1 //===- Metadata.cpp - Implement Metadata classes --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Metadata classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Metadata.h" 15 #include "LLVMContextImpl.h" 16 #include "MetadataImpl.h" 17 #include "SymbolTableListTraitsImpl.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringMap.h" 22 #include "llvm/IR/ConstantRange.h" 23 #include "llvm/IR/DebugInfoMetadata.h" 24 #include "llvm/IR/Instruction.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/ValueHandle.h" 28 29 using namespace llvm; 30 31 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD) 32 : Value(Ty, MetadataAsValueVal), MD(MD) { 33 track(); 34 } 35 36 MetadataAsValue::~MetadataAsValue() { 37 getType()->getContext().pImpl->MetadataAsValues.erase(MD); 38 untrack(); 39 } 40 41 /// Canonicalize metadata arguments to intrinsics. 42 /// 43 /// To support bitcode upgrades (and assembly semantic sugar) for \a 44 /// MetadataAsValue, we need to canonicalize certain metadata. 45 /// 46 /// - nullptr is replaced by an empty MDNode. 47 /// - An MDNode with a single null operand is replaced by an empty MDNode. 48 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped. 49 /// 50 /// This maintains readability of bitcode from when metadata was a type of 51 /// value, and these bridges were unnecessary. 52 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context, 53 Metadata *MD) { 54 if (!MD) 55 // !{} 56 return MDNode::get(Context, None); 57 58 // Return early if this isn't a single-operand MDNode. 59 auto *N = dyn_cast<MDNode>(MD); 60 if (!N || N->getNumOperands() != 1) 61 return MD; 62 63 if (!N->getOperand(0)) 64 // !{} 65 return MDNode::get(Context, None); 66 67 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0))) 68 // Look through the MDNode. 69 return C; 70 71 return MD; 72 } 73 74 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) { 75 MD = canonicalizeMetadataForValue(Context, MD); 76 auto *&Entry = Context.pImpl->MetadataAsValues[MD]; 77 if (!Entry) 78 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD); 79 return Entry; 80 } 81 82 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context, 83 Metadata *MD) { 84 MD = canonicalizeMetadataForValue(Context, MD); 85 auto &Store = Context.pImpl->MetadataAsValues; 86 return Store.lookup(MD); 87 } 88 89 void MetadataAsValue::handleChangedMetadata(Metadata *MD) { 90 LLVMContext &Context = getContext(); 91 MD = canonicalizeMetadataForValue(Context, MD); 92 auto &Store = Context.pImpl->MetadataAsValues; 93 94 // Stop tracking the old metadata. 95 Store.erase(this->MD); 96 untrack(); 97 this->MD = nullptr; 98 99 // Start tracking MD, or RAUW if necessary. 100 auto *&Entry = Store[MD]; 101 if (Entry) { 102 replaceAllUsesWith(Entry); 103 delete this; 104 return; 105 } 106 107 this->MD = MD; 108 track(); 109 Entry = this; 110 } 111 112 void MetadataAsValue::track() { 113 if (MD) 114 MetadataTracking::track(&MD, *MD, *this); 115 } 116 117 void MetadataAsValue::untrack() { 118 if (MD) 119 MetadataTracking::untrack(MD); 120 } 121 122 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) { 123 assert(Ref && "Expected live reference"); 124 assert((Owner || *static_cast<Metadata **>(Ref) == &MD) && 125 "Reference without owner must be direct"); 126 if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) { 127 R->addRef(Ref, Owner); 128 return true; 129 } 130 if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) { 131 assert(!PH->Use && "Placeholders can only be used once"); 132 assert(!Owner && "Unexpected callback to owner"); 133 PH->Use = static_cast<Metadata **>(Ref); 134 return true; 135 } 136 return false; 137 } 138 139 void MetadataTracking::untrack(void *Ref, Metadata &MD) { 140 assert(Ref && "Expected live reference"); 141 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) 142 R->dropRef(Ref); 143 else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) 144 PH->Use = nullptr; 145 } 146 147 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) { 148 assert(Ref && "Expected live reference"); 149 assert(New && "Expected live reference"); 150 assert(Ref != New && "Expected change"); 151 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) { 152 R->moveRef(Ref, New, MD); 153 return true; 154 } 155 assert(!isa<DistinctMDOperandPlaceholder>(MD) && 156 "Unexpected move of an MDOperand"); 157 assert(!isReplaceable(MD) && 158 "Expected un-replaceable metadata, since we didn't move a reference"); 159 return false; 160 } 161 162 bool MetadataTracking::isReplaceable(const Metadata &MD) { 163 return ReplaceableMetadataImpl::isReplaceable(MD); 164 } 165 166 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) { 167 bool WasInserted = 168 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex))) 169 .second; 170 (void)WasInserted; 171 assert(WasInserted && "Expected to add a reference"); 172 173 ++NextIndex; 174 assert(NextIndex != 0 && "Unexpected overflow"); 175 } 176 177 void ReplaceableMetadataImpl::dropRef(void *Ref) { 178 bool WasErased = UseMap.erase(Ref); 179 (void)WasErased; 180 assert(WasErased && "Expected to drop a reference"); 181 } 182 183 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New, 184 const Metadata &MD) { 185 auto I = UseMap.find(Ref); 186 assert(I != UseMap.end() && "Expected to move a reference"); 187 auto OwnerAndIndex = I->second; 188 UseMap.erase(I); 189 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second; 190 (void)WasInserted; 191 assert(WasInserted && "Expected to add a reference"); 192 193 // Check that the references are direct if there's no owner. 194 (void)MD; 195 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) && 196 "Reference without owner must be direct"); 197 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) && 198 "Reference without owner must be direct"); 199 } 200 201 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) { 202 if (UseMap.empty()) 203 return; 204 205 // Copy out uses since UseMap will get touched below. 206 typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy; 207 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 208 std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) { 209 return L.second.second < R.second.second; 210 }); 211 for (const auto &Pair : Uses) { 212 // Check that this Ref hasn't disappeared after RAUW (when updating a 213 // previous Ref). 214 if (!UseMap.count(Pair.first)) 215 continue; 216 217 OwnerTy Owner = Pair.second.first; 218 if (!Owner) { 219 // Update unowned tracking references directly. 220 Metadata *&Ref = *static_cast<Metadata **>(Pair.first); 221 Ref = MD; 222 if (MD) 223 MetadataTracking::track(Ref); 224 UseMap.erase(Pair.first); 225 continue; 226 } 227 228 // Check for MetadataAsValue. 229 if (Owner.is<MetadataAsValue *>()) { 230 Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD); 231 continue; 232 } 233 234 // There's a Metadata owner -- dispatch. 235 Metadata *OwnerMD = Owner.get<Metadata *>(); 236 switch (OwnerMD->getMetadataID()) { 237 #define HANDLE_METADATA_LEAF(CLASS) \ 238 case Metadata::CLASS##Kind: \ 239 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \ 240 continue; 241 #include "llvm/IR/Metadata.def" 242 default: 243 llvm_unreachable("Invalid metadata subclass"); 244 } 245 } 246 assert(UseMap.empty() && "Expected all uses to be replaced"); 247 } 248 249 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) { 250 if (UseMap.empty()) 251 return; 252 253 if (!ResolveUsers) { 254 UseMap.clear(); 255 return; 256 } 257 258 // Copy out uses since UseMap could get touched below. 259 typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy; 260 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 261 std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) { 262 return L.second.second < R.second.second; 263 }); 264 UseMap.clear(); 265 for (const auto &Pair : Uses) { 266 auto Owner = Pair.second.first; 267 if (!Owner) 268 continue; 269 if (Owner.is<MetadataAsValue *>()) 270 continue; 271 272 // Resolve MDNodes that point at this. 273 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>()); 274 if (!OwnerMD) 275 continue; 276 if (OwnerMD->isResolved()) 277 continue; 278 OwnerMD->decrementUnresolvedOperandCount(); 279 } 280 } 281 282 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) { 283 if (auto *N = dyn_cast<MDNode>(&MD)) 284 return N->isResolved() ? nullptr : N->Context.getOrCreateReplaceableUses(); 285 return dyn_cast<ValueAsMetadata>(&MD); 286 } 287 288 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) { 289 if (auto *N = dyn_cast<MDNode>(&MD)) 290 return N->isResolved() ? nullptr : N->Context.getReplaceableUses(); 291 return dyn_cast<ValueAsMetadata>(&MD); 292 } 293 294 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) { 295 if (auto *N = dyn_cast<MDNode>(&MD)) 296 return !N->isResolved(); 297 return dyn_cast<ValueAsMetadata>(&MD); 298 } 299 300 static Function *getLocalFunction(Value *V) { 301 assert(V && "Expected value"); 302 if (auto *A = dyn_cast<Argument>(V)) 303 return A->getParent(); 304 if (BasicBlock *BB = cast<Instruction>(V)->getParent()) 305 return BB->getParent(); 306 return nullptr; 307 } 308 309 ValueAsMetadata *ValueAsMetadata::get(Value *V) { 310 assert(V && "Unexpected null Value"); 311 312 auto &Context = V->getContext(); 313 auto *&Entry = Context.pImpl->ValuesAsMetadata[V]; 314 if (!Entry) { 315 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) && 316 "Expected constant or function-local value"); 317 assert(!V->IsUsedByMD && 318 "Expected this to be the only metadata use"); 319 V->IsUsedByMD = true; 320 if (auto *C = dyn_cast<Constant>(V)) 321 Entry = new ConstantAsMetadata(C); 322 else 323 Entry = new LocalAsMetadata(V); 324 } 325 326 return Entry; 327 } 328 329 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) { 330 assert(V && "Unexpected null Value"); 331 return V->getContext().pImpl->ValuesAsMetadata.lookup(V); 332 } 333 334 void ValueAsMetadata::handleDeletion(Value *V) { 335 assert(V && "Expected valid value"); 336 337 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata; 338 auto I = Store.find(V); 339 if (I == Store.end()) 340 return; 341 342 // Remove old entry from the map. 343 ValueAsMetadata *MD = I->second; 344 assert(MD && "Expected valid metadata"); 345 assert(MD->getValue() == V && "Expected valid mapping"); 346 Store.erase(I); 347 348 // Delete the metadata. 349 MD->replaceAllUsesWith(nullptr); 350 delete MD; 351 } 352 353 void ValueAsMetadata::handleRAUW(Value *From, Value *To) { 354 assert(From && "Expected valid value"); 355 assert(To && "Expected valid value"); 356 assert(From != To && "Expected changed value"); 357 assert(From->getType() == To->getType() && "Unexpected type change"); 358 359 LLVMContext &Context = From->getType()->getContext(); 360 auto &Store = Context.pImpl->ValuesAsMetadata; 361 auto I = Store.find(From); 362 if (I == Store.end()) { 363 assert(!From->IsUsedByMD && 364 "Expected From not to be used by metadata"); 365 return; 366 } 367 368 // Remove old entry from the map. 369 assert(From->IsUsedByMD && 370 "Expected From to be used by metadata"); 371 From->IsUsedByMD = false; 372 ValueAsMetadata *MD = I->second; 373 assert(MD && "Expected valid metadata"); 374 assert(MD->getValue() == From && "Expected valid mapping"); 375 Store.erase(I); 376 377 if (isa<LocalAsMetadata>(MD)) { 378 if (auto *C = dyn_cast<Constant>(To)) { 379 // Local became a constant. 380 MD->replaceAllUsesWith(ConstantAsMetadata::get(C)); 381 delete MD; 382 return; 383 } 384 if (getLocalFunction(From) && getLocalFunction(To) && 385 getLocalFunction(From) != getLocalFunction(To)) { 386 // Function changed. 387 MD->replaceAllUsesWith(nullptr); 388 delete MD; 389 return; 390 } 391 } else if (!isa<Constant>(To)) { 392 // Changed to function-local value. 393 MD->replaceAllUsesWith(nullptr); 394 delete MD; 395 return; 396 } 397 398 auto *&Entry = Store[To]; 399 if (Entry) { 400 // The target already exists. 401 MD->replaceAllUsesWith(Entry); 402 delete MD; 403 return; 404 } 405 406 // Update MD in place (and update the map entry). 407 assert(!To->IsUsedByMD && 408 "Expected this to be the only metadata use"); 409 To->IsUsedByMD = true; 410 MD->V = To; 411 Entry = MD; 412 } 413 414 //===----------------------------------------------------------------------===// 415 // MDString implementation. 416 // 417 418 MDString *MDString::get(LLVMContext &Context, StringRef Str) { 419 auto &Store = Context.pImpl->MDStringCache; 420 auto I = Store.try_emplace(Str); 421 auto &MapEntry = I.first->getValue(); 422 if (!I.second) 423 return &MapEntry; 424 MapEntry.Entry = &*I.first; 425 return &MapEntry; 426 } 427 428 StringRef MDString::getString() const { 429 assert(Entry && "Expected to find string map entry"); 430 return Entry->first(); 431 } 432 433 //===----------------------------------------------------------------------===// 434 // MDNode implementation. 435 // 436 437 // Assert that the MDNode types will not be unaligned by the objects 438 // prepended to them. 439 #define HANDLE_MDNODE_LEAF(CLASS) \ 440 static_assert( \ 441 llvm::AlignOf<uint64_t>::Alignment >= llvm::AlignOf<CLASS>::Alignment, \ 442 "Alignment is insufficient after objects prepended to " #CLASS); 443 #include "llvm/IR/Metadata.def" 444 445 void *MDNode::operator new(size_t Size, unsigned NumOps) { 446 size_t OpSize = NumOps * sizeof(MDOperand); 447 // uint64_t is the most aligned type we need support (ensured by static_assert 448 // above) 449 OpSize = alignTo(OpSize, llvm::alignOf<uint64_t>()); 450 void *Ptr = reinterpret_cast<char *>(::operator new(OpSize + Size)) + OpSize; 451 MDOperand *O = static_cast<MDOperand *>(Ptr); 452 for (MDOperand *E = O - NumOps; O != E; --O) 453 (void)new (O - 1) MDOperand; 454 return Ptr; 455 } 456 457 void MDNode::operator delete(void *Mem) { 458 MDNode *N = static_cast<MDNode *>(Mem); 459 size_t OpSize = N->NumOperands * sizeof(MDOperand); 460 OpSize = alignTo(OpSize, llvm::alignOf<uint64_t>()); 461 462 MDOperand *O = static_cast<MDOperand *>(Mem); 463 for (MDOperand *E = O - N->NumOperands; O != E; --O) 464 (O - 1)->~MDOperand(); 465 ::operator delete(reinterpret_cast<char *>(Mem) - OpSize); 466 } 467 468 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage, 469 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2) 470 : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()), 471 NumUnresolved(0), Context(Context) { 472 unsigned Op = 0; 473 for (Metadata *MD : Ops1) 474 setOperand(Op++, MD); 475 for (Metadata *MD : Ops2) 476 setOperand(Op++, MD); 477 478 if (!isUniqued()) 479 return; 480 481 // Count the unresolved operands. If there are any, RAUW support will be 482 // added lazily on first reference. 483 countUnresolvedOperands(); 484 } 485 486 TempMDNode MDNode::clone() const { 487 switch (getMetadataID()) { 488 default: 489 llvm_unreachable("Invalid MDNode subclass"); 490 #define HANDLE_MDNODE_LEAF(CLASS) \ 491 case CLASS##Kind: \ 492 return cast<CLASS>(this)->cloneImpl(); 493 #include "llvm/IR/Metadata.def" 494 } 495 } 496 497 static bool isOperandUnresolved(Metadata *Op) { 498 if (auto *N = dyn_cast_or_null<MDNode>(Op)) 499 return !N->isResolved(); 500 return false; 501 } 502 503 void MDNode::countUnresolvedOperands() { 504 assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted"); 505 assert(isUniqued() && "Expected this to be uniqued"); 506 NumUnresolved = count_if(operands(), isOperandUnresolved); 507 } 508 509 void MDNode::makeUniqued() { 510 assert(isTemporary() && "Expected this to be temporary"); 511 assert(!isResolved() && "Expected this to be unresolved"); 512 513 // Enable uniquing callbacks. 514 for (auto &Op : mutable_operands()) 515 Op.reset(Op.get(), this); 516 517 // Make this 'uniqued'. 518 Storage = Uniqued; 519 countUnresolvedOperands(); 520 if (!NumUnresolved) { 521 dropReplaceableUses(); 522 assert(isResolved() && "Expected this to be resolved"); 523 } 524 525 assert(isUniqued() && "Expected this to be uniqued"); 526 } 527 528 void MDNode::makeDistinct() { 529 assert(isTemporary() && "Expected this to be temporary"); 530 assert(!isResolved() && "Expected this to be unresolved"); 531 532 // Drop RAUW support and store as a distinct node. 533 dropReplaceableUses(); 534 storeDistinctInContext(); 535 536 assert(isDistinct() && "Expected this to be distinct"); 537 assert(isResolved() && "Expected this to be resolved"); 538 } 539 540 void MDNode::resolve() { 541 assert(isUniqued() && "Expected this to be uniqued"); 542 assert(!isResolved() && "Expected this to be unresolved"); 543 544 NumUnresolved = 0; 545 dropReplaceableUses(); 546 547 assert(isResolved() && "Expected this to be resolved"); 548 } 549 550 void MDNode::dropReplaceableUses() { 551 assert(!NumUnresolved && "Unexpected unresolved operand"); 552 553 // Drop any RAUW support. 554 if (Context.hasReplaceableUses()) 555 Context.takeReplaceableUses()->resolveAllUses(); 556 } 557 558 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) { 559 assert(isUniqued() && "Expected this to be uniqued"); 560 assert(NumUnresolved != 0 && "Expected unresolved operands"); 561 562 // Check if an operand was resolved. 563 if (!isOperandUnresolved(Old)) { 564 if (isOperandUnresolved(New)) 565 // An operand was un-resolved! 566 ++NumUnresolved; 567 } else if (!isOperandUnresolved(New)) 568 decrementUnresolvedOperandCount(); 569 } 570 571 void MDNode::decrementUnresolvedOperandCount() { 572 assert(!isResolved() && "Expected this to be unresolved"); 573 if (isTemporary()) 574 return; 575 576 assert(isUniqued() && "Expected this to be uniqued"); 577 if (--NumUnresolved) 578 return; 579 580 // Last unresolved operand has just been resolved. 581 dropReplaceableUses(); 582 assert(isResolved() && "Expected this to become resolved"); 583 } 584 585 void MDNode::resolveCycles() { 586 if (isResolved()) 587 return; 588 589 // Resolve this node immediately. 590 resolve(); 591 592 // Resolve all operands. 593 for (const auto &Op : operands()) { 594 auto *N = dyn_cast_or_null<MDNode>(Op); 595 if (!N) 596 continue; 597 598 assert(!N->isTemporary() && 599 "Expected all forward declarations to be resolved"); 600 if (!N->isResolved()) 601 N->resolveCycles(); 602 } 603 } 604 605 static bool hasSelfReference(MDNode *N) { 606 for (Metadata *MD : N->operands()) 607 if (MD == N) 608 return true; 609 return false; 610 } 611 612 MDNode *MDNode::replaceWithPermanentImpl() { 613 switch (getMetadataID()) { 614 default: 615 // If this type isn't uniquable, replace with a distinct node. 616 return replaceWithDistinctImpl(); 617 618 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 619 case CLASS##Kind: \ 620 break; 621 #include "llvm/IR/Metadata.def" 622 } 623 624 // Even if this type is uniquable, self-references have to be distinct. 625 if (hasSelfReference(this)) 626 return replaceWithDistinctImpl(); 627 return replaceWithUniquedImpl(); 628 } 629 630 MDNode *MDNode::replaceWithUniquedImpl() { 631 // Try to uniquify in place. 632 MDNode *UniquedNode = uniquify(); 633 634 if (UniquedNode == this) { 635 makeUniqued(); 636 return this; 637 } 638 639 // Collision, so RAUW instead. 640 replaceAllUsesWith(UniquedNode); 641 deleteAsSubclass(); 642 return UniquedNode; 643 } 644 645 MDNode *MDNode::replaceWithDistinctImpl() { 646 makeDistinct(); 647 return this; 648 } 649 650 void MDTuple::recalculateHash() { 651 setHash(MDTupleInfo::KeyTy::calculateHash(this)); 652 } 653 654 void MDNode::dropAllReferences() { 655 for (unsigned I = 0, E = NumOperands; I != E; ++I) 656 setOperand(I, nullptr); 657 if (Context.hasReplaceableUses()) { 658 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false); 659 (void)Context.takeReplaceableUses(); 660 } 661 } 662 663 void MDNode::handleChangedOperand(void *Ref, Metadata *New) { 664 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin(); 665 assert(Op < getNumOperands() && "Expected valid operand"); 666 667 if (!isUniqued()) { 668 // This node is not uniqued. Just set the operand and be done with it. 669 setOperand(Op, New); 670 return; 671 } 672 673 // This node is uniqued. 674 eraseFromStore(); 675 676 Metadata *Old = getOperand(Op); 677 setOperand(Op, New); 678 679 // Drop uniquing for self-reference cycles and deleted constants. 680 if (New == this || (!New && Old && isa<ConstantAsMetadata>(Old))) { 681 if (!isResolved()) 682 resolve(); 683 storeDistinctInContext(); 684 return; 685 } 686 687 // Re-unique the node. 688 auto *Uniqued = uniquify(); 689 if (Uniqued == this) { 690 if (!isResolved()) 691 resolveAfterOperandChange(Old, New); 692 return; 693 } 694 695 // Collision. 696 if (!isResolved()) { 697 // Still unresolved, so RAUW. 698 // 699 // First, clear out all operands to prevent any recursion (similar to 700 // dropAllReferences(), but we still need the use-list). 701 for (unsigned O = 0, E = getNumOperands(); O != E; ++O) 702 setOperand(O, nullptr); 703 if (Context.hasReplaceableUses()) 704 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued); 705 deleteAsSubclass(); 706 return; 707 } 708 709 // Store in non-uniqued form if RAUW isn't possible. 710 storeDistinctInContext(); 711 } 712 713 void MDNode::deleteAsSubclass() { 714 switch (getMetadataID()) { 715 default: 716 llvm_unreachable("Invalid subclass of MDNode"); 717 #define HANDLE_MDNODE_LEAF(CLASS) \ 718 case CLASS##Kind: \ 719 delete cast<CLASS>(this); \ 720 break; 721 #include "llvm/IR/Metadata.def" 722 } 723 } 724 725 template <class T, class InfoT> 726 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) { 727 if (T *U = getUniqued(Store, N)) 728 return U; 729 730 Store.insert(N); 731 return N; 732 } 733 734 template <class NodeTy> struct MDNode::HasCachedHash { 735 typedef char Yes[1]; 736 typedef char No[2]; 737 template <class U, U Val> struct SFINAE {}; 738 739 template <class U> 740 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *); 741 template <class U> static No &check(...); 742 743 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes); 744 }; 745 746 MDNode *MDNode::uniquify() { 747 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node"); 748 749 // Try to insert into uniquing store. 750 switch (getMetadataID()) { 751 default: 752 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 753 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 754 case CLASS##Kind: { \ 755 CLASS *SubclassThis = cast<CLASS>(this); \ 756 std::integral_constant<bool, HasCachedHash<CLASS>::value> \ 757 ShouldRecalculateHash; \ 758 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \ 759 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \ 760 } 761 #include "llvm/IR/Metadata.def" 762 } 763 } 764 765 void MDNode::eraseFromStore() { 766 switch (getMetadataID()) { 767 default: 768 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 769 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 770 case CLASS##Kind: \ 771 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \ 772 break; 773 #include "llvm/IR/Metadata.def" 774 } 775 } 776 777 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs, 778 StorageType Storage, bool ShouldCreate) { 779 unsigned Hash = 0; 780 if (Storage == Uniqued) { 781 MDTupleInfo::KeyTy Key(MDs); 782 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key)) 783 return N; 784 if (!ShouldCreate) 785 return nullptr; 786 Hash = Key.getHash(); 787 } else { 788 assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); 789 } 790 791 return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs), 792 Storage, Context.pImpl->MDTuples); 793 } 794 795 void MDNode::deleteTemporary(MDNode *N) { 796 assert(N->isTemporary() && "Expected temporary node"); 797 N->replaceAllUsesWith(nullptr); 798 N->deleteAsSubclass(); 799 } 800 801 void MDNode::storeDistinctInContext() { 802 assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses"); 803 assert(!NumUnresolved && "Unexpected unresolved nodes"); 804 Storage = Distinct; 805 assert(isResolved() && "Expected this to be resolved"); 806 807 // Reset the hash. 808 switch (getMetadataID()) { 809 default: 810 llvm_unreachable("Invalid subclass of MDNode"); 811 #define HANDLE_MDNODE_LEAF(CLASS) \ 812 case CLASS##Kind: { \ 813 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \ 814 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \ 815 break; \ 816 } 817 #include "llvm/IR/Metadata.def" 818 } 819 820 getContext().pImpl->DistinctMDNodes.push_back(this); 821 } 822 823 void MDNode::replaceOperandWith(unsigned I, Metadata *New) { 824 if (getOperand(I) == New) 825 return; 826 827 if (!isUniqued()) { 828 setOperand(I, New); 829 return; 830 } 831 832 handleChangedOperand(mutable_begin() + I, New); 833 } 834 835 void MDNode::setOperand(unsigned I, Metadata *New) { 836 assert(I < NumOperands); 837 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr); 838 } 839 840 /// Get a node or a self-reference that looks like it. 841 /// 842 /// Special handling for finding self-references, for use by \a 843 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from 844 /// when self-referencing nodes were still uniqued. If the first operand has 845 /// the same operands as \c Ops, return the first operand instead. 846 static MDNode *getOrSelfReference(LLVMContext &Context, 847 ArrayRef<Metadata *> Ops) { 848 if (!Ops.empty()) 849 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0])) 850 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) { 851 for (unsigned I = 1, E = Ops.size(); I != E; ++I) 852 if (Ops[I] != N->getOperand(I)) 853 return MDNode::get(Context, Ops); 854 return N; 855 } 856 857 return MDNode::get(Context, Ops); 858 } 859 860 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) { 861 if (!A) 862 return B; 863 if (!B) 864 return A; 865 866 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 867 MDs.insert(B->op_begin(), B->op_end()); 868 869 // FIXME: This preserves long-standing behaviour, but is it really the right 870 // behaviour? Or was that an unintended side-effect of node uniquing? 871 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 872 } 873 874 MDNode *MDNode::intersect(MDNode *A, MDNode *B) { 875 if (!A || !B) 876 return nullptr; 877 878 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 879 SmallPtrSet<Metadata *, 4> BSet(B->op_begin(), B->op_end()); 880 MDs.remove_if([&](Metadata *MD) { return !is_contained(BSet, MD); }); 881 882 // FIXME: This preserves long-standing behaviour, but is it really the right 883 // behaviour? Or was that an unintended side-effect of node uniquing? 884 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 885 } 886 887 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) { 888 if (!A || !B) 889 return nullptr; 890 891 return concatenate(A, B); 892 } 893 894 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) { 895 if (!A || !B) 896 return nullptr; 897 898 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF(); 899 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF(); 900 if (AVal.compare(BVal) == APFloat::cmpLessThan) 901 return A; 902 return B; 903 } 904 905 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 906 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 907 } 908 909 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) { 910 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B); 911 } 912 913 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints, 914 ConstantInt *Low, ConstantInt *High) { 915 ConstantRange NewRange(Low->getValue(), High->getValue()); 916 unsigned Size = EndPoints.size(); 917 APInt LB = EndPoints[Size - 2]->getValue(); 918 APInt LE = EndPoints[Size - 1]->getValue(); 919 ConstantRange LastRange(LB, LE); 920 if (canBeMerged(NewRange, LastRange)) { 921 ConstantRange Union = LastRange.unionWith(NewRange); 922 Type *Ty = High->getType(); 923 EndPoints[Size - 2] = 924 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower())); 925 EndPoints[Size - 1] = 926 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper())); 927 return true; 928 } 929 return false; 930 } 931 932 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints, 933 ConstantInt *Low, ConstantInt *High) { 934 if (!EndPoints.empty()) 935 if (tryMergeRange(EndPoints, Low, High)) 936 return; 937 938 EndPoints.push_back(Low); 939 EndPoints.push_back(High); 940 } 941 942 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) { 943 // Given two ranges, we want to compute the union of the ranges. This 944 // is slightly complitade by having to combine the intervals and merge 945 // the ones that overlap. 946 947 if (!A || !B) 948 return nullptr; 949 950 if (A == B) 951 return A; 952 953 // First, walk both lists in older of the lower boundary of each interval. 954 // At each step, try to merge the new interval to the last one we adedd. 955 SmallVector<ConstantInt *, 4> EndPoints; 956 int AI = 0; 957 int BI = 0; 958 int AN = A->getNumOperands() / 2; 959 int BN = B->getNumOperands() / 2; 960 while (AI < AN && BI < BN) { 961 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI)); 962 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI)); 963 964 if (ALow->getValue().slt(BLow->getValue())) { 965 addRange(EndPoints, ALow, 966 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 967 ++AI; 968 } else { 969 addRange(EndPoints, BLow, 970 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 971 ++BI; 972 } 973 } 974 while (AI < AN) { 975 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)), 976 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 977 ++AI; 978 } 979 while (BI < BN) { 980 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)), 981 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 982 ++BI; 983 } 984 985 // If we have more than 2 ranges (4 endpoints) we have to try to merge 986 // the last and first ones. 987 unsigned Size = EndPoints.size(); 988 if (Size > 4) { 989 ConstantInt *FB = EndPoints[0]; 990 ConstantInt *FE = EndPoints[1]; 991 if (tryMergeRange(EndPoints, FB, FE)) { 992 for (unsigned i = 0; i < Size - 2; ++i) { 993 EndPoints[i] = EndPoints[i + 2]; 994 } 995 EndPoints.resize(Size - 2); 996 } 997 } 998 999 // If in the end we have a single range, it is possible that it is now the 1000 // full range. Just drop the metadata in that case. 1001 if (EndPoints.size() == 2) { 1002 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue()); 1003 if (Range.isFullSet()) 1004 return nullptr; 1005 } 1006 1007 SmallVector<Metadata *, 4> MDs; 1008 MDs.reserve(EndPoints.size()); 1009 for (auto *I : EndPoints) 1010 MDs.push_back(ConstantAsMetadata::get(I)); 1011 return MDNode::get(A->getContext(), MDs); 1012 } 1013 1014 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) { 1015 if (!A || !B) 1016 return nullptr; 1017 1018 ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0)); 1019 ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0)); 1020 if (AVal->getZExtValue() < BVal->getZExtValue()) 1021 return A; 1022 return B; 1023 } 1024 1025 //===----------------------------------------------------------------------===// 1026 // NamedMDNode implementation. 1027 // 1028 1029 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) { 1030 return *(SmallVector<TrackingMDRef, 4> *)Operands; 1031 } 1032 1033 NamedMDNode::NamedMDNode(const Twine &N) 1034 : Name(N.str()), Parent(nullptr), 1035 Operands(new SmallVector<TrackingMDRef, 4>()) {} 1036 1037 NamedMDNode::~NamedMDNode() { 1038 dropAllReferences(); 1039 delete &getNMDOps(Operands); 1040 } 1041 1042 unsigned NamedMDNode::getNumOperands() const { 1043 return (unsigned)getNMDOps(Operands).size(); 1044 } 1045 1046 MDNode *NamedMDNode::getOperand(unsigned i) const { 1047 assert(i < getNumOperands() && "Invalid Operand number!"); 1048 auto *N = getNMDOps(Operands)[i].get(); 1049 return cast_or_null<MDNode>(N); 1050 } 1051 1052 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); } 1053 1054 void NamedMDNode::setOperand(unsigned I, MDNode *New) { 1055 assert(I < getNumOperands() && "Invalid operand number"); 1056 getNMDOps(Operands)[I].reset(New); 1057 } 1058 1059 void NamedMDNode::eraseFromParent() { 1060 getParent()->eraseNamedMetadata(this); 1061 } 1062 1063 void NamedMDNode::dropAllReferences() { 1064 getNMDOps(Operands).clear(); 1065 } 1066 1067 StringRef NamedMDNode::getName() const { 1068 return StringRef(Name); 1069 } 1070 1071 //===----------------------------------------------------------------------===// 1072 // Instruction Metadata method implementations. 1073 // 1074 void MDAttachmentMap::set(unsigned ID, MDNode &MD) { 1075 for (auto &I : Attachments) 1076 if (I.first == ID) { 1077 I.second.reset(&MD); 1078 return; 1079 } 1080 Attachments.emplace_back(std::piecewise_construct, std::make_tuple(ID), 1081 std::make_tuple(&MD)); 1082 } 1083 1084 void MDAttachmentMap::erase(unsigned ID) { 1085 if (empty()) 1086 return; 1087 1088 // Common case is one/last value. 1089 if (Attachments.back().first == ID) { 1090 Attachments.pop_back(); 1091 return; 1092 } 1093 1094 for (auto I = Attachments.begin(), E = std::prev(Attachments.end()); I != E; 1095 ++I) 1096 if (I->first == ID) { 1097 *I = std::move(Attachments.back()); 1098 Attachments.pop_back(); 1099 return; 1100 } 1101 } 1102 1103 MDNode *MDAttachmentMap::lookup(unsigned ID) const { 1104 for (const auto &I : Attachments) 1105 if (I.first == ID) 1106 return I.second; 1107 return nullptr; 1108 } 1109 1110 void MDAttachmentMap::getAll( 1111 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1112 Result.append(Attachments.begin(), Attachments.end()); 1113 1114 // Sort the resulting array so it is stable. 1115 if (Result.size() > 1) 1116 array_pod_sort(Result.begin(), Result.end()); 1117 } 1118 1119 void MDGlobalAttachmentMap::insert(unsigned ID, MDNode &MD) { 1120 Attachments.push_back({ID, TrackingMDNodeRef(&MD)}); 1121 } 1122 1123 void MDGlobalAttachmentMap::get(unsigned ID, 1124 SmallVectorImpl<MDNode *> &Result) { 1125 for (auto A : Attachments) 1126 if (A.MDKind == ID) 1127 Result.push_back(A.Node); 1128 } 1129 1130 void MDGlobalAttachmentMap::erase(unsigned ID) { 1131 auto Follower = Attachments.begin(); 1132 for (auto Leader = Attachments.begin(), E = Attachments.end(); Leader != E; 1133 ++Leader) { 1134 if (Leader->MDKind != ID) { 1135 if (Follower != Leader) 1136 *Follower = std::move(*Leader); 1137 ++Follower; 1138 } 1139 } 1140 Attachments.resize(Follower - Attachments.begin()); 1141 } 1142 1143 void MDGlobalAttachmentMap::getAll( 1144 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1145 for (auto &A : Attachments) 1146 Result.emplace_back(A.MDKind, A.Node); 1147 1148 // Sort the resulting array so it is stable with respect to metadata IDs. We 1149 // need to preserve the original insertion order though. 1150 std::stable_sort( 1151 Result.begin(), Result.end(), 1152 [](const std::pair<unsigned, MDNode *> &A, 1153 const std::pair<unsigned, MDNode *> &B) { return A.first < B.first; }); 1154 } 1155 1156 void Instruction::setMetadata(StringRef Kind, MDNode *Node) { 1157 if (!Node && !hasMetadata()) 1158 return; 1159 setMetadata(getContext().getMDKindID(Kind), Node); 1160 } 1161 1162 MDNode *Instruction::getMetadataImpl(StringRef Kind) const { 1163 return getMetadataImpl(getContext().getMDKindID(Kind)); 1164 } 1165 1166 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) { 1167 SmallSet<unsigned, 5> KnownSet; 1168 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 1169 1170 if (!hasMetadataHashEntry()) 1171 return; // Nothing to remove! 1172 1173 auto &InstructionMetadata = getContext().pImpl->InstructionMetadata; 1174 1175 if (KnownSet.empty()) { 1176 // Just drop our entry at the store. 1177 InstructionMetadata.erase(this); 1178 setHasMetadataHashEntry(false); 1179 return; 1180 } 1181 1182 auto &Info = InstructionMetadata[this]; 1183 Info.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) { 1184 return !KnownSet.count(I.first); 1185 }); 1186 1187 if (Info.empty()) { 1188 // Drop our entry at the store. 1189 InstructionMetadata.erase(this); 1190 setHasMetadataHashEntry(false); 1191 } 1192 } 1193 1194 void Instruction::setMetadata(unsigned KindID, MDNode *Node) { 1195 if (!Node && !hasMetadata()) 1196 return; 1197 1198 // Handle 'dbg' as a special case since it is not stored in the hash table. 1199 if (KindID == LLVMContext::MD_dbg) { 1200 DbgLoc = DebugLoc(Node); 1201 return; 1202 } 1203 1204 // Handle the case when we're adding/updating metadata on an instruction. 1205 if (Node) { 1206 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1207 assert(!Info.empty() == hasMetadataHashEntry() && 1208 "HasMetadata bit is wonked"); 1209 if (Info.empty()) 1210 setHasMetadataHashEntry(true); 1211 Info.set(KindID, *Node); 1212 return; 1213 } 1214 1215 // Otherwise, we're removing metadata from an instruction. 1216 assert((hasMetadataHashEntry() == 1217 (getContext().pImpl->InstructionMetadata.count(this) > 0)) && 1218 "HasMetadata bit out of date!"); 1219 if (!hasMetadataHashEntry()) 1220 return; // Nothing to remove! 1221 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1222 1223 // Handle removal of an existing value. 1224 Info.erase(KindID); 1225 1226 if (!Info.empty()) 1227 return; 1228 1229 getContext().pImpl->InstructionMetadata.erase(this); 1230 setHasMetadataHashEntry(false); 1231 } 1232 1233 void Instruction::setAAMetadata(const AAMDNodes &N) { 1234 setMetadata(LLVMContext::MD_tbaa, N.TBAA); 1235 setMetadata(LLVMContext::MD_alias_scope, N.Scope); 1236 setMetadata(LLVMContext::MD_noalias, N.NoAlias); 1237 } 1238 1239 MDNode *Instruction::getMetadataImpl(unsigned KindID) const { 1240 // Handle 'dbg' as a special case since it is not stored in the hash table. 1241 if (KindID == LLVMContext::MD_dbg) 1242 return DbgLoc.getAsMDNode(); 1243 1244 if (!hasMetadataHashEntry()) 1245 return nullptr; 1246 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1247 assert(!Info.empty() && "bit out of sync with hash table"); 1248 1249 return Info.lookup(KindID); 1250 } 1251 1252 void Instruction::getAllMetadataImpl( 1253 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1254 Result.clear(); 1255 1256 // Handle 'dbg' as a special case since it is not stored in the hash table. 1257 if (DbgLoc) { 1258 Result.push_back( 1259 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode())); 1260 if (!hasMetadataHashEntry()) return; 1261 } 1262 1263 assert(hasMetadataHashEntry() && 1264 getContext().pImpl->InstructionMetadata.count(this) && 1265 "Shouldn't have called this"); 1266 const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second; 1267 assert(!Info.empty() && "Shouldn't have called this"); 1268 Info.getAll(Result); 1269 } 1270 1271 void Instruction::getAllMetadataOtherThanDebugLocImpl( 1272 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1273 Result.clear(); 1274 assert(hasMetadataHashEntry() && 1275 getContext().pImpl->InstructionMetadata.count(this) && 1276 "Shouldn't have called this"); 1277 const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second; 1278 assert(!Info.empty() && "Shouldn't have called this"); 1279 Info.getAll(Result); 1280 } 1281 1282 bool Instruction::extractProfMetadata(uint64_t &TrueVal, uint64_t &FalseVal) { 1283 assert((getOpcode() == Instruction::Br || 1284 getOpcode() == Instruction::Select) && 1285 "Looking for branch weights on something besides branch or select"); 1286 1287 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1288 if (!ProfileData || ProfileData->getNumOperands() != 3) 1289 return false; 1290 1291 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1292 if (!ProfDataName || !ProfDataName->getString().equals("branch_weights")) 1293 return false; 1294 1295 auto *CITrue = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 1296 auto *CIFalse = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 1297 if (!CITrue || !CIFalse) 1298 return false; 1299 1300 TrueVal = CITrue->getValue().getZExtValue(); 1301 FalseVal = CIFalse->getValue().getZExtValue(); 1302 1303 return true; 1304 } 1305 1306 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) { 1307 assert((getOpcode() == Instruction::Br || 1308 getOpcode() == Instruction::Select || 1309 getOpcode() == Instruction::Call || 1310 getOpcode() == Instruction::Invoke) && 1311 "Looking for branch weights on something besides branch"); 1312 1313 TotalVal = 0; 1314 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1315 if (!ProfileData) 1316 return false; 1317 1318 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1319 if (!ProfDataName || !ProfDataName->getString().equals("branch_weights")) 1320 return false; 1321 1322 TotalVal = 0; 1323 for (unsigned i = 1; i < ProfileData->getNumOperands(); i++) { 1324 auto *V = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i)); 1325 if (!V) 1326 return false; 1327 TotalVal += V->getValue().getZExtValue(); 1328 } 1329 return true; 1330 } 1331 1332 void Instruction::clearMetadataHashEntries() { 1333 assert(hasMetadataHashEntry() && "Caller should check"); 1334 getContext().pImpl->InstructionMetadata.erase(this); 1335 setHasMetadataHashEntry(false); 1336 } 1337 1338 void GlobalObject::getMetadata(unsigned KindID, 1339 SmallVectorImpl<MDNode *> &MDs) const { 1340 if (hasMetadata()) 1341 getContext().pImpl->GlobalObjectMetadata[this].get(KindID, MDs); 1342 } 1343 1344 void GlobalObject::getMetadata(StringRef Kind, 1345 SmallVectorImpl<MDNode *> &MDs) const { 1346 if (hasMetadata()) 1347 getMetadata(getContext().getMDKindID(Kind), MDs); 1348 } 1349 1350 void GlobalObject::addMetadata(unsigned KindID, MDNode &MD) { 1351 if (!hasMetadata()) 1352 setHasMetadataHashEntry(true); 1353 1354 getContext().pImpl->GlobalObjectMetadata[this].insert(KindID, MD); 1355 } 1356 1357 void GlobalObject::addMetadata(StringRef Kind, MDNode &MD) { 1358 addMetadata(getContext().getMDKindID(Kind), MD); 1359 } 1360 1361 void GlobalObject::eraseMetadata(unsigned KindID) { 1362 // Nothing to unset. 1363 if (!hasMetadata()) 1364 return; 1365 1366 auto &Store = getContext().pImpl->GlobalObjectMetadata[this]; 1367 Store.erase(KindID); 1368 if (Store.empty()) 1369 clearMetadata(); 1370 } 1371 1372 void GlobalObject::getAllMetadata( 1373 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { 1374 MDs.clear(); 1375 1376 if (!hasMetadata()) 1377 return; 1378 1379 getContext().pImpl->GlobalObjectMetadata[this].getAll(MDs); 1380 } 1381 1382 void GlobalObject::clearMetadata() { 1383 if (!hasMetadata()) 1384 return; 1385 getContext().pImpl->GlobalObjectMetadata.erase(this); 1386 setHasMetadataHashEntry(false); 1387 } 1388 1389 void GlobalObject::setMetadata(unsigned KindID, MDNode *N) { 1390 eraseMetadata(KindID); 1391 if (N) 1392 addMetadata(KindID, *N); 1393 } 1394 1395 void GlobalObject::setMetadata(StringRef Kind, MDNode *N) { 1396 setMetadata(getContext().getMDKindID(Kind), N); 1397 } 1398 1399 MDNode *GlobalObject::getMetadata(unsigned KindID) const { 1400 SmallVector<MDNode *, 1> MDs; 1401 getMetadata(KindID, MDs); 1402 assert(MDs.size() <= 1 && "Expected at most one metadata attachment"); 1403 if (MDs.empty()) 1404 return nullptr; 1405 return MDs[0]; 1406 } 1407 1408 MDNode *GlobalObject::getMetadata(StringRef Kind) const { 1409 return getMetadata(getContext().getMDKindID(Kind)); 1410 } 1411 1412 void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) { 1413 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 1414 Other->getAllMetadata(MDs); 1415 for (auto &MD : MDs) { 1416 // We need to adjust the type metadata offset. 1417 if (Offset != 0 && MD.first == LLVMContext::MD_type) { 1418 auto *OffsetConst = cast<ConstantInt>( 1419 cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue()); 1420 Metadata *TypeId = MD.second->getOperand(1); 1421 auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get( 1422 OffsetConst->getType(), OffsetConst->getValue() + Offset)); 1423 addMetadata(LLVMContext::MD_type, 1424 *MDNode::get(getContext(), {NewOffsetMD, TypeId})); 1425 continue; 1426 } 1427 addMetadata(MD.first, *MD.second); 1428 } 1429 } 1430 1431 void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) { 1432 addMetadata( 1433 LLVMContext::MD_type, 1434 *MDTuple::get(getContext(), 1435 {llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1436 Type::getInt64Ty(getContext()), Offset)), 1437 TypeID})); 1438 } 1439 1440 void Function::setSubprogram(DISubprogram *SP) { 1441 setMetadata(LLVMContext::MD_dbg, SP); 1442 } 1443 1444 DISubprogram *Function::getSubprogram() const { 1445 return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg)); 1446 } 1447