1 //===- Metadata.cpp - Implement Metadata classes --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Metadata classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Metadata.h" 15 #include "LLVMContextImpl.h" 16 #include "MetadataImpl.h" 17 #include "SymbolTableListTraitsImpl.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/IR/ConstantRange.h" 24 #include "llvm/IR/DebugInfoMetadata.h" 25 #include "llvm/IR/Instruction.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ValueHandle.h" 29 30 using namespace llvm; 31 32 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD) 33 : Value(Ty, MetadataAsValueVal), MD(MD) { 34 track(); 35 } 36 37 MetadataAsValue::~MetadataAsValue() { 38 getType()->getContext().pImpl->MetadataAsValues.erase(MD); 39 untrack(); 40 } 41 42 /// \brief Canonicalize metadata arguments to intrinsics. 43 /// 44 /// To support bitcode upgrades (and assembly semantic sugar) for \a 45 /// MetadataAsValue, we need to canonicalize certain metadata. 46 /// 47 /// - nullptr is replaced by an empty MDNode. 48 /// - An MDNode with a single null operand is replaced by an empty MDNode. 49 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped. 50 /// 51 /// This maintains readability of bitcode from when metadata was a type of 52 /// value, and these bridges were unnecessary. 53 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context, 54 Metadata *MD) { 55 if (!MD) 56 // !{} 57 return MDNode::get(Context, None); 58 59 // Return early if this isn't a single-operand MDNode. 60 auto *N = dyn_cast<MDNode>(MD); 61 if (!N || N->getNumOperands() != 1) 62 return MD; 63 64 if (!N->getOperand(0)) 65 // !{} 66 return MDNode::get(Context, None); 67 68 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0))) 69 // Look through the MDNode. 70 return C; 71 72 return MD; 73 } 74 75 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) { 76 MD = canonicalizeMetadataForValue(Context, MD); 77 auto *&Entry = Context.pImpl->MetadataAsValues[MD]; 78 if (!Entry) 79 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD); 80 return Entry; 81 } 82 83 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context, 84 Metadata *MD) { 85 MD = canonicalizeMetadataForValue(Context, MD); 86 auto &Store = Context.pImpl->MetadataAsValues; 87 return Store.lookup(MD); 88 } 89 90 void MetadataAsValue::handleChangedMetadata(Metadata *MD) { 91 LLVMContext &Context = getContext(); 92 MD = canonicalizeMetadataForValue(Context, MD); 93 auto &Store = Context.pImpl->MetadataAsValues; 94 95 // Stop tracking the old metadata. 96 Store.erase(this->MD); 97 untrack(); 98 this->MD = nullptr; 99 100 // Start tracking MD, or RAUW if necessary. 101 auto *&Entry = Store[MD]; 102 if (Entry) { 103 replaceAllUsesWith(Entry); 104 delete this; 105 return; 106 } 107 108 this->MD = MD; 109 track(); 110 Entry = this; 111 } 112 113 void MetadataAsValue::track() { 114 if (MD) 115 MetadataTracking::track(&MD, *MD, *this); 116 } 117 118 void MetadataAsValue::untrack() { 119 if (MD) 120 MetadataTracking::untrack(MD); 121 } 122 123 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) { 124 bool WasInserted = 125 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex))) 126 .second; 127 (void)WasInserted; 128 assert(WasInserted && "Expected to add a reference"); 129 130 ++NextIndex; 131 assert(NextIndex != 0 && "Unexpected overflow"); 132 } 133 134 void ReplaceableMetadataImpl::dropRef(void *Ref) { 135 bool WasErased = UseMap.erase(Ref); 136 (void)WasErased; 137 assert(WasErased && "Expected to drop a reference"); 138 } 139 140 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New, 141 const Metadata &MD) { 142 auto I = UseMap.find(Ref); 143 assert(I != UseMap.end() && "Expected to move a reference"); 144 auto OwnerAndIndex = I->second; 145 UseMap.erase(I); 146 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second; 147 (void)WasInserted; 148 assert(WasInserted && "Expected to add a reference"); 149 150 // Check that the references are direct if there's no owner. 151 (void)MD; 152 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) && 153 "Reference without owner must be direct"); 154 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) && 155 "Reference without owner must be direct"); 156 } 157 158 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) { 159 assert(!(MD && isa<MDNode>(MD) && cast<MDNode>(MD)->isTemporary()) && 160 "Expected non-temp node"); 161 162 if (UseMap.empty()) 163 return; 164 165 // Copy out uses since UseMap will get touched below. 166 typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy; 167 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 168 std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) { 169 return L.second.second < R.second.second; 170 }); 171 for (const auto &Pair : Uses) { 172 // Check that this Ref hasn't disappeared after RAUW (when updating a 173 // previous Ref). 174 if (!UseMap.count(Pair.first)) 175 continue; 176 177 OwnerTy Owner = Pair.second.first; 178 if (!Owner) { 179 // Update unowned tracking references directly. 180 Metadata *&Ref = *static_cast<Metadata **>(Pair.first); 181 Ref = MD; 182 if (MD) 183 MetadataTracking::track(Ref); 184 UseMap.erase(Pair.first); 185 continue; 186 } 187 188 // Check for MetadataAsValue. 189 if (Owner.is<MetadataAsValue *>()) { 190 Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD); 191 continue; 192 } 193 194 // There's a Metadata owner -- dispatch. 195 Metadata *OwnerMD = Owner.get<Metadata *>(); 196 switch (OwnerMD->getMetadataID()) { 197 #define HANDLE_METADATA_LEAF(CLASS) \ 198 case Metadata::CLASS##Kind: \ 199 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \ 200 continue; 201 #include "llvm/IR/Metadata.def" 202 default: 203 llvm_unreachable("Invalid metadata subclass"); 204 } 205 } 206 assert(UseMap.empty() && "Expected all uses to be replaced"); 207 } 208 209 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) { 210 if (UseMap.empty()) 211 return; 212 213 if (!ResolveUsers) { 214 UseMap.clear(); 215 return; 216 } 217 218 // Copy out uses since UseMap could get touched below. 219 typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy; 220 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 221 std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) { 222 return L.second.second < R.second.second; 223 }); 224 UseMap.clear(); 225 for (const auto &Pair : Uses) { 226 auto Owner = Pair.second.first; 227 if (!Owner) 228 continue; 229 if (Owner.is<MetadataAsValue *>()) 230 continue; 231 232 // Resolve MDNodes that point at this. 233 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>()); 234 if (!OwnerMD) 235 continue; 236 if (OwnerMD->isResolved()) 237 continue; 238 OwnerMD->decrementUnresolvedOperandCount(); 239 } 240 } 241 242 static Function *getLocalFunction(Value *V) { 243 assert(V && "Expected value"); 244 if (auto *A = dyn_cast<Argument>(V)) 245 return A->getParent(); 246 if (BasicBlock *BB = cast<Instruction>(V)->getParent()) 247 return BB->getParent(); 248 return nullptr; 249 } 250 251 ValueAsMetadata *ValueAsMetadata::get(Value *V) { 252 assert(V && "Unexpected null Value"); 253 254 auto &Context = V->getContext(); 255 auto *&Entry = Context.pImpl->ValuesAsMetadata[V]; 256 if (!Entry) { 257 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) && 258 "Expected constant or function-local value"); 259 assert(!V->NameAndIsUsedByMD.getInt() && 260 "Expected this to be the only metadata use"); 261 V->NameAndIsUsedByMD.setInt(true); 262 if (auto *C = dyn_cast<Constant>(V)) 263 Entry = new ConstantAsMetadata(C); 264 else 265 Entry = new LocalAsMetadata(V); 266 } 267 268 return Entry; 269 } 270 271 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) { 272 assert(V && "Unexpected null Value"); 273 return V->getContext().pImpl->ValuesAsMetadata.lookup(V); 274 } 275 276 void ValueAsMetadata::handleDeletion(Value *V) { 277 assert(V && "Expected valid value"); 278 279 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata; 280 auto I = Store.find(V); 281 if (I == Store.end()) 282 return; 283 284 // Remove old entry from the map. 285 ValueAsMetadata *MD = I->second; 286 assert(MD && "Expected valid metadata"); 287 assert(MD->getValue() == V && "Expected valid mapping"); 288 Store.erase(I); 289 290 // Delete the metadata. 291 MD->replaceAllUsesWith(nullptr); 292 delete MD; 293 } 294 295 void ValueAsMetadata::handleRAUW(Value *From, Value *To) { 296 assert(From && "Expected valid value"); 297 assert(To && "Expected valid value"); 298 assert(From != To && "Expected changed value"); 299 assert(From->getType() == To->getType() && "Unexpected type change"); 300 301 LLVMContext &Context = From->getType()->getContext(); 302 auto &Store = Context.pImpl->ValuesAsMetadata; 303 auto I = Store.find(From); 304 if (I == Store.end()) { 305 assert(!From->NameAndIsUsedByMD.getInt() && 306 "Expected From not to be used by metadata"); 307 return; 308 } 309 310 // Remove old entry from the map. 311 assert(From->NameAndIsUsedByMD.getInt() && 312 "Expected From to be used by metadata"); 313 From->NameAndIsUsedByMD.setInt(false); 314 ValueAsMetadata *MD = I->second; 315 assert(MD && "Expected valid metadata"); 316 assert(MD->getValue() == From && "Expected valid mapping"); 317 Store.erase(I); 318 319 if (isa<LocalAsMetadata>(MD)) { 320 if (auto *C = dyn_cast<Constant>(To)) { 321 // Local became a constant. 322 MD->replaceAllUsesWith(ConstantAsMetadata::get(C)); 323 delete MD; 324 return; 325 } 326 if (getLocalFunction(From) && getLocalFunction(To) && 327 getLocalFunction(From) != getLocalFunction(To)) { 328 // Function changed. 329 MD->replaceAllUsesWith(nullptr); 330 delete MD; 331 return; 332 } 333 } else if (!isa<Constant>(To)) { 334 // Changed to function-local value. 335 MD->replaceAllUsesWith(nullptr); 336 delete MD; 337 return; 338 } 339 340 auto *&Entry = Store[To]; 341 if (Entry) { 342 // The target already exists. 343 MD->replaceAllUsesWith(Entry); 344 delete MD; 345 return; 346 } 347 348 // Update MD in place (and update the map entry). 349 assert(!To->NameAndIsUsedByMD.getInt() && 350 "Expected this to be the only metadata use"); 351 To->NameAndIsUsedByMD.setInt(true); 352 MD->V = To; 353 Entry = MD; 354 } 355 356 //===----------------------------------------------------------------------===// 357 // MDString implementation. 358 // 359 360 MDString *MDString::get(LLVMContext &Context, StringRef Str) { 361 auto &Store = Context.pImpl->MDStringCache; 362 auto I = Store.find(Str); 363 if (I != Store.end()) 364 return &I->second; 365 366 auto *Entry = 367 StringMapEntry<MDString>::Create(Str, Store.getAllocator(), MDString()); 368 bool WasInserted = Store.insert(Entry); 369 (void)WasInserted; 370 assert(WasInserted && "Expected entry to be inserted"); 371 Entry->second.Entry = Entry; 372 return &Entry->second; 373 } 374 375 StringRef MDString::getString() const { 376 assert(Entry && "Expected to find string map entry"); 377 return Entry->first(); 378 } 379 380 //===----------------------------------------------------------------------===// 381 // MDNode implementation. 382 // 383 384 void *MDNode::operator new(size_t Size, unsigned NumOps) { 385 void *Ptr = ::operator new(Size + NumOps * sizeof(MDOperand)); 386 MDOperand *O = static_cast<MDOperand *>(Ptr); 387 for (MDOperand *E = O + NumOps; O != E; ++O) 388 (void)new (O) MDOperand; 389 return O; 390 } 391 392 void MDNode::operator delete(void *Mem) { 393 MDNode *N = static_cast<MDNode *>(Mem); 394 MDOperand *O = static_cast<MDOperand *>(Mem); 395 for (MDOperand *E = O - N->NumOperands; O != E; --O) 396 (O - 1)->~MDOperand(); 397 ::operator delete(O); 398 } 399 400 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage, 401 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2) 402 : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()), 403 NumUnresolved(0), Context(Context) { 404 unsigned Op = 0; 405 for (Metadata *MD : Ops1) 406 setOperand(Op++, MD); 407 for (Metadata *MD : Ops2) 408 setOperand(Op++, MD); 409 410 if (isDistinct()) 411 return; 412 413 if (isUniqued()) 414 // Check whether any operands are unresolved, requiring re-uniquing. If 415 // not, don't support RAUW. 416 if (!countUnresolvedOperands()) 417 return; 418 419 this->Context.makeReplaceable(make_unique<ReplaceableMetadataImpl>(Context)); 420 } 421 422 TempMDNode MDNode::clone() const { 423 switch (getMetadataID()) { 424 default: 425 llvm_unreachable("Invalid MDNode subclass"); 426 #define HANDLE_MDNODE_LEAF(CLASS) \ 427 case CLASS##Kind: \ 428 return cast<CLASS>(this)->cloneImpl(); 429 #include "llvm/IR/Metadata.def" 430 } 431 } 432 433 static bool isOperandUnresolved(Metadata *Op) { 434 if (auto *N = dyn_cast_or_null<MDNode>(Op)) 435 return !N->isResolved(); 436 return false; 437 } 438 439 unsigned MDNode::countUnresolvedOperands() { 440 assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted"); 441 NumUnresolved = std::count_if(op_begin(), op_end(), isOperandUnresolved); 442 return NumUnresolved; 443 } 444 445 void MDNode::makeUniqued() { 446 assert(isTemporary() && "Expected this to be temporary"); 447 assert(!isResolved() && "Expected this to be unresolved"); 448 449 // Make this 'uniqued'. 450 Storage = Uniqued; 451 if (!countUnresolvedOperands()) 452 resolve(); 453 454 assert(isUniqued() && "Expected this to be uniqued"); 455 } 456 457 void MDNode::makeDistinct() { 458 assert(isTemporary() && "Expected this to be temporary"); 459 assert(!isResolved() && "Expected this to be unresolved"); 460 461 // Pretend to be uniqued, resolve the node, and then store in distinct table. 462 Storage = Uniqued; 463 resolve(); 464 storeDistinctInContext(); 465 466 assert(isDistinct() && "Expected this to be distinct"); 467 assert(isResolved() && "Expected this to be resolved"); 468 } 469 470 void MDNode::resolve() { 471 assert(isUniqued() && "Expected this to be uniqued"); 472 assert(!isResolved() && "Expected this to be unresolved"); 473 474 // Move the map, so that this immediately looks resolved. 475 auto Uses = Context.takeReplaceableUses(); 476 NumUnresolved = 0; 477 assert(isResolved() && "Expected this to be resolved"); 478 479 // Drop RAUW support. 480 Uses->resolveAllUses(); 481 } 482 483 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) { 484 assert(NumUnresolved != 0 && "Expected unresolved operands"); 485 486 // Check if an operand was resolved. 487 if (!isOperandUnresolved(Old)) { 488 if (isOperandUnresolved(New)) 489 // An operand was un-resolved! 490 ++NumUnresolved; 491 } else if (!isOperandUnresolved(New)) 492 decrementUnresolvedOperandCount(); 493 } 494 495 void MDNode::decrementUnresolvedOperandCount() { 496 if (!--NumUnresolved) 497 // Last unresolved operand has just been resolved. 498 resolve(); 499 } 500 501 void MDNode::resolveCycles() { 502 if (isResolved()) 503 return; 504 505 // Resolve this node immediately. 506 resolve(); 507 508 // Resolve all operands. 509 for (const auto &Op : operands()) { 510 auto *N = dyn_cast_or_null<MDNode>(Op); 511 if (!N) 512 continue; 513 514 assert(!N->isTemporary() && 515 "Expected all forward declarations to be resolved"); 516 if (!N->isResolved()) 517 N->resolveCycles(); 518 } 519 } 520 521 static bool hasSelfReference(MDNode *N) { 522 for (Metadata *MD : N->operands()) 523 if (MD == N) 524 return true; 525 return false; 526 } 527 528 MDNode *MDNode::replaceWithPermanentImpl() { 529 if (hasSelfReference(this)) 530 return replaceWithDistinctImpl(); 531 return replaceWithUniquedImpl(); 532 } 533 534 MDNode *MDNode::replaceWithUniquedImpl() { 535 // Try to uniquify in place. 536 MDNode *UniquedNode = uniquify(); 537 538 if (UniquedNode == this) { 539 makeUniqued(); 540 return this; 541 } 542 543 // Collision, so RAUW instead. 544 replaceAllUsesWith(UniquedNode); 545 deleteAsSubclass(); 546 return UniquedNode; 547 } 548 549 MDNode *MDNode::replaceWithDistinctImpl() { 550 makeDistinct(); 551 return this; 552 } 553 554 void MDTuple::recalculateHash() { 555 setHash(MDTupleInfo::KeyTy::calculateHash(this)); 556 } 557 558 void MDNode::dropAllReferences() { 559 for (unsigned I = 0, E = NumOperands; I != E; ++I) 560 setOperand(I, nullptr); 561 if (!isResolved()) { 562 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false); 563 (void)Context.takeReplaceableUses(); 564 } 565 } 566 567 void MDNode::handleChangedOperand(void *Ref, Metadata *New) { 568 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin(); 569 assert(Op < getNumOperands() && "Expected valid operand"); 570 571 if (!isUniqued()) { 572 // This node is not uniqued. Just set the operand and be done with it. 573 setOperand(Op, New); 574 return; 575 } 576 577 // This node is uniqued. 578 eraseFromStore(); 579 580 Metadata *Old = getOperand(Op); 581 setOperand(Op, New); 582 583 // Drop uniquing for self-reference cycles. 584 if (New == this) { 585 if (!isResolved()) 586 resolve(); 587 storeDistinctInContext(); 588 return; 589 } 590 591 // Re-unique the node. 592 auto *Uniqued = uniquify(); 593 if (Uniqued == this) { 594 if (!isResolved()) 595 resolveAfterOperandChange(Old, New); 596 return; 597 } 598 599 // Collision. 600 if (!isResolved()) { 601 // Still unresolved, so RAUW. 602 // 603 // First, clear out all operands to prevent any recursion (similar to 604 // dropAllReferences(), but we still need the use-list). 605 for (unsigned O = 0, E = getNumOperands(); O != E; ++O) 606 setOperand(O, nullptr); 607 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued); 608 deleteAsSubclass(); 609 return; 610 } 611 612 // Store in non-uniqued form if RAUW isn't possible. 613 storeDistinctInContext(); 614 } 615 616 void MDNode::deleteAsSubclass() { 617 switch (getMetadataID()) { 618 default: 619 llvm_unreachable("Invalid subclass of MDNode"); 620 #define HANDLE_MDNODE_LEAF(CLASS) \ 621 case CLASS##Kind: \ 622 delete cast<CLASS>(this); \ 623 break; 624 #include "llvm/IR/Metadata.def" 625 } 626 } 627 628 template <class T, class InfoT> 629 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) { 630 if (T *U = getUniqued(Store, N)) 631 return U; 632 633 Store.insert(N); 634 return N; 635 } 636 637 template <class NodeTy> struct MDNode::HasCachedHash { 638 typedef char Yes[1]; 639 typedef char No[2]; 640 template <class U, U Val> struct SFINAE {}; 641 642 template <class U> 643 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *); 644 template <class U> static No &check(...); 645 646 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes); 647 }; 648 649 MDNode *MDNode::uniquify() { 650 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node"); 651 652 // Try to insert into uniquing store. 653 switch (getMetadataID()) { 654 default: 655 llvm_unreachable("Invalid subclass of MDNode"); 656 #define HANDLE_MDNODE_LEAF(CLASS) \ 657 case CLASS##Kind: { \ 658 CLASS *SubclassThis = cast<CLASS>(this); \ 659 std::integral_constant<bool, HasCachedHash<CLASS>::value> \ 660 ShouldRecalculateHash; \ 661 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \ 662 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \ 663 } 664 #include "llvm/IR/Metadata.def" 665 } 666 } 667 668 void MDNode::eraseFromStore() { 669 switch (getMetadataID()) { 670 default: 671 llvm_unreachable("Invalid subclass of MDNode"); 672 #define HANDLE_MDNODE_LEAF(CLASS) \ 673 case CLASS##Kind: \ 674 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \ 675 break; 676 #include "llvm/IR/Metadata.def" 677 } 678 } 679 680 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs, 681 StorageType Storage, bool ShouldCreate) { 682 unsigned Hash = 0; 683 if (Storage == Uniqued) { 684 MDTupleInfo::KeyTy Key(MDs); 685 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key)) 686 return N; 687 if (!ShouldCreate) 688 return nullptr; 689 Hash = Key.getHash(); 690 } else { 691 assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); 692 } 693 694 return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs), 695 Storage, Context.pImpl->MDTuples); 696 } 697 698 void MDNode::deleteTemporary(MDNode *N) { 699 assert(N->isTemporary() && "Expected temporary node"); 700 N->replaceAllUsesWith(nullptr); 701 N->deleteAsSubclass(); 702 } 703 704 void MDNode::storeDistinctInContext() { 705 assert(isResolved() && "Expected resolved nodes"); 706 Storage = Distinct; 707 708 // Reset the hash. 709 switch (getMetadataID()) { 710 default: 711 llvm_unreachable("Invalid subclass of MDNode"); 712 #define HANDLE_MDNODE_LEAF(CLASS) \ 713 case CLASS##Kind: { \ 714 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \ 715 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \ 716 break; \ 717 } 718 #include "llvm/IR/Metadata.def" 719 } 720 721 getContext().pImpl->DistinctMDNodes.insert(this); 722 } 723 724 void MDNode::replaceOperandWith(unsigned I, Metadata *New) { 725 if (getOperand(I) == New) 726 return; 727 728 if (!isUniqued()) { 729 setOperand(I, New); 730 return; 731 } 732 733 handleChangedOperand(mutable_begin() + I, New); 734 } 735 736 void MDNode::setOperand(unsigned I, Metadata *New) { 737 assert(I < NumOperands); 738 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr); 739 } 740 741 /// \brief Get a node, or a self-reference that looks like it. 742 /// 743 /// Special handling for finding self-references, for use by \a 744 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from 745 /// when self-referencing nodes were still uniqued. If the first operand has 746 /// the same operands as \c Ops, return the first operand instead. 747 static MDNode *getOrSelfReference(LLVMContext &Context, 748 ArrayRef<Metadata *> Ops) { 749 if (!Ops.empty()) 750 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0])) 751 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) { 752 for (unsigned I = 1, E = Ops.size(); I != E; ++I) 753 if (Ops[I] != N->getOperand(I)) 754 return MDNode::get(Context, Ops); 755 return N; 756 } 757 758 return MDNode::get(Context, Ops); 759 } 760 761 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) { 762 if (!A) 763 return B; 764 if (!B) 765 return A; 766 767 SmallVector<Metadata *, 4> MDs; 768 MDs.reserve(A->getNumOperands() + B->getNumOperands()); 769 MDs.append(A->op_begin(), A->op_end()); 770 MDs.append(B->op_begin(), B->op_end()); 771 772 // FIXME: This preserves long-standing behaviour, but is it really the right 773 // behaviour? Or was that an unintended side-effect of node uniquing? 774 return getOrSelfReference(A->getContext(), MDs); 775 } 776 777 MDNode *MDNode::intersect(MDNode *A, MDNode *B) { 778 if (!A || !B) 779 return nullptr; 780 781 SmallVector<Metadata *, 4> MDs; 782 for (Metadata *MD : A->operands()) 783 if (std::find(B->op_begin(), B->op_end(), MD) != B->op_end()) 784 MDs.push_back(MD); 785 786 // FIXME: This preserves long-standing behaviour, but is it really the right 787 // behaviour? Or was that an unintended side-effect of node uniquing? 788 return getOrSelfReference(A->getContext(), MDs); 789 } 790 791 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) { 792 if (!A || !B) 793 return nullptr; 794 795 SmallVector<Metadata *, 4> MDs(B->op_begin(), B->op_end()); 796 for (Metadata *MD : A->operands()) 797 if (std::find(B->op_begin(), B->op_end(), MD) == B->op_end()) 798 MDs.push_back(MD); 799 800 // FIXME: This preserves long-standing behaviour, but is it really the right 801 // behaviour? Or was that an unintended side-effect of node uniquing? 802 return getOrSelfReference(A->getContext(), MDs); 803 } 804 805 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) { 806 if (!A || !B) 807 return nullptr; 808 809 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF(); 810 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF(); 811 if (AVal.compare(BVal) == APFloat::cmpLessThan) 812 return A; 813 return B; 814 } 815 816 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 817 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 818 } 819 820 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) { 821 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B); 822 } 823 824 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints, 825 ConstantInt *Low, ConstantInt *High) { 826 ConstantRange NewRange(Low->getValue(), High->getValue()); 827 unsigned Size = EndPoints.size(); 828 APInt LB = EndPoints[Size - 2]->getValue(); 829 APInt LE = EndPoints[Size - 1]->getValue(); 830 ConstantRange LastRange(LB, LE); 831 if (canBeMerged(NewRange, LastRange)) { 832 ConstantRange Union = LastRange.unionWith(NewRange); 833 Type *Ty = High->getType(); 834 EndPoints[Size - 2] = 835 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower())); 836 EndPoints[Size - 1] = 837 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper())); 838 return true; 839 } 840 return false; 841 } 842 843 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints, 844 ConstantInt *Low, ConstantInt *High) { 845 if (!EndPoints.empty()) 846 if (tryMergeRange(EndPoints, Low, High)) 847 return; 848 849 EndPoints.push_back(Low); 850 EndPoints.push_back(High); 851 } 852 853 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) { 854 // Given two ranges, we want to compute the union of the ranges. This 855 // is slightly complitade by having to combine the intervals and merge 856 // the ones that overlap. 857 858 if (!A || !B) 859 return nullptr; 860 861 if (A == B) 862 return A; 863 864 // First, walk both lists in older of the lower boundary of each interval. 865 // At each step, try to merge the new interval to the last one we adedd. 866 SmallVector<ConstantInt *, 4> EndPoints; 867 int AI = 0; 868 int BI = 0; 869 int AN = A->getNumOperands() / 2; 870 int BN = B->getNumOperands() / 2; 871 while (AI < AN && BI < BN) { 872 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI)); 873 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI)); 874 875 if (ALow->getValue().slt(BLow->getValue())) { 876 addRange(EndPoints, ALow, 877 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 878 ++AI; 879 } else { 880 addRange(EndPoints, BLow, 881 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 882 ++BI; 883 } 884 } 885 while (AI < AN) { 886 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)), 887 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 888 ++AI; 889 } 890 while (BI < BN) { 891 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)), 892 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 893 ++BI; 894 } 895 896 // If we have more than 2 ranges (4 endpoints) we have to try to merge 897 // the last and first ones. 898 unsigned Size = EndPoints.size(); 899 if (Size > 4) { 900 ConstantInt *FB = EndPoints[0]; 901 ConstantInt *FE = EndPoints[1]; 902 if (tryMergeRange(EndPoints, FB, FE)) { 903 for (unsigned i = 0; i < Size - 2; ++i) { 904 EndPoints[i] = EndPoints[i + 2]; 905 } 906 EndPoints.resize(Size - 2); 907 } 908 } 909 910 // If in the end we have a single range, it is possible that it is now the 911 // full range. Just drop the metadata in that case. 912 if (EndPoints.size() == 2) { 913 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue()); 914 if (Range.isFullSet()) 915 return nullptr; 916 } 917 918 SmallVector<Metadata *, 4> MDs; 919 MDs.reserve(EndPoints.size()); 920 for (auto *I : EndPoints) 921 MDs.push_back(ConstantAsMetadata::get(I)); 922 return MDNode::get(A->getContext(), MDs); 923 } 924 925 //===----------------------------------------------------------------------===// 926 // NamedMDNode implementation. 927 // 928 929 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) { 930 return *(SmallVector<TrackingMDRef, 4> *)Operands; 931 } 932 933 NamedMDNode::NamedMDNode(const Twine &N) 934 : Name(N.str()), Parent(nullptr), 935 Operands(new SmallVector<TrackingMDRef, 4>()) {} 936 937 NamedMDNode::~NamedMDNode() { 938 dropAllReferences(); 939 delete &getNMDOps(Operands); 940 } 941 942 unsigned NamedMDNode::getNumOperands() const { 943 return (unsigned)getNMDOps(Operands).size(); 944 } 945 946 MDNode *NamedMDNode::getOperand(unsigned i) const { 947 assert(i < getNumOperands() && "Invalid Operand number!"); 948 auto *N = getNMDOps(Operands)[i].get(); 949 return cast_or_null<MDNode>(N); 950 } 951 952 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); } 953 954 void NamedMDNode::setOperand(unsigned I, MDNode *New) { 955 assert(I < getNumOperands() && "Invalid operand number"); 956 getNMDOps(Operands)[I].reset(New); 957 } 958 959 void NamedMDNode::eraseFromParent() { 960 getParent()->eraseNamedMetadata(this); 961 } 962 963 void NamedMDNode::dropAllReferences() { 964 getNMDOps(Operands).clear(); 965 } 966 967 StringRef NamedMDNode::getName() const { 968 return StringRef(Name); 969 } 970 971 //===----------------------------------------------------------------------===// 972 // Instruction Metadata method implementations. 973 // 974 975 void Instruction::setMetadata(StringRef Kind, MDNode *Node) { 976 if (!Node && !hasMetadata()) 977 return; 978 setMetadata(getContext().getMDKindID(Kind), Node); 979 } 980 981 MDNode *Instruction::getMetadataImpl(StringRef Kind) const { 982 return getMetadataImpl(getContext().getMDKindID(Kind)); 983 } 984 985 void Instruction::dropUnknownMetadata(ArrayRef<unsigned> KnownIDs) { 986 SmallSet<unsigned, 5> KnownSet; 987 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 988 989 // Drop debug if needed 990 if (KnownSet.erase(LLVMContext::MD_dbg)) 991 DbgLoc = DebugLoc(); 992 993 if (!hasMetadataHashEntry()) 994 return; // Nothing to remove! 995 996 DenseMap<const Instruction *, LLVMContextImpl::MDMapTy> &MetadataStore = 997 getContext().pImpl->MetadataStore; 998 999 if (KnownSet.empty()) { 1000 // Just drop our entry at the store. 1001 MetadataStore.erase(this); 1002 setHasMetadataHashEntry(false); 1003 return; 1004 } 1005 1006 LLVMContextImpl::MDMapTy &Info = MetadataStore[this]; 1007 unsigned I; 1008 unsigned E; 1009 // Walk the array and drop any metadata we don't know. 1010 for (I = 0, E = Info.size(); I != E;) { 1011 if (KnownSet.count(Info[I].first)) { 1012 ++I; 1013 continue; 1014 } 1015 1016 Info[I] = std::move(Info.back()); 1017 Info.pop_back(); 1018 --E; 1019 } 1020 assert(E == Info.size()); 1021 1022 if (E == 0) { 1023 // Drop our entry at the store. 1024 MetadataStore.erase(this); 1025 setHasMetadataHashEntry(false); 1026 } 1027 } 1028 1029 /// setMetadata - Set the metadata of of the specified kind to the specified 1030 /// node. This updates/replaces metadata if already present, or removes it if 1031 /// Node is null. 1032 void Instruction::setMetadata(unsigned KindID, MDNode *Node) { 1033 if (!Node && !hasMetadata()) 1034 return; 1035 1036 // Handle 'dbg' as a special case since it is not stored in the hash table. 1037 if (KindID == LLVMContext::MD_dbg) { 1038 DbgLoc = DebugLoc::getFromDILocation(Node); 1039 return; 1040 } 1041 1042 // Handle the case when we're adding/updating metadata on an instruction. 1043 if (Node) { 1044 LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this]; 1045 assert(!Info.empty() == hasMetadataHashEntry() && 1046 "HasMetadata bit is wonked"); 1047 if (Info.empty()) { 1048 setHasMetadataHashEntry(true); 1049 } else { 1050 // Handle replacement of an existing value. 1051 for (auto &P : Info) 1052 if (P.first == KindID) { 1053 P.second.reset(Node); 1054 return; 1055 } 1056 } 1057 1058 // No replacement, just add it to the list. 1059 Info.emplace_back(std::piecewise_construct, std::make_tuple(KindID), 1060 std::make_tuple(Node)); 1061 return; 1062 } 1063 1064 // Otherwise, we're removing metadata from an instruction. 1065 assert((hasMetadataHashEntry() == 1066 (getContext().pImpl->MetadataStore.count(this) > 0)) && 1067 "HasMetadata bit out of date!"); 1068 if (!hasMetadataHashEntry()) 1069 return; // Nothing to remove! 1070 LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this]; 1071 1072 // Common case is removing the only entry. 1073 if (Info.size() == 1 && Info[0].first == KindID) { 1074 getContext().pImpl->MetadataStore.erase(this); 1075 setHasMetadataHashEntry(false); 1076 return; 1077 } 1078 1079 // Handle removal of an existing value. 1080 for (unsigned i = 0, e = Info.size(); i != e; ++i) 1081 if (Info[i].first == KindID) { 1082 Info[i] = std::move(Info.back()); 1083 Info.pop_back(); 1084 assert(!Info.empty() && "Removing last entry should be handled above"); 1085 return; 1086 } 1087 // Otherwise, removing an entry that doesn't exist on the instruction. 1088 } 1089 1090 void Instruction::setAAMetadata(const AAMDNodes &N) { 1091 setMetadata(LLVMContext::MD_tbaa, N.TBAA); 1092 setMetadata(LLVMContext::MD_alias_scope, N.Scope); 1093 setMetadata(LLVMContext::MD_noalias, N.NoAlias); 1094 } 1095 1096 MDNode *Instruction::getMetadataImpl(unsigned KindID) const { 1097 // Handle 'dbg' as a special case since it is not stored in the hash table. 1098 if (KindID == LLVMContext::MD_dbg) 1099 return DbgLoc.getAsMDNode(); 1100 1101 if (!hasMetadataHashEntry()) return nullptr; 1102 1103 LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this]; 1104 assert(!Info.empty() && "bit out of sync with hash table"); 1105 1106 for (const auto &I : Info) 1107 if (I.first == KindID) 1108 return I.second; 1109 return nullptr; 1110 } 1111 1112 void Instruction::getAllMetadataImpl( 1113 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1114 Result.clear(); 1115 1116 // Handle 'dbg' as a special case since it is not stored in the hash table. 1117 if (!DbgLoc.isUnknown()) { 1118 Result.push_back( 1119 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode())); 1120 if (!hasMetadataHashEntry()) return; 1121 } 1122 1123 assert(hasMetadataHashEntry() && 1124 getContext().pImpl->MetadataStore.count(this) && 1125 "Shouldn't have called this"); 1126 const LLVMContextImpl::MDMapTy &Info = 1127 getContext().pImpl->MetadataStore.find(this)->second; 1128 assert(!Info.empty() && "Shouldn't have called this"); 1129 1130 Result.reserve(Result.size() + Info.size()); 1131 for (auto &I : Info) 1132 Result.push_back(std::make_pair(I.first, cast<MDNode>(I.second.get()))); 1133 1134 // Sort the resulting array so it is stable. 1135 if (Result.size() > 1) 1136 array_pod_sort(Result.begin(), Result.end()); 1137 } 1138 1139 void Instruction::getAllMetadataOtherThanDebugLocImpl( 1140 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1141 Result.clear(); 1142 assert(hasMetadataHashEntry() && 1143 getContext().pImpl->MetadataStore.count(this) && 1144 "Shouldn't have called this"); 1145 const LLVMContextImpl::MDMapTy &Info = 1146 getContext().pImpl->MetadataStore.find(this)->second; 1147 assert(!Info.empty() && "Shouldn't have called this"); 1148 Result.reserve(Result.size() + Info.size()); 1149 for (auto &I : Info) 1150 Result.push_back(std::make_pair(I.first, cast<MDNode>(I.second.get()))); 1151 1152 // Sort the resulting array so it is stable. 1153 if (Result.size() > 1) 1154 array_pod_sort(Result.begin(), Result.end()); 1155 } 1156 1157 /// clearMetadataHashEntries - Clear all hashtable-based metadata from 1158 /// this instruction. 1159 void Instruction::clearMetadataHashEntries() { 1160 assert(hasMetadataHashEntry() && "Caller should check"); 1161 getContext().pImpl->MetadataStore.erase(this); 1162 setHasMetadataHashEntry(false); 1163 } 1164