xref: /llvm-project-15.0.7/llvm/lib/IR/Type.cpp (revision fa1b602e)
1 //===- Type.cpp - Implement the Type class --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Type class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Type.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Support/TypeSize.h"
30 #include <cassert>
31 #include <utility>
32 
33 using namespace llvm;
34 
35 //===----------------------------------------------------------------------===//
36 //                         Type Class Implementation
37 //===----------------------------------------------------------------------===//
38 
39 Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
40   switch (IDNumber) {
41   case VoidTyID      : return getVoidTy(C);
42   case HalfTyID      : return getHalfTy(C);
43   case FloatTyID     : return getFloatTy(C);
44   case DoubleTyID    : return getDoubleTy(C);
45   case X86_FP80TyID  : return getX86_FP80Ty(C);
46   case FP128TyID     : return getFP128Ty(C);
47   case PPC_FP128TyID : return getPPC_FP128Ty(C);
48   case LabelTyID     : return getLabelTy(C);
49   case MetadataTyID  : return getMetadataTy(C);
50   case X86_MMXTyID   : return getX86_MMXTy(C);
51   case TokenTyID     : return getTokenTy(C);
52   default:
53     return nullptr;
54   }
55 }
56 
57 bool Type::isIntegerTy(unsigned Bitwidth) const {
58   return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
59 }
60 
61 bool Type::canLosslesslyBitCastTo(Type *Ty) const {
62   // Identity cast means no change so return true
63   if (this == Ty)
64     return true;
65 
66   // They are not convertible unless they are at least first class types
67   if (!this->isFirstClassType() || !Ty->isFirstClassType())
68     return false;
69 
70   // Vector -> Vector conversions are always lossless if the two vector types
71   // have the same size, otherwise not.  Also, 64-bit vector types can be
72   // converted to x86mmx.
73   if (auto *thisPTy = dyn_cast<VectorType>(this)) {
74     if (auto *thatPTy = dyn_cast<VectorType>(Ty))
75       return thisPTy->getBitWidth() == thatPTy->getBitWidth();
76     if (Ty->getTypeID() == Type::X86_MMXTyID &&
77         thisPTy->getBitWidth() == 64)
78       return true;
79   }
80 
81   if (this->getTypeID() == Type::X86_MMXTyID)
82     if (auto *thatPTy = dyn_cast<VectorType>(Ty))
83       if (thatPTy->getBitWidth() == 64)
84         return true;
85 
86   // At this point we have only various mismatches of the first class types
87   // remaining and ptr->ptr. Just select the lossless conversions. Everything
88   // else is not lossless. Conservatively assume we can't losslessly convert
89   // between pointers with different address spaces.
90   if (auto *PTy = dyn_cast<PointerType>(this)) {
91     if (auto *OtherPTy = dyn_cast<PointerType>(Ty))
92       return PTy->getAddressSpace() == OtherPTy->getAddressSpace();
93     return false;
94   }
95   return false;  // Other types have no identity values
96 }
97 
98 bool Type::isEmptyTy() const {
99   if (auto *ATy = dyn_cast<ArrayType>(this)) {
100     unsigned NumElements = ATy->getNumElements();
101     return NumElements == 0 || ATy->getElementType()->isEmptyTy();
102   }
103 
104   if (auto *STy = dyn_cast<StructType>(this)) {
105     unsigned NumElements = STy->getNumElements();
106     for (unsigned i = 0; i < NumElements; ++i)
107       if (!STy->getElementType(i)->isEmptyTy())
108         return false;
109     return true;
110   }
111 
112   return false;
113 }
114 
115 TypeSize Type::getPrimitiveSizeInBits() const {
116   switch (getTypeID()) {
117   case Type::HalfTyID: return TypeSize::Fixed(16);
118   case Type::FloatTyID: return TypeSize::Fixed(32);
119   case Type::DoubleTyID: return TypeSize::Fixed(64);
120   case Type::X86_FP80TyID: return TypeSize::Fixed(80);
121   case Type::FP128TyID: return TypeSize::Fixed(128);
122   case Type::PPC_FP128TyID: return TypeSize::Fixed(128);
123   case Type::X86_MMXTyID: return TypeSize::Fixed(64);
124   case Type::IntegerTyID:
125     return TypeSize::Fixed(cast<IntegerType>(this)->getBitWidth());
126   case Type::VectorTyID: {
127     const VectorType *VTy = cast<VectorType>(this);
128     return TypeSize(VTy->getBitWidth(), VTy->isScalable());
129   }
130   default: return TypeSize::Fixed(0);
131   }
132 }
133 
134 unsigned Type::getScalarSizeInBits() const {
135   // It is safe to assume that the scalar types have a fixed size.
136   return getScalarType()->getPrimitiveSizeInBits().getFixedSize();
137 }
138 
139 int Type::getFPMantissaWidth() const {
140   if (auto *VTy = dyn_cast<VectorType>(this))
141     return VTy->getElementType()->getFPMantissaWidth();
142   assert(isFloatingPointTy() && "Not a floating point type!");
143   if (getTypeID() == HalfTyID) return 11;
144   if (getTypeID() == FloatTyID) return 24;
145   if (getTypeID() == DoubleTyID) return 53;
146   if (getTypeID() == X86_FP80TyID) return 64;
147   if (getTypeID() == FP128TyID) return 113;
148   assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
149   return -1;
150 }
151 
152 bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const {
153   if (auto *ATy = dyn_cast<ArrayType>(this))
154     return ATy->getElementType()->isSized(Visited);
155 
156   if (auto *VTy = dyn_cast<VectorType>(this))
157     return VTy->getElementType()->isSized(Visited);
158 
159   return cast<StructType>(this)->isSized(Visited);
160 }
161 
162 //===----------------------------------------------------------------------===//
163 //                          Primitive 'Type' data
164 //===----------------------------------------------------------------------===//
165 
166 Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
167 Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
168 Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
169 Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
170 Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
171 Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
172 Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; }
173 Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
174 Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
175 Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
176 Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
177 
178 IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
179 IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
180 IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
181 IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
182 IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
183 IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; }
184 
185 IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
186   return IntegerType::get(C, N);
187 }
188 
189 PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
190   return getHalfTy(C)->getPointerTo(AS);
191 }
192 
193 PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
194   return getFloatTy(C)->getPointerTo(AS);
195 }
196 
197 PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
198   return getDoubleTy(C)->getPointerTo(AS);
199 }
200 
201 PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
202   return getX86_FP80Ty(C)->getPointerTo(AS);
203 }
204 
205 PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
206   return getFP128Ty(C)->getPointerTo(AS);
207 }
208 
209 PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
210   return getPPC_FP128Ty(C)->getPointerTo(AS);
211 }
212 
213 PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
214   return getX86_MMXTy(C)->getPointerTo(AS);
215 }
216 
217 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
218   return getIntNTy(C, N)->getPointerTo(AS);
219 }
220 
221 PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
222   return getInt1Ty(C)->getPointerTo(AS);
223 }
224 
225 PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
226   return getInt8Ty(C)->getPointerTo(AS);
227 }
228 
229 PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
230   return getInt16Ty(C)->getPointerTo(AS);
231 }
232 
233 PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
234   return getInt32Ty(C)->getPointerTo(AS);
235 }
236 
237 PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
238   return getInt64Ty(C)->getPointerTo(AS);
239 }
240 
241 //===----------------------------------------------------------------------===//
242 //                       IntegerType Implementation
243 //===----------------------------------------------------------------------===//
244 
245 IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
246   assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
247   assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
248 
249   // Check for the built-in integer types
250   switch (NumBits) {
251   case   1: return cast<IntegerType>(Type::getInt1Ty(C));
252   case   8: return cast<IntegerType>(Type::getInt8Ty(C));
253   case  16: return cast<IntegerType>(Type::getInt16Ty(C));
254   case  32: return cast<IntegerType>(Type::getInt32Ty(C));
255   case  64: return cast<IntegerType>(Type::getInt64Ty(C));
256   case 128: return cast<IntegerType>(Type::getInt128Ty(C));
257   default:
258     break;
259   }
260 
261   IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
262 
263   if (!Entry)
264     Entry = new (C.pImpl->Alloc) IntegerType(C, NumBits);
265 
266   return Entry;
267 }
268 
269 bool IntegerType::isPowerOf2ByteWidth() const {
270   unsigned BitWidth = getBitWidth();
271   return (BitWidth > 7) && isPowerOf2_32(BitWidth);
272 }
273 
274 APInt IntegerType::getMask() const {
275   return APInt::getAllOnesValue(getBitWidth());
276 }
277 
278 //===----------------------------------------------------------------------===//
279 //                       FunctionType Implementation
280 //===----------------------------------------------------------------------===//
281 
282 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
283                            bool IsVarArgs)
284   : Type(Result->getContext(), FunctionTyID) {
285   Type **SubTys = reinterpret_cast<Type**>(this+1);
286   assert(isValidReturnType(Result) && "invalid return type for function");
287   setSubclassData(IsVarArgs);
288 
289   SubTys[0] = Result;
290 
291   for (unsigned i = 0, e = Params.size(); i != e; ++i) {
292     assert(isValidArgumentType(Params[i]) &&
293            "Not a valid type for function argument!");
294     SubTys[i+1] = Params[i];
295   }
296 
297   ContainedTys = SubTys;
298   NumContainedTys = Params.size() + 1; // + 1 for result type
299 }
300 
301 // This is the factory function for the FunctionType class.
302 FunctionType *FunctionType::get(Type *ReturnType,
303                                 ArrayRef<Type*> Params, bool isVarArg) {
304   LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
305   const FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
306   FunctionType *FT;
307   // Since we only want to allocate a fresh function type in case none is found
308   // and we don't want to perform two lookups (one for checking if existent and
309   // one for inserting the newly allocated one), here we instead lookup based on
310   // Key and update the reference to the function type in-place to a newly
311   // allocated one if not found.
312   auto Insertion = pImpl->FunctionTypes.insert_as(nullptr, Key);
313   if (Insertion.second) {
314     // The function type was not found. Allocate one and update FunctionTypes
315     // in-place.
316     FT = (FunctionType *)pImpl->Alloc.Allocate(
317         sizeof(FunctionType) + sizeof(Type *) * (Params.size() + 1),
318         alignof(FunctionType));
319     new (FT) FunctionType(ReturnType, Params, isVarArg);
320     *Insertion.first = FT;
321   } else {
322     // The function type was found. Just return it.
323     FT = *Insertion.first;
324   }
325   return FT;
326 }
327 
328 FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
329   return get(Result, None, isVarArg);
330 }
331 
332 bool FunctionType::isValidReturnType(Type *RetTy) {
333   return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
334   !RetTy->isMetadataTy();
335 }
336 
337 bool FunctionType::isValidArgumentType(Type *ArgTy) {
338   return ArgTy->isFirstClassType();
339 }
340 
341 //===----------------------------------------------------------------------===//
342 //                       StructType Implementation
343 //===----------------------------------------------------------------------===//
344 
345 // Primitive Constructors.
346 
347 StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
348                             bool isPacked) {
349   LLVMContextImpl *pImpl = Context.pImpl;
350   const AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
351 
352   StructType *ST;
353   // Since we only want to allocate a fresh struct type in case none is found
354   // and we don't want to perform two lookups (one for checking if existent and
355   // one for inserting the newly allocated one), here we instead lookup based on
356   // Key and update the reference to the struct type in-place to a newly
357   // allocated one if not found.
358   auto Insertion = pImpl->AnonStructTypes.insert_as(nullptr, Key);
359   if (Insertion.second) {
360     // The struct type was not found. Allocate one and update AnonStructTypes
361     // in-place.
362     ST = new (Context.pImpl->Alloc) StructType(Context);
363     ST->setSubclassData(SCDB_IsLiteral);  // Literal struct.
364     ST->setBody(ETypes, isPacked);
365     *Insertion.first = ST;
366   } else {
367     // The struct type was found. Just return it.
368     ST = *Insertion.first;
369   }
370 
371   return ST;
372 }
373 
374 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
375   assert(isOpaque() && "Struct body already set!");
376 
377   setSubclassData(getSubclassData() | SCDB_HasBody);
378   if (isPacked)
379     setSubclassData(getSubclassData() | SCDB_Packed);
380 
381   NumContainedTys = Elements.size();
382 
383   if (Elements.empty()) {
384     ContainedTys = nullptr;
385     return;
386   }
387 
388   ContainedTys = Elements.copy(getContext().pImpl->Alloc).data();
389 }
390 
391 void StructType::setName(StringRef Name) {
392   if (Name == getName()) return;
393 
394   StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
395 
396   using EntryTy = StringMap<StructType *>::MapEntryTy;
397 
398   // If this struct already had a name, remove its symbol table entry. Don't
399   // delete the data yet because it may be part of the new name.
400   if (SymbolTableEntry)
401     SymbolTable.remove((EntryTy *)SymbolTableEntry);
402 
403   // If this is just removing the name, we're done.
404   if (Name.empty()) {
405     if (SymbolTableEntry) {
406       // Delete the old string data.
407       ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
408       SymbolTableEntry = nullptr;
409     }
410     return;
411   }
412 
413   // Look up the entry for the name.
414   auto IterBool =
415       getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this));
416 
417   // While we have a name collision, try a random rename.
418   if (!IterBool.second) {
419     SmallString<64> TempStr(Name);
420     TempStr.push_back('.');
421     raw_svector_ostream TmpStream(TempStr);
422     unsigned NameSize = Name.size();
423 
424     do {
425       TempStr.resize(NameSize + 1);
426       TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
427 
428       IterBool = getContext().pImpl->NamedStructTypes.insert(
429           std::make_pair(TmpStream.str(), this));
430     } while (!IterBool.second);
431   }
432 
433   // Delete the old string data.
434   if (SymbolTableEntry)
435     ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
436   SymbolTableEntry = &*IterBool.first;
437 }
438 
439 //===----------------------------------------------------------------------===//
440 // StructType Helper functions.
441 
442 StructType *StructType::create(LLVMContext &Context, StringRef Name) {
443   StructType *ST = new (Context.pImpl->Alloc) StructType(Context);
444   if (!Name.empty())
445     ST->setName(Name);
446   return ST;
447 }
448 
449 StructType *StructType::get(LLVMContext &Context, bool isPacked) {
450   return get(Context, None, isPacked);
451 }
452 
453 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
454                                StringRef Name, bool isPacked) {
455   StructType *ST = create(Context, Name);
456   ST->setBody(Elements, isPacked);
457   return ST;
458 }
459 
460 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
461   return create(Context, Elements, StringRef());
462 }
463 
464 StructType *StructType::create(LLVMContext &Context) {
465   return create(Context, StringRef());
466 }
467 
468 StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
469                                bool isPacked) {
470   assert(!Elements.empty() &&
471          "This method may not be invoked with an empty list");
472   return create(Elements[0]->getContext(), Elements, Name, isPacked);
473 }
474 
475 StructType *StructType::create(ArrayRef<Type*> Elements) {
476   assert(!Elements.empty() &&
477          "This method may not be invoked with an empty list");
478   return create(Elements[0]->getContext(), Elements, StringRef());
479 }
480 
481 bool StructType::isSized(SmallPtrSetImpl<Type*> *Visited) const {
482   if ((getSubclassData() & SCDB_IsSized) != 0)
483     return true;
484   if (isOpaque())
485     return false;
486 
487   if (Visited && !Visited->insert(const_cast<StructType*>(this)).second)
488     return false;
489 
490   // Okay, our struct is sized if all of the elements are, but if one of the
491   // elements is opaque, the struct isn't sized *yet*, but may become sized in
492   // the future, so just bail out without caching.
493   for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
494     if (!(*I)->isSized(Visited))
495       return false;
496 
497   // Here we cheat a bit and cast away const-ness. The goal is to memoize when
498   // we find a sized type, as types can only move from opaque to sized, not the
499   // other way.
500   const_cast<StructType*>(this)->setSubclassData(
501     getSubclassData() | SCDB_IsSized);
502   return true;
503 }
504 
505 StringRef StructType::getName() const {
506   assert(!isLiteral() && "Literal structs never have names");
507   if (!SymbolTableEntry) return StringRef();
508 
509   return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
510 }
511 
512 bool StructType::isValidElementType(Type *ElemTy) {
513   if (auto *VTy = dyn_cast<VectorType>(ElemTy))
514     return !VTy->isScalable();
515   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
516          !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
517          !ElemTy->isTokenTy();
518 }
519 
520 bool StructType::isLayoutIdentical(StructType *Other) const {
521   if (this == Other) return true;
522 
523   if (isPacked() != Other->isPacked())
524     return false;
525 
526   return elements() == Other->elements();
527 }
528 
529 StructType *Module::getTypeByName(StringRef Name) const {
530   return getContext().pImpl->NamedStructTypes.lookup(Name);
531 }
532 
533 Type *StructType::getTypeAtIndex(const Value *V) const {
534   unsigned Idx = (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
535   assert(indexValid(Idx) && "Invalid structure index!");
536   return getElementType(Idx);
537 }
538 
539 bool StructType::indexValid(const Value *V) const {
540   // Structure indexes require (vectors of) 32-bit integer constants.  In the
541   // vector case all of the indices must be equal.
542   if (!V->getType()->isIntOrIntVectorTy(32))
543     return false;
544   const Constant *C = dyn_cast<Constant>(V);
545   if (C && V->getType()->isVectorTy())
546     C = C->getSplatValue();
547   const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
548   return CU && CU->getZExtValue() < getNumElements();
549 }
550 
551 //===----------------------------------------------------------------------===//
552 //                           ArrayType Implementation
553 //===----------------------------------------------------------------------===//
554 
555 ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
556   : SequentialType(ArrayTyID, ElType, NumEl) {}
557 
558 ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) {
559   assert(isValidElementType(ElementType) && "Invalid type for array element!");
560 
561   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
562   ArrayType *&Entry =
563     pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
564 
565   if (!Entry)
566     Entry = new (pImpl->Alloc) ArrayType(ElementType, NumElements);
567   return Entry;
568 }
569 
570 bool ArrayType::isValidElementType(Type *ElemTy) {
571   if (auto *VTy = dyn_cast<VectorType>(ElemTy))
572     return !VTy->isScalable();
573   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
574          !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
575          !ElemTy->isTokenTy();
576 }
577 
578 //===----------------------------------------------------------------------===//
579 //                          VectorType Implementation
580 //===----------------------------------------------------------------------===//
581 
582 VectorType::VectorType(Type *ElType, ElementCount EC)
583   : SequentialType(VectorTyID, ElType, EC.Min), Scalable(EC.Scalable) {}
584 
585 VectorType *VectorType::get(Type *ElementType, ElementCount EC) {
586   assert(EC.Min > 0 && "#Elements of a VectorType must be greater than 0");
587   assert(isValidElementType(ElementType) && "Element type of a VectorType must "
588                                             "be an integer, floating point, or "
589                                             "pointer type.");
590 
591   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
592   VectorType *&Entry = ElementType->getContext().pImpl
593                                  ->VectorTypes[std::make_pair(ElementType, EC)];
594   if (!Entry)
595     Entry = new (pImpl->Alloc) VectorType(ElementType, EC);
596   return Entry;
597 }
598 
599 bool VectorType::isValidElementType(Type *ElemTy) {
600   return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
601     ElemTy->isPointerTy();
602 }
603 
604 //===----------------------------------------------------------------------===//
605 //                         PointerType Implementation
606 //===----------------------------------------------------------------------===//
607 
608 PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
609   assert(EltTy && "Can't get a pointer to <null> type!");
610   assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
611 
612   LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
613 
614   // Since AddressSpace #0 is the common case, we special case it.
615   PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
616      : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
617 
618   if (!Entry)
619     Entry = new (CImpl->Alloc) PointerType(EltTy, AddressSpace);
620   return Entry;
621 }
622 
623 PointerType::PointerType(Type *E, unsigned AddrSpace)
624   : Type(E->getContext(), PointerTyID), PointeeTy(E) {
625   ContainedTys = &PointeeTy;
626   NumContainedTys = 1;
627   setSubclassData(AddrSpace);
628 }
629 
630 PointerType *Type::getPointerTo(unsigned addrs) const {
631   return PointerType::get(const_cast<Type*>(this), addrs);
632 }
633 
634 bool PointerType::isValidElementType(Type *ElemTy) {
635   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
636          !ElemTy->isMetadataTy() && !ElemTy->isTokenTy();
637 }
638 
639 bool PointerType::isLoadableOrStorableType(Type *ElemTy) {
640   return isValidElementType(ElemTy) && !ElemTy->isFunctionTy();
641 }
642