1 //===- Module.cpp - Implement the Module class ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Module class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Module.h" 15 #include "SymbolTableListTraitsImpl.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringMap.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/IR/Attributes.h" 24 #include "llvm/IR/Comdat.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GVMaterializer.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/SymbolTableListTraits.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/TypeFinder.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/IR/ValueSymbolTable.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/CodeGen.h" 45 #include "llvm/Support/Error.h" 46 #include "llvm/Support/MemoryBuffer.h" 47 #include "llvm/Support/Path.h" 48 #include "llvm/Support/RandomNumberGenerator.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstdint> 52 #include <memory> 53 #include <utility> 54 #include <vector> 55 56 using namespace llvm; 57 58 //===----------------------------------------------------------------------===// 59 // Methods to implement the globals and functions lists. 60 // 61 62 // Explicit instantiations of SymbolTableListTraits since some of the methods 63 // are not in the public header file. 64 template class llvm::SymbolTableListTraits<Function>; 65 template class llvm::SymbolTableListTraits<GlobalVariable>; 66 template class llvm::SymbolTableListTraits<GlobalAlias>; 67 template class llvm::SymbolTableListTraits<GlobalIFunc>; 68 69 //===----------------------------------------------------------------------===// 70 // Primitive Module methods. 71 // 72 73 Module::Module(StringRef MID, LLVMContext &C) 74 : Context(C), Materializer(), ModuleID(MID), SourceFileName(MID), DL("") { 75 ValSymTab = new ValueSymbolTable(); 76 NamedMDSymTab = new StringMap<NamedMDNode *>(); 77 Context.addModule(this); 78 } 79 80 Module::~Module() { 81 Context.removeModule(this); 82 dropAllReferences(); 83 GlobalList.clear(); 84 FunctionList.clear(); 85 AliasList.clear(); 86 IFuncList.clear(); 87 NamedMDList.clear(); 88 delete ValSymTab; 89 delete static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab); 90 } 91 92 std::unique_ptr<RandomNumberGenerator> Module::createRNG(const Pass* P) const { 93 SmallString<32> Salt(P->getPassName()); 94 95 // This RNG is guaranteed to produce the same random stream only 96 // when the Module ID and thus the input filename is the same. This 97 // might be problematic if the input filename extension changes 98 // (e.g. from .c to .bc or .ll). 99 // 100 // We could store this salt in NamedMetadata, but this would make 101 // the parameter non-const. This would unfortunately make this 102 // interface unusable by any Machine passes, since they only have a 103 // const reference to their IR Module. Alternatively we can always 104 // store salt metadata from the Module constructor. 105 Salt += sys::path::filename(getModuleIdentifier()); 106 107 return std::unique_ptr<RandomNumberGenerator>(new RandomNumberGenerator(Salt)); 108 } 109 110 /// getNamedValue - Return the first global value in the module with 111 /// the specified name, of arbitrary type. This method returns null 112 /// if a global with the specified name is not found. 113 GlobalValue *Module::getNamedValue(StringRef Name) const { 114 return cast_or_null<GlobalValue>(getValueSymbolTable().lookup(Name)); 115 } 116 117 /// getMDKindID - Return a unique non-zero ID for the specified metadata kind. 118 /// This ID is uniqued across modules in the current LLVMContext. 119 unsigned Module::getMDKindID(StringRef Name) const { 120 return Context.getMDKindID(Name); 121 } 122 123 /// getMDKindNames - Populate client supplied SmallVector with the name for 124 /// custom metadata IDs registered in this LLVMContext. ID #0 is not used, 125 /// so it is filled in as an empty string. 126 void Module::getMDKindNames(SmallVectorImpl<StringRef> &Result) const { 127 return Context.getMDKindNames(Result); 128 } 129 130 void Module::getOperandBundleTags(SmallVectorImpl<StringRef> &Result) const { 131 return Context.getOperandBundleTags(Result); 132 } 133 134 //===----------------------------------------------------------------------===// 135 // Methods for easy access to the functions in the module. 136 // 137 138 // getOrInsertFunction - Look up the specified function in the module symbol 139 // table. If it does not exist, add a prototype for the function and return 140 // it. This is nice because it allows most passes to get away with not handling 141 // the symbol table directly for this common task. 142 // 143 Constant *Module::getOrInsertFunction(StringRef Name, FunctionType *Ty, 144 AttributeList AttributeList) { 145 // See if we have a definition for the specified function already. 146 GlobalValue *F = getNamedValue(Name); 147 if (!F) { 148 // Nope, add it 149 Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage, 150 DL.getProgramAddressSpace(), Name); 151 if (!New->isIntrinsic()) // Intrinsics get attrs set on construction 152 New->setAttributes(AttributeList); 153 FunctionList.push_back(New); 154 return New; // Return the new prototype. 155 } 156 157 // If the function exists but has the wrong type, return a bitcast to the 158 // right type. 159 auto *PTy = PointerType::get(Ty, F->getAddressSpace()); 160 if (F->getType() != PTy) 161 return ConstantExpr::getBitCast(F, PTy); 162 163 // Otherwise, we just found the existing function or a prototype. 164 return F; 165 } 166 167 Constant *Module::getOrInsertFunction(StringRef Name, 168 FunctionType *Ty) { 169 return getOrInsertFunction(Name, Ty, AttributeList()); 170 } 171 172 // getFunction - Look up the specified function in the module symbol table. 173 // If it does not exist, return null. 174 // 175 Function *Module::getFunction(StringRef Name) const { 176 return dyn_cast_or_null<Function>(getNamedValue(Name)); 177 } 178 179 //===----------------------------------------------------------------------===// 180 // Methods for easy access to the global variables in the module. 181 // 182 183 /// getGlobalVariable - Look up the specified global variable in the module 184 /// symbol table. If it does not exist, return null. The type argument 185 /// should be the underlying type of the global, i.e., it should not have 186 /// the top-level PointerType, which represents the address of the global. 187 /// If AllowLocal is set to true, this function will return types that 188 /// have an local. By default, these types are not returned. 189 /// 190 GlobalVariable *Module::getGlobalVariable(StringRef Name, 191 bool AllowLocal) const { 192 if (GlobalVariable *Result = 193 dyn_cast_or_null<GlobalVariable>(getNamedValue(Name))) 194 if (AllowLocal || !Result->hasLocalLinkage()) 195 return Result; 196 return nullptr; 197 } 198 199 /// getOrInsertGlobal - Look up the specified global in the module symbol table. 200 /// 1. If it does not exist, add a declaration of the global and return it. 201 /// 2. Else, the global exists but has the wrong type: return the function 202 /// with a constantexpr cast to the right type. 203 /// 3. Finally, if the existing global is the correct declaration, return the 204 /// existing global. 205 Constant *Module::getOrInsertGlobal(StringRef Name, Type *Ty) { 206 // See if we have a definition for the specified global already. 207 GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(getNamedValue(Name)); 208 if (!GV) { 209 // Nope, add it 210 GlobalVariable *New = 211 new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage, 212 nullptr, Name); 213 return New; // Return the new declaration. 214 } 215 216 // If the variable exists but has the wrong type, return a bitcast to the 217 // right type. 218 Type *GVTy = GV->getType(); 219 PointerType *PTy = PointerType::get(Ty, GVTy->getPointerAddressSpace()); 220 if (GVTy != PTy) 221 return ConstantExpr::getBitCast(GV, PTy); 222 223 // Otherwise, we just found the existing function or a prototype. 224 return GV; 225 } 226 227 //===----------------------------------------------------------------------===// 228 // Methods for easy access to the global variables in the module. 229 // 230 231 // getNamedAlias - Look up the specified global in the module symbol table. 232 // If it does not exist, return null. 233 // 234 GlobalAlias *Module::getNamedAlias(StringRef Name) const { 235 return dyn_cast_or_null<GlobalAlias>(getNamedValue(Name)); 236 } 237 238 GlobalIFunc *Module::getNamedIFunc(StringRef Name) const { 239 return dyn_cast_or_null<GlobalIFunc>(getNamedValue(Name)); 240 } 241 242 /// getNamedMetadata - Return the first NamedMDNode in the module with the 243 /// specified name. This method returns null if a NamedMDNode with the 244 /// specified name is not found. 245 NamedMDNode *Module::getNamedMetadata(const Twine &Name) const { 246 SmallString<256> NameData; 247 StringRef NameRef = Name.toStringRef(NameData); 248 return static_cast<StringMap<NamedMDNode*> *>(NamedMDSymTab)->lookup(NameRef); 249 } 250 251 /// getOrInsertNamedMetadata - Return the first named MDNode in the module 252 /// with the specified name. This method returns a new NamedMDNode if a 253 /// NamedMDNode with the specified name is not found. 254 NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) { 255 NamedMDNode *&NMD = 256 (*static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab))[Name]; 257 if (!NMD) { 258 NMD = new NamedMDNode(Name); 259 NMD->setParent(this); 260 NamedMDList.push_back(NMD); 261 } 262 return NMD; 263 } 264 265 /// eraseNamedMetadata - Remove the given NamedMDNode from this module and 266 /// delete it. 267 void Module::eraseNamedMetadata(NamedMDNode *NMD) { 268 static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab)->erase(NMD->getName()); 269 NamedMDList.erase(NMD->getIterator()); 270 } 271 272 bool Module::isValidModFlagBehavior(Metadata *MD, ModFlagBehavior &MFB) { 273 if (ConstantInt *Behavior = mdconst::dyn_extract_or_null<ConstantInt>(MD)) { 274 uint64_t Val = Behavior->getLimitedValue(); 275 if (Val >= ModFlagBehaviorFirstVal && Val <= ModFlagBehaviorLastVal) { 276 MFB = static_cast<ModFlagBehavior>(Val); 277 return true; 278 } 279 } 280 return false; 281 } 282 283 /// getModuleFlagsMetadata - Returns the module flags in the provided vector. 284 void Module:: 285 getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const { 286 const NamedMDNode *ModFlags = getModuleFlagsMetadata(); 287 if (!ModFlags) return; 288 289 for (const MDNode *Flag : ModFlags->operands()) { 290 ModFlagBehavior MFB; 291 if (Flag->getNumOperands() >= 3 && 292 isValidModFlagBehavior(Flag->getOperand(0), MFB) && 293 dyn_cast_or_null<MDString>(Flag->getOperand(1))) { 294 // Check the operands of the MDNode before accessing the operands. 295 // The verifier will actually catch these failures. 296 MDString *Key = cast<MDString>(Flag->getOperand(1)); 297 Metadata *Val = Flag->getOperand(2); 298 Flags.push_back(ModuleFlagEntry(MFB, Key, Val)); 299 } 300 } 301 } 302 303 /// Return the corresponding value if Key appears in module flags, otherwise 304 /// return null. 305 Metadata *Module::getModuleFlag(StringRef Key) const { 306 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 307 getModuleFlagsMetadata(ModuleFlags); 308 for (const ModuleFlagEntry &MFE : ModuleFlags) { 309 if (Key == MFE.Key->getString()) 310 return MFE.Val; 311 } 312 return nullptr; 313 } 314 315 /// getModuleFlagsMetadata - Returns the NamedMDNode in the module that 316 /// represents module-level flags. This method returns null if there are no 317 /// module-level flags. 318 NamedMDNode *Module::getModuleFlagsMetadata() const { 319 return getNamedMetadata("llvm.module.flags"); 320 } 321 322 /// getOrInsertModuleFlagsMetadata - Returns the NamedMDNode in the module that 323 /// represents module-level flags. If module-level flags aren't found, it 324 /// creates the named metadata that contains them. 325 NamedMDNode *Module::getOrInsertModuleFlagsMetadata() { 326 return getOrInsertNamedMetadata("llvm.module.flags"); 327 } 328 329 /// addModuleFlag - Add a module-level flag to the module-level flags 330 /// metadata. It will create the module-level flags named metadata if it doesn't 331 /// already exist. 332 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 333 Metadata *Val) { 334 Type *Int32Ty = Type::getInt32Ty(Context); 335 Metadata *Ops[3] = { 336 ConstantAsMetadata::get(ConstantInt::get(Int32Ty, Behavior)), 337 MDString::get(Context, Key), Val}; 338 getOrInsertModuleFlagsMetadata()->addOperand(MDNode::get(Context, Ops)); 339 } 340 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 341 Constant *Val) { 342 addModuleFlag(Behavior, Key, ConstantAsMetadata::get(Val)); 343 } 344 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 345 uint32_t Val) { 346 Type *Int32Ty = Type::getInt32Ty(Context); 347 addModuleFlag(Behavior, Key, ConstantInt::get(Int32Ty, Val)); 348 } 349 void Module::addModuleFlag(MDNode *Node) { 350 assert(Node->getNumOperands() == 3 && 351 "Invalid number of operands for module flag!"); 352 assert(mdconst::hasa<ConstantInt>(Node->getOperand(0)) && 353 isa<MDString>(Node->getOperand(1)) && 354 "Invalid operand types for module flag!"); 355 getOrInsertModuleFlagsMetadata()->addOperand(Node); 356 } 357 358 void Module::setDataLayout(StringRef Desc) { 359 DL.reset(Desc); 360 } 361 362 void Module::setDataLayout(const DataLayout &Other) { DL = Other; } 363 364 const DataLayout &Module::getDataLayout() const { return DL; } 365 366 DICompileUnit *Module::debug_compile_units_iterator::operator*() const { 367 return cast<DICompileUnit>(CUs->getOperand(Idx)); 368 } 369 DICompileUnit *Module::debug_compile_units_iterator::operator->() const { 370 return cast<DICompileUnit>(CUs->getOperand(Idx)); 371 } 372 373 void Module::debug_compile_units_iterator::SkipNoDebugCUs() { 374 while (CUs && (Idx < CUs->getNumOperands()) && 375 ((*this)->getEmissionKind() == DICompileUnit::NoDebug)) 376 ++Idx; 377 } 378 379 //===----------------------------------------------------------------------===// 380 // Methods to control the materialization of GlobalValues in the Module. 381 // 382 void Module::setMaterializer(GVMaterializer *GVM) { 383 assert(!Materializer && 384 "Module already has a GVMaterializer. Call materializeAll" 385 " to clear it out before setting another one."); 386 Materializer.reset(GVM); 387 } 388 389 Error Module::materialize(GlobalValue *GV) { 390 if (!Materializer) 391 return Error::success(); 392 393 return Materializer->materialize(GV); 394 } 395 396 Error Module::materializeAll() { 397 if (!Materializer) 398 return Error::success(); 399 std::unique_ptr<GVMaterializer> M = std::move(Materializer); 400 return M->materializeModule(); 401 } 402 403 Error Module::materializeMetadata() { 404 if (!Materializer) 405 return Error::success(); 406 return Materializer->materializeMetadata(); 407 } 408 409 //===----------------------------------------------------------------------===// 410 // Other module related stuff. 411 // 412 413 std::vector<StructType *> Module::getIdentifiedStructTypes() const { 414 // If we have a materializer, it is possible that some unread function 415 // uses a type that is currently not visible to a TypeFinder, so ask 416 // the materializer which types it created. 417 if (Materializer) 418 return Materializer->getIdentifiedStructTypes(); 419 420 std::vector<StructType *> Ret; 421 TypeFinder SrcStructTypes; 422 SrcStructTypes.run(*this, true); 423 Ret.assign(SrcStructTypes.begin(), SrcStructTypes.end()); 424 return Ret; 425 } 426 427 // dropAllReferences() - This function causes all the subelements to "let go" 428 // of all references that they are maintaining. This allows one to 'delete' a 429 // whole module at a time, even though there may be circular references... first 430 // all references are dropped, and all use counts go to zero. Then everything 431 // is deleted for real. Note that no operations are valid on an object that 432 // has "dropped all references", except operator delete. 433 // 434 void Module::dropAllReferences() { 435 for (Function &F : *this) 436 F.dropAllReferences(); 437 438 for (GlobalVariable &GV : globals()) 439 GV.dropAllReferences(); 440 441 for (GlobalAlias &GA : aliases()) 442 GA.dropAllReferences(); 443 444 for (GlobalIFunc &GIF : ifuncs()) 445 GIF.dropAllReferences(); 446 } 447 448 unsigned Module::getNumberRegisterParameters() const { 449 auto *Val = 450 cast_or_null<ConstantAsMetadata>(getModuleFlag("NumRegisterParameters")); 451 if (!Val) 452 return 0; 453 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 454 } 455 456 unsigned Module::getDwarfVersion() const { 457 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Dwarf Version")); 458 if (!Val) 459 return 0; 460 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 461 } 462 463 unsigned Module::getCodeViewFlag() const { 464 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("CodeView")); 465 if (!Val) 466 return 0; 467 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 468 } 469 470 unsigned Module::getInstructionCount() { 471 unsigned NumInstrs = 0; 472 for (Function &F : FunctionList) 473 NumInstrs += F.getInstructionCount(); 474 return NumInstrs; 475 } 476 477 Comdat *Module::getOrInsertComdat(StringRef Name) { 478 auto &Entry = *ComdatSymTab.insert(std::make_pair(Name, Comdat())).first; 479 Entry.second.Name = &Entry; 480 return &Entry.second; 481 } 482 483 PICLevel::Level Module::getPICLevel() const { 484 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIC Level")); 485 486 if (!Val) 487 return PICLevel::NotPIC; 488 489 return static_cast<PICLevel::Level>( 490 cast<ConstantInt>(Val->getValue())->getZExtValue()); 491 } 492 493 void Module::setPICLevel(PICLevel::Level PL) { 494 addModuleFlag(ModFlagBehavior::Max, "PIC Level", PL); 495 } 496 497 PIELevel::Level Module::getPIELevel() const { 498 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIE Level")); 499 500 if (!Val) 501 return PIELevel::Default; 502 503 return static_cast<PIELevel::Level>( 504 cast<ConstantInt>(Val->getValue())->getZExtValue()); 505 } 506 507 void Module::setPIELevel(PIELevel::Level PL) { 508 addModuleFlag(ModFlagBehavior::Max, "PIE Level", PL); 509 } 510 511 Optional<CodeModel::Model> Module::getCodeModel() const { 512 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Code Model")); 513 514 if (!Val) 515 return None; 516 517 return static_cast<CodeModel::Model>( 518 cast<ConstantInt>(Val->getValue())->getZExtValue()); 519 } 520 521 void Module::setCodeModel(CodeModel::Model CL) { 522 // Linking object files with different code models is undefined behavior 523 // because the compiler would have to generate additional code (to span 524 // longer jumps) if a larger code model is used with a smaller one. 525 // Therefore we will treat attempts to mix code models as an error. 526 addModuleFlag(ModFlagBehavior::Error, "Code Model", CL); 527 } 528 529 void Module::setProfileSummary(Metadata *M) { 530 addModuleFlag(ModFlagBehavior::Error, "ProfileSummary", M); 531 } 532 533 Metadata *Module::getProfileSummary() { 534 return getModuleFlag("ProfileSummary"); 535 } 536 537 void Module::setOwnedMemoryBuffer(std::unique_ptr<MemoryBuffer> MB) { 538 OwnedMemoryBuffer = std::move(MB); 539 } 540 541 bool Module::getRtLibUseGOT() const { 542 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("RtLibUseGOT")); 543 return Val && (cast<ConstantInt>(Val->getValue())->getZExtValue() > 0); 544 } 545 546 void Module::setRtLibUseGOT() { 547 addModuleFlag(ModFlagBehavior::Max, "RtLibUseGOT", 1); 548 } 549 550 GlobalVariable *llvm::collectUsedGlobalVariables( 551 const Module &M, SmallPtrSetImpl<GlobalValue *> &Set, bool CompilerUsed) { 552 const char *Name = CompilerUsed ? "llvm.compiler.used" : "llvm.used"; 553 GlobalVariable *GV = M.getGlobalVariable(Name); 554 if (!GV || !GV->hasInitializer()) 555 return GV; 556 557 const ConstantArray *Init = cast<ConstantArray>(GV->getInitializer()); 558 for (Value *Op : Init->operands()) { 559 GlobalValue *G = cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases()); 560 Set.insert(G); 561 } 562 return GV; 563 } 564