1 //===- Metadata.cpp - Implement Metadata classes --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Metadata classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLVMContextImpl.h" 15 #include "MetadataImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/APFloat.h" 18 #include "llvm/ADT/APInt.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringMap.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/IR/Argument.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/ConstantRange.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DebugInfoMetadata.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalObject.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/TrackingMDRef.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/IR/ValueHandle.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/MathExtras.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <cstddef> 54 #include <cstdint> 55 #include <iterator> 56 #include <tuple> 57 #include <type_traits> 58 #include <utility> 59 #include <vector> 60 61 using namespace llvm; 62 63 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD) 64 : Value(Ty, MetadataAsValueVal), MD(MD) { 65 track(); 66 } 67 68 MetadataAsValue::~MetadataAsValue() { 69 getType()->getContext().pImpl->MetadataAsValues.erase(MD); 70 untrack(); 71 } 72 73 /// Canonicalize metadata arguments to intrinsics. 74 /// 75 /// To support bitcode upgrades (and assembly semantic sugar) for \a 76 /// MetadataAsValue, we need to canonicalize certain metadata. 77 /// 78 /// - nullptr is replaced by an empty MDNode. 79 /// - An MDNode with a single null operand is replaced by an empty MDNode. 80 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped. 81 /// 82 /// This maintains readability of bitcode from when metadata was a type of 83 /// value, and these bridges were unnecessary. 84 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context, 85 Metadata *MD) { 86 if (!MD) 87 // !{} 88 return MDNode::get(Context, None); 89 90 // Return early if this isn't a single-operand MDNode. 91 auto *N = dyn_cast<MDNode>(MD); 92 if (!N || N->getNumOperands() != 1) 93 return MD; 94 95 if (!N->getOperand(0)) 96 // !{} 97 return MDNode::get(Context, None); 98 99 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0))) 100 // Look through the MDNode. 101 return C; 102 103 return MD; 104 } 105 106 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) { 107 MD = canonicalizeMetadataForValue(Context, MD); 108 auto *&Entry = Context.pImpl->MetadataAsValues[MD]; 109 if (!Entry) 110 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD); 111 return Entry; 112 } 113 114 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context, 115 Metadata *MD) { 116 MD = canonicalizeMetadataForValue(Context, MD); 117 auto &Store = Context.pImpl->MetadataAsValues; 118 return Store.lookup(MD); 119 } 120 121 void MetadataAsValue::handleChangedMetadata(Metadata *MD) { 122 LLVMContext &Context = getContext(); 123 MD = canonicalizeMetadataForValue(Context, MD); 124 auto &Store = Context.pImpl->MetadataAsValues; 125 126 // Stop tracking the old metadata. 127 Store.erase(this->MD); 128 untrack(); 129 this->MD = nullptr; 130 131 // Start tracking MD, or RAUW if necessary. 132 auto *&Entry = Store[MD]; 133 if (Entry) { 134 replaceAllUsesWith(Entry); 135 delete this; 136 return; 137 } 138 139 this->MD = MD; 140 track(); 141 Entry = this; 142 } 143 144 void MetadataAsValue::track() { 145 if (MD) 146 MetadataTracking::track(&MD, *MD, *this); 147 } 148 149 void MetadataAsValue::untrack() { 150 if (MD) 151 MetadataTracking::untrack(MD); 152 } 153 154 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) { 155 assert(Ref && "Expected live reference"); 156 assert((Owner || *static_cast<Metadata **>(Ref) == &MD) && 157 "Reference without owner must be direct"); 158 if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) { 159 R->addRef(Ref, Owner); 160 return true; 161 } 162 if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) { 163 assert(!PH->Use && "Placeholders can only be used once"); 164 assert(!Owner && "Unexpected callback to owner"); 165 PH->Use = static_cast<Metadata **>(Ref); 166 return true; 167 } 168 return false; 169 } 170 171 void MetadataTracking::untrack(void *Ref, Metadata &MD) { 172 assert(Ref && "Expected live reference"); 173 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) 174 R->dropRef(Ref); 175 else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) 176 PH->Use = nullptr; 177 } 178 179 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) { 180 assert(Ref && "Expected live reference"); 181 assert(New && "Expected live reference"); 182 assert(Ref != New && "Expected change"); 183 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) { 184 R->moveRef(Ref, New, MD); 185 return true; 186 } 187 assert(!isa<DistinctMDOperandPlaceholder>(MD) && 188 "Unexpected move of an MDOperand"); 189 assert(!isReplaceable(MD) && 190 "Expected un-replaceable metadata, since we didn't move a reference"); 191 return false; 192 } 193 194 bool MetadataTracking::isReplaceable(const Metadata &MD) { 195 return ReplaceableMetadataImpl::isReplaceable(MD); 196 } 197 198 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) { 199 bool WasInserted = 200 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex))) 201 .second; 202 (void)WasInserted; 203 assert(WasInserted && "Expected to add a reference"); 204 205 ++NextIndex; 206 assert(NextIndex != 0 && "Unexpected overflow"); 207 } 208 209 void ReplaceableMetadataImpl::dropRef(void *Ref) { 210 bool WasErased = UseMap.erase(Ref); 211 (void)WasErased; 212 assert(WasErased && "Expected to drop a reference"); 213 } 214 215 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New, 216 const Metadata &MD) { 217 auto I = UseMap.find(Ref); 218 assert(I != UseMap.end() && "Expected to move a reference"); 219 auto OwnerAndIndex = I->second; 220 UseMap.erase(I); 221 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second; 222 (void)WasInserted; 223 assert(WasInserted && "Expected to add a reference"); 224 225 // Check that the references are direct if there's no owner. 226 (void)MD; 227 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) && 228 "Reference without owner must be direct"); 229 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) && 230 "Reference without owner must be direct"); 231 } 232 233 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) { 234 if (UseMap.empty()) 235 return; 236 237 // Copy out uses since UseMap will get touched below. 238 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>; 239 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 240 llvm::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) { 241 return L.second.second < R.second.second; 242 }); 243 for (const auto &Pair : Uses) { 244 // Check that this Ref hasn't disappeared after RAUW (when updating a 245 // previous Ref). 246 if (!UseMap.count(Pair.first)) 247 continue; 248 249 OwnerTy Owner = Pair.second.first; 250 if (!Owner) { 251 // Update unowned tracking references directly. 252 Metadata *&Ref = *static_cast<Metadata **>(Pair.first); 253 Ref = MD; 254 if (MD) 255 MetadataTracking::track(Ref); 256 UseMap.erase(Pair.first); 257 continue; 258 } 259 260 // Check for MetadataAsValue. 261 if (Owner.is<MetadataAsValue *>()) { 262 Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD); 263 continue; 264 } 265 266 // There's a Metadata owner -- dispatch. 267 Metadata *OwnerMD = Owner.get<Metadata *>(); 268 switch (OwnerMD->getMetadataID()) { 269 #define HANDLE_METADATA_LEAF(CLASS) \ 270 case Metadata::CLASS##Kind: \ 271 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \ 272 continue; 273 #include "llvm/IR/Metadata.def" 274 default: 275 llvm_unreachable("Invalid metadata subclass"); 276 } 277 } 278 assert(UseMap.empty() && "Expected all uses to be replaced"); 279 } 280 281 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) { 282 if (UseMap.empty()) 283 return; 284 285 if (!ResolveUsers) { 286 UseMap.clear(); 287 return; 288 } 289 290 // Copy out uses since UseMap could get touched below. 291 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>; 292 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 293 llvm::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) { 294 return L.second.second < R.second.second; 295 }); 296 UseMap.clear(); 297 for (const auto &Pair : Uses) { 298 auto Owner = Pair.second.first; 299 if (!Owner) 300 continue; 301 if (Owner.is<MetadataAsValue *>()) 302 continue; 303 304 // Resolve MDNodes that point at this. 305 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>()); 306 if (!OwnerMD) 307 continue; 308 if (OwnerMD->isResolved()) 309 continue; 310 OwnerMD->decrementUnresolvedOperandCount(); 311 } 312 } 313 314 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) { 315 if (auto *N = dyn_cast<MDNode>(&MD)) 316 return N->isResolved() ? nullptr : N->Context.getOrCreateReplaceableUses(); 317 return dyn_cast<ValueAsMetadata>(&MD); 318 } 319 320 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) { 321 if (auto *N = dyn_cast<MDNode>(&MD)) 322 return N->isResolved() ? nullptr : N->Context.getReplaceableUses(); 323 return dyn_cast<ValueAsMetadata>(&MD); 324 } 325 326 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) { 327 if (auto *N = dyn_cast<MDNode>(&MD)) 328 return !N->isResolved(); 329 return dyn_cast<ValueAsMetadata>(&MD); 330 } 331 332 static DISubprogram *getLocalFunctionMetadata(Value *V) { 333 assert(V && "Expected value"); 334 if (auto *A = dyn_cast<Argument>(V)) { 335 if (auto *Fn = A->getParent()) 336 return Fn->getSubprogram(); 337 return nullptr; 338 } 339 340 if (BasicBlock *BB = cast<Instruction>(V)->getParent()) { 341 if (auto *Fn = BB->getParent()) 342 return Fn->getSubprogram(); 343 return nullptr; 344 } 345 346 return nullptr; 347 } 348 349 ValueAsMetadata *ValueAsMetadata::get(Value *V) { 350 assert(V && "Unexpected null Value"); 351 352 auto &Context = V->getContext(); 353 auto *&Entry = Context.pImpl->ValuesAsMetadata[V]; 354 if (!Entry) { 355 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) && 356 "Expected constant or function-local value"); 357 assert(!V->IsUsedByMD && "Expected this to be the only metadata use"); 358 V->IsUsedByMD = true; 359 if (auto *C = dyn_cast<Constant>(V)) 360 Entry = new ConstantAsMetadata(C); 361 else 362 Entry = new LocalAsMetadata(V); 363 } 364 365 return Entry; 366 } 367 368 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) { 369 assert(V && "Unexpected null Value"); 370 return V->getContext().pImpl->ValuesAsMetadata.lookup(V); 371 } 372 373 void ValueAsMetadata::handleDeletion(Value *V) { 374 assert(V && "Expected valid value"); 375 376 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata; 377 auto I = Store.find(V); 378 if (I == Store.end()) 379 return; 380 381 // Remove old entry from the map. 382 ValueAsMetadata *MD = I->second; 383 assert(MD && "Expected valid metadata"); 384 assert(MD->getValue() == V && "Expected valid mapping"); 385 Store.erase(I); 386 387 // Delete the metadata. 388 MD->replaceAllUsesWith(nullptr); 389 delete MD; 390 } 391 392 void ValueAsMetadata::handleRAUW(Value *From, Value *To) { 393 assert(From && "Expected valid value"); 394 assert(To && "Expected valid value"); 395 assert(From != To && "Expected changed value"); 396 assert(From->getType() == To->getType() && "Unexpected type change"); 397 398 LLVMContext &Context = From->getType()->getContext(); 399 auto &Store = Context.pImpl->ValuesAsMetadata; 400 auto I = Store.find(From); 401 if (I == Store.end()) { 402 assert(!From->IsUsedByMD && "Expected From not to be used by metadata"); 403 return; 404 } 405 406 // Remove old entry from the map. 407 assert(From->IsUsedByMD && "Expected From to be used by metadata"); 408 From->IsUsedByMD = false; 409 ValueAsMetadata *MD = I->second; 410 assert(MD && "Expected valid metadata"); 411 assert(MD->getValue() == From && "Expected valid mapping"); 412 Store.erase(I); 413 414 if (isa<LocalAsMetadata>(MD)) { 415 if (auto *C = dyn_cast<Constant>(To)) { 416 // Local became a constant. 417 MD->replaceAllUsesWith(ConstantAsMetadata::get(C)); 418 delete MD; 419 return; 420 } 421 if (getLocalFunctionMetadata(From) && getLocalFunctionMetadata(To) && 422 getLocalFunctionMetadata(From) != getLocalFunctionMetadata(To)) { 423 // DISubprogram changed. 424 MD->replaceAllUsesWith(nullptr); 425 delete MD; 426 return; 427 } 428 } else if (!isa<Constant>(To)) { 429 // Changed to function-local value. 430 MD->replaceAllUsesWith(nullptr); 431 delete MD; 432 return; 433 } 434 435 auto *&Entry = Store[To]; 436 if (Entry) { 437 // The target already exists. 438 MD->replaceAllUsesWith(Entry); 439 delete MD; 440 return; 441 } 442 443 // Update MD in place (and update the map entry). 444 assert(!To->IsUsedByMD && "Expected this to be the only metadata use"); 445 To->IsUsedByMD = true; 446 MD->V = To; 447 Entry = MD; 448 } 449 450 //===----------------------------------------------------------------------===// 451 // MDString implementation. 452 // 453 454 MDString *MDString::get(LLVMContext &Context, StringRef Str) { 455 auto &Store = Context.pImpl->MDStringCache; 456 auto I = Store.try_emplace(Str); 457 auto &MapEntry = I.first->getValue(); 458 if (!I.second) 459 return &MapEntry; 460 MapEntry.Entry = &*I.first; 461 return &MapEntry; 462 } 463 464 StringRef MDString::getString() const { 465 assert(Entry && "Expected to find string map entry"); 466 return Entry->first(); 467 } 468 469 //===----------------------------------------------------------------------===// 470 // MDNode implementation. 471 // 472 473 // Assert that the MDNode types will not be unaligned by the objects 474 // prepended to them. 475 #define HANDLE_MDNODE_LEAF(CLASS) \ 476 static_assert( \ 477 alignof(uint64_t) >= alignof(CLASS), \ 478 "Alignment is insufficient after objects prepended to " #CLASS); 479 #include "llvm/IR/Metadata.def" 480 481 void *MDNode::operator new(size_t Size, unsigned NumOps) { 482 size_t OpSize = NumOps * sizeof(MDOperand); 483 // uint64_t is the most aligned type we need support (ensured by static_assert 484 // above) 485 OpSize = alignTo(OpSize, alignof(uint64_t)); 486 void *Ptr = reinterpret_cast<char *>(::operator new(OpSize + Size)) + OpSize; 487 MDOperand *O = static_cast<MDOperand *>(Ptr); 488 for (MDOperand *E = O - NumOps; O != E; --O) 489 (void)new (O - 1) MDOperand; 490 return Ptr; 491 } 492 493 void MDNode::operator delete(void *Mem) { 494 MDNode *N = static_cast<MDNode *>(Mem); 495 size_t OpSize = N->NumOperands * sizeof(MDOperand); 496 OpSize = alignTo(OpSize, alignof(uint64_t)); 497 498 MDOperand *O = static_cast<MDOperand *>(Mem); 499 for (MDOperand *E = O - N->NumOperands; O != E; --O) 500 (O - 1)->~MDOperand(); 501 ::operator delete(reinterpret_cast<char *>(Mem) - OpSize); 502 } 503 504 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage, 505 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2) 506 : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()), 507 NumUnresolved(0), Context(Context) { 508 unsigned Op = 0; 509 for (Metadata *MD : Ops1) 510 setOperand(Op++, MD); 511 for (Metadata *MD : Ops2) 512 setOperand(Op++, MD); 513 514 if (!isUniqued()) 515 return; 516 517 // Count the unresolved operands. If there are any, RAUW support will be 518 // added lazily on first reference. 519 countUnresolvedOperands(); 520 } 521 522 TempMDNode MDNode::clone() const { 523 switch (getMetadataID()) { 524 default: 525 llvm_unreachable("Invalid MDNode subclass"); 526 #define HANDLE_MDNODE_LEAF(CLASS) \ 527 case CLASS##Kind: \ 528 return cast<CLASS>(this)->cloneImpl(); 529 #include "llvm/IR/Metadata.def" 530 } 531 } 532 533 static bool isOperandUnresolved(Metadata *Op) { 534 if (auto *N = dyn_cast_or_null<MDNode>(Op)) 535 return !N->isResolved(); 536 return false; 537 } 538 539 void MDNode::countUnresolvedOperands() { 540 assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted"); 541 assert(isUniqued() && "Expected this to be uniqued"); 542 NumUnresolved = count_if(operands(), isOperandUnresolved); 543 } 544 545 void MDNode::makeUniqued() { 546 assert(isTemporary() && "Expected this to be temporary"); 547 assert(!isResolved() && "Expected this to be unresolved"); 548 549 // Enable uniquing callbacks. 550 for (auto &Op : mutable_operands()) 551 Op.reset(Op.get(), this); 552 553 // Make this 'uniqued'. 554 Storage = Uniqued; 555 countUnresolvedOperands(); 556 if (!NumUnresolved) { 557 dropReplaceableUses(); 558 assert(isResolved() && "Expected this to be resolved"); 559 } 560 561 assert(isUniqued() && "Expected this to be uniqued"); 562 } 563 564 void MDNode::makeDistinct() { 565 assert(isTemporary() && "Expected this to be temporary"); 566 assert(!isResolved() && "Expected this to be unresolved"); 567 568 // Drop RAUW support and store as a distinct node. 569 dropReplaceableUses(); 570 storeDistinctInContext(); 571 572 assert(isDistinct() && "Expected this to be distinct"); 573 assert(isResolved() && "Expected this to be resolved"); 574 } 575 576 void MDNode::resolve() { 577 assert(isUniqued() && "Expected this to be uniqued"); 578 assert(!isResolved() && "Expected this to be unresolved"); 579 580 NumUnresolved = 0; 581 dropReplaceableUses(); 582 583 assert(isResolved() && "Expected this to be resolved"); 584 } 585 586 void MDNode::dropReplaceableUses() { 587 assert(!NumUnresolved && "Unexpected unresolved operand"); 588 589 // Drop any RAUW support. 590 if (Context.hasReplaceableUses()) 591 Context.takeReplaceableUses()->resolveAllUses(); 592 } 593 594 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) { 595 assert(isUniqued() && "Expected this to be uniqued"); 596 assert(NumUnresolved != 0 && "Expected unresolved operands"); 597 598 // Check if an operand was resolved. 599 if (!isOperandUnresolved(Old)) { 600 if (isOperandUnresolved(New)) 601 // An operand was un-resolved! 602 ++NumUnresolved; 603 } else if (!isOperandUnresolved(New)) 604 decrementUnresolvedOperandCount(); 605 } 606 607 void MDNode::decrementUnresolvedOperandCount() { 608 assert(!isResolved() && "Expected this to be unresolved"); 609 if (isTemporary()) 610 return; 611 612 assert(isUniqued() && "Expected this to be uniqued"); 613 if (--NumUnresolved) 614 return; 615 616 // Last unresolved operand has just been resolved. 617 dropReplaceableUses(); 618 assert(isResolved() && "Expected this to become resolved"); 619 } 620 621 void MDNode::resolveCycles() { 622 if (isResolved()) 623 return; 624 625 // Resolve this node immediately. 626 resolve(); 627 628 // Resolve all operands. 629 for (const auto &Op : operands()) { 630 auto *N = dyn_cast_or_null<MDNode>(Op); 631 if (!N) 632 continue; 633 634 assert(!N->isTemporary() && 635 "Expected all forward declarations to be resolved"); 636 if (!N->isResolved()) 637 N->resolveCycles(); 638 } 639 } 640 641 static bool hasSelfReference(MDNode *N) { 642 for (Metadata *MD : N->operands()) 643 if (MD == N) 644 return true; 645 return false; 646 } 647 648 MDNode *MDNode::replaceWithPermanentImpl() { 649 switch (getMetadataID()) { 650 default: 651 // If this type isn't uniquable, replace with a distinct node. 652 return replaceWithDistinctImpl(); 653 654 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 655 case CLASS##Kind: \ 656 break; 657 #include "llvm/IR/Metadata.def" 658 } 659 660 // Even if this type is uniquable, self-references have to be distinct. 661 if (hasSelfReference(this)) 662 return replaceWithDistinctImpl(); 663 return replaceWithUniquedImpl(); 664 } 665 666 MDNode *MDNode::replaceWithUniquedImpl() { 667 // Try to uniquify in place. 668 MDNode *UniquedNode = uniquify(); 669 670 if (UniquedNode == this) { 671 makeUniqued(); 672 return this; 673 } 674 675 // Collision, so RAUW instead. 676 replaceAllUsesWith(UniquedNode); 677 deleteAsSubclass(); 678 return UniquedNode; 679 } 680 681 MDNode *MDNode::replaceWithDistinctImpl() { 682 makeDistinct(); 683 return this; 684 } 685 686 void MDTuple::recalculateHash() { 687 setHash(MDTupleInfo::KeyTy::calculateHash(this)); 688 } 689 690 void MDNode::dropAllReferences() { 691 for (unsigned I = 0, E = NumOperands; I != E; ++I) 692 setOperand(I, nullptr); 693 if (Context.hasReplaceableUses()) { 694 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false); 695 (void)Context.takeReplaceableUses(); 696 } 697 } 698 699 void MDNode::handleChangedOperand(void *Ref, Metadata *New) { 700 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin(); 701 assert(Op < getNumOperands() && "Expected valid operand"); 702 703 if (!isUniqued()) { 704 // This node is not uniqued. Just set the operand and be done with it. 705 setOperand(Op, New); 706 return; 707 } 708 709 // This node is uniqued. 710 eraseFromStore(); 711 712 Metadata *Old = getOperand(Op); 713 setOperand(Op, New); 714 715 // Drop uniquing for self-reference cycles and deleted constants. 716 if (New == this || (!New && Old && isa<ConstantAsMetadata>(Old))) { 717 if (!isResolved()) 718 resolve(); 719 storeDistinctInContext(); 720 return; 721 } 722 723 // Re-unique the node. 724 auto *Uniqued = uniquify(); 725 if (Uniqued == this) { 726 if (!isResolved()) 727 resolveAfterOperandChange(Old, New); 728 return; 729 } 730 731 // Collision. 732 if (!isResolved()) { 733 // Still unresolved, so RAUW. 734 // 735 // First, clear out all operands to prevent any recursion (similar to 736 // dropAllReferences(), but we still need the use-list). 737 for (unsigned O = 0, E = getNumOperands(); O != E; ++O) 738 setOperand(O, nullptr); 739 if (Context.hasReplaceableUses()) 740 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued); 741 deleteAsSubclass(); 742 return; 743 } 744 745 // Store in non-uniqued form if RAUW isn't possible. 746 storeDistinctInContext(); 747 } 748 749 void MDNode::deleteAsSubclass() { 750 switch (getMetadataID()) { 751 default: 752 llvm_unreachable("Invalid subclass of MDNode"); 753 #define HANDLE_MDNODE_LEAF(CLASS) \ 754 case CLASS##Kind: \ 755 delete cast<CLASS>(this); \ 756 break; 757 #include "llvm/IR/Metadata.def" 758 } 759 } 760 761 template <class T, class InfoT> 762 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) { 763 if (T *U = getUniqued(Store, N)) 764 return U; 765 766 Store.insert(N); 767 return N; 768 } 769 770 template <class NodeTy> struct MDNode::HasCachedHash { 771 using Yes = char[1]; 772 using No = char[2]; 773 template <class U, U Val> struct SFINAE {}; 774 775 template <class U> 776 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *); 777 template <class U> static No &check(...); 778 779 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes); 780 }; 781 782 MDNode *MDNode::uniquify() { 783 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node"); 784 785 // Try to insert into uniquing store. 786 switch (getMetadataID()) { 787 default: 788 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 789 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 790 case CLASS##Kind: { \ 791 CLASS *SubclassThis = cast<CLASS>(this); \ 792 std::integral_constant<bool, HasCachedHash<CLASS>::value> \ 793 ShouldRecalculateHash; \ 794 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \ 795 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \ 796 } 797 #include "llvm/IR/Metadata.def" 798 } 799 } 800 801 void MDNode::eraseFromStore() { 802 switch (getMetadataID()) { 803 default: 804 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 805 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 806 case CLASS##Kind: \ 807 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \ 808 break; 809 #include "llvm/IR/Metadata.def" 810 } 811 } 812 813 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs, 814 StorageType Storage, bool ShouldCreate) { 815 unsigned Hash = 0; 816 if (Storage == Uniqued) { 817 MDTupleInfo::KeyTy Key(MDs); 818 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key)) 819 return N; 820 if (!ShouldCreate) 821 return nullptr; 822 Hash = Key.getHash(); 823 } else { 824 assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); 825 } 826 827 return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs), 828 Storage, Context.pImpl->MDTuples); 829 } 830 831 void MDNode::deleteTemporary(MDNode *N) { 832 assert(N->isTemporary() && "Expected temporary node"); 833 N->replaceAllUsesWith(nullptr); 834 N->deleteAsSubclass(); 835 } 836 837 void MDNode::storeDistinctInContext() { 838 assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses"); 839 assert(!NumUnresolved && "Unexpected unresolved nodes"); 840 Storage = Distinct; 841 assert(isResolved() && "Expected this to be resolved"); 842 843 // Reset the hash. 844 switch (getMetadataID()) { 845 default: 846 llvm_unreachable("Invalid subclass of MDNode"); 847 #define HANDLE_MDNODE_LEAF(CLASS) \ 848 case CLASS##Kind: { \ 849 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \ 850 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \ 851 break; \ 852 } 853 #include "llvm/IR/Metadata.def" 854 } 855 856 getContext().pImpl->DistinctMDNodes.push_back(this); 857 } 858 859 void MDNode::replaceOperandWith(unsigned I, Metadata *New) { 860 if (getOperand(I) == New) 861 return; 862 863 if (!isUniqued()) { 864 setOperand(I, New); 865 return; 866 } 867 868 handleChangedOperand(mutable_begin() + I, New); 869 } 870 871 void MDNode::setOperand(unsigned I, Metadata *New) { 872 assert(I < NumOperands); 873 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr); 874 } 875 876 /// Get a node or a self-reference that looks like it. 877 /// 878 /// Special handling for finding self-references, for use by \a 879 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from 880 /// when self-referencing nodes were still uniqued. If the first operand has 881 /// the same operands as \c Ops, return the first operand instead. 882 static MDNode *getOrSelfReference(LLVMContext &Context, 883 ArrayRef<Metadata *> Ops) { 884 if (!Ops.empty()) 885 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0])) 886 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) { 887 for (unsigned I = 1, E = Ops.size(); I != E; ++I) 888 if (Ops[I] != N->getOperand(I)) 889 return MDNode::get(Context, Ops); 890 return N; 891 } 892 893 return MDNode::get(Context, Ops); 894 } 895 896 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) { 897 if (!A) 898 return B; 899 if (!B) 900 return A; 901 902 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 903 MDs.insert(B->op_begin(), B->op_end()); 904 905 // FIXME: This preserves long-standing behaviour, but is it really the right 906 // behaviour? Or was that an unintended side-effect of node uniquing? 907 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 908 } 909 910 MDNode *MDNode::intersect(MDNode *A, MDNode *B) { 911 if (!A || !B) 912 return nullptr; 913 914 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 915 SmallPtrSet<Metadata *, 4> BSet(B->op_begin(), B->op_end()); 916 MDs.remove_if([&](Metadata *MD) { return !is_contained(BSet, MD); }); 917 918 // FIXME: This preserves long-standing behaviour, but is it really the right 919 // behaviour? Or was that an unintended side-effect of node uniquing? 920 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 921 } 922 923 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) { 924 if (!A || !B) 925 return nullptr; 926 927 return concatenate(A, B); 928 } 929 930 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) { 931 if (!A || !B) 932 return nullptr; 933 934 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF(); 935 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF(); 936 if (AVal.compare(BVal) == APFloat::cmpLessThan) 937 return A; 938 return B; 939 } 940 941 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 942 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 943 } 944 945 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) { 946 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B); 947 } 948 949 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints, 950 ConstantInt *Low, ConstantInt *High) { 951 ConstantRange NewRange(Low->getValue(), High->getValue()); 952 unsigned Size = EndPoints.size(); 953 APInt LB = EndPoints[Size - 2]->getValue(); 954 APInt LE = EndPoints[Size - 1]->getValue(); 955 ConstantRange LastRange(LB, LE); 956 if (canBeMerged(NewRange, LastRange)) { 957 ConstantRange Union = LastRange.unionWith(NewRange); 958 Type *Ty = High->getType(); 959 EndPoints[Size - 2] = 960 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower())); 961 EndPoints[Size - 1] = 962 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper())); 963 return true; 964 } 965 return false; 966 } 967 968 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints, 969 ConstantInt *Low, ConstantInt *High) { 970 if (!EndPoints.empty()) 971 if (tryMergeRange(EndPoints, Low, High)) 972 return; 973 974 EndPoints.push_back(Low); 975 EndPoints.push_back(High); 976 } 977 978 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) { 979 // Given two ranges, we want to compute the union of the ranges. This 980 // is slightly complicated by having to combine the intervals and merge 981 // the ones that overlap. 982 983 if (!A || !B) 984 return nullptr; 985 986 if (A == B) 987 return A; 988 989 // First, walk both lists in order of the lower boundary of each interval. 990 // At each step, try to merge the new interval to the last one we adedd. 991 SmallVector<ConstantInt *, 4> EndPoints; 992 int AI = 0; 993 int BI = 0; 994 int AN = A->getNumOperands() / 2; 995 int BN = B->getNumOperands() / 2; 996 while (AI < AN && BI < BN) { 997 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI)); 998 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI)); 999 1000 if (ALow->getValue().slt(BLow->getValue())) { 1001 addRange(EndPoints, ALow, 1002 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 1003 ++AI; 1004 } else { 1005 addRange(EndPoints, BLow, 1006 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 1007 ++BI; 1008 } 1009 } 1010 while (AI < AN) { 1011 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)), 1012 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 1013 ++AI; 1014 } 1015 while (BI < BN) { 1016 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)), 1017 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 1018 ++BI; 1019 } 1020 1021 // If we have more than 2 ranges (4 endpoints) we have to try to merge 1022 // the last and first ones. 1023 unsigned Size = EndPoints.size(); 1024 if (Size > 4) { 1025 ConstantInt *FB = EndPoints[0]; 1026 ConstantInt *FE = EndPoints[1]; 1027 if (tryMergeRange(EndPoints, FB, FE)) { 1028 for (unsigned i = 0; i < Size - 2; ++i) { 1029 EndPoints[i] = EndPoints[i + 2]; 1030 } 1031 EndPoints.resize(Size - 2); 1032 } 1033 } 1034 1035 // If in the end we have a single range, it is possible that it is now the 1036 // full range. Just drop the metadata in that case. 1037 if (EndPoints.size() == 2) { 1038 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue()); 1039 if (Range.isFullSet()) 1040 return nullptr; 1041 } 1042 1043 SmallVector<Metadata *, 4> MDs; 1044 MDs.reserve(EndPoints.size()); 1045 for (auto *I : EndPoints) 1046 MDs.push_back(ConstantAsMetadata::get(I)); 1047 return MDNode::get(A->getContext(), MDs); 1048 } 1049 1050 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) { 1051 if (!A || !B) 1052 return nullptr; 1053 1054 ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0)); 1055 ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0)); 1056 if (AVal->getZExtValue() < BVal->getZExtValue()) 1057 return A; 1058 return B; 1059 } 1060 1061 //===----------------------------------------------------------------------===// 1062 // NamedMDNode implementation. 1063 // 1064 1065 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) { 1066 return *(SmallVector<TrackingMDRef, 4> *)Operands; 1067 } 1068 1069 NamedMDNode::NamedMDNode(const Twine &N) 1070 : Name(N.str()), Operands(new SmallVector<TrackingMDRef, 4>()) {} 1071 1072 NamedMDNode::~NamedMDNode() { 1073 dropAllReferences(); 1074 delete &getNMDOps(Operands); 1075 } 1076 1077 unsigned NamedMDNode::getNumOperands() const { 1078 return (unsigned)getNMDOps(Operands).size(); 1079 } 1080 1081 MDNode *NamedMDNode::getOperand(unsigned i) const { 1082 assert(i < getNumOperands() && "Invalid Operand number!"); 1083 auto *N = getNMDOps(Operands)[i].get(); 1084 return cast_or_null<MDNode>(N); 1085 } 1086 1087 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); } 1088 1089 void NamedMDNode::setOperand(unsigned I, MDNode *New) { 1090 assert(I < getNumOperands() && "Invalid operand number"); 1091 getNMDOps(Operands)[I].reset(New); 1092 } 1093 1094 void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); } 1095 1096 void NamedMDNode::clearOperands() { getNMDOps(Operands).clear(); } 1097 1098 StringRef NamedMDNode::getName() const { return StringRef(Name); } 1099 1100 //===----------------------------------------------------------------------===// 1101 // Instruction Metadata method implementations. 1102 // 1103 void MDAttachmentMap::set(unsigned ID, MDNode &MD) { 1104 for (auto &I : Attachments) 1105 if (I.first == ID) { 1106 I.second.reset(&MD); 1107 return; 1108 } 1109 Attachments.emplace_back(std::piecewise_construct, std::make_tuple(ID), 1110 std::make_tuple(&MD)); 1111 } 1112 1113 bool MDAttachmentMap::erase(unsigned ID) { 1114 if (empty()) 1115 return false; 1116 1117 // Common case is one/last value. 1118 if (Attachments.back().first == ID) { 1119 Attachments.pop_back(); 1120 return true; 1121 } 1122 1123 for (auto I = Attachments.begin(), E = std::prev(Attachments.end()); I != E; 1124 ++I) 1125 if (I->first == ID) { 1126 *I = std::move(Attachments.back()); 1127 Attachments.pop_back(); 1128 return true; 1129 } 1130 1131 return false; 1132 } 1133 1134 MDNode *MDAttachmentMap::lookup(unsigned ID) const { 1135 for (const auto &I : Attachments) 1136 if (I.first == ID) 1137 return I.second; 1138 return nullptr; 1139 } 1140 1141 void MDAttachmentMap::getAll( 1142 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1143 Result.append(Attachments.begin(), Attachments.end()); 1144 1145 // Sort the resulting array so it is stable. 1146 if (Result.size() > 1) 1147 array_pod_sort(Result.begin(), Result.end()); 1148 } 1149 1150 void MDGlobalAttachmentMap::insert(unsigned ID, MDNode &MD) { 1151 Attachments.push_back({ID, TrackingMDNodeRef(&MD)}); 1152 } 1153 1154 MDNode *MDGlobalAttachmentMap::lookup(unsigned ID) const { 1155 for (const auto &A : Attachments) 1156 if (A.MDKind == ID) 1157 return A.Node; 1158 return nullptr; 1159 } 1160 1161 void MDGlobalAttachmentMap::get(unsigned ID, 1162 SmallVectorImpl<MDNode *> &Result) const { 1163 for (const auto &A : Attachments) 1164 if (A.MDKind == ID) 1165 Result.push_back(A.Node); 1166 } 1167 1168 bool MDGlobalAttachmentMap::erase(unsigned ID) { 1169 auto I = std::remove_if(Attachments.begin(), Attachments.end(), 1170 [ID](const Attachment &A) { return A.MDKind == ID; }); 1171 bool Changed = I != Attachments.end(); 1172 Attachments.erase(I, Attachments.end()); 1173 return Changed; 1174 } 1175 1176 void MDGlobalAttachmentMap::getAll( 1177 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1178 for (const auto &A : Attachments) 1179 Result.emplace_back(A.MDKind, A.Node); 1180 1181 // Sort the resulting array so it is stable with respect to metadata IDs. We 1182 // need to preserve the original insertion order though. 1183 std::stable_sort( 1184 Result.begin(), Result.end(), 1185 [](const std::pair<unsigned, MDNode *> &A, 1186 const std::pair<unsigned, MDNode *> &B) { return A.first < B.first; }); 1187 } 1188 1189 void Instruction::setMetadata(StringRef Kind, MDNode *Node) { 1190 if (!Node && !hasMetadata()) 1191 return; 1192 setMetadata(getContext().getMDKindID(Kind), Node); 1193 } 1194 1195 MDNode *Instruction::getMetadataImpl(StringRef Kind) const { 1196 return getMetadataImpl(getContext().getMDKindID(Kind)); 1197 } 1198 1199 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) { 1200 if (!hasMetadataHashEntry()) 1201 return; // Nothing to remove! 1202 1203 auto &InstructionMetadata = getContext().pImpl->InstructionMetadata; 1204 1205 SmallSet<unsigned, 4> KnownSet; 1206 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 1207 if (KnownSet.empty()) { 1208 // Just drop our entry at the store. 1209 InstructionMetadata.erase(this); 1210 setHasMetadataHashEntry(false); 1211 return; 1212 } 1213 1214 auto &Info = InstructionMetadata[this]; 1215 Info.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) { 1216 return !KnownSet.count(I.first); 1217 }); 1218 1219 if (Info.empty()) { 1220 // Drop our entry at the store. 1221 InstructionMetadata.erase(this); 1222 setHasMetadataHashEntry(false); 1223 } 1224 } 1225 1226 void Instruction::setMetadata(unsigned KindID, MDNode *Node) { 1227 if (!Node && !hasMetadata()) 1228 return; 1229 1230 // Handle 'dbg' as a special case since it is not stored in the hash table. 1231 if (KindID == LLVMContext::MD_dbg) { 1232 DbgLoc = DebugLoc(Node); 1233 return; 1234 } 1235 1236 // Handle the case when we're adding/updating metadata on an instruction. 1237 if (Node) { 1238 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1239 assert(!Info.empty() == hasMetadataHashEntry() && 1240 "HasMetadata bit is wonked"); 1241 if (Info.empty()) 1242 setHasMetadataHashEntry(true); 1243 Info.set(KindID, *Node); 1244 return; 1245 } 1246 1247 // Otherwise, we're removing metadata from an instruction. 1248 assert((hasMetadataHashEntry() == 1249 (getContext().pImpl->InstructionMetadata.count(this) > 0)) && 1250 "HasMetadata bit out of date!"); 1251 if (!hasMetadataHashEntry()) 1252 return; // Nothing to remove! 1253 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1254 1255 // Handle removal of an existing value. 1256 Info.erase(KindID); 1257 1258 if (!Info.empty()) 1259 return; 1260 1261 getContext().pImpl->InstructionMetadata.erase(this); 1262 setHasMetadataHashEntry(false); 1263 } 1264 1265 void Instruction::setAAMetadata(const AAMDNodes &N) { 1266 setMetadata(LLVMContext::MD_tbaa, N.TBAA); 1267 setMetadata(LLVMContext::MD_alias_scope, N.Scope); 1268 setMetadata(LLVMContext::MD_noalias, N.NoAlias); 1269 } 1270 1271 MDNode *Instruction::getMetadataImpl(unsigned KindID) const { 1272 // Handle 'dbg' as a special case since it is not stored in the hash table. 1273 if (KindID == LLVMContext::MD_dbg) 1274 return DbgLoc.getAsMDNode(); 1275 1276 if (!hasMetadataHashEntry()) 1277 return nullptr; 1278 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1279 assert(!Info.empty() && "bit out of sync with hash table"); 1280 1281 return Info.lookup(KindID); 1282 } 1283 1284 void Instruction::getAllMetadataImpl( 1285 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1286 Result.clear(); 1287 1288 // Handle 'dbg' as a special case since it is not stored in the hash table. 1289 if (DbgLoc) { 1290 Result.push_back( 1291 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode())); 1292 if (!hasMetadataHashEntry()) 1293 return; 1294 } 1295 1296 assert(hasMetadataHashEntry() && 1297 getContext().pImpl->InstructionMetadata.count(this) && 1298 "Shouldn't have called this"); 1299 const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second; 1300 assert(!Info.empty() && "Shouldn't have called this"); 1301 Info.getAll(Result); 1302 } 1303 1304 void Instruction::getAllMetadataOtherThanDebugLocImpl( 1305 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1306 Result.clear(); 1307 assert(hasMetadataHashEntry() && 1308 getContext().pImpl->InstructionMetadata.count(this) && 1309 "Shouldn't have called this"); 1310 const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second; 1311 assert(!Info.empty() && "Shouldn't have called this"); 1312 Info.getAll(Result); 1313 } 1314 1315 bool Instruction::extractProfMetadata(uint64_t &TrueVal, 1316 uint64_t &FalseVal) const { 1317 assert( 1318 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select) && 1319 "Looking for branch weights on something besides branch or select"); 1320 1321 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1322 if (!ProfileData || ProfileData->getNumOperands() != 3) 1323 return false; 1324 1325 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1326 if (!ProfDataName || !ProfDataName->getString().equals("branch_weights")) 1327 return false; 1328 1329 auto *CITrue = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 1330 auto *CIFalse = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 1331 if (!CITrue || !CIFalse) 1332 return false; 1333 1334 TrueVal = CITrue->getValue().getZExtValue(); 1335 FalseVal = CIFalse->getValue().getZExtValue(); 1336 1337 return true; 1338 } 1339 1340 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) const { 1341 assert((getOpcode() == Instruction::Br || 1342 getOpcode() == Instruction::Select || 1343 getOpcode() == Instruction::Call || 1344 getOpcode() == Instruction::Invoke || 1345 getOpcode() == Instruction::Switch) && 1346 "Looking for branch weights on something besides branch"); 1347 1348 TotalVal = 0; 1349 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1350 if (!ProfileData) 1351 return false; 1352 1353 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1354 if (!ProfDataName) 1355 return false; 1356 1357 if (ProfDataName->getString().equals("branch_weights")) { 1358 TotalVal = 0; 1359 for (unsigned i = 1; i < ProfileData->getNumOperands(); i++) { 1360 auto *V = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i)); 1361 if (!V) 1362 return false; 1363 TotalVal += V->getValue().getZExtValue(); 1364 } 1365 return true; 1366 } else if (ProfDataName->getString().equals("VP") && 1367 ProfileData->getNumOperands() > 3) { 1368 TotalVal = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)) 1369 ->getValue() 1370 .getZExtValue(); 1371 return true; 1372 } 1373 return false; 1374 } 1375 1376 void Instruction::clearMetadataHashEntries() { 1377 assert(hasMetadataHashEntry() && "Caller should check"); 1378 getContext().pImpl->InstructionMetadata.erase(this); 1379 setHasMetadataHashEntry(false); 1380 } 1381 1382 void GlobalObject::getMetadata(unsigned KindID, 1383 SmallVectorImpl<MDNode *> &MDs) const { 1384 if (hasMetadata()) 1385 getContext().pImpl->GlobalObjectMetadata[this].get(KindID, MDs); 1386 } 1387 1388 void GlobalObject::getMetadata(StringRef Kind, 1389 SmallVectorImpl<MDNode *> &MDs) const { 1390 if (hasMetadata()) 1391 getMetadata(getContext().getMDKindID(Kind), MDs); 1392 } 1393 1394 void GlobalObject::addMetadata(unsigned KindID, MDNode &MD) { 1395 if (!hasMetadata()) 1396 setHasMetadataHashEntry(true); 1397 1398 getContext().pImpl->GlobalObjectMetadata[this].insert(KindID, MD); 1399 } 1400 1401 void GlobalObject::addMetadata(StringRef Kind, MDNode &MD) { 1402 addMetadata(getContext().getMDKindID(Kind), MD); 1403 } 1404 1405 bool GlobalObject::eraseMetadata(unsigned KindID) { 1406 // Nothing to unset. 1407 if (!hasMetadata()) 1408 return false; 1409 1410 auto &Store = getContext().pImpl->GlobalObjectMetadata[this]; 1411 bool Changed = Store.erase(KindID); 1412 if (Store.empty()) 1413 clearMetadata(); 1414 return Changed; 1415 } 1416 1417 void GlobalObject::getAllMetadata( 1418 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { 1419 MDs.clear(); 1420 1421 if (!hasMetadata()) 1422 return; 1423 1424 getContext().pImpl->GlobalObjectMetadata[this].getAll(MDs); 1425 } 1426 1427 void GlobalObject::clearMetadata() { 1428 if (!hasMetadata()) 1429 return; 1430 getContext().pImpl->GlobalObjectMetadata.erase(this); 1431 setHasMetadataHashEntry(false); 1432 } 1433 1434 void GlobalObject::setMetadata(unsigned KindID, MDNode *N) { 1435 eraseMetadata(KindID); 1436 if (N) 1437 addMetadata(KindID, *N); 1438 } 1439 1440 void GlobalObject::setMetadata(StringRef Kind, MDNode *N) { 1441 setMetadata(getContext().getMDKindID(Kind), N); 1442 } 1443 1444 MDNode *GlobalObject::getMetadata(unsigned KindID) const { 1445 if (hasMetadata()) 1446 return getContext().pImpl->GlobalObjectMetadata[this].lookup(KindID); 1447 return nullptr; 1448 } 1449 1450 MDNode *GlobalObject::getMetadata(StringRef Kind) const { 1451 return getMetadata(getContext().getMDKindID(Kind)); 1452 } 1453 1454 void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) { 1455 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 1456 Other->getAllMetadata(MDs); 1457 for (auto &MD : MDs) { 1458 // We need to adjust the type metadata offset. 1459 if (Offset != 0 && MD.first == LLVMContext::MD_type) { 1460 auto *OffsetConst = cast<ConstantInt>( 1461 cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue()); 1462 Metadata *TypeId = MD.second->getOperand(1); 1463 auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get( 1464 OffsetConst->getType(), OffsetConst->getValue() + Offset)); 1465 addMetadata(LLVMContext::MD_type, 1466 *MDNode::get(getContext(), {NewOffsetMD, TypeId})); 1467 continue; 1468 } 1469 // If an offset adjustment was specified we need to modify the DIExpression 1470 // to prepend the adjustment: 1471 // !DIExpression(DW_OP_plus, Offset, [original expr]) 1472 auto *Attachment = MD.second; 1473 if (Offset != 0 && MD.first == LLVMContext::MD_dbg) { 1474 DIGlobalVariable *GV = dyn_cast<DIGlobalVariable>(Attachment); 1475 DIExpression *E = nullptr; 1476 if (!GV) { 1477 auto *GVE = cast<DIGlobalVariableExpression>(Attachment); 1478 GV = GVE->getVariable(); 1479 E = GVE->getExpression(); 1480 } 1481 ArrayRef<uint64_t> OrigElements; 1482 if (E) 1483 OrigElements = E->getElements(); 1484 std::vector<uint64_t> Elements(OrigElements.size() + 2); 1485 Elements[0] = dwarf::DW_OP_plus_uconst; 1486 Elements[1] = Offset; 1487 std::copy(OrigElements.begin(), OrigElements.end(), Elements.begin() + 2); 1488 E = DIExpression::get(getContext(), Elements); 1489 Attachment = DIGlobalVariableExpression::get(getContext(), GV, E); 1490 } 1491 addMetadata(MD.first, *Attachment); 1492 } 1493 } 1494 1495 void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) { 1496 addMetadata( 1497 LLVMContext::MD_type, 1498 *MDTuple::get(getContext(), 1499 {ConstantAsMetadata::get(ConstantInt::get( 1500 Type::getInt64Ty(getContext()), Offset)), 1501 TypeID})); 1502 } 1503 1504 void Function::setSubprogram(DISubprogram *SP) { 1505 setMetadata(LLVMContext::MD_dbg, SP); 1506 } 1507 1508 DISubprogram *Function::getSubprogram() const { 1509 return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg)); 1510 } 1511 1512 bool Function::isDebugInfoForProfiling() const { 1513 if (DISubprogram *SP = getSubprogram()) { 1514 if (DICompileUnit *CU = SP->getUnit()) { 1515 return CU->getDebugInfoForProfiling(); 1516 } 1517 } 1518 return false; 1519 } 1520 1521 void GlobalVariable::addDebugInfo(DIGlobalVariableExpression *GV) { 1522 addMetadata(LLVMContext::MD_dbg, *GV); 1523 } 1524 1525 void GlobalVariable::getDebugInfo( 1526 SmallVectorImpl<DIGlobalVariableExpression *> &GVs) const { 1527 SmallVector<MDNode *, 1> MDs; 1528 getMetadata(LLVMContext::MD_dbg, MDs); 1529 for (MDNode *MD : MDs) 1530 GVs.push_back(cast<DIGlobalVariableExpression>(MD)); 1531 } 1532