1 //===- Metadata.cpp - Implement Metadata classes --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Metadata classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Metadata.h" 14 #include "LLVMContextImpl.h" 15 #include "MetadataImpl.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/IR/Argument.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/ConstantRange.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DebugInfoMetadata.h" 35 #include "llvm/IR/DebugLoc.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GlobalObject.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/TrackingMDRef.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/IR/Value.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/MathExtras.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstddef> 52 #include <cstdint> 53 #include <type_traits> 54 #include <utility> 55 #include <vector> 56 57 using namespace llvm; 58 59 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD) 60 : Value(Ty, MetadataAsValueVal), MD(MD) { 61 track(); 62 } 63 64 MetadataAsValue::~MetadataAsValue() { 65 getType()->getContext().pImpl->MetadataAsValues.erase(MD); 66 untrack(); 67 } 68 69 /// Canonicalize metadata arguments to intrinsics. 70 /// 71 /// To support bitcode upgrades (and assembly semantic sugar) for \a 72 /// MetadataAsValue, we need to canonicalize certain metadata. 73 /// 74 /// - nullptr is replaced by an empty MDNode. 75 /// - An MDNode with a single null operand is replaced by an empty MDNode. 76 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped. 77 /// 78 /// This maintains readability of bitcode from when metadata was a type of 79 /// value, and these bridges were unnecessary. 80 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context, 81 Metadata *MD) { 82 if (!MD) 83 // !{} 84 return MDNode::get(Context, None); 85 86 // Return early if this isn't a single-operand MDNode. 87 auto *N = dyn_cast<MDNode>(MD); 88 if (!N || N->getNumOperands() != 1) 89 return MD; 90 91 if (!N->getOperand(0)) 92 // !{} 93 return MDNode::get(Context, None); 94 95 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0))) 96 // Look through the MDNode. 97 return C; 98 99 return MD; 100 } 101 102 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) { 103 MD = canonicalizeMetadataForValue(Context, MD); 104 auto *&Entry = Context.pImpl->MetadataAsValues[MD]; 105 if (!Entry) 106 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD); 107 return Entry; 108 } 109 110 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context, 111 Metadata *MD) { 112 MD = canonicalizeMetadataForValue(Context, MD); 113 auto &Store = Context.pImpl->MetadataAsValues; 114 return Store.lookup(MD); 115 } 116 117 void MetadataAsValue::handleChangedMetadata(Metadata *MD) { 118 LLVMContext &Context = getContext(); 119 MD = canonicalizeMetadataForValue(Context, MD); 120 auto &Store = Context.pImpl->MetadataAsValues; 121 122 // Stop tracking the old metadata. 123 Store.erase(this->MD); 124 untrack(); 125 this->MD = nullptr; 126 127 // Start tracking MD, or RAUW if necessary. 128 auto *&Entry = Store[MD]; 129 if (Entry) { 130 replaceAllUsesWith(Entry); 131 delete this; 132 return; 133 } 134 135 this->MD = MD; 136 track(); 137 Entry = this; 138 } 139 140 void MetadataAsValue::track() { 141 if (MD) 142 MetadataTracking::track(&MD, *MD, *this); 143 } 144 145 void MetadataAsValue::untrack() { 146 if (MD) 147 MetadataTracking::untrack(MD); 148 } 149 150 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) { 151 assert(Ref && "Expected live reference"); 152 assert((Owner || *static_cast<Metadata **>(Ref) == &MD) && 153 "Reference without owner must be direct"); 154 if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) { 155 R->addRef(Ref, Owner); 156 return true; 157 } 158 if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) { 159 assert(!PH->Use && "Placeholders can only be used once"); 160 assert(!Owner && "Unexpected callback to owner"); 161 PH->Use = static_cast<Metadata **>(Ref); 162 return true; 163 } 164 return false; 165 } 166 167 void MetadataTracking::untrack(void *Ref, Metadata &MD) { 168 assert(Ref && "Expected live reference"); 169 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) 170 R->dropRef(Ref); 171 else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) 172 PH->Use = nullptr; 173 } 174 175 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) { 176 assert(Ref && "Expected live reference"); 177 assert(New && "Expected live reference"); 178 assert(Ref != New && "Expected change"); 179 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) { 180 R->moveRef(Ref, New, MD); 181 return true; 182 } 183 assert(!isa<DistinctMDOperandPlaceholder>(MD) && 184 "Unexpected move of an MDOperand"); 185 assert(!isReplaceable(MD) && 186 "Expected un-replaceable metadata, since we didn't move a reference"); 187 return false; 188 } 189 190 bool MetadataTracking::isReplaceable(const Metadata &MD) { 191 return ReplaceableMetadataImpl::isReplaceable(MD); 192 } 193 194 SmallVector<Metadata *> ReplaceableMetadataImpl::getAllArgListUsers() { 195 SmallVector<std::pair<OwnerTy, uint64_t> *> MDUsersWithID; 196 for (auto Pair : UseMap) { 197 OwnerTy Owner = Pair.second.first; 198 if (!Owner.is<Metadata *>()) 199 continue; 200 Metadata *OwnerMD = Owner.get<Metadata *>(); 201 if (OwnerMD->getMetadataID() == Metadata::DIArgListKind) 202 MDUsersWithID.push_back(&UseMap[Pair.first]); 203 } 204 llvm::sort(MDUsersWithID, [](auto UserA, auto UserB) { 205 return UserA->second < UserB->second; 206 }); 207 SmallVector<Metadata *> MDUsers; 208 for (auto UserWithID : MDUsersWithID) 209 MDUsers.push_back(UserWithID->first.get<Metadata *>()); 210 return MDUsers; 211 } 212 213 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) { 214 bool WasInserted = 215 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex))) 216 .second; 217 (void)WasInserted; 218 assert(WasInserted && "Expected to add a reference"); 219 220 ++NextIndex; 221 assert(NextIndex != 0 && "Unexpected overflow"); 222 } 223 224 void ReplaceableMetadataImpl::dropRef(void *Ref) { 225 bool WasErased = UseMap.erase(Ref); 226 (void)WasErased; 227 assert(WasErased && "Expected to drop a reference"); 228 } 229 230 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New, 231 const Metadata &MD) { 232 auto I = UseMap.find(Ref); 233 assert(I != UseMap.end() && "Expected to move a reference"); 234 auto OwnerAndIndex = I->second; 235 UseMap.erase(I); 236 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second; 237 (void)WasInserted; 238 assert(WasInserted && "Expected to add a reference"); 239 240 // Check that the references are direct if there's no owner. 241 (void)MD; 242 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) && 243 "Reference without owner must be direct"); 244 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) && 245 "Reference without owner must be direct"); 246 } 247 248 void ReplaceableMetadataImpl::SalvageDebugInfo(const Constant &C) { 249 if (!C.isUsedByMetadata()) { 250 return; 251 } 252 253 LLVMContext &Context = C.getType()->getContext(); 254 auto &Store = Context.pImpl->ValuesAsMetadata; 255 auto I = Store.find(&C); 256 ValueAsMetadata *MD = I->second; 257 using UseTy = 258 std::pair<void *, std::pair<MetadataTracking::OwnerTy, uint64_t>>; 259 // Copy out uses and update value of Constant used by debug info metadata with undef below 260 SmallVector<UseTy, 8> Uses(MD->UseMap.begin(), MD->UseMap.end()); 261 262 for (const auto &Pair : Uses) { 263 MetadataTracking::OwnerTy Owner = Pair.second.first; 264 if (!Owner) 265 continue; 266 if (!Owner.is<Metadata *>()) 267 continue; 268 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>()); 269 if (!OwnerMD) 270 continue; 271 if (isa<DINode>(OwnerMD)) { 272 OwnerMD->handleChangedOperand( 273 Pair.first, ValueAsMetadata::get(UndefValue::get(C.getType()))); 274 } 275 } 276 } 277 278 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) { 279 if (UseMap.empty()) 280 return; 281 282 // Copy out uses since UseMap will get touched below. 283 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>; 284 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 285 llvm::sort(Uses, llvm::less_second()); 286 for (const auto &Pair : Uses) { 287 // Check that this Ref hasn't disappeared after RAUW (when updating a 288 // previous Ref). 289 if (!UseMap.count(Pair.first)) 290 continue; 291 292 OwnerTy Owner = Pair.second.first; 293 if (!Owner) { 294 // Update unowned tracking references directly. 295 Metadata *&Ref = *static_cast<Metadata **>(Pair.first); 296 Ref = MD; 297 if (MD) 298 MetadataTracking::track(Ref); 299 UseMap.erase(Pair.first); 300 continue; 301 } 302 303 // Check for MetadataAsValue. 304 if (Owner.is<MetadataAsValue *>()) { 305 Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD); 306 continue; 307 } 308 309 // There's a Metadata owner -- dispatch. 310 Metadata *OwnerMD = Owner.get<Metadata *>(); 311 switch (OwnerMD->getMetadataID()) { 312 #define HANDLE_METADATA_LEAF(CLASS) \ 313 case Metadata::CLASS##Kind: \ 314 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \ 315 continue; 316 #include "llvm/IR/Metadata.def" 317 default: 318 llvm_unreachable("Invalid metadata subclass"); 319 } 320 } 321 assert(UseMap.empty() && "Expected all uses to be replaced"); 322 } 323 324 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) { 325 if (UseMap.empty()) 326 return; 327 328 if (!ResolveUsers) { 329 UseMap.clear(); 330 return; 331 } 332 333 // Copy out uses since UseMap could get touched below. 334 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>; 335 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 336 llvm::sort(Uses, [](const UseTy &L, const UseTy &R) { 337 return L.second.second < R.second.second; 338 }); 339 UseMap.clear(); 340 for (const auto &Pair : Uses) { 341 auto Owner = Pair.second.first; 342 if (!Owner) 343 continue; 344 if (Owner.is<MetadataAsValue *>()) 345 continue; 346 347 // Resolve MDNodes that point at this. 348 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>()); 349 if (!OwnerMD) 350 continue; 351 if (OwnerMD->isResolved()) 352 continue; 353 OwnerMD->decrementUnresolvedOperandCount(); 354 } 355 } 356 357 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) { 358 if (auto *N = dyn_cast<MDNode>(&MD)) 359 return N->isResolved() ? nullptr : N->Context.getOrCreateReplaceableUses(); 360 return dyn_cast<ValueAsMetadata>(&MD); 361 } 362 363 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) { 364 if (auto *N = dyn_cast<MDNode>(&MD)) 365 return N->isResolved() ? nullptr : N->Context.getReplaceableUses(); 366 return dyn_cast<ValueAsMetadata>(&MD); 367 } 368 369 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) { 370 if (auto *N = dyn_cast<MDNode>(&MD)) 371 return !N->isResolved(); 372 return isa<ValueAsMetadata>(&MD); 373 } 374 375 static DISubprogram *getLocalFunctionMetadata(Value *V) { 376 assert(V && "Expected value"); 377 if (auto *A = dyn_cast<Argument>(V)) { 378 if (auto *Fn = A->getParent()) 379 return Fn->getSubprogram(); 380 return nullptr; 381 } 382 383 if (BasicBlock *BB = cast<Instruction>(V)->getParent()) { 384 if (auto *Fn = BB->getParent()) 385 return Fn->getSubprogram(); 386 return nullptr; 387 } 388 389 return nullptr; 390 } 391 392 ValueAsMetadata *ValueAsMetadata::get(Value *V) { 393 assert(V && "Unexpected null Value"); 394 395 auto &Context = V->getContext(); 396 auto *&Entry = Context.pImpl->ValuesAsMetadata[V]; 397 if (!Entry) { 398 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) && 399 "Expected constant or function-local value"); 400 assert(!V->IsUsedByMD && "Expected this to be the only metadata use"); 401 V->IsUsedByMD = true; 402 if (auto *C = dyn_cast<Constant>(V)) 403 Entry = new ConstantAsMetadata(C); 404 else 405 Entry = new LocalAsMetadata(V); 406 } 407 408 return Entry; 409 } 410 411 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) { 412 assert(V && "Unexpected null Value"); 413 return V->getContext().pImpl->ValuesAsMetadata.lookup(V); 414 } 415 416 void ValueAsMetadata::handleDeletion(Value *V) { 417 assert(V && "Expected valid value"); 418 419 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata; 420 auto I = Store.find(V); 421 if (I == Store.end()) 422 return; 423 424 // Remove old entry from the map. 425 ValueAsMetadata *MD = I->second; 426 assert(MD && "Expected valid metadata"); 427 assert(MD->getValue() == V && "Expected valid mapping"); 428 Store.erase(I); 429 430 // Delete the metadata. 431 MD->replaceAllUsesWith(nullptr); 432 delete MD; 433 } 434 435 void ValueAsMetadata::handleRAUW(Value *From, Value *To) { 436 assert(From && "Expected valid value"); 437 assert(To && "Expected valid value"); 438 assert(From != To && "Expected changed value"); 439 assert(From->getType() == To->getType() && "Unexpected type change"); 440 441 LLVMContext &Context = From->getType()->getContext(); 442 auto &Store = Context.pImpl->ValuesAsMetadata; 443 auto I = Store.find(From); 444 if (I == Store.end()) { 445 assert(!From->IsUsedByMD && "Expected From not to be used by metadata"); 446 return; 447 } 448 449 // Remove old entry from the map. 450 assert(From->IsUsedByMD && "Expected From to be used by metadata"); 451 From->IsUsedByMD = false; 452 ValueAsMetadata *MD = I->second; 453 assert(MD && "Expected valid metadata"); 454 assert(MD->getValue() == From && "Expected valid mapping"); 455 Store.erase(I); 456 457 if (isa<LocalAsMetadata>(MD)) { 458 if (auto *C = dyn_cast<Constant>(To)) { 459 // Local became a constant. 460 MD->replaceAllUsesWith(ConstantAsMetadata::get(C)); 461 delete MD; 462 return; 463 } 464 if (getLocalFunctionMetadata(From) && getLocalFunctionMetadata(To) && 465 getLocalFunctionMetadata(From) != getLocalFunctionMetadata(To)) { 466 // DISubprogram changed. 467 MD->replaceAllUsesWith(nullptr); 468 delete MD; 469 return; 470 } 471 } else if (!isa<Constant>(To)) { 472 // Changed to function-local value. 473 MD->replaceAllUsesWith(nullptr); 474 delete MD; 475 return; 476 } 477 478 auto *&Entry = Store[To]; 479 if (Entry) { 480 // The target already exists. 481 MD->replaceAllUsesWith(Entry); 482 delete MD; 483 return; 484 } 485 486 // Update MD in place (and update the map entry). 487 assert(!To->IsUsedByMD && "Expected this to be the only metadata use"); 488 To->IsUsedByMD = true; 489 MD->V = To; 490 Entry = MD; 491 } 492 493 //===----------------------------------------------------------------------===// 494 // MDString implementation. 495 // 496 497 MDString *MDString::get(LLVMContext &Context, StringRef Str) { 498 auto &Store = Context.pImpl->MDStringCache; 499 auto I = Store.try_emplace(Str); 500 auto &MapEntry = I.first->getValue(); 501 if (!I.second) 502 return &MapEntry; 503 MapEntry.Entry = &*I.first; 504 return &MapEntry; 505 } 506 507 StringRef MDString::getString() const { 508 assert(Entry && "Expected to find string map entry"); 509 return Entry->first(); 510 } 511 512 //===----------------------------------------------------------------------===// 513 // MDNode implementation. 514 // 515 516 // Assert that the MDNode types will not be unaligned by the objects 517 // prepended to them. 518 #define HANDLE_MDNODE_LEAF(CLASS) \ 519 static_assert( \ 520 alignof(uint64_t) >= alignof(CLASS), \ 521 "Alignment is insufficient after objects prepended to " #CLASS); 522 #include "llvm/IR/Metadata.def" 523 524 void *MDNode::operator new(size_t Size, unsigned NumOps, 525 StorageType /* Storage */) { 526 // uint64_t is the most aligned type we need support (ensured by static_assert 527 // above) 528 size_t AllocSize = alignTo(Header::getAllocSize(NumOps), alignof(uint64_t)); 529 char *Mem = reinterpret_cast<char *>(::operator new(AllocSize + Size)); 530 Header *H = new (Mem + AllocSize - sizeof(Header)) Header(NumOps); 531 return reinterpret_cast<void *>(H + 1); 532 } 533 534 void MDNode::operator delete(void *N) { 535 Header *H = reinterpret_cast<Header *>(N) - 1; 536 void *Mem = H->getAllocation(); 537 H->~Header(); 538 ::operator delete(Mem); 539 } 540 541 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage, 542 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2) 543 : Metadata(ID, Storage), Context(Context) { 544 unsigned Op = 0; 545 for (Metadata *MD : Ops1) 546 setOperand(Op++, MD); 547 for (Metadata *MD : Ops2) 548 setOperand(Op++, MD); 549 550 if (!isUniqued()) 551 return; 552 553 // Count the unresolved operands. If there are any, RAUW support will be 554 // added lazily on first reference. 555 countUnresolvedOperands(); 556 } 557 558 TempMDNode MDNode::clone() const { 559 switch (getMetadataID()) { 560 default: 561 llvm_unreachable("Invalid MDNode subclass"); 562 #define HANDLE_MDNODE_LEAF(CLASS) \ 563 case CLASS##Kind: \ 564 return cast<CLASS>(this)->cloneImpl(); 565 #include "llvm/IR/Metadata.def" 566 } 567 } 568 569 MDNode::Header::Header(unsigned NumOps) { 570 NumOperands = NumOps; 571 MDOperand *O = reinterpret_cast<MDOperand *>(this); 572 for (MDOperand *E = O - NumOps; O != E; --O) 573 (void)new (O - 1) MDOperand(); 574 } 575 576 MDNode::Header::~Header() { 577 MDOperand *O = reinterpret_cast<MDOperand *>(this) - NumOperands; 578 for (MDOperand *E = O + NumOperands; O != E; ++O) 579 (void)O->~MDOperand(); 580 } 581 582 static bool isOperandUnresolved(Metadata *Op) { 583 if (auto *N = dyn_cast_or_null<MDNode>(Op)) 584 return !N->isResolved(); 585 return false; 586 } 587 588 void MDNode::countUnresolvedOperands() { 589 assert(getNumUnresolved() == 0 && "Expected unresolved ops to be uncounted"); 590 assert(isUniqued() && "Expected this to be uniqued"); 591 setNumUnresolved(count_if(operands(), isOperandUnresolved)); 592 } 593 594 void MDNode::makeUniqued() { 595 assert(isTemporary() && "Expected this to be temporary"); 596 assert(!isResolved() && "Expected this to be unresolved"); 597 598 // Enable uniquing callbacks. 599 for (auto &Op : mutable_operands()) 600 Op.reset(Op.get(), this); 601 602 // Make this 'uniqued'. 603 Storage = Uniqued; 604 countUnresolvedOperands(); 605 if (!getNumUnresolved()) { 606 dropReplaceableUses(); 607 assert(isResolved() && "Expected this to be resolved"); 608 } 609 610 assert(isUniqued() && "Expected this to be uniqued"); 611 } 612 613 void MDNode::makeDistinct() { 614 assert(isTemporary() && "Expected this to be temporary"); 615 assert(!isResolved() && "Expected this to be unresolved"); 616 617 // Drop RAUW support and store as a distinct node. 618 dropReplaceableUses(); 619 storeDistinctInContext(); 620 621 assert(isDistinct() && "Expected this to be distinct"); 622 assert(isResolved() && "Expected this to be resolved"); 623 } 624 625 void MDNode::resolve() { 626 assert(isUniqued() && "Expected this to be uniqued"); 627 assert(!isResolved() && "Expected this to be unresolved"); 628 629 setNumUnresolved(0); 630 dropReplaceableUses(); 631 632 assert(isResolved() && "Expected this to be resolved"); 633 } 634 635 void MDNode::dropReplaceableUses() { 636 assert(!getNumUnresolved() && "Unexpected unresolved operand"); 637 638 // Drop any RAUW support. 639 if (Context.hasReplaceableUses()) 640 Context.takeReplaceableUses()->resolveAllUses(); 641 } 642 643 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) { 644 assert(isUniqued() && "Expected this to be uniqued"); 645 assert(getNumUnresolved() != 0 && "Expected unresolved operands"); 646 647 // Check if an operand was resolved. 648 if (!isOperandUnresolved(Old)) { 649 if (isOperandUnresolved(New)) 650 // An operand was un-resolved! 651 setNumUnresolved(getNumUnresolved() + 1); 652 } else if (!isOperandUnresolved(New)) 653 decrementUnresolvedOperandCount(); 654 } 655 656 void MDNode::decrementUnresolvedOperandCount() { 657 assert(!isResolved() && "Expected this to be unresolved"); 658 if (isTemporary()) 659 return; 660 661 assert(isUniqued() && "Expected this to be uniqued"); 662 setNumUnresolved(getNumUnresolved() - 1); 663 if (getNumUnresolved()) 664 return; 665 666 // Last unresolved operand has just been resolved. 667 dropReplaceableUses(); 668 assert(isResolved() && "Expected this to become resolved"); 669 } 670 671 void MDNode::resolveCycles() { 672 if (isResolved()) 673 return; 674 675 // Resolve this node immediately. 676 resolve(); 677 678 // Resolve all operands. 679 for (const auto &Op : operands()) { 680 auto *N = dyn_cast_or_null<MDNode>(Op); 681 if (!N) 682 continue; 683 684 assert(!N->isTemporary() && 685 "Expected all forward declarations to be resolved"); 686 if (!N->isResolved()) 687 N->resolveCycles(); 688 } 689 } 690 691 static bool hasSelfReference(MDNode *N) { 692 return llvm::is_contained(N->operands(), N); 693 } 694 695 MDNode *MDNode::replaceWithPermanentImpl() { 696 switch (getMetadataID()) { 697 default: 698 // If this type isn't uniquable, replace with a distinct node. 699 return replaceWithDistinctImpl(); 700 701 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 702 case CLASS##Kind: \ 703 break; 704 #include "llvm/IR/Metadata.def" 705 } 706 707 // Even if this type is uniquable, self-references have to be distinct. 708 if (hasSelfReference(this)) 709 return replaceWithDistinctImpl(); 710 return replaceWithUniquedImpl(); 711 } 712 713 MDNode *MDNode::replaceWithUniquedImpl() { 714 // Try to uniquify in place. 715 MDNode *UniquedNode = uniquify(); 716 717 if (UniquedNode == this) { 718 makeUniqued(); 719 return this; 720 } 721 722 // Collision, so RAUW instead. 723 replaceAllUsesWith(UniquedNode); 724 deleteAsSubclass(); 725 return UniquedNode; 726 } 727 728 MDNode *MDNode::replaceWithDistinctImpl() { 729 makeDistinct(); 730 return this; 731 } 732 733 void MDTuple::recalculateHash() { 734 setHash(MDTupleInfo::KeyTy::calculateHash(this)); 735 } 736 737 void MDNode::dropAllReferences() { 738 for (unsigned I = 0, E = getNumOperands(); I != E; ++I) 739 setOperand(I, nullptr); 740 if (Context.hasReplaceableUses()) { 741 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false); 742 (void)Context.takeReplaceableUses(); 743 } 744 } 745 746 void MDNode::handleChangedOperand(void *Ref, Metadata *New) { 747 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin(); 748 assert(Op < getNumOperands() && "Expected valid operand"); 749 750 if (!isUniqued()) { 751 // This node is not uniqued. Just set the operand and be done with it. 752 setOperand(Op, New); 753 return; 754 } 755 756 // This node is uniqued. 757 eraseFromStore(); 758 759 Metadata *Old = getOperand(Op); 760 setOperand(Op, New); 761 762 // Drop uniquing for self-reference cycles and deleted constants. 763 if (New == this || (!New && Old && isa<ConstantAsMetadata>(Old))) { 764 if (!isResolved()) 765 resolve(); 766 storeDistinctInContext(); 767 return; 768 } 769 770 // Re-unique the node. 771 auto *Uniqued = uniquify(); 772 if (Uniqued == this) { 773 if (!isResolved()) 774 resolveAfterOperandChange(Old, New); 775 return; 776 } 777 778 // Collision. 779 if (!isResolved()) { 780 // Still unresolved, so RAUW. 781 // 782 // First, clear out all operands to prevent any recursion (similar to 783 // dropAllReferences(), but we still need the use-list). 784 for (unsigned O = 0, E = getNumOperands(); O != E; ++O) 785 setOperand(O, nullptr); 786 if (Context.hasReplaceableUses()) 787 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued); 788 deleteAsSubclass(); 789 return; 790 } 791 792 // Store in non-uniqued form if RAUW isn't possible. 793 storeDistinctInContext(); 794 } 795 796 void MDNode::deleteAsSubclass() { 797 switch (getMetadataID()) { 798 default: 799 llvm_unreachable("Invalid subclass of MDNode"); 800 #define HANDLE_MDNODE_LEAF(CLASS) \ 801 case CLASS##Kind: \ 802 delete cast<CLASS>(this); \ 803 break; 804 #include "llvm/IR/Metadata.def" 805 } 806 } 807 808 template <class T, class InfoT> 809 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) { 810 if (T *U = getUniqued(Store, N)) 811 return U; 812 813 Store.insert(N); 814 return N; 815 } 816 817 template <class NodeTy> struct MDNode::HasCachedHash { 818 using Yes = char[1]; 819 using No = char[2]; 820 template <class U, U Val> struct SFINAE {}; 821 822 template <class U> 823 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *); 824 template <class U> static No &check(...); 825 826 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes); 827 }; 828 829 MDNode *MDNode::uniquify() { 830 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node"); 831 832 // Try to insert into uniquing store. 833 switch (getMetadataID()) { 834 default: 835 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 836 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 837 case CLASS##Kind: { \ 838 CLASS *SubclassThis = cast<CLASS>(this); \ 839 std::integral_constant<bool, HasCachedHash<CLASS>::value> \ 840 ShouldRecalculateHash; \ 841 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \ 842 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \ 843 } 844 #include "llvm/IR/Metadata.def" 845 } 846 } 847 848 void MDNode::eraseFromStore() { 849 switch (getMetadataID()) { 850 default: 851 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 852 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 853 case CLASS##Kind: \ 854 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \ 855 break; 856 #include "llvm/IR/Metadata.def" 857 } 858 } 859 860 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs, 861 StorageType Storage, bool ShouldCreate) { 862 unsigned Hash = 0; 863 if (Storage == Uniqued) { 864 MDTupleInfo::KeyTy Key(MDs); 865 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key)) 866 return N; 867 if (!ShouldCreate) 868 return nullptr; 869 Hash = Key.getHash(); 870 } else { 871 assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); 872 } 873 874 return storeImpl(new (MDs.size(), Storage) 875 MDTuple(Context, Storage, Hash, MDs), 876 Storage, Context.pImpl->MDTuples); 877 } 878 879 void MDNode::deleteTemporary(MDNode *N) { 880 assert(N->isTemporary() && "Expected temporary node"); 881 N->replaceAllUsesWith(nullptr); 882 N->deleteAsSubclass(); 883 } 884 885 void MDNode::storeDistinctInContext() { 886 assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses"); 887 assert(!getNumUnresolved() && "Unexpected unresolved nodes"); 888 Storage = Distinct; 889 assert(isResolved() && "Expected this to be resolved"); 890 891 // Reset the hash. 892 switch (getMetadataID()) { 893 default: 894 llvm_unreachable("Invalid subclass of MDNode"); 895 #define HANDLE_MDNODE_LEAF(CLASS) \ 896 case CLASS##Kind: { \ 897 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \ 898 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \ 899 break; \ 900 } 901 #include "llvm/IR/Metadata.def" 902 } 903 904 getContext().pImpl->DistinctMDNodes.push_back(this); 905 } 906 907 void MDNode::replaceOperandWith(unsigned I, Metadata *New) { 908 if (getOperand(I) == New) 909 return; 910 911 if (!isUniqued()) { 912 setOperand(I, New); 913 return; 914 } 915 916 handleChangedOperand(mutable_begin() + I, New); 917 } 918 919 void MDNode::setOperand(unsigned I, Metadata *New) { 920 assert(I < getNumOperands()); 921 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr); 922 } 923 924 /// Get a node or a self-reference that looks like it. 925 /// 926 /// Special handling for finding self-references, for use by \a 927 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from 928 /// when self-referencing nodes were still uniqued. If the first operand has 929 /// the same operands as \c Ops, return the first operand instead. 930 static MDNode *getOrSelfReference(LLVMContext &Context, 931 ArrayRef<Metadata *> Ops) { 932 if (!Ops.empty()) 933 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0])) 934 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) { 935 for (unsigned I = 1, E = Ops.size(); I != E; ++I) 936 if (Ops[I] != N->getOperand(I)) 937 return MDNode::get(Context, Ops); 938 return N; 939 } 940 941 return MDNode::get(Context, Ops); 942 } 943 944 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) { 945 if (!A) 946 return B; 947 if (!B) 948 return A; 949 950 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 951 MDs.insert(B->op_begin(), B->op_end()); 952 953 // FIXME: This preserves long-standing behaviour, but is it really the right 954 // behaviour? Or was that an unintended side-effect of node uniquing? 955 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 956 } 957 958 MDNode *MDNode::intersect(MDNode *A, MDNode *B) { 959 if (!A || !B) 960 return nullptr; 961 962 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 963 SmallPtrSet<Metadata *, 4> BSet(B->op_begin(), B->op_end()); 964 MDs.remove_if([&](Metadata *MD) { return !BSet.count(MD); }); 965 966 // FIXME: This preserves long-standing behaviour, but is it really the right 967 // behaviour? Or was that an unintended side-effect of node uniquing? 968 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 969 } 970 971 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) { 972 if (!A || !B) 973 return nullptr; 974 975 // Take the intersection of domains then union the scopes 976 // within those domains 977 SmallPtrSet<const MDNode *, 16> ADomains; 978 SmallPtrSet<const MDNode *, 16> IntersectDomains; 979 SmallSetVector<Metadata *, 4> MDs; 980 for (const MDOperand &MDOp : A->operands()) 981 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 982 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 983 ADomains.insert(Domain); 984 985 for (const MDOperand &MDOp : B->operands()) 986 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 987 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 988 if (ADomains.contains(Domain)) { 989 IntersectDomains.insert(Domain); 990 MDs.insert(MDOp); 991 } 992 993 for (const MDOperand &MDOp : A->operands()) 994 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 995 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 996 if (IntersectDomains.contains(Domain)) 997 MDs.insert(MDOp); 998 999 return MDs.empty() ? nullptr 1000 : getOrSelfReference(A->getContext(), MDs.getArrayRef()); 1001 } 1002 1003 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) { 1004 if (!A || !B) 1005 return nullptr; 1006 1007 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF(); 1008 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF(); 1009 if (AVal < BVal) 1010 return A; 1011 return B; 1012 } 1013 1014 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 1015 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 1016 } 1017 1018 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) { 1019 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B); 1020 } 1021 1022 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints, 1023 ConstantInt *Low, ConstantInt *High) { 1024 ConstantRange NewRange(Low->getValue(), High->getValue()); 1025 unsigned Size = EndPoints.size(); 1026 APInt LB = EndPoints[Size - 2]->getValue(); 1027 APInt LE = EndPoints[Size - 1]->getValue(); 1028 ConstantRange LastRange(LB, LE); 1029 if (canBeMerged(NewRange, LastRange)) { 1030 ConstantRange Union = LastRange.unionWith(NewRange); 1031 Type *Ty = High->getType(); 1032 EndPoints[Size - 2] = 1033 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower())); 1034 EndPoints[Size - 1] = 1035 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper())); 1036 return true; 1037 } 1038 return false; 1039 } 1040 1041 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints, 1042 ConstantInt *Low, ConstantInt *High) { 1043 if (!EndPoints.empty()) 1044 if (tryMergeRange(EndPoints, Low, High)) 1045 return; 1046 1047 EndPoints.push_back(Low); 1048 EndPoints.push_back(High); 1049 } 1050 1051 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) { 1052 // Given two ranges, we want to compute the union of the ranges. This 1053 // is slightly complicated by having to combine the intervals and merge 1054 // the ones that overlap. 1055 1056 if (!A || !B) 1057 return nullptr; 1058 1059 if (A == B) 1060 return A; 1061 1062 // First, walk both lists in order of the lower boundary of each interval. 1063 // At each step, try to merge the new interval to the last one we adedd. 1064 SmallVector<ConstantInt *, 4> EndPoints; 1065 int AI = 0; 1066 int BI = 0; 1067 int AN = A->getNumOperands() / 2; 1068 int BN = B->getNumOperands() / 2; 1069 while (AI < AN && BI < BN) { 1070 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI)); 1071 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI)); 1072 1073 if (ALow->getValue().slt(BLow->getValue())) { 1074 addRange(EndPoints, ALow, 1075 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 1076 ++AI; 1077 } else { 1078 addRange(EndPoints, BLow, 1079 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 1080 ++BI; 1081 } 1082 } 1083 while (AI < AN) { 1084 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)), 1085 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 1086 ++AI; 1087 } 1088 while (BI < BN) { 1089 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)), 1090 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 1091 ++BI; 1092 } 1093 1094 // If we have more than 2 ranges (4 endpoints) we have to try to merge 1095 // the last and first ones. 1096 unsigned Size = EndPoints.size(); 1097 if (Size > 4) { 1098 ConstantInt *FB = EndPoints[0]; 1099 ConstantInt *FE = EndPoints[1]; 1100 if (tryMergeRange(EndPoints, FB, FE)) { 1101 for (unsigned i = 0; i < Size - 2; ++i) { 1102 EndPoints[i] = EndPoints[i + 2]; 1103 } 1104 EndPoints.resize(Size - 2); 1105 } 1106 } 1107 1108 // If in the end we have a single range, it is possible that it is now the 1109 // full range. Just drop the metadata in that case. 1110 if (EndPoints.size() == 2) { 1111 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue()); 1112 if (Range.isFullSet()) 1113 return nullptr; 1114 } 1115 1116 SmallVector<Metadata *, 4> MDs; 1117 MDs.reserve(EndPoints.size()); 1118 for (auto *I : EndPoints) 1119 MDs.push_back(ConstantAsMetadata::get(I)); 1120 return MDNode::get(A->getContext(), MDs); 1121 } 1122 1123 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) { 1124 if (!A || !B) 1125 return nullptr; 1126 1127 ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0)); 1128 ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0)); 1129 if (AVal->getZExtValue() < BVal->getZExtValue()) 1130 return A; 1131 return B; 1132 } 1133 1134 //===----------------------------------------------------------------------===// 1135 // NamedMDNode implementation. 1136 // 1137 1138 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) { 1139 return *(SmallVector<TrackingMDRef, 4> *)Operands; 1140 } 1141 1142 NamedMDNode::NamedMDNode(const Twine &N) 1143 : Name(N.str()), Operands(new SmallVector<TrackingMDRef, 4>()) {} 1144 1145 NamedMDNode::~NamedMDNode() { 1146 dropAllReferences(); 1147 delete &getNMDOps(Operands); 1148 } 1149 1150 unsigned NamedMDNode::getNumOperands() const { 1151 return (unsigned)getNMDOps(Operands).size(); 1152 } 1153 1154 MDNode *NamedMDNode::getOperand(unsigned i) const { 1155 assert(i < getNumOperands() && "Invalid Operand number!"); 1156 auto *N = getNMDOps(Operands)[i].get(); 1157 return cast_or_null<MDNode>(N); 1158 } 1159 1160 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); } 1161 1162 void NamedMDNode::setOperand(unsigned I, MDNode *New) { 1163 assert(I < getNumOperands() && "Invalid operand number"); 1164 getNMDOps(Operands)[I].reset(New); 1165 } 1166 1167 void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); } 1168 1169 void NamedMDNode::clearOperands() { getNMDOps(Operands).clear(); } 1170 1171 StringRef NamedMDNode::getName() const { return StringRef(Name); } 1172 1173 //===----------------------------------------------------------------------===// 1174 // Instruction Metadata method implementations. 1175 // 1176 1177 MDNode *MDAttachments::lookup(unsigned ID) const { 1178 for (const auto &A : Attachments) 1179 if (A.MDKind == ID) 1180 return A.Node; 1181 return nullptr; 1182 } 1183 1184 void MDAttachments::get(unsigned ID, SmallVectorImpl<MDNode *> &Result) const { 1185 for (const auto &A : Attachments) 1186 if (A.MDKind == ID) 1187 Result.push_back(A.Node); 1188 } 1189 1190 void MDAttachments::getAll( 1191 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1192 for (const auto &A : Attachments) 1193 Result.emplace_back(A.MDKind, A.Node); 1194 1195 // Sort the resulting array so it is stable with respect to metadata IDs. We 1196 // need to preserve the original insertion order though. 1197 if (Result.size() > 1) 1198 llvm::stable_sort(Result, less_first()); 1199 } 1200 1201 void MDAttachments::set(unsigned ID, MDNode *MD) { 1202 erase(ID); 1203 if (MD) 1204 insert(ID, *MD); 1205 } 1206 1207 void MDAttachments::insert(unsigned ID, MDNode &MD) { 1208 Attachments.push_back({ID, TrackingMDNodeRef(&MD)}); 1209 } 1210 1211 bool MDAttachments::erase(unsigned ID) { 1212 if (empty()) 1213 return false; 1214 1215 // Common case is one value. 1216 if (Attachments.size() == 1 && Attachments.back().MDKind == ID) { 1217 Attachments.pop_back(); 1218 return true; 1219 } 1220 1221 auto OldSize = Attachments.size(); 1222 llvm::erase_if(Attachments, 1223 [ID](const Attachment &A) { return A.MDKind == ID; }); 1224 return OldSize != Attachments.size(); 1225 } 1226 1227 MDNode *Value::getMetadata(unsigned KindID) const { 1228 if (!hasMetadata()) 1229 return nullptr; 1230 const auto &Info = getContext().pImpl->ValueMetadata[this]; 1231 assert(!Info.empty() && "bit out of sync with hash table"); 1232 return Info.lookup(KindID); 1233 } 1234 1235 MDNode *Value::getMetadata(StringRef Kind) const { 1236 if (!hasMetadata()) 1237 return nullptr; 1238 const auto &Info = getContext().pImpl->ValueMetadata[this]; 1239 assert(!Info.empty() && "bit out of sync with hash table"); 1240 return Info.lookup(getContext().getMDKindID(Kind)); 1241 } 1242 1243 void Value::getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const { 1244 if (hasMetadata()) 1245 getContext().pImpl->ValueMetadata[this].get(KindID, MDs); 1246 } 1247 1248 void Value::getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const { 1249 if (hasMetadata()) 1250 getMetadata(getContext().getMDKindID(Kind), MDs); 1251 } 1252 1253 void Value::getAllMetadata( 1254 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { 1255 if (hasMetadata()) { 1256 assert(getContext().pImpl->ValueMetadata.count(this) && 1257 "bit out of sync with hash table"); 1258 const auto &Info = getContext().pImpl->ValueMetadata.find(this)->second; 1259 assert(!Info.empty() && "Shouldn't have called this"); 1260 Info.getAll(MDs); 1261 } 1262 } 1263 1264 void Value::setMetadata(unsigned KindID, MDNode *Node) { 1265 assert(isa<Instruction>(this) || isa<GlobalObject>(this)); 1266 1267 // Handle the case when we're adding/updating metadata on a value. 1268 if (Node) { 1269 auto &Info = getContext().pImpl->ValueMetadata[this]; 1270 assert(!Info.empty() == HasMetadata && "bit out of sync with hash table"); 1271 if (Info.empty()) 1272 HasMetadata = true; 1273 Info.set(KindID, Node); 1274 return; 1275 } 1276 1277 // Otherwise, we're removing metadata from an instruction. 1278 assert((HasMetadata == (getContext().pImpl->ValueMetadata.count(this) > 0)) && 1279 "bit out of sync with hash table"); 1280 if (!HasMetadata) 1281 return; // Nothing to remove! 1282 auto &Info = getContext().pImpl->ValueMetadata[this]; 1283 1284 // Handle removal of an existing value. 1285 Info.erase(KindID); 1286 if (!Info.empty()) 1287 return; 1288 getContext().pImpl->ValueMetadata.erase(this); 1289 HasMetadata = false; 1290 } 1291 1292 void Value::setMetadata(StringRef Kind, MDNode *Node) { 1293 if (!Node && !HasMetadata) 1294 return; 1295 setMetadata(getContext().getMDKindID(Kind), Node); 1296 } 1297 1298 void Value::addMetadata(unsigned KindID, MDNode &MD) { 1299 assert(isa<Instruction>(this) || isa<GlobalObject>(this)); 1300 if (!HasMetadata) 1301 HasMetadata = true; 1302 getContext().pImpl->ValueMetadata[this].insert(KindID, MD); 1303 } 1304 1305 void Value::addMetadata(StringRef Kind, MDNode &MD) { 1306 addMetadata(getContext().getMDKindID(Kind), MD); 1307 } 1308 1309 bool Value::eraseMetadata(unsigned KindID) { 1310 // Nothing to unset. 1311 if (!HasMetadata) 1312 return false; 1313 1314 auto &Store = getContext().pImpl->ValueMetadata[this]; 1315 bool Changed = Store.erase(KindID); 1316 if (Store.empty()) 1317 clearMetadata(); 1318 return Changed; 1319 } 1320 1321 void Value::clearMetadata() { 1322 if (!HasMetadata) 1323 return; 1324 assert(getContext().pImpl->ValueMetadata.count(this) && 1325 "bit out of sync with hash table"); 1326 getContext().pImpl->ValueMetadata.erase(this); 1327 HasMetadata = false; 1328 } 1329 1330 void Instruction::setMetadata(StringRef Kind, MDNode *Node) { 1331 if (!Node && !hasMetadata()) 1332 return; 1333 setMetadata(getContext().getMDKindID(Kind), Node); 1334 } 1335 1336 MDNode *Instruction::getMetadataImpl(StringRef Kind) const { 1337 return getMetadataImpl(getContext().getMDKindID(Kind)); 1338 } 1339 1340 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) { 1341 if (!Value::hasMetadata()) 1342 return; // Nothing to remove! 1343 1344 if (KnownIDs.empty()) { 1345 // Just drop our entry at the store. 1346 clearMetadata(); 1347 return; 1348 } 1349 1350 SmallSet<unsigned, 4> KnownSet; 1351 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 1352 1353 auto &MetadataStore = getContext().pImpl->ValueMetadata; 1354 auto &Info = MetadataStore[this]; 1355 assert(!Info.empty() && "bit out of sync with hash table"); 1356 Info.remove_if([&KnownSet](const MDAttachments::Attachment &I) { 1357 return !KnownSet.count(I.MDKind); 1358 }); 1359 1360 if (Info.empty()) { 1361 // Drop our entry at the store. 1362 clearMetadata(); 1363 } 1364 } 1365 1366 void Instruction::setMetadata(unsigned KindID, MDNode *Node) { 1367 if (!Node && !hasMetadata()) 1368 return; 1369 1370 // Handle 'dbg' as a special case since it is not stored in the hash table. 1371 if (KindID == LLVMContext::MD_dbg) { 1372 DbgLoc = DebugLoc(Node); 1373 return; 1374 } 1375 1376 Value::setMetadata(KindID, Node); 1377 } 1378 1379 void Instruction::addAnnotationMetadata(StringRef Name) { 1380 MDBuilder MDB(getContext()); 1381 1382 auto *Existing = getMetadata(LLVMContext::MD_annotation); 1383 SmallVector<Metadata *, 4> Names; 1384 bool AppendName = true; 1385 if (Existing) { 1386 auto *Tuple = cast<MDTuple>(Existing); 1387 for (auto &N : Tuple->operands()) { 1388 if (cast<MDString>(N.get())->getString() == Name) 1389 AppendName = false; 1390 Names.push_back(N.get()); 1391 } 1392 } 1393 if (AppendName) 1394 Names.push_back(MDB.createString(Name)); 1395 1396 MDNode *MD = MDTuple::get(getContext(), Names); 1397 setMetadata(LLVMContext::MD_annotation, MD); 1398 } 1399 1400 AAMDNodes Instruction::getAAMetadata() const { 1401 AAMDNodes Result; 1402 Result.TBAA = getMetadata(LLVMContext::MD_tbaa); 1403 Result.TBAAStruct = getMetadata(LLVMContext::MD_tbaa_struct); 1404 Result.Scope = getMetadata(LLVMContext::MD_alias_scope); 1405 Result.NoAlias = getMetadata(LLVMContext::MD_noalias); 1406 return Result; 1407 } 1408 1409 void Instruction::setAAMetadata(const AAMDNodes &N) { 1410 setMetadata(LLVMContext::MD_tbaa, N.TBAA); 1411 setMetadata(LLVMContext::MD_tbaa_struct, N.TBAAStruct); 1412 setMetadata(LLVMContext::MD_alias_scope, N.Scope); 1413 setMetadata(LLVMContext::MD_noalias, N.NoAlias); 1414 } 1415 1416 MDNode *Instruction::getMetadataImpl(unsigned KindID) const { 1417 // Handle 'dbg' as a special case since it is not stored in the hash table. 1418 if (KindID == LLVMContext::MD_dbg) 1419 return DbgLoc.getAsMDNode(); 1420 return Value::getMetadata(KindID); 1421 } 1422 1423 void Instruction::getAllMetadataImpl( 1424 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1425 Result.clear(); 1426 1427 // Handle 'dbg' as a special case since it is not stored in the hash table. 1428 if (DbgLoc) { 1429 Result.push_back( 1430 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode())); 1431 } 1432 Value::getAllMetadata(Result); 1433 } 1434 1435 bool Instruction::extractProfMetadata(uint64_t &TrueVal, 1436 uint64_t &FalseVal) const { 1437 assert( 1438 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select) && 1439 "Looking for branch weights on something besides branch or select"); 1440 1441 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1442 if (!ProfileData || ProfileData->getNumOperands() != 3) 1443 return false; 1444 1445 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1446 if (!ProfDataName || !ProfDataName->getString().equals("branch_weights")) 1447 return false; 1448 1449 auto *CITrue = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 1450 auto *CIFalse = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 1451 if (!CITrue || !CIFalse) 1452 return false; 1453 1454 TrueVal = CITrue->getValue().getZExtValue(); 1455 FalseVal = CIFalse->getValue().getZExtValue(); 1456 1457 return true; 1458 } 1459 1460 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) const { 1461 assert( 1462 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select || 1463 getOpcode() == Instruction::Call || getOpcode() == Instruction::Invoke || 1464 getOpcode() == Instruction::IndirectBr || 1465 getOpcode() == Instruction::Switch) && 1466 "Looking for branch weights on something besides branch"); 1467 1468 TotalVal = 0; 1469 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1470 if (!ProfileData) 1471 return false; 1472 1473 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1474 if (!ProfDataName) 1475 return false; 1476 1477 if (ProfDataName->getString().equals("branch_weights")) { 1478 TotalVal = 0; 1479 for (unsigned i = 1; i < ProfileData->getNumOperands(); i++) { 1480 auto *V = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i)); 1481 if (!V) 1482 return false; 1483 TotalVal += V->getValue().getZExtValue(); 1484 } 1485 return true; 1486 } else if (ProfDataName->getString().equals("VP") && 1487 ProfileData->getNumOperands() > 3) { 1488 TotalVal = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)) 1489 ->getValue() 1490 .getZExtValue(); 1491 return true; 1492 } 1493 return false; 1494 } 1495 1496 void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) { 1497 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 1498 Other->getAllMetadata(MDs); 1499 for (auto &MD : MDs) { 1500 // We need to adjust the type metadata offset. 1501 if (Offset != 0 && MD.first == LLVMContext::MD_type) { 1502 auto *OffsetConst = cast<ConstantInt>( 1503 cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue()); 1504 Metadata *TypeId = MD.second->getOperand(1); 1505 auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get( 1506 OffsetConst->getType(), OffsetConst->getValue() + Offset)); 1507 addMetadata(LLVMContext::MD_type, 1508 *MDNode::get(getContext(), {NewOffsetMD, TypeId})); 1509 continue; 1510 } 1511 // If an offset adjustment was specified we need to modify the DIExpression 1512 // to prepend the adjustment: 1513 // !DIExpression(DW_OP_plus, Offset, [original expr]) 1514 auto *Attachment = MD.second; 1515 if (Offset != 0 && MD.first == LLVMContext::MD_dbg) { 1516 DIGlobalVariable *GV = dyn_cast<DIGlobalVariable>(Attachment); 1517 DIExpression *E = nullptr; 1518 if (!GV) { 1519 auto *GVE = cast<DIGlobalVariableExpression>(Attachment); 1520 GV = GVE->getVariable(); 1521 E = GVE->getExpression(); 1522 } 1523 ArrayRef<uint64_t> OrigElements; 1524 if (E) 1525 OrigElements = E->getElements(); 1526 std::vector<uint64_t> Elements(OrigElements.size() + 2); 1527 Elements[0] = dwarf::DW_OP_plus_uconst; 1528 Elements[1] = Offset; 1529 llvm::copy(OrigElements, Elements.begin() + 2); 1530 E = DIExpression::get(getContext(), Elements); 1531 Attachment = DIGlobalVariableExpression::get(getContext(), GV, E); 1532 } 1533 addMetadata(MD.first, *Attachment); 1534 } 1535 } 1536 1537 void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) { 1538 addMetadata( 1539 LLVMContext::MD_type, 1540 *MDTuple::get(getContext(), 1541 {ConstantAsMetadata::get(ConstantInt::get( 1542 Type::getInt64Ty(getContext()), Offset)), 1543 TypeID})); 1544 } 1545 1546 void GlobalObject::setVCallVisibilityMetadata(VCallVisibility Visibility) { 1547 // Remove any existing vcall visibility metadata first in case we are 1548 // updating. 1549 eraseMetadata(LLVMContext::MD_vcall_visibility); 1550 addMetadata(LLVMContext::MD_vcall_visibility, 1551 *MDNode::get(getContext(), 1552 {ConstantAsMetadata::get(ConstantInt::get( 1553 Type::getInt64Ty(getContext()), Visibility))})); 1554 } 1555 1556 GlobalObject::VCallVisibility GlobalObject::getVCallVisibility() const { 1557 if (MDNode *MD = getMetadata(LLVMContext::MD_vcall_visibility)) { 1558 uint64_t Val = cast<ConstantInt>( 1559 cast<ConstantAsMetadata>(MD->getOperand(0))->getValue()) 1560 ->getZExtValue(); 1561 assert(Val <= 2 && "unknown vcall visibility!"); 1562 return (VCallVisibility)Val; 1563 } 1564 return VCallVisibility::VCallVisibilityPublic; 1565 } 1566 1567 void Function::setSubprogram(DISubprogram *SP) { 1568 setMetadata(LLVMContext::MD_dbg, SP); 1569 } 1570 1571 DISubprogram *Function::getSubprogram() const { 1572 return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg)); 1573 } 1574 1575 bool Function::isDebugInfoForProfiling() const { 1576 if (DISubprogram *SP = getSubprogram()) { 1577 if (DICompileUnit *CU = SP->getUnit()) { 1578 return CU->getDebugInfoForProfiling(); 1579 } 1580 } 1581 return false; 1582 } 1583 1584 void GlobalVariable::addDebugInfo(DIGlobalVariableExpression *GV) { 1585 addMetadata(LLVMContext::MD_dbg, *GV); 1586 } 1587 1588 void GlobalVariable::getDebugInfo( 1589 SmallVectorImpl<DIGlobalVariableExpression *> &GVs) const { 1590 SmallVector<MDNode *, 1> MDs; 1591 getMetadata(LLVMContext::MD_dbg, MDs); 1592 for (MDNode *MD : MDs) 1593 GVs.push_back(cast<DIGlobalVariableExpression>(MD)); 1594 } 1595