1 //===- Module.cpp - Implement the Module class ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Module class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Module.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/IR/Attributes.h" 23 #include "llvm/IR/Comdat.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DebugInfoMetadata.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GVMaterializer.h" 30 #include "llvm/IR/GlobalAlias.h" 31 #include "llvm/IR/GlobalIFunc.h" 32 #include "llvm/IR/GlobalValue.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/SymbolTableListTraits.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/TypeFinder.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueSymbolTable.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/CodeGen.h" 44 #include "llvm/Support/Error.h" 45 #include "llvm/Support/MemoryBuffer.h" 46 #include "llvm/Support/Path.h" 47 #include "llvm/Support/RandomNumberGenerator.h" 48 #include "llvm/Support/VersionTuple.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstdint> 52 #include <memory> 53 #include <utility> 54 #include <vector> 55 56 using namespace llvm; 57 58 //===----------------------------------------------------------------------===// 59 // Methods to implement the globals and functions lists. 60 // 61 62 // Explicit instantiations of SymbolTableListTraits since some of the methods 63 // are not in the public header file. 64 template class llvm::SymbolTableListTraits<Function>; 65 template class llvm::SymbolTableListTraits<GlobalVariable>; 66 template class llvm::SymbolTableListTraits<GlobalAlias>; 67 template class llvm::SymbolTableListTraits<GlobalIFunc>; 68 69 //===----------------------------------------------------------------------===// 70 // Primitive Module methods. 71 // 72 73 Module::Module(StringRef MID, LLVMContext &C) 74 : Context(C), ValSymTab(std::make_unique<ValueSymbolTable>()), 75 Materializer(), ModuleID(std::string(MID)), 76 SourceFileName(std::string(MID)), DL("") { 77 Context.addModule(this); 78 } 79 80 Module::~Module() { 81 Context.removeModule(this); 82 dropAllReferences(); 83 GlobalList.clear(); 84 FunctionList.clear(); 85 AliasList.clear(); 86 IFuncList.clear(); 87 } 88 89 std::unique_ptr<RandomNumberGenerator> 90 Module::createRNG(const StringRef Name) const { 91 SmallString<32> Salt(Name); 92 93 // This RNG is guaranteed to produce the same random stream only 94 // when the Module ID and thus the input filename is the same. This 95 // might be problematic if the input filename extension changes 96 // (e.g. from .c to .bc or .ll). 97 // 98 // We could store this salt in NamedMetadata, but this would make 99 // the parameter non-const. This would unfortunately make this 100 // interface unusable by any Machine passes, since they only have a 101 // const reference to their IR Module. Alternatively we can always 102 // store salt metadata from the Module constructor. 103 Salt += sys::path::filename(getModuleIdentifier()); 104 105 return std::unique_ptr<RandomNumberGenerator>( 106 new RandomNumberGenerator(Salt)); 107 } 108 109 /// getNamedValue - Return the first global value in the module with 110 /// the specified name, of arbitrary type. This method returns null 111 /// if a global with the specified name is not found. 112 GlobalValue *Module::getNamedValue(StringRef Name) const { 113 return cast_or_null<GlobalValue>(getValueSymbolTable().lookup(Name)); 114 } 115 116 /// getMDKindID - Return a unique non-zero ID for the specified metadata kind. 117 /// This ID is uniqued across modules in the current LLVMContext. 118 unsigned Module::getMDKindID(StringRef Name) const { 119 return Context.getMDKindID(Name); 120 } 121 122 /// getMDKindNames - Populate client supplied SmallVector with the name for 123 /// custom metadata IDs registered in this LLVMContext. ID #0 is not used, 124 /// so it is filled in as an empty string. 125 void Module::getMDKindNames(SmallVectorImpl<StringRef> &Result) const { 126 return Context.getMDKindNames(Result); 127 } 128 129 void Module::getOperandBundleTags(SmallVectorImpl<StringRef> &Result) const { 130 return Context.getOperandBundleTags(Result); 131 } 132 133 //===----------------------------------------------------------------------===// 134 // Methods for easy access to the functions in the module. 135 // 136 137 // getOrInsertFunction - Look up the specified function in the module symbol 138 // table. If it does not exist, add a prototype for the function and return 139 // it. This is nice because it allows most passes to get away with not handling 140 // the symbol table directly for this common task. 141 // 142 FunctionCallee Module::getOrInsertFunction(StringRef Name, FunctionType *Ty, 143 AttributeList AttributeList) { 144 // See if we have a definition for the specified function already. 145 GlobalValue *F = getNamedValue(Name); 146 if (!F) { 147 // Nope, add it 148 Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage, 149 DL.getProgramAddressSpace(), Name); 150 if (!New->isIntrinsic()) // Intrinsics get attrs set on construction 151 New->setAttributes(AttributeList); 152 FunctionList.push_back(New); 153 return {Ty, New}; // Return the new prototype. 154 } 155 156 // If the function exists but has the wrong type, return a bitcast to the 157 // right type. 158 auto *PTy = PointerType::get(Ty, F->getAddressSpace()); 159 if (F->getType() != PTy) 160 return {Ty, ConstantExpr::getBitCast(F, PTy)}; 161 162 // Otherwise, we just found the existing function or a prototype. 163 return {Ty, F}; 164 } 165 166 FunctionCallee Module::getOrInsertFunction(StringRef Name, FunctionType *Ty) { 167 return getOrInsertFunction(Name, Ty, AttributeList()); 168 } 169 170 // getFunction - Look up the specified function in the module symbol table. 171 // If it does not exist, return null. 172 // 173 Function *Module::getFunction(StringRef Name) const { 174 return dyn_cast_or_null<Function>(getNamedValue(Name)); 175 } 176 177 //===----------------------------------------------------------------------===// 178 // Methods for easy access to the global variables in the module. 179 // 180 181 /// getGlobalVariable - Look up the specified global variable in the module 182 /// symbol table. If it does not exist, return null. The type argument 183 /// should be the underlying type of the global, i.e., it should not have 184 /// the top-level PointerType, which represents the address of the global. 185 /// If AllowLocal is set to true, this function will return types that 186 /// have an local. By default, these types are not returned. 187 /// 188 GlobalVariable *Module::getGlobalVariable(StringRef Name, 189 bool AllowLocal) const { 190 if (GlobalVariable *Result = 191 dyn_cast_or_null<GlobalVariable>(getNamedValue(Name))) 192 if (AllowLocal || !Result->hasLocalLinkage()) 193 return Result; 194 return nullptr; 195 } 196 197 /// getOrInsertGlobal - Look up the specified global in the module symbol table. 198 /// 1. If it does not exist, add a declaration of the global and return it. 199 /// 2. Else, the global exists but has the wrong type: return the function 200 /// with a constantexpr cast to the right type. 201 /// 3. Finally, if the existing global is the correct declaration, return the 202 /// existing global. 203 Constant *Module::getOrInsertGlobal( 204 StringRef Name, Type *Ty, 205 function_ref<GlobalVariable *()> CreateGlobalCallback) { 206 // See if we have a definition for the specified global already. 207 GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(getNamedValue(Name)); 208 if (!GV) 209 GV = CreateGlobalCallback(); 210 assert(GV && "The CreateGlobalCallback is expected to create a global"); 211 212 // If the variable exists but has the wrong type, return a bitcast to the 213 // right type. 214 Type *GVTy = GV->getType(); 215 PointerType *PTy = PointerType::get(Ty, GVTy->getPointerAddressSpace()); 216 if (GVTy != PTy) 217 return ConstantExpr::getBitCast(GV, PTy); 218 219 // Otherwise, we just found the existing function or a prototype. 220 return GV; 221 } 222 223 // Overload to construct a global variable using its constructor's defaults. 224 Constant *Module::getOrInsertGlobal(StringRef Name, Type *Ty) { 225 return getOrInsertGlobal(Name, Ty, [&] { 226 return new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage, 227 nullptr, Name); 228 }); 229 } 230 231 //===----------------------------------------------------------------------===// 232 // Methods for easy access to the global variables in the module. 233 // 234 235 // getNamedAlias - Look up the specified global in the module symbol table. 236 // If it does not exist, return null. 237 // 238 GlobalAlias *Module::getNamedAlias(StringRef Name) const { 239 return dyn_cast_or_null<GlobalAlias>(getNamedValue(Name)); 240 } 241 242 GlobalIFunc *Module::getNamedIFunc(StringRef Name) const { 243 return dyn_cast_or_null<GlobalIFunc>(getNamedValue(Name)); 244 } 245 246 /// getNamedMetadata - Return the first NamedMDNode in the module with the 247 /// specified name. This method returns null if a NamedMDNode with the 248 /// specified name is not found. 249 NamedMDNode *Module::getNamedMetadata(const Twine &Name) const { 250 SmallString<256> NameData; 251 StringRef NameRef = Name.toStringRef(NameData); 252 return NamedMDSymTab.lookup(NameRef); 253 } 254 255 /// getOrInsertNamedMetadata - Return the first named MDNode in the module 256 /// with the specified name. This method returns a new NamedMDNode if a 257 /// NamedMDNode with the specified name is not found. 258 NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) { 259 NamedMDNode *&NMD = NamedMDSymTab[Name]; 260 if (!NMD) { 261 NMD = new NamedMDNode(Name); 262 NMD->setParent(this); 263 NamedMDList.push_back(NMD); 264 } 265 return NMD; 266 } 267 268 /// eraseNamedMetadata - Remove the given NamedMDNode from this module and 269 /// delete it. 270 void Module::eraseNamedMetadata(NamedMDNode *NMD) { 271 NamedMDSymTab.erase(NMD->getName()); 272 NamedMDList.erase(NMD->getIterator()); 273 } 274 275 bool Module::isValidModFlagBehavior(Metadata *MD, ModFlagBehavior &MFB) { 276 if (ConstantInt *Behavior = mdconst::dyn_extract_or_null<ConstantInt>(MD)) { 277 uint64_t Val = Behavior->getLimitedValue(); 278 if (Val >= ModFlagBehaviorFirstVal && Val <= ModFlagBehaviorLastVal) { 279 MFB = static_cast<ModFlagBehavior>(Val); 280 return true; 281 } 282 } 283 return false; 284 } 285 286 /// getModuleFlagsMetadata - Returns the module flags in the provided vector. 287 void Module:: 288 getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const { 289 const NamedMDNode *ModFlags = getModuleFlagsMetadata(); 290 if (!ModFlags) return; 291 292 for (const MDNode *Flag : ModFlags->operands()) { 293 ModFlagBehavior MFB; 294 if (Flag->getNumOperands() >= 3 && 295 isValidModFlagBehavior(Flag->getOperand(0), MFB) && 296 dyn_cast_or_null<MDString>(Flag->getOperand(1))) { 297 // Check the operands of the MDNode before accessing the operands. 298 // The verifier will actually catch these failures. 299 MDString *Key = cast<MDString>(Flag->getOperand(1)); 300 Metadata *Val = Flag->getOperand(2); 301 Flags.push_back(ModuleFlagEntry(MFB, Key, Val)); 302 } 303 } 304 } 305 306 /// Return the corresponding value if Key appears in module flags, otherwise 307 /// return null. 308 Metadata *Module::getModuleFlag(StringRef Key) const { 309 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 310 getModuleFlagsMetadata(ModuleFlags); 311 for (const ModuleFlagEntry &MFE : ModuleFlags) { 312 if (Key == MFE.Key->getString()) 313 return MFE.Val; 314 } 315 return nullptr; 316 } 317 318 /// getModuleFlagsMetadata - Returns the NamedMDNode in the module that 319 /// represents module-level flags. This method returns null if there are no 320 /// module-level flags. 321 NamedMDNode *Module::getModuleFlagsMetadata() const { 322 return getNamedMetadata("llvm.module.flags"); 323 } 324 325 /// getOrInsertModuleFlagsMetadata - Returns the NamedMDNode in the module that 326 /// represents module-level flags. If module-level flags aren't found, it 327 /// creates the named metadata that contains them. 328 NamedMDNode *Module::getOrInsertModuleFlagsMetadata() { 329 return getOrInsertNamedMetadata("llvm.module.flags"); 330 } 331 332 /// addModuleFlag - Add a module-level flag to the module-level flags 333 /// metadata. It will create the module-level flags named metadata if it doesn't 334 /// already exist. 335 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 336 Metadata *Val) { 337 Type *Int32Ty = Type::getInt32Ty(Context); 338 Metadata *Ops[3] = { 339 ConstantAsMetadata::get(ConstantInt::get(Int32Ty, Behavior)), 340 MDString::get(Context, Key), Val}; 341 getOrInsertModuleFlagsMetadata()->addOperand(MDNode::get(Context, Ops)); 342 } 343 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 344 Constant *Val) { 345 addModuleFlag(Behavior, Key, ConstantAsMetadata::get(Val)); 346 } 347 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 348 uint32_t Val) { 349 Type *Int32Ty = Type::getInt32Ty(Context); 350 addModuleFlag(Behavior, Key, ConstantInt::get(Int32Ty, Val)); 351 } 352 void Module::addModuleFlag(MDNode *Node) { 353 assert(Node->getNumOperands() == 3 && 354 "Invalid number of operands for module flag!"); 355 assert(mdconst::hasa<ConstantInt>(Node->getOperand(0)) && 356 isa<MDString>(Node->getOperand(1)) && 357 "Invalid operand types for module flag!"); 358 getOrInsertModuleFlagsMetadata()->addOperand(Node); 359 } 360 361 void Module::setDataLayout(StringRef Desc) { 362 DL.reset(Desc); 363 } 364 365 void Module::setDataLayout(const DataLayout &Other) { DL = Other; } 366 367 const DataLayout &Module::getDataLayout() const { return DL; } 368 369 DICompileUnit *Module::debug_compile_units_iterator::operator*() const { 370 return cast<DICompileUnit>(CUs->getOperand(Idx)); 371 } 372 DICompileUnit *Module::debug_compile_units_iterator::operator->() const { 373 return cast<DICompileUnit>(CUs->getOperand(Idx)); 374 } 375 376 void Module::debug_compile_units_iterator::SkipNoDebugCUs() { 377 while (CUs && (Idx < CUs->getNumOperands()) && 378 ((*this)->getEmissionKind() == DICompileUnit::NoDebug)) 379 ++Idx; 380 } 381 382 iterator_range<Module::global_object_iterator> Module::global_objects() { 383 return concat<GlobalObject>(functions(), globals()); 384 } 385 iterator_range<Module::const_global_object_iterator> 386 Module::global_objects() const { 387 return concat<const GlobalObject>(functions(), globals()); 388 } 389 390 iterator_range<Module::global_value_iterator> Module::global_values() { 391 return concat<GlobalValue>(functions(), globals(), aliases(), ifuncs()); 392 } 393 iterator_range<Module::const_global_value_iterator> 394 Module::global_values() const { 395 return concat<const GlobalValue>(functions(), globals(), aliases(), ifuncs()); 396 } 397 398 //===----------------------------------------------------------------------===// 399 // Methods to control the materialization of GlobalValues in the Module. 400 // 401 void Module::setMaterializer(GVMaterializer *GVM) { 402 assert(!Materializer && 403 "Module already has a GVMaterializer. Call materializeAll" 404 " to clear it out before setting another one."); 405 Materializer.reset(GVM); 406 } 407 408 Error Module::materialize(GlobalValue *GV) { 409 if (!Materializer) 410 return Error::success(); 411 412 return Materializer->materialize(GV); 413 } 414 415 Error Module::materializeAll() { 416 if (!Materializer) 417 return Error::success(); 418 std::unique_ptr<GVMaterializer> M = std::move(Materializer); 419 return M->materializeModule(); 420 } 421 422 Error Module::materializeMetadata() { 423 if (!Materializer) 424 return Error::success(); 425 return Materializer->materializeMetadata(); 426 } 427 428 //===----------------------------------------------------------------------===// 429 // Other module related stuff. 430 // 431 432 std::vector<StructType *> Module::getIdentifiedStructTypes() const { 433 // If we have a materializer, it is possible that some unread function 434 // uses a type that is currently not visible to a TypeFinder, so ask 435 // the materializer which types it created. 436 if (Materializer) 437 return Materializer->getIdentifiedStructTypes(); 438 439 std::vector<StructType *> Ret; 440 TypeFinder SrcStructTypes; 441 SrcStructTypes.run(*this, true); 442 Ret.assign(SrcStructTypes.begin(), SrcStructTypes.end()); 443 return Ret; 444 } 445 446 // dropAllReferences() - This function causes all the subelements to "let go" 447 // of all references that they are maintaining. This allows one to 'delete' a 448 // whole module at a time, even though there may be circular references... first 449 // all references are dropped, and all use counts go to zero. Then everything 450 // is deleted for real. Note that no operations are valid on an object that 451 // has "dropped all references", except operator delete. 452 // 453 void Module::dropAllReferences() { 454 for (Function &F : *this) 455 F.dropAllReferences(); 456 457 for (GlobalVariable &GV : globals()) 458 GV.dropAllReferences(); 459 460 for (GlobalAlias &GA : aliases()) 461 GA.dropAllReferences(); 462 463 for (GlobalIFunc &GIF : ifuncs()) 464 GIF.dropAllReferences(); 465 } 466 467 unsigned Module::getNumberRegisterParameters() const { 468 auto *Val = 469 cast_or_null<ConstantAsMetadata>(getModuleFlag("NumRegisterParameters")); 470 if (!Val) 471 return 0; 472 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 473 } 474 475 unsigned Module::getDwarfVersion() const { 476 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Dwarf Version")); 477 if (!Val) 478 return 0; 479 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 480 } 481 482 unsigned Module::getCodeViewFlag() const { 483 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("CodeView")); 484 if (!Val) 485 return 0; 486 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 487 } 488 489 unsigned Module::getInstructionCount() { 490 unsigned NumInstrs = 0; 491 for (Function &F : FunctionList) 492 NumInstrs += F.getInstructionCount(); 493 return NumInstrs; 494 } 495 496 Comdat *Module::getOrInsertComdat(StringRef Name) { 497 auto &Entry = *ComdatSymTab.insert(std::make_pair(Name, Comdat())).first; 498 Entry.second.Name = &Entry; 499 return &Entry.second; 500 } 501 502 PICLevel::Level Module::getPICLevel() const { 503 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIC Level")); 504 505 if (!Val) 506 return PICLevel::NotPIC; 507 508 return static_cast<PICLevel::Level>( 509 cast<ConstantInt>(Val->getValue())->getZExtValue()); 510 } 511 512 void Module::setPICLevel(PICLevel::Level PL) { 513 addModuleFlag(ModFlagBehavior::Max, "PIC Level", PL); 514 } 515 516 PIELevel::Level Module::getPIELevel() const { 517 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIE Level")); 518 519 if (!Val) 520 return PIELevel::Default; 521 522 return static_cast<PIELevel::Level>( 523 cast<ConstantInt>(Val->getValue())->getZExtValue()); 524 } 525 526 void Module::setPIELevel(PIELevel::Level PL) { 527 addModuleFlag(ModFlagBehavior::Max, "PIE Level", PL); 528 } 529 530 Optional<CodeModel::Model> Module::getCodeModel() const { 531 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Code Model")); 532 533 if (!Val) 534 return None; 535 536 return static_cast<CodeModel::Model>( 537 cast<ConstantInt>(Val->getValue())->getZExtValue()); 538 } 539 540 void Module::setCodeModel(CodeModel::Model CL) { 541 // Linking object files with different code models is undefined behavior 542 // because the compiler would have to generate additional code (to span 543 // longer jumps) if a larger code model is used with a smaller one. 544 // Therefore we will treat attempts to mix code models as an error. 545 addModuleFlag(ModFlagBehavior::Error, "Code Model", CL); 546 } 547 548 void Module::setProfileSummary(Metadata *M, ProfileSummary::Kind Kind) { 549 if (Kind == ProfileSummary::PSK_CSInstr) 550 addModuleFlag(ModFlagBehavior::Error, "CSProfileSummary", M); 551 else 552 addModuleFlag(ModFlagBehavior::Error, "ProfileSummary", M); 553 } 554 555 Metadata *Module::getProfileSummary(bool IsCS) { 556 return (IsCS ? getModuleFlag("CSProfileSummary") 557 : getModuleFlag("ProfileSummary")); 558 } 559 560 bool Module::getSemanticInterposition() const { 561 Metadata *MF = getModuleFlag("SemanticInterposition"); 562 563 auto *Val = cast_or_null<ConstantAsMetadata>(MF); 564 if (!Val) 565 return false; 566 567 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 568 } 569 570 void Module::setSemanticInterposition(bool SI) { 571 addModuleFlag(ModFlagBehavior::Error, "SemanticInterposition", SI); 572 } 573 574 void Module::setOwnedMemoryBuffer(std::unique_ptr<MemoryBuffer> MB) { 575 OwnedMemoryBuffer = std::move(MB); 576 } 577 578 bool Module::getRtLibUseGOT() const { 579 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("RtLibUseGOT")); 580 return Val && (cast<ConstantInt>(Val->getValue())->getZExtValue() > 0); 581 } 582 583 void Module::setRtLibUseGOT() { 584 addModuleFlag(ModFlagBehavior::Max, "RtLibUseGOT", 1); 585 } 586 587 void Module::setSDKVersion(const VersionTuple &V) { 588 SmallVector<unsigned, 3> Entries; 589 Entries.push_back(V.getMajor()); 590 if (auto Minor = V.getMinor()) { 591 Entries.push_back(*Minor); 592 if (auto Subminor = V.getSubminor()) 593 Entries.push_back(*Subminor); 594 // Ignore the 'build' component as it can't be represented in the object 595 // file. 596 } 597 addModuleFlag(ModFlagBehavior::Warning, "SDK Version", 598 ConstantDataArray::get(Context, Entries)); 599 } 600 601 VersionTuple Module::getSDKVersion() const { 602 auto *CM = dyn_cast_or_null<ConstantAsMetadata>(getModuleFlag("SDK Version")); 603 if (!CM) 604 return {}; 605 auto *Arr = dyn_cast_or_null<ConstantDataArray>(CM->getValue()); 606 if (!Arr) 607 return {}; 608 auto getVersionComponent = [&](unsigned Index) -> Optional<unsigned> { 609 if (Index >= Arr->getNumElements()) 610 return None; 611 return (unsigned)Arr->getElementAsInteger(Index); 612 }; 613 auto Major = getVersionComponent(0); 614 if (!Major) 615 return {}; 616 VersionTuple Result = VersionTuple(*Major); 617 if (auto Minor = getVersionComponent(1)) { 618 Result = VersionTuple(*Major, *Minor); 619 if (auto Subminor = getVersionComponent(2)) { 620 Result = VersionTuple(*Major, *Minor, *Subminor); 621 } 622 } 623 return Result; 624 } 625 626 GlobalVariable *llvm::collectUsedGlobalVariables( 627 const Module &M, SmallPtrSetImpl<GlobalValue *> &Set, bool CompilerUsed) { 628 const char *Name = CompilerUsed ? "llvm.compiler.used" : "llvm.used"; 629 GlobalVariable *GV = M.getGlobalVariable(Name); 630 if (!GV || !GV->hasInitializer()) 631 return GV; 632 633 const ConstantArray *Init = cast<ConstantArray>(GV->getInitializer()); 634 for (Value *Op : Init->operands()) { 635 GlobalValue *G = cast<GlobalValue>(Op->stripPointerCasts()); 636 Set.insert(G); 637 } 638 return GV; 639 } 640