1 //===-- Type.cpp - Implement the Type class -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Type class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Type.h" 15 #include "LLVMContextImpl.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/IR/Module.h" 18 #include <algorithm> 19 #include <cstdarg> 20 using namespace llvm; 21 22 //===----------------------------------------------------------------------===// 23 // Type Class Implementation 24 //===----------------------------------------------------------------------===// 25 26 Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) { 27 switch (IDNumber) { 28 case VoidTyID : return getVoidTy(C); 29 case HalfTyID : return getHalfTy(C); 30 case FloatTyID : return getFloatTy(C); 31 case DoubleTyID : return getDoubleTy(C); 32 case X86_FP80TyID : return getX86_FP80Ty(C); 33 case FP128TyID : return getFP128Ty(C); 34 case PPC_FP128TyID : return getPPC_FP128Ty(C); 35 case LabelTyID : return getLabelTy(C); 36 case MetadataTyID : return getMetadataTy(C); 37 case X86_MMXTyID : return getX86_MMXTy(C); 38 default: 39 return nullptr; 40 } 41 } 42 43 /// getScalarType - If this is a vector type, return the element type, 44 /// otherwise return this. 45 Type *Type::getScalarType() { 46 if (VectorType *VTy = dyn_cast<VectorType>(this)) 47 return VTy->getElementType(); 48 return this; 49 } 50 51 const Type *Type::getScalarType() const { 52 if (const VectorType *VTy = dyn_cast<VectorType>(this)) 53 return VTy->getElementType(); 54 return this; 55 } 56 57 /// isIntegerTy - Return true if this is an IntegerType of the specified width. 58 bool Type::isIntegerTy(unsigned Bitwidth) const { 59 return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth; 60 } 61 62 // canLosslesslyBitCastTo - Return true if this type can be converted to 63 // 'Ty' without any reinterpretation of bits. For example, i8* to i32*. 64 // 65 bool Type::canLosslesslyBitCastTo(Type *Ty) const { 66 // Identity cast means no change so return true 67 if (this == Ty) 68 return true; 69 70 // They are not convertible unless they are at least first class types 71 if (!this->isFirstClassType() || !Ty->isFirstClassType()) 72 return false; 73 74 // Vector -> Vector conversions are always lossless if the two vector types 75 // have the same size, otherwise not. Also, 64-bit vector types can be 76 // converted to x86mmx. 77 if (const VectorType *thisPTy = dyn_cast<VectorType>(this)) { 78 if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty)) 79 return thisPTy->getBitWidth() == thatPTy->getBitWidth(); 80 if (Ty->getTypeID() == Type::X86_MMXTyID && 81 thisPTy->getBitWidth() == 64) 82 return true; 83 } 84 85 if (this->getTypeID() == Type::X86_MMXTyID) 86 if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty)) 87 if (thatPTy->getBitWidth() == 64) 88 return true; 89 90 // At this point we have only various mismatches of the first class types 91 // remaining and ptr->ptr. Just select the lossless conversions. Everything 92 // else is not lossless. Conservatively assume we can't losslessly convert 93 // between pointers with different address spaces. 94 if (const PointerType *PTy = dyn_cast<PointerType>(this)) { 95 if (const PointerType *OtherPTy = dyn_cast<PointerType>(Ty)) 96 return PTy->getAddressSpace() == OtherPTy->getAddressSpace(); 97 return false; 98 } 99 return false; // Other types have no identity values 100 } 101 102 bool Type::isEmptyTy() const { 103 const ArrayType *ATy = dyn_cast<ArrayType>(this); 104 if (ATy) { 105 unsigned NumElements = ATy->getNumElements(); 106 return NumElements == 0 || ATy->getElementType()->isEmptyTy(); 107 } 108 109 const StructType *STy = dyn_cast<StructType>(this); 110 if (STy) { 111 unsigned NumElements = STy->getNumElements(); 112 for (unsigned i = 0; i < NumElements; ++i) 113 if (!STy->getElementType(i)->isEmptyTy()) 114 return false; 115 return true; 116 } 117 118 return false; 119 } 120 121 unsigned Type::getPrimitiveSizeInBits() const { 122 switch (getTypeID()) { 123 case Type::HalfTyID: return 16; 124 case Type::FloatTyID: return 32; 125 case Type::DoubleTyID: return 64; 126 case Type::X86_FP80TyID: return 80; 127 case Type::FP128TyID: return 128; 128 case Type::PPC_FP128TyID: return 128; 129 case Type::X86_MMXTyID: return 64; 130 case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth(); 131 case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth(); 132 default: return 0; 133 } 134 } 135 136 /// getScalarSizeInBits - If this is a vector type, return the 137 /// getPrimitiveSizeInBits value for the element type. Otherwise return the 138 /// getPrimitiveSizeInBits value for this type. 139 unsigned Type::getScalarSizeInBits() const { 140 return getScalarType()->getPrimitiveSizeInBits(); 141 } 142 143 /// getFPMantissaWidth - Return the width of the mantissa of this type. This 144 /// is only valid on floating point types. If the FP type does not 145 /// have a stable mantissa (e.g. ppc long double), this method returns -1. 146 int Type::getFPMantissaWidth() const { 147 if (const VectorType *VTy = dyn_cast<VectorType>(this)) 148 return VTy->getElementType()->getFPMantissaWidth(); 149 assert(isFloatingPointTy() && "Not a floating point type!"); 150 if (getTypeID() == HalfTyID) return 11; 151 if (getTypeID() == FloatTyID) return 24; 152 if (getTypeID() == DoubleTyID) return 53; 153 if (getTypeID() == X86_FP80TyID) return 64; 154 if (getTypeID() == FP128TyID) return 113; 155 assert(getTypeID() == PPC_FP128TyID && "unknown fp type"); 156 return -1; 157 } 158 159 /// isSizedDerivedType - Derived types like structures and arrays are sized 160 /// iff all of the members of the type are sized as well. Since asking for 161 /// their size is relatively uncommon, move this operation out of line. 162 bool Type::isSizedDerivedType(SmallPtrSetImpl<const Type*> *Visited) const { 163 if (const ArrayType *ATy = dyn_cast<ArrayType>(this)) 164 return ATy->getElementType()->isSized(Visited); 165 166 if (const VectorType *VTy = dyn_cast<VectorType>(this)) 167 return VTy->getElementType()->isSized(Visited); 168 169 return cast<StructType>(this)->isSized(Visited); 170 } 171 172 //===----------------------------------------------------------------------===// 173 // Subclass Helper Methods 174 //===----------------------------------------------------------------------===// 175 176 unsigned Type::getIntegerBitWidth() const { 177 return cast<IntegerType>(this)->getBitWidth(); 178 } 179 180 bool Type::isFunctionVarArg() const { 181 return cast<FunctionType>(this)->isVarArg(); 182 } 183 184 Type *Type::getFunctionParamType(unsigned i) const { 185 return cast<FunctionType>(this)->getParamType(i); 186 } 187 188 unsigned Type::getFunctionNumParams() const { 189 return cast<FunctionType>(this)->getNumParams(); 190 } 191 192 StringRef Type::getStructName() const { 193 return cast<StructType>(this)->getName(); 194 } 195 196 unsigned Type::getStructNumElements() const { 197 return cast<StructType>(this)->getNumElements(); 198 } 199 200 Type *Type::getStructElementType(unsigned N) const { 201 return cast<StructType>(this)->getElementType(N); 202 } 203 204 Type *Type::getSequentialElementType() const { 205 return cast<SequentialType>(this)->getElementType(); 206 } 207 208 uint64_t Type::getArrayNumElements() const { 209 return cast<ArrayType>(this)->getNumElements(); 210 } 211 212 unsigned Type::getVectorNumElements() const { 213 return cast<VectorType>(this)->getNumElements(); 214 } 215 216 unsigned Type::getPointerAddressSpace() const { 217 return cast<PointerType>(getScalarType())->getAddressSpace(); 218 } 219 220 221 //===----------------------------------------------------------------------===// 222 // Primitive 'Type' data 223 //===----------------------------------------------------------------------===// 224 225 Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; } 226 Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; } 227 Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; } 228 Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; } 229 Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; } 230 Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; } 231 Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; } 232 Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; } 233 Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; } 234 Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; } 235 236 IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; } 237 IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; } 238 IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; } 239 IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; } 240 IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; } 241 IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; } 242 243 IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) { 244 return IntegerType::get(C, N); 245 } 246 247 PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) { 248 return getHalfTy(C)->getPointerTo(AS); 249 } 250 251 PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) { 252 return getFloatTy(C)->getPointerTo(AS); 253 } 254 255 PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) { 256 return getDoubleTy(C)->getPointerTo(AS); 257 } 258 259 PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) { 260 return getX86_FP80Ty(C)->getPointerTo(AS); 261 } 262 263 PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) { 264 return getFP128Ty(C)->getPointerTo(AS); 265 } 266 267 PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) { 268 return getPPC_FP128Ty(C)->getPointerTo(AS); 269 } 270 271 PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) { 272 return getX86_MMXTy(C)->getPointerTo(AS); 273 } 274 275 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) { 276 return getIntNTy(C, N)->getPointerTo(AS); 277 } 278 279 PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) { 280 return getInt1Ty(C)->getPointerTo(AS); 281 } 282 283 PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) { 284 return getInt8Ty(C)->getPointerTo(AS); 285 } 286 287 PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) { 288 return getInt16Ty(C)->getPointerTo(AS); 289 } 290 291 PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) { 292 return getInt32Ty(C)->getPointerTo(AS); 293 } 294 295 PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) { 296 return getInt64Ty(C)->getPointerTo(AS); 297 } 298 299 300 //===----------------------------------------------------------------------===// 301 // IntegerType Implementation 302 //===----------------------------------------------------------------------===// 303 304 IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) { 305 assert(NumBits >= MIN_INT_BITS && "bitwidth too small"); 306 assert(NumBits <= MAX_INT_BITS && "bitwidth too large"); 307 308 // Check for the built-in integer types 309 switch (NumBits) { 310 case 1: return cast<IntegerType>(Type::getInt1Ty(C)); 311 case 8: return cast<IntegerType>(Type::getInt8Ty(C)); 312 case 16: return cast<IntegerType>(Type::getInt16Ty(C)); 313 case 32: return cast<IntegerType>(Type::getInt32Ty(C)); 314 case 64: return cast<IntegerType>(Type::getInt64Ty(C)); 315 case 128: return cast<IntegerType>(Type::getInt128Ty(C)); 316 default: 317 break; 318 } 319 320 IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits]; 321 322 if (!Entry) 323 Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits); 324 325 return Entry; 326 } 327 328 bool IntegerType::isPowerOf2ByteWidth() const { 329 unsigned BitWidth = getBitWidth(); 330 return (BitWidth > 7) && isPowerOf2_32(BitWidth); 331 } 332 333 APInt IntegerType::getMask() const { 334 return APInt::getAllOnesValue(getBitWidth()); 335 } 336 337 //===----------------------------------------------------------------------===// 338 // FunctionType Implementation 339 //===----------------------------------------------------------------------===// 340 341 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params, 342 bool IsVarArgs) 343 : Type(Result->getContext(), FunctionTyID) { 344 Type **SubTys = reinterpret_cast<Type**>(this+1); 345 assert(isValidReturnType(Result) && "invalid return type for function"); 346 setSubclassData(IsVarArgs); 347 348 SubTys[0] = const_cast<Type*>(Result); 349 350 for (unsigned i = 0, e = Params.size(); i != e; ++i) { 351 assert(isValidArgumentType(Params[i]) && 352 "Not a valid type for function argument!"); 353 SubTys[i+1] = Params[i]; 354 } 355 356 ContainedTys = SubTys; 357 NumContainedTys = Params.size() + 1; // + 1 for result type 358 } 359 360 // FunctionType::get - The factory function for the FunctionType class. 361 FunctionType *FunctionType::get(Type *ReturnType, 362 ArrayRef<Type*> Params, bool isVarArg) { 363 LLVMContextImpl *pImpl = ReturnType->getContext().pImpl; 364 FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg); 365 auto I = pImpl->FunctionTypes.find_as(Key); 366 FunctionType *FT; 367 368 if (I == pImpl->FunctionTypes.end()) { 369 FT = (FunctionType*) pImpl->TypeAllocator. 370 Allocate(sizeof(FunctionType) + sizeof(Type*) * (Params.size() + 1), 371 AlignOf<FunctionType>::Alignment); 372 new (FT) FunctionType(ReturnType, Params, isVarArg); 373 pImpl->FunctionTypes.insert(FT); 374 } else { 375 FT = *I; 376 } 377 378 return FT; 379 } 380 381 FunctionType *FunctionType::get(Type *Result, bool isVarArg) { 382 return get(Result, None, isVarArg); 383 } 384 385 /// isValidReturnType - Return true if the specified type is valid as a return 386 /// type. 387 bool FunctionType::isValidReturnType(Type *RetTy) { 388 return !RetTy->isFunctionTy() && !RetTy->isLabelTy() && 389 !RetTy->isMetadataTy(); 390 } 391 392 /// isValidArgumentType - Return true if the specified type is valid as an 393 /// argument type. 394 bool FunctionType::isValidArgumentType(Type *ArgTy) { 395 return ArgTy->isFirstClassType(); 396 } 397 398 //===----------------------------------------------------------------------===// 399 // StructType Implementation 400 //===----------------------------------------------------------------------===// 401 402 // Primitive Constructors. 403 404 StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes, 405 bool isPacked) { 406 LLVMContextImpl *pImpl = Context.pImpl; 407 AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked); 408 auto I = pImpl->AnonStructTypes.find_as(Key); 409 StructType *ST; 410 411 if (I == pImpl->AnonStructTypes.end()) { 412 // Value not found. Create a new type! 413 ST = new (Context.pImpl->TypeAllocator) StructType(Context); 414 ST->setSubclassData(SCDB_IsLiteral); // Literal struct. 415 ST->setBody(ETypes, isPacked); 416 Context.pImpl->AnonStructTypes.insert(ST); 417 } else { 418 ST = *I; 419 } 420 421 return ST; 422 } 423 424 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) { 425 assert(isOpaque() && "Struct body already set!"); 426 427 setSubclassData(getSubclassData() | SCDB_HasBody); 428 if (isPacked) 429 setSubclassData(getSubclassData() | SCDB_Packed); 430 431 unsigned NumElements = Elements.size(); 432 Type **Elts = getContext().pImpl->TypeAllocator.Allocate<Type*>(NumElements); 433 memcpy(Elts, Elements.data(), sizeof(Elements[0]) * NumElements); 434 435 ContainedTys = Elts; 436 NumContainedTys = NumElements; 437 } 438 439 void StructType::setName(StringRef Name) { 440 if (Name == getName()) return; 441 442 StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes; 443 typedef StringMap<StructType *>::MapEntryTy EntryTy; 444 445 // If this struct already had a name, remove its symbol table entry. Don't 446 // delete the data yet because it may be part of the new name. 447 if (SymbolTableEntry) 448 SymbolTable.remove((EntryTy *)SymbolTableEntry); 449 450 // If this is just removing the name, we're done. 451 if (Name.empty()) { 452 if (SymbolTableEntry) { 453 // Delete the old string data. 454 ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator()); 455 SymbolTableEntry = nullptr; 456 } 457 return; 458 } 459 460 // Look up the entry for the name. 461 auto IterBool = 462 getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this)); 463 464 // While we have a name collision, try a random rename. 465 if (!IterBool.second) { 466 SmallString<64> TempStr(Name); 467 TempStr.push_back('.'); 468 raw_svector_ostream TmpStream(TempStr); 469 unsigned NameSize = Name.size(); 470 471 do { 472 TempStr.resize(NameSize + 1); 473 TmpStream.resync(); 474 TmpStream << getContext().pImpl->NamedStructTypesUniqueID++; 475 476 IterBool = getContext().pImpl->NamedStructTypes.insert( 477 std::make_pair(TmpStream.str(), this)); 478 } while (!IterBool.second); 479 } 480 481 // Delete the old string data. 482 if (SymbolTableEntry) 483 ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator()); 484 SymbolTableEntry = &*IterBool.first; 485 } 486 487 //===----------------------------------------------------------------------===// 488 // StructType Helper functions. 489 490 StructType *StructType::create(LLVMContext &Context, StringRef Name) { 491 StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context); 492 if (!Name.empty()) 493 ST->setName(Name); 494 return ST; 495 } 496 497 StructType *StructType::get(LLVMContext &Context, bool isPacked) { 498 return get(Context, None, isPacked); 499 } 500 501 StructType *StructType::get(Type *type, ...) { 502 assert(type && "Cannot create a struct type with no elements with this"); 503 LLVMContext &Ctx = type->getContext(); 504 va_list ap; 505 SmallVector<llvm::Type*, 8> StructFields; 506 va_start(ap, type); 507 while (type) { 508 StructFields.push_back(type); 509 type = va_arg(ap, llvm::Type*); 510 } 511 auto *Ret = llvm::StructType::get(Ctx, StructFields); 512 va_end(ap); 513 return Ret; 514 } 515 516 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements, 517 StringRef Name, bool isPacked) { 518 StructType *ST = create(Context, Name); 519 ST->setBody(Elements, isPacked); 520 return ST; 521 } 522 523 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) { 524 return create(Context, Elements, StringRef()); 525 } 526 527 StructType *StructType::create(LLVMContext &Context) { 528 return create(Context, StringRef()); 529 } 530 531 StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name, 532 bool isPacked) { 533 assert(!Elements.empty() && 534 "This method may not be invoked with an empty list"); 535 return create(Elements[0]->getContext(), Elements, Name, isPacked); 536 } 537 538 StructType *StructType::create(ArrayRef<Type*> Elements) { 539 assert(!Elements.empty() && 540 "This method may not be invoked with an empty list"); 541 return create(Elements[0]->getContext(), Elements, StringRef()); 542 } 543 544 StructType *StructType::create(StringRef Name, Type *type, ...) { 545 assert(type && "Cannot create a struct type with no elements with this"); 546 LLVMContext &Ctx = type->getContext(); 547 va_list ap; 548 SmallVector<llvm::Type*, 8> StructFields; 549 va_start(ap, type); 550 while (type) { 551 StructFields.push_back(type); 552 type = va_arg(ap, llvm::Type*); 553 } 554 auto *Ret = llvm::StructType::create(Ctx, StructFields, Name); 555 va_end(ap); 556 return Ret; 557 } 558 559 bool StructType::isSized(SmallPtrSetImpl<const Type*> *Visited) const { 560 if ((getSubclassData() & SCDB_IsSized) != 0) 561 return true; 562 if (isOpaque()) 563 return false; 564 565 if (Visited && !Visited->insert(this).second) 566 return false; 567 568 // Okay, our struct is sized if all of the elements are, but if one of the 569 // elements is opaque, the struct isn't sized *yet*, but may become sized in 570 // the future, so just bail out without caching. 571 for (element_iterator I = element_begin(), E = element_end(); I != E; ++I) 572 if (!(*I)->isSized(Visited)) 573 return false; 574 575 // Here we cheat a bit and cast away const-ness. The goal is to memoize when 576 // we find a sized type, as types can only move from opaque to sized, not the 577 // other way. 578 const_cast<StructType*>(this)->setSubclassData( 579 getSubclassData() | SCDB_IsSized); 580 return true; 581 } 582 583 StringRef StructType::getName() const { 584 assert(!isLiteral() && "Literal structs never have names"); 585 if (!SymbolTableEntry) return StringRef(); 586 587 return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey(); 588 } 589 590 void StructType::setBody(Type *type, ...) { 591 assert(type && "Cannot create a struct type with no elements with this"); 592 va_list ap; 593 SmallVector<llvm::Type*, 8> StructFields; 594 va_start(ap, type); 595 while (type) { 596 StructFields.push_back(type); 597 type = va_arg(ap, llvm::Type*); 598 } 599 setBody(StructFields); 600 va_end(ap); 601 } 602 603 bool StructType::isValidElementType(Type *ElemTy) { 604 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && 605 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy(); 606 } 607 608 /// isLayoutIdentical - Return true if this is layout identical to the 609 /// specified struct. 610 bool StructType::isLayoutIdentical(StructType *Other) const { 611 if (this == Other) return true; 612 613 if (isPacked() != Other->isPacked() || 614 getNumElements() != Other->getNumElements()) 615 return false; 616 617 return std::equal(element_begin(), element_end(), Other->element_begin()); 618 } 619 620 /// getTypeByName - Return the type with the specified name, or null if there 621 /// is none by that name. 622 StructType *Module::getTypeByName(StringRef Name) const { 623 return getContext().pImpl->NamedStructTypes.lookup(Name); 624 } 625 626 627 //===----------------------------------------------------------------------===// 628 // CompositeType Implementation 629 //===----------------------------------------------------------------------===// 630 631 Type *CompositeType::getTypeAtIndex(const Value *V) { 632 if (StructType *STy = dyn_cast<StructType>(this)) { 633 unsigned Idx = 634 (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue(); 635 assert(indexValid(Idx) && "Invalid structure index!"); 636 return STy->getElementType(Idx); 637 } 638 639 return cast<SequentialType>(this)->getElementType(); 640 } 641 Type *CompositeType::getTypeAtIndex(unsigned Idx) { 642 if (StructType *STy = dyn_cast<StructType>(this)) { 643 assert(indexValid(Idx) && "Invalid structure index!"); 644 return STy->getElementType(Idx); 645 } 646 647 return cast<SequentialType>(this)->getElementType(); 648 } 649 bool CompositeType::indexValid(const Value *V) const { 650 if (const StructType *STy = dyn_cast<StructType>(this)) { 651 // Structure indexes require (vectors of) 32-bit integer constants. In the 652 // vector case all of the indices must be equal. 653 if (!V->getType()->getScalarType()->isIntegerTy(32)) 654 return false; 655 const Constant *C = dyn_cast<Constant>(V); 656 if (C && V->getType()->isVectorTy()) 657 C = C->getSplatValue(); 658 const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C); 659 return CU && CU->getZExtValue() < STy->getNumElements(); 660 } 661 662 // Sequential types can be indexed by any integer. 663 return V->getType()->isIntOrIntVectorTy(); 664 } 665 666 bool CompositeType::indexValid(unsigned Idx) const { 667 if (const StructType *STy = dyn_cast<StructType>(this)) 668 return Idx < STy->getNumElements(); 669 // Sequential types can be indexed by any integer. 670 return true; 671 } 672 673 674 //===----------------------------------------------------------------------===// 675 // ArrayType Implementation 676 //===----------------------------------------------------------------------===// 677 678 ArrayType::ArrayType(Type *ElType, uint64_t NumEl) 679 : SequentialType(ArrayTyID, ElType) { 680 NumElements = NumEl; 681 } 682 683 ArrayType *ArrayType::get(Type *elementType, uint64_t NumElements) { 684 Type *ElementType = const_cast<Type*>(elementType); 685 assert(isValidElementType(ElementType) && "Invalid type for array element!"); 686 687 LLVMContextImpl *pImpl = ElementType->getContext().pImpl; 688 ArrayType *&Entry = 689 pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)]; 690 691 if (!Entry) 692 Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements); 693 return Entry; 694 } 695 696 bool ArrayType::isValidElementType(Type *ElemTy) { 697 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && 698 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy(); 699 } 700 701 //===----------------------------------------------------------------------===// 702 // VectorType Implementation 703 //===----------------------------------------------------------------------===// 704 705 VectorType::VectorType(Type *ElType, unsigned NumEl) 706 : SequentialType(VectorTyID, ElType) { 707 NumElements = NumEl; 708 } 709 710 VectorType *VectorType::get(Type *elementType, unsigned NumElements) { 711 Type *ElementType = const_cast<Type*>(elementType); 712 assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0"); 713 assert(isValidElementType(ElementType) && "Element type of a VectorType must " 714 "be an integer, floating point, or " 715 "pointer type."); 716 717 LLVMContextImpl *pImpl = ElementType->getContext().pImpl; 718 VectorType *&Entry = ElementType->getContext().pImpl 719 ->VectorTypes[std::make_pair(ElementType, NumElements)]; 720 721 if (!Entry) 722 Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements); 723 return Entry; 724 } 725 726 bool VectorType::isValidElementType(Type *ElemTy) { 727 return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() || 728 ElemTy->isPointerTy(); 729 } 730 731 //===----------------------------------------------------------------------===// 732 // PointerType Implementation 733 //===----------------------------------------------------------------------===// 734 735 PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) { 736 assert(EltTy && "Can't get a pointer to <null> type!"); 737 assert(isValidElementType(EltTy) && "Invalid type for pointer element!"); 738 739 LLVMContextImpl *CImpl = EltTy->getContext().pImpl; 740 741 // Since AddressSpace #0 is the common case, we special case it. 742 PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy] 743 : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)]; 744 745 if (!Entry) 746 Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace); 747 return Entry; 748 } 749 750 751 PointerType::PointerType(Type *E, unsigned AddrSpace) 752 : SequentialType(PointerTyID, E) { 753 #ifndef NDEBUG 754 const unsigned oldNCT = NumContainedTys; 755 #endif 756 setSubclassData(AddrSpace); 757 // Check for miscompile. PR11652. 758 assert(oldNCT == NumContainedTys && "bitfield written out of bounds?"); 759 } 760 761 PointerType *Type::getPointerTo(unsigned addrs) { 762 return PointerType::get(this, addrs); 763 } 764 765 bool PointerType::isValidElementType(Type *ElemTy) { 766 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && 767 !ElemTy->isMetadataTy(); 768 } 769 770 bool PointerType::isLoadableOrStorableType(Type *ElemTy) { 771 return isValidElementType(ElemTy) && !ElemTy->isFunctionTy(); 772 } 773