1 //===-- Type.cpp - Implement the Type class -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Type class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Type.h" 15 #include "LLVMContextImpl.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/IR/Module.h" 18 #include <algorithm> 19 #include <cstdarg> 20 using namespace llvm; 21 22 //===----------------------------------------------------------------------===// 23 // Type Class Implementation 24 //===----------------------------------------------------------------------===// 25 26 Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) { 27 switch (IDNumber) { 28 case VoidTyID : return getVoidTy(C); 29 case HalfTyID : return getHalfTy(C); 30 case FloatTyID : return getFloatTy(C); 31 case DoubleTyID : return getDoubleTy(C); 32 case X86_FP80TyID : return getX86_FP80Ty(C); 33 case FP128TyID : return getFP128Ty(C); 34 case PPC_FP128TyID : return getPPC_FP128Ty(C); 35 case LabelTyID : return getLabelTy(C); 36 case MetadataTyID : return getMetadataTy(C); 37 case X86_MMXTyID : return getX86_MMXTy(C); 38 case TokenTyID : return getTokenTy(C); 39 default: 40 return nullptr; 41 } 42 } 43 44 bool Type::isIntegerTy(unsigned Bitwidth) const { 45 return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth; 46 } 47 48 bool Type::canLosslesslyBitCastTo(Type *Ty) const { 49 // Identity cast means no change so return true 50 if (this == Ty) 51 return true; 52 53 // They are not convertible unless they are at least first class types 54 if (!this->isFirstClassType() || !Ty->isFirstClassType()) 55 return false; 56 57 // Vector -> Vector conversions are always lossless if the two vector types 58 // have the same size, otherwise not. Also, 64-bit vector types can be 59 // converted to x86mmx. 60 if (auto *thisPTy = dyn_cast<VectorType>(this)) { 61 if (auto *thatPTy = dyn_cast<VectorType>(Ty)) 62 return thisPTy->getBitWidth() == thatPTy->getBitWidth(); 63 if (Ty->getTypeID() == Type::X86_MMXTyID && 64 thisPTy->getBitWidth() == 64) 65 return true; 66 } 67 68 if (this->getTypeID() == Type::X86_MMXTyID) 69 if (auto *thatPTy = dyn_cast<VectorType>(Ty)) 70 if (thatPTy->getBitWidth() == 64) 71 return true; 72 73 // At this point we have only various mismatches of the first class types 74 // remaining and ptr->ptr. Just select the lossless conversions. Everything 75 // else is not lossless. Conservatively assume we can't losslessly convert 76 // between pointers with different address spaces. 77 if (auto *PTy = dyn_cast<PointerType>(this)) { 78 if (auto *OtherPTy = dyn_cast<PointerType>(Ty)) 79 return PTy->getAddressSpace() == OtherPTy->getAddressSpace(); 80 return false; 81 } 82 return false; // Other types have no identity values 83 } 84 85 bool Type::isEmptyTy() const { 86 if (auto *ATy = dyn_cast<ArrayType>(this)) { 87 unsigned NumElements = ATy->getNumElements(); 88 return NumElements == 0 || ATy->getElementType()->isEmptyTy(); 89 } 90 91 if (auto *STy = dyn_cast<StructType>(this)) { 92 unsigned NumElements = STy->getNumElements(); 93 for (unsigned i = 0; i < NumElements; ++i) 94 if (!STy->getElementType(i)->isEmptyTy()) 95 return false; 96 return true; 97 } 98 99 return false; 100 } 101 102 unsigned Type::getPrimitiveSizeInBits() const { 103 switch (getTypeID()) { 104 case Type::HalfTyID: return 16; 105 case Type::FloatTyID: return 32; 106 case Type::DoubleTyID: return 64; 107 case Type::X86_FP80TyID: return 80; 108 case Type::FP128TyID: return 128; 109 case Type::PPC_FP128TyID: return 128; 110 case Type::X86_MMXTyID: return 64; 111 case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth(); 112 case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth(); 113 default: return 0; 114 } 115 } 116 117 unsigned Type::getScalarSizeInBits() const { 118 return getScalarType()->getPrimitiveSizeInBits(); 119 } 120 121 int Type::getFPMantissaWidth() const { 122 if (auto *VTy = dyn_cast<VectorType>(this)) 123 return VTy->getElementType()->getFPMantissaWidth(); 124 assert(isFloatingPointTy() && "Not a floating point type!"); 125 if (getTypeID() == HalfTyID) return 11; 126 if (getTypeID() == FloatTyID) return 24; 127 if (getTypeID() == DoubleTyID) return 53; 128 if (getTypeID() == X86_FP80TyID) return 64; 129 if (getTypeID() == FP128TyID) return 113; 130 assert(getTypeID() == PPC_FP128TyID && "unknown fp type"); 131 return -1; 132 } 133 134 bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const { 135 if (auto *ATy = dyn_cast<ArrayType>(this)) 136 return ATy->getElementType()->isSized(Visited); 137 138 if (auto *VTy = dyn_cast<VectorType>(this)) 139 return VTy->getElementType()->isSized(Visited); 140 141 return cast<StructType>(this)->isSized(Visited); 142 } 143 144 //===----------------------------------------------------------------------===// 145 // Primitive 'Type' data 146 //===----------------------------------------------------------------------===// 147 148 Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; } 149 Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; } 150 Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; } 151 Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; } 152 Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; } 153 Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; } 154 Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; } 155 Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; } 156 Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; } 157 Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; } 158 Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; } 159 160 IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; } 161 IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; } 162 IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; } 163 IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; } 164 IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; } 165 IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; } 166 167 IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) { 168 return IntegerType::get(C, N); 169 } 170 171 PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) { 172 return getHalfTy(C)->getPointerTo(AS); 173 } 174 175 PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) { 176 return getFloatTy(C)->getPointerTo(AS); 177 } 178 179 PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) { 180 return getDoubleTy(C)->getPointerTo(AS); 181 } 182 183 PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) { 184 return getX86_FP80Ty(C)->getPointerTo(AS); 185 } 186 187 PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) { 188 return getFP128Ty(C)->getPointerTo(AS); 189 } 190 191 PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) { 192 return getPPC_FP128Ty(C)->getPointerTo(AS); 193 } 194 195 PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) { 196 return getX86_MMXTy(C)->getPointerTo(AS); 197 } 198 199 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) { 200 return getIntNTy(C, N)->getPointerTo(AS); 201 } 202 203 PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) { 204 return getInt1Ty(C)->getPointerTo(AS); 205 } 206 207 PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) { 208 return getInt8Ty(C)->getPointerTo(AS); 209 } 210 211 PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) { 212 return getInt16Ty(C)->getPointerTo(AS); 213 } 214 215 PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) { 216 return getInt32Ty(C)->getPointerTo(AS); 217 } 218 219 PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) { 220 return getInt64Ty(C)->getPointerTo(AS); 221 } 222 223 224 //===----------------------------------------------------------------------===// 225 // IntegerType Implementation 226 //===----------------------------------------------------------------------===// 227 228 IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) { 229 assert(NumBits >= MIN_INT_BITS && "bitwidth too small"); 230 assert(NumBits <= MAX_INT_BITS && "bitwidth too large"); 231 232 // Check for the built-in integer types 233 switch (NumBits) { 234 case 1: return cast<IntegerType>(Type::getInt1Ty(C)); 235 case 8: return cast<IntegerType>(Type::getInt8Ty(C)); 236 case 16: return cast<IntegerType>(Type::getInt16Ty(C)); 237 case 32: return cast<IntegerType>(Type::getInt32Ty(C)); 238 case 64: return cast<IntegerType>(Type::getInt64Ty(C)); 239 case 128: return cast<IntegerType>(Type::getInt128Ty(C)); 240 default: 241 break; 242 } 243 244 IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits]; 245 246 if (!Entry) 247 Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits); 248 249 return Entry; 250 } 251 252 bool IntegerType::isPowerOf2ByteWidth() const { 253 unsigned BitWidth = getBitWidth(); 254 return (BitWidth > 7) && isPowerOf2_32(BitWidth); 255 } 256 257 APInt IntegerType::getMask() const { 258 return APInt::getAllOnesValue(getBitWidth()); 259 } 260 261 //===----------------------------------------------------------------------===// 262 // FunctionType Implementation 263 //===----------------------------------------------------------------------===// 264 265 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params, 266 bool IsVarArgs) 267 : Type(Result->getContext(), FunctionTyID) { 268 Type **SubTys = reinterpret_cast<Type**>(this+1); 269 assert(isValidReturnType(Result) && "invalid return type for function"); 270 setSubclassData(IsVarArgs); 271 272 SubTys[0] = Result; 273 274 for (unsigned i = 0, e = Params.size(); i != e; ++i) { 275 assert(isValidArgumentType(Params[i]) && 276 "Not a valid type for function argument!"); 277 SubTys[i+1] = Params[i]; 278 } 279 280 ContainedTys = SubTys; 281 NumContainedTys = Params.size() + 1; // + 1 for result type 282 } 283 284 // This is the factory function for the FunctionType class. 285 FunctionType *FunctionType::get(Type *ReturnType, 286 ArrayRef<Type*> Params, bool isVarArg) { 287 LLVMContextImpl *pImpl = ReturnType->getContext().pImpl; 288 FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg); 289 auto I = pImpl->FunctionTypes.find_as(Key); 290 FunctionType *FT; 291 292 if (I == pImpl->FunctionTypes.end()) { 293 FT = (FunctionType *)pImpl->TypeAllocator.Allocate( 294 sizeof(FunctionType) + sizeof(Type *) * (Params.size() + 1), 295 alignof(FunctionType)); 296 new (FT) FunctionType(ReturnType, Params, isVarArg); 297 pImpl->FunctionTypes.insert(FT); 298 } else { 299 FT = *I; 300 } 301 302 return FT; 303 } 304 305 FunctionType *FunctionType::get(Type *Result, bool isVarArg) { 306 return get(Result, None, isVarArg); 307 } 308 309 bool FunctionType::isValidReturnType(Type *RetTy) { 310 return !RetTy->isFunctionTy() && !RetTy->isLabelTy() && 311 !RetTy->isMetadataTy(); 312 } 313 314 bool FunctionType::isValidArgumentType(Type *ArgTy) { 315 return ArgTy->isFirstClassType(); 316 } 317 318 //===----------------------------------------------------------------------===// 319 // StructType Implementation 320 //===----------------------------------------------------------------------===// 321 322 // Primitive Constructors. 323 324 StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes, 325 bool isPacked) { 326 LLVMContextImpl *pImpl = Context.pImpl; 327 AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked); 328 auto I = pImpl->AnonStructTypes.find_as(Key); 329 StructType *ST; 330 331 if (I == pImpl->AnonStructTypes.end()) { 332 // Value not found. Create a new type! 333 ST = new (Context.pImpl->TypeAllocator) StructType(Context); 334 ST->setSubclassData(SCDB_IsLiteral); // Literal struct. 335 ST->setBody(ETypes, isPacked); 336 Context.pImpl->AnonStructTypes.insert(ST); 337 } else { 338 ST = *I; 339 } 340 341 return ST; 342 } 343 344 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) { 345 assert(isOpaque() && "Struct body already set!"); 346 347 setSubclassData(getSubclassData() | SCDB_HasBody); 348 if (isPacked) 349 setSubclassData(getSubclassData() | SCDB_Packed); 350 351 NumContainedTys = Elements.size(); 352 353 if (Elements.empty()) { 354 ContainedTys = nullptr; 355 return; 356 } 357 358 ContainedTys = Elements.copy(getContext().pImpl->TypeAllocator).data(); 359 } 360 361 void StructType::setName(StringRef Name) { 362 if (Name == getName()) return; 363 364 StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes; 365 typedef StringMap<StructType *>::MapEntryTy EntryTy; 366 367 // If this struct already had a name, remove its symbol table entry. Don't 368 // delete the data yet because it may be part of the new name. 369 if (SymbolTableEntry) 370 SymbolTable.remove((EntryTy *)SymbolTableEntry); 371 372 // If this is just removing the name, we're done. 373 if (Name.empty()) { 374 if (SymbolTableEntry) { 375 // Delete the old string data. 376 ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator()); 377 SymbolTableEntry = nullptr; 378 } 379 return; 380 } 381 382 // Look up the entry for the name. 383 auto IterBool = 384 getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this)); 385 386 // While we have a name collision, try a random rename. 387 if (!IterBool.second) { 388 SmallString<64> TempStr(Name); 389 TempStr.push_back('.'); 390 raw_svector_ostream TmpStream(TempStr); 391 unsigned NameSize = Name.size(); 392 393 do { 394 TempStr.resize(NameSize + 1); 395 TmpStream << getContext().pImpl->NamedStructTypesUniqueID++; 396 397 IterBool = getContext().pImpl->NamedStructTypes.insert( 398 std::make_pair(TmpStream.str(), this)); 399 } while (!IterBool.second); 400 } 401 402 // Delete the old string data. 403 if (SymbolTableEntry) 404 ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator()); 405 SymbolTableEntry = &*IterBool.first; 406 } 407 408 //===----------------------------------------------------------------------===// 409 // StructType Helper functions. 410 411 StructType *StructType::create(LLVMContext &Context, StringRef Name) { 412 StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context); 413 if (!Name.empty()) 414 ST->setName(Name); 415 return ST; 416 } 417 418 StructType *StructType::get(LLVMContext &Context, bool isPacked) { 419 return get(Context, None, isPacked); 420 } 421 422 StructType *StructType::get(Type *type, ...) { 423 assert(type && "Cannot create a struct type with no elements with this"); 424 LLVMContext &Ctx = type->getContext(); 425 va_list ap; 426 SmallVector<llvm::Type*, 8> StructFields; 427 va_start(ap, type); 428 while (type) { 429 StructFields.push_back(type); 430 type = va_arg(ap, llvm::Type*); 431 } 432 auto *Ret = llvm::StructType::get(Ctx, StructFields); 433 va_end(ap); 434 return Ret; 435 } 436 437 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements, 438 StringRef Name, bool isPacked) { 439 StructType *ST = create(Context, Name); 440 ST->setBody(Elements, isPacked); 441 return ST; 442 } 443 444 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) { 445 return create(Context, Elements, StringRef()); 446 } 447 448 StructType *StructType::create(LLVMContext &Context) { 449 return create(Context, StringRef()); 450 } 451 452 StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name, 453 bool isPacked) { 454 assert(!Elements.empty() && 455 "This method may not be invoked with an empty list"); 456 return create(Elements[0]->getContext(), Elements, Name, isPacked); 457 } 458 459 StructType *StructType::create(ArrayRef<Type*> Elements) { 460 assert(!Elements.empty() && 461 "This method may not be invoked with an empty list"); 462 return create(Elements[0]->getContext(), Elements, StringRef()); 463 } 464 465 StructType *StructType::create(StringRef Name, Type *type, ...) { 466 assert(type && "Cannot create a struct type with no elements with this"); 467 LLVMContext &Ctx = type->getContext(); 468 va_list ap; 469 SmallVector<llvm::Type*, 8> StructFields; 470 va_start(ap, type); 471 while (type) { 472 StructFields.push_back(type); 473 type = va_arg(ap, llvm::Type*); 474 } 475 auto *Ret = llvm::StructType::create(Ctx, StructFields, Name); 476 va_end(ap); 477 return Ret; 478 } 479 480 bool StructType::isSized(SmallPtrSetImpl<Type*> *Visited) const { 481 if ((getSubclassData() & SCDB_IsSized) != 0) 482 return true; 483 if (isOpaque()) 484 return false; 485 486 if (Visited && !Visited->insert(const_cast<StructType*>(this)).second) 487 return false; 488 489 // Okay, our struct is sized if all of the elements are, but if one of the 490 // elements is opaque, the struct isn't sized *yet*, but may become sized in 491 // the future, so just bail out without caching. 492 for (element_iterator I = element_begin(), E = element_end(); I != E; ++I) 493 if (!(*I)->isSized(Visited)) 494 return false; 495 496 // Here we cheat a bit and cast away const-ness. The goal is to memoize when 497 // we find a sized type, as types can only move from opaque to sized, not the 498 // other way. 499 const_cast<StructType*>(this)->setSubclassData( 500 getSubclassData() | SCDB_IsSized); 501 return true; 502 } 503 504 StringRef StructType::getName() const { 505 assert(!isLiteral() && "Literal structs never have names"); 506 if (!SymbolTableEntry) return StringRef(); 507 508 return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey(); 509 } 510 511 void StructType::setBody(Type *type, ...) { 512 assert(type && "Cannot create a struct type with no elements with this"); 513 va_list ap; 514 SmallVector<llvm::Type*, 8> StructFields; 515 va_start(ap, type); 516 while (type) { 517 StructFields.push_back(type); 518 type = va_arg(ap, llvm::Type*); 519 } 520 setBody(StructFields); 521 va_end(ap); 522 } 523 524 bool StructType::isValidElementType(Type *ElemTy) { 525 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && 526 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() && 527 !ElemTy->isTokenTy(); 528 } 529 530 bool StructType::isLayoutIdentical(StructType *Other) const { 531 if (this == Other) return true; 532 533 if (isPacked() != Other->isPacked()) 534 return false; 535 536 return elements() == Other->elements(); 537 } 538 539 StructType *Module::getTypeByName(StringRef Name) const { 540 return getContext().pImpl->NamedStructTypes.lookup(Name); 541 } 542 543 544 //===----------------------------------------------------------------------===// 545 // CompositeType Implementation 546 //===----------------------------------------------------------------------===// 547 548 Type *CompositeType::getTypeAtIndex(const Value *V) const { 549 if (auto *STy = dyn_cast<StructType>(this)) { 550 unsigned Idx = 551 (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue(); 552 assert(indexValid(Idx) && "Invalid structure index!"); 553 return STy->getElementType(Idx); 554 } 555 556 return cast<SequentialType>(this)->getElementType(); 557 } 558 559 Type *CompositeType::getTypeAtIndex(unsigned Idx) const{ 560 if (auto *STy = dyn_cast<StructType>(this)) { 561 assert(indexValid(Idx) && "Invalid structure index!"); 562 return STy->getElementType(Idx); 563 } 564 565 return cast<SequentialType>(this)->getElementType(); 566 } 567 568 bool CompositeType::indexValid(const Value *V) const { 569 if (auto *STy = dyn_cast<StructType>(this)) { 570 // Structure indexes require (vectors of) 32-bit integer constants. In the 571 // vector case all of the indices must be equal. 572 if (!V->getType()->getScalarType()->isIntegerTy(32)) 573 return false; 574 const Constant *C = dyn_cast<Constant>(V); 575 if (C && V->getType()->isVectorTy()) 576 C = C->getSplatValue(); 577 const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C); 578 return CU && CU->getZExtValue() < STy->getNumElements(); 579 } 580 581 // Sequential types can be indexed by any integer. 582 return V->getType()->isIntOrIntVectorTy(); 583 } 584 585 bool CompositeType::indexValid(unsigned Idx) const { 586 if (auto *STy = dyn_cast<StructType>(this)) 587 return Idx < STy->getNumElements(); 588 // Sequential types can be indexed by any integer. 589 return true; 590 } 591 592 593 //===----------------------------------------------------------------------===// 594 // ArrayType Implementation 595 //===----------------------------------------------------------------------===// 596 597 ArrayType::ArrayType(Type *ElType, uint64_t NumEl) 598 : SequentialType(ArrayTyID, ElType, NumEl) {} 599 600 ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) { 601 assert(isValidElementType(ElementType) && "Invalid type for array element!"); 602 603 LLVMContextImpl *pImpl = ElementType->getContext().pImpl; 604 ArrayType *&Entry = 605 pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)]; 606 607 if (!Entry) 608 Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements); 609 return Entry; 610 } 611 612 bool ArrayType::isValidElementType(Type *ElemTy) { 613 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && 614 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() && 615 !ElemTy->isTokenTy(); 616 } 617 618 //===----------------------------------------------------------------------===// 619 // VectorType Implementation 620 //===----------------------------------------------------------------------===// 621 622 VectorType::VectorType(Type *ElType, unsigned NumEl) 623 : SequentialType(VectorTyID, ElType, NumEl) {} 624 625 VectorType *VectorType::get(Type *ElementType, unsigned NumElements) { 626 assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0"); 627 assert(isValidElementType(ElementType) && "Element type of a VectorType must " 628 "be an integer, floating point, or " 629 "pointer type."); 630 631 LLVMContextImpl *pImpl = ElementType->getContext().pImpl; 632 VectorType *&Entry = ElementType->getContext().pImpl 633 ->VectorTypes[std::make_pair(ElementType, NumElements)]; 634 635 if (!Entry) 636 Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements); 637 return Entry; 638 } 639 640 bool VectorType::isValidElementType(Type *ElemTy) { 641 return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() || 642 ElemTy->isPointerTy(); 643 } 644 645 //===----------------------------------------------------------------------===// 646 // PointerType Implementation 647 //===----------------------------------------------------------------------===// 648 649 PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) { 650 assert(EltTy && "Can't get a pointer to <null> type!"); 651 assert(isValidElementType(EltTy) && "Invalid type for pointer element!"); 652 653 LLVMContextImpl *CImpl = EltTy->getContext().pImpl; 654 655 // Since AddressSpace #0 is the common case, we special case it. 656 PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy] 657 : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)]; 658 659 if (!Entry) 660 Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace); 661 return Entry; 662 } 663 664 665 PointerType::PointerType(Type *E, unsigned AddrSpace) 666 : Type(E->getContext(), PointerTyID), PointeeTy(E) { 667 ContainedTys = &PointeeTy; 668 NumContainedTys = 1; 669 setSubclassData(AddrSpace); 670 } 671 672 PointerType *Type::getPointerTo(unsigned addrs) const { 673 return PointerType::get(const_cast<Type*>(this), addrs); 674 } 675 676 bool PointerType::isValidElementType(Type *ElemTy) { 677 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && 678 !ElemTy->isMetadataTy() && !ElemTy->isTokenTy(); 679 } 680 681 bool PointerType::isLoadableOrStorableType(Type *ElemTy) { 682 return isValidElementType(ElemTy) && !ElemTy->isFunctionTy(); 683 } 684