1 //===- Type.cpp - Implement the Type class --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Type class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Type.h" 14 #include "LLVMContextImpl.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/StringMap.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Value.h" 26 #include "llvm/Support/Casting.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/TypeSize.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include <cassert> 31 #include <utility> 32 33 using namespace llvm; 34 35 //===----------------------------------------------------------------------===// 36 // Type Class Implementation 37 //===----------------------------------------------------------------------===// 38 39 Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) { 40 switch (IDNumber) { 41 case VoidTyID : return getVoidTy(C); 42 case HalfTyID : return getHalfTy(C); 43 case BFloatTyID : return getBFloatTy(C); 44 case FloatTyID : return getFloatTy(C); 45 case DoubleTyID : return getDoubleTy(C); 46 case X86_FP80TyID : return getX86_FP80Ty(C); 47 case FP128TyID : return getFP128Ty(C); 48 case PPC_FP128TyID : return getPPC_FP128Ty(C); 49 case LabelTyID : return getLabelTy(C); 50 case MetadataTyID : return getMetadataTy(C); 51 case X86_MMXTyID : return getX86_MMXTy(C); 52 case X86_AMXTyID : return getX86_AMXTy(C); 53 case TokenTyID : return getTokenTy(C); 54 default: 55 return nullptr; 56 } 57 } 58 59 bool Type::isIntegerTy(unsigned Bitwidth) const { 60 return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth; 61 } 62 63 bool Type::isOpaquePointerTy() const { 64 if (auto *PTy = dyn_cast<PointerType>(this)) 65 return PTy->isOpaque(); 66 return false; 67 } 68 69 const fltSemantics &Type::getFltSemantics() const { 70 switch (getTypeID()) { 71 case HalfTyID: return APFloat::IEEEhalf(); 72 case BFloatTyID: return APFloat::BFloat(); 73 case FloatTyID: return APFloat::IEEEsingle(); 74 case DoubleTyID: return APFloat::IEEEdouble(); 75 case X86_FP80TyID: return APFloat::x87DoubleExtended(); 76 case FP128TyID: return APFloat::IEEEquad(); 77 case PPC_FP128TyID: return APFloat::PPCDoubleDouble(); 78 default: llvm_unreachable("Invalid floating type"); 79 } 80 } 81 82 bool Type::isIEEE() const { 83 return APFloat::getZero(getFltSemantics()).isIEEE(); 84 } 85 86 Type *Type::getFloatingPointTy(LLVMContext &C, const fltSemantics &S) { 87 Type *Ty; 88 if (&S == &APFloat::IEEEhalf()) 89 Ty = Type::getHalfTy(C); 90 else if (&S == &APFloat::BFloat()) 91 Ty = Type::getBFloatTy(C); 92 else if (&S == &APFloat::IEEEsingle()) 93 Ty = Type::getFloatTy(C); 94 else if (&S == &APFloat::IEEEdouble()) 95 Ty = Type::getDoubleTy(C); 96 else if (&S == &APFloat::x87DoubleExtended()) 97 Ty = Type::getX86_FP80Ty(C); 98 else if (&S == &APFloat::IEEEquad()) 99 Ty = Type::getFP128Ty(C); 100 else { 101 assert(&S == &APFloat::PPCDoubleDouble() && "Unknown FP format"); 102 Ty = Type::getPPC_FP128Ty(C); 103 } 104 return Ty; 105 } 106 107 bool Type::canLosslesslyBitCastTo(Type *Ty) const { 108 // Identity cast means no change so return true 109 if (this == Ty) 110 return true; 111 112 // They are not convertible unless they are at least first class types 113 if (!this->isFirstClassType() || !Ty->isFirstClassType()) 114 return false; 115 116 // Vector -> Vector conversions are always lossless if the two vector types 117 // have the same size, otherwise not. 118 if (isa<VectorType>(this) && isa<VectorType>(Ty)) 119 return getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits(); 120 121 // 64-bit fixed width vector types can be losslessly converted to x86mmx. 122 if (((isa<FixedVectorType>(this)) && Ty->isX86_MMXTy()) && 123 getPrimitiveSizeInBits().getFixedSize() == 64) 124 return true; 125 if ((isX86_MMXTy() && isa<FixedVectorType>(Ty)) && 126 Ty->getPrimitiveSizeInBits().getFixedSize() == 64) 127 return true; 128 129 // 8192-bit fixed width vector types can be losslessly converted to x86amx. 130 if (((isa<FixedVectorType>(this)) && Ty->isX86_AMXTy()) && 131 getPrimitiveSizeInBits().getFixedSize() == 8192) 132 return true; 133 if ((isX86_AMXTy() && isa<FixedVectorType>(Ty)) && 134 Ty->getPrimitiveSizeInBits().getFixedSize() == 8192) 135 return true; 136 137 // At this point we have only various mismatches of the first class types 138 // remaining and ptr->ptr. Just select the lossless conversions. Everything 139 // else is not lossless. Conservatively assume we can't losslessly convert 140 // between pointers with different address spaces. 141 if (auto *PTy = dyn_cast<PointerType>(this)) { 142 if (auto *OtherPTy = dyn_cast<PointerType>(Ty)) 143 return PTy->getAddressSpace() == OtherPTy->getAddressSpace(); 144 return false; 145 } 146 return false; // Other types have no identity values 147 } 148 149 bool Type::isEmptyTy() const { 150 if (auto *ATy = dyn_cast<ArrayType>(this)) { 151 unsigned NumElements = ATy->getNumElements(); 152 return NumElements == 0 || ATy->getElementType()->isEmptyTy(); 153 } 154 155 if (auto *STy = dyn_cast<StructType>(this)) { 156 unsigned NumElements = STy->getNumElements(); 157 for (unsigned i = 0; i < NumElements; ++i) 158 if (!STy->getElementType(i)->isEmptyTy()) 159 return false; 160 return true; 161 } 162 163 return false; 164 } 165 166 TypeSize Type::getPrimitiveSizeInBits() const { 167 switch (getTypeID()) { 168 case Type::HalfTyID: return TypeSize::Fixed(16); 169 case Type::BFloatTyID: return TypeSize::Fixed(16); 170 case Type::FloatTyID: return TypeSize::Fixed(32); 171 case Type::DoubleTyID: return TypeSize::Fixed(64); 172 case Type::X86_FP80TyID: return TypeSize::Fixed(80); 173 case Type::FP128TyID: return TypeSize::Fixed(128); 174 case Type::PPC_FP128TyID: return TypeSize::Fixed(128); 175 case Type::X86_MMXTyID: return TypeSize::Fixed(64); 176 case Type::X86_AMXTyID: return TypeSize::Fixed(8192); 177 case Type::IntegerTyID: 178 return TypeSize::Fixed(cast<IntegerType>(this)->getBitWidth()); 179 case Type::FixedVectorTyID: 180 case Type::ScalableVectorTyID: { 181 const VectorType *VTy = cast<VectorType>(this); 182 ElementCount EC = VTy->getElementCount(); 183 TypeSize ETS = VTy->getElementType()->getPrimitiveSizeInBits(); 184 assert(!ETS.isScalable() && "Vector type should have fixed-width elements"); 185 return {ETS.getFixedSize() * EC.getKnownMinValue(), EC.isScalable()}; 186 } 187 default: return TypeSize::Fixed(0); 188 } 189 } 190 191 unsigned Type::getScalarSizeInBits() const { 192 // It is safe to assume that the scalar types have a fixed size. 193 return getScalarType()->getPrimitiveSizeInBits().getFixedSize(); 194 } 195 196 int Type::getFPMantissaWidth() const { 197 if (auto *VTy = dyn_cast<VectorType>(this)) 198 return VTy->getElementType()->getFPMantissaWidth(); 199 assert(isFloatingPointTy() && "Not a floating point type!"); 200 if (getTypeID() == HalfTyID) return 11; 201 if (getTypeID() == BFloatTyID) return 8; 202 if (getTypeID() == FloatTyID) return 24; 203 if (getTypeID() == DoubleTyID) return 53; 204 if (getTypeID() == X86_FP80TyID) return 64; 205 if (getTypeID() == FP128TyID) return 113; 206 assert(getTypeID() == PPC_FP128TyID && "unknown fp type"); 207 return -1; 208 } 209 210 bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const { 211 if (auto *ATy = dyn_cast<ArrayType>(this)) 212 return ATy->getElementType()->isSized(Visited); 213 214 if (auto *VTy = dyn_cast<VectorType>(this)) 215 return VTy->getElementType()->isSized(Visited); 216 217 return cast<StructType>(this)->isSized(Visited); 218 } 219 220 //===----------------------------------------------------------------------===// 221 // Primitive 'Type' data 222 //===----------------------------------------------------------------------===// 223 224 Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; } 225 Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; } 226 Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; } 227 Type *Type::getBFloatTy(LLVMContext &C) { return &C.pImpl->BFloatTy; } 228 Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; } 229 Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; } 230 Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; } 231 Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; } 232 Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; } 233 Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; } 234 Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; } 235 Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; } 236 Type *Type::getX86_AMXTy(LLVMContext &C) { return &C.pImpl->X86_AMXTy; } 237 238 IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; } 239 IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; } 240 IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; } 241 IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; } 242 IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; } 243 IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; } 244 245 IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) { 246 return IntegerType::get(C, N); 247 } 248 249 PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) { 250 return getHalfTy(C)->getPointerTo(AS); 251 } 252 253 PointerType *Type::getBFloatPtrTy(LLVMContext &C, unsigned AS) { 254 return getBFloatTy(C)->getPointerTo(AS); 255 } 256 257 PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) { 258 return getFloatTy(C)->getPointerTo(AS); 259 } 260 261 PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) { 262 return getDoubleTy(C)->getPointerTo(AS); 263 } 264 265 PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) { 266 return getX86_FP80Ty(C)->getPointerTo(AS); 267 } 268 269 PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) { 270 return getFP128Ty(C)->getPointerTo(AS); 271 } 272 273 PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) { 274 return getPPC_FP128Ty(C)->getPointerTo(AS); 275 } 276 277 PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) { 278 return getX86_MMXTy(C)->getPointerTo(AS); 279 } 280 281 PointerType *Type::getX86_AMXPtrTy(LLVMContext &C, unsigned AS) { 282 return getX86_AMXTy(C)->getPointerTo(AS); 283 } 284 285 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) { 286 return getIntNTy(C, N)->getPointerTo(AS); 287 } 288 289 PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) { 290 return getInt1Ty(C)->getPointerTo(AS); 291 } 292 293 PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) { 294 return getInt8Ty(C)->getPointerTo(AS); 295 } 296 297 PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) { 298 return getInt16Ty(C)->getPointerTo(AS); 299 } 300 301 PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) { 302 return getInt32Ty(C)->getPointerTo(AS); 303 } 304 305 PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) { 306 return getInt64Ty(C)->getPointerTo(AS); 307 } 308 309 //===----------------------------------------------------------------------===// 310 // IntegerType Implementation 311 //===----------------------------------------------------------------------===// 312 313 IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) { 314 assert(NumBits >= MIN_INT_BITS && "bitwidth too small"); 315 assert(NumBits <= MAX_INT_BITS && "bitwidth too large"); 316 317 // Check for the built-in integer types 318 switch (NumBits) { 319 case 1: return cast<IntegerType>(Type::getInt1Ty(C)); 320 case 8: return cast<IntegerType>(Type::getInt8Ty(C)); 321 case 16: return cast<IntegerType>(Type::getInt16Ty(C)); 322 case 32: return cast<IntegerType>(Type::getInt32Ty(C)); 323 case 64: return cast<IntegerType>(Type::getInt64Ty(C)); 324 case 128: return cast<IntegerType>(Type::getInt128Ty(C)); 325 default: 326 break; 327 } 328 329 IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits]; 330 331 if (!Entry) 332 Entry = new (C.pImpl->Alloc) IntegerType(C, NumBits); 333 334 return Entry; 335 } 336 337 APInt IntegerType::getMask() const { return APInt::getAllOnes(getBitWidth()); } 338 339 //===----------------------------------------------------------------------===// 340 // FunctionType Implementation 341 //===----------------------------------------------------------------------===// 342 343 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params, 344 bool IsVarArgs) 345 : Type(Result->getContext(), FunctionTyID) { 346 Type **SubTys = reinterpret_cast<Type**>(this+1); 347 assert(isValidReturnType(Result) && "invalid return type for function"); 348 setSubclassData(IsVarArgs); 349 350 SubTys[0] = Result; 351 352 for (unsigned i = 0, e = Params.size(); i != e; ++i) { 353 assert(isValidArgumentType(Params[i]) && 354 "Not a valid type for function argument!"); 355 SubTys[i+1] = Params[i]; 356 } 357 358 ContainedTys = SubTys; 359 NumContainedTys = Params.size() + 1; // + 1 for result type 360 } 361 362 // This is the factory function for the FunctionType class. 363 FunctionType *FunctionType::get(Type *ReturnType, 364 ArrayRef<Type*> Params, bool isVarArg) { 365 LLVMContextImpl *pImpl = ReturnType->getContext().pImpl; 366 const FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg); 367 FunctionType *FT; 368 // Since we only want to allocate a fresh function type in case none is found 369 // and we don't want to perform two lookups (one for checking if existent and 370 // one for inserting the newly allocated one), here we instead lookup based on 371 // Key and update the reference to the function type in-place to a newly 372 // allocated one if not found. 373 auto Insertion = pImpl->FunctionTypes.insert_as(nullptr, Key); 374 if (Insertion.second) { 375 // The function type was not found. Allocate one and update FunctionTypes 376 // in-place. 377 FT = (FunctionType *)pImpl->Alloc.Allocate( 378 sizeof(FunctionType) + sizeof(Type *) * (Params.size() + 1), 379 alignof(FunctionType)); 380 new (FT) FunctionType(ReturnType, Params, isVarArg); 381 *Insertion.first = FT; 382 } else { 383 // The function type was found. Just return it. 384 FT = *Insertion.first; 385 } 386 return FT; 387 } 388 389 FunctionType *FunctionType::get(Type *Result, bool isVarArg) { 390 return get(Result, None, isVarArg); 391 } 392 393 bool FunctionType::isValidReturnType(Type *RetTy) { 394 return !RetTy->isFunctionTy() && !RetTy->isLabelTy() && 395 !RetTy->isMetadataTy(); 396 } 397 398 bool FunctionType::isValidArgumentType(Type *ArgTy) { 399 return ArgTy->isFirstClassType(); 400 } 401 402 //===----------------------------------------------------------------------===// 403 // StructType Implementation 404 //===----------------------------------------------------------------------===// 405 406 // Primitive Constructors. 407 408 StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes, 409 bool isPacked) { 410 LLVMContextImpl *pImpl = Context.pImpl; 411 const AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked); 412 413 StructType *ST; 414 // Since we only want to allocate a fresh struct type in case none is found 415 // and we don't want to perform two lookups (one for checking if existent and 416 // one for inserting the newly allocated one), here we instead lookup based on 417 // Key and update the reference to the struct type in-place to a newly 418 // allocated one if not found. 419 auto Insertion = pImpl->AnonStructTypes.insert_as(nullptr, Key); 420 if (Insertion.second) { 421 // The struct type was not found. Allocate one and update AnonStructTypes 422 // in-place. 423 ST = new (Context.pImpl->Alloc) StructType(Context); 424 ST->setSubclassData(SCDB_IsLiteral); // Literal struct. 425 ST->setBody(ETypes, isPacked); 426 *Insertion.first = ST; 427 } else { 428 // The struct type was found. Just return it. 429 ST = *Insertion.first; 430 } 431 432 return ST; 433 } 434 435 bool StructType::containsScalableVectorType() const { 436 for (Type *Ty : elements()) { 437 if (isa<ScalableVectorType>(Ty)) 438 return true; 439 if (auto *STy = dyn_cast<StructType>(Ty)) 440 if (STy->containsScalableVectorType()) 441 return true; 442 } 443 444 return false; 445 } 446 447 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) { 448 assert(isOpaque() && "Struct body already set!"); 449 450 setSubclassData(getSubclassData() | SCDB_HasBody); 451 if (isPacked) 452 setSubclassData(getSubclassData() | SCDB_Packed); 453 454 NumContainedTys = Elements.size(); 455 456 if (Elements.empty()) { 457 ContainedTys = nullptr; 458 return; 459 } 460 461 ContainedTys = Elements.copy(getContext().pImpl->Alloc).data(); 462 } 463 464 void StructType::setName(StringRef Name) { 465 if (Name == getName()) return; 466 467 StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes; 468 469 using EntryTy = StringMap<StructType *>::MapEntryTy; 470 471 // If this struct already had a name, remove its symbol table entry. Don't 472 // delete the data yet because it may be part of the new name. 473 if (SymbolTableEntry) 474 SymbolTable.remove((EntryTy *)SymbolTableEntry); 475 476 // If this is just removing the name, we're done. 477 if (Name.empty()) { 478 if (SymbolTableEntry) { 479 // Delete the old string data. 480 ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator()); 481 SymbolTableEntry = nullptr; 482 } 483 return; 484 } 485 486 // Look up the entry for the name. 487 auto IterBool = 488 getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this)); 489 490 // While we have a name collision, try a random rename. 491 if (!IterBool.second) { 492 SmallString<64> TempStr(Name); 493 TempStr.push_back('.'); 494 raw_svector_ostream TmpStream(TempStr); 495 unsigned NameSize = Name.size(); 496 497 do { 498 TempStr.resize(NameSize + 1); 499 TmpStream << getContext().pImpl->NamedStructTypesUniqueID++; 500 501 IterBool = getContext().pImpl->NamedStructTypes.insert( 502 std::make_pair(TmpStream.str(), this)); 503 } while (!IterBool.second); 504 } 505 506 // Delete the old string data. 507 if (SymbolTableEntry) 508 ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator()); 509 SymbolTableEntry = &*IterBool.first; 510 } 511 512 //===----------------------------------------------------------------------===// 513 // StructType Helper functions. 514 515 StructType *StructType::create(LLVMContext &Context, StringRef Name) { 516 StructType *ST = new (Context.pImpl->Alloc) StructType(Context); 517 if (!Name.empty()) 518 ST->setName(Name); 519 return ST; 520 } 521 522 StructType *StructType::get(LLVMContext &Context, bool isPacked) { 523 return get(Context, None, isPacked); 524 } 525 526 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements, 527 StringRef Name, bool isPacked) { 528 StructType *ST = create(Context, Name); 529 ST->setBody(Elements, isPacked); 530 return ST; 531 } 532 533 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) { 534 return create(Context, Elements, StringRef()); 535 } 536 537 StructType *StructType::create(LLVMContext &Context) { 538 return create(Context, StringRef()); 539 } 540 541 StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name, 542 bool isPacked) { 543 assert(!Elements.empty() && 544 "This method may not be invoked with an empty list"); 545 return create(Elements[0]->getContext(), Elements, Name, isPacked); 546 } 547 548 StructType *StructType::create(ArrayRef<Type*> Elements) { 549 assert(!Elements.empty() && 550 "This method may not be invoked with an empty list"); 551 return create(Elements[0]->getContext(), Elements, StringRef()); 552 } 553 554 bool StructType::isSized(SmallPtrSetImpl<Type*> *Visited) const { 555 if ((getSubclassData() & SCDB_IsSized) != 0) 556 return true; 557 if (isOpaque()) 558 return false; 559 560 if (Visited && !Visited->insert(const_cast<StructType*>(this)).second) 561 return false; 562 563 // Okay, our struct is sized if all of the elements are, but if one of the 564 // elements is opaque, the struct isn't sized *yet*, but may become sized in 565 // the future, so just bail out without caching. 566 for (Type *Ty : elements()) { 567 // If the struct contains a scalable vector type, don't consider it sized. 568 // This prevents it from being used in loads/stores/allocas/GEPs. 569 if (isa<ScalableVectorType>(Ty)) 570 return false; 571 if (!Ty->isSized(Visited)) 572 return false; 573 } 574 575 // Here we cheat a bit and cast away const-ness. The goal is to memoize when 576 // we find a sized type, as types can only move from opaque to sized, not the 577 // other way. 578 const_cast<StructType*>(this)->setSubclassData( 579 getSubclassData() | SCDB_IsSized); 580 return true; 581 } 582 583 StringRef StructType::getName() const { 584 assert(!isLiteral() && "Literal structs never have names"); 585 if (!SymbolTableEntry) return StringRef(); 586 587 return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey(); 588 } 589 590 bool StructType::isValidElementType(Type *ElemTy) { 591 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && 592 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() && 593 !ElemTy->isTokenTy(); 594 } 595 596 bool StructType::isLayoutIdentical(StructType *Other) const { 597 if (this == Other) return true; 598 599 if (isPacked() != Other->isPacked()) 600 return false; 601 602 return elements() == Other->elements(); 603 } 604 605 Type *StructType::getTypeAtIndex(const Value *V) const { 606 unsigned Idx = (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue(); 607 assert(indexValid(Idx) && "Invalid structure index!"); 608 return getElementType(Idx); 609 } 610 611 bool StructType::indexValid(const Value *V) const { 612 // Structure indexes require (vectors of) 32-bit integer constants. In the 613 // vector case all of the indices must be equal. 614 if (!V->getType()->isIntOrIntVectorTy(32)) 615 return false; 616 if (isa<ScalableVectorType>(V->getType())) 617 return false; 618 const Constant *C = dyn_cast<Constant>(V); 619 if (C && V->getType()->isVectorTy()) 620 C = C->getSplatValue(); 621 const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C); 622 return CU && CU->getZExtValue() < getNumElements(); 623 } 624 625 StructType *StructType::getTypeByName(LLVMContext &C, StringRef Name) { 626 return C.pImpl->NamedStructTypes.lookup(Name); 627 } 628 629 //===----------------------------------------------------------------------===// 630 // ArrayType Implementation 631 //===----------------------------------------------------------------------===// 632 633 ArrayType::ArrayType(Type *ElType, uint64_t NumEl) 634 : Type(ElType->getContext(), ArrayTyID), ContainedType(ElType), 635 NumElements(NumEl) { 636 ContainedTys = &ContainedType; 637 NumContainedTys = 1; 638 } 639 640 ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) { 641 assert(isValidElementType(ElementType) && "Invalid type for array element!"); 642 643 LLVMContextImpl *pImpl = ElementType->getContext().pImpl; 644 ArrayType *&Entry = 645 pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)]; 646 647 if (!Entry) 648 Entry = new (pImpl->Alloc) ArrayType(ElementType, NumElements); 649 return Entry; 650 } 651 652 bool ArrayType::isValidElementType(Type *ElemTy) { 653 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && 654 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() && 655 !ElemTy->isTokenTy() && !ElemTy->isX86_AMXTy() && 656 !isa<ScalableVectorType>(ElemTy); 657 } 658 659 //===----------------------------------------------------------------------===// 660 // VectorType Implementation 661 //===----------------------------------------------------------------------===// 662 663 VectorType::VectorType(Type *ElType, unsigned EQ, Type::TypeID TID) 664 : Type(ElType->getContext(), TID), ContainedType(ElType), 665 ElementQuantity(EQ) { 666 ContainedTys = &ContainedType; 667 NumContainedTys = 1; 668 } 669 670 VectorType *VectorType::get(Type *ElementType, ElementCount EC) { 671 if (EC.isScalable()) 672 return ScalableVectorType::get(ElementType, EC.getKnownMinValue()); 673 else 674 return FixedVectorType::get(ElementType, EC.getKnownMinValue()); 675 } 676 677 bool VectorType::isValidElementType(Type *ElemTy) { 678 return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() || 679 ElemTy->isPointerTy(); 680 } 681 682 //===----------------------------------------------------------------------===// 683 // FixedVectorType Implementation 684 //===----------------------------------------------------------------------===// 685 686 FixedVectorType *FixedVectorType::get(Type *ElementType, unsigned NumElts) { 687 assert(NumElts > 0 && "#Elements of a VectorType must be greater than 0"); 688 assert(isValidElementType(ElementType) && "Element type of a VectorType must " 689 "be an integer, floating point, or " 690 "pointer type."); 691 692 auto EC = ElementCount::getFixed(NumElts); 693 694 LLVMContextImpl *pImpl = ElementType->getContext().pImpl; 695 VectorType *&Entry = ElementType->getContext() 696 .pImpl->VectorTypes[std::make_pair(ElementType, EC)]; 697 698 if (!Entry) 699 Entry = new (pImpl->Alloc) FixedVectorType(ElementType, NumElts); 700 return cast<FixedVectorType>(Entry); 701 } 702 703 //===----------------------------------------------------------------------===// 704 // ScalableVectorType Implementation 705 //===----------------------------------------------------------------------===// 706 707 ScalableVectorType *ScalableVectorType::get(Type *ElementType, 708 unsigned MinNumElts) { 709 assert(MinNumElts > 0 && "#Elements of a VectorType must be greater than 0"); 710 assert(isValidElementType(ElementType) && "Element type of a VectorType must " 711 "be an integer, floating point, or " 712 "pointer type."); 713 714 auto EC = ElementCount::getScalable(MinNumElts); 715 716 LLVMContextImpl *pImpl = ElementType->getContext().pImpl; 717 VectorType *&Entry = ElementType->getContext() 718 .pImpl->VectorTypes[std::make_pair(ElementType, EC)]; 719 720 if (!Entry) 721 Entry = new (pImpl->Alloc) ScalableVectorType(ElementType, MinNumElts); 722 return cast<ScalableVectorType>(Entry); 723 } 724 725 //===----------------------------------------------------------------------===// 726 // PointerType Implementation 727 //===----------------------------------------------------------------------===// 728 729 PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) { 730 assert(EltTy && "Can't get a pointer to <null> type!"); 731 assert(isValidElementType(EltTy) && "Invalid type for pointer element!"); 732 733 LLVMContextImpl *CImpl = EltTy->getContext().pImpl; 734 735 // Automatically convert typed pointers to opaque pointers. 736 if (CImpl->getOpaquePointers()) 737 return get(EltTy->getContext(), AddressSpace); 738 739 // Since AddressSpace #0 is the common case, we special case it. 740 PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy] 741 : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)]; 742 743 if (!Entry) 744 Entry = new (CImpl->Alloc) PointerType(EltTy, AddressSpace); 745 return Entry; 746 } 747 748 PointerType *PointerType::get(LLVMContext &C, unsigned AddressSpace) { 749 LLVMContextImpl *CImpl = C.pImpl; 750 assert(CImpl->getOpaquePointers() && 751 "Can only create opaque pointers in opaque pointer mode"); 752 753 // Since AddressSpace #0 is the common case, we special case it. 754 PointerType *&Entry = 755 AddressSpace == 0 756 ? CImpl->PointerTypes[nullptr] 757 : CImpl->ASPointerTypes[std::make_pair(nullptr, AddressSpace)]; 758 759 if (!Entry) 760 Entry = new (CImpl->Alloc) PointerType(C, AddressSpace); 761 return Entry; 762 } 763 764 PointerType::PointerType(Type *E, unsigned AddrSpace) 765 : Type(E->getContext(), PointerTyID), PointeeTy(E) { 766 ContainedTys = &PointeeTy; 767 NumContainedTys = 1; 768 setSubclassData(AddrSpace); 769 } 770 771 PointerType::PointerType(LLVMContext &C, unsigned AddrSpace) 772 : Type(C, PointerTyID), PointeeTy(nullptr) { 773 setSubclassData(AddrSpace); 774 } 775 776 PointerType *Type::getPointerTo(unsigned AddrSpace) const { 777 return PointerType::get(const_cast<Type*>(this), AddrSpace); 778 } 779 780 bool PointerType::isValidElementType(Type *ElemTy) { 781 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && 782 !ElemTy->isMetadataTy() && !ElemTy->isTokenTy() && 783 !ElemTy->isX86_AMXTy(); 784 } 785 786 bool PointerType::isLoadableOrStorableType(Type *ElemTy) { 787 return isValidElementType(ElemTy) && !ElemTy->isFunctionTy(); 788 } 789