xref: /llvm-project-15.0.7/llvm/lib/IR/Type.cpp (revision bf02bcff)
1 //===- Type.cpp - Implement the Type class --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Type class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Type.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Support/TypeSize.h"
30 #include <cassert>
31 #include <utility>
32 
33 using namespace llvm;
34 
35 //===----------------------------------------------------------------------===//
36 //                         Type Class Implementation
37 //===----------------------------------------------------------------------===//
38 
39 Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
40   switch (IDNumber) {
41   case VoidTyID      : return getVoidTy(C);
42   case HalfTyID      : return getHalfTy(C);
43   case FloatTyID     : return getFloatTy(C);
44   case DoubleTyID    : return getDoubleTy(C);
45   case X86_FP80TyID  : return getX86_FP80Ty(C);
46   case FP128TyID     : return getFP128Ty(C);
47   case PPC_FP128TyID : return getPPC_FP128Ty(C);
48   case LabelTyID     : return getLabelTy(C);
49   case MetadataTyID  : return getMetadataTy(C);
50   case X86_MMXTyID   : return getX86_MMXTy(C);
51   case TokenTyID     : return getTokenTy(C);
52   default:
53     return nullptr;
54   }
55 }
56 
57 bool Type::isIntegerTy(unsigned Bitwidth) const {
58   return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
59 }
60 
61 bool Type::canLosslesslyBitCastTo(Type *Ty) const {
62   // Identity cast means no change so return true
63   if (this == Ty)
64     return true;
65 
66   // They are not convertible unless they are at least first class types
67   if (!this->isFirstClassType() || !Ty->isFirstClassType())
68     return false;
69 
70   // Vector -> Vector conversions are always lossless if the two vector types
71   // have the same size, otherwise not.
72   if (isa<VectorType>(this) && isa<VectorType>(Ty))
73     return getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits();
74 
75   //  64-bit fixed width vector types can be losslessly converted to x86mmx.
76   if (((isa<FixedVectorType>(this)) && Ty->isX86_MMXTy()) &&
77       getPrimitiveSizeInBits().getFixedSize() == 64)
78     return true;
79   if ((isX86_MMXTy() && isa<FixedVectorType>(Ty)) &&
80       Ty->getPrimitiveSizeInBits().getFixedSize() == 64)
81     return true;
82 
83   // At this point we have only various mismatches of the first class types
84   // remaining and ptr->ptr. Just select the lossless conversions. Everything
85   // else is not lossless. Conservatively assume we can't losslessly convert
86   // between pointers with different address spaces.
87   if (auto *PTy = dyn_cast<PointerType>(this)) {
88     if (auto *OtherPTy = dyn_cast<PointerType>(Ty))
89       return PTy->getAddressSpace() == OtherPTy->getAddressSpace();
90     return false;
91   }
92   return false;  // Other types have no identity values
93 }
94 
95 bool Type::isEmptyTy() const {
96   if (auto *ATy = dyn_cast<ArrayType>(this)) {
97     unsigned NumElements = ATy->getNumElements();
98     return NumElements == 0 || ATy->getElementType()->isEmptyTy();
99   }
100 
101   if (auto *STy = dyn_cast<StructType>(this)) {
102     unsigned NumElements = STy->getNumElements();
103     for (unsigned i = 0; i < NumElements; ++i)
104       if (!STy->getElementType(i)->isEmptyTy())
105         return false;
106     return true;
107   }
108 
109   return false;
110 }
111 
112 TypeSize Type::getPrimitiveSizeInBits() const {
113   switch (getTypeID()) {
114   case Type::HalfTyID: return TypeSize::Fixed(16);
115   case Type::FloatTyID: return TypeSize::Fixed(32);
116   case Type::DoubleTyID: return TypeSize::Fixed(64);
117   case Type::X86_FP80TyID: return TypeSize::Fixed(80);
118   case Type::FP128TyID: return TypeSize::Fixed(128);
119   case Type::PPC_FP128TyID: return TypeSize::Fixed(128);
120   case Type::X86_MMXTyID: return TypeSize::Fixed(64);
121   case Type::IntegerTyID:
122     return TypeSize::Fixed(cast<IntegerType>(this)->getBitWidth());
123   case Type::FixedVectorTyID:
124   case Type::ScalableVectorTyID: {
125     const VectorType *VTy = cast<VectorType>(this);
126     ElementCount EC = VTy->getElementCount();
127     TypeSize ETS = VTy->getElementType()->getPrimitiveSizeInBits();
128     assert(!ETS.isScalable() && "Vector type should have fixed-width elements");
129     return {ETS.getFixedSize() * EC.Min, EC.Scalable};
130   }
131   default: return TypeSize::Fixed(0);
132   }
133 }
134 
135 unsigned Type::getScalarSizeInBits() const {
136   // It is safe to assume that the scalar types have a fixed size.
137   return getScalarType()->getPrimitiveSizeInBits().getFixedSize();
138 }
139 
140 int Type::getFPMantissaWidth() const {
141   if (auto *VTy = dyn_cast<VectorType>(this))
142     return VTy->getElementType()->getFPMantissaWidth();
143   assert(isFloatingPointTy() && "Not a floating point type!");
144   if (getTypeID() == HalfTyID) return 11;
145   if (getTypeID() == FloatTyID) return 24;
146   if (getTypeID() == DoubleTyID) return 53;
147   if (getTypeID() == X86_FP80TyID) return 64;
148   if (getTypeID() == FP128TyID) return 113;
149   assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
150   return -1;
151 }
152 
153 bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const {
154   if (auto *ATy = dyn_cast<ArrayType>(this))
155     return ATy->getElementType()->isSized(Visited);
156 
157   if (auto *VTy = dyn_cast<VectorType>(this))
158     return VTy->getElementType()->isSized(Visited);
159 
160   return cast<StructType>(this)->isSized(Visited);
161 }
162 
163 //===----------------------------------------------------------------------===//
164 //                          Primitive 'Type' data
165 //===----------------------------------------------------------------------===//
166 
167 Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
168 Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
169 Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
170 Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
171 Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
172 Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
173 Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; }
174 Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
175 Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
176 Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
177 Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
178 
179 IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
180 IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
181 IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
182 IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
183 IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
184 IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; }
185 
186 IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
187   return IntegerType::get(C, N);
188 }
189 
190 PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
191   return getHalfTy(C)->getPointerTo(AS);
192 }
193 
194 PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
195   return getFloatTy(C)->getPointerTo(AS);
196 }
197 
198 PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
199   return getDoubleTy(C)->getPointerTo(AS);
200 }
201 
202 PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
203   return getX86_FP80Ty(C)->getPointerTo(AS);
204 }
205 
206 PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
207   return getFP128Ty(C)->getPointerTo(AS);
208 }
209 
210 PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
211   return getPPC_FP128Ty(C)->getPointerTo(AS);
212 }
213 
214 PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
215   return getX86_MMXTy(C)->getPointerTo(AS);
216 }
217 
218 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
219   return getIntNTy(C, N)->getPointerTo(AS);
220 }
221 
222 PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
223   return getInt1Ty(C)->getPointerTo(AS);
224 }
225 
226 PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
227   return getInt8Ty(C)->getPointerTo(AS);
228 }
229 
230 PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
231   return getInt16Ty(C)->getPointerTo(AS);
232 }
233 
234 PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
235   return getInt32Ty(C)->getPointerTo(AS);
236 }
237 
238 PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
239   return getInt64Ty(C)->getPointerTo(AS);
240 }
241 
242 //===----------------------------------------------------------------------===//
243 //                       IntegerType Implementation
244 //===----------------------------------------------------------------------===//
245 
246 IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
247   assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
248   assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
249 
250   // Check for the built-in integer types
251   switch (NumBits) {
252   case   1: return cast<IntegerType>(Type::getInt1Ty(C));
253   case   8: return cast<IntegerType>(Type::getInt8Ty(C));
254   case  16: return cast<IntegerType>(Type::getInt16Ty(C));
255   case  32: return cast<IntegerType>(Type::getInt32Ty(C));
256   case  64: return cast<IntegerType>(Type::getInt64Ty(C));
257   case 128: return cast<IntegerType>(Type::getInt128Ty(C));
258   default:
259     break;
260   }
261 
262   IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
263 
264   if (!Entry)
265     Entry = new (C.pImpl->Alloc) IntegerType(C, NumBits);
266 
267   return Entry;
268 }
269 
270 bool IntegerType::isPowerOf2ByteWidth() const {
271   unsigned BitWidth = getBitWidth();
272   return (BitWidth > 7) && isPowerOf2_32(BitWidth);
273 }
274 
275 APInt IntegerType::getMask() const {
276   return APInt::getAllOnesValue(getBitWidth());
277 }
278 
279 //===----------------------------------------------------------------------===//
280 //                       FunctionType Implementation
281 //===----------------------------------------------------------------------===//
282 
283 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
284                            bool IsVarArgs)
285   : Type(Result->getContext(), FunctionTyID) {
286   Type **SubTys = reinterpret_cast<Type**>(this+1);
287   assert(isValidReturnType(Result) && "invalid return type for function");
288   setSubclassData(IsVarArgs);
289 
290   SubTys[0] = Result;
291 
292   for (unsigned i = 0, e = Params.size(); i != e; ++i) {
293     assert(isValidArgumentType(Params[i]) &&
294            "Not a valid type for function argument!");
295     SubTys[i+1] = Params[i];
296   }
297 
298   ContainedTys = SubTys;
299   NumContainedTys = Params.size() + 1; // + 1 for result type
300 }
301 
302 // This is the factory function for the FunctionType class.
303 FunctionType *FunctionType::get(Type *ReturnType,
304                                 ArrayRef<Type*> Params, bool isVarArg) {
305   LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
306   const FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
307   FunctionType *FT;
308   // Since we only want to allocate a fresh function type in case none is found
309   // and we don't want to perform two lookups (one for checking if existent and
310   // one for inserting the newly allocated one), here we instead lookup based on
311   // Key and update the reference to the function type in-place to a newly
312   // allocated one if not found.
313   auto Insertion = pImpl->FunctionTypes.insert_as(nullptr, Key);
314   if (Insertion.second) {
315     // The function type was not found. Allocate one and update FunctionTypes
316     // in-place.
317     FT = (FunctionType *)pImpl->Alloc.Allocate(
318         sizeof(FunctionType) + sizeof(Type *) * (Params.size() + 1),
319         alignof(FunctionType));
320     new (FT) FunctionType(ReturnType, Params, isVarArg);
321     *Insertion.first = FT;
322   } else {
323     // The function type was found. Just return it.
324     FT = *Insertion.first;
325   }
326   return FT;
327 }
328 
329 FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
330   return get(Result, None, isVarArg);
331 }
332 
333 bool FunctionType::isValidReturnType(Type *RetTy) {
334   return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
335   !RetTy->isMetadataTy();
336 }
337 
338 bool FunctionType::isValidArgumentType(Type *ArgTy) {
339   return ArgTy->isFirstClassType();
340 }
341 
342 //===----------------------------------------------------------------------===//
343 //                       StructType Implementation
344 //===----------------------------------------------------------------------===//
345 
346 // Primitive Constructors.
347 
348 StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
349                             bool isPacked) {
350   LLVMContextImpl *pImpl = Context.pImpl;
351   const AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
352 
353   StructType *ST;
354   // Since we only want to allocate a fresh struct type in case none is found
355   // and we don't want to perform two lookups (one for checking if existent and
356   // one for inserting the newly allocated one), here we instead lookup based on
357   // Key and update the reference to the struct type in-place to a newly
358   // allocated one if not found.
359   auto Insertion = pImpl->AnonStructTypes.insert_as(nullptr, Key);
360   if (Insertion.second) {
361     // The struct type was not found. Allocate one and update AnonStructTypes
362     // in-place.
363     ST = new (Context.pImpl->Alloc) StructType(Context);
364     ST->setSubclassData(SCDB_IsLiteral);  // Literal struct.
365     ST->setBody(ETypes, isPacked);
366     *Insertion.first = ST;
367   } else {
368     // The struct type was found. Just return it.
369     ST = *Insertion.first;
370   }
371 
372   return ST;
373 }
374 
375 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
376   assert(isOpaque() && "Struct body already set!");
377 
378   setSubclassData(getSubclassData() | SCDB_HasBody);
379   if (isPacked)
380     setSubclassData(getSubclassData() | SCDB_Packed);
381 
382   NumContainedTys = Elements.size();
383 
384   if (Elements.empty()) {
385     ContainedTys = nullptr;
386     return;
387   }
388 
389   ContainedTys = Elements.copy(getContext().pImpl->Alloc).data();
390 }
391 
392 void StructType::setName(StringRef Name) {
393   if (Name == getName()) return;
394 
395   StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
396 
397   using EntryTy = StringMap<StructType *>::MapEntryTy;
398 
399   // If this struct already had a name, remove its symbol table entry. Don't
400   // delete the data yet because it may be part of the new name.
401   if (SymbolTableEntry)
402     SymbolTable.remove((EntryTy *)SymbolTableEntry);
403 
404   // If this is just removing the name, we're done.
405   if (Name.empty()) {
406     if (SymbolTableEntry) {
407       // Delete the old string data.
408       ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
409       SymbolTableEntry = nullptr;
410     }
411     return;
412   }
413 
414   // Look up the entry for the name.
415   auto IterBool =
416       getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this));
417 
418   // While we have a name collision, try a random rename.
419   if (!IterBool.second) {
420     SmallString<64> TempStr(Name);
421     TempStr.push_back('.');
422     raw_svector_ostream TmpStream(TempStr);
423     unsigned NameSize = Name.size();
424 
425     do {
426       TempStr.resize(NameSize + 1);
427       TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
428 
429       IterBool = getContext().pImpl->NamedStructTypes.insert(
430           std::make_pair(TmpStream.str(), this));
431     } while (!IterBool.second);
432   }
433 
434   // Delete the old string data.
435   if (SymbolTableEntry)
436     ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
437   SymbolTableEntry = &*IterBool.first;
438 }
439 
440 //===----------------------------------------------------------------------===//
441 // StructType Helper functions.
442 
443 StructType *StructType::create(LLVMContext &Context, StringRef Name) {
444   StructType *ST = new (Context.pImpl->Alloc) StructType(Context);
445   if (!Name.empty())
446     ST->setName(Name);
447   return ST;
448 }
449 
450 StructType *StructType::get(LLVMContext &Context, bool isPacked) {
451   return get(Context, None, isPacked);
452 }
453 
454 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
455                                StringRef Name, bool isPacked) {
456   StructType *ST = create(Context, Name);
457   ST->setBody(Elements, isPacked);
458   return ST;
459 }
460 
461 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
462   return create(Context, Elements, StringRef());
463 }
464 
465 StructType *StructType::create(LLVMContext &Context) {
466   return create(Context, StringRef());
467 }
468 
469 StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
470                                bool isPacked) {
471   assert(!Elements.empty() &&
472          "This method may not be invoked with an empty list");
473   return create(Elements[0]->getContext(), Elements, Name, isPacked);
474 }
475 
476 StructType *StructType::create(ArrayRef<Type*> Elements) {
477   assert(!Elements.empty() &&
478          "This method may not be invoked with an empty list");
479   return create(Elements[0]->getContext(), Elements, StringRef());
480 }
481 
482 bool StructType::isSized(SmallPtrSetImpl<Type*> *Visited) const {
483   if ((getSubclassData() & SCDB_IsSized) != 0)
484     return true;
485   if (isOpaque())
486     return false;
487 
488   if (Visited && !Visited->insert(const_cast<StructType*>(this)).second)
489     return false;
490 
491   // Okay, our struct is sized if all of the elements are, but if one of the
492   // elements is opaque, the struct isn't sized *yet*, but may become sized in
493   // the future, so just bail out without caching.
494   for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
495     if (!(*I)->isSized(Visited))
496       return false;
497 
498   // Here we cheat a bit and cast away const-ness. The goal is to memoize when
499   // we find a sized type, as types can only move from opaque to sized, not the
500   // other way.
501   const_cast<StructType*>(this)->setSubclassData(
502     getSubclassData() | SCDB_IsSized);
503   return true;
504 }
505 
506 StringRef StructType::getName() const {
507   assert(!isLiteral() && "Literal structs never have names");
508   if (!SymbolTableEntry) return StringRef();
509 
510   return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
511 }
512 
513 bool StructType::isValidElementType(Type *ElemTy) {
514   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
515          !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
516          !ElemTy->isTokenTy() && !isa<ScalableVectorType>(ElemTy);
517 }
518 
519 bool StructType::isLayoutIdentical(StructType *Other) const {
520   if (this == Other) return true;
521 
522   if (isPacked() != Other->isPacked())
523     return false;
524 
525   return elements() == Other->elements();
526 }
527 
528 StructType *Module::getTypeByName(StringRef Name) const {
529   return getContext().pImpl->NamedStructTypes.lookup(Name);
530 }
531 
532 Type *StructType::getTypeAtIndex(const Value *V) const {
533   unsigned Idx = (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
534   assert(indexValid(Idx) && "Invalid structure index!");
535   return getElementType(Idx);
536 }
537 
538 bool StructType::indexValid(const Value *V) const {
539   // Structure indexes require (vectors of) 32-bit integer constants.  In the
540   // vector case all of the indices must be equal.
541   if (!V->getType()->isIntOrIntVectorTy(32))
542     return false;
543   const Constant *C = dyn_cast<Constant>(V);
544   if (C && V->getType()->isVectorTy())
545     C = C->getSplatValue();
546   const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
547   return CU && CU->getZExtValue() < getNumElements();
548 }
549 
550 //===----------------------------------------------------------------------===//
551 //                           ArrayType Implementation
552 //===----------------------------------------------------------------------===//
553 
554 ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
555     : Type(ElType->getContext(), ArrayTyID), ContainedType(ElType),
556       NumElements(NumEl) {
557   ContainedTys = &ContainedType;
558   NumContainedTys = 1;
559 }
560 
561 ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) {
562   assert(isValidElementType(ElementType) && "Invalid type for array element!");
563 
564   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
565   ArrayType *&Entry =
566     pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
567 
568   if (!Entry)
569     Entry = new (pImpl->Alloc) ArrayType(ElementType, NumElements);
570   return Entry;
571 }
572 
573 bool ArrayType::isValidElementType(Type *ElemTy) {
574   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
575          !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
576          !ElemTy->isTokenTy() && !isa<ScalableVectorType>(ElemTy);
577 }
578 
579 //===----------------------------------------------------------------------===//
580 //                          VectorType Implementation
581 //===----------------------------------------------------------------------===//
582 
583 VectorType::VectorType(Type *ElType, unsigned EQ, Type::TypeID TID)
584     : Type(ElType->getContext(), TID), ContainedType(ElType),
585       ElementQuantity(EQ) {
586   ContainedTys = &ContainedType;
587   NumContainedTys = 1;
588 }
589 
590 VectorType *VectorType::get(Type *ElementType, ElementCount EC) {
591   if (EC.Scalable)
592     return ScalableVectorType::get(ElementType, EC.Min);
593   else
594     return FixedVectorType::get(ElementType, EC.Min);
595 }
596 
597 bool VectorType::isValidElementType(Type *ElemTy) {
598   return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
599          ElemTy->isPointerTy();
600 }
601 
602 //===----------------------------------------------------------------------===//
603 //                        FixedVectorType Implementation
604 //===----------------------------------------------------------------------===//
605 
606 FixedVectorType *FixedVectorType::get(Type *ElementType, unsigned NumElts) {
607   assert(NumElts > 0 && "#Elements of a VectorType must be greater than 0");
608   assert(isValidElementType(ElementType) && "Element type of a VectorType must "
609                                             "be an integer, floating point, or "
610                                             "pointer type.");
611 
612   ElementCount EC(NumElts, false);
613 
614   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
615   VectorType *&Entry = ElementType->getContext()
616                            .pImpl->VectorTypes[std::make_pair(ElementType, EC)];
617 
618   if (!Entry)
619     Entry = new (pImpl->Alloc) FixedVectorType(ElementType, NumElts);
620   return cast<FixedVectorType>(Entry);
621 }
622 
623 //===----------------------------------------------------------------------===//
624 //                       ScalableVectorType Implementation
625 //===----------------------------------------------------------------------===//
626 
627 ScalableVectorType *ScalableVectorType::get(Type *ElementType,
628                                             unsigned MinNumElts) {
629   assert(MinNumElts > 0 && "#Elements of a VectorType must be greater than 0");
630   assert(isValidElementType(ElementType) && "Element type of a VectorType must "
631                                             "be an integer, floating point, or "
632                                             "pointer type.");
633 
634   ElementCount EC(MinNumElts, true);
635 
636   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
637   VectorType *&Entry = ElementType->getContext()
638                            .pImpl->VectorTypes[std::make_pair(ElementType, EC)];
639 
640   if (!Entry)
641     Entry = new (pImpl->Alloc) ScalableVectorType(ElementType, MinNumElts);
642   return cast<ScalableVectorType>(Entry);
643 }
644 
645 //===----------------------------------------------------------------------===//
646 //                         PointerType Implementation
647 //===----------------------------------------------------------------------===//
648 
649 PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
650   assert(EltTy && "Can't get a pointer to <null> type!");
651   assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
652 
653   LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
654 
655   // Since AddressSpace #0 is the common case, we special case it.
656   PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
657      : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
658 
659   if (!Entry)
660     Entry = new (CImpl->Alloc) PointerType(EltTy, AddressSpace);
661   return Entry;
662 }
663 
664 PointerType::PointerType(Type *E, unsigned AddrSpace)
665   : Type(E->getContext(), PointerTyID), PointeeTy(E) {
666   ContainedTys = &PointeeTy;
667   NumContainedTys = 1;
668   setSubclassData(AddrSpace);
669 }
670 
671 PointerType *Type::getPointerTo(unsigned addrs) const {
672   return PointerType::get(const_cast<Type*>(this), addrs);
673 }
674 
675 bool PointerType::isValidElementType(Type *ElemTy) {
676   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
677          !ElemTy->isMetadataTy() && !ElemTy->isTokenTy();
678 }
679 
680 bool PointerType::isLoadableOrStorableType(Type *ElemTy) {
681   return isValidElementType(ElemTy) && !ElemTy->isFunctionTy();
682 }
683