1 //===- Module.cpp - Implement the Module class ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Module class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Module.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/IR/Attributes.h" 23 #include "llvm/IR/Comdat.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DebugInfoMetadata.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GVMaterializer.h" 30 #include "llvm/IR/GlobalAlias.h" 31 #include "llvm/IR/GlobalIFunc.h" 32 #include "llvm/IR/GlobalValue.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/SymbolTableListTraits.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/TypeFinder.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueSymbolTable.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/CodeGen.h" 44 #include "llvm/Support/Error.h" 45 #include "llvm/Support/MemoryBuffer.h" 46 #include "llvm/Support/Path.h" 47 #include "llvm/Support/RandomNumberGenerator.h" 48 #include "llvm/Support/VersionTuple.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstdint> 52 #include <memory> 53 #include <utility> 54 #include <vector> 55 56 using namespace llvm; 57 58 //===----------------------------------------------------------------------===// 59 // Methods to implement the globals and functions lists. 60 // 61 62 // Explicit instantiations of SymbolTableListTraits since some of the methods 63 // are not in the public header file. 64 template class llvm::SymbolTableListTraits<Function>; 65 template class llvm::SymbolTableListTraits<GlobalVariable>; 66 template class llvm::SymbolTableListTraits<GlobalAlias>; 67 template class llvm::SymbolTableListTraits<GlobalIFunc>; 68 69 //===----------------------------------------------------------------------===// 70 // Primitive Module methods. 71 // 72 73 Module::Module(StringRef MID, LLVMContext &C) 74 : Context(C), ValSymTab(std::make_unique<ValueSymbolTable>()), 75 Materializer(), ModuleID(std::string(MID)), 76 SourceFileName(std::string(MID)), DL("") { 77 Context.addModule(this); 78 } 79 80 Module::~Module() { 81 Context.removeModule(this); 82 dropAllReferences(); 83 GlobalList.clear(); 84 FunctionList.clear(); 85 AliasList.clear(); 86 IFuncList.clear(); 87 } 88 89 std::unique_ptr<RandomNumberGenerator> Module::createRNG(const Pass* P) const { 90 SmallString<32> Salt(P->getPassName()); 91 92 // This RNG is guaranteed to produce the same random stream only 93 // when the Module ID and thus the input filename is the same. This 94 // might be problematic if the input filename extension changes 95 // (e.g. from .c to .bc or .ll). 96 // 97 // We could store this salt in NamedMetadata, but this would make 98 // the parameter non-const. This would unfortunately make this 99 // interface unusable by any Machine passes, since they only have a 100 // const reference to their IR Module. Alternatively we can always 101 // store salt metadata from the Module constructor. 102 Salt += sys::path::filename(getModuleIdentifier()); 103 104 return std::unique_ptr<RandomNumberGenerator>(new RandomNumberGenerator(Salt)); 105 } 106 107 /// getNamedValue - Return the first global value in the module with 108 /// the specified name, of arbitrary type. This method returns null 109 /// if a global with the specified name is not found. 110 GlobalValue *Module::getNamedValue(StringRef Name) const { 111 return cast_or_null<GlobalValue>(getValueSymbolTable().lookup(Name)); 112 } 113 114 /// getMDKindID - Return a unique non-zero ID for the specified metadata kind. 115 /// This ID is uniqued across modules in the current LLVMContext. 116 unsigned Module::getMDKindID(StringRef Name) const { 117 return Context.getMDKindID(Name); 118 } 119 120 /// getMDKindNames - Populate client supplied SmallVector with the name for 121 /// custom metadata IDs registered in this LLVMContext. ID #0 is not used, 122 /// so it is filled in as an empty string. 123 void Module::getMDKindNames(SmallVectorImpl<StringRef> &Result) const { 124 return Context.getMDKindNames(Result); 125 } 126 127 void Module::getOperandBundleTags(SmallVectorImpl<StringRef> &Result) const { 128 return Context.getOperandBundleTags(Result); 129 } 130 131 //===----------------------------------------------------------------------===// 132 // Methods for easy access to the functions in the module. 133 // 134 135 // getOrInsertFunction - Look up the specified function in the module symbol 136 // table. If it does not exist, add a prototype for the function and return 137 // it. This is nice because it allows most passes to get away with not handling 138 // the symbol table directly for this common task. 139 // 140 FunctionCallee Module::getOrInsertFunction(StringRef Name, FunctionType *Ty, 141 AttributeList AttributeList) { 142 // See if we have a definition for the specified function already. 143 GlobalValue *F = getNamedValue(Name); 144 if (!F) { 145 // Nope, add it 146 Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage, 147 DL.getProgramAddressSpace(), Name); 148 if (!New->isIntrinsic()) // Intrinsics get attrs set on construction 149 New->setAttributes(AttributeList); 150 FunctionList.push_back(New); 151 return {Ty, New}; // Return the new prototype. 152 } 153 154 // If the function exists but has the wrong type, return a bitcast to the 155 // right type. 156 auto *PTy = PointerType::get(Ty, F->getAddressSpace()); 157 if (F->getType() != PTy) 158 return {Ty, ConstantExpr::getBitCast(F, PTy)}; 159 160 // Otherwise, we just found the existing function or a prototype. 161 return {Ty, F}; 162 } 163 164 FunctionCallee Module::getOrInsertFunction(StringRef Name, FunctionType *Ty) { 165 return getOrInsertFunction(Name, Ty, AttributeList()); 166 } 167 168 // getFunction - Look up the specified function in the module symbol table. 169 // If it does not exist, return null. 170 // 171 Function *Module::getFunction(StringRef Name) const { 172 return dyn_cast_or_null<Function>(getNamedValue(Name)); 173 } 174 175 //===----------------------------------------------------------------------===// 176 // Methods for easy access to the global variables in the module. 177 // 178 179 /// getGlobalVariable - Look up the specified global variable in the module 180 /// symbol table. If it does not exist, return null. The type argument 181 /// should be the underlying type of the global, i.e., it should not have 182 /// the top-level PointerType, which represents the address of the global. 183 /// If AllowLocal is set to true, this function will return types that 184 /// have an local. By default, these types are not returned. 185 /// 186 GlobalVariable *Module::getGlobalVariable(StringRef Name, 187 bool AllowLocal) const { 188 if (GlobalVariable *Result = 189 dyn_cast_or_null<GlobalVariable>(getNamedValue(Name))) 190 if (AllowLocal || !Result->hasLocalLinkage()) 191 return Result; 192 return nullptr; 193 } 194 195 /// getOrInsertGlobal - Look up the specified global in the module symbol table. 196 /// 1. If it does not exist, add a declaration of the global and return it. 197 /// 2. Else, the global exists but has the wrong type: return the function 198 /// with a constantexpr cast to the right type. 199 /// 3. Finally, if the existing global is the correct declaration, return the 200 /// existing global. 201 Constant *Module::getOrInsertGlobal( 202 StringRef Name, Type *Ty, 203 function_ref<GlobalVariable *()> CreateGlobalCallback) { 204 // See if we have a definition for the specified global already. 205 GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(getNamedValue(Name)); 206 if (!GV) 207 GV = CreateGlobalCallback(); 208 assert(GV && "The CreateGlobalCallback is expected to create a global"); 209 210 // If the variable exists but has the wrong type, return a bitcast to the 211 // right type. 212 Type *GVTy = GV->getType(); 213 PointerType *PTy = PointerType::get(Ty, GVTy->getPointerAddressSpace()); 214 if (GVTy != PTy) 215 return ConstantExpr::getBitCast(GV, PTy); 216 217 // Otherwise, we just found the existing function or a prototype. 218 return GV; 219 } 220 221 // Overload to construct a global variable using its constructor's defaults. 222 Constant *Module::getOrInsertGlobal(StringRef Name, Type *Ty) { 223 return getOrInsertGlobal(Name, Ty, [&] { 224 return new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage, 225 nullptr, Name); 226 }); 227 } 228 229 //===----------------------------------------------------------------------===// 230 // Methods for easy access to the global variables in the module. 231 // 232 233 // getNamedAlias - Look up the specified global in the module symbol table. 234 // If it does not exist, return null. 235 // 236 GlobalAlias *Module::getNamedAlias(StringRef Name) const { 237 return dyn_cast_or_null<GlobalAlias>(getNamedValue(Name)); 238 } 239 240 GlobalIFunc *Module::getNamedIFunc(StringRef Name) const { 241 return dyn_cast_or_null<GlobalIFunc>(getNamedValue(Name)); 242 } 243 244 /// getNamedMetadata - Return the first NamedMDNode in the module with the 245 /// specified name. This method returns null if a NamedMDNode with the 246 /// specified name is not found. 247 NamedMDNode *Module::getNamedMetadata(const Twine &Name) const { 248 SmallString<256> NameData; 249 StringRef NameRef = Name.toStringRef(NameData); 250 return NamedMDSymTab.lookup(NameRef); 251 } 252 253 /// getOrInsertNamedMetadata - Return the first named MDNode in the module 254 /// with the specified name. This method returns a new NamedMDNode if a 255 /// NamedMDNode with the specified name is not found. 256 NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) { 257 NamedMDNode *&NMD = NamedMDSymTab[Name]; 258 if (!NMD) { 259 NMD = new NamedMDNode(Name); 260 NMD->setParent(this); 261 NamedMDList.push_back(NMD); 262 } 263 return NMD; 264 } 265 266 /// eraseNamedMetadata - Remove the given NamedMDNode from this module and 267 /// delete it. 268 void Module::eraseNamedMetadata(NamedMDNode *NMD) { 269 NamedMDSymTab.erase(NMD->getName()); 270 NamedMDList.erase(NMD->getIterator()); 271 } 272 273 bool Module::isValidModFlagBehavior(Metadata *MD, ModFlagBehavior &MFB) { 274 if (ConstantInt *Behavior = mdconst::dyn_extract_or_null<ConstantInt>(MD)) { 275 uint64_t Val = Behavior->getLimitedValue(); 276 if (Val >= ModFlagBehaviorFirstVal && Val <= ModFlagBehaviorLastVal) { 277 MFB = static_cast<ModFlagBehavior>(Val); 278 return true; 279 } 280 } 281 return false; 282 } 283 284 /// getModuleFlagsMetadata - Returns the module flags in the provided vector. 285 void Module:: 286 getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const { 287 const NamedMDNode *ModFlags = getModuleFlagsMetadata(); 288 if (!ModFlags) return; 289 290 for (const MDNode *Flag : ModFlags->operands()) { 291 ModFlagBehavior MFB; 292 if (Flag->getNumOperands() >= 3 && 293 isValidModFlagBehavior(Flag->getOperand(0), MFB) && 294 dyn_cast_or_null<MDString>(Flag->getOperand(1))) { 295 // Check the operands of the MDNode before accessing the operands. 296 // The verifier will actually catch these failures. 297 MDString *Key = cast<MDString>(Flag->getOperand(1)); 298 Metadata *Val = Flag->getOperand(2); 299 Flags.push_back(ModuleFlagEntry(MFB, Key, Val)); 300 } 301 } 302 } 303 304 /// Return the corresponding value if Key appears in module flags, otherwise 305 /// return null. 306 Metadata *Module::getModuleFlag(StringRef Key) const { 307 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 308 getModuleFlagsMetadata(ModuleFlags); 309 for (const ModuleFlagEntry &MFE : ModuleFlags) { 310 if (Key == MFE.Key->getString()) 311 return MFE.Val; 312 } 313 return nullptr; 314 } 315 316 /// getModuleFlagsMetadata - Returns the NamedMDNode in the module that 317 /// represents module-level flags. This method returns null if there are no 318 /// module-level flags. 319 NamedMDNode *Module::getModuleFlagsMetadata() const { 320 return getNamedMetadata("llvm.module.flags"); 321 } 322 323 /// getOrInsertModuleFlagsMetadata - Returns the NamedMDNode in the module that 324 /// represents module-level flags. If module-level flags aren't found, it 325 /// creates the named metadata that contains them. 326 NamedMDNode *Module::getOrInsertModuleFlagsMetadata() { 327 return getOrInsertNamedMetadata("llvm.module.flags"); 328 } 329 330 /// addModuleFlag - Add a module-level flag to the module-level flags 331 /// metadata. It will create the module-level flags named metadata if it doesn't 332 /// already exist. 333 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 334 Metadata *Val) { 335 Type *Int32Ty = Type::getInt32Ty(Context); 336 Metadata *Ops[3] = { 337 ConstantAsMetadata::get(ConstantInt::get(Int32Ty, Behavior)), 338 MDString::get(Context, Key), Val}; 339 getOrInsertModuleFlagsMetadata()->addOperand(MDNode::get(Context, Ops)); 340 } 341 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 342 Constant *Val) { 343 addModuleFlag(Behavior, Key, ConstantAsMetadata::get(Val)); 344 } 345 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 346 uint32_t Val) { 347 Type *Int32Ty = Type::getInt32Ty(Context); 348 addModuleFlag(Behavior, Key, ConstantInt::get(Int32Ty, Val)); 349 } 350 void Module::addModuleFlag(MDNode *Node) { 351 assert(Node->getNumOperands() == 3 && 352 "Invalid number of operands for module flag!"); 353 assert(mdconst::hasa<ConstantInt>(Node->getOperand(0)) && 354 isa<MDString>(Node->getOperand(1)) && 355 "Invalid operand types for module flag!"); 356 getOrInsertModuleFlagsMetadata()->addOperand(Node); 357 } 358 359 void Module::setDataLayout(StringRef Desc) { 360 DL.reset(Desc); 361 } 362 363 void Module::setDataLayout(const DataLayout &Other) { DL = Other; } 364 365 const DataLayout &Module::getDataLayout() const { return DL; } 366 367 DICompileUnit *Module::debug_compile_units_iterator::operator*() const { 368 return cast<DICompileUnit>(CUs->getOperand(Idx)); 369 } 370 DICompileUnit *Module::debug_compile_units_iterator::operator->() const { 371 return cast<DICompileUnit>(CUs->getOperand(Idx)); 372 } 373 374 void Module::debug_compile_units_iterator::SkipNoDebugCUs() { 375 while (CUs && (Idx < CUs->getNumOperands()) && 376 ((*this)->getEmissionKind() == DICompileUnit::NoDebug)) 377 ++Idx; 378 } 379 380 iterator_range<Module::global_object_iterator> Module::global_objects() { 381 return concat<GlobalObject>(functions(), globals()); 382 } 383 iterator_range<Module::const_global_object_iterator> 384 Module::global_objects() const { 385 return concat<const GlobalObject>(functions(), globals()); 386 } 387 388 iterator_range<Module::global_value_iterator> Module::global_values() { 389 return concat<GlobalValue>(functions(), globals(), aliases(), ifuncs()); 390 } 391 iterator_range<Module::const_global_value_iterator> 392 Module::global_values() const { 393 return concat<const GlobalValue>(functions(), globals(), aliases(), ifuncs()); 394 } 395 396 //===----------------------------------------------------------------------===// 397 // Methods to control the materialization of GlobalValues in the Module. 398 // 399 void Module::setMaterializer(GVMaterializer *GVM) { 400 assert(!Materializer && 401 "Module already has a GVMaterializer. Call materializeAll" 402 " to clear it out before setting another one."); 403 Materializer.reset(GVM); 404 } 405 406 Error Module::materialize(GlobalValue *GV) { 407 if (!Materializer) 408 return Error::success(); 409 410 return Materializer->materialize(GV); 411 } 412 413 Error Module::materializeAll() { 414 if (!Materializer) 415 return Error::success(); 416 std::unique_ptr<GVMaterializer> M = std::move(Materializer); 417 return M->materializeModule(); 418 } 419 420 Error Module::materializeMetadata() { 421 if (!Materializer) 422 return Error::success(); 423 return Materializer->materializeMetadata(); 424 } 425 426 //===----------------------------------------------------------------------===// 427 // Other module related stuff. 428 // 429 430 std::vector<StructType *> Module::getIdentifiedStructTypes() const { 431 // If we have a materializer, it is possible that some unread function 432 // uses a type that is currently not visible to a TypeFinder, so ask 433 // the materializer which types it created. 434 if (Materializer) 435 return Materializer->getIdentifiedStructTypes(); 436 437 std::vector<StructType *> Ret; 438 TypeFinder SrcStructTypes; 439 SrcStructTypes.run(*this, true); 440 Ret.assign(SrcStructTypes.begin(), SrcStructTypes.end()); 441 return Ret; 442 } 443 444 // dropAllReferences() - This function causes all the subelements to "let go" 445 // of all references that they are maintaining. This allows one to 'delete' a 446 // whole module at a time, even though there may be circular references... first 447 // all references are dropped, and all use counts go to zero. Then everything 448 // is deleted for real. Note that no operations are valid on an object that 449 // has "dropped all references", except operator delete. 450 // 451 void Module::dropAllReferences() { 452 for (Function &F : *this) 453 F.dropAllReferences(); 454 455 for (GlobalVariable &GV : globals()) 456 GV.dropAllReferences(); 457 458 for (GlobalAlias &GA : aliases()) 459 GA.dropAllReferences(); 460 461 for (GlobalIFunc &GIF : ifuncs()) 462 GIF.dropAllReferences(); 463 } 464 465 unsigned Module::getNumberRegisterParameters() const { 466 auto *Val = 467 cast_or_null<ConstantAsMetadata>(getModuleFlag("NumRegisterParameters")); 468 if (!Val) 469 return 0; 470 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 471 } 472 473 unsigned Module::getDwarfVersion() const { 474 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Dwarf Version")); 475 if (!Val) 476 return 0; 477 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 478 } 479 480 unsigned Module::getCodeViewFlag() const { 481 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("CodeView")); 482 if (!Val) 483 return 0; 484 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 485 } 486 487 unsigned Module::getInstructionCount() { 488 unsigned NumInstrs = 0; 489 for (Function &F : FunctionList) 490 NumInstrs += F.getInstructionCount(); 491 return NumInstrs; 492 } 493 494 Comdat *Module::getOrInsertComdat(StringRef Name) { 495 auto &Entry = *ComdatSymTab.insert(std::make_pair(Name, Comdat())).first; 496 Entry.second.Name = &Entry; 497 return &Entry.second; 498 } 499 500 PICLevel::Level Module::getPICLevel() const { 501 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIC Level")); 502 503 if (!Val) 504 return PICLevel::NotPIC; 505 506 return static_cast<PICLevel::Level>( 507 cast<ConstantInt>(Val->getValue())->getZExtValue()); 508 } 509 510 void Module::setPICLevel(PICLevel::Level PL) { 511 addModuleFlag(ModFlagBehavior::Max, "PIC Level", PL); 512 } 513 514 PIELevel::Level Module::getPIELevel() const { 515 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIE Level")); 516 517 if (!Val) 518 return PIELevel::Default; 519 520 return static_cast<PIELevel::Level>( 521 cast<ConstantInt>(Val->getValue())->getZExtValue()); 522 } 523 524 void Module::setPIELevel(PIELevel::Level PL) { 525 addModuleFlag(ModFlagBehavior::Max, "PIE Level", PL); 526 } 527 528 Optional<CodeModel::Model> Module::getCodeModel() const { 529 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Code Model")); 530 531 if (!Val) 532 return None; 533 534 return static_cast<CodeModel::Model>( 535 cast<ConstantInt>(Val->getValue())->getZExtValue()); 536 } 537 538 void Module::setCodeModel(CodeModel::Model CL) { 539 // Linking object files with different code models is undefined behavior 540 // because the compiler would have to generate additional code (to span 541 // longer jumps) if a larger code model is used with a smaller one. 542 // Therefore we will treat attempts to mix code models as an error. 543 addModuleFlag(ModFlagBehavior::Error, "Code Model", CL); 544 } 545 546 void Module::setProfileSummary(Metadata *M, ProfileSummary::Kind Kind) { 547 if (Kind == ProfileSummary::PSK_CSInstr) 548 addModuleFlag(ModFlagBehavior::Error, "CSProfileSummary", M); 549 else 550 addModuleFlag(ModFlagBehavior::Error, "ProfileSummary", M); 551 } 552 553 Metadata *Module::getProfileSummary(bool IsCS) { 554 return (IsCS ? getModuleFlag("CSProfileSummary") 555 : getModuleFlag("ProfileSummary")); 556 } 557 558 void Module::setOwnedMemoryBuffer(std::unique_ptr<MemoryBuffer> MB) { 559 OwnedMemoryBuffer = std::move(MB); 560 } 561 562 bool Module::getRtLibUseGOT() const { 563 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("RtLibUseGOT")); 564 return Val && (cast<ConstantInt>(Val->getValue())->getZExtValue() > 0); 565 } 566 567 void Module::setRtLibUseGOT() { 568 addModuleFlag(ModFlagBehavior::Max, "RtLibUseGOT", 1); 569 } 570 571 void Module::setSDKVersion(const VersionTuple &V) { 572 SmallVector<unsigned, 3> Entries; 573 Entries.push_back(V.getMajor()); 574 if (auto Minor = V.getMinor()) { 575 Entries.push_back(*Minor); 576 if (auto Subminor = V.getSubminor()) 577 Entries.push_back(*Subminor); 578 // Ignore the 'build' component as it can't be represented in the object 579 // file. 580 } 581 addModuleFlag(ModFlagBehavior::Warning, "SDK Version", 582 ConstantDataArray::get(Context, Entries)); 583 } 584 585 VersionTuple Module::getSDKVersion() const { 586 auto *CM = dyn_cast_or_null<ConstantAsMetadata>(getModuleFlag("SDK Version")); 587 if (!CM) 588 return {}; 589 auto *Arr = dyn_cast_or_null<ConstantDataArray>(CM->getValue()); 590 if (!Arr) 591 return {}; 592 auto getVersionComponent = [&](unsigned Index) -> Optional<unsigned> { 593 if (Index >= Arr->getNumElements()) 594 return None; 595 return (unsigned)Arr->getElementAsInteger(Index); 596 }; 597 auto Major = getVersionComponent(0); 598 if (!Major) 599 return {}; 600 VersionTuple Result = VersionTuple(*Major); 601 if (auto Minor = getVersionComponent(1)) { 602 Result = VersionTuple(*Major, *Minor); 603 if (auto Subminor = getVersionComponent(2)) { 604 Result = VersionTuple(*Major, *Minor, *Subminor); 605 } 606 } 607 return Result; 608 } 609 610 GlobalVariable *llvm::collectUsedGlobalVariables( 611 const Module &M, SmallPtrSetImpl<GlobalValue *> &Set, bool CompilerUsed) { 612 const char *Name = CompilerUsed ? "llvm.compiler.used" : "llvm.used"; 613 GlobalVariable *GV = M.getGlobalVariable(Name); 614 if (!GV || !GV->hasInitializer()) 615 return GV; 616 617 const ConstantArray *Init = cast<ConstantArray>(GV->getInitializer()); 618 for (Value *Op : Init->operands()) { 619 GlobalValue *G = cast<GlobalValue>(Op->stripPointerCasts()); 620 Set.insert(G); 621 } 622 return GV; 623 } 624