xref: /llvm-project-15.0.7/llvm/lib/IR/Type.cpp (revision dbfdb139)
1 //===- Type.cpp - Implement the Type class --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Type class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Type.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Support/TypeSize.h"
30 #include <cassert>
31 #include <utility>
32 
33 using namespace llvm;
34 
35 //===----------------------------------------------------------------------===//
36 //                         Type Class Implementation
37 //===----------------------------------------------------------------------===//
38 
39 Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
40   switch (IDNumber) {
41   case VoidTyID      : return getVoidTy(C);
42   case HalfTyID      : return getHalfTy(C);
43   case BFloatTyID    : return getBFloatTy(C);
44   case FloatTyID     : return getFloatTy(C);
45   case DoubleTyID    : return getDoubleTy(C);
46   case X86_FP80TyID  : return getX86_FP80Ty(C);
47   case FP128TyID     : return getFP128Ty(C);
48   case PPC_FP128TyID : return getPPC_FP128Ty(C);
49   case LabelTyID     : return getLabelTy(C);
50   case MetadataTyID  : return getMetadataTy(C);
51   case X86_MMXTyID   : return getX86_MMXTy(C);
52   case TokenTyID     : return getTokenTy(C);
53   default:
54     return nullptr;
55   }
56 }
57 
58 bool Type::isIntegerTy(unsigned Bitwidth) const {
59   return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
60 }
61 
62 bool Type::canLosslesslyBitCastTo(Type *Ty) const {
63   // Identity cast means no change so return true
64   if (this == Ty)
65     return true;
66 
67   // They are not convertible unless they are at least first class types
68   if (!this->isFirstClassType() || !Ty->isFirstClassType())
69     return false;
70 
71   // Vector -> Vector conversions are always lossless if the two vector types
72   // have the same size, otherwise not.
73   if (isa<VectorType>(this) && isa<VectorType>(Ty))
74     return getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits();
75 
76   //  64-bit fixed width vector types can be losslessly converted to x86mmx.
77   if (((isa<FixedVectorType>(this)) && Ty->isX86_MMXTy()) &&
78       getPrimitiveSizeInBits().getFixedSize() == 64)
79     return true;
80   if ((isX86_MMXTy() && isa<FixedVectorType>(Ty)) &&
81       Ty->getPrimitiveSizeInBits().getFixedSize() == 64)
82     return true;
83 
84   // At this point we have only various mismatches of the first class types
85   // remaining and ptr->ptr. Just select the lossless conversions. Everything
86   // else is not lossless. Conservatively assume we can't losslessly convert
87   // between pointers with different address spaces.
88   if (auto *PTy = dyn_cast<PointerType>(this)) {
89     if (auto *OtherPTy = dyn_cast<PointerType>(Ty))
90       return PTy->getAddressSpace() == OtherPTy->getAddressSpace();
91     return false;
92   }
93   return false;  // Other types have no identity values
94 }
95 
96 bool Type::isEmptyTy() const {
97   if (auto *ATy = dyn_cast<ArrayType>(this)) {
98     unsigned NumElements = ATy->getNumElements();
99     return NumElements == 0 || ATy->getElementType()->isEmptyTy();
100   }
101 
102   if (auto *STy = dyn_cast<StructType>(this)) {
103     unsigned NumElements = STy->getNumElements();
104     for (unsigned i = 0; i < NumElements; ++i)
105       if (!STy->getElementType(i)->isEmptyTy())
106         return false;
107     return true;
108   }
109 
110   return false;
111 }
112 
113 TypeSize Type::getPrimitiveSizeInBits() const {
114   switch (getTypeID()) {
115   case Type::HalfTyID: return TypeSize::Fixed(16);
116   case Type::BFloatTyID: return TypeSize::Fixed(16);
117   case Type::FloatTyID: return TypeSize::Fixed(32);
118   case Type::DoubleTyID: return TypeSize::Fixed(64);
119   case Type::X86_FP80TyID: return TypeSize::Fixed(80);
120   case Type::FP128TyID: return TypeSize::Fixed(128);
121   case Type::PPC_FP128TyID: return TypeSize::Fixed(128);
122   case Type::X86_MMXTyID: return TypeSize::Fixed(64);
123   case Type::IntegerTyID:
124     return TypeSize::Fixed(cast<IntegerType>(this)->getBitWidth());
125   case Type::FixedVectorTyID:
126   case Type::ScalableVectorTyID: {
127     const VectorType *VTy = cast<VectorType>(this);
128     ElementCount EC = VTy->getElementCount();
129     TypeSize ETS = VTy->getElementType()->getPrimitiveSizeInBits();
130     assert(!ETS.isScalable() && "Vector type should have fixed-width elements");
131     return {ETS.getFixedSize() * EC.getKnownMinValue(), EC.isScalable()};
132   }
133   default: return TypeSize::Fixed(0);
134   }
135 }
136 
137 unsigned Type::getScalarSizeInBits() const {
138   // It is safe to assume that the scalar types have a fixed size.
139   return getScalarType()->getPrimitiveSizeInBits().getFixedSize();
140 }
141 
142 int Type::getFPMantissaWidth() const {
143   if (auto *VTy = dyn_cast<VectorType>(this))
144     return VTy->getElementType()->getFPMantissaWidth();
145   assert(isFloatingPointTy() && "Not a floating point type!");
146   if (getTypeID() == HalfTyID) return 11;
147   if (getTypeID() == BFloatTyID) return 8;
148   if (getTypeID() == FloatTyID) return 24;
149   if (getTypeID() == DoubleTyID) return 53;
150   if (getTypeID() == X86_FP80TyID) return 64;
151   if (getTypeID() == FP128TyID) return 113;
152   assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
153   return -1;
154 }
155 
156 bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const {
157   if (auto *ATy = dyn_cast<ArrayType>(this))
158     return ATy->getElementType()->isSized(Visited);
159 
160   if (auto *VTy = dyn_cast<VectorType>(this))
161     return VTy->getElementType()->isSized(Visited);
162 
163   return cast<StructType>(this)->isSized(Visited);
164 }
165 
166 //===----------------------------------------------------------------------===//
167 //                          Primitive 'Type' data
168 //===----------------------------------------------------------------------===//
169 
170 Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
171 Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
172 Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
173 Type *Type::getBFloatTy(LLVMContext &C) { return &C.pImpl->BFloatTy; }
174 Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
175 Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
176 Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
177 Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; }
178 Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
179 Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
180 Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
181 Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
182 
183 IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
184 IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
185 IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
186 IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
187 IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
188 IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; }
189 
190 IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
191   return IntegerType::get(C, N);
192 }
193 
194 PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
195   return getHalfTy(C)->getPointerTo(AS);
196 }
197 
198 PointerType *Type::getBFloatPtrTy(LLVMContext &C, unsigned AS) {
199   return getBFloatTy(C)->getPointerTo(AS);
200 }
201 
202 PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
203   return getFloatTy(C)->getPointerTo(AS);
204 }
205 
206 PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
207   return getDoubleTy(C)->getPointerTo(AS);
208 }
209 
210 PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
211   return getX86_FP80Ty(C)->getPointerTo(AS);
212 }
213 
214 PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
215   return getFP128Ty(C)->getPointerTo(AS);
216 }
217 
218 PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
219   return getPPC_FP128Ty(C)->getPointerTo(AS);
220 }
221 
222 PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
223   return getX86_MMXTy(C)->getPointerTo(AS);
224 }
225 
226 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
227   return getIntNTy(C, N)->getPointerTo(AS);
228 }
229 
230 PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
231   return getInt1Ty(C)->getPointerTo(AS);
232 }
233 
234 PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
235   return getInt8Ty(C)->getPointerTo(AS);
236 }
237 
238 PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
239   return getInt16Ty(C)->getPointerTo(AS);
240 }
241 
242 PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
243   return getInt32Ty(C)->getPointerTo(AS);
244 }
245 
246 PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
247   return getInt64Ty(C)->getPointerTo(AS);
248 }
249 
250 //===----------------------------------------------------------------------===//
251 //                       IntegerType Implementation
252 //===----------------------------------------------------------------------===//
253 
254 IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
255   assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
256   assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
257 
258   // Check for the built-in integer types
259   switch (NumBits) {
260   case   1: return cast<IntegerType>(Type::getInt1Ty(C));
261   case   8: return cast<IntegerType>(Type::getInt8Ty(C));
262   case  16: return cast<IntegerType>(Type::getInt16Ty(C));
263   case  32: return cast<IntegerType>(Type::getInt32Ty(C));
264   case  64: return cast<IntegerType>(Type::getInt64Ty(C));
265   case 128: return cast<IntegerType>(Type::getInt128Ty(C));
266   default:
267     break;
268   }
269 
270   IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
271 
272   if (!Entry)
273     Entry = new (C.pImpl->Alloc) IntegerType(C, NumBits);
274 
275   return Entry;
276 }
277 
278 APInt IntegerType::getMask() const {
279   return APInt::getAllOnesValue(getBitWidth());
280 }
281 
282 //===----------------------------------------------------------------------===//
283 //                       FunctionType Implementation
284 //===----------------------------------------------------------------------===//
285 
286 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
287                            bool IsVarArgs)
288   : Type(Result->getContext(), FunctionTyID) {
289   Type **SubTys = reinterpret_cast<Type**>(this+1);
290   assert(isValidReturnType(Result) && "invalid return type for function");
291   setSubclassData(IsVarArgs);
292 
293   SubTys[0] = Result;
294 
295   for (unsigned i = 0, e = Params.size(); i != e; ++i) {
296     assert(isValidArgumentType(Params[i]) &&
297            "Not a valid type for function argument!");
298     SubTys[i+1] = Params[i];
299   }
300 
301   ContainedTys = SubTys;
302   NumContainedTys = Params.size() + 1; // + 1 for result type
303 }
304 
305 // This is the factory function for the FunctionType class.
306 FunctionType *FunctionType::get(Type *ReturnType,
307                                 ArrayRef<Type*> Params, bool isVarArg) {
308   LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
309   const FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
310   FunctionType *FT;
311   // Since we only want to allocate a fresh function type in case none is found
312   // and we don't want to perform two lookups (one for checking if existent and
313   // one for inserting the newly allocated one), here we instead lookup based on
314   // Key and update the reference to the function type in-place to a newly
315   // allocated one if not found.
316   auto Insertion = pImpl->FunctionTypes.insert_as(nullptr, Key);
317   if (Insertion.second) {
318     // The function type was not found. Allocate one and update FunctionTypes
319     // in-place.
320     FT = (FunctionType *)pImpl->Alloc.Allocate(
321         sizeof(FunctionType) + sizeof(Type *) * (Params.size() + 1),
322         alignof(FunctionType));
323     new (FT) FunctionType(ReturnType, Params, isVarArg);
324     *Insertion.first = FT;
325   } else {
326     // The function type was found. Just return it.
327     FT = *Insertion.first;
328   }
329   return FT;
330 }
331 
332 FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
333   return get(Result, None, isVarArg);
334 }
335 
336 bool FunctionType::isValidReturnType(Type *RetTy) {
337   return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
338   !RetTy->isMetadataTy();
339 }
340 
341 bool FunctionType::isValidArgumentType(Type *ArgTy) {
342   return ArgTy->isFirstClassType();
343 }
344 
345 //===----------------------------------------------------------------------===//
346 //                       StructType Implementation
347 //===----------------------------------------------------------------------===//
348 
349 // Primitive Constructors.
350 
351 StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
352                             bool isPacked) {
353   LLVMContextImpl *pImpl = Context.pImpl;
354   const AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
355 
356   StructType *ST;
357   // Since we only want to allocate a fresh struct type in case none is found
358   // and we don't want to perform two lookups (one for checking if existent and
359   // one for inserting the newly allocated one), here we instead lookup based on
360   // Key and update the reference to the struct type in-place to a newly
361   // allocated one if not found.
362   auto Insertion = pImpl->AnonStructTypes.insert_as(nullptr, Key);
363   if (Insertion.second) {
364     // The struct type was not found. Allocate one and update AnonStructTypes
365     // in-place.
366     ST = new (Context.pImpl->Alloc) StructType(Context);
367     ST->setSubclassData(SCDB_IsLiteral);  // Literal struct.
368     ST->setBody(ETypes, isPacked);
369     *Insertion.first = ST;
370   } else {
371     // The struct type was found. Just return it.
372     ST = *Insertion.first;
373   }
374 
375   return ST;
376 }
377 
378 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
379   assert(isOpaque() && "Struct body already set!");
380 
381   setSubclassData(getSubclassData() | SCDB_HasBody);
382   if (isPacked)
383     setSubclassData(getSubclassData() | SCDB_Packed);
384 
385   NumContainedTys = Elements.size();
386 
387   if (Elements.empty()) {
388     ContainedTys = nullptr;
389     return;
390   }
391 
392   ContainedTys = Elements.copy(getContext().pImpl->Alloc).data();
393 }
394 
395 void StructType::setName(StringRef Name) {
396   if (Name == getName()) return;
397 
398   StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
399 
400   using EntryTy = StringMap<StructType *>::MapEntryTy;
401 
402   // If this struct already had a name, remove its symbol table entry. Don't
403   // delete the data yet because it may be part of the new name.
404   if (SymbolTableEntry)
405     SymbolTable.remove((EntryTy *)SymbolTableEntry);
406 
407   // If this is just removing the name, we're done.
408   if (Name.empty()) {
409     if (SymbolTableEntry) {
410       // Delete the old string data.
411       ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
412       SymbolTableEntry = nullptr;
413     }
414     return;
415   }
416 
417   // Look up the entry for the name.
418   auto IterBool =
419       getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this));
420 
421   // While we have a name collision, try a random rename.
422   if (!IterBool.second) {
423     SmallString<64> TempStr(Name);
424     TempStr.push_back('.');
425     raw_svector_ostream TmpStream(TempStr);
426     unsigned NameSize = Name.size();
427 
428     do {
429       TempStr.resize(NameSize + 1);
430       TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
431 
432       IterBool = getContext().pImpl->NamedStructTypes.insert(
433           std::make_pair(TmpStream.str(), this));
434     } while (!IterBool.second);
435   }
436 
437   // Delete the old string data.
438   if (SymbolTableEntry)
439     ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
440   SymbolTableEntry = &*IterBool.first;
441 }
442 
443 //===----------------------------------------------------------------------===//
444 // StructType Helper functions.
445 
446 StructType *StructType::create(LLVMContext &Context, StringRef Name) {
447   StructType *ST = new (Context.pImpl->Alloc) StructType(Context);
448   if (!Name.empty())
449     ST->setName(Name);
450   return ST;
451 }
452 
453 StructType *StructType::get(LLVMContext &Context, bool isPacked) {
454   return get(Context, None, isPacked);
455 }
456 
457 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
458                                StringRef Name, bool isPacked) {
459   StructType *ST = create(Context, Name);
460   ST->setBody(Elements, isPacked);
461   return ST;
462 }
463 
464 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
465   return create(Context, Elements, StringRef());
466 }
467 
468 StructType *StructType::create(LLVMContext &Context) {
469   return create(Context, StringRef());
470 }
471 
472 StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
473                                bool isPacked) {
474   assert(!Elements.empty() &&
475          "This method may not be invoked with an empty list");
476   return create(Elements[0]->getContext(), Elements, Name, isPacked);
477 }
478 
479 StructType *StructType::create(ArrayRef<Type*> Elements) {
480   assert(!Elements.empty() &&
481          "This method may not be invoked with an empty list");
482   return create(Elements[0]->getContext(), Elements, StringRef());
483 }
484 
485 bool StructType::isSized(SmallPtrSetImpl<Type*> *Visited) const {
486   if ((getSubclassData() & SCDB_IsSized) != 0)
487     return true;
488   if (isOpaque())
489     return false;
490 
491   if (Visited && !Visited->insert(const_cast<StructType*>(this)).second)
492     return false;
493 
494   // Okay, our struct is sized if all of the elements are, but if one of the
495   // elements is opaque, the struct isn't sized *yet*, but may become sized in
496   // the future, so just bail out without caching.
497   for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
498     if (!(*I)->isSized(Visited))
499       return false;
500 
501   // Here we cheat a bit and cast away const-ness. The goal is to memoize when
502   // we find a sized type, as types can only move from opaque to sized, not the
503   // other way.
504   const_cast<StructType*>(this)->setSubclassData(
505     getSubclassData() | SCDB_IsSized);
506   return true;
507 }
508 
509 StringRef StructType::getName() const {
510   assert(!isLiteral() && "Literal structs never have names");
511   if (!SymbolTableEntry) return StringRef();
512 
513   return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
514 }
515 
516 bool StructType::isValidElementType(Type *ElemTy) {
517   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
518          !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
519          !ElemTy->isTokenTy() && !isa<ScalableVectorType>(ElemTy);
520 }
521 
522 bool StructType::isLayoutIdentical(StructType *Other) const {
523   if (this == Other) return true;
524 
525   if (isPacked() != Other->isPacked())
526     return false;
527 
528   return elements() == Other->elements();
529 }
530 
531 Type *StructType::getTypeAtIndex(const Value *V) const {
532   unsigned Idx = (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
533   assert(indexValid(Idx) && "Invalid structure index!");
534   return getElementType(Idx);
535 }
536 
537 bool StructType::indexValid(const Value *V) const {
538   // Structure indexes require (vectors of) 32-bit integer constants.  In the
539   // vector case all of the indices must be equal.
540   if (!V->getType()->isIntOrIntVectorTy(32))
541     return false;
542   if (isa<ScalableVectorType>(V->getType()))
543     return false;
544   const Constant *C = dyn_cast<Constant>(V);
545   if (C && V->getType()->isVectorTy())
546     C = C->getSplatValue();
547   const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
548   return CU && CU->getZExtValue() < getNumElements();
549 }
550 
551 StructType *StructType::getTypeByName(LLVMContext &C, StringRef Name) {
552   return C.pImpl->NamedStructTypes.lookup(Name);
553 }
554 
555 //===----------------------------------------------------------------------===//
556 //                           ArrayType Implementation
557 //===----------------------------------------------------------------------===//
558 
559 ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
560     : Type(ElType->getContext(), ArrayTyID), ContainedType(ElType),
561       NumElements(NumEl) {
562   ContainedTys = &ContainedType;
563   NumContainedTys = 1;
564 }
565 
566 ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) {
567   assert(isValidElementType(ElementType) && "Invalid type for array element!");
568 
569   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
570   ArrayType *&Entry =
571     pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
572 
573   if (!Entry)
574     Entry = new (pImpl->Alloc) ArrayType(ElementType, NumElements);
575   return Entry;
576 }
577 
578 bool ArrayType::isValidElementType(Type *ElemTy) {
579   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
580          !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
581          !ElemTy->isTokenTy() && !isa<ScalableVectorType>(ElemTy);
582 }
583 
584 //===----------------------------------------------------------------------===//
585 //                          VectorType Implementation
586 //===----------------------------------------------------------------------===//
587 
588 VectorType::VectorType(Type *ElType, unsigned EQ, Type::TypeID TID)
589     : Type(ElType->getContext(), TID), ContainedType(ElType),
590       ElementQuantity(EQ) {
591   ContainedTys = &ContainedType;
592   NumContainedTys = 1;
593 }
594 
595 VectorType *VectorType::get(Type *ElementType, ElementCount EC) {
596   if (EC.isScalable())
597     return ScalableVectorType::get(ElementType, EC.getKnownMinValue());
598   else
599     return FixedVectorType::get(ElementType, EC.getKnownMinValue());
600 }
601 
602 bool VectorType::isValidElementType(Type *ElemTy) {
603   return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
604          ElemTy->isPointerTy();
605 }
606 
607 //===----------------------------------------------------------------------===//
608 //                        FixedVectorType Implementation
609 //===----------------------------------------------------------------------===//
610 
611 FixedVectorType *FixedVectorType::get(Type *ElementType, unsigned NumElts) {
612   assert(NumElts > 0 && "#Elements of a VectorType must be greater than 0");
613   assert(isValidElementType(ElementType) && "Element type of a VectorType must "
614                                             "be an integer, floating point, or "
615                                             "pointer type.");
616 
617   auto EC = ElementCount::getFixed(NumElts);
618 
619   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
620   VectorType *&Entry = ElementType->getContext()
621                            .pImpl->VectorTypes[std::make_pair(ElementType, EC)];
622 
623   if (!Entry)
624     Entry = new (pImpl->Alloc) FixedVectorType(ElementType, NumElts);
625   return cast<FixedVectorType>(Entry);
626 }
627 
628 //===----------------------------------------------------------------------===//
629 //                       ScalableVectorType Implementation
630 //===----------------------------------------------------------------------===//
631 
632 ScalableVectorType *ScalableVectorType::get(Type *ElementType,
633                                             unsigned MinNumElts) {
634   assert(MinNumElts > 0 && "#Elements of a VectorType must be greater than 0");
635   assert(isValidElementType(ElementType) && "Element type of a VectorType must "
636                                             "be an integer, floating point, or "
637                                             "pointer type.");
638 
639   auto EC = ElementCount::getScalable(MinNumElts);
640 
641   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
642   VectorType *&Entry = ElementType->getContext()
643                            .pImpl->VectorTypes[std::make_pair(ElementType, EC)];
644 
645   if (!Entry)
646     Entry = new (pImpl->Alloc) ScalableVectorType(ElementType, MinNumElts);
647   return cast<ScalableVectorType>(Entry);
648 }
649 
650 //===----------------------------------------------------------------------===//
651 //                         PointerType Implementation
652 //===----------------------------------------------------------------------===//
653 
654 PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
655   assert(EltTy && "Can't get a pointer to <null> type!");
656   assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
657 
658   LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
659 
660   // Since AddressSpace #0 is the common case, we special case it.
661   PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
662      : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
663 
664   if (!Entry)
665     Entry = new (CImpl->Alloc) PointerType(EltTy, AddressSpace);
666   return Entry;
667 }
668 
669 PointerType::PointerType(Type *E, unsigned AddrSpace)
670   : Type(E->getContext(), PointerTyID), PointeeTy(E) {
671   ContainedTys = &PointeeTy;
672   NumContainedTys = 1;
673   setSubclassData(AddrSpace);
674 }
675 
676 PointerType *Type::getPointerTo(unsigned addrs) const {
677   return PointerType::get(const_cast<Type*>(this), addrs);
678 }
679 
680 bool PointerType::isValidElementType(Type *ElemTy) {
681   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
682          !ElemTy->isMetadataTy() && !ElemTy->isTokenTy();
683 }
684 
685 bool PointerType::isLoadableOrStorableType(Type *ElemTy) {
686   return isValidElementType(ElemTy) && !ElemTy->isFunctionTy();
687 }
688