1 //===- Type.cpp - Implement the Type class --------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Type class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Type.h" 15 #include "LLVMContextImpl.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/IR/Constant.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/IR/Value.h" 27 #include "llvm/Support/Casting.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include <cassert> 31 #include <utility> 32 33 using namespace llvm; 34 35 //===----------------------------------------------------------------------===// 36 // Type Class Implementation 37 //===----------------------------------------------------------------------===// 38 39 Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) { 40 switch (IDNumber) { 41 case VoidTyID : return getVoidTy(C); 42 case HalfTyID : return getHalfTy(C); 43 case FloatTyID : return getFloatTy(C); 44 case DoubleTyID : return getDoubleTy(C); 45 case X86_FP80TyID : return getX86_FP80Ty(C); 46 case FP128TyID : return getFP128Ty(C); 47 case PPC_FP128TyID : return getPPC_FP128Ty(C); 48 case LabelTyID : return getLabelTy(C); 49 case MetadataTyID : return getMetadataTy(C); 50 case X86_MMXTyID : return getX86_MMXTy(C); 51 case TokenTyID : return getTokenTy(C); 52 default: 53 return nullptr; 54 } 55 } 56 57 bool Type::isIntegerTy(unsigned Bitwidth) const { 58 return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth; 59 } 60 61 bool Type::canLosslesslyBitCastTo(Type *Ty) const { 62 // Identity cast means no change so return true 63 if (this == Ty) 64 return true; 65 66 // They are not convertible unless they are at least first class types 67 if (!this->isFirstClassType() || !Ty->isFirstClassType()) 68 return false; 69 70 // Vector -> Vector conversions are always lossless if the two vector types 71 // have the same size, otherwise not. Also, 64-bit vector types can be 72 // converted to x86mmx. 73 if (auto *thisPTy = dyn_cast<VectorType>(this)) { 74 if (auto *thatPTy = dyn_cast<VectorType>(Ty)) 75 return thisPTy->getBitWidth() == thatPTy->getBitWidth(); 76 if (Ty->getTypeID() == Type::X86_MMXTyID && 77 thisPTy->getBitWidth() == 64) 78 return true; 79 } 80 81 if (this->getTypeID() == Type::X86_MMXTyID) 82 if (auto *thatPTy = dyn_cast<VectorType>(Ty)) 83 if (thatPTy->getBitWidth() == 64) 84 return true; 85 86 // At this point we have only various mismatches of the first class types 87 // remaining and ptr->ptr. Just select the lossless conversions. Everything 88 // else is not lossless. Conservatively assume we can't losslessly convert 89 // between pointers with different address spaces. 90 if (auto *PTy = dyn_cast<PointerType>(this)) { 91 if (auto *OtherPTy = dyn_cast<PointerType>(Ty)) 92 return PTy->getAddressSpace() == OtherPTy->getAddressSpace(); 93 return false; 94 } 95 return false; // Other types have no identity values 96 } 97 98 bool Type::isEmptyTy() const { 99 if (auto *ATy = dyn_cast<ArrayType>(this)) { 100 unsigned NumElements = ATy->getNumElements(); 101 return NumElements == 0 || ATy->getElementType()->isEmptyTy(); 102 } 103 104 if (auto *STy = dyn_cast<StructType>(this)) { 105 unsigned NumElements = STy->getNumElements(); 106 for (unsigned i = 0; i < NumElements; ++i) 107 if (!STy->getElementType(i)->isEmptyTy()) 108 return false; 109 return true; 110 } 111 112 return false; 113 } 114 115 unsigned Type::getPrimitiveSizeInBits() const { 116 switch (getTypeID()) { 117 case Type::HalfTyID: return 16; 118 case Type::FloatTyID: return 32; 119 case Type::DoubleTyID: return 64; 120 case Type::X86_FP80TyID: return 80; 121 case Type::FP128TyID: return 128; 122 case Type::PPC_FP128TyID: return 128; 123 case Type::X86_MMXTyID: return 64; 124 case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth(); 125 case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth(); 126 default: return 0; 127 } 128 } 129 130 unsigned Type::getScalarSizeInBits() const { 131 return getScalarType()->getPrimitiveSizeInBits(); 132 } 133 134 int Type::getFPMantissaWidth() const { 135 if (auto *VTy = dyn_cast<VectorType>(this)) 136 return VTy->getElementType()->getFPMantissaWidth(); 137 assert(isFloatingPointTy() && "Not a floating point type!"); 138 if (getTypeID() == HalfTyID) return 11; 139 if (getTypeID() == FloatTyID) return 24; 140 if (getTypeID() == DoubleTyID) return 53; 141 if (getTypeID() == X86_FP80TyID) return 64; 142 if (getTypeID() == FP128TyID) return 113; 143 assert(getTypeID() == PPC_FP128TyID && "unknown fp type"); 144 return -1; 145 } 146 147 bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const { 148 if (auto *ATy = dyn_cast<ArrayType>(this)) 149 return ATy->getElementType()->isSized(Visited); 150 151 if (auto *VTy = dyn_cast<VectorType>(this)) 152 return VTy->getElementType()->isSized(Visited); 153 154 return cast<StructType>(this)->isSized(Visited); 155 } 156 157 //===----------------------------------------------------------------------===// 158 // Primitive 'Type' data 159 //===----------------------------------------------------------------------===// 160 161 Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; } 162 Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; } 163 Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; } 164 Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; } 165 Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; } 166 Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; } 167 Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; } 168 Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; } 169 Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; } 170 Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; } 171 Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; } 172 173 IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; } 174 IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; } 175 IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; } 176 IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; } 177 IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; } 178 IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; } 179 180 IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) { 181 return IntegerType::get(C, N); 182 } 183 184 PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) { 185 return getHalfTy(C)->getPointerTo(AS); 186 } 187 188 PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) { 189 return getFloatTy(C)->getPointerTo(AS); 190 } 191 192 PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) { 193 return getDoubleTy(C)->getPointerTo(AS); 194 } 195 196 PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) { 197 return getX86_FP80Ty(C)->getPointerTo(AS); 198 } 199 200 PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) { 201 return getFP128Ty(C)->getPointerTo(AS); 202 } 203 204 PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) { 205 return getPPC_FP128Ty(C)->getPointerTo(AS); 206 } 207 208 PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) { 209 return getX86_MMXTy(C)->getPointerTo(AS); 210 } 211 212 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) { 213 return getIntNTy(C, N)->getPointerTo(AS); 214 } 215 216 PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) { 217 return getInt1Ty(C)->getPointerTo(AS); 218 } 219 220 PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) { 221 return getInt8Ty(C)->getPointerTo(AS); 222 } 223 224 PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) { 225 return getInt16Ty(C)->getPointerTo(AS); 226 } 227 228 PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) { 229 return getInt32Ty(C)->getPointerTo(AS); 230 } 231 232 PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) { 233 return getInt64Ty(C)->getPointerTo(AS); 234 } 235 236 //===----------------------------------------------------------------------===// 237 // IntegerType Implementation 238 //===----------------------------------------------------------------------===// 239 240 IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) { 241 assert(NumBits >= MIN_INT_BITS && "bitwidth too small"); 242 assert(NumBits <= MAX_INT_BITS && "bitwidth too large"); 243 244 // Check for the built-in integer types 245 switch (NumBits) { 246 case 1: return cast<IntegerType>(Type::getInt1Ty(C)); 247 case 8: return cast<IntegerType>(Type::getInt8Ty(C)); 248 case 16: return cast<IntegerType>(Type::getInt16Ty(C)); 249 case 32: return cast<IntegerType>(Type::getInt32Ty(C)); 250 case 64: return cast<IntegerType>(Type::getInt64Ty(C)); 251 case 128: return cast<IntegerType>(Type::getInt128Ty(C)); 252 default: 253 break; 254 } 255 256 IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits]; 257 258 if (!Entry) 259 Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits); 260 261 return Entry; 262 } 263 264 bool IntegerType::isPowerOf2ByteWidth() const { 265 unsigned BitWidth = getBitWidth(); 266 return (BitWidth > 7) && isPowerOf2_32(BitWidth); 267 } 268 269 APInt IntegerType::getMask() const { 270 return APInt::getAllOnesValue(getBitWidth()); 271 } 272 273 //===----------------------------------------------------------------------===// 274 // FunctionType Implementation 275 //===----------------------------------------------------------------------===// 276 277 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params, 278 bool IsVarArgs) 279 : Type(Result->getContext(), FunctionTyID) { 280 Type **SubTys = reinterpret_cast<Type**>(this+1); 281 assert(isValidReturnType(Result) && "invalid return type for function"); 282 setSubclassData(IsVarArgs); 283 284 SubTys[0] = Result; 285 286 for (unsigned i = 0, e = Params.size(); i != e; ++i) { 287 assert(isValidArgumentType(Params[i]) && 288 "Not a valid type for function argument!"); 289 SubTys[i+1] = Params[i]; 290 } 291 292 ContainedTys = SubTys; 293 NumContainedTys = Params.size() + 1; // + 1 for result type 294 } 295 296 // This is the factory function for the FunctionType class. 297 FunctionType *FunctionType::get(Type *ReturnType, 298 ArrayRef<Type*> Params, bool isVarArg) { 299 LLVMContextImpl *pImpl = ReturnType->getContext().pImpl; 300 const FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg); 301 FunctionType *FT; 302 // Since we only want to allocate a fresh function type in case none is found 303 // and we don't want to perform two lookups (one for checking if existent and 304 // one for inserting the newly allocated one), here we instead lookup based on 305 // Key and update the reference to the function type in-place to a newly 306 // allocated one if not found. 307 auto Insertion = pImpl->FunctionTypes.insert_as(nullptr, Key); 308 if (Insertion.second) { 309 // The function type was not found. Allocate one and update FunctionTypes 310 // in-place. 311 FT = (FunctionType *)pImpl->TypeAllocator.Allocate( 312 sizeof(FunctionType) + sizeof(Type *) * (Params.size() + 1), 313 alignof(FunctionType)); 314 new (FT) FunctionType(ReturnType, Params, isVarArg); 315 *Insertion.first = FT; 316 } else { 317 // The function type was found. Just return it. 318 FT = *Insertion.first; 319 } 320 return FT; 321 } 322 323 FunctionType *FunctionType::get(Type *Result, bool isVarArg) { 324 return get(Result, None, isVarArg); 325 } 326 327 bool FunctionType::isValidReturnType(Type *RetTy) { 328 return !RetTy->isFunctionTy() && !RetTy->isLabelTy() && 329 !RetTy->isMetadataTy(); 330 } 331 332 bool FunctionType::isValidArgumentType(Type *ArgTy) { 333 return ArgTy->isFirstClassType(); 334 } 335 336 //===----------------------------------------------------------------------===// 337 // StructType Implementation 338 //===----------------------------------------------------------------------===// 339 340 // Primitive Constructors. 341 342 StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes, 343 bool isPacked) { 344 LLVMContextImpl *pImpl = Context.pImpl; 345 const AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked); 346 347 StructType *ST; 348 // Since we only want to allocate a fresh struct type in case none is found 349 // and we don't want to perform two lookups (one for checking if existent and 350 // one for inserting the newly allocated one), here we instead lookup based on 351 // Key and update the reference to the struct type in-place to a newly 352 // allocated one if not found. 353 auto Insertion = pImpl->AnonStructTypes.insert_as(nullptr, Key); 354 if (Insertion.second) { 355 // The struct type was not found. Allocate one and update AnonStructTypes 356 // in-place. 357 ST = new (Context.pImpl->TypeAllocator) StructType(Context); 358 ST->setSubclassData(SCDB_IsLiteral); // Literal struct. 359 ST->setBody(ETypes, isPacked); 360 *Insertion.first = ST; 361 } else { 362 // The struct type was found. Just return it. 363 ST = *Insertion.first; 364 } 365 366 return ST; 367 } 368 369 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) { 370 assert(isOpaque() && "Struct body already set!"); 371 372 setSubclassData(getSubclassData() | SCDB_HasBody); 373 if (isPacked) 374 setSubclassData(getSubclassData() | SCDB_Packed); 375 376 NumContainedTys = Elements.size(); 377 378 if (Elements.empty()) { 379 ContainedTys = nullptr; 380 return; 381 } 382 383 ContainedTys = Elements.copy(getContext().pImpl->TypeAllocator).data(); 384 } 385 386 void StructType::setName(StringRef Name) { 387 if (Name == getName()) return; 388 389 StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes; 390 391 using EntryTy = StringMap<StructType *>::MapEntryTy; 392 393 // If this struct already had a name, remove its symbol table entry. Don't 394 // delete the data yet because it may be part of the new name. 395 if (SymbolTableEntry) 396 SymbolTable.remove((EntryTy *)SymbolTableEntry); 397 398 // If this is just removing the name, we're done. 399 if (Name.empty()) { 400 if (SymbolTableEntry) { 401 // Delete the old string data. 402 ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator()); 403 SymbolTableEntry = nullptr; 404 } 405 return; 406 } 407 408 // Look up the entry for the name. 409 auto IterBool = 410 getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this)); 411 412 // While we have a name collision, try a random rename. 413 if (!IterBool.second) { 414 SmallString<64> TempStr(Name); 415 TempStr.push_back('.'); 416 raw_svector_ostream TmpStream(TempStr); 417 unsigned NameSize = Name.size(); 418 419 do { 420 TempStr.resize(NameSize + 1); 421 TmpStream << getContext().pImpl->NamedStructTypesUniqueID++; 422 423 IterBool = getContext().pImpl->NamedStructTypes.insert( 424 std::make_pair(TmpStream.str(), this)); 425 } while (!IterBool.second); 426 } 427 428 // Delete the old string data. 429 if (SymbolTableEntry) 430 ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator()); 431 SymbolTableEntry = &*IterBool.first; 432 } 433 434 //===----------------------------------------------------------------------===// 435 // StructType Helper functions. 436 437 StructType *StructType::create(LLVMContext &Context, StringRef Name) { 438 StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context); 439 if (!Name.empty()) 440 ST->setName(Name); 441 return ST; 442 } 443 444 StructType *StructType::get(LLVMContext &Context, bool isPacked) { 445 return get(Context, None, isPacked); 446 } 447 448 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements, 449 StringRef Name, bool isPacked) { 450 StructType *ST = create(Context, Name); 451 ST->setBody(Elements, isPacked); 452 return ST; 453 } 454 455 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) { 456 return create(Context, Elements, StringRef()); 457 } 458 459 StructType *StructType::create(LLVMContext &Context) { 460 return create(Context, StringRef()); 461 } 462 463 StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name, 464 bool isPacked) { 465 assert(!Elements.empty() && 466 "This method may not be invoked with an empty list"); 467 return create(Elements[0]->getContext(), Elements, Name, isPacked); 468 } 469 470 StructType *StructType::create(ArrayRef<Type*> Elements) { 471 assert(!Elements.empty() && 472 "This method may not be invoked with an empty list"); 473 return create(Elements[0]->getContext(), Elements, StringRef()); 474 } 475 476 bool StructType::isSized(SmallPtrSetImpl<Type*> *Visited) const { 477 if ((getSubclassData() & SCDB_IsSized) != 0) 478 return true; 479 if (isOpaque()) 480 return false; 481 482 if (Visited && !Visited->insert(const_cast<StructType*>(this)).second) 483 return false; 484 485 // Okay, our struct is sized if all of the elements are, but if one of the 486 // elements is opaque, the struct isn't sized *yet*, but may become sized in 487 // the future, so just bail out without caching. 488 for (element_iterator I = element_begin(), E = element_end(); I != E; ++I) 489 if (!(*I)->isSized(Visited)) 490 return false; 491 492 // Here we cheat a bit and cast away const-ness. The goal is to memoize when 493 // we find a sized type, as types can only move from opaque to sized, not the 494 // other way. 495 const_cast<StructType*>(this)->setSubclassData( 496 getSubclassData() | SCDB_IsSized); 497 return true; 498 } 499 500 StringRef StructType::getName() const { 501 assert(!isLiteral() && "Literal structs never have names"); 502 if (!SymbolTableEntry) return StringRef(); 503 504 return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey(); 505 } 506 507 bool StructType::isValidElementType(Type *ElemTy) { 508 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && 509 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() && 510 !ElemTy->isTokenTy(); 511 } 512 513 bool StructType::isLayoutIdentical(StructType *Other) const { 514 if (this == Other) return true; 515 516 if (isPacked() != Other->isPacked()) 517 return false; 518 519 return elements() == Other->elements(); 520 } 521 522 StructType *Module::getTypeByName(StringRef Name) const { 523 return getContext().pImpl->NamedStructTypes.lookup(Name); 524 } 525 526 //===----------------------------------------------------------------------===// 527 // CompositeType Implementation 528 //===----------------------------------------------------------------------===// 529 530 Type *CompositeType::getTypeAtIndex(const Value *V) const { 531 if (auto *STy = dyn_cast<StructType>(this)) { 532 unsigned Idx = 533 (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue(); 534 assert(indexValid(Idx) && "Invalid structure index!"); 535 return STy->getElementType(Idx); 536 } 537 538 return cast<SequentialType>(this)->getElementType(); 539 } 540 541 Type *CompositeType::getTypeAtIndex(unsigned Idx) const{ 542 if (auto *STy = dyn_cast<StructType>(this)) { 543 assert(indexValid(Idx) && "Invalid structure index!"); 544 return STy->getElementType(Idx); 545 } 546 547 return cast<SequentialType>(this)->getElementType(); 548 } 549 550 bool CompositeType::indexValid(const Value *V) const { 551 if (auto *STy = dyn_cast<StructType>(this)) { 552 // Structure indexes require (vectors of) 32-bit integer constants. In the 553 // vector case all of the indices must be equal. 554 if (!V->getType()->isIntOrIntVectorTy(32)) 555 return false; 556 const Constant *C = dyn_cast<Constant>(V); 557 if (C && V->getType()->isVectorTy()) 558 C = C->getSplatValue(); 559 const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C); 560 return CU && CU->getZExtValue() < STy->getNumElements(); 561 } 562 563 // Sequential types can be indexed by any integer. 564 return V->getType()->isIntOrIntVectorTy(); 565 } 566 567 bool CompositeType::indexValid(unsigned Idx) const { 568 if (auto *STy = dyn_cast<StructType>(this)) 569 return Idx < STy->getNumElements(); 570 // Sequential types can be indexed by any integer. 571 return true; 572 } 573 574 //===----------------------------------------------------------------------===// 575 // ArrayType Implementation 576 //===----------------------------------------------------------------------===// 577 578 ArrayType::ArrayType(Type *ElType, uint64_t NumEl) 579 : SequentialType(ArrayTyID, ElType, NumEl) {} 580 581 ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) { 582 assert(isValidElementType(ElementType) && "Invalid type for array element!"); 583 584 LLVMContextImpl *pImpl = ElementType->getContext().pImpl; 585 ArrayType *&Entry = 586 pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)]; 587 588 if (!Entry) 589 Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements); 590 return Entry; 591 } 592 593 bool ArrayType::isValidElementType(Type *ElemTy) { 594 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && 595 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() && 596 !ElemTy->isTokenTy(); 597 } 598 599 //===----------------------------------------------------------------------===// 600 // VectorType Implementation 601 //===----------------------------------------------------------------------===// 602 603 VectorType::VectorType(Type *ElType, unsigned NumEl) 604 : SequentialType(VectorTyID, ElType, NumEl) {} 605 606 VectorType *VectorType::get(Type *ElementType, unsigned NumElements) { 607 assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0"); 608 assert(isValidElementType(ElementType) && "Element type of a VectorType must " 609 "be an integer, floating point, or " 610 "pointer type."); 611 612 LLVMContextImpl *pImpl = ElementType->getContext().pImpl; 613 VectorType *&Entry = ElementType->getContext().pImpl 614 ->VectorTypes[std::make_pair(ElementType, NumElements)]; 615 616 if (!Entry) 617 Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements); 618 return Entry; 619 } 620 621 bool VectorType::isValidElementType(Type *ElemTy) { 622 return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() || 623 ElemTy->isPointerTy(); 624 } 625 626 //===----------------------------------------------------------------------===// 627 // PointerType Implementation 628 //===----------------------------------------------------------------------===// 629 630 PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) { 631 assert(EltTy && "Can't get a pointer to <null> type!"); 632 assert(isValidElementType(EltTy) && "Invalid type for pointer element!"); 633 634 LLVMContextImpl *CImpl = EltTy->getContext().pImpl; 635 636 // Since AddressSpace #0 is the common case, we special case it. 637 PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy] 638 : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)]; 639 640 if (!Entry) 641 Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace); 642 return Entry; 643 } 644 645 PointerType::PointerType(Type *E, unsigned AddrSpace) 646 : Type(E->getContext(), PointerTyID), PointeeTy(E) { 647 ContainedTys = &PointeeTy; 648 NumContainedTys = 1; 649 setSubclassData(AddrSpace); 650 } 651 652 PointerType *Type::getPointerTo(unsigned addrs) const { 653 return PointerType::get(const_cast<Type*>(this), addrs); 654 } 655 656 bool PointerType::isValidElementType(Type *ElemTy) { 657 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && 658 !ElemTy->isMetadataTy() && !ElemTy->isTokenTy(); 659 } 660 661 bool PointerType::isLoadableOrStorableType(Type *ElemTy) { 662 return isValidElementType(ElemTy) && !ElemTy->isFunctionTy(); 663 } 664