1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // sanity checking of input to the system.
11 //
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
14 //
15 //  * Both of a binary operator's parameters are of the same type
16 //  * Verify that the indices of mem access instructions match other operands
17 //  * Verify that arithmetic and other things are only performed on first-class
18 //    types.  Verify that shifts & logicals only happen on integrals f.e.
19 //  * All of the constants in a switch statement are of the correct type
20 //  * The code is in valid SSA form
21 //  * It should be illegal to put a label into any other type (like a structure)
22 //    or to return one. [except constant arrays!]
23 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 //  * PHI nodes must have an entry for each predecessor, with no extras.
25 //  * PHI nodes must be the first thing in a basic block, all grouped together
26 //  * PHI nodes must have at least one entry
27 //  * All basic blocks should only end with terminator insts, not contain them
28 //  * The entry node to a function must not have predecessors
29 //  * All Instructions must be embedded into a basic block
30 //  * Functions cannot take a void-typed parameter
31 //  * Verify that a function's argument list agrees with it's declared type.
32 //  * It is illegal to specify a name for a void value.
33 //  * It is illegal to have a internal global value with no initializer
34 //  * It is illegal to have a ret instruction that returns a value that does not
35 //    agree with the function return value type.
36 //  * Function call argument types match the function prototype
37 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
38 //    only by the unwind edge of an invoke instruction.
39 //  * A landingpad instruction must be the first non-PHI instruction in the
40 //    block.
41 //  * Landingpad instructions must be in a function with a personality function.
42 //  * All other things that are tested by asserts spread about the code...
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/ilist.h"
62 #include "llvm/BinaryFormat/Dwarf.h"
63 #include "llvm/IR/Argument.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Comdat.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DebugInfo.h"
74 #include "llvm/IR/DebugInfoMetadata.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstVisitor.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/LLVMContext.h"
90 #include "llvm/IR/Metadata.h"
91 #include "llvm/IR/Module.h"
92 #include "llvm/IR/ModuleSlotTracker.h"
93 #include "llvm/IR/PassManager.h"
94 #include "llvm/IR/Statepoint.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Use.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/Pass.h"
100 #include "llvm/Support/AtomicOrdering.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MathExtras.h"
106 #include "llvm/Support/raw_ostream.h"
107 #include <algorithm>
108 #include <cassert>
109 #include <cstdint>
110 #include <memory>
111 #include <string>
112 #include <utility>
113 
114 using namespace llvm;
115 
116 namespace llvm {
117 
118 struct VerifierSupport {
119   raw_ostream *OS;
120   const Module &M;
121   ModuleSlotTracker MST;
122   Triple TT;
123   const DataLayout &DL;
124   LLVMContext &Context;
125 
126   /// Track the brokenness of the module while recursively visiting.
127   bool Broken = false;
128   /// Broken debug info can be "recovered" from by stripping the debug info.
129   bool BrokenDebugInfo = false;
130   /// Whether to treat broken debug info as an error.
131   bool TreatBrokenDebugInfoAsError = true;
132 
133   explicit VerifierSupport(raw_ostream *OS, const Module &M)
134       : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
135         Context(M.getContext()) {}
136 
137 private:
138   void Write(const Module *M) {
139     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
140   }
141 
142   void Write(const Value *V) {
143     if (V)
144       Write(*V);
145   }
146 
147   void Write(const Value &V) {
148     if (isa<Instruction>(V)) {
149       V.print(*OS, MST);
150       *OS << '\n';
151     } else {
152       V.printAsOperand(*OS, true, MST);
153       *OS << '\n';
154     }
155   }
156 
157   void Write(const Metadata *MD) {
158     if (!MD)
159       return;
160     MD->print(*OS, MST, &M);
161     *OS << '\n';
162   }
163 
164   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
165     Write(MD.get());
166   }
167 
168   void Write(const NamedMDNode *NMD) {
169     if (!NMD)
170       return;
171     NMD->print(*OS, MST);
172     *OS << '\n';
173   }
174 
175   void Write(Type *T) {
176     if (!T)
177       return;
178     *OS << ' ' << *T;
179   }
180 
181   void Write(const Comdat *C) {
182     if (!C)
183       return;
184     *OS << *C;
185   }
186 
187   void Write(const APInt *AI) {
188     if (!AI)
189       return;
190     *OS << *AI << '\n';
191   }
192 
193   void Write(const unsigned i) { *OS << i << '\n'; }
194 
195   template <typename T> void Write(ArrayRef<T> Vs) {
196     for (const T &V : Vs)
197       Write(V);
198   }
199 
200   template <typename T1, typename... Ts>
201   void WriteTs(const T1 &V1, const Ts &... Vs) {
202     Write(V1);
203     WriteTs(Vs...);
204   }
205 
206   template <typename... Ts> void WriteTs() {}
207 
208 public:
209   /// A check failed, so printout out the condition and the message.
210   ///
211   /// This provides a nice place to put a breakpoint if you want to see why
212   /// something is not correct.
213   void CheckFailed(const Twine &Message) {
214     if (OS)
215       *OS << Message << '\n';
216     Broken = true;
217   }
218 
219   /// A check failed (with values to print).
220   ///
221   /// This calls the Message-only version so that the above is easier to set a
222   /// breakpoint on.
223   template <typename T1, typename... Ts>
224   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
225     CheckFailed(Message);
226     if (OS)
227       WriteTs(V1, Vs...);
228   }
229 
230   /// A debug info check failed.
231   void DebugInfoCheckFailed(const Twine &Message) {
232     if (OS)
233       *OS << Message << '\n';
234     Broken |= TreatBrokenDebugInfoAsError;
235     BrokenDebugInfo = true;
236   }
237 
238   /// A debug info check failed (with values to print).
239   template <typename T1, typename... Ts>
240   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
241                             const Ts &... Vs) {
242     DebugInfoCheckFailed(Message);
243     if (OS)
244       WriteTs(V1, Vs...);
245   }
246 };
247 
248 } // namespace llvm
249 
250 namespace {
251 
252 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
253   friend class InstVisitor<Verifier>;
254 
255   DominatorTree DT;
256 
257   /// When verifying a basic block, keep track of all of the
258   /// instructions we have seen so far.
259   ///
260   /// This allows us to do efficient dominance checks for the case when an
261   /// instruction has an operand that is an instruction in the same block.
262   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
263 
264   /// Keep track of the metadata nodes that have been checked already.
265   SmallPtrSet<const Metadata *, 32> MDNodes;
266 
267   /// Keep track which DISubprogram is attached to which function.
268   DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
269 
270   /// Track all DICompileUnits visited.
271   SmallPtrSet<const Metadata *, 2> CUVisited;
272 
273   /// The result type for a landingpad.
274   Type *LandingPadResultTy;
275 
276   /// Whether we've seen a call to @llvm.localescape in this function
277   /// already.
278   bool SawFrameEscape;
279 
280   /// Whether the current function has a DISubprogram attached to it.
281   bool HasDebugInfo = false;
282 
283   /// Whether source was present on the first DIFile encountered in each CU.
284   DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
285 
286   /// Stores the count of how many objects were passed to llvm.localescape for a
287   /// given function and the largest index passed to llvm.localrecover.
288   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
289 
290   // Maps catchswitches and cleanuppads that unwind to siblings to the
291   // terminators that indicate the unwind, used to detect cycles therein.
292   MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
293 
294   /// Cache of constants visited in search of ConstantExprs.
295   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
296 
297   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
298   SmallVector<const Function *, 4> DeoptimizeDeclarations;
299 
300   // Verify that this GlobalValue is only used in this module.
301   // This map is used to avoid visiting uses twice. We can arrive at a user
302   // twice, if they have multiple operands. In particular for very large
303   // constant expressions, we can arrive at a particular user many times.
304   SmallPtrSet<const Value *, 32> GlobalValueVisited;
305 
306   // Keeps track of duplicate function argument debug info.
307   SmallVector<const DILocalVariable *, 16> DebugFnArgs;
308 
309   TBAAVerifier TBAAVerifyHelper;
310 
311   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
312 
313 public:
314   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
315                     const Module &M)
316       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
317         SawFrameEscape(false), TBAAVerifyHelper(this) {
318     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
319   }
320 
321   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
322 
323   bool verify(const Function &F) {
324     assert(F.getParent() == &M &&
325            "An instance of this class only works with a specific module!");
326 
327     // First ensure the function is well-enough formed to compute dominance
328     // information, and directly compute a dominance tree. We don't rely on the
329     // pass manager to provide this as it isolates us from a potentially
330     // out-of-date dominator tree and makes it significantly more complex to run
331     // this code outside of a pass manager.
332     // FIXME: It's really gross that we have to cast away constness here.
333     if (!F.empty())
334       DT.recalculate(const_cast<Function &>(F));
335 
336     for (const BasicBlock &BB : F) {
337       if (!BB.empty() && BB.back().isTerminator())
338         continue;
339 
340       if (OS) {
341         *OS << "Basic Block in function '" << F.getName()
342             << "' does not have terminator!\n";
343         BB.printAsOperand(*OS, true, MST);
344         *OS << "\n";
345       }
346       return false;
347     }
348 
349     Broken = false;
350     // FIXME: We strip const here because the inst visitor strips const.
351     visit(const_cast<Function &>(F));
352     verifySiblingFuncletUnwinds();
353     InstsInThisBlock.clear();
354     DebugFnArgs.clear();
355     LandingPadResultTy = nullptr;
356     SawFrameEscape = false;
357     SiblingFuncletInfo.clear();
358 
359     return !Broken;
360   }
361 
362   /// Verify the module that this instance of \c Verifier was initialized with.
363   bool verify() {
364     Broken = false;
365 
366     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
367     for (const Function &F : M)
368       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
369         DeoptimizeDeclarations.push_back(&F);
370 
371     // Now that we've visited every function, verify that we never asked to
372     // recover a frame index that wasn't escaped.
373     verifyFrameRecoverIndices();
374     for (const GlobalVariable &GV : M.globals())
375       visitGlobalVariable(GV);
376 
377     for (const GlobalAlias &GA : M.aliases())
378       visitGlobalAlias(GA);
379 
380     for (const NamedMDNode &NMD : M.named_metadata())
381       visitNamedMDNode(NMD);
382 
383     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
384       visitComdat(SMEC.getValue());
385 
386     visitModuleFlags(M);
387     visitModuleIdents(M);
388     visitModuleCommandLines(M);
389 
390     verifyCompileUnits();
391 
392     verifyDeoptimizeCallingConvs();
393     DISubprogramAttachments.clear();
394     return !Broken;
395   }
396 
397 private:
398   // Verification methods...
399   void visitGlobalValue(const GlobalValue &GV);
400   void visitGlobalVariable(const GlobalVariable &GV);
401   void visitGlobalAlias(const GlobalAlias &GA);
402   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
403   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
404                            const GlobalAlias &A, const Constant &C);
405   void visitNamedMDNode(const NamedMDNode &NMD);
406   void visitMDNode(const MDNode &MD);
407   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
408   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
409   void visitComdat(const Comdat &C);
410   void visitModuleIdents(const Module &M);
411   void visitModuleCommandLines(const Module &M);
412   void visitModuleFlags(const Module &M);
413   void visitModuleFlag(const MDNode *Op,
414                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
415                        SmallVectorImpl<const MDNode *> &Requirements);
416   void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
417   void visitFunction(const Function &F);
418   void visitBasicBlock(BasicBlock &BB);
419   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
420   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
421   void visitProfMetadata(Instruction &I, MDNode *MD);
422 
423   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
424 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
425 #include "llvm/IR/Metadata.def"
426   void visitDIScope(const DIScope &N);
427   void visitDIVariable(const DIVariable &N);
428   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
429   void visitDITemplateParameter(const DITemplateParameter &N);
430 
431   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
432 
433   // InstVisitor overrides...
434   using InstVisitor<Verifier>::visit;
435   void visit(Instruction &I);
436 
437   void visitTruncInst(TruncInst &I);
438   void visitZExtInst(ZExtInst &I);
439   void visitSExtInst(SExtInst &I);
440   void visitFPTruncInst(FPTruncInst &I);
441   void visitFPExtInst(FPExtInst &I);
442   void visitFPToUIInst(FPToUIInst &I);
443   void visitFPToSIInst(FPToSIInst &I);
444   void visitUIToFPInst(UIToFPInst &I);
445   void visitSIToFPInst(SIToFPInst &I);
446   void visitIntToPtrInst(IntToPtrInst &I);
447   void visitPtrToIntInst(PtrToIntInst &I);
448   void visitBitCastInst(BitCastInst &I);
449   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
450   void visitPHINode(PHINode &PN);
451   void visitCallBase(CallBase &Call);
452   void visitUnaryOperator(UnaryOperator &U);
453   void visitBinaryOperator(BinaryOperator &B);
454   void visitICmpInst(ICmpInst &IC);
455   void visitFCmpInst(FCmpInst &FC);
456   void visitExtractElementInst(ExtractElementInst &EI);
457   void visitInsertElementInst(InsertElementInst &EI);
458   void visitShuffleVectorInst(ShuffleVectorInst &EI);
459   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
460   void visitCallInst(CallInst &CI);
461   void visitInvokeInst(InvokeInst &II);
462   void visitGetElementPtrInst(GetElementPtrInst &GEP);
463   void visitLoadInst(LoadInst &LI);
464   void visitStoreInst(StoreInst &SI);
465   void verifyDominatesUse(Instruction &I, unsigned i);
466   void visitInstruction(Instruction &I);
467   void visitTerminator(Instruction &I);
468   void visitBranchInst(BranchInst &BI);
469   void visitReturnInst(ReturnInst &RI);
470   void visitSwitchInst(SwitchInst &SI);
471   void visitIndirectBrInst(IndirectBrInst &BI);
472   void visitCallBrInst(CallBrInst &CBI);
473   void visitSelectInst(SelectInst &SI);
474   void visitUserOp1(Instruction &I);
475   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
476   void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
477   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
478   void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
479   void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
480   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
481   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
482   void visitFenceInst(FenceInst &FI);
483   void visitAllocaInst(AllocaInst &AI);
484   void visitExtractValueInst(ExtractValueInst &EVI);
485   void visitInsertValueInst(InsertValueInst &IVI);
486   void visitEHPadPredecessors(Instruction &I);
487   void visitLandingPadInst(LandingPadInst &LPI);
488   void visitResumeInst(ResumeInst &RI);
489   void visitCatchPadInst(CatchPadInst &CPI);
490   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
491   void visitCleanupPadInst(CleanupPadInst &CPI);
492   void visitFuncletPadInst(FuncletPadInst &FPI);
493   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
494   void visitCleanupReturnInst(CleanupReturnInst &CRI);
495 
496   void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
497   void verifySwiftErrorValue(const Value *SwiftErrorVal);
498   void verifyMustTailCall(CallInst &CI);
499   bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
500                         unsigned ArgNo, std::string &Suffix);
501   bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
502   void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
503                             const Value *V);
504   void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
505   void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
506                            const Value *V, bool IsIntrinsic);
507   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
508 
509   void visitConstantExprsRecursively(const Constant *EntryC);
510   void visitConstantExpr(const ConstantExpr *CE);
511   void verifyStatepoint(const CallBase &Call);
512   void verifyFrameRecoverIndices();
513   void verifySiblingFuncletUnwinds();
514 
515   void verifyFragmentExpression(const DbgVariableIntrinsic &I);
516   template <typename ValueOrMetadata>
517   void verifyFragmentExpression(const DIVariable &V,
518                                 DIExpression::FragmentInfo Fragment,
519                                 ValueOrMetadata *Desc);
520   void verifyFnArgs(const DbgVariableIntrinsic &I);
521   void verifyNotEntryValue(const DbgVariableIntrinsic &I);
522 
523   /// Module-level debug info verification...
524   void verifyCompileUnits();
525 
526   /// Module-level verification that all @llvm.experimental.deoptimize
527   /// declarations share the same calling convention.
528   void verifyDeoptimizeCallingConvs();
529 
530   /// Verify all-or-nothing property of DIFile source attribute within a CU.
531   void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
532 };
533 
534 } // end anonymous namespace
535 
536 /// We know that cond should be true, if not print an error message.
537 #define Assert(C, ...) \
538   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
539 
540 /// We know that a debug info condition should be true, if not print
541 /// an error message.
542 #define AssertDI(C, ...) \
543   do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
544 
545 void Verifier::visit(Instruction &I) {
546   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
547     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
548   InstVisitor<Verifier>::visit(I);
549 }
550 
551 // Helper to recursively iterate over indirect users. By
552 // returning false, the callback can ask to stop recursing
553 // further.
554 static void forEachUser(const Value *User,
555                         SmallPtrSet<const Value *, 32> &Visited,
556                         llvm::function_ref<bool(const Value *)> Callback) {
557   if (!Visited.insert(User).second)
558     return;
559   for (const Value *TheNextUser : User->materialized_users())
560     if (Callback(TheNextUser))
561       forEachUser(TheNextUser, Visited, Callback);
562 }
563 
564 void Verifier::visitGlobalValue(const GlobalValue &GV) {
565   Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
566          "Global is external, but doesn't have external or weak linkage!", &GV);
567 
568   Assert(GV.getAlignment() <= Value::MaximumAlignment,
569          "huge alignment values are unsupported", &GV);
570   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
571          "Only global variables can have appending linkage!", &GV);
572 
573   if (GV.hasAppendingLinkage()) {
574     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
575     Assert(GVar && GVar->getValueType()->isArrayTy(),
576            "Only global arrays can have appending linkage!", GVar);
577   }
578 
579   if (GV.isDeclarationForLinker())
580     Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
581 
582   if (GV.hasDLLImportStorageClass()) {
583     Assert(!GV.isDSOLocal(),
584            "GlobalValue with DLLImport Storage is dso_local!", &GV);
585 
586     Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||
587                GV.hasAvailableExternallyLinkage(),
588            "Global is marked as dllimport, but not external", &GV);
589   }
590 
591   if (GV.hasLocalLinkage())
592     Assert(GV.isDSOLocal(),
593            "GlobalValue with private or internal linkage must be dso_local!",
594            &GV);
595 
596   if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage())
597     Assert(GV.isDSOLocal(),
598            "GlobalValue with non default visibility must be dso_local!", &GV);
599 
600   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
601     if (const Instruction *I = dyn_cast<Instruction>(V)) {
602       if (!I->getParent() || !I->getParent()->getParent())
603         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
604                     I);
605       else if (I->getParent()->getParent()->getParent() != &M)
606         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
607                     I->getParent()->getParent(),
608                     I->getParent()->getParent()->getParent());
609       return false;
610     } else if (const Function *F = dyn_cast<Function>(V)) {
611       if (F->getParent() != &M)
612         CheckFailed("Global is used by function in a different module", &GV, &M,
613                     F, F->getParent());
614       return false;
615     }
616     return true;
617   });
618 }
619 
620 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
621   if (GV.hasInitializer()) {
622     Assert(GV.getInitializer()->getType() == GV.getValueType(),
623            "Global variable initializer type does not match global "
624            "variable type!",
625            &GV);
626     // If the global has common linkage, it must have a zero initializer and
627     // cannot be constant.
628     if (GV.hasCommonLinkage()) {
629       Assert(GV.getInitializer()->isNullValue(),
630              "'common' global must have a zero initializer!", &GV);
631       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
632              &GV);
633       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
634     }
635   }
636 
637   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
638                        GV.getName() == "llvm.global_dtors")) {
639     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
640            "invalid linkage for intrinsic global variable", &GV);
641     // Don't worry about emitting an error for it not being an array,
642     // visitGlobalValue will complain on appending non-array.
643     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
644       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
645       PointerType *FuncPtrTy =
646           FunctionType::get(Type::getVoidTy(Context), false)->
647           getPointerTo(DL.getProgramAddressSpace());
648       Assert(STy &&
649                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
650                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
651                  STy->getTypeAtIndex(1) == FuncPtrTy,
652              "wrong type for intrinsic global variable", &GV);
653       Assert(STy->getNumElements() == 3,
654              "the third field of the element type is mandatory, "
655              "specify i8* null to migrate from the obsoleted 2-field form");
656       Type *ETy = STy->getTypeAtIndex(2);
657       Assert(ETy->isPointerTy() &&
658                  cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
659              "wrong type for intrinsic global variable", &GV);
660     }
661   }
662 
663   if (GV.hasName() && (GV.getName() == "llvm.used" ||
664                        GV.getName() == "llvm.compiler.used")) {
665     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
666            "invalid linkage for intrinsic global variable", &GV);
667     Type *GVType = GV.getValueType();
668     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
669       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
670       Assert(PTy, "wrong type for intrinsic global variable", &GV);
671       if (GV.hasInitializer()) {
672         const Constant *Init = GV.getInitializer();
673         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
674         Assert(InitArray, "wrong initalizer for intrinsic global variable",
675                Init);
676         for (Value *Op : InitArray->operands()) {
677           Value *V = Op->stripPointerCasts();
678           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
679                      isa<GlobalAlias>(V),
680                  "invalid llvm.used member", V);
681           Assert(V->hasName(), "members of llvm.used must be named", V);
682         }
683       }
684     }
685   }
686 
687   // Visit any debug info attachments.
688   SmallVector<MDNode *, 1> MDs;
689   GV.getMetadata(LLVMContext::MD_dbg, MDs);
690   for (auto *MD : MDs) {
691     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
692       visitDIGlobalVariableExpression(*GVE);
693     else
694       AssertDI(false, "!dbg attachment of global variable must be a "
695                       "DIGlobalVariableExpression");
696   }
697 
698   // Scalable vectors cannot be global variables, since we don't know
699   // the runtime size. If the global is a struct or an array containing
700   // scalable vectors, that will be caught by the isValidElementType methods
701   // in StructType or ArrayType instead.
702   if (auto *VTy = dyn_cast<VectorType>(GV.getValueType()))
703     Assert(!VTy->isScalable(), "Globals cannot contain scalable vectors", &GV);
704 
705   if (!GV.hasInitializer()) {
706     visitGlobalValue(GV);
707     return;
708   }
709 
710   // Walk any aggregate initializers looking for bitcasts between address spaces
711   visitConstantExprsRecursively(GV.getInitializer());
712 
713   visitGlobalValue(GV);
714 }
715 
716 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
717   SmallPtrSet<const GlobalAlias*, 4> Visited;
718   Visited.insert(&GA);
719   visitAliaseeSubExpr(Visited, GA, C);
720 }
721 
722 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
723                                    const GlobalAlias &GA, const Constant &C) {
724   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
725     Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
726            &GA);
727 
728     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
729       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
730 
731       Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
732              &GA);
733     } else {
734       // Only continue verifying subexpressions of GlobalAliases.
735       // Do not recurse into global initializers.
736       return;
737     }
738   }
739 
740   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
741     visitConstantExprsRecursively(CE);
742 
743   for (const Use &U : C.operands()) {
744     Value *V = &*U;
745     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
746       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
747     else if (const auto *C2 = dyn_cast<Constant>(V))
748       visitAliaseeSubExpr(Visited, GA, *C2);
749   }
750 }
751 
752 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
753   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
754          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
755          "weak_odr, or external linkage!",
756          &GA);
757   const Constant *Aliasee = GA.getAliasee();
758   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
759   Assert(GA.getType() == Aliasee->getType(),
760          "Alias and aliasee types should match!", &GA);
761 
762   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
763          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
764 
765   visitAliaseeSubExpr(GA, *Aliasee);
766 
767   visitGlobalValue(GA);
768 }
769 
770 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
771   // There used to be various other llvm.dbg.* nodes, but we don't support
772   // upgrading them and we want to reserve the namespace for future uses.
773   if (NMD.getName().startswith("llvm.dbg."))
774     AssertDI(NMD.getName() == "llvm.dbg.cu",
775              "unrecognized named metadata node in the llvm.dbg namespace",
776              &NMD);
777   for (const MDNode *MD : NMD.operands()) {
778     if (NMD.getName() == "llvm.dbg.cu")
779       AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
780 
781     if (!MD)
782       continue;
783 
784     visitMDNode(*MD);
785   }
786 }
787 
788 void Verifier::visitMDNode(const MDNode &MD) {
789   // Only visit each node once.  Metadata can be mutually recursive, so this
790   // avoids infinite recursion here, as well as being an optimization.
791   if (!MDNodes.insert(&MD).second)
792     return;
793 
794   switch (MD.getMetadataID()) {
795   default:
796     llvm_unreachable("Invalid MDNode subclass");
797   case Metadata::MDTupleKind:
798     break;
799 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
800   case Metadata::CLASS##Kind:                                                  \
801     visit##CLASS(cast<CLASS>(MD));                                             \
802     break;
803 #include "llvm/IR/Metadata.def"
804   }
805 
806   for (const Metadata *Op : MD.operands()) {
807     if (!Op)
808       continue;
809     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
810            &MD, Op);
811     if (auto *N = dyn_cast<MDNode>(Op)) {
812       visitMDNode(*N);
813       continue;
814     }
815     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
816       visitValueAsMetadata(*V, nullptr);
817       continue;
818     }
819   }
820 
821   // Check these last, so we diagnose problems in operands first.
822   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
823   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
824 }
825 
826 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
827   Assert(MD.getValue(), "Expected valid value", &MD);
828   Assert(!MD.getValue()->getType()->isMetadataTy(),
829          "Unexpected metadata round-trip through values", &MD, MD.getValue());
830 
831   auto *L = dyn_cast<LocalAsMetadata>(&MD);
832   if (!L)
833     return;
834 
835   Assert(F, "function-local metadata used outside a function", L);
836 
837   // If this was an instruction, bb, or argument, verify that it is in the
838   // function that we expect.
839   Function *ActualF = nullptr;
840   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
841     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
842     ActualF = I->getParent()->getParent();
843   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
844     ActualF = BB->getParent();
845   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
846     ActualF = A->getParent();
847   assert(ActualF && "Unimplemented function local metadata case!");
848 
849   Assert(ActualF == F, "function-local metadata used in wrong function", L);
850 }
851 
852 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
853   Metadata *MD = MDV.getMetadata();
854   if (auto *N = dyn_cast<MDNode>(MD)) {
855     visitMDNode(*N);
856     return;
857   }
858 
859   // Only visit each node once.  Metadata can be mutually recursive, so this
860   // avoids infinite recursion here, as well as being an optimization.
861   if (!MDNodes.insert(MD).second)
862     return;
863 
864   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
865     visitValueAsMetadata(*V, F);
866 }
867 
868 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
869 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
870 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
871 
872 void Verifier::visitDILocation(const DILocation &N) {
873   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
874            "location requires a valid scope", &N, N.getRawScope());
875   if (auto *IA = N.getRawInlinedAt())
876     AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
877   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
878     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
879 }
880 
881 void Verifier::visitGenericDINode(const GenericDINode &N) {
882   AssertDI(N.getTag(), "invalid tag", &N);
883 }
884 
885 void Verifier::visitDIScope(const DIScope &N) {
886   if (auto *F = N.getRawFile())
887     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
888 }
889 
890 void Verifier::visitDISubrange(const DISubrange &N) {
891   AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
892   auto Count = N.getCount();
893   AssertDI(Count, "Count must either be a signed constant or a DIVariable",
894            &N);
895   AssertDI(!Count.is<ConstantInt*>() ||
896                Count.get<ConstantInt*>()->getSExtValue() >= -1,
897            "invalid subrange count", &N);
898 }
899 
900 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
901   AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
902 }
903 
904 void Verifier::visitDIBasicType(const DIBasicType &N) {
905   AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
906                N.getTag() == dwarf::DW_TAG_unspecified_type,
907            "invalid tag", &N);
908   AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
909             "has conflicting flags", &N);
910 }
911 
912 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
913   // Common scope checks.
914   visitDIScope(N);
915 
916   AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
917                N.getTag() == dwarf::DW_TAG_pointer_type ||
918                N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
919                N.getTag() == dwarf::DW_TAG_reference_type ||
920                N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
921                N.getTag() == dwarf::DW_TAG_const_type ||
922                N.getTag() == dwarf::DW_TAG_volatile_type ||
923                N.getTag() == dwarf::DW_TAG_restrict_type ||
924                N.getTag() == dwarf::DW_TAG_atomic_type ||
925                N.getTag() == dwarf::DW_TAG_member ||
926                N.getTag() == dwarf::DW_TAG_inheritance ||
927                N.getTag() == dwarf::DW_TAG_friend,
928            "invalid tag", &N);
929   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
930     AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
931              N.getRawExtraData());
932   }
933 
934   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
935   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
936            N.getRawBaseType());
937 
938   if (N.getDWARFAddressSpace()) {
939     AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
940                  N.getTag() == dwarf::DW_TAG_reference_type ||
941                  N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
942              "DWARF address space only applies to pointer or reference types",
943              &N);
944   }
945 }
946 
947 /// Detect mutually exclusive flags.
948 static bool hasConflictingReferenceFlags(unsigned Flags) {
949   return ((Flags & DINode::FlagLValueReference) &&
950           (Flags & DINode::FlagRValueReference)) ||
951          ((Flags & DINode::FlagTypePassByValue) &&
952           (Flags & DINode::FlagTypePassByReference));
953 }
954 
955 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
956   auto *Params = dyn_cast<MDTuple>(&RawParams);
957   AssertDI(Params, "invalid template params", &N, &RawParams);
958   for (Metadata *Op : Params->operands()) {
959     AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
960              &N, Params, Op);
961   }
962 }
963 
964 void Verifier::visitDICompositeType(const DICompositeType &N) {
965   // Common scope checks.
966   visitDIScope(N);
967 
968   AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
969                N.getTag() == dwarf::DW_TAG_structure_type ||
970                N.getTag() == dwarf::DW_TAG_union_type ||
971                N.getTag() == dwarf::DW_TAG_enumeration_type ||
972                N.getTag() == dwarf::DW_TAG_class_type ||
973                N.getTag() == dwarf::DW_TAG_variant_part,
974            "invalid tag", &N);
975 
976   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
977   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
978            N.getRawBaseType());
979 
980   AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
981            "invalid composite elements", &N, N.getRawElements());
982   AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
983            N.getRawVTableHolder());
984   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
985            "invalid reference flags", &N);
986   unsigned DIBlockByRefStruct = 1 << 4;
987   AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,
988            "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
989 
990   if (N.isVector()) {
991     const DINodeArray Elements = N.getElements();
992     AssertDI(Elements.size() == 1 &&
993              Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
994              "invalid vector, expected one element of type subrange", &N);
995   }
996 
997   if (auto *Params = N.getRawTemplateParams())
998     visitTemplateParams(N, *Params);
999 
1000   if (N.getTag() == dwarf::DW_TAG_class_type ||
1001       N.getTag() == dwarf::DW_TAG_union_type) {
1002     AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
1003              "class/union requires a filename", &N, N.getFile());
1004   }
1005 
1006   if (auto *D = N.getRawDiscriminator()) {
1007     AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1008              "discriminator can only appear on variant part");
1009   }
1010 }
1011 
1012 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1013   AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1014   if (auto *Types = N.getRawTypeArray()) {
1015     AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1016     for (Metadata *Ty : N.getTypeArray()->operands()) {
1017       AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1018     }
1019   }
1020   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1021            "invalid reference flags", &N);
1022 }
1023 
1024 void Verifier::visitDIFile(const DIFile &N) {
1025   AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1026   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1027   if (Checksum) {
1028     AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1029              "invalid checksum kind", &N);
1030     size_t Size;
1031     switch (Checksum->Kind) {
1032     case DIFile::CSK_MD5:
1033       Size = 32;
1034       break;
1035     case DIFile::CSK_SHA1:
1036       Size = 40;
1037       break;
1038     }
1039     AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1040     AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1041              "invalid checksum", &N);
1042   }
1043 }
1044 
1045 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1046   AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1047   AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1048 
1049   // Don't bother verifying the compilation directory or producer string
1050   // as those could be empty.
1051   AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1052            N.getRawFile());
1053   AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1054            N.getFile());
1055 
1056   verifySourceDebugInfo(N, *N.getFile());
1057 
1058   AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1059            "invalid emission kind", &N);
1060 
1061   if (auto *Array = N.getRawEnumTypes()) {
1062     AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1063     for (Metadata *Op : N.getEnumTypes()->operands()) {
1064       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1065       AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1066                "invalid enum type", &N, N.getEnumTypes(), Op);
1067     }
1068   }
1069   if (auto *Array = N.getRawRetainedTypes()) {
1070     AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1071     for (Metadata *Op : N.getRetainedTypes()->operands()) {
1072       AssertDI(Op && (isa<DIType>(Op) ||
1073                       (isa<DISubprogram>(Op) &&
1074                        !cast<DISubprogram>(Op)->isDefinition())),
1075                "invalid retained type", &N, Op);
1076     }
1077   }
1078   if (auto *Array = N.getRawGlobalVariables()) {
1079     AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1080     for (Metadata *Op : N.getGlobalVariables()->operands()) {
1081       AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1082                "invalid global variable ref", &N, Op);
1083     }
1084   }
1085   if (auto *Array = N.getRawImportedEntities()) {
1086     AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1087     for (Metadata *Op : N.getImportedEntities()->operands()) {
1088       AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1089                &N, Op);
1090     }
1091   }
1092   if (auto *Array = N.getRawMacros()) {
1093     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1094     for (Metadata *Op : N.getMacros()->operands()) {
1095       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1096     }
1097   }
1098   CUVisited.insert(&N);
1099 }
1100 
1101 void Verifier::visitDISubprogram(const DISubprogram &N) {
1102   AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1103   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1104   if (auto *F = N.getRawFile())
1105     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1106   else
1107     AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1108   if (auto *T = N.getRawType())
1109     AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1110   AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1111            N.getRawContainingType());
1112   if (auto *Params = N.getRawTemplateParams())
1113     visitTemplateParams(N, *Params);
1114   if (auto *S = N.getRawDeclaration())
1115     AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1116              "invalid subprogram declaration", &N, S);
1117   if (auto *RawNode = N.getRawRetainedNodes()) {
1118     auto *Node = dyn_cast<MDTuple>(RawNode);
1119     AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1120     for (Metadata *Op : Node->operands()) {
1121       AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1122                "invalid retained nodes, expected DILocalVariable or DILabel",
1123                &N, Node, Op);
1124     }
1125   }
1126   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1127            "invalid reference flags", &N);
1128 
1129   auto *Unit = N.getRawUnit();
1130   if (N.isDefinition()) {
1131     // Subprogram definitions (not part of the type hierarchy).
1132     AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1133     AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1134     AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1135     if (N.getFile())
1136       verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1137   } else {
1138     // Subprogram declarations (part of the type hierarchy).
1139     AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1140   }
1141 
1142   if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1143     auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1144     AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1145     for (Metadata *Op : ThrownTypes->operands())
1146       AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1147                Op);
1148   }
1149 
1150   if (N.areAllCallsDescribed())
1151     AssertDI(N.isDefinition(),
1152              "DIFlagAllCallsDescribed must be attached to a definition");
1153 }
1154 
1155 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1156   AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1157   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1158            "invalid local scope", &N, N.getRawScope());
1159   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1160     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1161 }
1162 
1163 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1164   visitDILexicalBlockBase(N);
1165 
1166   AssertDI(N.getLine() || !N.getColumn(),
1167            "cannot have column info without line info", &N);
1168 }
1169 
1170 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1171   visitDILexicalBlockBase(N);
1172 }
1173 
1174 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1175   AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1176   if (auto *S = N.getRawScope())
1177     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1178   if (auto *S = N.getRawDecl())
1179     AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1180 }
1181 
1182 void Verifier::visitDINamespace(const DINamespace &N) {
1183   AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1184   if (auto *S = N.getRawScope())
1185     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1186 }
1187 
1188 void Verifier::visitDIMacro(const DIMacro &N) {
1189   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1190                N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1191            "invalid macinfo type", &N);
1192   AssertDI(!N.getName().empty(), "anonymous macro", &N);
1193   if (!N.getValue().empty()) {
1194     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1195   }
1196 }
1197 
1198 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1199   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1200            "invalid macinfo type", &N);
1201   if (auto *F = N.getRawFile())
1202     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1203 
1204   if (auto *Array = N.getRawElements()) {
1205     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1206     for (Metadata *Op : N.getElements()->operands()) {
1207       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1208     }
1209   }
1210 }
1211 
1212 void Verifier::visitDIModule(const DIModule &N) {
1213   AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1214   AssertDI(!N.getName().empty(), "anonymous module", &N);
1215 }
1216 
1217 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1218   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1219 }
1220 
1221 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1222   visitDITemplateParameter(N);
1223 
1224   AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1225            &N);
1226 }
1227 
1228 void Verifier::visitDITemplateValueParameter(
1229     const DITemplateValueParameter &N) {
1230   visitDITemplateParameter(N);
1231 
1232   AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1233                N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1234                N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1235            "invalid tag", &N);
1236 }
1237 
1238 void Verifier::visitDIVariable(const DIVariable &N) {
1239   if (auto *S = N.getRawScope())
1240     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1241   if (auto *F = N.getRawFile())
1242     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1243 }
1244 
1245 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1246   // Checks common to all variables.
1247   visitDIVariable(N);
1248 
1249   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1250   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1251   AssertDI(N.getType(), "missing global variable type", &N);
1252   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1253     AssertDI(isa<DIDerivedType>(Member),
1254              "invalid static data member declaration", &N, Member);
1255   }
1256 }
1257 
1258 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1259   // Checks common to all variables.
1260   visitDIVariable(N);
1261 
1262   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1263   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1264   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1265            "local variable requires a valid scope", &N, N.getRawScope());
1266   if (auto Ty = N.getType())
1267     AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1268 }
1269 
1270 void Verifier::visitDILabel(const DILabel &N) {
1271   if (auto *S = N.getRawScope())
1272     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1273   if (auto *F = N.getRawFile())
1274     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1275 
1276   AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1277   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1278            "label requires a valid scope", &N, N.getRawScope());
1279 }
1280 
1281 void Verifier::visitDIExpression(const DIExpression &N) {
1282   AssertDI(N.isValid(), "invalid expression", &N);
1283 }
1284 
1285 void Verifier::visitDIGlobalVariableExpression(
1286     const DIGlobalVariableExpression &GVE) {
1287   AssertDI(GVE.getVariable(), "missing variable");
1288   if (auto *Var = GVE.getVariable())
1289     visitDIGlobalVariable(*Var);
1290   if (auto *Expr = GVE.getExpression()) {
1291     visitDIExpression(*Expr);
1292     if (auto Fragment = Expr->getFragmentInfo())
1293       verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1294   }
1295 }
1296 
1297 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1298   AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1299   if (auto *T = N.getRawType())
1300     AssertDI(isType(T), "invalid type ref", &N, T);
1301   if (auto *F = N.getRawFile())
1302     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1303 }
1304 
1305 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1306   AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1307                N.getTag() == dwarf::DW_TAG_imported_declaration,
1308            "invalid tag", &N);
1309   if (auto *S = N.getRawScope())
1310     AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1311   AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1312            N.getRawEntity());
1313 }
1314 
1315 void Verifier::visitComdat(const Comdat &C) {
1316   // In COFF the Module is invalid if the GlobalValue has private linkage.
1317   // Entities with private linkage don't have entries in the symbol table.
1318   if (TT.isOSBinFormatCOFF())
1319     if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1320       Assert(!GV->hasPrivateLinkage(),
1321              "comdat global value has private linkage", GV);
1322 }
1323 
1324 void Verifier::visitModuleIdents(const Module &M) {
1325   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1326   if (!Idents)
1327     return;
1328 
1329   // llvm.ident takes a list of metadata entry. Each entry has only one string.
1330   // Scan each llvm.ident entry and make sure that this requirement is met.
1331   for (const MDNode *N : Idents->operands()) {
1332     Assert(N->getNumOperands() == 1,
1333            "incorrect number of operands in llvm.ident metadata", N);
1334     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1335            ("invalid value for llvm.ident metadata entry operand"
1336             "(the operand should be a string)"),
1337            N->getOperand(0));
1338   }
1339 }
1340 
1341 void Verifier::visitModuleCommandLines(const Module &M) {
1342   const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1343   if (!CommandLines)
1344     return;
1345 
1346   // llvm.commandline takes a list of metadata entry. Each entry has only one
1347   // string. Scan each llvm.commandline entry and make sure that this
1348   // requirement is met.
1349   for (const MDNode *N : CommandLines->operands()) {
1350     Assert(N->getNumOperands() == 1,
1351            "incorrect number of operands in llvm.commandline metadata", N);
1352     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1353            ("invalid value for llvm.commandline metadata entry operand"
1354             "(the operand should be a string)"),
1355            N->getOperand(0));
1356   }
1357 }
1358 
1359 void Verifier::visitModuleFlags(const Module &M) {
1360   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1361   if (!Flags) return;
1362 
1363   // Scan each flag, and track the flags and requirements.
1364   DenseMap<const MDString*, const MDNode*> SeenIDs;
1365   SmallVector<const MDNode*, 16> Requirements;
1366   for (const MDNode *MDN : Flags->operands())
1367     visitModuleFlag(MDN, SeenIDs, Requirements);
1368 
1369   // Validate that the requirements in the module are valid.
1370   for (const MDNode *Requirement : Requirements) {
1371     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1372     const Metadata *ReqValue = Requirement->getOperand(1);
1373 
1374     const MDNode *Op = SeenIDs.lookup(Flag);
1375     if (!Op) {
1376       CheckFailed("invalid requirement on flag, flag is not present in module",
1377                   Flag);
1378       continue;
1379     }
1380 
1381     if (Op->getOperand(2) != ReqValue) {
1382       CheckFailed(("invalid requirement on flag, "
1383                    "flag does not have the required value"),
1384                   Flag);
1385       continue;
1386     }
1387   }
1388 }
1389 
1390 void
1391 Verifier::visitModuleFlag(const MDNode *Op,
1392                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
1393                           SmallVectorImpl<const MDNode *> &Requirements) {
1394   // Each module flag should have three arguments, the merge behavior (a
1395   // constant int), the flag ID (an MDString), and the value.
1396   Assert(Op->getNumOperands() == 3,
1397          "incorrect number of operands in module flag", Op);
1398   Module::ModFlagBehavior MFB;
1399   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1400     Assert(
1401         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1402         "invalid behavior operand in module flag (expected constant integer)",
1403         Op->getOperand(0));
1404     Assert(false,
1405            "invalid behavior operand in module flag (unexpected constant)",
1406            Op->getOperand(0));
1407   }
1408   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1409   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1410          Op->getOperand(1));
1411 
1412   // Sanity check the values for behaviors with additional requirements.
1413   switch (MFB) {
1414   case Module::Error:
1415   case Module::Warning:
1416   case Module::Override:
1417     // These behavior types accept any value.
1418     break;
1419 
1420   case Module::Max: {
1421     Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1422            "invalid value for 'max' module flag (expected constant integer)",
1423            Op->getOperand(2));
1424     break;
1425   }
1426 
1427   case Module::Require: {
1428     // The value should itself be an MDNode with two operands, a flag ID (an
1429     // MDString), and a value.
1430     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1431     Assert(Value && Value->getNumOperands() == 2,
1432            "invalid value for 'require' module flag (expected metadata pair)",
1433            Op->getOperand(2));
1434     Assert(isa<MDString>(Value->getOperand(0)),
1435            ("invalid value for 'require' module flag "
1436             "(first value operand should be a string)"),
1437            Value->getOperand(0));
1438 
1439     // Append it to the list of requirements, to check once all module flags are
1440     // scanned.
1441     Requirements.push_back(Value);
1442     break;
1443   }
1444 
1445   case Module::Append:
1446   case Module::AppendUnique: {
1447     // These behavior types require the operand be an MDNode.
1448     Assert(isa<MDNode>(Op->getOperand(2)),
1449            "invalid value for 'append'-type module flag "
1450            "(expected a metadata node)",
1451            Op->getOperand(2));
1452     break;
1453   }
1454   }
1455 
1456   // Unless this is a "requires" flag, check the ID is unique.
1457   if (MFB != Module::Require) {
1458     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1459     Assert(Inserted,
1460            "module flag identifiers must be unique (or of 'require' type)", ID);
1461   }
1462 
1463   if (ID->getString() == "wchar_size") {
1464     ConstantInt *Value
1465       = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1466     Assert(Value, "wchar_size metadata requires constant integer argument");
1467   }
1468 
1469   if (ID->getString() == "Linker Options") {
1470     // If the llvm.linker.options named metadata exists, we assume that the
1471     // bitcode reader has upgraded the module flag. Otherwise the flag might
1472     // have been created by a client directly.
1473     Assert(M.getNamedMetadata("llvm.linker.options"),
1474            "'Linker Options' named metadata no longer supported");
1475   }
1476 
1477   if (ID->getString() == "CG Profile") {
1478     for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1479       visitModuleFlagCGProfileEntry(MDO);
1480   }
1481 }
1482 
1483 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1484   auto CheckFunction = [&](const MDOperand &FuncMDO) {
1485     if (!FuncMDO)
1486       return;
1487     auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1488     Assert(F && isa<Function>(F->getValue()), "expected a Function or null",
1489            FuncMDO);
1490   };
1491   auto Node = dyn_cast_or_null<MDNode>(MDO);
1492   Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1493   CheckFunction(Node->getOperand(0));
1494   CheckFunction(Node->getOperand(1));
1495   auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1496   Assert(Count && Count->getType()->isIntegerTy(),
1497          "expected an integer constant", Node->getOperand(2));
1498 }
1499 
1500 /// Return true if this attribute kind only applies to functions.
1501 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1502   switch (Kind) {
1503   case Attribute::NoReturn:
1504   case Attribute::NoSync:
1505   case Attribute::WillReturn:
1506   case Attribute::NoCfCheck:
1507   case Attribute::NoUnwind:
1508   case Attribute::NoInline:
1509   case Attribute::NoFree:
1510   case Attribute::AlwaysInline:
1511   case Attribute::OptimizeForSize:
1512   case Attribute::StackProtect:
1513   case Attribute::StackProtectReq:
1514   case Attribute::StackProtectStrong:
1515   case Attribute::SafeStack:
1516   case Attribute::ShadowCallStack:
1517   case Attribute::NoRedZone:
1518   case Attribute::NoImplicitFloat:
1519   case Attribute::Naked:
1520   case Attribute::InlineHint:
1521   case Attribute::StackAlignment:
1522   case Attribute::UWTable:
1523   case Attribute::NonLazyBind:
1524   case Attribute::ReturnsTwice:
1525   case Attribute::SanitizeAddress:
1526   case Attribute::SanitizeHWAddress:
1527   case Attribute::SanitizeMemTag:
1528   case Attribute::SanitizeThread:
1529   case Attribute::SanitizeMemory:
1530   case Attribute::MinSize:
1531   case Attribute::NoDuplicate:
1532   case Attribute::Builtin:
1533   case Attribute::NoBuiltin:
1534   case Attribute::Cold:
1535   case Attribute::OptForFuzzing:
1536   case Attribute::OptimizeNone:
1537   case Attribute::JumpTable:
1538   case Attribute::Convergent:
1539   case Attribute::ArgMemOnly:
1540   case Attribute::NoRecurse:
1541   case Attribute::InaccessibleMemOnly:
1542   case Attribute::InaccessibleMemOrArgMemOnly:
1543   case Attribute::AllocSize:
1544   case Attribute::SpeculativeLoadHardening:
1545   case Attribute::Speculatable:
1546   case Attribute::StrictFP:
1547     return true;
1548   default:
1549     break;
1550   }
1551   return false;
1552 }
1553 
1554 /// Return true if this is a function attribute that can also appear on
1555 /// arguments.
1556 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1557   return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1558          Kind == Attribute::ReadNone;
1559 }
1560 
1561 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1562                                     const Value *V) {
1563   for (Attribute A : Attrs) {
1564     if (A.isStringAttribute())
1565       continue;
1566 
1567     if (isFuncOnlyAttr(A.getKindAsEnum())) {
1568       if (!IsFunction) {
1569         CheckFailed("Attribute '" + A.getAsString() +
1570                         "' only applies to functions!",
1571                     V);
1572         return;
1573       }
1574     } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1575       CheckFailed("Attribute '" + A.getAsString() +
1576                       "' does not apply to functions!",
1577                   V);
1578       return;
1579     }
1580   }
1581 }
1582 
1583 // VerifyParameterAttrs - Check the given attributes for an argument or return
1584 // value of the specified type.  The value V is printed in error messages.
1585 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1586                                     const Value *V) {
1587   if (!Attrs.hasAttributes())
1588     return;
1589 
1590   verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1591 
1592   if (Attrs.hasAttribute(Attribute::ImmArg)) {
1593     Assert(Attrs.getNumAttributes() == 1,
1594            "Attribute 'immarg' is incompatible with other attributes", V);
1595   }
1596 
1597   // Check for mutually incompatible attributes.  Only inreg is compatible with
1598   // sret.
1599   unsigned AttrCount = 0;
1600   AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1601   AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1602   AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1603                Attrs.hasAttribute(Attribute::InReg);
1604   AttrCount += Attrs.hasAttribute(Attribute::Nest);
1605   Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1606                          "and 'sret' are incompatible!",
1607          V);
1608 
1609   Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1610            Attrs.hasAttribute(Attribute::ReadOnly)),
1611          "Attributes "
1612          "'inalloca and readonly' are incompatible!",
1613          V);
1614 
1615   Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1616            Attrs.hasAttribute(Attribute::Returned)),
1617          "Attributes "
1618          "'sret and returned' are incompatible!",
1619          V);
1620 
1621   Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1622            Attrs.hasAttribute(Attribute::SExt)),
1623          "Attributes "
1624          "'zeroext and signext' are incompatible!",
1625          V);
1626 
1627   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1628            Attrs.hasAttribute(Attribute::ReadOnly)),
1629          "Attributes "
1630          "'readnone and readonly' are incompatible!",
1631          V);
1632 
1633   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1634            Attrs.hasAttribute(Attribute::WriteOnly)),
1635          "Attributes "
1636          "'readnone and writeonly' are incompatible!",
1637          V);
1638 
1639   Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1640            Attrs.hasAttribute(Attribute::WriteOnly)),
1641          "Attributes "
1642          "'readonly and writeonly' are incompatible!",
1643          V);
1644 
1645   Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1646            Attrs.hasAttribute(Attribute::AlwaysInline)),
1647          "Attributes "
1648          "'noinline and alwaysinline' are incompatible!",
1649          V);
1650 
1651   if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1652     Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(),
1653            "Attribute 'byval' type does not match parameter!", V);
1654   }
1655 
1656   AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1657   Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1658          "Wrong types for attribute: " +
1659              AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1660          V);
1661 
1662   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1663     SmallPtrSet<Type*, 4> Visited;
1664     if (!PTy->getElementType()->isSized(&Visited)) {
1665       Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1666                  !Attrs.hasAttribute(Attribute::InAlloca),
1667              "Attributes 'byval' and 'inalloca' do not support unsized types!",
1668              V);
1669     }
1670     if (!isa<PointerType>(PTy->getElementType()))
1671       Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1672              "Attribute 'swifterror' only applies to parameters "
1673              "with pointer to pointer type!",
1674              V);
1675   } else {
1676     Assert(!Attrs.hasAttribute(Attribute::ByVal),
1677            "Attribute 'byval' only applies to parameters with pointer type!",
1678            V);
1679     Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1680            "Attribute 'swifterror' only applies to parameters "
1681            "with pointer type!",
1682            V);
1683   }
1684 }
1685 
1686 // Check parameter attributes against a function type.
1687 // The value V is printed in error messages.
1688 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1689                                    const Value *V, bool IsIntrinsic) {
1690   if (Attrs.isEmpty())
1691     return;
1692 
1693   bool SawNest = false;
1694   bool SawReturned = false;
1695   bool SawSRet = false;
1696   bool SawSwiftSelf = false;
1697   bool SawSwiftError = false;
1698 
1699   // Verify return value attributes.
1700   AttributeSet RetAttrs = Attrs.getRetAttributes();
1701   Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1702           !RetAttrs.hasAttribute(Attribute::Nest) &&
1703           !RetAttrs.hasAttribute(Attribute::StructRet) &&
1704           !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1705           !RetAttrs.hasAttribute(Attribute::Returned) &&
1706           !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1707           !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1708           !RetAttrs.hasAttribute(Attribute::SwiftError)),
1709          "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1710          "'returned', 'swiftself', and 'swifterror' do not apply to return "
1711          "values!",
1712          V);
1713   Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1714           !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1715           !RetAttrs.hasAttribute(Attribute::ReadNone)),
1716          "Attribute '" + RetAttrs.getAsString() +
1717              "' does not apply to function returns",
1718          V);
1719   verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1720 
1721   // Verify parameter attributes.
1722   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1723     Type *Ty = FT->getParamType(i);
1724     AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1725 
1726     if (!IsIntrinsic) {
1727       Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1728              "immarg attribute only applies to intrinsics",V);
1729     }
1730 
1731     verifyParameterAttrs(ArgAttrs, Ty, V);
1732 
1733     if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1734       Assert(!SawNest, "More than one parameter has attribute nest!", V);
1735       SawNest = true;
1736     }
1737 
1738     if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1739       Assert(!SawReturned, "More than one parameter has attribute returned!",
1740              V);
1741       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1742              "Incompatible argument and return types for 'returned' attribute",
1743              V);
1744       SawReturned = true;
1745     }
1746 
1747     if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1748       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1749       Assert(i == 0 || i == 1,
1750              "Attribute 'sret' is not on first or second parameter!", V);
1751       SawSRet = true;
1752     }
1753 
1754     if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1755       Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1756       SawSwiftSelf = true;
1757     }
1758 
1759     if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1760       Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1761              V);
1762       SawSwiftError = true;
1763     }
1764 
1765     if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1766       Assert(i == FT->getNumParams() - 1,
1767              "inalloca isn't on the last parameter!", V);
1768     }
1769   }
1770 
1771   if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1772     return;
1773 
1774   verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1775 
1776   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1777            Attrs.hasFnAttribute(Attribute::ReadOnly)),
1778          "Attributes 'readnone and readonly' are incompatible!", V);
1779 
1780   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1781            Attrs.hasFnAttribute(Attribute::WriteOnly)),
1782          "Attributes 'readnone and writeonly' are incompatible!", V);
1783 
1784   Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1785            Attrs.hasFnAttribute(Attribute::WriteOnly)),
1786          "Attributes 'readonly and writeonly' are incompatible!", V);
1787 
1788   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1789            Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1790          "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1791          "incompatible!",
1792          V);
1793 
1794   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1795            Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1796          "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1797 
1798   Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1799            Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1800          "Attributes 'noinline and alwaysinline' are incompatible!", V);
1801 
1802   if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1803     Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1804            "Attribute 'optnone' requires 'noinline'!", V);
1805 
1806     Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1807            "Attributes 'optsize and optnone' are incompatible!", V);
1808 
1809     Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1810            "Attributes 'minsize and optnone' are incompatible!", V);
1811   }
1812 
1813   if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1814     const GlobalValue *GV = cast<GlobalValue>(V);
1815     Assert(GV->hasGlobalUnnamedAddr(),
1816            "Attribute 'jumptable' requires 'unnamed_addr'", V);
1817   }
1818 
1819   if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1820     std::pair<unsigned, Optional<unsigned>> Args =
1821         Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1822 
1823     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1824       if (ParamNo >= FT->getNumParams()) {
1825         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1826         return false;
1827       }
1828 
1829       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1830         CheckFailed("'allocsize' " + Name +
1831                         " argument must refer to an integer parameter",
1832                     V);
1833         return false;
1834       }
1835 
1836       return true;
1837     };
1838 
1839     if (!CheckParam("element size", Args.first))
1840       return;
1841 
1842     if (Args.second && !CheckParam("number of elements", *Args.second))
1843       return;
1844   }
1845 }
1846 
1847 void Verifier::verifyFunctionMetadata(
1848     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1849   for (const auto &Pair : MDs) {
1850     if (Pair.first == LLVMContext::MD_prof) {
1851       MDNode *MD = Pair.second;
1852       Assert(MD->getNumOperands() >= 2,
1853              "!prof annotations should have no less than 2 operands", MD);
1854 
1855       // Check first operand.
1856       Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1857              MD);
1858       Assert(isa<MDString>(MD->getOperand(0)),
1859              "expected string with name of the !prof annotation", MD);
1860       MDString *MDS = cast<MDString>(MD->getOperand(0));
1861       StringRef ProfName = MDS->getString();
1862       Assert(ProfName.equals("function_entry_count") ||
1863                  ProfName.equals("synthetic_function_entry_count"),
1864              "first operand should be 'function_entry_count'"
1865              " or 'synthetic_function_entry_count'",
1866              MD);
1867 
1868       // Check second operand.
1869       Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1870              MD);
1871       Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1872              "expected integer argument to function_entry_count", MD);
1873     }
1874   }
1875 }
1876 
1877 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1878   if (!ConstantExprVisited.insert(EntryC).second)
1879     return;
1880 
1881   SmallVector<const Constant *, 16> Stack;
1882   Stack.push_back(EntryC);
1883 
1884   while (!Stack.empty()) {
1885     const Constant *C = Stack.pop_back_val();
1886 
1887     // Check this constant expression.
1888     if (const auto *CE = dyn_cast<ConstantExpr>(C))
1889       visitConstantExpr(CE);
1890 
1891     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1892       // Global Values get visited separately, but we do need to make sure
1893       // that the global value is in the correct module
1894       Assert(GV->getParent() == &M, "Referencing global in another module!",
1895              EntryC, &M, GV, GV->getParent());
1896       continue;
1897     }
1898 
1899     // Visit all sub-expressions.
1900     for (const Use &U : C->operands()) {
1901       const auto *OpC = dyn_cast<Constant>(U);
1902       if (!OpC)
1903         continue;
1904       if (!ConstantExprVisited.insert(OpC).second)
1905         continue;
1906       Stack.push_back(OpC);
1907     }
1908   }
1909 }
1910 
1911 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1912   if (CE->getOpcode() == Instruction::BitCast)
1913     Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1914                                  CE->getType()),
1915            "Invalid bitcast", CE);
1916 
1917   if (CE->getOpcode() == Instruction::IntToPtr ||
1918       CE->getOpcode() == Instruction::PtrToInt) {
1919     auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1920                       ? CE->getType()
1921                       : CE->getOperand(0)->getType();
1922     StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1923                         ? "inttoptr not supported for non-integral pointers"
1924                         : "ptrtoint not supported for non-integral pointers";
1925     Assert(
1926         !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
1927         Msg);
1928   }
1929 }
1930 
1931 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1932   // There shouldn't be more attribute sets than there are parameters plus the
1933   // function and return value.
1934   return Attrs.getNumAttrSets() <= Params + 2;
1935 }
1936 
1937 /// Verify that statepoint intrinsic is well formed.
1938 void Verifier::verifyStatepoint(const CallBase &Call) {
1939   assert(Call.getCalledFunction() &&
1940          Call.getCalledFunction()->getIntrinsicID() ==
1941              Intrinsic::experimental_gc_statepoint);
1942 
1943   Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
1944              !Call.onlyAccessesArgMemory(),
1945          "gc.statepoint must read and write all memory to preserve "
1946          "reordering restrictions required by safepoint semantics",
1947          Call);
1948 
1949   const int64_t NumPatchBytes =
1950       cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
1951   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1952   Assert(NumPatchBytes >= 0,
1953          "gc.statepoint number of patchable bytes must be "
1954          "positive",
1955          Call);
1956 
1957   const Value *Target = Call.getArgOperand(2);
1958   auto *PT = dyn_cast<PointerType>(Target->getType());
1959   Assert(PT && PT->getElementType()->isFunctionTy(),
1960          "gc.statepoint callee must be of function pointer type", Call, Target);
1961   FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1962 
1963   const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
1964   Assert(NumCallArgs >= 0,
1965          "gc.statepoint number of arguments to underlying call "
1966          "must be positive",
1967          Call);
1968   const int NumParams = (int)TargetFuncType->getNumParams();
1969   if (TargetFuncType->isVarArg()) {
1970     Assert(NumCallArgs >= NumParams,
1971            "gc.statepoint mismatch in number of vararg call args", Call);
1972 
1973     // TODO: Remove this limitation
1974     Assert(TargetFuncType->getReturnType()->isVoidTy(),
1975            "gc.statepoint doesn't support wrapping non-void "
1976            "vararg functions yet",
1977            Call);
1978   } else
1979     Assert(NumCallArgs == NumParams,
1980            "gc.statepoint mismatch in number of call args", Call);
1981 
1982   const uint64_t Flags
1983     = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
1984   Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1985          "unknown flag used in gc.statepoint flags argument", Call);
1986 
1987   // Verify that the types of the call parameter arguments match
1988   // the type of the wrapped callee.
1989   AttributeList Attrs = Call.getAttributes();
1990   for (int i = 0; i < NumParams; i++) {
1991     Type *ParamType = TargetFuncType->getParamType(i);
1992     Type *ArgType = Call.getArgOperand(5 + i)->getType();
1993     Assert(ArgType == ParamType,
1994            "gc.statepoint call argument does not match wrapped "
1995            "function type",
1996            Call);
1997 
1998     if (TargetFuncType->isVarArg()) {
1999       AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
2000       Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2001              "Attribute 'sret' cannot be used for vararg call arguments!",
2002              Call);
2003     }
2004   }
2005 
2006   const int EndCallArgsInx = 4 + NumCallArgs;
2007 
2008   const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2009   Assert(isa<ConstantInt>(NumTransitionArgsV),
2010          "gc.statepoint number of transition arguments "
2011          "must be constant integer",
2012          Call);
2013   const int NumTransitionArgs =
2014       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2015   Assert(NumTransitionArgs >= 0,
2016          "gc.statepoint number of transition arguments must be positive", Call);
2017   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2018 
2019   const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2020   Assert(isa<ConstantInt>(NumDeoptArgsV),
2021          "gc.statepoint number of deoptimization arguments "
2022          "must be constant integer",
2023          Call);
2024   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2025   Assert(NumDeoptArgs >= 0,
2026          "gc.statepoint number of deoptimization arguments "
2027          "must be positive",
2028          Call);
2029 
2030   const int ExpectedNumArgs =
2031       7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
2032   Assert(ExpectedNumArgs <= (int)Call.arg_size(),
2033          "gc.statepoint too few arguments according to length fields", Call);
2034 
2035   // Check that the only uses of this gc.statepoint are gc.result or
2036   // gc.relocate calls which are tied to this statepoint and thus part
2037   // of the same statepoint sequence
2038   for (const User *U : Call.users()) {
2039     const CallInst *UserCall = dyn_cast<const CallInst>(U);
2040     Assert(UserCall, "illegal use of statepoint token", Call, U);
2041     if (!UserCall)
2042       continue;
2043     Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2044            "gc.result or gc.relocate are the only value uses "
2045            "of a gc.statepoint",
2046            Call, U);
2047     if (isa<GCResultInst>(UserCall)) {
2048       Assert(UserCall->getArgOperand(0) == &Call,
2049              "gc.result connected to wrong gc.statepoint", Call, UserCall);
2050     } else if (isa<GCRelocateInst>(Call)) {
2051       Assert(UserCall->getArgOperand(0) == &Call,
2052              "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2053     }
2054   }
2055 
2056   // Note: It is legal for a single derived pointer to be listed multiple
2057   // times.  It's non-optimal, but it is legal.  It can also happen after
2058   // insertion if we strip a bitcast away.
2059   // Note: It is really tempting to check that each base is relocated and
2060   // that a derived pointer is never reused as a base pointer.  This turns
2061   // out to be problematic since optimizations run after safepoint insertion
2062   // can recognize equality properties that the insertion logic doesn't know
2063   // about.  See example statepoint.ll in the verifier subdirectory
2064 }
2065 
2066 void Verifier::verifyFrameRecoverIndices() {
2067   for (auto &Counts : FrameEscapeInfo) {
2068     Function *F = Counts.first;
2069     unsigned EscapedObjectCount = Counts.second.first;
2070     unsigned MaxRecoveredIndex = Counts.second.second;
2071     Assert(MaxRecoveredIndex <= EscapedObjectCount,
2072            "all indices passed to llvm.localrecover must be less than the "
2073            "number of arguments passed to llvm.localescape in the parent "
2074            "function",
2075            F);
2076   }
2077 }
2078 
2079 static Instruction *getSuccPad(Instruction *Terminator) {
2080   BasicBlock *UnwindDest;
2081   if (auto *II = dyn_cast<InvokeInst>(Terminator))
2082     UnwindDest = II->getUnwindDest();
2083   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2084     UnwindDest = CSI->getUnwindDest();
2085   else
2086     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2087   return UnwindDest->getFirstNonPHI();
2088 }
2089 
2090 void Verifier::verifySiblingFuncletUnwinds() {
2091   SmallPtrSet<Instruction *, 8> Visited;
2092   SmallPtrSet<Instruction *, 8> Active;
2093   for (const auto &Pair : SiblingFuncletInfo) {
2094     Instruction *PredPad = Pair.first;
2095     if (Visited.count(PredPad))
2096       continue;
2097     Active.insert(PredPad);
2098     Instruction *Terminator = Pair.second;
2099     do {
2100       Instruction *SuccPad = getSuccPad(Terminator);
2101       if (Active.count(SuccPad)) {
2102         // Found a cycle; report error
2103         Instruction *CyclePad = SuccPad;
2104         SmallVector<Instruction *, 8> CycleNodes;
2105         do {
2106           CycleNodes.push_back(CyclePad);
2107           Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2108           if (CycleTerminator != CyclePad)
2109             CycleNodes.push_back(CycleTerminator);
2110           CyclePad = getSuccPad(CycleTerminator);
2111         } while (CyclePad != SuccPad);
2112         Assert(false, "EH pads can't handle each other's exceptions",
2113                ArrayRef<Instruction *>(CycleNodes));
2114       }
2115       // Don't re-walk a node we've already checked
2116       if (!Visited.insert(SuccPad).second)
2117         break;
2118       // Walk to this successor if it has a map entry.
2119       PredPad = SuccPad;
2120       auto TermI = SiblingFuncletInfo.find(PredPad);
2121       if (TermI == SiblingFuncletInfo.end())
2122         break;
2123       Terminator = TermI->second;
2124       Active.insert(PredPad);
2125     } while (true);
2126     // Each node only has one successor, so we've walked all the active
2127     // nodes' successors.
2128     Active.clear();
2129   }
2130 }
2131 
2132 // visitFunction - Verify that a function is ok.
2133 //
2134 void Verifier::visitFunction(const Function &F) {
2135   visitGlobalValue(F);
2136 
2137   // Check function arguments.
2138   FunctionType *FT = F.getFunctionType();
2139   unsigned NumArgs = F.arg_size();
2140 
2141   Assert(&Context == &F.getContext(),
2142          "Function context does not match Module context!", &F);
2143 
2144   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2145   Assert(FT->getNumParams() == NumArgs,
2146          "# formal arguments must match # of arguments for function type!", &F,
2147          FT);
2148   Assert(F.getReturnType()->isFirstClassType() ||
2149              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2150          "Functions cannot return aggregate values!", &F);
2151 
2152   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2153          "Invalid struct return type!", &F);
2154 
2155   AttributeList Attrs = F.getAttributes();
2156 
2157   Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2158          "Attribute after last parameter!", &F);
2159 
2160   bool isLLVMdotName = F.getName().size() >= 5 &&
2161                        F.getName().substr(0, 5) == "llvm.";
2162 
2163   // Check function attributes.
2164   verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName);
2165 
2166   // On function declarations/definitions, we do not support the builtin
2167   // attribute. We do not check this in VerifyFunctionAttrs since that is
2168   // checking for Attributes that can/can not ever be on functions.
2169   Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2170          "Attribute 'builtin' can only be applied to a callsite.", &F);
2171 
2172   // Check that this function meets the restrictions on this calling convention.
2173   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2174   // restrictions can be lifted.
2175   switch (F.getCallingConv()) {
2176   default:
2177   case CallingConv::C:
2178     break;
2179   case CallingConv::AMDGPU_KERNEL:
2180   case CallingConv::SPIR_KERNEL:
2181     Assert(F.getReturnType()->isVoidTy(),
2182            "Calling convention requires void return type", &F);
2183     LLVM_FALLTHROUGH;
2184   case CallingConv::AMDGPU_VS:
2185   case CallingConv::AMDGPU_HS:
2186   case CallingConv::AMDGPU_GS:
2187   case CallingConv::AMDGPU_PS:
2188   case CallingConv::AMDGPU_CS:
2189     Assert(!F.hasStructRetAttr(),
2190            "Calling convention does not allow sret", &F);
2191     LLVM_FALLTHROUGH;
2192   case CallingConv::Fast:
2193   case CallingConv::Cold:
2194   case CallingConv::Intel_OCL_BI:
2195   case CallingConv::PTX_Kernel:
2196   case CallingConv::PTX_Device:
2197     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2198                           "perfect forwarding!",
2199            &F);
2200     break;
2201   }
2202 
2203   // Check that the argument values match the function type for this function...
2204   unsigned i = 0;
2205   for (const Argument &Arg : F.args()) {
2206     Assert(Arg.getType() == FT->getParamType(i),
2207            "Argument value does not match function argument type!", &Arg,
2208            FT->getParamType(i));
2209     Assert(Arg.getType()->isFirstClassType(),
2210            "Function arguments must have first-class types!", &Arg);
2211     if (!isLLVMdotName) {
2212       Assert(!Arg.getType()->isMetadataTy(),
2213              "Function takes metadata but isn't an intrinsic", &Arg, &F);
2214       Assert(!Arg.getType()->isTokenTy(),
2215              "Function takes token but isn't an intrinsic", &Arg, &F);
2216     }
2217 
2218     // Check that swifterror argument is only used by loads and stores.
2219     if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2220       verifySwiftErrorValue(&Arg);
2221     }
2222     ++i;
2223   }
2224 
2225   if (!isLLVMdotName)
2226     Assert(!F.getReturnType()->isTokenTy(),
2227            "Functions returns a token but isn't an intrinsic", &F);
2228 
2229   // Get the function metadata attachments.
2230   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2231   F.getAllMetadata(MDs);
2232   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2233   verifyFunctionMetadata(MDs);
2234 
2235   // Check validity of the personality function
2236   if (F.hasPersonalityFn()) {
2237     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2238     if (Per)
2239       Assert(Per->getParent() == F.getParent(),
2240              "Referencing personality function in another module!",
2241              &F, F.getParent(), Per, Per->getParent());
2242   }
2243 
2244   if (F.isMaterializable()) {
2245     // Function has a body somewhere we can't see.
2246     Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2247            MDs.empty() ? nullptr : MDs.front().second);
2248   } else if (F.isDeclaration()) {
2249     for (const auto &I : MDs) {
2250       // This is used for call site debug information.
2251       AssertDI(I.first != LLVMContext::MD_dbg ||
2252                    !cast<DISubprogram>(I.second)->isDistinct(),
2253                "function declaration may only have a unique !dbg attachment",
2254                &F);
2255       Assert(I.first != LLVMContext::MD_prof,
2256              "function declaration may not have a !prof attachment", &F);
2257 
2258       // Verify the metadata itself.
2259       visitMDNode(*I.second);
2260     }
2261     Assert(!F.hasPersonalityFn(),
2262            "Function declaration shouldn't have a personality routine", &F);
2263   } else {
2264     // Verify that this function (which has a body) is not named "llvm.*".  It
2265     // is not legal to define intrinsics.
2266     Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2267 
2268     // Check the entry node
2269     const BasicBlock *Entry = &F.getEntryBlock();
2270     Assert(pred_empty(Entry),
2271            "Entry block to function must not have predecessors!", Entry);
2272 
2273     // The address of the entry block cannot be taken, unless it is dead.
2274     if (Entry->hasAddressTaken()) {
2275       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2276              "blockaddress may not be used with the entry block!", Entry);
2277     }
2278 
2279     unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2280     // Visit metadata attachments.
2281     for (const auto &I : MDs) {
2282       // Verify that the attachment is legal.
2283       switch (I.first) {
2284       default:
2285         break;
2286       case LLVMContext::MD_dbg: {
2287         ++NumDebugAttachments;
2288         AssertDI(NumDebugAttachments == 1,
2289                  "function must have a single !dbg attachment", &F, I.second);
2290         AssertDI(isa<DISubprogram>(I.second),
2291                  "function !dbg attachment must be a subprogram", &F, I.second);
2292         auto *SP = cast<DISubprogram>(I.second);
2293         const Function *&AttachedTo = DISubprogramAttachments[SP];
2294         AssertDI(!AttachedTo || AttachedTo == &F,
2295                  "DISubprogram attached to more than one function", SP, &F);
2296         AttachedTo = &F;
2297         break;
2298       }
2299       case LLVMContext::MD_prof:
2300         ++NumProfAttachments;
2301         Assert(NumProfAttachments == 1,
2302                "function must have a single !prof attachment", &F, I.second);
2303         break;
2304       }
2305 
2306       // Verify the metadata itself.
2307       visitMDNode(*I.second);
2308     }
2309   }
2310 
2311   // If this function is actually an intrinsic, verify that it is only used in
2312   // direct call/invokes, never having its "address taken".
2313   // Only do this if the module is materialized, otherwise we don't have all the
2314   // uses.
2315   if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2316     const User *U;
2317     if (F.hasAddressTaken(&U))
2318       Assert(false, "Invalid user of intrinsic instruction!", U);
2319   }
2320 
2321   auto *N = F.getSubprogram();
2322   HasDebugInfo = (N != nullptr);
2323   if (!HasDebugInfo)
2324     return;
2325 
2326   // Check that all !dbg attachments lead to back to N (or, at least, another
2327   // subprogram that describes the same function).
2328   //
2329   // FIXME: Check this incrementally while visiting !dbg attachments.
2330   // FIXME: Only check when N is the canonical subprogram for F.
2331   SmallPtrSet<const MDNode *, 32> Seen;
2332   auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2333     // Be careful about using DILocation here since we might be dealing with
2334     // broken code (this is the Verifier after all).
2335     const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2336     if (!DL)
2337       return;
2338     if (!Seen.insert(DL).second)
2339       return;
2340 
2341     Metadata *Parent = DL->getRawScope();
2342     AssertDI(Parent && isa<DILocalScope>(Parent),
2343              "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
2344              Parent);
2345     DILocalScope *Scope = DL->getInlinedAtScope();
2346     if (Scope && !Seen.insert(Scope).second)
2347       return;
2348 
2349     DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2350 
2351     // Scope and SP could be the same MDNode and we don't want to skip
2352     // validation in that case
2353     if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2354       return;
2355 
2356     // FIXME: Once N is canonical, check "SP == &N".
2357     AssertDI(SP->describes(&F),
2358              "!dbg attachment points at wrong subprogram for function", N, &F,
2359              &I, DL, Scope, SP);
2360   };
2361   for (auto &BB : F)
2362     for (auto &I : BB) {
2363       VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2364       // The llvm.loop annotations also contain two DILocations.
2365       if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2366         for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2367           VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2368       if (BrokenDebugInfo)
2369         return;
2370     }
2371 }
2372 
2373 // verifyBasicBlock - Verify that a basic block is well formed...
2374 //
2375 void Verifier::visitBasicBlock(BasicBlock &BB) {
2376   InstsInThisBlock.clear();
2377 
2378   // Ensure that basic blocks have terminators!
2379   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2380 
2381   // Check constraints that this basic block imposes on all of the PHI nodes in
2382   // it.
2383   if (isa<PHINode>(BB.front())) {
2384     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2385     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2386     llvm::sort(Preds);
2387     for (const PHINode &PN : BB.phis()) {
2388       // Ensure that PHI nodes have at least one entry!
2389       Assert(PN.getNumIncomingValues() != 0,
2390              "PHI nodes must have at least one entry.  If the block is dead, "
2391              "the PHI should be removed!",
2392              &PN);
2393       Assert(PN.getNumIncomingValues() == Preds.size(),
2394              "PHINode should have one entry for each predecessor of its "
2395              "parent basic block!",
2396              &PN);
2397 
2398       // Get and sort all incoming values in the PHI node...
2399       Values.clear();
2400       Values.reserve(PN.getNumIncomingValues());
2401       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2402         Values.push_back(
2403             std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2404       llvm::sort(Values);
2405 
2406       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2407         // Check to make sure that if there is more than one entry for a
2408         // particular basic block in this PHI node, that the incoming values are
2409         // all identical.
2410         //
2411         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2412                    Values[i].second == Values[i - 1].second,
2413                "PHI node has multiple entries for the same basic block with "
2414                "different incoming values!",
2415                &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2416 
2417         // Check to make sure that the predecessors and PHI node entries are
2418         // matched up.
2419         Assert(Values[i].first == Preds[i],
2420                "PHI node entries do not match predecessors!", &PN,
2421                Values[i].first, Preds[i]);
2422       }
2423     }
2424   }
2425 
2426   // Check that all instructions have their parent pointers set up correctly.
2427   for (auto &I : BB)
2428   {
2429     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2430   }
2431 }
2432 
2433 void Verifier::visitTerminator(Instruction &I) {
2434   // Ensure that terminators only exist at the end of the basic block.
2435   Assert(&I == I.getParent()->getTerminator(),
2436          "Terminator found in the middle of a basic block!", I.getParent());
2437   visitInstruction(I);
2438 }
2439 
2440 void Verifier::visitBranchInst(BranchInst &BI) {
2441   if (BI.isConditional()) {
2442     Assert(BI.getCondition()->getType()->isIntegerTy(1),
2443            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2444   }
2445   visitTerminator(BI);
2446 }
2447 
2448 void Verifier::visitReturnInst(ReturnInst &RI) {
2449   Function *F = RI.getParent()->getParent();
2450   unsigned N = RI.getNumOperands();
2451   if (F->getReturnType()->isVoidTy())
2452     Assert(N == 0,
2453            "Found return instr that returns non-void in Function of void "
2454            "return type!",
2455            &RI, F->getReturnType());
2456   else
2457     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2458            "Function return type does not match operand "
2459            "type of return inst!",
2460            &RI, F->getReturnType());
2461 
2462   // Check to make sure that the return value has necessary properties for
2463   // terminators...
2464   visitTerminator(RI);
2465 }
2466 
2467 void Verifier::visitSwitchInst(SwitchInst &SI) {
2468   // Check to make sure that all of the constants in the switch instruction
2469   // have the same type as the switched-on value.
2470   Type *SwitchTy = SI.getCondition()->getType();
2471   SmallPtrSet<ConstantInt*, 32> Constants;
2472   for (auto &Case : SI.cases()) {
2473     Assert(Case.getCaseValue()->getType() == SwitchTy,
2474            "Switch constants must all be same type as switch value!", &SI);
2475     Assert(Constants.insert(Case.getCaseValue()).second,
2476            "Duplicate integer as switch case", &SI, Case.getCaseValue());
2477   }
2478 
2479   visitTerminator(SI);
2480 }
2481 
2482 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2483   Assert(BI.getAddress()->getType()->isPointerTy(),
2484          "Indirectbr operand must have pointer type!", &BI);
2485   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2486     Assert(BI.getDestination(i)->getType()->isLabelTy(),
2487            "Indirectbr destinations must all have pointer type!", &BI);
2488 
2489   visitTerminator(BI);
2490 }
2491 
2492 void Verifier::visitCallBrInst(CallBrInst &CBI) {
2493   Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2494          &CBI);
2495   Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!",
2496          &CBI);
2497   for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2498     Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
2499            "Callbr successors must all have pointer type!", &CBI);
2500   for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2501     Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),
2502            "Using an unescaped label as a callbr argument!", &CBI);
2503     if (isa<BasicBlock>(CBI.getOperand(i)))
2504       for (unsigned j = i + 1; j != e; ++j)
2505         Assert(CBI.getOperand(i) != CBI.getOperand(j),
2506                "Duplicate callbr destination!", &CBI);
2507   }
2508   {
2509     SmallPtrSet<BasicBlock *, 4> ArgBBs;
2510     for (Value *V : CBI.args())
2511       if (auto *BA = dyn_cast<BlockAddress>(V))
2512         ArgBBs.insert(BA->getBasicBlock());
2513     for (BasicBlock *BB : CBI.getIndirectDests())
2514       Assert(ArgBBs.find(BB) != ArgBBs.end(),
2515              "Indirect label missing from arglist.", &CBI);
2516   }
2517 
2518   visitTerminator(CBI);
2519 }
2520 
2521 void Verifier::visitSelectInst(SelectInst &SI) {
2522   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2523                                          SI.getOperand(2)),
2524          "Invalid operands for select instruction!", &SI);
2525 
2526   Assert(SI.getTrueValue()->getType() == SI.getType(),
2527          "Select values must have same type as select instruction!", &SI);
2528   visitInstruction(SI);
2529 }
2530 
2531 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2532 /// a pass, if any exist, it's an error.
2533 ///
2534 void Verifier::visitUserOp1(Instruction &I) {
2535   Assert(false, "User-defined operators should not live outside of a pass!", &I);
2536 }
2537 
2538 void Verifier::visitTruncInst(TruncInst &I) {
2539   // Get the source and destination types
2540   Type *SrcTy = I.getOperand(0)->getType();
2541   Type *DestTy = I.getType();
2542 
2543   // Get the size of the types in bits, we'll need this later
2544   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2545   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2546 
2547   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2548   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2549   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2550          "trunc source and destination must both be a vector or neither", &I);
2551   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2552 
2553   visitInstruction(I);
2554 }
2555 
2556 void Verifier::visitZExtInst(ZExtInst &I) {
2557   // Get the source and destination types
2558   Type *SrcTy = I.getOperand(0)->getType();
2559   Type *DestTy = I.getType();
2560 
2561   // Get the size of the types in bits, we'll need this later
2562   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2563   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2564   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2565          "zext source and destination must both be a vector or neither", &I);
2566   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2567   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2568 
2569   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2570 
2571   visitInstruction(I);
2572 }
2573 
2574 void Verifier::visitSExtInst(SExtInst &I) {
2575   // Get the source and destination types
2576   Type *SrcTy = I.getOperand(0)->getType();
2577   Type *DestTy = I.getType();
2578 
2579   // Get the size of the types in bits, we'll need this later
2580   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2581   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2582 
2583   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2584   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2585   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2586          "sext source and destination must both be a vector or neither", &I);
2587   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2588 
2589   visitInstruction(I);
2590 }
2591 
2592 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2593   // Get the source and destination types
2594   Type *SrcTy = I.getOperand(0)->getType();
2595   Type *DestTy = I.getType();
2596   // Get the size of the types in bits, we'll need this later
2597   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2598   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2599 
2600   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2601   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2602   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2603          "fptrunc source and destination must both be a vector or neither", &I);
2604   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2605 
2606   visitInstruction(I);
2607 }
2608 
2609 void Verifier::visitFPExtInst(FPExtInst &I) {
2610   // Get the source and destination types
2611   Type *SrcTy = I.getOperand(0)->getType();
2612   Type *DestTy = I.getType();
2613 
2614   // Get the size of the types in bits, we'll need this later
2615   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2616   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2617 
2618   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2619   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2620   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2621          "fpext source and destination must both be a vector or neither", &I);
2622   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2623 
2624   visitInstruction(I);
2625 }
2626 
2627 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2628   // Get the source and destination types
2629   Type *SrcTy = I.getOperand(0)->getType();
2630   Type *DestTy = I.getType();
2631 
2632   bool SrcVec = SrcTy->isVectorTy();
2633   bool DstVec = DestTy->isVectorTy();
2634 
2635   Assert(SrcVec == DstVec,
2636          "UIToFP source and dest must both be vector or scalar", &I);
2637   Assert(SrcTy->isIntOrIntVectorTy(),
2638          "UIToFP source must be integer or integer vector", &I);
2639   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2640          &I);
2641 
2642   if (SrcVec && DstVec)
2643     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2644                cast<VectorType>(DestTy)->getNumElements(),
2645            "UIToFP source and dest vector length mismatch", &I);
2646 
2647   visitInstruction(I);
2648 }
2649 
2650 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2651   // Get the source and destination types
2652   Type *SrcTy = I.getOperand(0)->getType();
2653   Type *DestTy = I.getType();
2654 
2655   bool SrcVec = SrcTy->isVectorTy();
2656   bool DstVec = DestTy->isVectorTy();
2657 
2658   Assert(SrcVec == DstVec,
2659          "SIToFP source and dest must both be vector or scalar", &I);
2660   Assert(SrcTy->isIntOrIntVectorTy(),
2661          "SIToFP source must be integer or integer vector", &I);
2662   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2663          &I);
2664 
2665   if (SrcVec && DstVec)
2666     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2667                cast<VectorType>(DestTy)->getNumElements(),
2668            "SIToFP source and dest vector length mismatch", &I);
2669 
2670   visitInstruction(I);
2671 }
2672 
2673 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2674   // Get the source and destination types
2675   Type *SrcTy = I.getOperand(0)->getType();
2676   Type *DestTy = I.getType();
2677 
2678   bool SrcVec = SrcTy->isVectorTy();
2679   bool DstVec = DestTy->isVectorTy();
2680 
2681   Assert(SrcVec == DstVec,
2682          "FPToUI source and dest must both be vector or scalar", &I);
2683   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2684          &I);
2685   Assert(DestTy->isIntOrIntVectorTy(),
2686          "FPToUI result must be integer or integer vector", &I);
2687 
2688   if (SrcVec && DstVec)
2689     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2690                cast<VectorType>(DestTy)->getNumElements(),
2691            "FPToUI source and dest vector length mismatch", &I);
2692 
2693   visitInstruction(I);
2694 }
2695 
2696 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2697   // Get the source and destination types
2698   Type *SrcTy = I.getOperand(0)->getType();
2699   Type *DestTy = I.getType();
2700 
2701   bool SrcVec = SrcTy->isVectorTy();
2702   bool DstVec = DestTy->isVectorTy();
2703 
2704   Assert(SrcVec == DstVec,
2705          "FPToSI source and dest must both be vector or scalar", &I);
2706   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2707          &I);
2708   Assert(DestTy->isIntOrIntVectorTy(),
2709          "FPToSI result must be integer or integer vector", &I);
2710 
2711   if (SrcVec && DstVec)
2712     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2713                cast<VectorType>(DestTy)->getNumElements(),
2714            "FPToSI source and dest vector length mismatch", &I);
2715 
2716   visitInstruction(I);
2717 }
2718 
2719 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2720   // Get the source and destination types
2721   Type *SrcTy = I.getOperand(0)->getType();
2722   Type *DestTy = I.getType();
2723 
2724   Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2725 
2726   if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2727     Assert(!DL.isNonIntegralPointerType(PTy),
2728            "ptrtoint not supported for non-integral pointers");
2729 
2730   Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2731   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2732          &I);
2733 
2734   if (SrcTy->isVectorTy()) {
2735     VectorType *VSrc = cast<VectorType>(SrcTy);
2736     VectorType *VDest = cast<VectorType>(DestTy);
2737     Assert(VSrc->getNumElements() == VDest->getNumElements(),
2738            "PtrToInt Vector width mismatch", &I);
2739   }
2740 
2741   visitInstruction(I);
2742 }
2743 
2744 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2745   // Get the source and destination types
2746   Type *SrcTy = I.getOperand(0)->getType();
2747   Type *DestTy = I.getType();
2748 
2749   Assert(SrcTy->isIntOrIntVectorTy(),
2750          "IntToPtr source must be an integral", &I);
2751   Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2752 
2753   if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2754     Assert(!DL.isNonIntegralPointerType(PTy),
2755            "inttoptr not supported for non-integral pointers");
2756 
2757   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2758          &I);
2759   if (SrcTy->isVectorTy()) {
2760     VectorType *VSrc = cast<VectorType>(SrcTy);
2761     VectorType *VDest = cast<VectorType>(DestTy);
2762     Assert(VSrc->getNumElements() == VDest->getNumElements(),
2763            "IntToPtr Vector width mismatch", &I);
2764   }
2765   visitInstruction(I);
2766 }
2767 
2768 void Verifier::visitBitCastInst(BitCastInst &I) {
2769   Assert(
2770       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2771       "Invalid bitcast", &I);
2772   visitInstruction(I);
2773 }
2774 
2775 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2776   Type *SrcTy = I.getOperand(0)->getType();
2777   Type *DestTy = I.getType();
2778 
2779   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2780          &I);
2781   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2782          &I);
2783   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2784          "AddrSpaceCast must be between different address spaces", &I);
2785   if (SrcTy->isVectorTy())
2786     Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2787            "AddrSpaceCast vector pointer number of elements mismatch", &I);
2788   visitInstruction(I);
2789 }
2790 
2791 /// visitPHINode - Ensure that a PHI node is well formed.
2792 ///
2793 void Verifier::visitPHINode(PHINode &PN) {
2794   // Ensure that the PHI nodes are all grouped together at the top of the block.
2795   // This can be tested by checking whether the instruction before this is
2796   // either nonexistent (because this is begin()) or is a PHI node.  If not,
2797   // then there is some other instruction before a PHI.
2798   Assert(&PN == &PN.getParent()->front() ||
2799              isa<PHINode>(--BasicBlock::iterator(&PN)),
2800          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2801 
2802   // Check that a PHI doesn't yield a Token.
2803   Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2804 
2805   // Check that all of the values of the PHI node have the same type as the
2806   // result, and that the incoming blocks are really basic blocks.
2807   for (Value *IncValue : PN.incoming_values()) {
2808     Assert(PN.getType() == IncValue->getType(),
2809            "PHI node operands are not the same type as the result!", &PN);
2810   }
2811 
2812   // All other PHI node constraints are checked in the visitBasicBlock method.
2813 
2814   visitInstruction(PN);
2815 }
2816 
2817 void Verifier::visitCallBase(CallBase &Call) {
2818   Assert(Call.getCalledValue()->getType()->isPointerTy(),
2819          "Called function must be a pointer!", Call);
2820   PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType());
2821 
2822   Assert(FPTy->getElementType()->isFunctionTy(),
2823          "Called function is not pointer to function type!", Call);
2824 
2825   Assert(FPTy->getElementType() == Call.getFunctionType(),
2826          "Called function is not the same type as the call!", Call);
2827 
2828   FunctionType *FTy = Call.getFunctionType();
2829 
2830   // Verify that the correct number of arguments are being passed
2831   if (FTy->isVarArg())
2832     Assert(Call.arg_size() >= FTy->getNumParams(),
2833            "Called function requires more parameters than were provided!",
2834            Call);
2835   else
2836     Assert(Call.arg_size() == FTy->getNumParams(),
2837            "Incorrect number of arguments passed to called function!", Call);
2838 
2839   // Verify that all arguments to the call match the function type.
2840   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2841     Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
2842            "Call parameter type does not match function signature!",
2843            Call.getArgOperand(i), FTy->getParamType(i), Call);
2844 
2845   AttributeList Attrs = Call.getAttributes();
2846 
2847   Assert(verifyAttributeCount(Attrs, Call.arg_size()),
2848          "Attribute after last parameter!", Call);
2849 
2850   bool IsIntrinsic = Call.getCalledFunction() &&
2851                      Call.getCalledFunction()->getName().startswith("llvm.");
2852 
2853   Function *Callee
2854     = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts());
2855 
2856   if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2857     // Don't allow speculatable on call sites, unless the underlying function
2858     // declaration is also speculatable.
2859     Assert(Callee && Callee->isSpeculatable(),
2860            "speculatable attribute may not apply to call sites", Call);
2861   }
2862 
2863   // Verify call attributes.
2864   verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
2865 
2866   // Conservatively check the inalloca argument.
2867   // We have a bug if we can find that there is an underlying alloca without
2868   // inalloca.
2869   if (Call.hasInAllocaArgument()) {
2870     Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
2871     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2872       Assert(AI->isUsedWithInAlloca(),
2873              "inalloca argument for call has mismatched alloca", AI, Call);
2874   }
2875 
2876   // For each argument of the callsite, if it has the swifterror argument,
2877   // make sure the underlying alloca/parameter it comes from has a swifterror as
2878   // well.
2879   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2880     if (Call.paramHasAttr(i, Attribute::SwiftError)) {
2881       Value *SwiftErrorArg = Call.getArgOperand(i);
2882       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2883         Assert(AI->isSwiftError(),
2884                "swifterror argument for call has mismatched alloca", AI, Call);
2885         continue;
2886       }
2887       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2888       Assert(ArgI,
2889              "swifterror argument should come from an alloca or parameter",
2890              SwiftErrorArg, Call);
2891       Assert(ArgI->hasSwiftErrorAttr(),
2892              "swifterror argument for call has mismatched parameter", ArgI,
2893              Call);
2894     }
2895 
2896     if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
2897       // Don't allow immarg on call sites, unless the underlying declaration
2898       // also has the matching immarg.
2899       Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
2900              "immarg may not apply only to call sites",
2901              Call.getArgOperand(i), Call);
2902     }
2903 
2904     if (Call.paramHasAttr(i, Attribute::ImmArg)) {
2905       Value *ArgVal = Call.getArgOperand(i);
2906       Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
2907              "immarg operand has non-immediate parameter", ArgVal, Call);
2908     }
2909   }
2910 
2911   if (FTy->isVarArg()) {
2912     // FIXME? is 'nest' even legal here?
2913     bool SawNest = false;
2914     bool SawReturned = false;
2915 
2916     for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2917       if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2918         SawNest = true;
2919       if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2920         SawReturned = true;
2921     }
2922 
2923     // Check attributes on the varargs part.
2924     for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
2925       Type *Ty = Call.getArgOperand(Idx)->getType();
2926       AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2927       verifyParameterAttrs(ArgAttrs, Ty, &Call);
2928 
2929       if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2930         Assert(!SawNest, "More than one parameter has attribute nest!", Call);
2931         SawNest = true;
2932       }
2933 
2934       if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2935         Assert(!SawReturned, "More than one parameter has attribute returned!",
2936                Call);
2937         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2938                "Incompatible argument and return types for 'returned' "
2939                "attribute",
2940                Call);
2941         SawReturned = true;
2942       }
2943 
2944       // Statepoint intrinsic is vararg but the wrapped function may be not.
2945       // Allow sret here and check the wrapped function in verifyStatepoint.
2946       if (!Call.getCalledFunction() ||
2947           Call.getCalledFunction()->getIntrinsicID() !=
2948               Intrinsic::experimental_gc_statepoint)
2949         Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2950                "Attribute 'sret' cannot be used for vararg call arguments!",
2951                Call);
2952 
2953       if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2954         Assert(Idx == Call.arg_size() - 1,
2955                "inalloca isn't on the last argument!", Call);
2956     }
2957   }
2958 
2959   // Verify that there's no metadata unless it's a direct call to an intrinsic.
2960   if (!IsIntrinsic) {
2961     for (Type *ParamTy : FTy->params()) {
2962       Assert(!ParamTy->isMetadataTy(),
2963              "Function has metadata parameter but isn't an intrinsic", Call);
2964       Assert(!ParamTy->isTokenTy(),
2965              "Function has token parameter but isn't an intrinsic", Call);
2966     }
2967   }
2968 
2969   // Verify that indirect calls don't return tokens.
2970   if (!Call.getCalledFunction())
2971     Assert(!FTy->getReturnType()->isTokenTy(),
2972            "Return type cannot be token for indirect call!");
2973 
2974   if (Function *F = Call.getCalledFunction())
2975     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2976       visitIntrinsicCall(ID, Call);
2977 
2978   // Verify that a callsite has at most one "deopt", at most one "funclet", at
2979   // most one "gc-transition", and at most one "cfguardtarget" operand bundle.
2980   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2981        FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false;
2982   for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
2983     OperandBundleUse BU = Call.getOperandBundleAt(i);
2984     uint32_t Tag = BU.getTagID();
2985     if (Tag == LLVMContext::OB_deopt) {
2986       Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
2987       FoundDeoptBundle = true;
2988     } else if (Tag == LLVMContext::OB_gc_transition) {
2989       Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
2990              Call);
2991       FoundGCTransitionBundle = true;
2992     } else if (Tag == LLVMContext::OB_funclet) {
2993       Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
2994       FoundFuncletBundle = true;
2995       Assert(BU.Inputs.size() == 1,
2996              "Expected exactly one funclet bundle operand", Call);
2997       Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2998              "Funclet bundle operands should correspond to a FuncletPadInst",
2999              Call);
3000     } else if (Tag == LLVMContext::OB_cfguardtarget) {
3001       Assert(!FoundCFGuardTargetBundle,
3002              "Multiple CFGuardTarget operand bundles", Call);
3003       FoundCFGuardTargetBundle = true;
3004       Assert(BU.Inputs.size() == 1,
3005              "Expected exactly one cfguardtarget bundle operand", Call);
3006     }
3007   }
3008 
3009   // Verify that each inlinable callsite of a debug-info-bearing function in a
3010   // debug-info-bearing function has a debug location attached to it. Failure to
3011   // do so causes assertion failures when the inliner sets up inline scope info.
3012   if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3013       Call.getCalledFunction()->getSubprogram())
3014     AssertDI(Call.getDebugLoc(),
3015              "inlinable function call in a function with "
3016              "debug info must have a !dbg location",
3017              Call);
3018 
3019   visitInstruction(Call);
3020 }
3021 
3022 /// Two types are "congruent" if they are identical, or if they are both pointer
3023 /// types with different pointee types and the same address space.
3024 static bool isTypeCongruent(Type *L, Type *R) {
3025   if (L == R)
3026     return true;
3027   PointerType *PL = dyn_cast<PointerType>(L);
3028   PointerType *PR = dyn_cast<PointerType>(R);
3029   if (!PL || !PR)
3030     return false;
3031   return PL->getAddressSpace() == PR->getAddressSpace();
3032 }
3033 
3034 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
3035   static const Attribute::AttrKind ABIAttrs[] = {
3036       Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
3037       Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
3038       Attribute::SwiftError};
3039   AttrBuilder Copy;
3040   for (auto AK : ABIAttrs) {
3041     if (Attrs.hasParamAttribute(I, AK))
3042       Copy.addAttribute(AK);
3043   }
3044   if (Attrs.hasParamAttribute(I, Attribute::Alignment))
3045     Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3046   return Copy;
3047 }
3048 
3049 void Verifier::verifyMustTailCall(CallInst &CI) {
3050   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3051 
3052   // - The caller and callee prototypes must match.  Pointer types of
3053   //   parameters or return types may differ in pointee type, but not
3054   //   address space.
3055   Function *F = CI.getParent()->getParent();
3056   FunctionType *CallerTy = F->getFunctionType();
3057   FunctionType *CalleeTy = CI.getFunctionType();
3058   if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3059     Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3060            "cannot guarantee tail call due to mismatched parameter counts",
3061            &CI);
3062     for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3063       Assert(
3064           isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3065           "cannot guarantee tail call due to mismatched parameter types", &CI);
3066     }
3067   }
3068   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3069          "cannot guarantee tail call due to mismatched varargs", &CI);
3070   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3071          "cannot guarantee tail call due to mismatched return types", &CI);
3072 
3073   // - The calling conventions of the caller and callee must match.
3074   Assert(F->getCallingConv() == CI.getCallingConv(),
3075          "cannot guarantee tail call due to mismatched calling conv", &CI);
3076 
3077   // - All ABI-impacting function attributes, such as sret, byval, inreg,
3078   //   returned, and inalloca, must match.
3079   AttributeList CallerAttrs = F->getAttributes();
3080   AttributeList CalleeAttrs = CI.getAttributes();
3081   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3082     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3083     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3084     Assert(CallerABIAttrs == CalleeABIAttrs,
3085            "cannot guarantee tail call due to mismatched ABI impacting "
3086            "function attributes",
3087            &CI, CI.getOperand(I));
3088   }
3089 
3090   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3091   //   or a pointer bitcast followed by a ret instruction.
3092   // - The ret instruction must return the (possibly bitcasted) value
3093   //   produced by the call or void.
3094   Value *RetVal = &CI;
3095   Instruction *Next = CI.getNextNode();
3096 
3097   // Handle the optional bitcast.
3098   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3099     Assert(BI->getOperand(0) == RetVal,
3100            "bitcast following musttail call must use the call", BI);
3101     RetVal = BI;
3102     Next = BI->getNextNode();
3103   }
3104 
3105   // Check the return.
3106   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3107   Assert(Ret, "musttail call must precede a ret with an optional bitcast",
3108          &CI);
3109   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
3110          "musttail call result must be returned", Ret);
3111 }
3112 
3113 void Verifier::visitCallInst(CallInst &CI) {
3114   visitCallBase(CI);
3115 
3116   if (CI.isMustTailCall())
3117     verifyMustTailCall(CI);
3118 }
3119 
3120 void Verifier::visitInvokeInst(InvokeInst &II) {
3121   visitCallBase(II);
3122 
3123   // Verify that the first non-PHI instruction of the unwind destination is an
3124   // exception handling instruction.
3125   Assert(
3126       II.getUnwindDest()->isEHPad(),
3127       "The unwind destination does not have an exception handling instruction!",
3128       &II);
3129 
3130   visitTerminator(II);
3131 }
3132 
3133 /// visitUnaryOperator - Check the argument to the unary operator.
3134 ///
3135 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3136   Assert(U.getType() == U.getOperand(0)->getType(),
3137          "Unary operators must have same type for"
3138          "operands and result!",
3139          &U);
3140 
3141   switch (U.getOpcode()) {
3142   // Check that floating-point arithmetic operators are only used with
3143   // floating-point operands.
3144   case Instruction::FNeg:
3145     Assert(U.getType()->isFPOrFPVectorTy(),
3146            "FNeg operator only works with float types!", &U);
3147     break;
3148   default:
3149     llvm_unreachable("Unknown UnaryOperator opcode!");
3150   }
3151 
3152   visitInstruction(U);
3153 }
3154 
3155 /// visitBinaryOperator - Check that both arguments to the binary operator are
3156 /// of the same type!
3157 ///
3158 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3159   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3160          "Both operands to a binary operator are not of the same type!", &B);
3161 
3162   switch (B.getOpcode()) {
3163   // Check that integer arithmetic operators are only used with
3164   // integral operands.
3165   case Instruction::Add:
3166   case Instruction::Sub:
3167   case Instruction::Mul:
3168   case Instruction::SDiv:
3169   case Instruction::UDiv:
3170   case Instruction::SRem:
3171   case Instruction::URem:
3172     Assert(B.getType()->isIntOrIntVectorTy(),
3173            "Integer arithmetic operators only work with integral types!", &B);
3174     Assert(B.getType() == B.getOperand(0)->getType(),
3175            "Integer arithmetic operators must have same type "
3176            "for operands and result!",
3177            &B);
3178     break;
3179   // Check that floating-point arithmetic operators are only used with
3180   // floating-point operands.
3181   case Instruction::FAdd:
3182   case Instruction::FSub:
3183   case Instruction::FMul:
3184   case Instruction::FDiv:
3185   case Instruction::FRem:
3186     Assert(B.getType()->isFPOrFPVectorTy(),
3187            "Floating-point arithmetic operators only work with "
3188            "floating-point types!",
3189            &B);
3190     Assert(B.getType() == B.getOperand(0)->getType(),
3191            "Floating-point arithmetic operators must have same type "
3192            "for operands and result!",
3193            &B);
3194     break;
3195   // Check that logical operators are only used with integral operands.
3196   case Instruction::And:
3197   case Instruction::Or:
3198   case Instruction::Xor:
3199     Assert(B.getType()->isIntOrIntVectorTy(),
3200            "Logical operators only work with integral types!", &B);
3201     Assert(B.getType() == B.getOperand(0)->getType(),
3202            "Logical operators must have same type for operands and result!",
3203            &B);
3204     break;
3205   case Instruction::Shl:
3206   case Instruction::LShr:
3207   case Instruction::AShr:
3208     Assert(B.getType()->isIntOrIntVectorTy(),
3209            "Shifts only work with integral types!", &B);
3210     Assert(B.getType() == B.getOperand(0)->getType(),
3211            "Shift return type must be same as operands!", &B);
3212     break;
3213   default:
3214     llvm_unreachable("Unknown BinaryOperator opcode!");
3215   }
3216 
3217   visitInstruction(B);
3218 }
3219 
3220 void Verifier::visitICmpInst(ICmpInst &IC) {
3221   // Check that the operands are the same type
3222   Type *Op0Ty = IC.getOperand(0)->getType();
3223   Type *Op1Ty = IC.getOperand(1)->getType();
3224   Assert(Op0Ty == Op1Ty,
3225          "Both operands to ICmp instruction are not of the same type!", &IC);
3226   // Check that the operands are the right type
3227   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3228          "Invalid operand types for ICmp instruction", &IC);
3229   // Check that the predicate is valid.
3230   Assert(IC.isIntPredicate(),
3231          "Invalid predicate in ICmp instruction!", &IC);
3232 
3233   visitInstruction(IC);
3234 }
3235 
3236 void Verifier::visitFCmpInst(FCmpInst &FC) {
3237   // Check that the operands are the same type
3238   Type *Op0Ty = FC.getOperand(0)->getType();
3239   Type *Op1Ty = FC.getOperand(1)->getType();
3240   Assert(Op0Ty == Op1Ty,
3241          "Both operands to FCmp instruction are not of the same type!", &FC);
3242   // Check that the operands are the right type
3243   Assert(Op0Ty->isFPOrFPVectorTy(),
3244          "Invalid operand types for FCmp instruction", &FC);
3245   // Check that the predicate is valid.
3246   Assert(FC.isFPPredicate(),
3247          "Invalid predicate in FCmp instruction!", &FC);
3248 
3249   visitInstruction(FC);
3250 }
3251 
3252 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3253   Assert(
3254       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3255       "Invalid extractelement operands!", &EI);
3256   visitInstruction(EI);
3257 }
3258 
3259 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3260   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3261                                             IE.getOperand(2)),
3262          "Invalid insertelement operands!", &IE);
3263   visitInstruction(IE);
3264 }
3265 
3266 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3267   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3268                                             SV.getOperand(2)),
3269          "Invalid shufflevector operands!", &SV);
3270   visitInstruction(SV);
3271 }
3272 
3273 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3274   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3275 
3276   Assert(isa<PointerType>(TargetTy),
3277          "GEP base pointer is not a vector or a vector of pointers", &GEP);
3278   Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3279 
3280   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3281   Assert(all_of(
3282       Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3283       "GEP indexes must be integers", &GEP);
3284   Type *ElTy =
3285       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3286   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3287 
3288   Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3289              GEP.getResultElementType() == ElTy,
3290          "GEP is not of right type for indices!", &GEP, ElTy);
3291 
3292   if (GEP.getType()->isVectorTy()) {
3293     // Additional checks for vector GEPs.
3294     unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3295     if (GEP.getPointerOperandType()->isVectorTy())
3296       Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
3297              "Vector GEP result width doesn't match operand's", &GEP);
3298     for (Value *Idx : Idxs) {
3299       Type *IndexTy = Idx->getType();
3300       if (IndexTy->isVectorTy()) {
3301         unsigned IndexWidth = IndexTy->getVectorNumElements();
3302         Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3303       }
3304       Assert(IndexTy->isIntOrIntVectorTy(),
3305              "All GEP indices should be of integer type");
3306     }
3307   }
3308 
3309   if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3310     Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
3311            "GEP address space doesn't match type", &GEP);
3312   }
3313 
3314   visitInstruction(GEP);
3315 }
3316 
3317 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3318   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3319 }
3320 
3321 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3322   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3323          "precondition violation");
3324 
3325   unsigned NumOperands = Range->getNumOperands();
3326   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3327   unsigned NumRanges = NumOperands / 2;
3328   Assert(NumRanges >= 1, "It should have at least one range!", Range);
3329 
3330   ConstantRange LastRange(1, true); // Dummy initial value
3331   for (unsigned i = 0; i < NumRanges; ++i) {
3332     ConstantInt *Low =
3333         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3334     Assert(Low, "The lower limit must be an integer!", Low);
3335     ConstantInt *High =
3336         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3337     Assert(High, "The upper limit must be an integer!", High);
3338     Assert(High->getType() == Low->getType() && High->getType() == Ty,
3339            "Range types must match instruction type!", &I);
3340 
3341     APInt HighV = High->getValue();
3342     APInt LowV = Low->getValue();
3343     ConstantRange CurRange(LowV, HighV);
3344     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3345            "Range must not be empty!", Range);
3346     if (i != 0) {
3347       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3348              "Intervals are overlapping", Range);
3349       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3350              Range);
3351       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3352              Range);
3353     }
3354     LastRange = ConstantRange(LowV, HighV);
3355   }
3356   if (NumRanges > 2) {
3357     APInt FirstLow =
3358         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3359     APInt FirstHigh =
3360         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3361     ConstantRange FirstRange(FirstLow, FirstHigh);
3362     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3363            "Intervals are overlapping", Range);
3364     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3365            Range);
3366   }
3367 }
3368 
3369 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3370   unsigned Size = DL.getTypeSizeInBits(Ty);
3371   Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3372   Assert(!(Size & (Size - 1)),
3373          "atomic memory access' operand must have a power-of-two size", Ty, I);
3374 }
3375 
3376 void Verifier::visitLoadInst(LoadInst &LI) {
3377   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3378   Assert(PTy, "Load operand must be a pointer.", &LI);
3379   Type *ElTy = LI.getType();
3380   Assert(LI.getAlignment() <= Value::MaximumAlignment,
3381          "huge alignment values are unsupported", &LI);
3382   Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3383   if (LI.isAtomic()) {
3384     Assert(LI.getOrdering() != AtomicOrdering::Release &&
3385                LI.getOrdering() != AtomicOrdering::AcquireRelease,
3386            "Load cannot have Release ordering", &LI);
3387     Assert(LI.getAlignment() != 0,
3388            "Atomic load must specify explicit alignment", &LI);
3389     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3390            "atomic load operand must have integer, pointer, or floating point "
3391            "type!",
3392            ElTy, &LI);
3393     checkAtomicMemAccessSize(ElTy, &LI);
3394   } else {
3395     Assert(LI.getSyncScopeID() == SyncScope::System,
3396            "Non-atomic load cannot have SynchronizationScope specified", &LI);
3397   }
3398 
3399   visitInstruction(LI);
3400 }
3401 
3402 void Verifier::visitStoreInst(StoreInst &SI) {
3403   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3404   Assert(PTy, "Store operand must be a pointer.", &SI);
3405   Type *ElTy = PTy->getElementType();
3406   Assert(ElTy == SI.getOperand(0)->getType(),
3407          "Stored value type does not match pointer operand type!", &SI, ElTy);
3408   Assert(SI.getAlignment() <= Value::MaximumAlignment,
3409          "huge alignment values are unsupported", &SI);
3410   Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3411   if (SI.isAtomic()) {
3412     Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3413                SI.getOrdering() != AtomicOrdering::AcquireRelease,
3414            "Store cannot have Acquire ordering", &SI);
3415     Assert(SI.getAlignment() != 0,
3416            "Atomic store must specify explicit alignment", &SI);
3417     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3418            "atomic store operand must have integer, pointer, or floating point "
3419            "type!",
3420            ElTy, &SI);
3421     checkAtomicMemAccessSize(ElTy, &SI);
3422   } else {
3423     Assert(SI.getSyncScopeID() == SyncScope::System,
3424            "Non-atomic store cannot have SynchronizationScope specified", &SI);
3425   }
3426   visitInstruction(SI);
3427 }
3428 
3429 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3430 void Verifier::verifySwiftErrorCall(CallBase &Call,
3431                                     const Value *SwiftErrorVal) {
3432   unsigned Idx = 0;
3433   for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) {
3434     if (*I == SwiftErrorVal) {
3435       Assert(Call.paramHasAttr(Idx, Attribute::SwiftError),
3436              "swifterror value when used in a callsite should be marked "
3437              "with swifterror attribute",
3438              SwiftErrorVal, Call);
3439     }
3440   }
3441 }
3442 
3443 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3444   // Check that swifterror value is only used by loads, stores, or as
3445   // a swifterror argument.
3446   for (const User *U : SwiftErrorVal->users()) {
3447     Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3448            isa<InvokeInst>(U),
3449            "swifterror value can only be loaded and stored from, or "
3450            "as a swifterror argument!",
3451            SwiftErrorVal, U);
3452     // If it is used by a store, check it is the second operand.
3453     if (auto StoreI = dyn_cast<StoreInst>(U))
3454       Assert(StoreI->getOperand(1) == SwiftErrorVal,
3455              "swifterror value should be the second operand when used "
3456              "by stores", SwiftErrorVal, U);
3457     if (auto *Call = dyn_cast<CallBase>(U))
3458       verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3459   }
3460 }
3461 
3462 void Verifier::visitAllocaInst(AllocaInst &AI) {
3463   SmallPtrSet<Type*, 4> Visited;
3464   PointerType *PTy = AI.getType();
3465   // TODO: Relax this restriction?
3466   Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),
3467          "Allocation instruction pointer not in the stack address space!",
3468          &AI);
3469   Assert(AI.getAllocatedType()->isSized(&Visited),
3470          "Cannot allocate unsized type", &AI);
3471   Assert(AI.getArraySize()->getType()->isIntegerTy(),
3472          "Alloca array size must have integer type", &AI);
3473   Assert(AI.getAlignment() <= Value::MaximumAlignment,
3474          "huge alignment values are unsupported", &AI);
3475 
3476   if (AI.isSwiftError()) {
3477     verifySwiftErrorValue(&AI);
3478   }
3479 
3480   visitInstruction(AI);
3481 }
3482 
3483 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3484 
3485   // FIXME: more conditions???
3486   Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
3487          "cmpxchg instructions must be atomic.", &CXI);
3488   Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
3489          "cmpxchg instructions must be atomic.", &CXI);
3490   Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
3491          "cmpxchg instructions cannot be unordered.", &CXI);
3492   Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
3493          "cmpxchg instructions cannot be unordered.", &CXI);
3494   Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
3495          "cmpxchg instructions failure argument shall be no stronger than the "
3496          "success argument",
3497          &CXI);
3498   Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
3499              CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
3500          "cmpxchg failure ordering cannot include release semantics", &CXI);
3501 
3502   PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3503   Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3504   Type *ElTy = PTy->getElementType();
3505   Assert(ElTy->isIntOrPtrTy(),
3506          "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3507   checkAtomicMemAccessSize(ElTy, &CXI);
3508   Assert(ElTy == CXI.getOperand(1)->getType(),
3509          "Expected value type does not match pointer operand type!", &CXI,
3510          ElTy);
3511   Assert(ElTy == CXI.getOperand(2)->getType(),
3512          "Stored value type does not match pointer operand type!", &CXI, ElTy);
3513   visitInstruction(CXI);
3514 }
3515 
3516 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3517   Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
3518          "atomicrmw instructions must be atomic.", &RMWI);
3519   Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3520          "atomicrmw instructions cannot be unordered.", &RMWI);
3521   auto Op = RMWI.getOperation();
3522   PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3523   Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3524   Type *ElTy = PTy->getElementType();
3525   if (Op == AtomicRMWInst::Xchg) {
3526     Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
3527            AtomicRMWInst::getOperationName(Op) +
3528            " operand must have integer or floating point type!",
3529            &RMWI, ElTy);
3530   } else if (AtomicRMWInst::isFPOperation(Op)) {
3531     Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
3532            AtomicRMWInst::getOperationName(Op) +
3533            " operand must have floating point type!",
3534            &RMWI, ElTy);
3535   } else {
3536     Assert(ElTy->isIntegerTy(), "atomicrmw " +
3537            AtomicRMWInst::getOperationName(Op) +
3538            " operand must have integer type!",
3539            &RMWI, ElTy);
3540   }
3541   checkAtomicMemAccessSize(ElTy, &RMWI);
3542   Assert(ElTy == RMWI.getOperand(1)->getType(),
3543          "Argument value type does not match pointer operand type!", &RMWI,
3544          ElTy);
3545   Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
3546          "Invalid binary operation!", &RMWI);
3547   visitInstruction(RMWI);
3548 }
3549 
3550 void Verifier::visitFenceInst(FenceInst &FI) {
3551   const AtomicOrdering Ordering = FI.getOrdering();
3552   Assert(Ordering == AtomicOrdering::Acquire ||
3553              Ordering == AtomicOrdering::Release ||
3554              Ordering == AtomicOrdering::AcquireRelease ||
3555              Ordering == AtomicOrdering::SequentiallyConsistent,
3556          "fence instructions may only have acquire, release, acq_rel, or "
3557          "seq_cst ordering.",
3558          &FI);
3559   visitInstruction(FI);
3560 }
3561 
3562 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3563   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3564                                           EVI.getIndices()) == EVI.getType(),
3565          "Invalid ExtractValueInst operands!", &EVI);
3566 
3567   visitInstruction(EVI);
3568 }
3569 
3570 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3571   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3572                                           IVI.getIndices()) ==
3573              IVI.getOperand(1)->getType(),
3574          "Invalid InsertValueInst operands!", &IVI);
3575 
3576   visitInstruction(IVI);
3577 }
3578 
3579 static Value *getParentPad(Value *EHPad) {
3580   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3581     return FPI->getParentPad();
3582 
3583   return cast<CatchSwitchInst>(EHPad)->getParentPad();
3584 }
3585 
3586 void Verifier::visitEHPadPredecessors(Instruction &I) {
3587   assert(I.isEHPad());
3588 
3589   BasicBlock *BB = I.getParent();
3590   Function *F = BB->getParent();
3591 
3592   Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3593 
3594   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3595     // The landingpad instruction defines its parent as a landing pad block. The
3596     // landing pad block may be branched to only by the unwind edge of an
3597     // invoke.
3598     for (BasicBlock *PredBB : predecessors(BB)) {
3599       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3600       Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3601              "Block containing LandingPadInst must be jumped to "
3602              "only by the unwind edge of an invoke.",
3603              LPI);
3604     }
3605     return;
3606   }
3607   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3608     if (!pred_empty(BB))
3609       Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3610              "Block containg CatchPadInst must be jumped to "
3611              "only by its catchswitch.",
3612              CPI);
3613     Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3614            "Catchswitch cannot unwind to one of its catchpads",
3615            CPI->getCatchSwitch(), CPI);
3616     return;
3617   }
3618 
3619   // Verify that each pred has a legal terminator with a legal to/from EH
3620   // pad relationship.
3621   Instruction *ToPad = &I;
3622   Value *ToPadParent = getParentPad(ToPad);
3623   for (BasicBlock *PredBB : predecessors(BB)) {
3624     Instruction *TI = PredBB->getTerminator();
3625     Value *FromPad;
3626     if (auto *II = dyn_cast<InvokeInst>(TI)) {
3627       Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3628              "EH pad must be jumped to via an unwind edge", ToPad, II);
3629       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3630         FromPad = Bundle->Inputs[0];
3631       else
3632         FromPad = ConstantTokenNone::get(II->getContext());
3633     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3634       FromPad = CRI->getOperand(0);
3635       Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3636     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3637       FromPad = CSI;
3638     } else {
3639       Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3640     }
3641 
3642     // The edge may exit from zero or more nested pads.
3643     SmallSet<Value *, 8> Seen;
3644     for (;; FromPad = getParentPad(FromPad)) {
3645       Assert(FromPad != ToPad,
3646              "EH pad cannot handle exceptions raised within it", FromPad, TI);
3647       if (FromPad == ToPadParent) {
3648         // This is a legal unwind edge.
3649         break;
3650       }
3651       Assert(!isa<ConstantTokenNone>(FromPad),
3652              "A single unwind edge may only enter one EH pad", TI);
3653       Assert(Seen.insert(FromPad).second,
3654              "EH pad jumps through a cycle of pads", FromPad);
3655     }
3656   }
3657 }
3658 
3659 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3660   // The landingpad instruction is ill-formed if it doesn't have any clauses and
3661   // isn't a cleanup.
3662   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3663          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3664 
3665   visitEHPadPredecessors(LPI);
3666 
3667   if (!LandingPadResultTy)
3668     LandingPadResultTy = LPI.getType();
3669   else
3670     Assert(LandingPadResultTy == LPI.getType(),
3671            "The landingpad instruction should have a consistent result type "
3672            "inside a function.",
3673            &LPI);
3674 
3675   Function *F = LPI.getParent()->getParent();
3676   Assert(F->hasPersonalityFn(),
3677          "LandingPadInst needs to be in a function with a personality.", &LPI);
3678 
3679   // The landingpad instruction must be the first non-PHI instruction in the
3680   // block.
3681   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3682          "LandingPadInst not the first non-PHI instruction in the block.",
3683          &LPI);
3684 
3685   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3686     Constant *Clause = LPI.getClause(i);
3687     if (LPI.isCatch(i)) {
3688       Assert(isa<PointerType>(Clause->getType()),
3689              "Catch operand does not have pointer type!", &LPI);
3690     } else {
3691       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3692       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3693              "Filter operand is not an array of constants!", &LPI);
3694     }
3695   }
3696 
3697   visitInstruction(LPI);
3698 }
3699 
3700 void Verifier::visitResumeInst(ResumeInst &RI) {
3701   Assert(RI.getFunction()->hasPersonalityFn(),
3702          "ResumeInst needs to be in a function with a personality.", &RI);
3703 
3704   if (!LandingPadResultTy)
3705     LandingPadResultTy = RI.getValue()->getType();
3706   else
3707     Assert(LandingPadResultTy == RI.getValue()->getType(),
3708            "The resume instruction should have a consistent result type "
3709            "inside a function.",
3710            &RI);
3711 
3712   visitTerminator(RI);
3713 }
3714 
3715 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3716   BasicBlock *BB = CPI.getParent();
3717 
3718   Function *F = BB->getParent();
3719   Assert(F->hasPersonalityFn(),
3720          "CatchPadInst needs to be in a function with a personality.", &CPI);
3721 
3722   Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3723          "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3724          CPI.getParentPad());
3725 
3726   // The catchpad instruction must be the first non-PHI instruction in the
3727   // block.
3728   Assert(BB->getFirstNonPHI() == &CPI,
3729          "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3730 
3731   visitEHPadPredecessors(CPI);
3732   visitFuncletPadInst(CPI);
3733 }
3734 
3735 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3736   Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3737          "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3738          CatchReturn.getOperand(0));
3739 
3740   visitTerminator(CatchReturn);
3741 }
3742 
3743 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3744   BasicBlock *BB = CPI.getParent();
3745 
3746   Function *F = BB->getParent();
3747   Assert(F->hasPersonalityFn(),
3748          "CleanupPadInst needs to be in a function with a personality.", &CPI);
3749 
3750   // The cleanuppad instruction must be the first non-PHI instruction in the
3751   // block.
3752   Assert(BB->getFirstNonPHI() == &CPI,
3753          "CleanupPadInst not the first non-PHI instruction in the block.",
3754          &CPI);
3755 
3756   auto *ParentPad = CPI.getParentPad();
3757   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3758          "CleanupPadInst has an invalid parent.", &CPI);
3759 
3760   visitEHPadPredecessors(CPI);
3761   visitFuncletPadInst(CPI);
3762 }
3763 
3764 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3765   User *FirstUser = nullptr;
3766   Value *FirstUnwindPad = nullptr;
3767   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3768   SmallSet<FuncletPadInst *, 8> Seen;
3769 
3770   while (!Worklist.empty()) {
3771     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3772     Assert(Seen.insert(CurrentPad).second,
3773            "FuncletPadInst must not be nested within itself", CurrentPad);
3774     Value *UnresolvedAncestorPad = nullptr;
3775     for (User *U : CurrentPad->users()) {
3776       BasicBlock *UnwindDest;
3777       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3778         UnwindDest = CRI->getUnwindDest();
3779       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3780         // We allow catchswitch unwind to caller to nest
3781         // within an outer pad that unwinds somewhere else,
3782         // because catchswitch doesn't have a nounwind variant.
3783         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3784         if (CSI->unwindsToCaller())
3785           continue;
3786         UnwindDest = CSI->getUnwindDest();
3787       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3788         UnwindDest = II->getUnwindDest();
3789       } else if (isa<CallInst>(U)) {
3790         // Calls which don't unwind may be found inside funclet
3791         // pads that unwind somewhere else.  We don't *require*
3792         // such calls to be annotated nounwind.
3793         continue;
3794       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3795         // The unwind dest for a cleanup can only be found by
3796         // recursive search.  Add it to the worklist, and we'll
3797         // search for its first use that determines where it unwinds.
3798         Worklist.push_back(CPI);
3799         continue;
3800       } else {
3801         Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3802         continue;
3803       }
3804 
3805       Value *UnwindPad;
3806       bool ExitsFPI;
3807       if (UnwindDest) {
3808         UnwindPad = UnwindDest->getFirstNonPHI();
3809         if (!cast<Instruction>(UnwindPad)->isEHPad())
3810           continue;
3811         Value *UnwindParent = getParentPad(UnwindPad);
3812         // Ignore unwind edges that don't exit CurrentPad.
3813         if (UnwindParent == CurrentPad)
3814           continue;
3815         // Determine whether the original funclet pad is exited,
3816         // and if we are scanning nested pads determine how many
3817         // of them are exited so we can stop searching their
3818         // children.
3819         Value *ExitedPad = CurrentPad;
3820         ExitsFPI = false;
3821         do {
3822           if (ExitedPad == &FPI) {
3823             ExitsFPI = true;
3824             // Now we can resolve any ancestors of CurrentPad up to
3825             // FPI, but not including FPI since we need to make sure
3826             // to check all direct users of FPI for consistency.
3827             UnresolvedAncestorPad = &FPI;
3828             break;
3829           }
3830           Value *ExitedParent = getParentPad(ExitedPad);
3831           if (ExitedParent == UnwindParent) {
3832             // ExitedPad is the ancestor-most pad which this unwind
3833             // edge exits, so we can resolve up to it, meaning that
3834             // ExitedParent is the first ancestor still unresolved.
3835             UnresolvedAncestorPad = ExitedParent;
3836             break;
3837           }
3838           ExitedPad = ExitedParent;
3839         } while (!isa<ConstantTokenNone>(ExitedPad));
3840       } else {
3841         // Unwinding to caller exits all pads.
3842         UnwindPad = ConstantTokenNone::get(FPI.getContext());
3843         ExitsFPI = true;
3844         UnresolvedAncestorPad = &FPI;
3845       }
3846 
3847       if (ExitsFPI) {
3848         // This unwind edge exits FPI.  Make sure it agrees with other
3849         // such edges.
3850         if (FirstUser) {
3851           Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3852                                               "pad must have the same unwind "
3853                                               "dest",
3854                  &FPI, U, FirstUser);
3855         } else {
3856           FirstUser = U;
3857           FirstUnwindPad = UnwindPad;
3858           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3859           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3860               getParentPad(UnwindPad) == getParentPad(&FPI))
3861             SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
3862         }
3863       }
3864       // Make sure we visit all uses of FPI, but for nested pads stop as
3865       // soon as we know where they unwind to.
3866       if (CurrentPad != &FPI)
3867         break;
3868     }
3869     if (UnresolvedAncestorPad) {
3870       if (CurrentPad == UnresolvedAncestorPad) {
3871         // When CurrentPad is FPI itself, we don't mark it as resolved even if
3872         // we've found an unwind edge that exits it, because we need to verify
3873         // all direct uses of FPI.
3874         assert(CurrentPad == &FPI);
3875         continue;
3876       }
3877       // Pop off the worklist any nested pads that we've found an unwind
3878       // destination for.  The pads on the worklist are the uncles,
3879       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
3880       // for all ancestors of CurrentPad up to but not including
3881       // UnresolvedAncestorPad.
3882       Value *ResolvedPad = CurrentPad;
3883       while (!Worklist.empty()) {
3884         Value *UnclePad = Worklist.back();
3885         Value *AncestorPad = getParentPad(UnclePad);
3886         // Walk ResolvedPad up the ancestor list until we either find the
3887         // uncle's parent or the last resolved ancestor.
3888         while (ResolvedPad != AncestorPad) {
3889           Value *ResolvedParent = getParentPad(ResolvedPad);
3890           if (ResolvedParent == UnresolvedAncestorPad) {
3891             break;
3892           }
3893           ResolvedPad = ResolvedParent;
3894         }
3895         // If the resolved ancestor search didn't find the uncle's parent,
3896         // then the uncle is not yet resolved.
3897         if (ResolvedPad != AncestorPad)
3898           break;
3899         // This uncle is resolved, so pop it from the worklist.
3900         Worklist.pop_back();
3901       }
3902     }
3903   }
3904 
3905   if (FirstUnwindPad) {
3906     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3907       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3908       Value *SwitchUnwindPad;
3909       if (SwitchUnwindDest)
3910         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3911       else
3912         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3913       Assert(SwitchUnwindPad == FirstUnwindPad,
3914              "Unwind edges out of a catch must have the same unwind dest as "
3915              "the parent catchswitch",
3916              &FPI, FirstUser, CatchSwitch);
3917     }
3918   }
3919 
3920   visitInstruction(FPI);
3921 }
3922 
3923 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3924   BasicBlock *BB = CatchSwitch.getParent();
3925 
3926   Function *F = BB->getParent();
3927   Assert(F->hasPersonalityFn(),
3928          "CatchSwitchInst needs to be in a function with a personality.",
3929          &CatchSwitch);
3930 
3931   // The catchswitch instruction must be the first non-PHI instruction in the
3932   // block.
3933   Assert(BB->getFirstNonPHI() == &CatchSwitch,
3934          "CatchSwitchInst not the first non-PHI instruction in the block.",
3935          &CatchSwitch);
3936 
3937   auto *ParentPad = CatchSwitch.getParentPad();
3938   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3939          "CatchSwitchInst has an invalid parent.", ParentPad);
3940 
3941   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3942     Instruction *I = UnwindDest->getFirstNonPHI();
3943     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3944            "CatchSwitchInst must unwind to an EH block which is not a "
3945            "landingpad.",
3946            &CatchSwitch);
3947 
3948     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3949     if (getParentPad(I) == ParentPad)
3950       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3951   }
3952 
3953   Assert(CatchSwitch.getNumHandlers() != 0,
3954          "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3955 
3956   for (BasicBlock *Handler : CatchSwitch.handlers()) {
3957     Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3958            "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3959   }
3960 
3961   visitEHPadPredecessors(CatchSwitch);
3962   visitTerminator(CatchSwitch);
3963 }
3964 
3965 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3966   Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3967          "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3968          CRI.getOperand(0));
3969 
3970   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3971     Instruction *I = UnwindDest->getFirstNonPHI();
3972     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3973            "CleanupReturnInst must unwind to an EH block which is not a "
3974            "landingpad.",
3975            &CRI);
3976   }
3977 
3978   visitTerminator(CRI);
3979 }
3980 
3981 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3982   Instruction *Op = cast<Instruction>(I.getOperand(i));
3983   // If the we have an invalid invoke, don't try to compute the dominance.
3984   // We already reject it in the invoke specific checks and the dominance
3985   // computation doesn't handle multiple edges.
3986   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3987     if (II->getNormalDest() == II->getUnwindDest())
3988       return;
3989   }
3990 
3991   // Quick check whether the def has already been encountered in the same block.
3992   // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
3993   // uses are defined to happen on the incoming edge, not at the instruction.
3994   //
3995   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3996   // wrapping an SSA value, assert that we've already encountered it.  See
3997   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3998   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3999     return;
4000 
4001   const Use &U = I.getOperandUse(i);
4002   Assert(DT.dominates(Op, U),
4003          "Instruction does not dominate all uses!", Op, &I);
4004 }
4005 
4006 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4007   Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
4008          "apply only to pointer types", &I);
4009   Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4010          "dereferenceable, dereferenceable_or_null apply only to load"
4011          " and inttoptr instructions, use attributes for calls or invokes", &I);
4012   Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
4013          "take one operand!", &I);
4014   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4015   Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
4016          "dereferenceable_or_null metadata value must be an i64!", &I);
4017 }
4018 
4019 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4020   Assert(MD->getNumOperands() >= 2,
4021          "!prof annotations should have no less than 2 operands", MD);
4022 
4023   // Check first operand.
4024   Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4025   Assert(isa<MDString>(MD->getOperand(0)),
4026          "expected string with name of the !prof annotation", MD);
4027   MDString *MDS = cast<MDString>(MD->getOperand(0));
4028   StringRef ProfName = MDS->getString();
4029 
4030   // Check consistency of !prof branch_weights metadata.
4031   if (ProfName.equals("branch_weights")) {
4032     unsigned ExpectedNumOperands = 0;
4033     if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4034       ExpectedNumOperands = BI->getNumSuccessors();
4035     else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4036       ExpectedNumOperands = SI->getNumSuccessors();
4037     else if (isa<CallInst>(&I) || isa<InvokeInst>(&I))
4038       ExpectedNumOperands = 1;
4039     else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4040       ExpectedNumOperands = IBI->getNumDestinations();
4041     else if (isa<SelectInst>(&I))
4042       ExpectedNumOperands = 2;
4043     else
4044       CheckFailed("!prof branch_weights are not allowed for this instruction",
4045                   MD);
4046 
4047     Assert(MD->getNumOperands() == 1 + ExpectedNumOperands,
4048            "Wrong number of operands", MD);
4049     for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4050       auto &MDO = MD->getOperand(i);
4051       Assert(MDO, "second operand should not be null", MD);
4052       Assert(mdconst::dyn_extract<ConstantInt>(MDO),
4053              "!prof brunch_weights operand is not a const int");
4054     }
4055   }
4056 }
4057 
4058 /// verifyInstruction - Verify that an instruction is well formed.
4059 ///
4060 void Verifier::visitInstruction(Instruction &I) {
4061   BasicBlock *BB = I.getParent();
4062   Assert(BB, "Instruction not embedded in basic block!", &I);
4063 
4064   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
4065     for (User *U : I.users()) {
4066       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
4067              "Only PHI nodes may reference their own value!", &I);
4068     }
4069   }
4070 
4071   // Check that void typed values don't have names
4072   Assert(!I.getType()->isVoidTy() || !I.hasName(),
4073          "Instruction has a name, but provides a void value!", &I);
4074 
4075   // Check that the return value of the instruction is either void or a legal
4076   // value type.
4077   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4078          "Instruction returns a non-scalar type!", &I);
4079 
4080   // Check that the instruction doesn't produce metadata. Calls are already
4081   // checked against the callee type.
4082   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4083          "Invalid use of metadata!", &I);
4084 
4085   // Check that all uses of the instruction, if they are instructions
4086   // themselves, actually have parent basic blocks.  If the use is not an
4087   // instruction, it is an error!
4088   for (Use &U : I.uses()) {
4089     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4090       Assert(Used->getParent() != nullptr,
4091              "Instruction referencing"
4092              " instruction not embedded in a basic block!",
4093              &I, Used);
4094     else {
4095       CheckFailed("Use of instruction is not an instruction!", U);
4096       return;
4097     }
4098   }
4099 
4100   // Get a pointer to the call base of the instruction if it is some form of
4101   // call.
4102   const CallBase *CBI = dyn_cast<CallBase>(&I);
4103 
4104   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4105     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4106 
4107     // Check to make sure that only first-class-values are operands to
4108     // instructions.
4109     if (!I.getOperand(i)->getType()->isFirstClassType()) {
4110       Assert(false, "Instruction operands must be first-class values!", &I);
4111     }
4112 
4113     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4114       // Check to make sure that the "address of" an intrinsic function is never
4115       // taken.
4116       Assert(!F->isIntrinsic() ||
4117                  (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),
4118              "Cannot take the address of an intrinsic!", &I);
4119       Assert(
4120           !F->isIntrinsic() || isa<CallInst>(I) ||
4121               F->getIntrinsicID() == Intrinsic::donothing ||
4122               F->getIntrinsicID() == Intrinsic::coro_resume ||
4123               F->getIntrinsicID() == Intrinsic::coro_destroy ||
4124               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
4125               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4126               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4127               F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch,
4128           "Cannot invoke an intrinsic other than donothing, patchpoint, "
4129           "statepoint, coro_resume or coro_destroy",
4130           &I);
4131       Assert(F->getParent() == &M, "Referencing function in another module!",
4132              &I, &M, F, F->getParent());
4133     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4134       Assert(OpBB->getParent() == BB->getParent(),
4135              "Referring to a basic block in another function!", &I);
4136     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4137       Assert(OpArg->getParent() == BB->getParent(),
4138              "Referring to an argument in another function!", &I);
4139     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4140       Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
4141              &M, GV, GV->getParent());
4142     } else if (isa<Instruction>(I.getOperand(i))) {
4143       verifyDominatesUse(I, i);
4144     } else if (isa<InlineAsm>(I.getOperand(i))) {
4145       Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4146              "Cannot take the address of an inline asm!", &I);
4147     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4148       if (CE->getType()->isPtrOrPtrVectorTy() ||
4149           !DL.getNonIntegralAddressSpaces().empty()) {
4150         // If we have a ConstantExpr pointer, we need to see if it came from an
4151         // illegal bitcast.  If the datalayout string specifies non-integral
4152         // address spaces then we also need to check for illegal ptrtoint and
4153         // inttoptr expressions.
4154         visitConstantExprsRecursively(CE);
4155       }
4156     }
4157   }
4158 
4159   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4160     Assert(I.getType()->isFPOrFPVectorTy(),
4161            "fpmath requires a floating point result!", &I);
4162     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4163     if (ConstantFP *CFP0 =
4164             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4165       const APFloat &Accuracy = CFP0->getValueAPF();
4166       Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4167              "fpmath accuracy must have float type", &I);
4168       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4169              "fpmath accuracy not a positive number!", &I);
4170     } else {
4171       Assert(false, "invalid fpmath accuracy!", &I);
4172     }
4173   }
4174 
4175   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4176     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4177            "Ranges are only for loads, calls and invokes!", &I);
4178     visitRangeMetadata(I, Range, I.getType());
4179   }
4180 
4181   if (I.getMetadata(LLVMContext::MD_nonnull)) {
4182     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4183            &I);
4184     Assert(isa<LoadInst>(I),
4185            "nonnull applies only to load instructions, use attributes"
4186            " for calls or invokes",
4187            &I);
4188   }
4189 
4190   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4191     visitDereferenceableMetadata(I, MD);
4192 
4193   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4194     visitDereferenceableMetadata(I, MD);
4195 
4196   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4197     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4198 
4199   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4200     Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
4201            &I);
4202     Assert(isa<LoadInst>(I), "align applies only to load instructions, "
4203            "use attributes for calls or invokes", &I);
4204     Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4205     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4206     Assert(CI && CI->getType()->isIntegerTy(64),
4207            "align metadata value must be an i64!", &I);
4208     uint64_t Align = CI->getZExtValue();
4209     Assert(isPowerOf2_64(Align),
4210            "align metadata value must be a power of 2!", &I);
4211     Assert(Align <= Value::MaximumAlignment,
4212            "alignment is larger that implementation defined limit", &I);
4213   }
4214 
4215   if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
4216     visitProfMetadata(I, MD);
4217 
4218   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4219     AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4220     visitMDNode(*N);
4221   }
4222 
4223   if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
4224     verifyFragmentExpression(*DII);
4225     verifyNotEntryValue(*DII);
4226   }
4227 
4228   InstsInThisBlock.insert(&I);
4229 }
4230 
4231 /// Allow intrinsics to be verified in different ways.
4232 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4233   Function *IF = Call.getCalledFunction();
4234   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4235          IF);
4236 
4237   // Verify that the intrinsic prototype lines up with what the .td files
4238   // describe.
4239   FunctionType *IFTy = IF->getFunctionType();
4240   bool IsVarArg = IFTy->isVarArg();
4241 
4242   SmallVector<Intrinsic::IITDescriptor, 8> Table;
4243   getIntrinsicInfoTableEntries(ID, Table);
4244   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4245 
4246   // Walk the descriptors to extract overloaded types.
4247   SmallVector<Type *, 4> ArgTys;
4248   Intrinsic::MatchIntrinsicTypesResult Res =
4249       Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
4250   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
4251          "Intrinsic has incorrect return type!", IF);
4252   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
4253          "Intrinsic has incorrect argument type!", IF);
4254 
4255   // Verify if the intrinsic call matches the vararg property.
4256   if (IsVarArg)
4257     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4258            "Intrinsic was not defined with variable arguments!", IF);
4259   else
4260     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4261            "Callsite was not defined with variable arguments!", IF);
4262 
4263   // All descriptors should be absorbed by now.
4264   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4265 
4266   // Now that we have the intrinsic ID and the actual argument types (and we
4267   // know they are legal for the intrinsic!) get the intrinsic name through the
4268   // usual means.  This allows us to verify the mangling of argument types into
4269   // the name.
4270   const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
4271   Assert(ExpectedName == IF->getName(),
4272          "Intrinsic name not mangled correctly for type arguments! "
4273          "Should be: " +
4274              ExpectedName,
4275          IF);
4276 
4277   // If the intrinsic takes MDNode arguments, verify that they are either global
4278   // or are local to *this* function.
4279   for (Value *V : Call.args())
4280     if (auto *MD = dyn_cast<MetadataAsValue>(V))
4281       visitMetadataAsValue(*MD, Call.getCaller());
4282 
4283   switch (ID) {
4284   default:
4285     break;
4286   case Intrinsic::coro_id: {
4287     auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4288     if (isa<ConstantPointerNull>(InfoArg))
4289       break;
4290     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4291     Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4292       "info argument of llvm.coro.begin must refer to an initialized "
4293       "constant");
4294     Constant *Init = GV->getInitializer();
4295     Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4296       "info argument of llvm.coro.begin must refer to either a struct or "
4297       "an array");
4298     break;
4299   }
4300   case Intrinsic::experimental_constrained_fadd:
4301   case Intrinsic::experimental_constrained_fsub:
4302   case Intrinsic::experimental_constrained_fmul:
4303   case Intrinsic::experimental_constrained_fdiv:
4304   case Intrinsic::experimental_constrained_frem:
4305   case Intrinsic::experimental_constrained_fma:
4306   case Intrinsic::experimental_constrained_fptosi:
4307   case Intrinsic::experimental_constrained_fptoui:
4308   case Intrinsic::experimental_constrained_fptrunc:
4309   case Intrinsic::experimental_constrained_fpext:
4310   case Intrinsic::experimental_constrained_sqrt:
4311   case Intrinsic::experimental_constrained_pow:
4312   case Intrinsic::experimental_constrained_powi:
4313   case Intrinsic::experimental_constrained_sin:
4314   case Intrinsic::experimental_constrained_cos:
4315   case Intrinsic::experimental_constrained_exp:
4316   case Intrinsic::experimental_constrained_exp2:
4317   case Intrinsic::experimental_constrained_log:
4318   case Intrinsic::experimental_constrained_log10:
4319   case Intrinsic::experimental_constrained_log2:
4320   case Intrinsic::experimental_constrained_lrint:
4321   case Intrinsic::experimental_constrained_llrint:
4322   case Intrinsic::experimental_constrained_rint:
4323   case Intrinsic::experimental_constrained_nearbyint:
4324   case Intrinsic::experimental_constrained_maxnum:
4325   case Intrinsic::experimental_constrained_minnum:
4326   case Intrinsic::experimental_constrained_ceil:
4327   case Intrinsic::experimental_constrained_floor:
4328   case Intrinsic::experimental_constrained_lround:
4329   case Intrinsic::experimental_constrained_llround:
4330   case Intrinsic::experimental_constrained_round:
4331   case Intrinsic::experimental_constrained_trunc:
4332     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4333     break;
4334   case Intrinsic::dbg_declare: // llvm.dbg.declare
4335     Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
4336            "invalid llvm.dbg.declare intrinsic call 1", Call);
4337     visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4338     break;
4339   case Intrinsic::dbg_addr: // llvm.dbg.addr
4340     visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4341     break;
4342   case Intrinsic::dbg_value: // llvm.dbg.value
4343     visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4344     break;
4345   case Intrinsic::dbg_label: // llvm.dbg.label
4346     visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4347     break;
4348   case Intrinsic::memcpy:
4349   case Intrinsic::memmove:
4350   case Intrinsic::memset: {
4351     const auto *MI = cast<MemIntrinsic>(&Call);
4352     auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4353       return Alignment == 0 || isPowerOf2_32(Alignment);
4354     };
4355     Assert(IsValidAlignment(MI->getDestAlignment()),
4356            "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4357            Call);
4358     if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4359       Assert(IsValidAlignment(MTI->getSourceAlignment()),
4360              "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4361              Call);
4362     }
4363 
4364     break;
4365   }
4366   case Intrinsic::memcpy_element_unordered_atomic:
4367   case Intrinsic::memmove_element_unordered_atomic:
4368   case Intrinsic::memset_element_unordered_atomic: {
4369     const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4370 
4371     ConstantInt *ElementSizeCI =
4372         cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4373     const APInt &ElementSizeVal = ElementSizeCI->getValue();
4374     Assert(ElementSizeVal.isPowerOf2(),
4375            "element size of the element-wise atomic memory intrinsic "
4376            "must be a power of 2",
4377            Call);
4378 
4379     if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) {
4380       uint64_t Length = LengthCI->getZExtValue();
4381       uint64_t ElementSize = AMI->getElementSizeInBytes();
4382       Assert((Length % ElementSize) == 0,
4383              "constant length must be a multiple of the element size in the "
4384              "element-wise atomic memory intrinsic",
4385              Call);
4386     }
4387 
4388     auto IsValidAlignment = [&](uint64_t Alignment) {
4389       return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4390     };
4391     uint64_t DstAlignment = AMI->getDestAlignment();
4392     Assert(IsValidAlignment(DstAlignment),
4393            "incorrect alignment of the destination argument", Call);
4394     if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4395       uint64_t SrcAlignment = AMT->getSourceAlignment();
4396       Assert(IsValidAlignment(SrcAlignment),
4397              "incorrect alignment of the source argument", Call);
4398     }
4399     break;
4400   }
4401   case Intrinsic::gcroot:
4402   case Intrinsic::gcwrite:
4403   case Intrinsic::gcread:
4404     if (ID == Intrinsic::gcroot) {
4405       AllocaInst *AI =
4406           dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
4407       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
4408       Assert(isa<Constant>(Call.getArgOperand(1)),
4409              "llvm.gcroot parameter #2 must be a constant.", Call);
4410       if (!AI->getAllocatedType()->isPointerTy()) {
4411         Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
4412                "llvm.gcroot parameter #1 must either be a pointer alloca, "
4413                "or argument #2 must be a non-null constant.",
4414                Call);
4415       }
4416     }
4417 
4418     Assert(Call.getParent()->getParent()->hasGC(),
4419            "Enclosing function does not use GC.", Call);
4420     break;
4421   case Intrinsic::init_trampoline:
4422     Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
4423            "llvm.init_trampoline parameter #2 must resolve to a function.",
4424            Call);
4425     break;
4426   case Intrinsic::prefetch:
4427     Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
4428            cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
4429            "invalid arguments to llvm.prefetch", Call);
4430     break;
4431   case Intrinsic::stackprotector:
4432     Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
4433            "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
4434     break;
4435   case Intrinsic::localescape: {
4436     BasicBlock *BB = Call.getParent();
4437     Assert(BB == &BB->getParent()->front(),
4438            "llvm.localescape used outside of entry block", Call);
4439     Assert(!SawFrameEscape,
4440            "multiple calls to llvm.localescape in one function", Call);
4441     for (Value *Arg : Call.args()) {
4442       if (isa<ConstantPointerNull>(Arg))
4443         continue; // Null values are allowed as placeholders.
4444       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4445       Assert(AI && AI->isStaticAlloca(),
4446              "llvm.localescape only accepts static allocas", Call);
4447     }
4448     FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands();
4449     SawFrameEscape = true;
4450     break;
4451   }
4452   case Intrinsic::localrecover: {
4453     Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
4454     Function *Fn = dyn_cast<Function>(FnArg);
4455     Assert(Fn && !Fn->isDeclaration(),
4456            "llvm.localrecover first "
4457            "argument must be function defined in this module",
4458            Call);
4459     auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
4460     auto &Entry = FrameEscapeInfo[Fn];
4461     Entry.second = unsigned(
4462         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4463     break;
4464   }
4465 
4466   case Intrinsic::experimental_gc_statepoint:
4467     if (auto *CI = dyn_cast<CallInst>(&Call))
4468       Assert(!CI->isInlineAsm(),
4469              "gc.statepoint support for inline assembly unimplemented", CI);
4470     Assert(Call.getParent()->getParent()->hasGC(),
4471            "Enclosing function does not use GC.", Call);
4472 
4473     verifyStatepoint(Call);
4474     break;
4475   case Intrinsic::experimental_gc_result: {
4476     Assert(Call.getParent()->getParent()->hasGC(),
4477            "Enclosing function does not use GC.", Call);
4478     // Are we tied to a statepoint properly?
4479     const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
4480     const Function *StatepointFn =
4481         StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
4482     Assert(StatepointFn && StatepointFn->isDeclaration() &&
4483                StatepointFn->getIntrinsicID() ==
4484                    Intrinsic::experimental_gc_statepoint,
4485            "gc.result operand #1 must be from a statepoint", Call,
4486            Call.getArgOperand(0));
4487 
4488     // Assert that result type matches wrapped callee.
4489     const Value *Target = StatepointCall->getArgOperand(2);
4490     auto *PT = cast<PointerType>(Target->getType());
4491     auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4492     Assert(Call.getType() == TargetFuncType->getReturnType(),
4493            "gc.result result type does not match wrapped callee", Call);
4494     break;
4495   }
4496   case Intrinsic::experimental_gc_relocate: {
4497     Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call);
4498 
4499     Assert(isa<PointerType>(Call.getType()->getScalarType()),
4500            "gc.relocate must return a pointer or a vector of pointers", Call);
4501 
4502     // Check that this relocate is correctly tied to the statepoint
4503 
4504     // This is case for relocate on the unwinding path of an invoke statepoint
4505     if (LandingPadInst *LandingPad =
4506             dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
4507 
4508       const BasicBlock *InvokeBB =
4509           LandingPad->getParent()->getUniquePredecessor();
4510 
4511       // Landingpad relocates should have only one predecessor with invoke
4512       // statepoint terminator
4513       Assert(InvokeBB, "safepoints should have unique landingpads",
4514              LandingPad->getParent());
4515       Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4516              InvokeBB);
4517       Assert(isStatepoint(InvokeBB->getTerminator()),
4518              "gc relocate should be linked to a statepoint", InvokeBB);
4519     } else {
4520       // In all other cases relocate should be tied to the statepoint directly.
4521       // This covers relocates on a normal return path of invoke statepoint and
4522       // relocates of a call statepoint.
4523       auto Token = Call.getArgOperand(0);
4524       Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
4525              "gc relocate is incorrectly tied to the statepoint", Call, Token);
4526     }
4527 
4528     // Verify rest of the relocate arguments.
4529     const CallBase &StatepointCall =
4530         *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint());
4531 
4532     // Both the base and derived must be piped through the safepoint.
4533     Value *Base = Call.getArgOperand(1);
4534     Assert(isa<ConstantInt>(Base),
4535            "gc.relocate operand #2 must be integer offset", Call);
4536 
4537     Value *Derived = Call.getArgOperand(2);
4538     Assert(isa<ConstantInt>(Derived),
4539            "gc.relocate operand #3 must be integer offset", Call);
4540 
4541     const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4542     const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4543     // Check the bounds
4544     Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(),
4545            "gc.relocate: statepoint base index out of bounds", Call);
4546     Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(),
4547            "gc.relocate: statepoint derived index out of bounds", Call);
4548 
4549     // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4550     // section of the statepoint's argument.
4551     Assert(StatepointCall.arg_size() > 0,
4552            "gc.statepoint: insufficient arguments");
4553     Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)),
4554            "gc.statement: number of call arguments must be constant integer");
4555     const unsigned NumCallArgs =
4556         cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue();
4557     Assert(StatepointCall.arg_size() > NumCallArgs + 5,
4558            "gc.statepoint: mismatch in number of call arguments");
4559     Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)),
4560            "gc.statepoint: number of transition arguments must be "
4561            "a constant integer");
4562     const int NumTransitionArgs =
4563         cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5))
4564             ->getZExtValue();
4565     const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4566     Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)),
4567            "gc.statepoint: number of deoptimization arguments must be "
4568            "a constant integer");
4569     const int NumDeoptArgs =
4570         cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart))
4571             ->getZExtValue();
4572     const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4573     const int GCParamArgsEnd = StatepointCall.arg_size();
4574     Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4575            "gc.relocate: statepoint base index doesn't fall within the "
4576            "'gc parameters' section of the statepoint call",
4577            Call);
4578     Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4579            "gc.relocate: statepoint derived index doesn't fall within the "
4580            "'gc parameters' section of the statepoint call",
4581            Call);
4582 
4583     // Relocated value must be either a pointer type or vector-of-pointer type,
4584     // but gc_relocate does not need to return the same pointer type as the
4585     // relocated pointer. It can be casted to the correct type later if it's
4586     // desired. However, they must have the same address space and 'vectorness'
4587     GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
4588     Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
4589            "gc.relocate: relocated value must be a gc pointer", Call);
4590 
4591     auto ResultType = Call.getType();
4592     auto DerivedType = Relocate.getDerivedPtr()->getType();
4593     Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4594            "gc.relocate: vector relocates to vector and pointer to pointer",
4595            Call);
4596     Assert(
4597         ResultType->getPointerAddressSpace() ==
4598             DerivedType->getPointerAddressSpace(),
4599         "gc.relocate: relocating a pointer shouldn't change its address space",
4600         Call);
4601     break;
4602   }
4603   case Intrinsic::eh_exceptioncode:
4604   case Intrinsic::eh_exceptionpointer: {
4605     Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
4606            "eh.exceptionpointer argument must be a catchpad", Call);
4607     break;
4608   }
4609   case Intrinsic::masked_load: {
4610     Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
4611            Call);
4612 
4613     Value *Ptr = Call.getArgOperand(0);
4614     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
4615     Value *Mask = Call.getArgOperand(2);
4616     Value *PassThru = Call.getArgOperand(3);
4617     Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
4618            Call);
4619     Assert(Alignment->getValue().isPowerOf2(),
4620            "masked_load: alignment must be a power of 2", Call);
4621 
4622     // DataTy is the overloaded type
4623     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4624     Assert(DataTy == Call.getType(),
4625            "masked_load: return must match pointer type", Call);
4626     Assert(PassThru->getType() == DataTy,
4627            "masked_load: pass through and data type must match", Call);
4628     Assert(Mask->getType()->getVectorNumElements() ==
4629                DataTy->getVectorNumElements(),
4630            "masked_load: vector mask must be same length as data", Call);
4631     break;
4632   }
4633   case Intrinsic::masked_store: {
4634     Value *Val = Call.getArgOperand(0);
4635     Value *Ptr = Call.getArgOperand(1);
4636     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
4637     Value *Mask = Call.getArgOperand(3);
4638     Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
4639            Call);
4640     Assert(Alignment->getValue().isPowerOf2(),
4641            "masked_store: alignment must be a power of 2", Call);
4642 
4643     // DataTy is the overloaded type
4644     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4645     Assert(DataTy == Val->getType(),
4646            "masked_store: storee must match pointer type", Call);
4647     Assert(Mask->getType()->getVectorNumElements() ==
4648                DataTy->getVectorNumElements(),
4649            "masked_store: vector mask must be same length as data", Call);
4650     break;
4651   }
4652 
4653   case Intrinsic::experimental_guard: {
4654     Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
4655     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4656            "experimental_guard must have exactly one "
4657            "\"deopt\" operand bundle");
4658     break;
4659   }
4660 
4661   case Intrinsic::experimental_deoptimize: {
4662     Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
4663            Call);
4664     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4665            "experimental_deoptimize must have exactly one "
4666            "\"deopt\" operand bundle");
4667     Assert(Call.getType() == Call.getFunction()->getReturnType(),
4668            "experimental_deoptimize return type must match caller return type");
4669 
4670     if (isa<CallInst>(Call)) {
4671       auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
4672       Assert(RI,
4673              "calls to experimental_deoptimize must be followed by a return");
4674 
4675       if (!Call.getType()->isVoidTy() && RI)
4676         Assert(RI->getReturnValue() == &Call,
4677                "calls to experimental_deoptimize must be followed by a return "
4678                "of the value computed by experimental_deoptimize");
4679     }
4680 
4681     break;
4682   }
4683   case Intrinsic::sadd_sat:
4684   case Intrinsic::uadd_sat:
4685   case Intrinsic::ssub_sat:
4686   case Intrinsic::usub_sat: {
4687     Value *Op1 = Call.getArgOperand(0);
4688     Value *Op2 = Call.getArgOperand(1);
4689     Assert(Op1->getType()->isIntOrIntVectorTy(),
4690            "first operand of [us][add|sub]_sat must be an int type or vector "
4691            "of ints");
4692     Assert(Op2->getType()->isIntOrIntVectorTy(),
4693            "second operand of [us][add|sub]_sat must be an int type or vector "
4694            "of ints");
4695     break;
4696   }
4697   case Intrinsic::smul_fix:
4698   case Intrinsic::smul_fix_sat:
4699   case Intrinsic::umul_fix:
4700   case Intrinsic::umul_fix_sat: {
4701     Value *Op1 = Call.getArgOperand(0);
4702     Value *Op2 = Call.getArgOperand(1);
4703     Assert(Op1->getType()->isIntOrIntVectorTy(),
4704            "first operand of [us]mul_fix[_sat] must be an int type or vector "
4705            "of ints");
4706     Assert(Op2->getType()->isIntOrIntVectorTy(),
4707            "second operand of [us]mul_fix_[sat] must be an int type or vector "
4708            "of ints");
4709 
4710     auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
4711     Assert(Op3->getType()->getBitWidth() <= 32,
4712            "third argument of [us]mul_fix[_sat] must fit within 32 bits");
4713 
4714     if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat) {
4715       Assert(
4716           Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
4717           "the scale of smul_fix[_sat] must be less than the width of the operands");
4718     } else {
4719       Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
4720              "the scale of umul_fix[_sat] must be less than or equal to the width of "
4721              "the operands");
4722     }
4723     break;
4724   }
4725   case Intrinsic::lround:
4726   case Intrinsic::llround:
4727   case Intrinsic::lrint:
4728   case Intrinsic::llrint: {
4729     Type *ValTy = Call.getArgOperand(0)->getType();
4730     Type *ResultTy = Call.getType();
4731     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
4732            "Intrinsic does not support vectors", &Call);
4733     break;
4734   }
4735   };
4736 }
4737 
4738 /// Carefully grab the subprogram from a local scope.
4739 ///
4740 /// This carefully grabs the subprogram from a local scope, avoiding the
4741 /// built-in assertions that would typically fire.
4742 static DISubprogram *getSubprogram(Metadata *LocalScope) {
4743   if (!LocalScope)
4744     return nullptr;
4745 
4746   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4747     return SP;
4748 
4749   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4750     return getSubprogram(LB->getRawScope());
4751 
4752   // Just return null; broken scope chains are checked elsewhere.
4753   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4754   return nullptr;
4755 }
4756 
4757 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4758   unsigned NumOperands = FPI.getNumArgOperands();
4759   bool HasExceptionMD = false;
4760   bool HasRoundingMD = false;
4761   switch (FPI.getIntrinsicID()) {
4762   case Intrinsic::experimental_constrained_sqrt:
4763   case Intrinsic::experimental_constrained_sin:
4764   case Intrinsic::experimental_constrained_cos:
4765   case Intrinsic::experimental_constrained_exp:
4766   case Intrinsic::experimental_constrained_exp2:
4767   case Intrinsic::experimental_constrained_log:
4768   case Intrinsic::experimental_constrained_log10:
4769   case Intrinsic::experimental_constrained_log2:
4770   case Intrinsic::experimental_constrained_rint:
4771   case Intrinsic::experimental_constrained_nearbyint:
4772   case Intrinsic::experimental_constrained_ceil:
4773   case Intrinsic::experimental_constrained_floor:
4774   case Intrinsic::experimental_constrained_round:
4775   case Intrinsic::experimental_constrained_trunc:
4776     Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic",
4777            &FPI);
4778     HasExceptionMD = true;
4779     HasRoundingMD = true;
4780     break;
4781 
4782   case Intrinsic::experimental_constrained_lrint:
4783   case Intrinsic::experimental_constrained_llrint: {
4784     Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic",
4785            &FPI);
4786     Type *ValTy = FPI.getArgOperand(0)->getType();
4787     Type *ResultTy = FPI.getType();
4788     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
4789            "Intrinsic does not support vectors", &FPI);
4790     HasExceptionMD = true;
4791     HasRoundingMD = true;
4792   }
4793     break;
4794 
4795   case Intrinsic::experimental_constrained_lround:
4796   case Intrinsic::experimental_constrained_llround: {
4797     Assert((NumOperands == 2), "invalid arguments for constrained FP intrinsic",
4798            &FPI);
4799     Type *ValTy = FPI.getArgOperand(0)->getType();
4800     Type *ResultTy = FPI.getType();
4801     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
4802            "Intrinsic does not support vectors", &FPI);
4803     HasExceptionMD = true;
4804     break;
4805   }
4806 
4807   case Intrinsic::experimental_constrained_fma:
4808     Assert((NumOperands == 5), "invalid arguments for constrained FP intrinsic",
4809            &FPI);
4810     HasExceptionMD = true;
4811     HasRoundingMD = true;
4812     break;
4813 
4814   case Intrinsic::experimental_constrained_fadd:
4815   case Intrinsic::experimental_constrained_fsub:
4816   case Intrinsic::experimental_constrained_fmul:
4817   case Intrinsic::experimental_constrained_fdiv:
4818   case Intrinsic::experimental_constrained_frem:
4819   case Intrinsic::experimental_constrained_pow:
4820   case Intrinsic::experimental_constrained_powi:
4821   case Intrinsic::experimental_constrained_maxnum:
4822   case Intrinsic::experimental_constrained_minnum:
4823     Assert((NumOperands == 4), "invalid arguments for constrained FP intrinsic",
4824            &FPI);
4825     HasExceptionMD = true;
4826     HasRoundingMD = true;
4827     break;
4828 
4829   case Intrinsic::experimental_constrained_fptosi:
4830   case Intrinsic::experimental_constrained_fptoui: {
4831     Assert((NumOperands == 2),
4832            "invalid arguments for constrained FP intrinsic", &FPI);
4833     HasExceptionMD = true;
4834 
4835     Value *Operand = FPI.getArgOperand(0);
4836     uint64_t NumSrcElem = 0;
4837     Assert(Operand->getType()->isFPOrFPVectorTy(),
4838            "Intrinsic first argument must be floating point", &FPI);
4839     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
4840       NumSrcElem = OperandT->getNumElements();
4841     }
4842 
4843     Operand = &FPI;
4844     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
4845            "Intrinsic first argument and result disagree on vector use", &FPI);
4846     Assert(Operand->getType()->isIntOrIntVectorTy(),
4847            "Intrinsic result must be an integer", &FPI);
4848     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
4849       Assert(NumSrcElem == OperandT->getNumElements(),
4850              "Intrinsic first argument and result vector lengths must be equal",
4851              &FPI);
4852     }
4853   }
4854     break;
4855 
4856   case Intrinsic::experimental_constrained_fptrunc:
4857   case Intrinsic::experimental_constrained_fpext: {
4858     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
4859       Assert((NumOperands == 3),
4860              "invalid arguments for constrained FP intrinsic", &FPI);
4861       HasRoundingMD = true;
4862     } else {
4863       Assert((NumOperands == 2),
4864              "invalid arguments for constrained FP intrinsic", &FPI);
4865     }
4866     HasExceptionMD = true;
4867 
4868     Value *Operand = FPI.getArgOperand(0);
4869     Type *OperandTy = Operand->getType();
4870     Value *Result = &FPI;
4871     Type *ResultTy = Result->getType();
4872     Assert(OperandTy->isFPOrFPVectorTy(),
4873            "Intrinsic first argument must be FP or FP vector", &FPI);
4874     Assert(ResultTy->isFPOrFPVectorTy(),
4875            "Intrinsic result must be FP or FP vector", &FPI);
4876     Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
4877            "Intrinsic first argument and result disagree on vector use", &FPI);
4878     if (OperandTy->isVectorTy()) {
4879       auto *OperandVecTy = cast<VectorType>(OperandTy);
4880       auto *ResultVecTy = cast<VectorType>(ResultTy);
4881       Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(),
4882              "Intrinsic first argument and result vector lengths must be equal",
4883              &FPI);
4884     }
4885     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
4886       Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
4887              "Intrinsic first argument's type must be larger than result type",
4888              &FPI);
4889     } else {
4890       Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
4891              "Intrinsic first argument's type must be smaller than result type",
4892              &FPI);
4893     }
4894   }
4895     break;
4896 
4897   default:
4898     llvm_unreachable("Invalid constrained FP intrinsic!");
4899   }
4900 
4901   // If a non-metadata argument is passed in a metadata slot then the
4902   // error will be caught earlier when the incorrect argument doesn't
4903   // match the specification in the intrinsic call table. Thus, no
4904   // argument type check is needed here.
4905 
4906   if (HasExceptionMD) {
4907     Assert(FPI.getExceptionBehavior().hasValue(),
4908            "invalid exception behavior argument", &FPI);
4909   }
4910   if (HasRoundingMD) {
4911     Assert(FPI.getRoundingMode().hasValue(),
4912            "invalid rounding mode argument", &FPI);
4913   }
4914 }
4915 
4916 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
4917   auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4918   AssertDI(isa<ValueAsMetadata>(MD) ||
4919              (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4920          "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4921   AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4922          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4923          DII.getRawVariable());
4924   AssertDI(isa<DIExpression>(DII.getRawExpression()),
4925          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4926          DII.getRawExpression());
4927 
4928   // Ignore broken !dbg attachments; they're checked elsewhere.
4929   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4930     if (!isa<DILocation>(N))
4931       return;
4932 
4933   BasicBlock *BB = DII.getParent();
4934   Function *F = BB ? BB->getParent() : nullptr;
4935 
4936   // The scopes for variables and !dbg attachments must agree.
4937   DILocalVariable *Var = DII.getVariable();
4938   DILocation *Loc = DII.getDebugLoc();
4939   AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4940            &DII, BB, F);
4941 
4942   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4943   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4944   if (!VarSP || !LocSP)
4945     return; // Broken scope chains are checked elsewhere.
4946 
4947   AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4948                                " variable and !dbg attachment",
4949            &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4950            Loc->getScope()->getSubprogram());
4951 
4952   // This check is redundant with one in visitLocalVariable().
4953   AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
4954            Var->getRawType());
4955   verifyFnArgs(DII);
4956 }
4957 
4958 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
4959   AssertDI(isa<DILabel>(DLI.getRawLabel()),
4960          "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
4961          DLI.getRawLabel());
4962 
4963   // Ignore broken !dbg attachments; they're checked elsewhere.
4964   if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
4965     if (!isa<DILocation>(N))
4966       return;
4967 
4968   BasicBlock *BB = DLI.getParent();
4969   Function *F = BB ? BB->getParent() : nullptr;
4970 
4971   // The scopes for variables and !dbg attachments must agree.
4972   DILabel *Label = DLI.getLabel();
4973   DILocation *Loc = DLI.getDebugLoc();
4974   Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4975          &DLI, BB, F);
4976 
4977   DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
4978   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4979   if (!LabelSP || !LocSP)
4980     return;
4981 
4982   AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4983                              " label and !dbg attachment",
4984            &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
4985            Loc->getScope()->getSubprogram());
4986 }
4987 
4988 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
4989   DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
4990   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
4991 
4992   // We don't know whether this intrinsic verified correctly.
4993   if (!V || !E || !E->isValid())
4994     return;
4995 
4996   // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4997   auto Fragment = E->getFragmentInfo();
4998   if (!Fragment)
4999     return;
5000 
5001   // The frontend helps out GDB by emitting the members of local anonymous
5002   // unions as artificial local variables with shared storage. When SROA splits
5003   // the storage for artificial local variables that are smaller than the entire
5004   // union, the overhang piece will be outside of the allotted space for the
5005   // variable and this check fails.
5006   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
5007   if (V->isArtificial())
5008     return;
5009 
5010   verifyFragmentExpression(*V, *Fragment, &I);
5011 }
5012 
5013 template <typename ValueOrMetadata>
5014 void Verifier::verifyFragmentExpression(const DIVariable &V,
5015                                         DIExpression::FragmentInfo Fragment,
5016                                         ValueOrMetadata *Desc) {
5017   // If there's no size, the type is broken, but that should be checked
5018   // elsewhere.
5019   auto VarSize = V.getSizeInBits();
5020   if (!VarSize)
5021     return;
5022 
5023   unsigned FragSize = Fragment.SizeInBits;
5024   unsigned FragOffset = Fragment.OffsetInBits;
5025   AssertDI(FragSize + FragOffset <= *VarSize,
5026          "fragment is larger than or outside of variable", Desc, &V);
5027   AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
5028 }
5029 
5030 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
5031   // This function does not take the scope of noninlined function arguments into
5032   // account. Don't run it if current function is nodebug, because it may
5033   // contain inlined debug intrinsics.
5034   if (!HasDebugInfo)
5035     return;
5036 
5037   // For performance reasons only check non-inlined ones.
5038   if (I.getDebugLoc()->getInlinedAt())
5039     return;
5040 
5041   DILocalVariable *Var = I.getVariable();
5042   AssertDI(Var, "dbg intrinsic without variable");
5043 
5044   unsigned ArgNo = Var->getArg();
5045   if (!ArgNo)
5046     return;
5047 
5048   // Verify there are no duplicate function argument debug info entries.
5049   // These will cause hard-to-debug assertions in the DWARF backend.
5050   if (DebugFnArgs.size() < ArgNo)
5051     DebugFnArgs.resize(ArgNo, nullptr);
5052 
5053   auto *Prev = DebugFnArgs[ArgNo - 1];
5054   DebugFnArgs[ArgNo - 1] = Var;
5055   AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
5056            Prev, Var);
5057 }
5058 
5059 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
5060   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5061 
5062   // We don't know whether this intrinsic verified correctly.
5063   if (!E || !E->isValid())
5064     return;
5065 
5066   AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I);
5067 }
5068 
5069 void Verifier::verifyCompileUnits() {
5070   // When more than one Module is imported into the same context, such as during
5071   // an LTO build before linking the modules, ODR type uniquing may cause types
5072   // to point to a different CU. This check does not make sense in this case.
5073   if (M.getContext().isODRUniquingDebugTypes())
5074     return;
5075   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
5076   SmallPtrSet<const Metadata *, 2> Listed;
5077   if (CUs)
5078     Listed.insert(CUs->op_begin(), CUs->op_end());
5079   for (auto *CU : CUVisited)
5080     AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
5081   CUVisited.clear();
5082 }
5083 
5084 void Verifier::verifyDeoptimizeCallingConvs() {
5085   if (DeoptimizeDeclarations.empty())
5086     return;
5087 
5088   const Function *First = DeoptimizeDeclarations[0];
5089   for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
5090     Assert(First->getCallingConv() == F->getCallingConv(),
5091            "All llvm.experimental.deoptimize declarations must have the same "
5092            "calling convention",
5093            First, F);
5094   }
5095 }
5096 
5097 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
5098   bool HasSource = F.getSource().hasValue();
5099   if (!HasSourceDebugInfo.count(&U))
5100     HasSourceDebugInfo[&U] = HasSource;
5101   AssertDI(HasSource == HasSourceDebugInfo[&U],
5102            "inconsistent use of embedded source");
5103 }
5104 
5105 //===----------------------------------------------------------------------===//
5106 //  Implement the public interfaces to this file...
5107 //===----------------------------------------------------------------------===//
5108 
5109 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
5110   Function &F = const_cast<Function &>(f);
5111 
5112   // Don't use a raw_null_ostream.  Printing IR is expensive.
5113   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
5114 
5115   // Note that this function's return value is inverted from what you would
5116   // expect of a function called "verify".
5117   return !V.verify(F);
5118 }
5119 
5120 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
5121                         bool *BrokenDebugInfo) {
5122   // Don't use a raw_null_ostream.  Printing IR is expensive.
5123   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
5124 
5125   bool Broken = false;
5126   for (const Function &F : M)
5127     Broken |= !V.verify(F);
5128 
5129   Broken |= !V.verify();
5130   if (BrokenDebugInfo)
5131     *BrokenDebugInfo = V.hasBrokenDebugInfo();
5132   // Note that this function's return value is inverted from what you would
5133   // expect of a function called "verify".
5134   return Broken;
5135 }
5136 
5137 namespace {
5138 
5139 struct VerifierLegacyPass : public FunctionPass {
5140   static char ID;
5141 
5142   std::unique_ptr<Verifier> V;
5143   bool FatalErrors = true;
5144 
5145   VerifierLegacyPass() : FunctionPass(ID) {
5146     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5147   }
5148   explicit VerifierLegacyPass(bool FatalErrors)
5149       : FunctionPass(ID),
5150         FatalErrors(FatalErrors) {
5151     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5152   }
5153 
5154   bool doInitialization(Module &M) override {
5155     V = std::make_unique<Verifier>(
5156         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
5157     return false;
5158   }
5159 
5160   bool runOnFunction(Function &F) override {
5161     if (!V->verify(F) && FatalErrors) {
5162       errs() << "in function " << F.getName() << '\n';
5163       report_fatal_error("Broken function found, compilation aborted!");
5164     }
5165     return false;
5166   }
5167 
5168   bool doFinalization(Module &M) override {
5169     bool HasErrors = false;
5170     for (Function &F : M)
5171       if (F.isDeclaration())
5172         HasErrors |= !V->verify(F);
5173 
5174     HasErrors |= !V->verify();
5175     if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
5176       report_fatal_error("Broken module found, compilation aborted!");
5177     return false;
5178   }
5179 
5180   void getAnalysisUsage(AnalysisUsage &AU) const override {
5181     AU.setPreservesAll();
5182   }
5183 };
5184 
5185 } // end anonymous namespace
5186 
5187 /// Helper to issue failure from the TBAA verification
5188 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
5189   if (Diagnostic)
5190     return Diagnostic->CheckFailed(Args...);
5191 }
5192 
5193 #define AssertTBAA(C, ...)                                                     \
5194   do {                                                                         \
5195     if (!(C)) {                                                                \
5196       CheckFailed(__VA_ARGS__);                                                \
5197       return false;                                                            \
5198     }                                                                          \
5199   } while (false)
5200 
5201 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
5202 /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
5203 /// struct-type node describing an aggregate data structure (like a struct).
5204 TBAAVerifier::TBAABaseNodeSummary
5205 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
5206                                  bool IsNewFormat) {
5207   if (BaseNode->getNumOperands() < 2) {
5208     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
5209     return {true, ~0u};
5210   }
5211 
5212   auto Itr = TBAABaseNodes.find(BaseNode);
5213   if (Itr != TBAABaseNodes.end())
5214     return Itr->second;
5215 
5216   auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
5217   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
5218   (void)InsertResult;
5219   assert(InsertResult.second && "We just checked!");
5220   return Result;
5221 }
5222 
5223 TBAAVerifier::TBAABaseNodeSummary
5224 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
5225                                      bool IsNewFormat) {
5226   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
5227 
5228   if (BaseNode->getNumOperands() == 2) {
5229     // Scalar nodes can only be accessed at offset 0.
5230     return isValidScalarTBAANode(BaseNode)
5231                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
5232                : InvalidNode;
5233   }
5234 
5235   if (IsNewFormat) {
5236     if (BaseNode->getNumOperands() % 3 != 0) {
5237       CheckFailed("Access tag nodes must have the number of operands that is a "
5238                   "multiple of 3!", BaseNode);
5239       return InvalidNode;
5240     }
5241   } else {
5242     if (BaseNode->getNumOperands() % 2 != 1) {
5243       CheckFailed("Struct tag nodes must have an odd number of operands!",
5244                   BaseNode);
5245       return InvalidNode;
5246     }
5247   }
5248 
5249   // Check the type size field.
5250   if (IsNewFormat) {
5251     auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5252         BaseNode->getOperand(1));
5253     if (!TypeSizeNode) {
5254       CheckFailed("Type size nodes must be constants!", &I, BaseNode);
5255       return InvalidNode;
5256     }
5257   }
5258 
5259   // Check the type name field. In the new format it can be anything.
5260   if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
5261     CheckFailed("Struct tag nodes have a string as their first operand",
5262                 BaseNode);
5263     return InvalidNode;
5264   }
5265 
5266   bool Failed = false;
5267 
5268   Optional<APInt> PrevOffset;
5269   unsigned BitWidth = ~0u;
5270 
5271   // We've already checked that BaseNode is not a degenerate root node with one
5272   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
5273   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5274   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5275   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5276            Idx += NumOpsPerField) {
5277     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
5278     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
5279     if (!isa<MDNode>(FieldTy)) {
5280       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
5281       Failed = true;
5282       continue;
5283     }
5284 
5285     auto *OffsetEntryCI =
5286         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
5287     if (!OffsetEntryCI) {
5288       CheckFailed("Offset entries must be constants!", &I, BaseNode);
5289       Failed = true;
5290       continue;
5291     }
5292 
5293     if (BitWidth == ~0u)
5294       BitWidth = OffsetEntryCI->getBitWidth();
5295 
5296     if (OffsetEntryCI->getBitWidth() != BitWidth) {
5297       CheckFailed(
5298           "Bitwidth between the offsets and struct type entries must match", &I,
5299           BaseNode);
5300       Failed = true;
5301       continue;
5302     }
5303 
5304     // NB! As far as I can tell, we generate a non-strictly increasing offset
5305     // sequence only from structs that have zero size bit fields.  When
5306     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
5307     // pick the field lexically the latest in struct type metadata node.  This
5308     // mirrors the actual behavior of the alias analysis implementation.
5309     bool IsAscending =
5310         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
5311 
5312     if (!IsAscending) {
5313       CheckFailed("Offsets must be increasing!", &I, BaseNode);
5314       Failed = true;
5315     }
5316 
5317     PrevOffset = OffsetEntryCI->getValue();
5318 
5319     if (IsNewFormat) {
5320       auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5321           BaseNode->getOperand(Idx + 2));
5322       if (!MemberSizeNode) {
5323         CheckFailed("Member size entries must be constants!", &I, BaseNode);
5324         Failed = true;
5325         continue;
5326       }
5327     }
5328   }
5329 
5330   return Failed ? InvalidNode
5331                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
5332 }
5333 
5334 static bool IsRootTBAANode(const MDNode *MD) {
5335   return MD->getNumOperands() < 2;
5336 }
5337 
5338 static bool IsScalarTBAANodeImpl(const MDNode *MD,
5339                                  SmallPtrSetImpl<const MDNode *> &Visited) {
5340   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
5341     return false;
5342 
5343   if (!isa<MDString>(MD->getOperand(0)))
5344     return false;
5345 
5346   if (MD->getNumOperands() == 3) {
5347     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
5348     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
5349       return false;
5350   }
5351 
5352   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5353   return Parent && Visited.insert(Parent).second &&
5354          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
5355 }
5356 
5357 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
5358   auto ResultIt = TBAAScalarNodes.find(MD);
5359   if (ResultIt != TBAAScalarNodes.end())
5360     return ResultIt->second;
5361 
5362   SmallPtrSet<const MDNode *, 4> Visited;
5363   bool Result = IsScalarTBAANodeImpl(MD, Visited);
5364   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
5365   (void)InsertResult;
5366   assert(InsertResult.second && "Just checked!");
5367 
5368   return Result;
5369 }
5370 
5371 /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
5372 /// Offset in place to be the offset within the field node returned.
5373 ///
5374 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
5375 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
5376                                                    const MDNode *BaseNode,
5377                                                    APInt &Offset,
5378                                                    bool IsNewFormat) {
5379   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
5380 
5381   // Scalar nodes have only one possible "field" -- their parent in the access
5382   // hierarchy.  Offset must be zero at this point, but our caller is supposed
5383   // to Assert that.
5384   if (BaseNode->getNumOperands() == 2)
5385     return cast<MDNode>(BaseNode->getOperand(1));
5386 
5387   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5388   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5389   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5390            Idx += NumOpsPerField) {
5391     auto *OffsetEntryCI =
5392         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
5393     if (OffsetEntryCI->getValue().ugt(Offset)) {
5394       if (Idx == FirstFieldOpNo) {
5395         CheckFailed("Could not find TBAA parent in struct type node", &I,
5396                     BaseNode, &Offset);
5397         return nullptr;
5398       }
5399 
5400       unsigned PrevIdx = Idx - NumOpsPerField;
5401       auto *PrevOffsetEntryCI =
5402           mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
5403       Offset -= PrevOffsetEntryCI->getValue();
5404       return cast<MDNode>(BaseNode->getOperand(PrevIdx));
5405     }
5406   }
5407 
5408   unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
5409   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
5410       BaseNode->getOperand(LastIdx + 1));
5411   Offset -= LastOffsetEntryCI->getValue();
5412   return cast<MDNode>(BaseNode->getOperand(LastIdx));
5413 }
5414 
5415 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
5416   if (!Type || Type->getNumOperands() < 3)
5417     return false;
5418 
5419   // In the new format type nodes shall have a reference to the parent type as
5420   // its first operand.
5421   MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
5422   if (!Parent)
5423     return false;
5424 
5425   return true;
5426 }
5427 
5428 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
5429   AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
5430                  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
5431                  isa<AtomicCmpXchgInst>(I),
5432              "This instruction shall not have a TBAA access tag!", &I);
5433 
5434   bool IsStructPathTBAA =
5435       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
5436 
5437   AssertTBAA(
5438       IsStructPathTBAA,
5439       "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
5440 
5441   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
5442   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5443 
5444   bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
5445 
5446   if (IsNewFormat) {
5447     AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
5448                "Access tag metadata must have either 4 or 5 operands", &I, MD);
5449   } else {
5450     AssertTBAA(MD->getNumOperands() < 5,
5451                "Struct tag metadata must have either 3 or 4 operands", &I, MD);
5452   }
5453 
5454   // Check the access size field.
5455   if (IsNewFormat) {
5456     auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5457         MD->getOperand(3));
5458     AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
5459   }
5460 
5461   // Check the immutability flag.
5462   unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
5463   if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
5464     auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
5465         MD->getOperand(ImmutabilityFlagOpNo));
5466     AssertTBAA(IsImmutableCI,
5467                "Immutability tag on struct tag metadata must be a constant",
5468                &I, MD);
5469     AssertTBAA(
5470         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
5471         "Immutability part of the struct tag metadata must be either 0 or 1",
5472         &I, MD);
5473   }
5474 
5475   AssertTBAA(BaseNode && AccessType,
5476              "Malformed struct tag metadata: base and access-type "
5477              "should be non-null and point to Metadata nodes",
5478              &I, MD, BaseNode, AccessType);
5479 
5480   if (!IsNewFormat) {
5481     AssertTBAA(isValidScalarTBAANode(AccessType),
5482                "Access type node must be a valid scalar type", &I, MD,
5483                AccessType);
5484   }
5485 
5486   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
5487   AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
5488 
5489   APInt Offset = OffsetCI->getValue();
5490   bool SeenAccessTypeInPath = false;
5491 
5492   SmallPtrSet<MDNode *, 4> StructPath;
5493 
5494   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
5495        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
5496                                                IsNewFormat)) {
5497     if (!StructPath.insert(BaseNode).second) {
5498       CheckFailed("Cycle detected in struct path", &I, MD);
5499       return false;
5500     }
5501 
5502     bool Invalid;
5503     unsigned BaseNodeBitWidth;
5504     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
5505                                                              IsNewFormat);
5506 
5507     // If the base node is invalid in itself, then we've already printed all the
5508     // errors we wanted to print.
5509     if (Invalid)
5510       return false;
5511 
5512     SeenAccessTypeInPath |= BaseNode == AccessType;
5513 
5514     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
5515       AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
5516                  &I, MD, &Offset);
5517 
5518     AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
5519                    (BaseNodeBitWidth == 0 && Offset == 0) ||
5520                    (IsNewFormat && BaseNodeBitWidth == ~0u),
5521                "Access bit-width not the same as description bit-width", &I, MD,
5522                BaseNodeBitWidth, Offset.getBitWidth());
5523 
5524     if (IsNewFormat && SeenAccessTypeInPath)
5525       break;
5526   }
5527 
5528   AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
5529              &I, MD);
5530   return true;
5531 }
5532 
5533 char VerifierLegacyPass::ID = 0;
5534 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
5535 
5536 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
5537   return new VerifierLegacyPass(FatalErrors);
5538 }
5539 
5540 AnalysisKey VerifierAnalysis::Key;
5541 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
5542                                                ModuleAnalysisManager &) {
5543   Result Res;
5544   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
5545   return Res;
5546 }
5547 
5548 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
5549                                                FunctionAnalysisManager &) {
5550   return { llvm::verifyFunction(F, &dbgs()), false };
5551 }
5552 
5553 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
5554   auto Res = AM.getResult<VerifierAnalysis>(M);
5555   if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
5556     report_fatal_error("Broken module found, compilation aborted!");
5557 
5558   return PreservedAnalyses::all();
5559 }
5560 
5561 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
5562   auto res = AM.getResult<VerifierAnalysis>(F);
5563   if (res.IRBroken && FatalErrors)
5564     report_fatal_error("Broken function found, compilation aborted!");
5565 
5566   return PreservedAnalyses::all();
5567 }
5568