttrs.hasAttribute(Attribute::SwiftSelf) && 1768 !RetAttrs.hasAttribute(Attribute::SwiftError)), 1769 "Attributes 'byval', 'inalloca', 'preallocated', 'nest', 'sret', " 1770 "'nocapture', 'nofree', " 1771 "'returned', 'swiftself', and 'swifterror' do not apply to return " 1772 "values!", 1773 V); 1774 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && 1775 !RetAttrs.hasAttribute(Attribute::WriteOnly) && 1776 !RetAttrs.hasAttribute(Attribute::ReadNone)), 1777 "Attribute '" + RetAttrs.getAsString() + 1778 "' does not apply to function returns", 1779 V); 1780 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1781 1782 // Verify parameter attributes. 1783 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1784 Type *Ty = FT->getParamType(i); 1785 AttributeSet ArgAttrs = Attrs.getParamAttributes(i); 1786 1787 if (!IsIntrinsic) { 1788 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1789 "immarg attribute only applies to intrinsics",V); 1790 } 1791 1792 verifyParameterAttrs(ArgAttrs, Ty, V); 1793 1794 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1795 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1796 SawNest = true; 1797 } 1798 1799 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1800 Assert(!SawReturned, "More than one parameter has attribute returned!", 1801 V); 1802 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1803 "Incompatible argument and return types for 'returned' attribute", 1804 V); 1805 SawReturned = true; 1806 } 1807 1808 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1809 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1810 Assert(i == 0 || i == 1, 1811 "Attribute 'sret' is not on first or second parameter!", V); 1812 SawSRet = true; 1813 } 1814 1815 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1816 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1817 SawSwiftSelf = true; 1818 } 1819 1820 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1821 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1822 V); 1823 SawSwiftError = true; 1824 } 1825 1826 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1827 Assert(i == FT->getNumParams() - 1, 1828 "inalloca isn't on the last parameter!", V); 1829 } 1830 } 1831 1832 if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) 1833 return; 1834 1835 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); 1836 1837 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1838 Attrs.hasFnAttribute(Attribute::ReadOnly)), 1839 "Attributes 'readnone and readonly' are incompatible!", V); 1840 1841 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1842 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1843 "Attributes 'readnone and writeonly' are incompatible!", V); 1844 1845 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && 1846 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1847 "Attributes 'readonly and writeonly' are incompatible!", V); 1848 1849 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1850 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), 1851 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1852 "incompatible!", 1853 V); 1854 1855 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1856 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), 1857 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1858 1859 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && 1860 Attrs.hasFnAttribute(Attribute::AlwaysInline)), 1861 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1862 1863 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { 1864 Assert(Attrs.hasFnAttribute(Attribute::NoInline), 1865 "Attribute 'optnone' requires 'noinline'!", V); 1866 1867 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), 1868 "Attributes 'optsize and optnone' are incompatible!", V); 1869 1870 Assert(!Attrs.hasFnAttribute(Attribute::MinSize), 1871 "Attributes 'minsize and optnone' are incompatible!", V); 1872 } 1873 1874 if (Attrs.hasFnAttribute(Attribute::JumpTable)) { 1875 const GlobalValue *GV = cast<GlobalValue>(V); 1876 Assert(GV->hasGlobalUnnamedAddr(), 1877 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1878 } 1879 1880 if (Attrs.hasFnAttribute(Attribute::AllocSize)) { 1881 std::pair<unsigned, Optional<unsigned>> Args = 1882 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 1883 1884 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1885 if (ParamNo >= FT->getNumParams()) { 1886 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1887 return false; 1888 } 1889 1890 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1891 CheckFailed("'allocsize' " + Name + 1892 " argument must refer to an integer parameter", 1893 V); 1894 return false; 1895 } 1896 1897 return true; 1898 }; 1899 1900 if (!CheckParam("element size", Args.first)) 1901 return; 1902 1903 if (Args.second && !CheckParam("number of elements", *Args.second)) 1904 return; 1905 } 1906 1907 if (Attrs.hasFnAttribute("frame-pointer")) { 1908 StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex, 1909 "frame-pointer").getValueAsString(); 1910 if (FP != "all" && FP != "non-leaf" && FP != "none") 1911 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 1912 } 1913 1914 if (Attrs.hasFnAttribute("patchable-function-prefix")) { 1915 StringRef S = Attrs 1916 .getAttribute(AttributeList::FunctionIndex, 1917 "patchable-function-prefix") 1918 .getValueAsString(); 1919 unsigned N; 1920 if (S.getAsInteger(10, N)) 1921 CheckFailed( 1922 "\"patchable-function-prefix\" takes an unsigned integer: " + S, V); 1923 } 1924 if (Attrs.hasFnAttribute("patchable-function-entry")) { 1925 StringRef S = Attrs 1926 .getAttribute(AttributeList::FunctionIndex, 1927 "patchable-function-entry") 1928 .getValueAsString(); 1929 unsigned N; 1930 if (S.getAsInteger(10, N)) 1931 CheckFailed( 1932 "\"patchable-function-entry\" takes an unsigned integer: " + S, V); 1933 } 1934 } 1935 1936 void Verifier::verifyFunctionMetadata( 1937 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 1938 for (const auto &Pair : MDs) { 1939 if (Pair.first == LLVMContext::MD_prof) { 1940 MDNode *MD = Pair.second; 1941 Assert(MD->getNumOperands() >= 2, 1942 "!prof annotations should have no less than 2 operands", MD); 1943 1944 // Check first operand. 1945 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 1946 MD); 1947 Assert(isa<MDString>(MD->getOperand(0)), 1948 "expected string with name of the !prof annotation", MD); 1949 MDString *MDS = cast<MDString>(MD->getOperand(0)); 1950 StringRef ProfName = MDS->getString(); 1951 Assert(ProfName.equals("function_entry_count") || 1952 ProfName.equals("synthetic_function_entry_count"), 1953 "first operand should be 'function_entry_count'" 1954 " or 'synthetic_function_entry_count'", 1955 MD); 1956 1957 // Check second operand. 1958 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 1959 MD); 1960 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 1961 "expected integer argument to function_entry_count", MD); 1962 } 1963 } 1964 } 1965 1966 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 1967 if (!ConstantExprVisited.insert(EntryC).second) 1968 return; 1969 1970 SmallVector<const Constant *, 16> Stack; 1971 Stack.push_back(EntryC); 1972 1973 while (!Stack.empty()) { 1974 const Constant *C = Stack.pop_back_val(); 1975 1976 // Check this constant expression. 1977 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 1978 visitConstantExpr(CE); 1979 1980 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 1981 // Global Values get visited separately, but we do need to make sure 1982 // that the global value is in the correct module 1983 Assert(GV->getParent() == &M, "Referencing global in another module!", 1984 EntryC, &M, GV, GV->getParent()); 1985 continue; 1986 } 1987 1988 // Visit all sub-expressions. 1989 for (const Use &U : C->operands()) { 1990 const auto *OpC = dyn_cast<Constant>(U); 1991 if (!OpC) 1992 continue; 1993 if (!ConstantExprVisited.insert(OpC).second) 1994 continue; 1995 Stack.push_back(OpC); 1996 } 1997 } 1998 } 1999 2000 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 2001 if (CE->getOpcode() == Instruction::BitCast) 2002 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 2003 CE->getType()), 2004 "Invalid bitcast", CE); 2005 2006 if (CE->getOpcode() == Instruction::IntToPtr || 2007 CE->getOpcode() == Instruction::PtrToInt) { 2008 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 2009 ? CE->getType() 2010 : CE->getOperand(0)->getType(); 2011 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 2012 ? "inttoptr not supported for non-integral pointers" 2013 : "ptrtoint not supported for non-integral pointers"; 2014 Assert( 2015 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 2016 Msg); 2017 } 2018 } 2019 2020 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 2021 // There shouldn't be more attribute sets than there are parameters plus the 2022 // function and return value. 2023 return Attrs.getNumAttrSets() <= Params + 2; 2024 } 2025 2026 /// Verify that statepoint intrinsic is well formed. 2027 void Verifier::verifyStatepoint(const CallBase &Call) { 2028 assert(Call.getCalledFunction() && 2029 Call.getCalledFunction()->getIntrinsicID() == 2030 Intrinsic::experimental_gc_statepoint); 2031 2032 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 2033 !Call.onlyAccessesArgMemory(), 2034 "gc.statepoint must read and write all memory to preserve " 2035 "reordering restrictions required by safepoint semantics", 2036 Call); 2037 2038 const int64_t NumPatchBytes = 2039 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 2040 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 2041 Assert(NumPatchBytes >= 0, 2042 "gc.statepoint number of patchable bytes must be " 2043 "positive", 2044 Call); 2045 2046 const Value *Target = Call.getArgOperand(2); 2047 auto *PT = dyn_cast<PointerType>(Target->getType()); 2048 Assert(PT && PT->getElementType()->isFunctionTy(), 2049 "gc.statepoint callee must be of function pointer type", Call, Target); 2050 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 2051 2052 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 2053 Assert(NumCallArgs >= 0, 2054 "gc.statepoint number of arguments to underlying call " 2055 "must be positive", 2056 Call); 2057 const int NumParams = (int)TargetFuncType->getNumParams(); 2058 if (TargetFuncType->isVarArg()) { 2059 Assert(NumCallArgs >= NumParams, 2060 "gc.statepoint mismatch in number of vararg call args", Call); 2061 2062 // TODO: Remove this limitation 2063 Assert(TargetFuncType->getReturnType()->isVoidTy(), 2064 "gc.statepoint doesn't support wrapping non-void " 2065 "vararg functions yet", 2066 Call); 2067 } else 2068 Assert(NumCallArgs == NumParams, 2069 "gc.statepoint mismatch in number of call args", Call); 2070 2071 const uint64_t Flags 2072 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 2073 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 2074 "unknown flag used in gc.statepoint flags argument", Call); 2075 2076 // Verify that the types of the call parameter arguments match 2077 // the type of the wrapped callee. 2078 AttributeList Attrs = Call.getAttributes(); 2079 for (int i = 0; i < NumParams; i++) { 2080 Type *ParamType = TargetFuncType->getParamType(i); 2081 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 2082 Assert(ArgType == ParamType, 2083 "gc.statepoint call argument does not match wrapped " 2084 "function type", 2085 Call); 2086 2087 if (TargetFuncType->isVarArg()) { 2088 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); 2089 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2090 "Attribute 'sret' cannot be used for vararg call arguments!", 2091 Call); 2092 } 2093 } 2094 2095 const int EndCallArgsInx = 4 + NumCallArgs; 2096 2097 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2098 Assert(isa<ConstantInt>(NumTransitionArgsV), 2099 "gc.statepoint number of transition arguments " 2100 "must be constant integer", 2101 Call); 2102 const int NumTransitionArgs = 2103 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2104 Assert(NumTransitionArgs >= 0, 2105 "gc.statepoint number of transition arguments must be positive", Call); 2106 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2107 2108 // We're migrating away from inline operands to operand bundles, enforce 2109 // the either/or property during transition. 2110 if (Call.getOperandBundle(LLVMContext::OB_gc_transition)) { 2111 Assert(NumTransitionArgs == 0, 2112 "can't use both deopt operands and deopt bundle on a statepoint"); 2113 } 2114 2115 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2116 Assert(isa<ConstantInt>(NumDeoptArgsV), 2117 "gc.statepoint number of deoptimization arguments " 2118 "must be constant integer", 2119 Call); 2120 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2121 Assert(NumDeoptArgs >= 0, 2122 "gc.statepoint number of deoptimization arguments " 2123 "must be positive", 2124 Call); 2125 2126 // We're migrating away from inline operands to operand bundles, enforce 2127 // the either/or property during transition. 2128 if (Call.getOperandBundle(LLVMContext::OB_deopt)) { 2129 Assert(NumDeoptArgs == 0, 2130 "can't use both deopt operands and deopt bundle on a statepoint"); 2131 } 2132 2133 const int ExpectedNumArgs = 2134 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; 2135 Assert(ExpectedNumArgs <= (int)Call.arg_size(), 2136 "gc.statepoint too few arguments according to length fields", Call); 2137 2138 // Check that the only uses of this gc.statepoint are gc.result or 2139 // gc.relocate calls which are tied to this statepoint and thus part 2140 // of the same statepoint sequence 2141 for (const User *U : Call.users()) { 2142 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2143 Assert(UserCall, "illegal use of statepoint token", Call, U); 2144 if (!UserCall) 2145 continue; 2146 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2147 "gc.result or gc.relocate are the only value uses " 2148 "of a gc.statepoint", 2149 Call, U); 2150 if (isa<GCResultInst>(UserCall)) { 2151 Assert(UserCall->getArgOperand(0) == &Call, 2152 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2153 } else if (isa<GCRelocateInst>(Call)) { 2154 Assert(UserCall->getArgOperand(0) == &Call, 2155 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2156 } 2157 } 2158 2159 // Note: It is legal for a single derived pointer to be listed multiple 2160 // times. It's non-optimal, but it is legal. It can also happen after 2161 // insertion if we strip a bitcast away. 2162 // Note: It is really tempting to check that each base is relocated and 2163 // that a derived pointer is never reused as a base pointer. This turns 2164 // out to be problematic since optimizations run after safepoint insertion 2165 // can recognize equality properties that the insertion logic doesn't know 2166 // about. See example statepoint.ll in the verifier subdirectory 2167 } 2168 2169 void Verifier::verifyFrameRecoverIndices() { 2170 for (auto &Counts : FrameEscapeInfo) { 2171 Function *F = Counts.first; 2172 unsigned EscapedObjectCount = Counts.second.first; 2173 unsigned MaxRecoveredIndex = Counts.second.second; 2174 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2175 "all indices passed to llvm.localrecover must be less than the " 2176 "number of arguments passed to llvm.localescape in the parent " 2177 "function", 2178 F); 2179 } 2180 } 2181 2182 static Instruction *getSuccPad(Instruction *Terminator) { 2183 BasicBlock *UnwindDest; 2184 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2185 UnwindDest = II->getUnwindDest(); 2186 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2187 UnwindDest = CSI->getUnwindDest(); 2188 else 2189 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2190 return UnwindDest->getFirstNonPHI(); 2191 } 2192 2193 void Verifier::verifySiblingFuncletUnwinds() { 2194 SmallPtrSet<Instruction *, 8> Visited; 2195 SmallPtrSet<Instruction *, 8> Active; 2196 for (const auto &Pair : SiblingFuncletInfo) { 2197 Instruction *PredPad = Pair.first; 2198 if (Visited.count(PredPad)) 2199 continue; 2200 Active.insert(PredPad); 2201 Instruction *Terminator = Pair.second; 2202 do { 2203 Instruction *SuccPad = getSuccPad(Terminator); 2204 if (Active.count(SuccPad)) { 2205 // Found a cycle; report error 2206 Instruction *CyclePad = SuccPad; 2207 SmallVector<Instruction *, 8> CycleNodes; 2208 do { 2209 CycleNodes.push_back(CyclePad); 2210 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2211 if (CycleTerminator != CyclePad) 2212 CycleNodes.push_back(CycleTerminator); 2213 CyclePad = getSuccPad(CycleTerminator); 2214 } while (CyclePad != SuccPad); 2215 Assert(false, "EH pads can't handle each other's exceptions", 2216 ArrayRef<Instruction *>(CycleNodes)); 2217 } 2218 // Don't re-walk a node we've already checked 2219 if (!Visited.insert(SuccPad).second) 2220 break; 2221 // Walk to this successor if it has a map entry. 2222 PredPad = SuccPad; 2223 auto TermI = SiblingFuncletInfo.find(PredPad); 2224 if (TermI == SiblingFuncletInfo.end()) 2225 break; 2226 Terminator = TermI->second; 2227 Active.insert(PredPad); 2228 } while (true); 2229 // Each node only has one successor, so we've walked all the active 2230 // nodes' successors. 2231 Active.clear(); 2232 } 2233 } 2234 2235 // visitFunction - Verify that a function is ok. 2236 // 2237 void Verifier::visitFunction(const Function &F) { 2238 visitGlobalValue(F); 2239 2240 // Check function arguments. 2241 FunctionType *FT = F.getFunctionType(); 2242 unsigned NumArgs = F.arg_size(); 2243 2244 Assert(&Context == &F.getContext(), 2245 "Function context does not match Module context!", &F); 2246 2247 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2248 Assert(FT->getNumParams() == NumArgs, 2249 "# formal arguments must match # of arguments for function type!", &F, 2250 FT); 2251 Assert(F.getReturnType()->isFirstClassType() || 2252 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2253 "Functions cannot return aggregate values!", &F); 2254 2255 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2256 "Invalid struct return type!", &F); 2257 2258 AttributeList Attrs = F.getAttributes(); 2259 2260 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2261 "Attribute after last parameter!", &F); 2262 2263 bool isLLVMdotName = F.getName().size() >= 5 && 2264 F.getName().substr(0, 5) == "llvm."; 2265 2266 // Check function attributes. 2267 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName); 2268 2269 // On function declarations/definitions, we do not support the builtin 2270 // attribute. We do not check this in VerifyFunctionAttrs since that is 2271 // checking for Attributes that can/can not ever be on functions. 2272 Assert(!Attrs.hasFnAttribute(Attribute::Builtin), 2273 "Attribute 'builtin' can only be applied to a callsite.", &F); 2274 2275 // Check that this function meets the restrictions on this calling convention. 2276 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2277 // restrictions can be lifted. 2278 switch (F.getCallingConv()) { 2279 default: 2280 case CallingConv::C: 2281 break; 2282 case CallingConv::AMDGPU_KERNEL: 2283 case CallingConv::SPIR_KERNEL: 2284 Assert(F.getReturnType()->isVoidTy(), 2285 "Calling convention requires void return type", &F); 2286 LLVM_FALLTHROUGH; 2287 case CallingConv::AMDGPU_VS: 2288 case CallingConv::AMDGPU_HS: 2289 case CallingConv::AMDGPU_GS: 2290 case CallingConv::AMDGPU_PS: 2291 case CallingConv::AMDGPU_CS: 2292 Assert(!F.hasStructRetAttr(), 2293 "Calling convention does not allow sret", &F); 2294 LLVM_FALLTHROUGH; 2295 case CallingConv::Fast: 2296 case CallingConv::Cold: 2297 case CallingConv::Intel_OCL_BI: 2298 case CallingConv::PTX_Kernel: 2299 case CallingConv::PTX_Device: 2300 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2301 "perfect forwarding!", 2302 &F); 2303 break; 2304 } 2305 2306 // Check that the argument values match the function type for this function... 2307 unsigned i = 0; 2308 for (const Argument &Arg : F.args()) { 2309 Assert(Arg.getType() == FT->getParamType(i), 2310 "Argument value does not match function argument type!", &Arg, 2311 FT->getParamType(i)); 2312 Assert(Arg.getType()->isFirstClassType(), 2313 "Function arguments must have first-class types!", &Arg); 2314 if (!isLLVMdotName) { 2315 Assert(!Arg.getType()->isMetadataTy(), 2316 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2317 Assert(!Arg.getType()->isTokenTy(), 2318 "Function takes token but isn't an intrinsic", &Arg, &F); 2319 } 2320 2321 // Check that swifterror argument is only used by loads and stores. 2322 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { 2323 verifySwiftErrorValue(&Arg); 2324 } 2325 ++i; 2326 } 2327 2328 if (!isLLVMdotName) 2329 Assert(!F.getReturnType()->isTokenTy(), 2330 "Functions returns a token but isn't an intrinsic", &F); 2331 2332 // Get the function metadata attachments. 2333 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2334 F.getAllMetadata(MDs); 2335 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2336 verifyFunctionMetadata(MDs); 2337 2338 // Check validity of the personality function 2339 if (F.hasPersonalityFn()) { 2340 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2341 if (Per) 2342 Assert(Per->getParent() == F.getParent(), 2343 "Referencing personality function in another module!", 2344 &F, F.getParent(), Per, Per->getParent()); 2345 } 2346 2347 if (F.isMaterializable()) { 2348 // Function has a body somewhere we can't see. 2349 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2350 MDs.empty() ? nullptr : MDs.front().second); 2351 } else if (F.isDeclaration()) { 2352 for (const auto &I : MDs) { 2353 // This is used for call site debug information. 2354 AssertDI(I.first != LLVMContext::MD_dbg || 2355 !cast<DISubprogram>(I.second)->isDistinct(), 2356 "function declaration may only have a unique !dbg attachment", 2357 &F); 2358 Assert(I.first != LLVMContext::MD_prof, 2359 "function declaration may not have a !prof attachment", &F); 2360 2361 // Verify the metadata itself. 2362 visitMDNode(*I.second, AreDebugLocsAllowed::Yes); 2363 } 2364 Assert(!F.hasPersonalityFn(), 2365 "Function declaration shouldn't have a personality routine", &F); 2366 } else { 2367 // Verify that this function (which has a body) is not named "llvm.*". It 2368 // is not legal to define intrinsics. 2369 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 2370 2371 // Check the entry node 2372 const BasicBlock *Entry = &F.getEntryBlock(); 2373 Assert(pred_empty(Entry), 2374 "Entry block to function must not have predecessors!", Entry); 2375 2376 // The address of the entry block cannot be taken, unless it is dead. 2377 if (Entry->hasAddressTaken()) { 2378 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2379 "blockaddress may not be used with the entry block!", Entry); 2380 } 2381 2382 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2383 // Visit metadata attachments. 2384 for (const auto &I : MDs) { 2385 // Verify that the attachment is legal. 2386 auto AllowLocs = AreDebugLocsAllowed::No; 2387 switch (I.first) { 2388 default: 2389 break; 2390 case LLVMContext::MD_dbg: { 2391 ++NumDebugAttachments; 2392 AssertDI(NumDebugAttachments == 1, 2393 "function must have a single !dbg attachment", &F, I.second); 2394 AssertDI(isa<DISubprogram>(I.second), 2395 "function !dbg attachment must be a subprogram", &F, I.second); 2396 auto *SP = cast<DISubprogram>(I.second); 2397 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2398 AssertDI(!AttachedTo || AttachedTo == &F, 2399 "DISubprogram attached to more than one function", SP, &F); 2400 AttachedTo = &F; 2401 AllowLocs = AreDebugLocsAllowed::Yes; 2402 break; 2403 } 2404 case LLVMContext::MD_prof: 2405 ++NumProfAttachments; 2406 Assert(NumProfAttachments == 1, 2407 "function must have a single !prof attachment", &F, I.second); 2408 break; 2409 } 2410 2411 // Verify the metadata itself. 2412 visitMDNode(*I.second, AllowLocs); 2413 } 2414 } 2415 2416 // If this function is actually an intrinsic, verify that it is only used in 2417 // direct call/invokes, never having its "address taken". 2418 // Only do this if the module is materialized, otherwise we don't have all the 2419 // uses. 2420 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2421 const User *U; 2422 if (F.hasAddressTaken(&U)) 2423 Assert(false, "Invalid user of intrinsic instruction!", U); 2424 } 2425 2426 auto *N = F.getSubprogram(); 2427 HasDebugInfo = (N != nullptr); 2428 if (!HasDebugInfo) 2429 return; 2430 2431 // Check that all !dbg attachments lead to back to N. 2432 // 2433 // FIXME: Check this incrementally while visiting !dbg attachments. 2434 // FIXME: Only check when N is the canonical subprogram for F. 2435 SmallPtrSet<const MDNode *, 32> Seen; 2436 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2437 // Be careful about using DILocation here since we might be dealing with 2438 // broken code (this is the Verifier after all). 2439 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2440 if (!DL) 2441 return; 2442 if (!Seen.insert(DL).second) 2443 return; 2444 2445 Metadata *Parent = DL->getRawScope(); 2446 AssertDI(Parent && isa<DILocalScope>(Parent), 2447 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2448 Parent); 2449 2450 DILocalScope *Scope = DL->getInlinedAtScope(); 2451 Assert(Scope, "Failed to find DILocalScope", DL); 2452 2453 if (!Seen.insert(Scope).second) 2454 return; 2455 2456 DISubprogram *SP = Scope->getSubprogram(); 2457 2458 // Scope and SP could be the same MDNode and we don't want to skip 2459 // validation in that case 2460 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2461 return; 2462 2463 AssertDI(SP->describes(&F), 2464 "!dbg attachment points at wrong subprogram for function", N, &F, 2465 &I, DL, Scope, SP); 2466 }; 2467 for (auto &BB : F) 2468 for (auto &I : BB) { 2469 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2470 // The llvm.loop annotations also contain two DILocations. 2471 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2472 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2473 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2474 if (BrokenDebugInfo) 2475 return; 2476 } 2477 } 2478 2479 // verifyBasicBlock - Verify that a basic block is well formed... 2480 // 2481 void Verifier::visitBasicBlock(BasicBlock &BB) { 2482 InstsInThisBlock.clear(); 2483 2484 // Ensure that basic blocks have terminators! 2485 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2486 2487 // Check constraints that this basic block imposes on all of the PHI nodes in 2488 // it. 2489 if (isa<PHINode>(BB.front())) { 2490 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 2491 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2492 llvm::sort(Preds); 2493 for (const PHINode &PN : BB.phis()) { 2494 // Ensure that PHI nodes have at least one entry! 2495 Assert(PN.getNumIncomingValues() != 0, 2496 "PHI nodes must have at least one entry. If the block is dead, " 2497 "the PHI should be removed!", 2498 &PN); 2499 Assert(PN.getNumIncomingValues() == Preds.size(), 2500 "PHINode should have one entry for each predecessor of its " 2501 "parent basic block!", 2502 &PN); 2503 2504 // Get and sort all incoming values in the PHI node... 2505 Values.clear(); 2506 Values.reserve(PN.getNumIncomingValues()); 2507 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2508 Values.push_back( 2509 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2510 llvm::sort(Values); 2511 2512 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2513 // Check to make sure that if there is more than one entry for a 2514 // particular basic block in this PHI node, that the incoming values are 2515 // all identical. 2516 // 2517 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2518 Values[i].second == Values[i - 1].second, 2519 "PHI node has multiple entries for the same basic block with " 2520 "different incoming values!", 2521 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2522 2523 // Check to make sure that the predecessors and PHI node entries are 2524 // matched up. 2525 Assert(Values[i].first == Preds[i], 2526 "PHI node entries do not match predecessors!", &PN, 2527 Values[i].first, Preds[i]); 2528 } 2529 } 2530 } 2531 2532 // Check that all instructions have their parent pointers set up correctly. 2533 for (auto &I : BB) 2534 { 2535 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2536 } 2537 } 2538 2539 void Verifier::visitTerminator(Instruction &I) { 2540 // Ensure that terminators only exist at the end of the basic block. 2541 Assert(&I == I.getParent()->getTerminator(), 2542 "Terminator found in the middle of a basic block!", I.getParent()); 2543 visitInstruction(I); 2544 } 2545 2546 void Verifier::visitBranchInst(BranchInst &BI) { 2547 if (BI.isConditional()) { 2548 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2549 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2550 } 2551 visitTerminator(BI); 2552 } 2553 2554 void Verifier::visitReturnInst(ReturnInst &RI) { 2555 Function *F = RI.getParent()->getParent(); 2556 unsigned N = RI.getNumOperands(); 2557 if (F->getReturnType()->isVoidTy()) 2558 Assert(N == 0, 2559 "Found return instr that returns non-void in Function of void " 2560 "return type!", 2561 &RI, F->getReturnType()); 2562 else 2563 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2564 "Function return type does not match operand " 2565 "type of return inst!", 2566 &RI, F->getReturnType()); 2567 2568 // Check to make sure that the return value has necessary properties for 2569 // terminators... 2570 visitTerminator(RI); 2571 } 2572 2573 void Verifier::visitSwitchInst(SwitchInst &SI) { 2574 // Check to make sure that all of the constants in the switch instruction 2575 // have the same type as the switched-on value. 2576 Type *SwitchTy = SI.getCondition()->getType(); 2577 SmallPtrSet<ConstantInt*, 32> Constants; 2578 for (auto &Case : SI.cases()) { 2579 Assert(Case.getCaseValue()->getType() == SwitchTy, 2580 "Switch constants must all be same type as switch value!", &SI); 2581 Assert(Constants.insert(Case.getCaseValue()).second, 2582 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2583 } 2584 2585 visitTerminator(SI); 2586 } 2587 2588 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2589 Assert(BI.getAddress()->getType()->isPointerTy(), 2590 "Indirectbr operand must have pointer type!", &BI); 2591 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2592 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2593 "Indirectbr destinations must all have pointer type!", &BI); 2594 2595 visitTerminator(BI); 2596 } 2597 2598 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2599 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2600 &CBI); 2601 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2602 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2603 "Callbr successors must all have pointer type!", &CBI); 2604 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2605 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), 2606 "Using an unescaped label as a callbr argument!", &CBI); 2607 if (isa<BasicBlock>(CBI.getOperand(i))) 2608 for (unsigned j = i + 1; j != e; ++j) 2609 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2610 "Duplicate callbr destination!", &CBI); 2611 } 2612 { 2613 SmallPtrSet<BasicBlock *, 4> ArgBBs; 2614 for (Value *V : CBI.args()) 2615 if (auto *BA = dyn_cast<BlockAddress>(V)) 2616 ArgBBs.insert(BA->getBasicBlock()); 2617 for (BasicBlock *BB : CBI.getIndirectDests()) 2618 Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI); 2619 } 2620 2621 visitTerminator(CBI); 2622 } 2623 2624 void Verifier::visitSelectInst(SelectInst &SI) { 2625 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2626 SI.getOperand(2)), 2627 "Invalid operands for select instruction!", &SI); 2628 2629 Assert(SI.getTrueValue()->getType() == SI.getType(), 2630 "Select values must have same type as select instruction!", &SI); 2631 visitInstruction(SI); 2632 } 2633 2634 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2635 /// a pass, if any exist, it's an error. 2636 /// 2637 void Verifier::visitUserOp1(Instruction &I) { 2638 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2639 } 2640 2641 void Verifier::visitTruncInst(TruncInst &I) { 2642 // Get the source and destination types 2643 Type *SrcTy = I.getOperand(0)->getType(); 2644 Type *DestTy = I.getType(); 2645 2646 // Get the size of the types in bits, we'll need this later 2647 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2648 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2649 2650 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2651 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2652 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2653 "trunc source and destination must both be a vector or neither", &I); 2654 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2655 2656 visitInstruction(I); 2657 } 2658 2659 void Verifier::visitZExtInst(ZExtInst &I) { 2660 // Get the source and destination types 2661 Type *SrcTy = I.getOperand(0)->getType(); 2662 Type *DestTy = I.getType(); 2663 2664 // Get the size of the types in bits, we'll need this later 2665 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2666 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2667 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2668 "zext source and destination must both be a vector or neither", &I); 2669 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2670 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2671 2672 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2673 2674 visitInstruction(I); 2675 } 2676 2677 void Verifier::visitSExtInst(SExtInst &I) { 2678 // Get the source and destination types 2679 Type *SrcTy = I.getOperand(0)->getType(); 2680 Type *DestTy = I.getType(); 2681 2682 // Get the size of the types in bits, we'll need this later 2683 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2684 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2685 2686 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2687 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2688 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2689 "sext source and destination must both be a vector or neither", &I); 2690 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2691 2692 visitInstruction(I); 2693 } 2694 2695 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2696 // Get the source and destination types 2697 Type *SrcTy = I.getOperand(0)->getType(); 2698 Type *DestTy = I.getType(); 2699 // Get the size of the types in bits, we'll need this later 2700 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2701 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2702 2703 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2704 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2705 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2706 "fptrunc source and destination must both be a vector or neither", &I); 2707 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2708 2709 visitInstruction(I); 2710 } 2711 2712 void Verifier::visitFPExtInst(FPExtInst &I) { 2713 // Get the source and destination types 2714 Type *SrcTy = I.getOperand(0)->getType(); 2715 Type *DestTy = I.getType(); 2716 2717 // Get the size of the types in bits, we'll need this later 2718 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2719 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2720 2721 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2722 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2723 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2724 "fpext source and destination must both be a vector or neither", &I); 2725 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2726 2727 visitInstruction(I); 2728 } 2729 2730 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2731 // Get the source and destination types 2732 Type *SrcTy = I.getOperand(0)->getType(); 2733 Type *DestTy = I.getType(); 2734 2735 bool SrcVec = SrcTy->isVectorTy(); 2736 bool DstVec = DestTy->isVectorTy(); 2737 2738 Assert(SrcVec == DstVec, 2739 "UIToFP source and dest must both be vector or scalar", &I); 2740 Assert(SrcTy->isIntOrIntVectorTy(), 2741 "UIToFP source must be integer or integer vector", &I); 2742 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2743 &I); 2744 2745 if (SrcVec && DstVec) 2746 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2747 cast<VectorType>(DestTy)->getNumElements(), 2748 "UIToFP source and dest vector length mismatch", &I); 2749 2750 visitInstruction(I); 2751 } 2752 2753 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2754 // Get the source and destination types 2755 Type *SrcTy = I.getOperand(0)->getType(); 2756 Type *DestTy = I.getType(); 2757 2758 bool SrcVec = SrcTy->isVectorTy(); 2759 bool DstVec = DestTy->isVectorTy(); 2760 2761 Assert(SrcVec == DstVec, 2762 "SIToFP source and dest must both be vector or scalar", &I); 2763 Assert(SrcTy->isIntOrIntVectorTy(), 2764 "SIToFP source must be integer or integer vector", &I); 2765 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2766 &I); 2767 2768 if (SrcVec && DstVec) 2769 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2770 cast<VectorType>(DestTy)->getNumElements(), 2771 "SIToFP source and dest vector length mismatch", &I); 2772 2773 visitInstruction(I); 2774 } 2775 2776 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2777 // Get the source and destination types 2778 Type *SrcTy = I.getOperand(0)->getType(); 2779 Type *DestTy = I.getType(); 2780 2781 bool SrcVec = SrcTy->isVectorTy(); 2782 bool DstVec = DestTy->isVectorTy(); 2783 2784 Assert(SrcVec == DstVec, 2785 "FPToUI source and dest must both be vector or scalar", &I); 2786 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2787 &I); 2788 Assert(DestTy->isIntOrIntVectorTy(), 2789 "FPToUI result must be integer or integer vector", &I); 2790 2791 if (SrcVec && DstVec) 2792 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2793 cast<VectorType>(DestTy)->getNumElements(), 2794 "FPToUI source and dest vector length mismatch", &I); 2795 2796 visitInstruction(I); 2797 } 2798 2799 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2800 // Get the source and destination types 2801 Type *SrcTy = I.getOperand(0)->getType(); 2802 Type *DestTy = I.getType(); 2803 2804 bool SrcVec = SrcTy->isVectorTy(); 2805 bool DstVec = DestTy->isVectorTy(); 2806 2807 Assert(SrcVec == DstVec, 2808 "FPToSI source and dest must both be vector or scalar", &I); 2809 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2810 &I); 2811 Assert(DestTy->isIntOrIntVectorTy(), 2812 "FPToSI result must be integer or integer vector", &I); 2813 2814 if (SrcVec && DstVec) 2815 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2816 cast<VectorType>(DestTy)->getNumElements(), 2817 "FPToSI source and dest vector length mismatch", &I); 2818 2819 visitInstruction(I); 2820 } 2821 2822 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2823 // Get the source and destination types 2824 Type *SrcTy = I.getOperand(0)->getType(); 2825 Type *DestTy = I.getType(); 2826 2827 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2828 2829 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 2830 Assert(!DL.isNonIntegralPointerType(PTy), 2831 "ptrtoint not supported for non-integral pointers"); 2832 2833 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 2834 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2835 &I); 2836 2837 if (SrcTy->isVectorTy()) { 2838 VectorType *VSrc = cast<VectorType>(SrcTy); 2839 VectorType *VDest = cast<VectorType>(DestTy); 2840 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2841 "PtrToInt Vector width mismatch", &I); 2842 } 2843 2844 visitInstruction(I); 2845 } 2846 2847 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2848 // Get the source and destination types 2849 Type *SrcTy = I.getOperand(0)->getType(); 2850 Type *DestTy = I.getType(); 2851 2852 Assert(SrcTy->isIntOrIntVectorTy(), 2853 "IntToPtr source must be an integral", &I); 2854 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 2855 2856 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 2857 Assert(!DL.isNonIntegralPointerType(PTy), 2858 "inttoptr not supported for non-integral pointers"); 2859 2860 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2861 &I); 2862 if (SrcTy->isVectorTy()) { 2863 VectorType *VSrc = cast<VectorType>(SrcTy); 2864 VectorType *VDest = cast<VectorType>(DestTy); 2865 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2866 "IntToPtr Vector width mismatch", &I); 2867 } 2868 visitInstruction(I); 2869 } 2870 2871 void Verifier::visitBitCastInst(BitCastInst &I) { 2872 Assert( 2873 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2874 "Invalid bitcast", &I); 2875 visitInstruction(I); 2876 } 2877 2878 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2879 Type *SrcTy = I.getOperand(0)->getType(); 2880 Type *DestTy = I.getType(); 2881 2882 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2883 &I); 2884 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 2885 &I); 2886 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 2887 "AddrSpaceCast must be between different address spaces", &I); 2888 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) 2889 Assert(SrcVTy->getNumElements() == 2890 cast<VectorType>(DestTy)->getNumElements(), 2891 "AddrSpaceCast vector pointer number of elements mismatch", &I); 2892 visitInstruction(I); 2893 } 2894 2895 /// visitPHINode - Ensure that a PHI node is well formed. 2896 /// 2897 void Verifier::visitPHINode(PHINode &PN) { 2898 // Ensure that the PHI nodes are all grouped together at the top of the block. 2899 // This can be tested by checking whether the instruction before this is 2900 // either nonexistent (because this is begin()) or is a PHI node. If not, 2901 // then there is some other instruction before a PHI. 2902 Assert(&PN == &PN.getParent()->front() || 2903 isa<PHINode>(--BasicBlock::iterator(&PN)), 2904 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 2905 2906 // Check that a PHI doesn't yield a Token. 2907 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 2908 2909 // Check that all of the values of the PHI node have the same type as the 2910 // result, and that the incoming blocks are really basic blocks. 2911 for (Value *IncValue : PN.incoming_values()) { 2912 Assert(PN.getType() == IncValue->getType(), 2913 "PHI node operands are not the same type as the result!", &PN); 2914 } 2915 2916 // All other PHI node constraints are checked in the visitBasicBlock method. 2917 2918 visitInstruction(PN); 2919 } 2920 2921 void Verifier::visitCallBase(CallBase &Call) { 2922 Assert(Call.getCalledOperand()->getType()->isPointerTy(), 2923 "Called function must be a pointer!", Call); 2924 PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType()); 2925 2926 Assert(FPTy->getElementType()->isFunctionTy(), 2927 "Called function is not pointer to function type!", Call); 2928 2929 Assert(FPTy->getElementType() == Call.getFunctionType(), 2930 "Called function is not the same type as the call!", Call); 2931 2932 FunctionType *FTy = Call.getFunctionType(); 2933 2934 // Verify that the correct number of arguments are being passed 2935 if (FTy->isVarArg()) 2936 Assert(Call.arg_size() >= FTy->getNumParams(), 2937 "Called function requires more parameters than were provided!", 2938 Call); 2939 else 2940 Assert(Call.arg_size() == FTy->getNumParams(), 2941 "Incorrect number of arguments passed to called function!", Call); 2942 2943 // Verify that all arguments to the call match the function type. 2944 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2945 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 2946 "Call parameter type does not match function signature!", 2947 Call.getArgOperand(i), FTy->getParamType(i), Call); 2948 2949 AttributeList Attrs = Call.getAttributes(); 2950 2951 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 2952 "Attribute after last parameter!", Call); 2953 2954 bool IsIntrinsic = Call.getCalledFunction() && 2955 Call.getCalledFunction()->getName().startswith("llvm."); 2956 2957 Function *Callee = 2958 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 2959 2960 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) { 2961 // Don't allow speculatable on call sites, unless the underlying function 2962 // declaration is also speculatable. 2963 Assert(Callee && Callee->isSpeculatable(), 2964 "speculatable attribute may not apply to call sites", Call); 2965 } 2966 2967 if (Attrs.hasAttribute(AttributeList::FunctionIndex, 2968 Attribute::Preallocated)) { 2969 Assert(Call.getCalledFunction()->getIntrinsicID() == 2970 Intrinsic::call_preallocated_arg, 2971 "preallocated as a call site attribute can only be on " 2972 "llvm.call.preallocated.arg"); 2973 } 2974 2975 // Verify call attributes. 2976 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 2977 2978 // Conservatively check the inalloca argument. 2979 // We have a bug if we can find that there is an underlying alloca without 2980 // inalloca. 2981 if (Call.hasInAllocaArgument()) { 2982 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 2983 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 2984 Assert(AI->isUsedWithInAlloca(), 2985 "inalloca argument for call has mismatched alloca", AI, Call); 2986 } 2987 2988 // For each argument of the callsite, if it has the swifterror argument, 2989 // make sure the underlying alloca/parameter it comes from has a swifterror as 2990 // well. 2991 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2992 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 2993 Value *SwiftErrorArg = Call.getArgOperand(i); 2994 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 2995 Assert(AI->isSwiftError(), 2996 "swifterror argument for call has mismatched alloca", AI, Call); 2997 continue; 2998 } 2999 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 3000 Assert(ArgI, 3001 "swifterror argument should come from an alloca or parameter", 3002 SwiftErrorArg, Call); 3003 Assert(ArgI->hasSwiftErrorAttr(), 3004 "swifterror argument for call has mismatched parameter", ArgI, 3005 Call); 3006 } 3007 3008 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) { 3009 // Don't allow immarg on call sites, unless the underlying declaration 3010 // also has the matching immarg. 3011 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 3012 "immarg may not apply only to call sites", 3013 Call.getArgOperand(i), Call); 3014 } 3015 3016 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 3017 Value *ArgVal = Call.getArgOperand(i); 3018 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 3019 "immarg operand has non-immediate parameter", ArgVal, Call); 3020 } 3021 3022 if (Call.paramHasAttr(i, Attribute::Preallocated)) { 3023 Value *ArgVal = Call.getArgOperand(i); 3024 bool hasOB = 3025 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0; 3026 bool isMustTail = Call.isMustTailCall(); 3027 Assert(hasOB != isMustTail, 3028 "preallocated operand either requires a preallocated bundle or " 3029 "the call to be musttail (but not both)", 3030 ArgVal, Call); 3031 } 3032 } 3033 3034 if (FTy->isVarArg()) { 3035 // FIXME? is 'nest' even legal here? 3036 bool SawNest = false; 3037 bool SawReturned = false; 3038 3039 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 3040 if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) 3041 SawNest = true; 3042 if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) 3043 SawReturned = true; 3044 } 3045 3046 // Check attributes on the varargs part. 3047 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 3048 Type *Ty = Call.getArgOperand(Idx)->getType(); 3049 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); 3050 verifyParameterAttrs(ArgAttrs, Ty, &Call); 3051 3052 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 3053 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 3054 SawNest = true; 3055 } 3056 3057 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 3058 Assert(!SawReturned, "More than one parameter has attribute returned!", 3059 Call); 3060 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 3061 "Incompatible argument and return types for 'returned' " 3062 "attribute", 3063 Call); 3064 SawReturned = true; 3065 } 3066 3067 // Statepoint intrinsic is vararg but the wrapped function may be not. 3068 // Allow sret here and check the wrapped function in verifyStatepoint. 3069 if (!Call.getCalledFunction() || 3070 Call.getCalledFunction()->getIntrinsicID() != 3071 Intrinsic::experimental_gc_statepoint) 3072 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 3073 "Attribute 'sret' cannot be used for vararg call arguments!", 3074 Call); 3075 3076 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 3077 Assert(Idx == Call.arg_size() - 1, 3078 "inalloca isn't on the last argument!", Call); 3079 } 3080 } 3081 3082 // Verify that there's no metadata unless it's a direct call to an intrinsic. 3083 if (!IsIntrinsic) { 3084 for (Type *ParamTy : FTy->params()) { 3085 Assert(!ParamTy->isMetadataTy(), 3086 "Function has metadata parameter but isn't an intrinsic", Call); 3087 Assert(!ParamTy->isTokenTy(), 3088 "Function has token parameter but isn't an intrinsic", Call); 3089 } 3090 } 3091 3092 // Verify that indirect calls don't return tokens. 3093 if (!Call.getCalledFunction()) 3094 Assert(!FTy->getReturnType()->isTokenTy(), 3095 "Return type cannot be token for indirect call!"); 3096 3097 if (Function *F = Call.getCalledFunction()) 3098 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 3099 visitIntrinsicCall(ID, Call); 3100 3101 // Verify that a callsite has at most one "deopt", at most one "funclet", at 3102 // most one "gc-transition", at most one "cfguardtarget", 3103 // and at most one "preallocated" operand bundle. 3104 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3105 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, 3106 FoundPreallocatedBundle = false, FoundGCLiveBundle = false;; 3107 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 3108 OperandBundleUse BU = Call.getOperandBundleAt(i); 3109 uint32_t Tag = BU.getTagID(); 3110 if (Tag == LLVMContext::OB_deopt) { 3111 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 3112 FoundDeoptBundle = true; 3113 } else if (Tag == LLVMContext::OB_gc_transition) { 3114 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 3115 Call); 3116 FoundGCTransitionBundle = true; 3117 } else if (Tag == LLVMContext::OB_funclet) { 3118 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 3119 FoundFuncletBundle = true; 3120 Assert(BU.Inputs.size() == 1, 3121 "Expected exactly one funclet bundle operand", Call); 3122 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 3123 "Funclet bundle operands should correspond to a FuncletPadInst", 3124 Call); 3125 } else if (Tag == LLVMContext::OB_cfguardtarget) { 3126 Assert(!FoundCFGuardTargetBundle, 3127 "Multiple CFGuardTarget operand bundles", Call); 3128 FoundCFGuardTargetBundle = true; 3129 Assert(BU.Inputs.size() == 1, 3130 "Expected exactly one cfguardtarget bundle operand", Call); 3131 } else if (Tag == LLVMContext::OB_preallocated) { 3132 Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles", 3133 Call); 3134 FoundPreallocatedBundle = true; 3135 Assert(BU.Inputs.size() == 1, 3136 "Expected exactly one preallocated bundle operand", Call); 3137 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); 3138 Assert(Input && 3139 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup, 3140 "\"preallocated\" argument must be a token from " 3141 "llvm.call.preallocated.setup", 3142 Call); 3143 } else if (Tag == LLVMContext::OB_gc_live) { 3144 Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles", 3145 Call); 3146 FoundGCLiveBundle = true; 3147 } 3148 } 3149 3150 // Verify that each inlinable callsite of a debug-info-bearing function in a 3151 // debug-info-bearing function has a debug location attached to it. Failure to 3152 // do so causes assertion failures when the inliner sets up inline scope info. 3153 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3154 Call.getCalledFunction()->getSubprogram()) 3155 AssertDI(Call.getDebugLoc(), 3156 "inlinable function call in a function with " 3157 "debug info must have a !dbg location", 3158 Call); 3159 3160 visitInstruction(Call); 3161 } 3162 3163 /// Two types are "congruent" if they are identical, or if they are both pointer 3164 /// types with different pointee types and the same address space. 3165 static bool isTypeCongruent(Type *L, Type *R) { 3166 if (L == R) 3167 return true; 3168 PointerType *PL = dyn_cast<PointerType>(L); 3169 PointerType *PR = dyn_cast<PointerType>(R); 3170 if (!PL || !PR) 3171 return false; 3172 return PL->getAddressSpace() == PR->getAddressSpace(); 3173 } 3174 3175 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 3176 static const Attribute::AttrKind ABIAttrs[] = { 3177 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3178 Attribute::InReg, Attribute::SwiftSelf, Attribute::SwiftError, 3179 Attribute::Preallocated}; 3180 AttrBuilder Copy; 3181 for (auto AK : ABIAttrs) { 3182 if (Attrs.hasParamAttribute(I, AK)) 3183 Copy.addAttribute(AK); 3184 } 3185 // `align` is ABI-affecting only in combination with `byval`. 3186 if (Attrs.hasParamAttribute(I, Attribute::Alignment) && 3187 Attrs.hasParamAttribute(I, Attribute::ByVal)) 3188 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3189 return Copy; 3190 } 3191 3192 void Verifier::verifyMustTailCall(CallInst &CI) { 3193 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3194 3195 // - The caller and callee prototypes must match. Pointer types of 3196 // parameters or return types may differ in pointee type, but not 3197 // address space. 3198 Function *F = CI.getParent()->getParent(); 3199 FunctionType *CallerTy = F->getFunctionType(); 3200 FunctionType *CalleeTy = CI.getFunctionType(); 3201 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3202 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3203 "cannot guarantee tail call due to mismatched parameter counts", 3204 &CI); 3205 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3206 Assert( 3207 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3208 "cannot guarantee tail call due to mismatched parameter types", &CI); 3209 } 3210 } 3211 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3212 "cannot guarantee tail call due to mismatched varargs", &CI); 3213 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3214 "cannot guarantee tail call due to mismatched return types", &CI); 3215 3216 // - The calling conventions of the caller and callee must match. 3217 Assert(F->getCallingConv() == CI.getCallingConv(), 3218 "cannot guarantee tail call due to mismatched calling conv", &CI); 3219 3220 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3221 // returned, preallocated, and inalloca, must match. 3222 AttributeList CallerAttrs = F->getAttributes(); 3223 AttributeList CalleeAttrs = CI.getAttributes(); 3224 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3225 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3226 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3227 Assert(CallerABIAttrs == CalleeABIAttrs, 3228 "cannot guarantee tail call due to mismatched ABI impacting " 3229 "function attributes", 3230 &CI, CI.getOperand(I)); 3231 } 3232 3233 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3234 // or a pointer bitcast followed by a ret instruction. 3235 // - The ret instruction must return the (possibly bitcasted) value 3236 // produced by the call or void. 3237 Value *RetVal = &CI; 3238 Instruction *Next = CI.getNextNode(); 3239 3240 // Handle the optional bitcast. 3241 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3242 Assert(BI->getOperand(0) == RetVal, 3243 "bitcast following musttail call must use the call", BI); 3244 RetVal = BI; 3245 Next = BI->getNextNode(); 3246 } 3247 3248 // Check the return. 3249 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3250 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3251 &CI); 3252 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 3253 "musttail call result must be returned", Ret); 3254 } 3255 3256 void Verifier::visitCallInst(CallInst &CI) { 3257 visitCallBase(CI); 3258 3259 if (CI.isMustTailCall()) 3260 verifyMustTailCall(CI); 3261 } 3262 3263 void Verifier::visitInvokeInst(InvokeInst &II) { 3264 visitCallBase(II); 3265 3266 // Verify that the first non-PHI instruction of the unwind destination is an 3267 // exception handling instruction. 3268 Assert( 3269 II.getUnwindDest()->isEHPad(), 3270 "The unwind destination does not have an exception handling instruction!", 3271 &II); 3272 3273 visitTerminator(II); 3274 } 3275 3276 /// visitUnaryOperator - Check the argument to the unary operator. 3277 /// 3278 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3279 Assert(U.getType() == U.getOperand(0)->getType(), 3280 "Unary operators must have same type for" 3281 "operands and result!", 3282 &U); 3283 3284 switch (U.getOpcode()) { 3285 // Check that floating-point arithmetic operators are only used with 3286 // floating-point operands. 3287 case Instruction::FNeg: 3288 Assert(U.getType()->isFPOrFPVectorTy(), 3289 "FNeg operator only works with float types!", &U); 3290 break; 3291 default: 3292 llvm_unreachable("Unknown UnaryOperator opcode!"); 3293 } 3294 3295 visitInstruction(U); 3296 } 3297 3298 /// visitBinaryOperator - Check that both arguments to the binary operator are 3299 /// of the same type! 3300 /// 3301 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3302 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3303 "Both operands to a binary operator are not of the same type!", &B); 3304 3305 switch (B.getOpcode()) { 3306 // Check that integer arithmetic operators are only used with 3307 // integral operands. 3308 case Instruction::Add: 3309 case Instruction::Sub: 3310 case Instruction::Mul: 3311 case Instruction::SDiv: 3312 case Instruction::UDiv: 3313 case Instruction::SRem: 3314 case Instruction::URem: 3315 Assert(B.getType()->isIntOrIntVectorTy(), 3316 "Integer arithmetic operators only work with integral types!", &B); 3317 Assert(B.getType() == B.getOperand(0)->getType(), 3318 "Integer arithmetic operators must have same type " 3319 "for operands and result!", 3320 &B); 3321 break; 3322 // Check that floating-point arithmetic operators are only used with 3323 // floating-point operands. 3324 case Instruction::FAdd: 3325 case Instruction::FSub: 3326 case Instruction::FMul: 3327 case Instruction::FDiv: 3328 case Instruction::FRem: 3329 Assert(B.getType()->isFPOrFPVectorTy(), 3330 "Floating-point arithmetic operators only work with " 3331 "floating-point types!", 3332 &B); 3333 Assert(B.getType() == B.getOperand(0)->getType(), 3334 "Floating-point arithmetic operators must have same type " 3335 "for operands and result!", 3336 &B); 3337 break; 3338 // Check that logical operators are only used with integral operands. 3339 case Instruction::And: 3340 case Instruction::Or: 3341 case Instruction::Xor: 3342 Assert(B.getType()->isIntOrIntVectorTy(), 3343 "Logical operators only work with integral types!", &B); 3344 Assert(B.getType() == B.getOperand(0)->getType(), 3345 "Logical operators must have same type for operands and result!", 3346 &B); 3347 break; 3348 case Instruction::Shl: 3349 case Instruction::LShr: 3350 case Instruction::AShr: 3351 Assert(B.getType()->isIntOrIntVectorTy(), 3352 "Shifts only work with integral types!", &B); 3353 Assert(B.getType() == B.getOperand(0)->getType(), 3354 "Shift return type must be same as operands!", &B); 3355 break; 3356 default: 3357 llvm_unreachable("Unknown BinaryOperator opcode!"); 3358 } 3359 3360 visitInstruction(B); 3361 } 3362 3363 void Verifier::visitICmpInst(ICmpInst &IC) { 3364 // Check that the operands are the same type 3365 Type *Op0Ty = IC.getOperand(0)->getType(); 3366 Type *Op1Ty = IC.getOperand(1)->getType(); 3367 Assert(Op0Ty == Op1Ty, 3368 "Both operands to ICmp instruction are not of the same type!", &IC); 3369 // Check that the operands are the right type 3370 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3371 "Invalid operand types for ICmp instruction", &IC); 3372 // Check that the predicate is valid. 3373 Assert(IC.isIntPredicate(), 3374 "Invalid predicate in ICmp instruction!", &IC); 3375 3376 visitInstruction(IC); 3377 } 3378 3379 void Verifier::visitFCmpInst(FCmpInst &FC) { 3380 // Check that the operands are the same type 3381 Type *Op0Ty = FC.getOperand(0)->getType(); 3382 Type *Op1Ty = FC.getOperand(1)->getType(); 3383 Assert(Op0Ty == Op1Ty, 3384 "Both operands to FCmp instruction are not of the same type!", &FC); 3385 // Check that the operands are the right type 3386 Assert(Op0Ty->isFPOrFPVectorTy(), 3387 "Invalid operand types for FCmp instruction", &FC); 3388 // Check that the predicate is valid. 3389 Assert(FC.isFPPredicate(), 3390 "Invalid predicate in FCmp instruction!", &FC); 3391 3392 visitInstruction(FC); 3393 } 3394 3395 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3396 Assert( 3397 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3398 "Invalid extractelement operands!", &EI); 3399 visitInstruction(EI); 3400 } 3401 3402 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3403 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3404 IE.getOperand(2)), 3405 "Invalid insertelement operands!", &IE); 3406 visitInstruction(IE); 3407 } 3408 3409 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3410 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3411 SV.getShuffleMask()), 3412 "Invalid shufflevector operands!", &SV); 3413 visitInstruction(SV); 3414 } 3415 3416 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3417 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3418 3419 Assert(isa<PointerType>(TargetTy), 3420 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3421 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3422 3423 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 3424 Assert(all_of( 3425 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3426 "GEP indexes must be integers", &GEP); 3427 Type *ElTy = 3428 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3429 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3430 3431 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3432 GEP.getResultElementType() == ElTy, 3433 "GEP is not of right type for indices!", &GEP, ElTy); 3434 3435 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { 3436 // Additional checks for vector GEPs. 3437 ElementCount GEPWidth = GEPVTy->getElementCount(); 3438 if (GEP.getPointerOperandType()->isVectorTy()) 3439 Assert( 3440 GEPWidth == 3441 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(), 3442 "Vector GEP result width doesn't match operand's", &GEP); 3443 for (Value *Idx : Idxs) { 3444 Type *IndexTy = Idx->getType(); 3445 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { 3446 ElementCount IndexWidth = IndexVTy->getElementCount(); 3447 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3448 } 3449 Assert(IndexTy->isIntOrIntVectorTy(), 3450 "All GEP indices should be of integer type"); 3451 } 3452 } 3453 3454 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3455 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3456 "GEP address space doesn't match type", &GEP); 3457 } 3458 3459 visitInstruction(GEP); 3460 } 3461 3462 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3463 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3464 } 3465 3466 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3467 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3468 "precondition violation"); 3469 3470 unsigned NumOperands = Range->getNumOperands(); 3471 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3472 unsigned NumRanges = NumOperands / 2; 3473 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3474 3475 ConstantRange LastRange(1, true); // Dummy initial value 3476 for (unsigned i = 0; i < NumRanges; ++i) { 3477 ConstantInt *Low = 3478 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3479 Assert(Low, "The lower limit must be an integer!", Low); 3480 ConstantInt *High = 3481 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3482 Assert(High, "The upper limit must be an integer!", High); 3483 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3484 "Range types must match instruction type!", &I); 3485 3486 APInt HighV = High->getValue(); 3487 APInt LowV = Low->getValue(); 3488 ConstantRange CurRange(LowV, HighV); 3489 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3490 "Range must not be empty!", Range); 3491 if (i != 0) { 3492 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3493 "Intervals are overlapping", Range); 3494 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3495 Range); 3496 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3497 Range); 3498 } 3499 LastRange = ConstantRange(LowV, HighV); 3500 } 3501 if (NumRanges > 2) { 3502 APInt FirstLow = 3503 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3504 APInt FirstHigh = 3505 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3506 ConstantRange FirstRange(FirstLow, FirstHigh); 3507 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3508 "Intervals are overlapping", Range); 3509 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3510 Range); 3511 } 3512 } 3513 3514 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3515 unsigned Size = DL.getTypeSizeInBits(Ty); 3516 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3517 Assert(!(Size & (Size - 1)), 3518 "atomic memory access' operand must have a power-of-two size", Ty, I); 3519 } 3520 3521 void Verifier::visitLoadInst(LoadInst &LI) { 3522 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3523 Assert(PTy, "Load operand must be a pointer.", &LI); 3524 Type *ElTy = LI.getType(); 3525 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3526 "huge alignment values are unsupported", &LI); 3527 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3528 if (LI.isAtomic()) { 3529 Assert(LI.getOrdering() != AtomicOrdering::Release && 3530 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3531 "Load cannot have Release ordering", &LI); 3532 Assert(LI.getAlignment() != 0, 3533 "Atomic load must specify explicit alignment", &LI); 3534 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3535 "atomic load operand must have integer, pointer, or floating point " 3536 "type!", 3537 ElTy, &LI); 3538 checkAtomicMemAccessSize(ElTy, &LI); 3539 } else { 3540 Assert(LI.getSyncScopeID() == SyncScope::System, 3541 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3542 } 3543 3544 visitInstruction(LI); 3545 } 3546 3547 void Verifier::visitStoreInst(StoreInst &SI) { 3548 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3549 Assert(PTy, "Store operand must be a pointer.", &SI); 3550 Type *ElTy = PTy->getElementType(); 3551 Assert(ElTy == SI.getOperand(0)->getType(), 3552 "Stored value type does not match pointer operand type!", &SI, ElTy); 3553 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3554 "huge alignment values are unsupported", &SI); 3555 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3556 if (SI.isAtomic()) { 3557 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3558 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3559 "Store cannot have Acquire ordering", &SI); 3560 Assert(SI.getAlignment() != 0, 3561 "Atomic store must specify explicit alignment", &SI); 3562 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3563 "atomic store operand must have integer, pointer, or floating point " 3564 "type!", 3565 ElTy, &SI); 3566 checkAtomicMemAccessSize(ElTy, &SI); 3567 } else { 3568 Assert(SI.getSyncScopeID() == SyncScope::System, 3569 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3570 } 3571 visitInstruction(SI); 3572 } 3573 3574 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3575 void Verifier::verifySwiftErrorCall(CallBase &Call, 3576 const Value *SwiftErrorVal) { 3577 unsigned Idx = 0; 3578 for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) { 3579 if (*I == SwiftErrorVal) { 3580 Assert(Call.paramHasAttr(Idx, Attribute::SwiftError), 3581 "swifterror value when used in a callsite should be marked " 3582 "with swifterror attribute", 3583 SwiftErrorVal, Call); 3584 } 3585 } 3586 } 3587 3588 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3589 // Check that swifterror value is only used by loads, stores, or as 3590 // a swifterror argument. 3591 for (const User *U : SwiftErrorVal->users()) { 3592 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3593 isa<InvokeInst>(U), 3594 "swifterror value can only be loaded and stored from, or " 3595 "as a swifterror argument!", 3596 SwiftErrorVal, U); 3597 // If it is used by a store, check it is the second operand. 3598 if (auto StoreI = dyn_cast<StoreInst>(U)) 3599 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3600 "swifterror value should be the second operand when used " 3601 "by stores", SwiftErrorVal, U); 3602 if (auto *Call = dyn_cast<CallBase>(U)) 3603 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3604 } 3605 } 3606 3607 void Verifier::visitAllocaInst(AllocaInst &AI) { 3608 SmallPtrSet<Type*, 4> Visited; 3609 PointerType *PTy = AI.getType(); 3610 // TODO: Relax this restriction? 3611 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), 3612 "Allocation instruction pointer not in the stack address space!", 3613 &AI); 3614 Assert(AI.getAllocatedType()->isSized(&Visited), 3615 "Cannot allocate unsized type", &AI); 3616 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3617 "Alloca array size must have integer type", &AI); 3618 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3619 "huge alignment values are unsupported", &AI); 3620 3621 if (AI.isSwiftError()) { 3622 verifySwiftErrorValue(&AI); 3623 } 3624 3625 visitInstruction(AI); 3626 } 3627 3628 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3629 3630 // FIXME: more conditions??? 3631 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 3632 "cmpxchg instructions must be atomic.", &CXI); 3633 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 3634 "cmpxchg instructions must be atomic.", &CXI); 3635 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 3636 "cmpxchg instructions cannot be unordered.", &CXI); 3637 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 3638 "cmpxchg instructions cannot be unordered.", &CXI); 3639 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 3640 "cmpxchg instructions failure argument shall be no stronger than the " 3641 "success argument", 3642 &CXI); 3643 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 3644 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 3645 "cmpxchg failure ordering cannot include release semantics", &CXI); 3646 3647 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 3648 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 3649 Type *ElTy = PTy->getElementType(); 3650 Assert(ElTy->isIntOrPtrTy(), 3651 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3652 checkAtomicMemAccessSize(ElTy, &CXI); 3653 Assert(ElTy == CXI.getOperand(1)->getType(), 3654 "Expected value type does not match pointer operand type!", &CXI, 3655 ElTy); 3656 Assert(ElTy == CXI.getOperand(2)->getType(), 3657 "Stored value type does not match pointer operand type!", &CXI, ElTy); 3658 visitInstruction(CXI); 3659 } 3660 3661 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3662 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 3663 "atomicrmw instructions must be atomic.", &RMWI); 3664 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3665 "atomicrmw instructions cannot be unordered.", &RMWI); 3666 auto Op = RMWI.getOperation(); 3667 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 3668 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 3669 Type *ElTy = PTy->getElementType(); 3670 if (Op == AtomicRMWInst::Xchg) { 3671 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3672 AtomicRMWInst::getOperationName(Op) + 3673 " operand must have integer or floating point type!", 3674 &RMWI, ElTy); 3675 } else if (AtomicRMWInst::isFPOperation(Op)) { 3676 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3677 AtomicRMWInst::getOperationName(Op) + 3678 " operand must have floating point type!", 3679 &RMWI, ElTy); 3680 } else { 3681 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3682 AtomicRMWInst::getOperationName(Op) + 3683 " operand must have integer type!", 3684 &RMWI, ElTy); 3685 } 3686 checkAtomicMemAccessSize(ElTy, &RMWI); 3687 Assert(ElTy == RMWI.getOperand(1)->getType(), 3688 "Argument value type does not match pointer operand type!", &RMWI, 3689 ElTy); 3690 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3691 "Invalid binary operation!", &RMWI); 3692 visitInstruction(RMWI); 3693 } 3694 3695 void Verifier::visitFenceInst(FenceInst &FI) { 3696 const AtomicOrdering Ordering = FI.getOrdering(); 3697 Assert(Ordering == AtomicOrdering::Acquire || 3698 Ordering == AtomicOrdering::Release || 3699 Ordering == AtomicOrdering::AcquireRelease || 3700 Ordering == AtomicOrdering::SequentiallyConsistent, 3701 "fence instructions may only have acquire, release, acq_rel, or " 3702 "seq_cst ordering.", 3703 &FI); 3704 visitInstruction(FI); 3705 } 3706 3707 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3708 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3709 EVI.getIndices()) == EVI.getType(), 3710 "Invalid ExtractValueInst operands!", &EVI); 3711 3712 visitInstruction(EVI); 3713 } 3714 3715 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3716 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3717 IVI.getIndices()) == 3718 IVI.getOperand(1)->getType(), 3719 "Invalid InsertValueInst operands!", &IVI); 3720 3721 visitInstruction(IVI); 3722 } 3723 3724 static Value *getParentPad(Value *EHPad) { 3725 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3726 return FPI->getParentPad(); 3727 3728 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3729 } 3730 3731 void Verifier::visitEHPadPredecessors(Instruction &I) { 3732 assert(I.isEHPad()); 3733 3734 BasicBlock *BB = I.getParent(); 3735 Function *F = BB->getParent(); 3736 3737 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3738 3739 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3740 // The landingpad instruction defines its parent as a landing pad block. The 3741 // landing pad block may be branched to only by the unwind edge of an 3742 // invoke. 3743 for (BasicBlock *PredBB : predecessors(BB)) { 3744 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3745 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3746 "Block containing LandingPadInst must be jumped to " 3747 "only by the unwind edge of an invoke.", 3748 LPI); 3749 } 3750 return; 3751 } 3752 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3753 if (!pred_empty(BB)) 3754 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3755 "Block containg CatchPadInst must be jumped to " 3756 "only by its catchswitch.", 3757 CPI); 3758 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3759 "Catchswitch cannot unwind to one of its catchpads", 3760 CPI->getCatchSwitch(), CPI); 3761 return; 3762 } 3763 3764 // Verify that each pred has a legal terminator with a legal to/from EH 3765 // pad relationship. 3766 Instruction *ToPad = &I; 3767 Value *ToPadParent = getParentPad(ToPad); 3768 for (BasicBlock *PredBB : predecessors(BB)) { 3769 Instruction *TI = PredBB->getTerminator(); 3770 Value *FromPad; 3771 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3772 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3773 "EH pad must be jumped to via an unwind edge", ToPad, II); 3774 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3775 FromPad = Bundle->Inputs[0]; 3776 else 3777 FromPad = ConstantTokenNone::get(II->getContext()); 3778 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3779 FromPad = CRI->getOperand(0); 3780 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3781 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3782 FromPad = CSI; 3783 } else { 3784 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3785 } 3786 3787 // The edge may exit from zero or more nested pads. 3788 SmallSet<Value *, 8> Seen; 3789 for (;; FromPad = getParentPad(FromPad)) { 3790 Assert(FromPad != ToPad, 3791 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3792 if (FromPad == ToPadParent) { 3793 // This is a legal unwind edge. 3794 break; 3795 } 3796 Assert(!isa<ConstantTokenNone>(FromPad), 3797 "A single unwind edge may only enter one EH pad", TI); 3798 Assert(Seen.insert(FromPad).second, 3799 "EH pad jumps through a cycle of pads", FromPad); 3800 } 3801 } 3802 } 3803 3804 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3805 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3806 // isn't a cleanup. 3807 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3808 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3809 3810 visitEHPadPredecessors(LPI); 3811 3812 if (!LandingPadResultTy) 3813 LandingPadResultTy = LPI.getType(); 3814 else 3815 Assert(LandingPadResultTy == LPI.getType(), 3816 "The landingpad instruction should have a consistent result type " 3817 "inside a function.", 3818 &LPI); 3819 3820 Function *F = LPI.getParent()->getParent(); 3821 Assert(F->hasPersonalityFn(), 3822 "LandingPadInst needs to be in a function with a personality.", &LPI); 3823 3824 // The landingpad instruction must be the first non-PHI instruction in the 3825 // block. 3826 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3827 "LandingPadInst not the first non-PHI instruction in the block.", 3828 &LPI); 3829 3830 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3831 Constant *Clause = LPI.getClause(i); 3832 if (LPI.isCatch(i)) { 3833 Assert(isa<PointerType>(Clause->getType()), 3834 "Catch operand does not have pointer type!", &LPI); 3835 } else { 3836 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3837 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3838 "Filter operand is not an array of constants!", &LPI); 3839 } 3840 } 3841 3842 visitInstruction(LPI); 3843 } 3844 3845 void Verifier::visitResumeInst(ResumeInst &RI) { 3846 Assert(RI.getFunction()->hasPersonalityFn(), 3847 "ResumeInst needs to be in a function with a personality.", &RI); 3848 3849 if (!LandingPadResultTy) 3850 LandingPadResultTy = RI.getValue()->getType(); 3851 else 3852 Assert(LandingPadResultTy == RI.getValue()->getType(), 3853 "The resume instruction should have a consistent result type " 3854 "inside a function.", 3855 &RI); 3856 3857 visitTerminator(RI); 3858 } 3859 3860 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3861 BasicBlock *BB = CPI.getParent(); 3862 3863 Function *F = BB->getParent(); 3864 Assert(F->hasPersonalityFn(), 3865 "CatchPadInst needs to be in a function with a personality.", &CPI); 3866 3867 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 3868 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 3869 CPI.getParentPad()); 3870 3871 // The catchpad instruction must be the first non-PHI instruction in the 3872 // block. 3873 Assert(BB->getFirstNonPHI() == &CPI, 3874 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 3875 3876 visitEHPadPredecessors(CPI); 3877 visitFuncletPadInst(CPI); 3878 } 3879 3880 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 3881 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 3882 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 3883 CatchReturn.getOperand(0)); 3884 3885 visitTerminator(CatchReturn); 3886 } 3887 3888 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 3889 BasicBlock *BB = CPI.getParent(); 3890 3891 Function *F = BB->getParent(); 3892 Assert(F->hasPersonalityFn(), 3893 "CleanupPadInst needs to be in a function with a personality.", &CPI); 3894 3895 // The cleanuppad instruction must be the first non-PHI instruction in the 3896 // block. 3897 Assert(BB->getFirstNonPHI() == &CPI, 3898 "CleanupPadInst not the first non-PHI instruction in the block.", 3899 &CPI); 3900 3901 auto *ParentPad = CPI.getParentPad(); 3902 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3903 "CleanupPadInst has an invalid parent.", &CPI); 3904 3905 visitEHPadPredecessors(CPI); 3906 visitFuncletPadInst(CPI); 3907 } 3908 3909 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 3910 User *FirstUser = nullptr; 3911 Value *FirstUnwindPad = nullptr; 3912 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 3913 SmallSet<FuncletPadInst *, 8> Seen; 3914 3915 while (!Worklist.empty()) { 3916 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 3917 Assert(Seen.insert(CurrentPad).second, 3918 "FuncletPadInst must not be nested within itself", CurrentPad); 3919 Value *UnresolvedAncestorPad = nullptr; 3920 for (User *U : CurrentPad->users()) { 3921 BasicBlock *UnwindDest; 3922 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 3923 UnwindDest = CRI->getUnwindDest(); 3924 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 3925 // We allow catchswitch unwind to caller to nest 3926 // within an outer pad that unwinds somewhere else, 3927 // because catchswitch doesn't have a nounwind variant. 3928 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 3929 if (CSI->unwindsToCaller()) 3930 continue; 3931 UnwindDest = CSI->getUnwindDest(); 3932 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 3933 UnwindDest = II->getUnwindDest(); 3934 } else if (isa<CallInst>(U)) { 3935 // Calls which don't unwind may be found inside funclet 3936 // pads that unwind somewhere else. We don't *require* 3937 // such calls to be annotated nounwind. 3938 continue; 3939 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 3940 // The unwind dest for a cleanup can only be found by 3941 // recursive search. Add it to the worklist, and we'll 3942 // search for its first use that determines where it unwinds. 3943 Worklist.push_back(CPI); 3944 continue; 3945 } else { 3946 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 3947 continue; 3948 } 3949 3950 Value *UnwindPad; 3951 bool ExitsFPI; 3952 if (UnwindDest) { 3953 UnwindPad = UnwindDest->getFirstNonPHI(); 3954 if (!cast<Instruction>(UnwindPad)->isEHPad()) 3955 continue; 3956 Value *UnwindParent = getParentPad(UnwindPad); 3957 // Ignore unwind edges that don't exit CurrentPad. 3958 if (UnwindParent == CurrentPad) 3959 continue; 3960 // Determine whether the original funclet pad is exited, 3961 // and if we are scanning nested pads determine how many 3962 // of them are exited so we can stop searching their 3963 // children. 3964 Value *ExitedPad = CurrentPad; 3965 ExitsFPI = false; 3966 do { 3967 if (ExitedPad == &FPI) { 3968 ExitsFPI = true; 3969 // Now we can resolve any ancestors of CurrentPad up to 3970 // FPI, but not including FPI since we need to make sure 3971 // to check all direct users of FPI for consistency. 3972 UnresolvedAncestorPad = &FPI; 3973 break; 3974 } 3975 Value *ExitedParent = getParentPad(ExitedPad); 3976 if (ExitedParent == UnwindParent) { 3977 // ExitedPad is the ancestor-most pad which this unwind 3978 // edge exits, so we can resolve up to it, meaning that 3979 // ExitedParent is the first ancestor still unresolved. 3980 UnresolvedAncestorPad = ExitedParent; 3981 break; 3982 } 3983 ExitedPad = ExitedParent; 3984 } while (!isa<ConstantTokenNone>(ExitedPad)); 3985 } else { 3986 // Unwinding to caller exits all pads. 3987 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 3988 ExitsFPI = true; 3989 UnresolvedAncestorPad = &FPI; 3990 } 3991 3992 if (ExitsFPI) { 3993 // This unwind edge exits FPI. Make sure it agrees with other 3994 // such edges. 3995 if (FirstUser) { 3996 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 3997 "pad must have the same unwind " 3998 "dest", 3999 &FPI, U, FirstUser); 4000 } else { 4001 FirstUser = U; 4002 FirstUnwindPad = UnwindPad; 4003 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 4004 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 4005 getParentPad(UnwindPad) == getParentPad(&FPI)) 4006 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 4007 } 4008 } 4009 // Make sure we visit all uses of FPI, but for nested pads stop as 4010 // soon as we know where they unwind to. 4011 if (CurrentPad != &FPI) 4012 break; 4013 } 4014 if (UnresolvedAncestorPad) { 4015 if (CurrentPad == UnresolvedAncestorPad) { 4016 // When CurrentPad is FPI itself, we don't mark it as resolved even if 4017 // we've found an unwind edge that exits it, because we need to verify 4018 // all direct uses of FPI. 4019 assert(CurrentPad == &FPI); 4020 continue; 4021 } 4022 // Pop off the worklist any nested pads that we've found an unwind 4023 // destination for. The pads on the worklist are the uncles, 4024 // great-uncles, etc. of CurrentPad. We've found an unwind destination 4025 // for all ancestors of CurrentPad up to but not including 4026 // UnresolvedAncestorPad. 4027 Value *ResolvedPad = CurrentPad; 4028 while (!Worklist.empty()) { 4029 Value *UnclePad = Worklist.back(); 4030 Value *AncestorPad = getParentPad(UnclePad); 4031 // Walk ResolvedPad up the ancestor list until we either find the 4032 // uncle's parent or the last resolved ancestor. 4033 while (ResolvedPad != AncestorPad) { 4034 Value *ResolvedParent = getParentPad(ResolvedPad); 4035 if (ResolvedParent == UnresolvedAncestorPad) { 4036 break; 4037 } 4038 ResolvedPad = ResolvedParent; 4039 } 4040 // If the resolved ancestor search didn't find the uncle's parent, 4041 // then the uncle is not yet resolved. 4042 if (ResolvedPad != AncestorPad) 4043 break; 4044 // This uncle is resolved, so pop it from the worklist. 4045 Worklist.pop_back(); 4046 } 4047 } 4048 } 4049 4050 if (FirstUnwindPad) { 4051 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 4052 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 4053 Value *SwitchUnwindPad; 4054 if (SwitchUnwindDest) 4055 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 4056 else 4057 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 4058 Assert(SwitchUnwindPad == FirstUnwindPad, 4059 "Unwind edges out of a catch must have the same unwind dest as " 4060 "the parent catchswitch", 4061 &FPI, FirstUser, CatchSwitch); 4062 } 4063 } 4064 4065 visitInstruction(FPI); 4066 } 4067 4068 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 4069 BasicBlock *BB = CatchSwitch.getParent(); 4070 4071 Function *F = BB->getParent(); 4072 Assert(F->hasPersonalityFn(), 4073 "CatchSwitchInst needs to be in a function with a personality.", 4074 &CatchSwitch); 4075 4076 // The catchswitch instruction must be the first non-PHI instruction in the 4077 // block. 4078 Assert(BB->getFirstNonPHI() == &CatchSwitch, 4079 "CatchSwitchInst not the first non-PHI instruction in the block.", 4080 &CatchSwitch); 4081 4082 auto *ParentPad = CatchSwitch.getParentPad(); 4083 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4084 "CatchSwitchInst has an invalid parent.", ParentPad); 4085 4086 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 4087 Instruction *I = UnwindDest->getFirstNonPHI(); 4088 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4089 "CatchSwitchInst must unwind to an EH block which is not a " 4090 "landingpad.", 4091 &CatchSwitch); 4092 4093 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 4094 if (getParentPad(I) == ParentPad) 4095 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 4096 } 4097 4098 Assert(CatchSwitch.getNumHandlers() != 0, 4099 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 4100 4101 for (BasicBlock *Handler : CatchSwitch.handlers()) { 4102 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 4103 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 4104 } 4105 4106 visitEHPadPredecessors(CatchSwitch); 4107 visitTerminator(CatchSwitch); 4108 } 4109 4110 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 4111 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 4112 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 4113 CRI.getOperand(0)); 4114 4115 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 4116 Instruction *I = UnwindDest->getFirstNonPHI(); 4117 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4118 "CleanupReturnInst must unwind to an EH block which is not a " 4119 "landingpad.", 4120 &CRI); 4121 } 4122 4123 visitTerminator(CRI); 4124 } 4125 4126 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 4127 Instruction *Op = cast<Instruction>(I.getOperand(i)); 4128 // If the we have an invalid invoke, don't try to compute the dominance. 4129 // We already reject it in the invoke specific checks and the dominance 4130 // computation doesn't handle multiple edges. 4131 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 4132 if (II->getNormalDest() == II->getUnwindDest()) 4133 return; 4134 } 4135 4136 // Quick check whether the def has already been encountered in the same block. 4137 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 4138 // uses are defined to happen on the incoming edge, not at the instruction. 4139 // 4140 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 4141 // wrapping an SSA value, assert that we've already encountered it. See 4142 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 4143 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 4144 return; 4145 4146 const Use &U = I.getOperandUse(i); 4147 Assert(DT.dominates(Op, U), 4148 "Instruction does not dominate all uses!", Op, &I); 4149 } 4150 4151 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4152 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 4153 "apply only to pointer types", &I); 4154 Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4155 "dereferenceable, dereferenceable_or_null apply only to load" 4156 " and inttoptr instructions, use attributes for calls or invokes", &I); 4157 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 4158 "take one operand!", &I); 4159 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4160 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 4161 "dereferenceable_or_null metadata value must be an i64!", &I); 4162 } 4163 4164 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4165 Assert(MD->getNumOperands() >= 2, 4166 "!prof annotations should have no less than 2 operands", MD); 4167 4168 // Check first operand. 4169 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4170 Assert(isa<MDString>(MD->getOperand(0)), 4171 "expected string with name of the !prof annotation", MD); 4172 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4173 StringRef ProfName = MDS->getString(); 4174 4175 // Check consistency of !prof branch_weights metadata. 4176 if (ProfName.equals("branch_weights")) { 4177 if (isa<InvokeInst>(&I)) { 4178 Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3, 4179 "Wrong number of InvokeInst branch_weights operands", MD); 4180 } else { 4181 unsigned ExpectedNumOperands = 0; 4182 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4183 ExpectedNumOperands = BI->getNumSuccessors(); 4184 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4185 ExpectedNumOperands = SI->getNumSuccessors(); 4186 else if (isa<CallInst>(&I)) 4187 ExpectedNumOperands = 1; 4188 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4189 ExpectedNumOperands = IBI->getNumDestinations(); 4190 else if (isa<SelectInst>(&I)) 4191 ExpectedNumOperands = 2; 4192 else 4193 CheckFailed("!prof branch_weights are not allowed for this instruction", 4194 MD); 4195 4196 Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, 4197 "Wrong number of operands", MD); 4198 } 4199 for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 4200 auto &MDO = MD->getOperand(i); 4201 Assert(MDO, "second operand should not be null", MD); 4202 Assert(mdconst::dyn_extract<ConstantInt>(MDO), 4203 "!prof brunch_weights operand is not a const int"); 4204 } 4205 } 4206 } 4207 4208 /// verifyInstruction - Verify that an instruction is well formed. 4209 /// 4210 void Verifier::visitInstruction(Instruction &I) { 4211 BasicBlock *BB = I.getParent(); 4212 Assert(BB, "Instruction not embedded in basic block!", &I); 4213 4214 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4215 for (User *U : I.users()) { 4216 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 4217 "Only PHI nodes may reference their own value!", &I); 4218 } 4219 } 4220 4221 // Check that void typed values don't have names 4222 Assert(!I.getType()->isVoidTy() || !I.hasName(), 4223 "Instruction has a name, but provides a void value!", &I); 4224 4225 // Check that the return value of the instruction is either void or a legal 4226 // value type. 4227 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4228 "Instruction returns a non-scalar type!", &I); 4229 4230 // Check that the instruction doesn't produce metadata. Calls are already 4231 // checked against the callee type. 4232 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4233 "Invalid use of metadata!", &I); 4234 4235 // Check that all uses of the instruction, if they are instructions 4236 // themselves, actually have parent basic blocks. If the use is not an 4237 // instruction, it is an error! 4238 for (Use &U : I.uses()) { 4239 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4240 Assert(Used->getParent() != nullptr, 4241 "Instruction referencing" 4242 " instruction not embedded in a basic block!", 4243 &I, Used); 4244 else { 4245 CheckFailed("Use of instruction is not an instruction!", U); 4246 return; 4247 } 4248 } 4249 4250 // Get a pointer to the call base of the instruction if it is some form of 4251 // call. 4252 const CallBase *CBI = dyn_cast<CallBase>(&I); 4253 4254 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4255 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4256 4257 // Check to make sure that only first-class-values are operands to 4258 // instructions. 4259 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4260 Assert(false, "Instruction operands must be first-class values!", &I); 4261 } 4262 4263 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4264 // Check to make sure that the "address of" an intrinsic function is never 4265 // taken. 4266 Assert(!F->isIntrinsic() || 4267 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), 4268 "Cannot take the address of an intrinsic!", &I); 4269 Assert( 4270 !F->isIntrinsic() || isa<CallInst>(I) || 4271 F->getIntrinsicID() == Intrinsic::donothing || 4272 F->getIntrinsicID() == Intrinsic::coro_resume || 4273 F->getIntrinsicID() == Intrinsic::coro_destroy || 4274 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4275 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4276 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4277 F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch, 4278 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4279 "statepoint, coro_resume or coro_destroy", 4280 &I); 4281 Assert(F->getParent() == &M, "Referencing function in another module!", 4282 &I, &M, F, F->getParent()); 4283 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4284 Assert(OpBB->getParent() == BB->getParent(), 4285 "Referring to a basic block in another function!", &I); 4286 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4287 Assert(OpArg->getParent() == BB->getParent(), 4288 "Referring to an argument in another function!", &I); 4289 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4290 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4291 &M, GV, GV->getParent()); 4292 } else if (isa<Instruction>(I.getOperand(i))) { 4293 verifyDominatesUse(I, i); 4294 } else if (isa<InlineAsm>(I.getOperand(i))) { 4295 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4296 "Cannot take the address of an inline asm!", &I); 4297 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4298 if (CE->getType()->isPtrOrPtrVectorTy() || 4299 !DL.getNonIntegralAddressSpaces().empty()) { 4300 // If we have a ConstantExpr pointer, we need to see if it came from an 4301 // illegal bitcast. If the datalayout string specifies non-integral 4302 // address spaces then we also need to check for illegal ptrtoint and 4303 // inttoptr expressions. 4304 visitConstantExprsRecursively(CE); 4305 } 4306 } 4307 } 4308 4309 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4310 Assert(I.getType()->isFPOrFPVectorTy(), 4311 "fpmath requires a floating point result!", &I); 4312 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4313 if (ConstantFP *CFP0 = 4314 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4315 const APFloat &Accuracy = CFP0->getValueAPF(); 4316 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4317 "fpmath accuracy must have float type", &I); 4318 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4319 "fpmath accuracy not a positive number!", &I); 4320 } else { 4321 Assert(false, "invalid fpmath accuracy!", &I); 4322 } 4323 } 4324 4325 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4326 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4327 "Ranges are only for loads, calls and invokes!", &I); 4328 visitRangeMetadata(I, Range, I.getType()); 4329 } 4330 4331 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4332 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4333 &I); 4334 Assert(isa<LoadInst>(I), 4335 "nonnull applies only to load instructions, use attributes" 4336 " for calls or invokes", 4337 &I); 4338 } 4339 4340 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4341 visitDereferenceableMetadata(I, MD); 4342 4343 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4344 visitDereferenceableMetadata(I, MD); 4345 4346 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4347 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4348 4349 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4350 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4351 &I); 4352 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4353 "use attributes for calls or invokes", &I); 4354 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4355 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4356 Assert(CI && CI->getType()->isIntegerTy(64), 4357 "align metadata value must be an i64!", &I); 4358 uint64_t Align = CI->getZExtValue(); 4359 Assert(isPowerOf2_64(Align), 4360 "align metadata value must be a power of 2!", &I); 4361 Assert(Align <= Value::MaximumAlignment, 4362 "alignment is larger that implementation defined limit", &I); 4363 } 4364 4365 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 4366 visitProfMetadata(I, MD); 4367 4368 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4369 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4370 visitMDNode(*N, AreDebugLocsAllowed::Yes); 4371 } 4372 4373 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 4374 verifyFragmentExpression(*DII); 4375 verifyNotEntryValue(*DII); 4376 } 4377 4378 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 4379 I.getAllMetadata(MDs); 4380 for (auto Attachment : MDs) { 4381 unsigned Kind = Attachment.first; 4382 auto AllowLocs = 4383 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) 4384 ? AreDebugLocsAllowed::Yes 4385 : AreDebugLocsAllowed::No; 4386 visitMDNode(*Attachment.second, AllowLocs); 4387 } 4388 4389 InstsInThisBlock.insert(&I); 4390 } 4391 4392 /// Allow intrinsics to be verified in different ways. 4393 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4394 Function *IF = Call.getCalledFunction(); 4395 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4396 IF); 4397 4398 // Verify that the intrinsic prototype lines up with what the .td files 4399 // describe. 4400 FunctionType *IFTy = IF->getFunctionType(); 4401 bool IsVarArg = IFTy->isVarArg(); 4402 4403 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4404 getIntrinsicInfoTableEntries(ID, Table); 4405 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4406 4407 // Walk the descriptors to extract overloaded types. 4408 SmallVector<Type *, 4> ArgTys; 4409 Intrinsic::MatchIntrinsicTypesResult Res = 4410 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4411 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4412 "Intrinsic has incorrect return type!", IF); 4413 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4414 "Intrinsic has incorrect argument type!", IF); 4415 4416 // Verify if the intrinsic call matches the vararg property. 4417 if (IsVarArg) 4418 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4419 "Intrinsic was not defined with variable arguments!", IF); 4420 else 4421 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4422 "Callsite was not defined with variable arguments!", IF); 4423 4424 // All descriptors should be absorbed by now. 4425 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4426 4427 // Now that we have the intrinsic ID and the actual argument types (and we 4428 // know they are legal for the intrinsic!) get the intrinsic name through the 4429 // usual means. This allows us to verify the mangling of argument types into 4430 // the name. 4431 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 4432 Assert(ExpectedName == IF->getName(), 4433 "Intrinsic name not mangled correctly for type arguments! " 4434 "Should be: " + 4435 ExpectedName, 4436 IF); 4437 4438 // If the intrinsic takes MDNode arguments, verify that they are either global 4439 // or are local to *this* function. 4440 for (Value *V : Call.args()) 4441 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4442 visitMetadataAsValue(*MD, Call.getCaller()); 4443 4444 switch (ID) { 4445 default: 4446 break; 4447 case Intrinsic::assume: { 4448 for (auto &Elem : Call.bundle_op_infos()) { 4449 Assert(Elem.Tag->getKey() == "ignore" || 4450 Attribute::isExistingAttribute(Elem.Tag->getKey()), 4451 "tags must be valid attribute names"); 4452 Assert(Elem.End - Elem.Begin <= 2, "to many arguments"); 4453 Attribute::AttrKind Kind = 4454 Attribute::getAttrKindFromName(Elem.Tag->getKey()); 4455 if (Kind == Attribute::None) 4456 break; 4457 if (Attribute::doesAttrKindHaveArgument(Kind)) { 4458 Assert(Elem.End - Elem.Begin == 2, 4459 "this attribute should have 2 arguments"); 4460 Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), 4461 "the second argument should be a constant integral value"); 4462 } else if (isFuncOnlyAttr(Kind)) { 4463 Assert((Elem.End - Elem.Begin) == 0, "this attribute has no argument"); 4464 } else if (!isFuncOrArgAttr(Kind)) { 4465 Assert((Elem.End - Elem.Begin) == 1, 4466 "this attribute should have one argument"); 4467 } 4468 } 4469 break; 4470 } 4471 case Intrinsic::coro_id: { 4472 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4473 if (isa<ConstantPointerNull>(InfoArg)) 4474 break; 4475 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4476 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4477 "info argument of llvm.coro.begin must refer to an initialized " 4478 "constant"); 4479 Constant *Init = GV->getInitializer(); 4480 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4481 "info argument of llvm.coro.begin must refer to either a struct or " 4482 "an array"); 4483 break; 4484 } 4485 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ 4486 case Intrinsic::INTRINSIC: 4487 #include "llvm/IR/ConstrainedOps.def" 4488 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4489 break; 4490 case Intrinsic::dbg_declare: // llvm.dbg.declare 4491 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4492 "invalid llvm.dbg.declare intrinsic call 1", Call); 4493 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4494 break; 4495 case Intrinsic::dbg_addr: // llvm.dbg.addr 4496 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4497 break; 4498 case Intrinsic::dbg_value: // llvm.dbg.value 4499 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4500 break; 4501 case Intrinsic::dbg_label: // llvm.dbg.label 4502 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4503 break; 4504 case Intrinsic::memcpy: 4505 case Intrinsic::memcpy_inline: 4506 case Intrinsic::memmove: 4507 case Intrinsic::memset: { 4508 const auto *MI = cast<MemIntrinsic>(&Call); 4509 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4510 return Alignment == 0 || isPowerOf2_32(Alignment); 4511 }; 4512 Assert(IsValidAlignment(MI->getDestAlignment()), 4513 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4514 Call); 4515 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4516 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4517 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4518 Call); 4519 } 4520 4521 break; 4522 } 4523 case Intrinsic::memcpy_element_unordered_atomic: 4524 case Intrinsic::memmove_element_unordered_atomic: 4525 case Intrinsic::memset_element_unordered_atomic: { 4526 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4527 4528 ConstantInt *ElementSizeCI = 4529 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4530 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4531 Assert(ElementSizeVal.isPowerOf2(), 4532 "element size of the element-wise atomic memory intrinsic " 4533 "must be a power of 2", 4534 Call); 4535 4536 auto IsValidAlignment = [&](uint64_t Alignment) { 4537 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4538 }; 4539 uint64_t DstAlignment = AMI->getDestAlignment(); 4540 Assert(IsValidAlignment(DstAlignment), 4541 "incorrect alignment of the destination argument", Call); 4542 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4543 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4544 Assert(IsValidAlignment(SrcAlignment), 4545 "incorrect alignment of the source argument", Call); 4546 } 4547 break; 4548 } 4549 case Intrinsic::call_preallocated_setup: { 4550 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 4551 Assert(NumArgs != nullptr, 4552 "llvm.call.preallocated.setup argument must be a constant"); 4553 bool FoundCall = false; 4554 for (User *U : Call.users()) { 4555 auto *UseCall = dyn_cast<CallBase>(U); 4556 Assert(UseCall != nullptr, 4557 "Uses of llvm.call.preallocated.setup must be calls"); 4558 const Function *Fn = UseCall->getCalledFunction(); 4559 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { 4560 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); 4561 Assert(AllocArgIndex != nullptr, 4562 "llvm.call.preallocated.alloc arg index must be a constant"); 4563 auto AllocArgIndexInt = AllocArgIndex->getValue(); 4564 Assert(AllocArgIndexInt.sge(0) && 4565 AllocArgIndexInt.slt(NumArgs->getValue()), 4566 "llvm.call.preallocated.alloc arg index must be between 0 and " 4567 "corresponding " 4568 "llvm.call.preallocated.setup's argument count"); 4569 } else { 4570 Assert(!FoundCall, "Can have at most one call corresponding to a " 4571 "llvm.call.preallocated.setup"); 4572 FoundCall = true; 4573 size_t NumPreallocatedArgs = 0; 4574 for (unsigned i = 0; i < UseCall->getNumArgOperands(); i++) { 4575 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { 4576 ++NumPreallocatedArgs; 4577 } 4578 } 4579 Assert(NumPreallocatedArgs != 0, 4580 "cannot use preallocated intrinsics on a call without " 4581 "preallocated arguments"); 4582 Assert(NumArgs->equalsInt(NumPreallocatedArgs), 4583 "llvm.call.preallocated.setup arg size must be equal to number " 4584 "of preallocated arguments " 4585 "at call site", 4586 Call, *UseCall); 4587 // getOperandBundle() cannot be called if more than one of the operand 4588 // bundle exists. There is already a check elsewhere for this, so skip 4589 // here if we see more than one. 4590 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > 4591 1) { 4592 return; 4593 } 4594 auto PreallocatedBundle = 4595 UseCall->getOperandBundle(LLVMContext::OB_preallocated); 4596 Assert(PreallocatedBundle, 4597 "Use of llvm.call.preallocated.setup outside intrinsics " 4598 "must be in \"preallocated\" operand bundle"); 4599 Assert(PreallocatedBundle->Inputs.front().get() == &Call, 4600 "preallocated bundle must have token from corresponding " 4601 "llvm.call.preallocated.setup"); 4602 } 4603 } 4604 break; 4605 } 4606 case Intrinsic::call_preallocated_arg: { 4607 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4608 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4609 Intrinsic::call_preallocated_setup, 4610 "llvm.call.preallocated.arg token argument must be a " 4611 "llvm.call.preallocated.setup"); 4612 Assert(Call.hasFnAttr(Attribute::Preallocated), 4613 "llvm.call.preallocated.arg must be called with a \"preallocated\" " 4614 "call site attribute"); 4615 break; 4616 } 4617 case Intrinsic::gcroot: 4618 case Intrinsic::gcwrite: 4619 case Intrinsic::gcread: 4620 if (ID == Intrinsic::gcroot) { 4621 AllocaInst *AI = 4622 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4623 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4624 Assert(isa<Constant>(Call.getArgOperand(1)), 4625 "llvm.gcroot parameter #2 must be a constant.", Call); 4626 if (!AI->getAllocatedType()->isPointerTy()) { 4627 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4628 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4629 "or argument #2 must be a non-null constant.", 4630 Call); 4631 } 4632 } 4633 4634 Assert(Call.getParent()->getParent()->hasGC(), 4635 "Enclosing function does not use GC.", Call); 4636 break; 4637 case Intrinsic::init_trampoline: 4638 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4639 "llvm.init_trampoline parameter #2 must resolve to a function.", 4640 Call); 4641 break; 4642 case Intrinsic::prefetch: 4643 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4644 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4645 "invalid arguments to llvm.prefetch", Call); 4646 break; 4647 case Intrinsic::stackprotector: 4648 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4649 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4650 break; 4651 case Intrinsic::localescape: { 4652 BasicBlock *BB = Call.getParent(); 4653 Assert(BB == &BB->getParent()->front(), 4654 "llvm.localescape used outside of entry block", Call); 4655 Assert(!SawFrameEscape, 4656 "multiple calls to llvm.localescape in one function", Call); 4657 for (Value *Arg : Call.args()) { 4658 if (isa<ConstantPointerNull>(Arg)) 4659 continue; // Null values are allowed as placeholders. 4660 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4661 Assert(AI && AI->isStaticAlloca(), 4662 "llvm.localescape only accepts static allocas", Call); 4663 } 4664 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); 4665 SawFrameEscape = true; 4666 break; 4667 } 4668 case Intrinsic::localrecover: { 4669 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4670 Function *Fn = dyn_cast<Function>(FnArg); 4671 Assert(Fn && !Fn->isDeclaration(), 4672 "llvm.localrecover first " 4673 "argument must be function defined in this module", 4674 Call); 4675 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 4676 auto &Entry = FrameEscapeInfo[Fn]; 4677 Entry.second = unsigned( 4678 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4679 break; 4680 } 4681 4682 case Intrinsic::experimental_gc_statepoint: 4683 if (auto *CI = dyn_cast<CallInst>(&Call)) 4684 Assert(!CI->isInlineAsm(), 4685 "gc.statepoint support for inline assembly unimplemented", CI); 4686 Assert(Call.getParent()->getParent()->hasGC(), 4687 "Enclosing function does not use GC.", Call); 4688 4689 verifyStatepoint(Call); 4690 break; 4691 case Intrinsic::experimental_gc_result: { 4692 Assert(Call.getParent()->getParent()->hasGC(), 4693 "Enclosing function does not use GC.", Call); 4694 // Are we tied to a statepoint properly? 4695 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4696 const Function *StatepointFn = 4697 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 4698 Assert(StatepointFn && StatepointFn->isDeclaration() && 4699 StatepointFn->getIntrinsicID() == 4700 Intrinsic::experimental_gc_statepoint, 4701 "gc.result operand #1 must be from a statepoint", Call, 4702 Call.getArgOperand(0)); 4703 4704 // Assert that result type matches wrapped callee. 4705 const Value *Target = StatepointCall->getArgOperand(2); 4706 auto *PT = cast<PointerType>(Target->getType()); 4707 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4708 Assert(Call.getType() == TargetFuncType->getReturnType(), 4709 "gc.result result type does not match wrapped callee", Call); 4710 break; 4711 } 4712 case Intrinsic::experimental_gc_relocate: { 4713 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); 4714 4715 Assert(isa<PointerType>(Call.getType()->getScalarType()), 4716 "gc.relocate must return a pointer or a vector of pointers", Call); 4717 4718 // Check that this relocate is correctly tied to the statepoint 4719 4720 // This is case for relocate on the unwinding path of an invoke statepoint 4721 if (LandingPadInst *LandingPad = 4722 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 4723 4724 const BasicBlock *InvokeBB = 4725 LandingPad->getParent()->getUniquePredecessor(); 4726 4727 // Landingpad relocates should have only one predecessor with invoke 4728 // statepoint terminator 4729 Assert(InvokeBB, "safepoints should have unique landingpads", 4730 LandingPad->getParent()); 4731 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4732 InvokeBB); 4733 Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()), 4734 "gc relocate should be linked to a statepoint", InvokeBB); 4735 } else { 4736 // In all other cases relocate should be tied to the statepoint directly. 4737 // This covers relocates on a normal return path of invoke statepoint and 4738 // relocates of a call statepoint. 4739 auto Token = Call.getArgOperand(0); 4740 Assert(isa<GCStatepointInst>(Token), 4741 "gc relocate is incorrectly tied to the statepoint", Call, Token); 4742 } 4743 4744 // Verify rest of the relocate arguments. 4745 const CallBase &StatepointCall = 4746 *cast<GCRelocateInst>(Call).getStatepoint(); 4747 4748 // Both the base and derived must be piped through the safepoint. 4749 Value *Base = Call.getArgOperand(1); 4750 Assert(isa<ConstantInt>(Base), 4751 "gc.relocate operand #2 must be integer offset", Call); 4752 4753 Value *Derived = Call.getArgOperand(2); 4754 Assert(isa<ConstantInt>(Derived), 4755 "gc.relocate operand #3 must be integer offset", Call); 4756 4757 const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4758 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4759 4760 // Check the bounds 4761 if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) { 4762 Assert(BaseIndex < Opt->Inputs.size(), 4763 "gc.relocate: statepoint base index out of bounds", Call); 4764 Assert(DerivedIndex < Opt->Inputs.size(), 4765 "gc.relocate: statepoint derived index out of bounds", Call); 4766 } else { 4767 Assert(BaseIndex < StatepointCall.arg_size(), 4768 "gc.relocate: statepoint base index out of bounds", Call); 4769 Assert(DerivedIndex < StatepointCall.arg_size(), 4770 "gc.relocate: statepoint derived index out of bounds", Call); 4771 4772 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' 4773 // section of the statepoint's argument. 4774 Assert(StatepointCall.arg_size() > 0, 4775 "gc.statepoint: insufficient arguments"); 4776 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)), 4777 "gc.statement: number of call arguments must be constant integer"); 4778 const uint64_t NumCallArgs = 4779 cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue(); 4780 Assert(StatepointCall.arg_size() > NumCallArgs + 5, 4781 "gc.statepoint: mismatch in number of call arguments"); 4782 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)), 4783 "gc.statepoint: number of transition arguments must be " 4784 "a constant integer"); 4785 const uint64_t NumTransitionArgs = 4786 cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)) 4787 ->getZExtValue(); 4788 const uint64_t DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; 4789 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)), 4790 "gc.statepoint: number of deoptimization arguments must be " 4791 "a constant integer"); 4792 const uint64_t NumDeoptArgs = 4793 cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)) 4794 ->getZExtValue(); 4795 const uint64_t GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; 4796 const uint64_t GCParamArgsEnd = StatepointCall.arg_size(); 4797 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, 4798 "gc.relocate: statepoint base index doesn't fall within the " 4799 "'gc parameters' section of the statepoint call", 4800 Call); 4801 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, 4802 "gc.relocate: statepoint derived index doesn't fall within the " 4803 "'gc parameters' section of the statepoint call", 4804 Call); 4805 } 4806 4807 // Relocated value must be either a pointer type or vector-of-pointer type, 4808 // but gc_relocate does not need to return the same pointer type as the 4809 // relocated pointer. It can be casted to the correct type later if it's 4810 // desired. However, they must have the same address space and 'vectorness' 4811 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 4812 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 4813 "gc.relocate: relocated value must be a gc pointer", Call); 4814 4815 auto ResultType = Call.getType(); 4816 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4817 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4818 "gc.relocate: vector relocates to vector and pointer to pointer", 4819 Call); 4820 Assert( 4821 ResultType->getPointerAddressSpace() == 4822 DerivedType->getPointerAddressSpace(), 4823 "gc.relocate: relocating a pointer shouldn't change its address space", 4824 Call); 4825 break; 4826 } 4827 case Intrinsic::eh_exceptioncode: 4828 case Intrinsic::eh_exceptionpointer: { 4829 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 4830 "eh.exceptionpointer argument must be a catchpad", Call); 4831 break; 4832 } 4833 case Intrinsic::get_active_lane_mask: { 4834 Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a " 4835 "vector", Call); 4836 auto *ElemTy = Call.getType()->getScalarType(); 4837 Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not " 4838 "i1", Call); 4839 break; 4840 } 4841 case Intrinsic::masked_load: { 4842 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 4843 Call); 4844 4845 Value *Ptr = Call.getArgOperand(0); 4846 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 4847 Value *Mask = Call.getArgOperand(2); 4848 Value *PassThru = Call.getArgOperand(3); 4849 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 4850 Call); 4851 Assert(Alignment->getValue().isPowerOf2(), 4852 "masked_load: alignment must be a power of 2", Call); 4853 4854 // DataTy is the overloaded type 4855 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4856 Assert(DataTy == Call.getType(), 4857 "masked_load: return must match pointer type", Call); 4858 Assert(PassThru->getType() == DataTy, 4859 "masked_load: pass through and data type must match", Call); 4860 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 4861 cast<VectorType>(DataTy)->getElementCount(), 4862 "masked_load: vector mask must be same length as data", Call); 4863 break; 4864 } 4865 case Intrinsic::masked_store: { 4866 Value *Val = Call.getArgOperand(0); 4867 Value *Ptr = Call.getArgOperand(1); 4868 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 4869 Value *Mask = Call.getArgOperand(3); 4870 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 4871 Call); 4872 Assert(Alignment->getValue().isPowerOf2(), 4873 "masked_store: alignment must be a power of 2", Call); 4874 4875 // DataTy is the overloaded type 4876 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4877 Assert(DataTy == Val->getType(), 4878 "masked_store: storee must match pointer type", Call); 4879 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 4880 cast<VectorType>(DataTy)->getElementCount(), 4881 "masked_store: vector mask must be same length as data", Call); 4882 break; 4883 } 4884 4885 case Intrinsic::masked_gather: { 4886 const APInt &Alignment = 4887 cast<ConstantInt>(Call.getArgOperand(1))->getValue(); 4888 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 4889 "masked_gather: alignment must be 0 or a power of 2", Call); 4890 break; 4891 } 4892 case Intrinsic::masked_scatter: { 4893 const APInt &Alignment = 4894 cast<ConstantInt>(Call.getArgOperand(2))->getValue(); 4895 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 4896 "masked_scatter: alignment must be 0 or a power of 2", Call); 4897 break; 4898 } 4899 4900 case Intrinsic::experimental_guard: { 4901 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 4902 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4903 "experimental_guard must have exactly one " 4904 "\"deopt\" operand bundle"); 4905 break; 4906 } 4907 4908 case Intrinsic::experimental_deoptimize: { 4909 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 4910 Call); 4911 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4912 "experimental_deoptimize must have exactly one " 4913 "\"deopt\" operand bundle"); 4914 Assert(Call.getType() == Call.getFunction()->getReturnType(), 4915 "experimental_deoptimize return type must match caller return type"); 4916 4917 if (isa<CallInst>(Call)) { 4918 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 4919 Assert(RI, 4920 "calls to experimental_deoptimize must be followed by a return"); 4921 4922 if (!Call.getType()->isVoidTy() && RI) 4923 Assert(RI->getReturnValue() == &Call, 4924 "calls to experimental_deoptimize must be followed by a return " 4925 "of the value computed by experimental_deoptimize"); 4926 } 4927 4928 break; 4929 } 4930 case Intrinsic::sadd_sat: 4931 case Intrinsic::uadd_sat: 4932 case Intrinsic::ssub_sat: 4933 case Intrinsic::usub_sat: { 4934 Value *Op1 = Call.getArgOperand(0); 4935 Value *Op2 = Call.getArgOperand(1); 4936 Assert(Op1->getType()->isIntOrIntVectorTy(), 4937 "first operand of [us][add|sub]_sat must be an int type or vector " 4938 "of ints"); 4939 Assert(Op2->getType()->isIntOrIntVectorTy(), 4940 "second operand of [us][add|sub]_sat must be an int type or vector " 4941 "of ints"); 4942 break; 4943 } 4944 case Intrinsic::smul_fix: 4945 case Intrinsic::smul_fix_sat: 4946 case Intrinsic::umul_fix: 4947 case Intrinsic::umul_fix_sat: 4948 case Intrinsic::sdiv_fix: 4949 case Intrinsic::sdiv_fix_sat: 4950 case Intrinsic::udiv_fix: 4951 case Intrinsic::udiv_fix_sat: { 4952 Value *Op1 = Call.getArgOperand(0); 4953 Value *Op2 = Call.getArgOperand(1); 4954 Assert(Op1->getType()->isIntOrIntVectorTy(), 4955 "first operand of [us][mul|div]_fix[_sat] must be an int type or " 4956 "vector of ints"); 4957 Assert(Op2->getType()->isIntOrIntVectorTy(), 4958 "second operand of [us][mul|div]_fix[_sat] must be an int type or " 4959 "vector of ints"); 4960 4961 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 4962 Assert(Op3->getType()->getBitWidth() <= 32, 4963 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); 4964 4965 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 4966 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { 4967 Assert( 4968 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 4969 "the scale of s[mul|div]_fix[_sat] must be less than the width of " 4970 "the operands"); 4971 } else { 4972 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 4973 "the scale of u[mul|div]_fix[_sat] must be less than or equal " 4974 "to the width of the operands"); 4975 } 4976 break; 4977 } 4978 case Intrinsic::lround: 4979 case Intrinsic::llround: 4980 case Intrinsic::lrint: 4981 case Intrinsic::llrint: { 4982 Type *ValTy = Call.getArgOperand(0)->getType(); 4983 Type *ResultTy = Call.getType(); 4984 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 4985 "Intrinsic does not support vectors", &Call); 4986 break; 4987 } 4988 case Intrinsic::bswap: { 4989 Type *Ty = Call.getType(); 4990 unsigned Size = Ty->getScalarSizeInBits(); 4991 Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call); 4992 break; 4993 } 4994 case Intrinsic::matrix_multiply: 4995 case Intrinsic::matrix_transpose: 4996 case Intrinsic::matrix_columnwise_load: 4997 case Intrinsic::matrix_columnwise_store: { 4998 ConstantInt *NumRows; 4999 ConstantInt *NumColumns; 5000 VectorType *TypeToCheck; 5001 switch (ID) { 5002 case Intrinsic::matrix_multiply: 5003 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 5004 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5005 TypeToCheck = cast<VectorType>(Call.getType()); 5006 break; 5007 case Intrinsic::matrix_transpose: 5008 NumRows = cast<ConstantInt>(Call.getArgOperand(1)); 5009 NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); 5010 TypeToCheck = cast<VectorType>(Call.getType()); 5011 break; 5012 case Intrinsic::matrix_columnwise_load: 5013 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 5014 NumColumns = cast<ConstantInt>(Call.getArgOperand(3)); 5015 TypeToCheck = cast<VectorType>(Call.getType()); 5016 break; 5017 case Intrinsic::matrix_columnwise_store: 5018 NumRows = cast<ConstantInt>(Call.getArgOperand(3)); 5019 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5020 TypeToCheck = cast<VectorType>(Call.getArgOperand(0)->getType()); 5021 break; 5022 default: 5023 llvm_unreachable("unexpected intrinsic"); 5024 } 5025 Assert(TypeToCheck->getNumElements() == 5026 NumRows->getZExtValue() * NumColumns->getZExtValue(), 5027 "result of a matrix operation does not fit in the returned vector"); 5028 break; 5029 } 5030 }; 5031 } 5032 5033 /// Carefully grab the subprogram from a local scope. 5034 /// 5035 /// This carefully grabs the subprogram from a local scope, avoiding the 5036 /// built-in assertions that would typically fire. 5037 static DISubprogram *getSubprogram(Metadata *LocalScope) { 5038 if (!LocalScope) 5039 return nullptr; 5040 5041 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 5042 return SP; 5043 5044 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 5045 return getSubprogram(LB->getRawScope()); 5046 5047 // Just return null; broken scope chains are checked elsewhere. 5048 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 5049 return nullptr; 5050 } 5051 5052 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 5053 unsigned NumOperands; 5054 bool HasRoundingMD; 5055 switch (FPI.getIntrinsicID()) { 5056 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 5057 case Intrinsic::INTRINSIC: \ 5058 NumOperands = NARG; \ 5059 HasRoundingMD = ROUND_MODE; \ 5060 break; 5061 #include "llvm/IR/ConstrainedOps.def" 5062 default: 5063 llvm_unreachable("Invalid constrained FP intrinsic!"); 5064 } 5065 NumOperands += (1 + HasRoundingMD); 5066 // Compare intrinsics carry an extra predicate metadata operand. 5067 if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 5068 NumOperands += 1; 5069 Assert((FPI.getNumArgOperands() == NumOperands), 5070 "invalid arguments for constrained FP intrinsic", &FPI); 5071 5072 switch (FPI.getIntrinsicID()) { 5073 case Intrinsic::experimental_constrained_lrint: 5074 case Intrinsic::experimental_constrained_llrint: { 5075 Type *ValTy = FPI.getArgOperand(0)->getType(); 5076 Type *ResultTy = FPI.getType(); 5077 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5078 "Intrinsic does not support vectors", &FPI); 5079 } 5080 break; 5081 5082 case Intrinsic::experimental_constrained_lround: 5083 case Intrinsic::experimental_constrained_llround: { 5084 Type *ValTy = FPI.getArgOperand(0)->getType(); 5085 Type *ResultTy = FPI.getType(); 5086 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5087 "Intrinsic does not support vectors", &FPI); 5088 break; 5089 } 5090 5091 case Intrinsic::experimental_constrained_fcmp: 5092 case Intrinsic::experimental_constrained_fcmps: { 5093 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 5094 Assert(CmpInst::isFPPredicate(Pred), 5095 "invalid predicate for constrained FP comparison intrinsic", &FPI); 5096 break; 5097 } 5098 5099 case Intrinsic::experimental_constrained_fptosi: 5100 case Intrinsic::experimental_constrained_fptoui: { 5101 Value *Operand = FPI.getArgOperand(0); 5102 uint64_t NumSrcElem = 0; 5103 Assert(Operand->getType()->isFPOrFPVectorTy(), 5104 "Intrinsic first argument must be floating point", &FPI); 5105 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5106 NumSrcElem = OperandT->getNumElements(); 5107 } 5108 5109 Operand = &FPI; 5110 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5111 "Intrinsic first argument and result disagree on vector use", &FPI); 5112 Assert(Operand->getType()->isIntOrIntVectorTy(), 5113 "Intrinsic result must be an integer", &FPI); 5114 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5115 Assert(NumSrcElem == OperandT->getNumElements(), 5116 "Intrinsic first argument and result vector lengths must be equal", 5117 &FPI); 5118 } 5119 } 5120 break; 5121 5122 case Intrinsic::experimental_constrained_sitofp: 5123 case Intrinsic::experimental_constrained_uitofp: { 5124 Value *Operand = FPI.getArgOperand(0); 5125 uint64_t NumSrcElem = 0; 5126 Assert(Operand->getType()->isIntOrIntVectorTy(), 5127 "Intrinsic first argument must be integer", &FPI); 5128 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5129 NumSrcElem = OperandT->getNumElements(); 5130 } 5131 5132 Operand = &FPI; 5133 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5134 "Intrinsic first argument and result disagree on vector use", &FPI); 5135 Assert(Operand->getType()->isFPOrFPVectorTy(), 5136 "Intrinsic result must be a floating point", &FPI); 5137 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5138 Assert(NumSrcElem == OperandT->getNumElements(), 5139 "Intrinsic first argument and result vector lengths must be equal", 5140 &FPI); 5141 } 5142 } break; 5143 5144 case Intrinsic::experimental_constrained_fptrunc: 5145 case Intrinsic::experimental_constrained_fpext: { 5146 Value *Operand = FPI.getArgOperand(0); 5147 Type *OperandTy = Operand->getType(); 5148 Value *Result = &FPI; 5149 Type *ResultTy = Result->getType(); 5150 Assert(OperandTy->isFPOrFPVectorTy(), 5151 "Intrinsic first argument must be FP or FP vector", &FPI); 5152 Assert(ResultTy->isFPOrFPVectorTy(), 5153 "Intrinsic result must be FP or FP vector", &FPI); 5154 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 5155 "Intrinsic first argument and result disagree on vector use", &FPI); 5156 if (OperandTy->isVectorTy()) { 5157 auto *OperandVecTy = cast<VectorType>(OperandTy); 5158 auto *ResultVecTy = cast<VectorType>(ResultTy); 5159 Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(), 5160 "Intrinsic first argument and result vector lengths must be equal", 5161 &FPI); 5162 } 5163 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 5164 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 5165 "Intrinsic first argument's type must be larger than result type", 5166 &FPI); 5167 } else { 5168 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 5169 "Intrinsic first argument's type must be smaller than result type", 5170 &FPI); 5171 } 5172 } 5173 break; 5174 5175 default: 5176 break; 5177 } 5178 5179 // If a non-metadata argument is passed in a metadata slot then the 5180 // error will be caught earlier when the incorrect argument doesn't 5181 // match the specification in the intrinsic call table. Thus, no 5182 // argument type check is needed here. 5183 5184 Assert(FPI.getExceptionBehavior().hasValue(), 5185 "invalid exception behavior argument", &FPI); 5186 if (HasRoundingMD) { 5187 Assert(FPI.getRoundingMode().hasValue(), 5188 "invalid rounding mode argument", &FPI); 5189 } 5190 } 5191 5192 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 5193 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); 5194 AssertDI(isa<ValueAsMetadata>(MD) || 5195 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 5196 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 5197 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 5198 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 5199 DII.getRawVariable()); 5200 AssertDI(isa<DIExpression>(DII.getRawExpression()), 5201 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 5202 DII.getRawExpression()); 5203 5204 // Ignore broken !dbg attachments; they're checked elsewhere. 5205 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 5206 if (!isa<DILocation>(N)) 5207 return; 5208 5209 BasicBlock *BB = DII.getParent(); 5210 Function *F = BB ? BB->getParent() : nullptr; 5211 5212 // The scopes for variables and !dbg attachments must agree. 5213 DILocalVariable *Var = DII.getVariable(); 5214 DILocation *Loc = DII.getDebugLoc(); 5215 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5216 &DII, BB, F); 5217 5218 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 5219 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5220 if (!VarSP || !LocSP) 5221 return; // Broken scope chains are checked elsewhere. 5222 5223 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5224 " variable and !dbg attachment", 5225 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 5226 Loc->getScope()->getSubprogram()); 5227 5228 // This check is redundant with one in visitLocalVariable(). 5229 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 5230 Var->getRawType()); 5231 verifyFnArgs(DII); 5232 } 5233 5234 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 5235 AssertDI(isa<DILabel>(DLI.getRawLabel()), 5236 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 5237 DLI.getRawLabel()); 5238 5239 // Ignore broken !dbg attachments; they're checked elsewhere. 5240 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 5241 if (!isa<DILocation>(N)) 5242 return; 5243 5244 BasicBlock *BB = DLI.getParent(); 5245 Function *F = BB ? BB->getParent() : nullptr; 5246 5247 // The scopes for variables and !dbg attachments must agree. 5248 DILabel *Label = DLI.getLabel(); 5249 DILocation *Loc = DLI.getDebugLoc(); 5250 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5251 &DLI, BB, F); 5252 5253 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 5254 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5255 if (!LabelSP || !LocSP) 5256 return; 5257 5258 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5259 " label and !dbg attachment", 5260 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 5261 Loc->getScope()->getSubprogram()); 5262 } 5263 5264 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 5265 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 5266 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5267 5268 // We don't know whether this intrinsic verified correctly. 5269 if (!V || !E || !E->isValid()) 5270 return; 5271 5272 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 5273 auto Fragment = E->getFragmentInfo(); 5274 if (!Fragment) 5275 return; 5276 5277 // The frontend helps out GDB by emitting the members of local anonymous 5278 // unions as artificial local variables with shared storage. When SROA splits 5279 // the storage for artificial local variables that are smaller than the entire 5280 // union, the overhang piece will be outside of the allotted space for the 5281 // variable and this check fails. 5282 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 5283 if (V->isArtificial()) 5284 return; 5285 5286 verifyFragmentExpression(*V, *Fragment, &I); 5287 } 5288 5289 template <typename ValueOrMetadata> 5290 void Verifier::verifyFragmentExpression(const DIVariable &V, 5291 DIExpression::FragmentInfo Fragment, 5292 ValueOrMetadata *Desc) { 5293 // If there's no size, the type is broken, but that should be checked 5294 // elsewhere. 5295 auto VarSize = V.getSizeInBits(); 5296 if (!VarSize) 5297 return; 5298 5299 unsigned FragSize = Fragment.SizeInBits; 5300 unsigned FragOffset = Fragment.OffsetInBits; 5301 AssertDI(FragSize + FragOffset <= *VarSize, 5302 "fragment is larger than or outside of variable", Desc, &V); 5303 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 5304 } 5305 5306 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 5307 // This function does not take the scope of noninlined function arguments into 5308 // account. Don't run it if current function is nodebug, because it may 5309 // contain inlined debug intrinsics. 5310 if (!HasDebugInfo) 5311 return; 5312 5313 // For performance reasons only check non-inlined ones. 5314 if (I.getDebugLoc()->getInlinedAt()) 5315 return; 5316 5317 DILocalVariable *Var = I.getVariable(); 5318 AssertDI(Var, "dbg intrinsic without variable"); 5319 5320 unsigned ArgNo = Var->getArg(); 5321 if (!ArgNo) 5322 return; 5323 5324 // Verify there are no duplicate function argument debug info entries. 5325 // These will cause hard-to-debug assertions in the DWARF backend. 5326 if (DebugFnArgs.size() < ArgNo) 5327 DebugFnArgs.resize(ArgNo, nullptr); 5328 5329 auto *Prev = DebugFnArgs[ArgNo - 1]; 5330 DebugFnArgs[ArgNo - 1] = Var; 5331 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 5332 Prev, Var); 5333 } 5334 5335 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 5336 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5337 5338 // We don't know whether this intrinsic verified correctly. 5339 if (!E || !E->isValid()) 5340 return; 5341 5342 AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); 5343 } 5344 5345 void Verifier::verifyCompileUnits() { 5346 // When more than one Module is imported into the same context, such as during 5347 // an LTO build before linking the modules, ODR type uniquing may cause types 5348 // to point to a different CU. This check does not make sense in this case. 5349 if (M.getContext().isODRUniquingDebugTypes()) 5350 return; 5351 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 5352 SmallPtrSet<const Metadata *, 2> Listed; 5353 if (CUs) 5354 Listed.insert(CUs->op_begin(), CUs->op_end()); 5355 for (auto *CU : CUVisited) 5356 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 5357 CUVisited.clear(); 5358 } 5359 5360 void Verifier::verifyDeoptimizeCallingConvs() { 5361 if (DeoptimizeDeclarations.empty()) 5362 return; 5363 5364 const Function *First = DeoptimizeDeclarations[0]; 5365 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 5366 Assert(First->getCallingConv() == F->getCallingConv(), 5367 "All llvm.experimental.deoptimize declarations must have the same " 5368 "calling convention", 5369 First, F); 5370 } 5371 } 5372 5373 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 5374 bool HasSource = F.getSource().hasValue(); 5375 if (!HasSourceDebugInfo.count(&U)) 5376 HasSourceDebugInfo[&U] = HasSource; 5377 AssertDI(HasSource == HasSourceDebugInfo[&U], 5378 "inconsistent use of embedded source"); 5379 } 5380 5381 //===----------------------------------------------------------------------===// 5382 // Implement the public interfaces to this file... 5383 //===----------------------------------------------------------------------===// 5384 5385 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 5386 Function &F = const_cast<Function &>(f); 5387 5388 // Don't use a raw_null_ostream. Printing IR is expensive. 5389 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 5390 5391 // Note that this function's return value is inverted from what you would 5392 // expect of a function called "verify". 5393 return !V.verify(F); 5394 } 5395 5396 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 5397 bool *BrokenDebugInfo) { 5398 // Don't use a raw_null_ostream. Printing IR is expensive. 5399 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 5400 5401 bool Broken = false; 5402 for (const Function &F : M) 5403 Broken |= !V.verify(F); 5404 5405 Broken |= !V.verify(); 5406 if (BrokenDebugInfo) 5407 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 5408 // Note that this function's return value is inverted from what you would 5409 // expect of a function called "verify". 5410 return Broken; 5411 } 5412 5413 namespace { 5414 5415 struct VerifierLegacyPass : public FunctionPass { 5416 static char ID; 5417 5418 std::unique_ptr<Verifier> V; 5419 bool FatalErrors = true; 5420 5421 VerifierLegacyPass() : FunctionPass(ID) { 5422 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5423 } 5424 explicit VerifierLegacyPass(bool FatalErrors) 5425 : FunctionPass(ID), 5426 FatalErrors(FatalErrors) { 5427 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5428 } 5429 5430 bool doInitialization(Module &M) override { 5431 V = std::make_unique<Verifier>( 5432 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 5433 return false; 5434 } 5435 5436 bool runOnFunction(Function &F) override { 5437 if (!V->verify(F) && FatalErrors) { 5438 errs() << "in function " << F.getName() << '\n'; 5439 report_fatal_error("Broken function found, compilation aborted!"); 5440 } 5441 return false; 5442 } 5443 5444 bool doFinalization(Module &M) override { 5445 bool HasErrors = false; 5446 for (Function &F : M) 5447 if (F.isDeclaration()) 5448 HasErrors |= !V->verify(F); 5449 5450 HasErrors |= !V->verify(); 5451 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 5452 report_fatal_error("Broken module found, compilation aborted!"); 5453 return false; 5454 } 5455 5456 void getAnalysisUsage(AnalysisUsage &AU) const override { 5457 AU.setPreservesAll(); 5458 } 5459 }; 5460 5461 } // end anonymous namespace 5462 5463 /// Helper to issue failure from the TBAA verification 5464 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 5465 if (Diagnostic) 5466 return Diagnostic->CheckFailed(Args...); 5467 } 5468 5469 #define AssertTBAA(C, ...) \ 5470 do { \ 5471 if (!(C)) { \ 5472 CheckFailed(__VA_ARGS__); \ 5473 return false; \ 5474 } \ 5475 } while (false) 5476 5477 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 5478 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 5479 /// struct-type node describing an aggregate data structure (like a struct). 5480 TBAAVerifier::TBAABaseNodeSummary 5481 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 5482 bool IsNewFormat) { 5483 if (BaseNode->getNumOperands() < 2) { 5484 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 5485 return {true, ~0u}; 5486 } 5487 5488 auto Itr = TBAABaseNodes.find(BaseNode); 5489 if (Itr != TBAABaseNodes.end()) 5490 return Itr->second; 5491 5492 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 5493 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 5494 (void)InsertResult; 5495 assert(InsertResult.second && "We just checked!"); 5496 return Result; 5497 } 5498 5499 TBAAVerifier::TBAABaseNodeSummary 5500 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 5501 bool IsNewFormat) { 5502 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 5503 5504 if (BaseNode->getNumOperands() == 2) { 5505 // Scalar nodes can only be accessed at offset 0. 5506 return isValidScalarTBAANode(BaseNode) 5507 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 5508 : InvalidNode; 5509 } 5510 5511 if (IsNewFormat) { 5512 if (BaseNode->getNumOperands() % 3 != 0) { 5513 CheckFailed("Access tag nodes must have the number of operands that is a " 5514 "multiple of 3!", BaseNode); 5515 return InvalidNode; 5516 } 5517 } else { 5518 if (BaseNode->getNumOperands() % 2 != 1) { 5519 CheckFailed("Struct tag nodes must have an odd number of operands!", 5520 BaseNode); 5521 return InvalidNode; 5522 } 5523 } 5524 5525 // Check the type size field. 5526 if (IsNewFormat) { 5527 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5528 BaseNode->getOperand(1)); 5529 if (!TypeSizeNode) { 5530 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 5531 return InvalidNode; 5532 } 5533 } 5534 5535 // Check the type name field. In the new format it can be anything. 5536 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 5537 CheckFailed("Struct tag nodes have a string as their first operand", 5538 BaseNode); 5539 return InvalidNode; 5540 } 5541 5542 bool Failed = false; 5543 5544 Optional<APInt> PrevOffset; 5545 unsigned BitWidth = ~0u; 5546 5547 // We've already checked that BaseNode is not a degenerate root node with one 5548 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 5549 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5550 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5551 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5552 Idx += NumOpsPerField) { 5553 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 5554 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 5555 if (!isa<MDNode>(FieldTy)) { 5556 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 5557 Failed = true; 5558 continue; 5559 } 5560 5561 auto *OffsetEntryCI = 5562 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 5563 if (!OffsetEntryCI) { 5564 CheckFailed("Offset entries must be constants!", &I, BaseNode); 5565 Failed = true; 5566 continue; 5567 } 5568 5569 if (BitWidth == ~0u) 5570 BitWidth = OffsetEntryCI->getBitWidth(); 5571 5572 if (OffsetEntryCI->getBitWidth() != BitWidth) { 5573 CheckFailed( 5574 "Bitwidth between the offsets and struct type entries must match", &I, 5575 BaseNode); 5576 Failed = true; 5577 continue; 5578 } 5579 5580 // NB! As far as I can tell, we generate a non-strictly increasing offset 5581 // sequence only from structs that have zero size bit fields. When 5582 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 5583 // pick the field lexically the latest in struct type metadata node. This 5584 // mirrors the actual behavior of the alias analysis implementation. 5585 bool IsAscending = 5586 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 5587 5588 if (!IsAscending) { 5589 CheckFailed("Offsets must be increasing!", &I, BaseNode); 5590 Failed = true; 5591 } 5592 5593 PrevOffset = OffsetEntryCI->getValue(); 5594 5595 if (IsNewFormat) { 5596 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5597 BaseNode->getOperand(Idx + 2)); 5598 if (!MemberSizeNode) { 5599 CheckFailed("Member size entries must be constants!", &I, BaseNode); 5600 Failed = true; 5601 continue; 5602 } 5603 } 5604 } 5605 5606 return Failed ? InvalidNode 5607 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 5608 } 5609 5610 static bool IsRootTBAANode(const MDNode *MD) { 5611 return MD->getNumOperands() < 2; 5612 } 5613 5614 static bool IsScalarTBAANodeImpl(const MDNode *MD, 5615 SmallPtrSetImpl<const MDNode *> &Visited) { 5616 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 5617 return false; 5618 5619 if (!isa<MDString>(MD->getOperand(0))) 5620 return false; 5621 5622 if (MD->getNumOperands() == 3) { 5623 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 5624 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 5625 return false; 5626 } 5627 5628 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5629 return Parent && Visited.insert(Parent).second && 5630 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 5631 } 5632 5633 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 5634 auto ResultIt = TBAAScalarNodes.find(MD); 5635 if (ResultIt != TBAAScalarNodes.end()) 5636 return ResultIt->second; 5637 5638 SmallPtrSet<const MDNode *, 4> Visited; 5639 bool Result = IsScalarTBAANodeImpl(MD, Visited); 5640 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 5641 (void)InsertResult; 5642 assert(InsertResult.second && "Just checked!"); 5643 5644 return Result; 5645 } 5646 5647 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 5648 /// Offset in place to be the offset within the field node returned. 5649 /// 5650 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 5651 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 5652 const MDNode *BaseNode, 5653 APInt &Offset, 5654 bool IsNewFormat) { 5655 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 5656 5657 // Scalar nodes have only one possible "field" -- their parent in the access 5658 // hierarchy. Offset must be zero at this point, but our caller is supposed 5659 // to Assert that. 5660 if (BaseNode->getNumOperands() == 2) 5661 return cast<MDNode>(BaseNode->getOperand(1)); 5662 5663 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5664 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5665 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5666 Idx += NumOpsPerField) { 5667 auto *OffsetEntryCI = 5668 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 5669 if (OffsetEntryCI->getValue().ugt(Offset)) { 5670 if (Idx == FirstFieldOpNo) { 5671 CheckFailed("Could not find TBAA parent in struct type node", &I, 5672 BaseNode, &Offset); 5673 return nullptr; 5674 } 5675 5676 unsigned PrevIdx = Idx - NumOpsPerField; 5677 auto *PrevOffsetEntryCI = 5678 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 5679 Offset -= PrevOffsetEntryCI->getValue(); 5680 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 5681 } 5682 } 5683 5684 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 5685 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 5686 BaseNode->getOperand(LastIdx + 1)); 5687 Offset -= LastOffsetEntryCI->getValue(); 5688 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 5689 } 5690 5691 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 5692 if (!Type || Type->getNumOperands() < 3) 5693 return false; 5694 5695 // In the new format type nodes shall have a reference to the parent type as 5696 // its first operand. 5697 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 5698 if (!Parent) 5699 return false; 5700 5701 return true; 5702 } 5703 5704 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 5705 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 5706 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 5707 isa<AtomicCmpXchgInst>(I), 5708 "This instruction shall not have a TBAA access tag!", &I); 5709 5710 bool IsStructPathTBAA = 5711 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 5712 5713 AssertTBAA( 5714 IsStructPathTBAA, 5715 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 5716 5717 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 5718 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5719 5720 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 5721 5722 if (IsNewFormat) { 5723 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 5724 "Access tag metadata must have either 4 or 5 operands", &I, MD); 5725 } else { 5726 AssertTBAA(MD->getNumOperands() < 5, 5727 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 5728 } 5729 5730 // Check the access size field. 5731 if (IsNewFormat) { 5732 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5733 MD->getOperand(3)); 5734 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 5735 } 5736 5737 // Check the immutability flag. 5738 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 5739 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 5740 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 5741 MD->getOperand(ImmutabilityFlagOpNo)); 5742 AssertTBAA(IsImmutableCI, 5743 "Immutability tag on struct tag metadata must be a constant", 5744 &I, MD); 5745 AssertTBAA( 5746 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 5747 "Immutability part of the struct tag metadata must be either 0 or 1", 5748 &I, MD); 5749 } 5750 5751 AssertTBAA(BaseNode && AccessType, 5752 "Malformed struct tag metadata: base and access-type " 5753 "should be non-null and point to Metadata nodes", 5754 &I, MD, BaseNode, AccessType); 5755 5756 if (!IsNewFormat) { 5757 AssertTBAA(isValidScalarTBAANode(AccessType), 5758 "Access type node must be a valid scalar type", &I, MD, 5759 AccessType); 5760 } 5761 5762 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 5763 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 5764 5765 APInt Offset = OffsetCI->getValue(); 5766 bool SeenAccessTypeInPath = false; 5767 5768 SmallPtrSet<MDNode *, 4> StructPath; 5769 5770 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 5771 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 5772 IsNewFormat)) { 5773 if (!StructPath.insert(BaseNode).second) { 5774 CheckFailed("Cycle detected in struct path", &I, MD); 5775 return false; 5776 } 5777 5778 bool Invalid; 5779 unsigned BaseNodeBitWidth; 5780 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 5781 IsNewFormat); 5782 5783 // If the base node is invalid in itself, then we've already printed all the 5784 // errors we wanted to print. 5785 if (Invalid) 5786 return false; 5787 5788 SeenAccessTypeInPath |= BaseNode == AccessType; 5789 5790 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 5791 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 5792 &I, MD, &Offset); 5793 5794 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 5795 (BaseNodeBitWidth == 0 && Offset == 0) || 5796 (IsNewFormat && BaseNodeBitWidth == ~0u), 5797 "Access bit-width not the same as description bit-width", &I, MD, 5798 BaseNodeBitWidth, Offset.getBitWidth()); 5799 5800 if (IsNewFormat && SeenAccessTypeInPath) 5801 break; 5802 } 5803 5804 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 5805 &I, MD); 5806 return true; 5807 } 5808 5809 char VerifierLegacyPass::ID = 0; 5810 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 5811 5812 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 5813 return new VerifierLegacyPass(FatalErrors); 5814 } 5815 5816 AnalysisKey VerifierAnalysis::Key; 5817 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 5818 ModuleAnalysisManager &) { 5819 Result Res; 5820 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 5821 return Res; 5822 } 5823 5824 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 5825 FunctionAnalysisManager &) { 5826 return { llvm::verifyFunction(F, &dbgs()), false }; 5827 } 5828 5829 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 5830 auto Res = AM.getResult<VerifierAnalysis>(M); 5831 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 5832 report_fatal_error("Broken module found, compilation aborted!"); 5833 5834 return PreservedAnalyses::all(); 5835 } 5836 5837 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 5838 auto res = AM.getResult<VerifierAnalysis>(F); 5839 if (res.IRBroken && FatalErrors) 5840 report_fatal_error("Broken function found, compilation aborted!"); 5841 5842 return PreservedAnalyses::all(); 5843 } 5844