1 //===- Metadata.cpp - Implement Metadata classes --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Metadata classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLVMContextImpl.h" 15 #include "MetadataImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/APFloat.h" 18 #include "llvm/ADT/APInt.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringMap.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/IR/Argument.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/ConstantRange.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DebugInfoMetadata.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalObject.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/TrackingMDRef.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/IR/ValueHandle.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/MathExtras.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <cstddef> 54 #include <cstdint> 55 #include <iterator> 56 #include <tuple> 57 #include <type_traits> 58 #include <utility> 59 #include <vector> 60 61 using namespace llvm; 62 63 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD) 64 : Value(Ty, MetadataAsValueVal), MD(MD) { 65 track(); 66 } 67 68 MetadataAsValue::~MetadataAsValue() { 69 getType()->getContext().pImpl->MetadataAsValues.erase(MD); 70 untrack(); 71 } 72 73 /// Canonicalize metadata arguments to intrinsics. 74 /// 75 /// To support bitcode upgrades (and assembly semantic sugar) for \a 76 /// MetadataAsValue, we need to canonicalize certain metadata. 77 /// 78 /// - nullptr is replaced by an empty MDNode. 79 /// - An MDNode with a single null operand is replaced by an empty MDNode. 80 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped. 81 /// 82 /// This maintains readability of bitcode from when metadata was a type of 83 /// value, and these bridges were unnecessary. 84 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context, 85 Metadata *MD) { 86 if (!MD) 87 // !{} 88 return MDNode::get(Context, None); 89 90 // Return early if this isn't a single-operand MDNode. 91 auto *N = dyn_cast<MDNode>(MD); 92 if (!N || N->getNumOperands() != 1) 93 return MD; 94 95 if (!N->getOperand(0)) 96 // !{} 97 return MDNode::get(Context, None); 98 99 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0))) 100 // Look through the MDNode. 101 return C; 102 103 return MD; 104 } 105 106 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) { 107 MD = canonicalizeMetadataForValue(Context, MD); 108 auto *&Entry = Context.pImpl->MetadataAsValues[MD]; 109 if (!Entry) 110 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD); 111 return Entry; 112 } 113 114 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context, 115 Metadata *MD) { 116 MD = canonicalizeMetadataForValue(Context, MD); 117 auto &Store = Context.pImpl->MetadataAsValues; 118 return Store.lookup(MD); 119 } 120 121 void MetadataAsValue::handleChangedMetadata(Metadata *MD) { 122 LLVMContext &Context = getContext(); 123 MD = canonicalizeMetadataForValue(Context, MD); 124 auto &Store = Context.pImpl->MetadataAsValues; 125 126 // Stop tracking the old metadata. 127 Store.erase(this->MD); 128 untrack(); 129 this->MD = nullptr; 130 131 // Start tracking MD, or RAUW if necessary. 132 auto *&Entry = Store[MD]; 133 if (Entry) { 134 replaceAllUsesWith(Entry); 135 delete this; 136 return; 137 } 138 139 this->MD = MD; 140 track(); 141 Entry = this; 142 } 143 144 void MetadataAsValue::track() { 145 if (MD) 146 MetadataTracking::track(&MD, *MD, *this); 147 } 148 149 void MetadataAsValue::untrack() { 150 if (MD) 151 MetadataTracking::untrack(MD); 152 } 153 154 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) { 155 assert(Ref && "Expected live reference"); 156 assert((Owner || *static_cast<Metadata **>(Ref) == &MD) && 157 "Reference without owner must be direct"); 158 if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) { 159 R->addRef(Ref, Owner); 160 return true; 161 } 162 if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) { 163 assert(!PH->Use && "Placeholders can only be used once"); 164 assert(!Owner && "Unexpected callback to owner"); 165 PH->Use = static_cast<Metadata **>(Ref); 166 return true; 167 } 168 return false; 169 } 170 171 void MetadataTracking::untrack(void *Ref, Metadata &MD) { 172 assert(Ref && "Expected live reference"); 173 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) 174 R->dropRef(Ref); 175 else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) 176 PH->Use = nullptr; 177 } 178 179 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) { 180 assert(Ref && "Expected live reference"); 181 assert(New && "Expected live reference"); 182 assert(Ref != New && "Expected change"); 183 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) { 184 R->moveRef(Ref, New, MD); 185 return true; 186 } 187 assert(!isa<DistinctMDOperandPlaceholder>(MD) && 188 "Unexpected move of an MDOperand"); 189 assert(!isReplaceable(MD) && 190 "Expected un-replaceable metadata, since we didn't move a reference"); 191 return false; 192 } 193 194 bool MetadataTracking::isReplaceable(const Metadata &MD) { 195 return ReplaceableMetadataImpl::isReplaceable(MD); 196 } 197 198 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) { 199 bool WasInserted = 200 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex))) 201 .second; 202 (void)WasInserted; 203 assert(WasInserted && "Expected to add a reference"); 204 205 ++NextIndex; 206 assert(NextIndex != 0 && "Unexpected overflow"); 207 } 208 209 void ReplaceableMetadataImpl::dropRef(void *Ref) { 210 bool WasErased = UseMap.erase(Ref); 211 (void)WasErased; 212 assert(WasErased && "Expected to drop a reference"); 213 } 214 215 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New, 216 const Metadata &MD) { 217 auto I = UseMap.find(Ref); 218 assert(I != UseMap.end() && "Expected to move a reference"); 219 auto OwnerAndIndex = I->second; 220 UseMap.erase(I); 221 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second; 222 (void)WasInserted; 223 assert(WasInserted && "Expected to add a reference"); 224 225 // Check that the references are direct if there's no owner. 226 (void)MD; 227 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) && 228 "Reference without owner must be direct"); 229 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) && 230 "Reference without owner must be direct"); 231 } 232 233 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) { 234 if (UseMap.empty()) 235 return; 236 237 // Copy out uses since UseMap will get touched below. 238 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>; 239 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 240 std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) { 241 return L.second.second < R.second.second; 242 }); 243 for (const auto &Pair : Uses) { 244 // Check that this Ref hasn't disappeared after RAUW (when updating a 245 // previous Ref). 246 if (!UseMap.count(Pair.first)) 247 continue; 248 249 OwnerTy Owner = Pair.second.first; 250 if (!Owner) { 251 // Update unowned tracking references directly. 252 Metadata *&Ref = *static_cast<Metadata **>(Pair.first); 253 Ref = MD; 254 if (MD) 255 MetadataTracking::track(Ref); 256 UseMap.erase(Pair.first); 257 continue; 258 } 259 260 // Check for MetadataAsValue. 261 if (Owner.is<MetadataAsValue *>()) { 262 Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD); 263 continue; 264 } 265 266 // There's a Metadata owner -- dispatch. 267 Metadata *OwnerMD = Owner.get<Metadata *>(); 268 switch (OwnerMD->getMetadataID()) { 269 #define HANDLE_METADATA_LEAF(CLASS) \ 270 case Metadata::CLASS##Kind: \ 271 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \ 272 continue; 273 #include "llvm/IR/Metadata.def" 274 default: 275 llvm_unreachable("Invalid metadata subclass"); 276 } 277 } 278 assert(UseMap.empty() && "Expected all uses to be replaced"); 279 } 280 281 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) { 282 if (UseMap.empty()) 283 return; 284 285 if (!ResolveUsers) { 286 UseMap.clear(); 287 return; 288 } 289 290 // Copy out uses since UseMap could get touched below. 291 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>; 292 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 293 std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) { 294 return L.second.second < R.second.second; 295 }); 296 UseMap.clear(); 297 for (const auto &Pair : Uses) { 298 auto Owner = Pair.second.first; 299 if (!Owner) 300 continue; 301 if (Owner.is<MetadataAsValue *>()) 302 continue; 303 304 // Resolve MDNodes that point at this. 305 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>()); 306 if (!OwnerMD) 307 continue; 308 if (OwnerMD->isResolved()) 309 continue; 310 OwnerMD->decrementUnresolvedOperandCount(); 311 } 312 } 313 314 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) { 315 if (auto *N = dyn_cast<MDNode>(&MD)) 316 return N->isResolved() ? nullptr : N->Context.getOrCreateReplaceableUses(); 317 return dyn_cast<ValueAsMetadata>(&MD); 318 } 319 320 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) { 321 if (auto *N = dyn_cast<MDNode>(&MD)) 322 return N->isResolved() ? nullptr : N->Context.getReplaceableUses(); 323 return dyn_cast<ValueAsMetadata>(&MD); 324 } 325 326 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) { 327 if (auto *N = dyn_cast<MDNode>(&MD)) 328 return !N->isResolved(); 329 return dyn_cast<ValueAsMetadata>(&MD); 330 } 331 332 static Function *getLocalFunction(Value *V) { 333 assert(V && "Expected value"); 334 if (auto *A = dyn_cast<Argument>(V)) 335 return A->getParent(); 336 if (BasicBlock *BB = cast<Instruction>(V)->getParent()) 337 return BB->getParent(); 338 return nullptr; 339 } 340 341 ValueAsMetadata *ValueAsMetadata::get(Value *V) { 342 assert(V && "Unexpected null Value"); 343 344 auto &Context = V->getContext(); 345 auto *&Entry = Context.pImpl->ValuesAsMetadata[V]; 346 if (!Entry) { 347 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) && 348 "Expected constant or function-local value"); 349 assert(!V->IsUsedByMD && "Expected this to be the only metadata use"); 350 V->IsUsedByMD = true; 351 if (auto *C = dyn_cast<Constant>(V)) 352 Entry = new ConstantAsMetadata(C); 353 else 354 Entry = new LocalAsMetadata(V); 355 } 356 357 return Entry; 358 } 359 360 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) { 361 assert(V && "Unexpected null Value"); 362 return V->getContext().pImpl->ValuesAsMetadata.lookup(V); 363 } 364 365 void ValueAsMetadata::handleDeletion(Value *V) { 366 assert(V && "Expected valid value"); 367 368 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata; 369 auto I = Store.find(V); 370 if (I == Store.end()) 371 return; 372 373 // Remove old entry from the map. 374 ValueAsMetadata *MD = I->second; 375 assert(MD && "Expected valid metadata"); 376 assert(MD->getValue() == V && "Expected valid mapping"); 377 Store.erase(I); 378 379 // Delete the metadata. 380 MD->replaceAllUsesWith(nullptr); 381 delete MD; 382 } 383 384 void ValueAsMetadata::handleRAUW(Value *From, Value *To) { 385 assert(From && "Expected valid value"); 386 assert(To && "Expected valid value"); 387 assert(From != To && "Expected changed value"); 388 assert(From->getType() == To->getType() && "Unexpected type change"); 389 390 LLVMContext &Context = From->getType()->getContext(); 391 auto &Store = Context.pImpl->ValuesAsMetadata; 392 auto I = Store.find(From); 393 if (I == Store.end()) { 394 assert(!From->IsUsedByMD && "Expected From not to be used by metadata"); 395 return; 396 } 397 398 // Remove old entry from the map. 399 assert(From->IsUsedByMD && "Expected From to be used by metadata"); 400 From->IsUsedByMD = false; 401 ValueAsMetadata *MD = I->second; 402 assert(MD && "Expected valid metadata"); 403 assert(MD->getValue() == From && "Expected valid mapping"); 404 Store.erase(I); 405 406 if (isa<LocalAsMetadata>(MD)) { 407 if (auto *C = dyn_cast<Constant>(To)) { 408 // Local became a constant. 409 MD->replaceAllUsesWith(ConstantAsMetadata::get(C)); 410 delete MD; 411 return; 412 } 413 if (getLocalFunction(From) && getLocalFunction(To) && 414 getLocalFunction(From) != getLocalFunction(To)) { 415 // Function changed. 416 MD->replaceAllUsesWith(nullptr); 417 delete MD; 418 return; 419 } 420 } else if (!isa<Constant>(To)) { 421 // Changed to function-local value. 422 MD->replaceAllUsesWith(nullptr); 423 delete MD; 424 return; 425 } 426 427 auto *&Entry = Store[To]; 428 if (Entry) { 429 // The target already exists. 430 MD->replaceAllUsesWith(Entry); 431 delete MD; 432 return; 433 } 434 435 // Update MD in place (and update the map entry). 436 assert(!To->IsUsedByMD && "Expected this to be the only metadata use"); 437 To->IsUsedByMD = true; 438 MD->V = To; 439 Entry = MD; 440 } 441 442 //===----------------------------------------------------------------------===// 443 // MDString implementation. 444 // 445 446 MDString *MDString::get(LLVMContext &Context, StringRef Str) { 447 auto &Store = Context.pImpl->MDStringCache; 448 auto I = Store.try_emplace(Str); 449 auto &MapEntry = I.first->getValue(); 450 if (!I.second) 451 return &MapEntry; 452 MapEntry.Entry = &*I.first; 453 return &MapEntry; 454 } 455 456 StringRef MDString::getString() const { 457 assert(Entry && "Expected to find string map entry"); 458 return Entry->first(); 459 } 460 461 //===----------------------------------------------------------------------===// 462 // MDNode implementation. 463 // 464 465 // Assert that the MDNode types will not be unaligned by the objects 466 // prepended to them. 467 #define HANDLE_MDNODE_LEAF(CLASS) \ 468 static_assert( \ 469 alignof(uint64_t) >= alignof(CLASS), \ 470 "Alignment is insufficient after objects prepended to " #CLASS); 471 #include "llvm/IR/Metadata.def" 472 473 void *MDNode::operator new(size_t Size, unsigned NumOps) { 474 size_t OpSize = NumOps * sizeof(MDOperand); 475 // uint64_t is the most aligned type we need support (ensured by static_assert 476 // above) 477 OpSize = alignTo(OpSize, alignof(uint64_t)); 478 void *Ptr = reinterpret_cast<char *>(::operator new(OpSize + Size)) + OpSize; 479 MDOperand *O = static_cast<MDOperand *>(Ptr); 480 for (MDOperand *E = O - NumOps; O != E; --O) 481 (void)new (O - 1) MDOperand; 482 return Ptr; 483 } 484 485 void MDNode::operator delete(void *Mem) { 486 MDNode *N = static_cast<MDNode *>(Mem); 487 size_t OpSize = N->NumOperands * sizeof(MDOperand); 488 OpSize = alignTo(OpSize, alignof(uint64_t)); 489 490 MDOperand *O = static_cast<MDOperand *>(Mem); 491 for (MDOperand *E = O - N->NumOperands; O != E; --O) 492 (O - 1)->~MDOperand(); 493 ::operator delete(reinterpret_cast<char *>(Mem) - OpSize); 494 } 495 496 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage, 497 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2) 498 : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()), 499 NumUnresolved(0), Context(Context) { 500 unsigned Op = 0; 501 for (Metadata *MD : Ops1) 502 setOperand(Op++, MD); 503 for (Metadata *MD : Ops2) 504 setOperand(Op++, MD); 505 506 if (!isUniqued()) 507 return; 508 509 // Count the unresolved operands. If there are any, RAUW support will be 510 // added lazily on first reference. 511 countUnresolvedOperands(); 512 } 513 514 TempMDNode MDNode::clone() const { 515 switch (getMetadataID()) { 516 default: 517 llvm_unreachable("Invalid MDNode subclass"); 518 #define HANDLE_MDNODE_LEAF(CLASS) \ 519 case CLASS##Kind: \ 520 return cast<CLASS>(this)->cloneImpl(); 521 #include "llvm/IR/Metadata.def" 522 } 523 } 524 525 static bool isOperandUnresolved(Metadata *Op) { 526 if (auto *N = dyn_cast_or_null<MDNode>(Op)) 527 return !N->isResolved(); 528 return false; 529 } 530 531 void MDNode::countUnresolvedOperands() { 532 assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted"); 533 assert(isUniqued() && "Expected this to be uniqued"); 534 NumUnresolved = count_if(operands(), isOperandUnresolved); 535 } 536 537 void MDNode::makeUniqued() { 538 assert(isTemporary() && "Expected this to be temporary"); 539 assert(!isResolved() && "Expected this to be unresolved"); 540 541 // Enable uniquing callbacks. 542 for (auto &Op : mutable_operands()) 543 Op.reset(Op.get(), this); 544 545 // Make this 'uniqued'. 546 Storage = Uniqued; 547 countUnresolvedOperands(); 548 if (!NumUnresolved) { 549 dropReplaceableUses(); 550 assert(isResolved() && "Expected this to be resolved"); 551 } 552 553 assert(isUniqued() && "Expected this to be uniqued"); 554 } 555 556 void MDNode::makeDistinct() { 557 assert(isTemporary() && "Expected this to be temporary"); 558 assert(!isResolved() && "Expected this to be unresolved"); 559 560 // Drop RAUW support and store as a distinct node. 561 dropReplaceableUses(); 562 storeDistinctInContext(); 563 564 assert(isDistinct() && "Expected this to be distinct"); 565 assert(isResolved() && "Expected this to be resolved"); 566 } 567 568 void MDNode::resolve() { 569 assert(isUniqued() && "Expected this to be uniqued"); 570 assert(!isResolved() && "Expected this to be unresolved"); 571 572 NumUnresolved = 0; 573 dropReplaceableUses(); 574 575 assert(isResolved() && "Expected this to be resolved"); 576 } 577 578 void MDNode::dropReplaceableUses() { 579 assert(!NumUnresolved && "Unexpected unresolved operand"); 580 581 // Drop any RAUW support. 582 if (Context.hasReplaceableUses()) 583 Context.takeReplaceableUses()->resolveAllUses(); 584 } 585 586 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) { 587 assert(isUniqued() && "Expected this to be uniqued"); 588 assert(NumUnresolved != 0 && "Expected unresolved operands"); 589 590 // Check if an operand was resolved. 591 if (!isOperandUnresolved(Old)) { 592 if (isOperandUnresolved(New)) 593 // An operand was un-resolved! 594 ++NumUnresolved; 595 } else if (!isOperandUnresolved(New)) 596 decrementUnresolvedOperandCount(); 597 } 598 599 void MDNode::decrementUnresolvedOperandCount() { 600 assert(!isResolved() && "Expected this to be unresolved"); 601 if (isTemporary()) 602 return; 603 604 assert(isUniqued() && "Expected this to be uniqued"); 605 if (--NumUnresolved) 606 return; 607 608 // Last unresolved operand has just been resolved. 609 dropReplaceableUses(); 610 assert(isResolved() && "Expected this to become resolved"); 611 } 612 613 void MDNode::resolveCycles() { 614 if (isResolved()) 615 return; 616 617 // Resolve this node immediately. 618 resolve(); 619 620 // Resolve all operands. 621 for (const auto &Op : operands()) { 622 auto *N = dyn_cast_or_null<MDNode>(Op); 623 if (!N) 624 continue; 625 626 assert(!N->isTemporary() && 627 "Expected all forward declarations to be resolved"); 628 if (!N->isResolved()) 629 N->resolveCycles(); 630 } 631 } 632 633 static bool hasSelfReference(MDNode *N) { 634 for (Metadata *MD : N->operands()) 635 if (MD == N) 636 return true; 637 return false; 638 } 639 640 MDNode *MDNode::replaceWithPermanentImpl() { 641 switch (getMetadataID()) { 642 default: 643 // If this type isn't uniquable, replace with a distinct node. 644 return replaceWithDistinctImpl(); 645 646 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 647 case CLASS##Kind: \ 648 break; 649 #include "llvm/IR/Metadata.def" 650 } 651 652 // Even if this type is uniquable, self-references have to be distinct. 653 if (hasSelfReference(this)) 654 return replaceWithDistinctImpl(); 655 return replaceWithUniquedImpl(); 656 } 657 658 MDNode *MDNode::replaceWithUniquedImpl() { 659 // Try to uniquify in place. 660 MDNode *UniquedNode = uniquify(); 661 662 if (UniquedNode == this) { 663 makeUniqued(); 664 return this; 665 } 666 667 // Collision, so RAUW instead. 668 replaceAllUsesWith(UniquedNode); 669 deleteAsSubclass(); 670 return UniquedNode; 671 } 672 673 MDNode *MDNode::replaceWithDistinctImpl() { 674 makeDistinct(); 675 return this; 676 } 677 678 void MDTuple::recalculateHash() { 679 setHash(MDTupleInfo::KeyTy::calculateHash(this)); 680 } 681 682 void MDNode::dropAllReferences() { 683 for (unsigned I = 0, E = NumOperands; I != E; ++I) 684 setOperand(I, nullptr); 685 if (Context.hasReplaceableUses()) { 686 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false); 687 (void)Context.takeReplaceableUses(); 688 } 689 } 690 691 void MDNode::handleChangedOperand(void *Ref, Metadata *New) { 692 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin(); 693 assert(Op < getNumOperands() && "Expected valid operand"); 694 695 if (!isUniqued()) { 696 // This node is not uniqued. Just set the operand and be done with it. 697 setOperand(Op, New); 698 return; 699 } 700 701 // This node is uniqued. 702 eraseFromStore(); 703 704 Metadata *Old = getOperand(Op); 705 setOperand(Op, New); 706 707 // Drop uniquing for self-reference cycles and deleted constants. 708 if (New == this || (!New && Old && isa<ConstantAsMetadata>(Old))) { 709 if (!isResolved()) 710 resolve(); 711 storeDistinctInContext(); 712 return; 713 } 714 715 // Re-unique the node. 716 auto *Uniqued = uniquify(); 717 if (Uniqued == this) { 718 if (!isResolved()) 719 resolveAfterOperandChange(Old, New); 720 return; 721 } 722 723 // Collision. 724 if (!isResolved()) { 725 // Still unresolved, so RAUW. 726 // 727 // First, clear out all operands to prevent any recursion (similar to 728 // dropAllReferences(), but we still need the use-list). 729 for (unsigned O = 0, E = getNumOperands(); O != E; ++O) 730 setOperand(O, nullptr); 731 if (Context.hasReplaceableUses()) 732 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued); 733 deleteAsSubclass(); 734 return; 735 } 736 737 // Store in non-uniqued form if RAUW isn't possible. 738 storeDistinctInContext(); 739 } 740 741 void MDNode::deleteAsSubclass() { 742 switch (getMetadataID()) { 743 default: 744 llvm_unreachable("Invalid subclass of MDNode"); 745 #define HANDLE_MDNODE_LEAF(CLASS) \ 746 case CLASS##Kind: \ 747 delete cast<CLASS>(this); \ 748 break; 749 #include "llvm/IR/Metadata.def" 750 } 751 } 752 753 template <class T, class InfoT> 754 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) { 755 if (T *U = getUniqued(Store, N)) 756 return U; 757 758 Store.insert(N); 759 return N; 760 } 761 762 template <class NodeTy> struct MDNode::HasCachedHash { 763 using Yes = char[1]; 764 using No = char[2]; 765 template <class U, U Val> struct SFINAE {}; 766 767 template <class U> 768 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *); 769 template <class U> static No &check(...); 770 771 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes); 772 }; 773 774 MDNode *MDNode::uniquify() { 775 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node"); 776 777 // Try to insert into uniquing store. 778 switch (getMetadataID()) { 779 default: 780 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 781 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 782 case CLASS##Kind: { \ 783 CLASS *SubclassThis = cast<CLASS>(this); \ 784 std::integral_constant<bool, HasCachedHash<CLASS>::value> \ 785 ShouldRecalculateHash; \ 786 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \ 787 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \ 788 } 789 #include "llvm/IR/Metadata.def" 790 } 791 } 792 793 void MDNode::eraseFromStore() { 794 switch (getMetadataID()) { 795 default: 796 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 797 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 798 case CLASS##Kind: \ 799 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \ 800 break; 801 #include "llvm/IR/Metadata.def" 802 } 803 } 804 805 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs, 806 StorageType Storage, bool ShouldCreate) { 807 unsigned Hash = 0; 808 if (Storage == Uniqued) { 809 MDTupleInfo::KeyTy Key(MDs); 810 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key)) 811 return N; 812 if (!ShouldCreate) 813 return nullptr; 814 Hash = Key.getHash(); 815 } else { 816 assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); 817 } 818 819 return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs), 820 Storage, Context.pImpl->MDTuples); 821 } 822 823 void MDNode::deleteTemporary(MDNode *N) { 824 assert(N->isTemporary() && "Expected temporary node"); 825 N->replaceAllUsesWith(nullptr); 826 N->deleteAsSubclass(); 827 } 828 829 void MDNode::storeDistinctInContext() { 830 assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses"); 831 assert(!NumUnresolved && "Unexpected unresolved nodes"); 832 Storage = Distinct; 833 assert(isResolved() && "Expected this to be resolved"); 834 835 // Reset the hash. 836 switch (getMetadataID()) { 837 default: 838 llvm_unreachable("Invalid subclass of MDNode"); 839 #define HANDLE_MDNODE_LEAF(CLASS) \ 840 case CLASS##Kind: { \ 841 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \ 842 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \ 843 break; \ 844 } 845 #include "llvm/IR/Metadata.def" 846 } 847 848 getContext().pImpl->DistinctMDNodes.push_back(this); 849 } 850 851 void MDNode::replaceOperandWith(unsigned I, Metadata *New) { 852 if (getOperand(I) == New) 853 return; 854 855 if (!isUniqued()) { 856 setOperand(I, New); 857 return; 858 } 859 860 handleChangedOperand(mutable_begin() + I, New); 861 } 862 863 void MDNode::setOperand(unsigned I, Metadata *New) { 864 assert(I < NumOperands); 865 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr); 866 } 867 868 /// Get a node or a self-reference that looks like it. 869 /// 870 /// Special handling for finding self-references, for use by \a 871 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from 872 /// when self-referencing nodes were still uniqued. If the first operand has 873 /// the same operands as \c Ops, return the first operand instead. 874 static MDNode *getOrSelfReference(LLVMContext &Context, 875 ArrayRef<Metadata *> Ops) { 876 if (!Ops.empty()) 877 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0])) 878 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) { 879 for (unsigned I = 1, E = Ops.size(); I != E; ++I) 880 if (Ops[I] != N->getOperand(I)) 881 return MDNode::get(Context, Ops); 882 return N; 883 } 884 885 return MDNode::get(Context, Ops); 886 } 887 888 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) { 889 if (!A) 890 return B; 891 if (!B) 892 return A; 893 894 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 895 MDs.insert(B->op_begin(), B->op_end()); 896 897 // FIXME: This preserves long-standing behaviour, but is it really the right 898 // behaviour? Or was that an unintended side-effect of node uniquing? 899 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 900 } 901 902 MDNode *MDNode::intersect(MDNode *A, MDNode *B) { 903 if (!A || !B) 904 return nullptr; 905 906 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 907 SmallPtrSet<Metadata *, 4> BSet(B->op_begin(), B->op_end()); 908 MDs.remove_if([&](Metadata *MD) { return !is_contained(BSet, MD); }); 909 910 // FIXME: This preserves long-standing behaviour, but is it really the right 911 // behaviour? Or was that an unintended side-effect of node uniquing? 912 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 913 } 914 915 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) { 916 if (!A || !B) 917 return nullptr; 918 919 return concatenate(A, B); 920 } 921 922 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) { 923 if (!A || !B) 924 return nullptr; 925 926 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF(); 927 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF(); 928 if (AVal.compare(BVal) == APFloat::cmpLessThan) 929 return A; 930 return B; 931 } 932 933 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 934 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 935 } 936 937 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) { 938 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B); 939 } 940 941 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints, 942 ConstantInt *Low, ConstantInt *High) { 943 ConstantRange NewRange(Low->getValue(), High->getValue()); 944 unsigned Size = EndPoints.size(); 945 APInt LB = EndPoints[Size - 2]->getValue(); 946 APInt LE = EndPoints[Size - 1]->getValue(); 947 ConstantRange LastRange(LB, LE); 948 if (canBeMerged(NewRange, LastRange)) { 949 ConstantRange Union = LastRange.unionWith(NewRange); 950 Type *Ty = High->getType(); 951 EndPoints[Size - 2] = 952 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower())); 953 EndPoints[Size - 1] = 954 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper())); 955 return true; 956 } 957 return false; 958 } 959 960 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints, 961 ConstantInt *Low, ConstantInt *High) { 962 if (!EndPoints.empty()) 963 if (tryMergeRange(EndPoints, Low, High)) 964 return; 965 966 EndPoints.push_back(Low); 967 EndPoints.push_back(High); 968 } 969 970 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) { 971 // Given two ranges, we want to compute the union of the ranges. This 972 // is slightly complicated by having to combine the intervals and merge 973 // the ones that overlap. 974 975 if (!A || !B) 976 return nullptr; 977 978 if (A == B) 979 return A; 980 981 // First, walk both lists in order of the lower boundary of each interval. 982 // At each step, try to merge the new interval to the last one we adedd. 983 SmallVector<ConstantInt *, 4> EndPoints; 984 int AI = 0; 985 int BI = 0; 986 int AN = A->getNumOperands() / 2; 987 int BN = B->getNumOperands() / 2; 988 while (AI < AN && BI < BN) { 989 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI)); 990 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI)); 991 992 if (ALow->getValue().slt(BLow->getValue())) { 993 addRange(EndPoints, ALow, 994 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 995 ++AI; 996 } else { 997 addRange(EndPoints, BLow, 998 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 999 ++BI; 1000 } 1001 } 1002 while (AI < AN) { 1003 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)), 1004 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 1005 ++AI; 1006 } 1007 while (BI < BN) { 1008 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)), 1009 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 1010 ++BI; 1011 } 1012 1013 // If we have more than 2 ranges (4 endpoints) we have to try to merge 1014 // the last and first ones. 1015 unsigned Size = EndPoints.size(); 1016 if (Size > 4) { 1017 ConstantInt *FB = EndPoints[0]; 1018 ConstantInt *FE = EndPoints[1]; 1019 if (tryMergeRange(EndPoints, FB, FE)) { 1020 for (unsigned i = 0; i < Size - 2; ++i) { 1021 EndPoints[i] = EndPoints[i + 2]; 1022 } 1023 EndPoints.resize(Size - 2); 1024 } 1025 } 1026 1027 // If in the end we have a single range, it is possible that it is now the 1028 // full range. Just drop the metadata in that case. 1029 if (EndPoints.size() == 2) { 1030 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue()); 1031 if (Range.isFullSet()) 1032 return nullptr; 1033 } 1034 1035 SmallVector<Metadata *, 4> MDs; 1036 MDs.reserve(EndPoints.size()); 1037 for (auto *I : EndPoints) 1038 MDs.push_back(ConstantAsMetadata::get(I)); 1039 return MDNode::get(A->getContext(), MDs); 1040 } 1041 1042 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) { 1043 if (!A || !B) 1044 return nullptr; 1045 1046 ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0)); 1047 ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0)); 1048 if (AVal->getZExtValue() < BVal->getZExtValue()) 1049 return A; 1050 return B; 1051 } 1052 1053 //===----------------------------------------------------------------------===// 1054 // NamedMDNode implementation. 1055 // 1056 1057 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) { 1058 return *(SmallVector<TrackingMDRef, 4> *)Operands; 1059 } 1060 1061 NamedMDNode::NamedMDNode(const Twine &N) 1062 : Name(N.str()), Operands(new SmallVector<TrackingMDRef, 4>()) {} 1063 1064 NamedMDNode::~NamedMDNode() { 1065 dropAllReferences(); 1066 delete &getNMDOps(Operands); 1067 } 1068 1069 unsigned NamedMDNode::getNumOperands() const { 1070 return (unsigned)getNMDOps(Operands).size(); 1071 } 1072 1073 MDNode *NamedMDNode::getOperand(unsigned i) const { 1074 assert(i < getNumOperands() && "Invalid Operand number!"); 1075 auto *N = getNMDOps(Operands)[i].get(); 1076 return cast_or_null<MDNode>(N); 1077 } 1078 1079 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); } 1080 1081 void NamedMDNode::setOperand(unsigned I, MDNode *New) { 1082 assert(I < getNumOperands() && "Invalid operand number"); 1083 getNMDOps(Operands)[I].reset(New); 1084 } 1085 1086 void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); } 1087 1088 void NamedMDNode::clearOperands() { getNMDOps(Operands).clear(); } 1089 1090 StringRef NamedMDNode::getName() const { return StringRef(Name); } 1091 1092 //===----------------------------------------------------------------------===// 1093 // Instruction Metadata method implementations. 1094 // 1095 void MDAttachmentMap::set(unsigned ID, MDNode &MD) { 1096 for (auto &I : Attachments) 1097 if (I.first == ID) { 1098 I.second.reset(&MD); 1099 return; 1100 } 1101 Attachments.emplace_back(std::piecewise_construct, std::make_tuple(ID), 1102 std::make_tuple(&MD)); 1103 } 1104 1105 void MDAttachmentMap::erase(unsigned ID) { 1106 if (empty()) 1107 return; 1108 1109 // Common case is one/last value. 1110 if (Attachments.back().first == ID) { 1111 Attachments.pop_back(); 1112 return; 1113 } 1114 1115 for (auto I = Attachments.begin(), E = std::prev(Attachments.end()); I != E; 1116 ++I) 1117 if (I->first == ID) { 1118 *I = std::move(Attachments.back()); 1119 Attachments.pop_back(); 1120 return; 1121 } 1122 } 1123 1124 MDNode *MDAttachmentMap::lookup(unsigned ID) const { 1125 for (const auto &I : Attachments) 1126 if (I.first == ID) 1127 return I.second; 1128 return nullptr; 1129 } 1130 1131 void MDAttachmentMap::getAll( 1132 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1133 Result.append(Attachments.begin(), Attachments.end()); 1134 1135 // Sort the resulting array so it is stable. 1136 if (Result.size() > 1) 1137 array_pod_sort(Result.begin(), Result.end()); 1138 } 1139 1140 void MDGlobalAttachmentMap::insert(unsigned ID, MDNode &MD) { 1141 Attachments.push_back({ID, TrackingMDNodeRef(&MD)}); 1142 } 1143 1144 void MDGlobalAttachmentMap::get(unsigned ID, 1145 SmallVectorImpl<MDNode *> &Result) { 1146 for (auto A : Attachments) 1147 if (A.MDKind == ID) 1148 Result.push_back(A.Node); 1149 } 1150 1151 void MDGlobalAttachmentMap::erase(unsigned ID) { 1152 auto Follower = Attachments.begin(); 1153 for (auto Leader = Attachments.begin(), E = Attachments.end(); Leader != E; 1154 ++Leader) { 1155 if (Leader->MDKind != ID) { 1156 if (Follower != Leader) 1157 *Follower = std::move(*Leader); 1158 ++Follower; 1159 } 1160 } 1161 Attachments.resize(Follower - Attachments.begin()); 1162 } 1163 1164 void MDGlobalAttachmentMap::getAll( 1165 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1166 for (auto &A : Attachments) 1167 Result.emplace_back(A.MDKind, A.Node); 1168 1169 // Sort the resulting array so it is stable with respect to metadata IDs. We 1170 // need to preserve the original insertion order though. 1171 std::stable_sort( 1172 Result.begin(), Result.end(), 1173 [](const std::pair<unsigned, MDNode *> &A, 1174 const std::pair<unsigned, MDNode *> &B) { return A.first < B.first; }); 1175 } 1176 1177 void Instruction::setMetadata(StringRef Kind, MDNode *Node) { 1178 if (!Node && !hasMetadata()) 1179 return; 1180 setMetadata(getContext().getMDKindID(Kind), Node); 1181 } 1182 1183 MDNode *Instruction::getMetadataImpl(StringRef Kind) const { 1184 return getMetadataImpl(getContext().getMDKindID(Kind)); 1185 } 1186 1187 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) { 1188 if (!hasMetadataHashEntry()) 1189 return; // Nothing to remove! 1190 1191 auto &InstructionMetadata = getContext().pImpl->InstructionMetadata; 1192 1193 SmallSet<unsigned, 4> KnownSet; 1194 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 1195 if (KnownSet.empty()) { 1196 // Just drop our entry at the store. 1197 InstructionMetadata.erase(this); 1198 setHasMetadataHashEntry(false); 1199 return; 1200 } 1201 1202 auto &Info = InstructionMetadata[this]; 1203 Info.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) { 1204 return !KnownSet.count(I.first); 1205 }); 1206 1207 if (Info.empty()) { 1208 // Drop our entry at the store. 1209 InstructionMetadata.erase(this); 1210 setHasMetadataHashEntry(false); 1211 } 1212 } 1213 1214 void Instruction::setMetadata(unsigned KindID, MDNode *Node) { 1215 if (!Node && !hasMetadata()) 1216 return; 1217 1218 // Handle 'dbg' as a special case since it is not stored in the hash table. 1219 if (KindID == LLVMContext::MD_dbg) { 1220 DbgLoc = DebugLoc(Node); 1221 return; 1222 } 1223 1224 // Handle the case when we're adding/updating metadata on an instruction. 1225 if (Node) { 1226 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1227 assert(!Info.empty() == hasMetadataHashEntry() && 1228 "HasMetadata bit is wonked"); 1229 if (Info.empty()) 1230 setHasMetadataHashEntry(true); 1231 Info.set(KindID, *Node); 1232 return; 1233 } 1234 1235 // Otherwise, we're removing metadata from an instruction. 1236 assert((hasMetadataHashEntry() == 1237 (getContext().pImpl->InstructionMetadata.count(this) > 0)) && 1238 "HasMetadata bit out of date!"); 1239 if (!hasMetadataHashEntry()) 1240 return; // Nothing to remove! 1241 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1242 1243 // Handle removal of an existing value. 1244 Info.erase(KindID); 1245 1246 if (!Info.empty()) 1247 return; 1248 1249 getContext().pImpl->InstructionMetadata.erase(this); 1250 setHasMetadataHashEntry(false); 1251 } 1252 1253 void Instruction::setAAMetadata(const AAMDNodes &N) { 1254 setMetadata(LLVMContext::MD_tbaa, N.TBAA); 1255 setMetadata(LLVMContext::MD_alias_scope, N.Scope); 1256 setMetadata(LLVMContext::MD_noalias, N.NoAlias); 1257 } 1258 1259 MDNode *Instruction::getMetadataImpl(unsigned KindID) const { 1260 // Handle 'dbg' as a special case since it is not stored in the hash table. 1261 if (KindID == LLVMContext::MD_dbg) 1262 return DbgLoc.getAsMDNode(); 1263 1264 if (!hasMetadataHashEntry()) 1265 return nullptr; 1266 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1267 assert(!Info.empty() && "bit out of sync with hash table"); 1268 1269 return Info.lookup(KindID); 1270 } 1271 1272 void Instruction::getAllMetadataImpl( 1273 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1274 Result.clear(); 1275 1276 // Handle 'dbg' as a special case since it is not stored in the hash table. 1277 if (DbgLoc) { 1278 Result.push_back( 1279 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode())); 1280 if (!hasMetadataHashEntry()) 1281 return; 1282 } 1283 1284 assert(hasMetadataHashEntry() && 1285 getContext().pImpl->InstructionMetadata.count(this) && 1286 "Shouldn't have called this"); 1287 const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second; 1288 assert(!Info.empty() && "Shouldn't have called this"); 1289 Info.getAll(Result); 1290 } 1291 1292 void Instruction::getAllMetadataOtherThanDebugLocImpl( 1293 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1294 Result.clear(); 1295 assert(hasMetadataHashEntry() && 1296 getContext().pImpl->InstructionMetadata.count(this) && 1297 "Shouldn't have called this"); 1298 const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second; 1299 assert(!Info.empty() && "Shouldn't have called this"); 1300 Info.getAll(Result); 1301 } 1302 1303 bool Instruction::extractProfMetadata(uint64_t &TrueVal, 1304 uint64_t &FalseVal) const { 1305 assert( 1306 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select) && 1307 "Looking for branch weights on something besides branch or select"); 1308 1309 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1310 if (!ProfileData || ProfileData->getNumOperands() != 3) 1311 return false; 1312 1313 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1314 if (!ProfDataName || !ProfDataName->getString().equals("branch_weights")) 1315 return false; 1316 1317 auto *CITrue = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 1318 auto *CIFalse = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 1319 if (!CITrue || !CIFalse) 1320 return false; 1321 1322 TrueVal = CITrue->getValue().getZExtValue(); 1323 FalseVal = CIFalse->getValue().getZExtValue(); 1324 1325 return true; 1326 } 1327 1328 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) const { 1329 assert((getOpcode() == Instruction::Br || 1330 getOpcode() == Instruction::Select || 1331 getOpcode() == Instruction::Call || 1332 getOpcode() == Instruction::Invoke || 1333 getOpcode() == Instruction::Switch) && 1334 "Looking for branch weights on something besides branch"); 1335 1336 TotalVal = 0; 1337 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1338 if (!ProfileData) 1339 return false; 1340 1341 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1342 if (!ProfDataName) 1343 return false; 1344 1345 if (ProfDataName->getString().equals("branch_weights")) { 1346 TotalVal = 0; 1347 for (unsigned i = 1; i < ProfileData->getNumOperands(); i++) { 1348 auto *V = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i)); 1349 if (!V) 1350 return false; 1351 TotalVal += V->getValue().getZExtValue(); 1352 } 1353 return true; 1354 } else if (ProfDataName->getString().equals("VP") && 1355 ProfileData->getNumOperands() > 3) { 1356 TotalVal = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)) 1357 ->getValue() 1358 .getZExtValue(); 1359 return true; 1360 } 1361 return false; 1362 } 1363 1364 void Instruction::clearMetadataHashEntries() { 1365 assert(hasMetadataHashEntry() && "Caller should check"); 1366 getContext().pImpl->InstructionMetadata.erase(this); 1367 setHasMetadataHashEntry(false); 1368 } 1369 1370 void GlobalObject::getMetadata(unsigned KindID, 1371 SmallVectorImpl<MDNode *> &MDs) const { 1372 if (hasMetadata()) 1373 getContext().pImpl->GlobalObjectMetadata[this].get(KindID, MDs); 1374 } 1375 1376 void GlobalObject::getMetadata(StringRef Kind, 1377 SmallVectorImpl<MDNode *> &MDs) const { 1378 if (hasMetadata()) 1379 getMetadata(getContext().getMDKindID(Kind), MDs); 1380 } 1381 1382 void GlobalObject::addMetadata(unsigned KindID, MDNode &MD) { 1383 if (!hasMetadata()) 1384 setHasMetadataHashEntry(true); 1385 1386 getContext().pImpl->GlobalObjectMetadata[this].insert(KindID, MD); 1387 } 1388 1389 void GlobalObject::addMetadata(StringRef Kind, MDNode &MD) { 1390 addMetadata(getContext().getMDKindID(Kind), MD); 1391 } 1392 1393 void GlobalObject::eraseMetadata(unsigned KindID) { 1394 // Nothing to unset. 1395 if (!hasMetadata()) 1396 return; 1397 1398 auto &Store = getContext().pImpl->GlobalObjectMetadata[this]; 1399 Store.erase(KindID); 1400 if (Store.empty()) 1401 clearMetadata(); 1402 } 1403 1404 void GlobalObject::getAllMetadata( 1405 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { 1406 MDs.clear(); 1407 1408 if (!hasMetadata()) 1409 return; 1410 1411 getContext().pImpl->GlobalObjectMetadata[this].getAll(MDs); 1412 } 1413 1414 void GlobalObject::clearMetadata() { 1415 if (!hasMetadata()) 1416 return; 1417 getContext().pImpl->GlobalObjectMetadata.erase(this); 1418 setHasMetadataHashEntry(false); 1419 } 1420 1421 void GlobalObject::setMetadata(unsigned KindID, MDNode *N) { 1422 eraseMetadata(KindID); 1423 if (N) 1424 addMetadata(KindID, *N); 1425 } 1426 1427 void GlobalObject::setMetadata(StringRef Kind, MDNode *N) { 1428 setMetadata(getContext().getMDKindID(Kind), N); 1429 } 1430 1431 MDNode *GlobalObject::getMetadata(unsigned KindID) const { 1432 SmallVector<MDNode *, 1> MDs; 1433 getMetadata(KindID, MDs); 1434 if (MDs.empty()) 1435 return nullptr; 1436 return MDs[0]; 1437 } 1438 1439 MDNode *GlobalObject::getMetadata(StringRef Kind) const { 1440 return getMetadata(getContext().getMDKindID(Kind)); 1441 } 1442 1443 void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) { 1444 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 1445 Other->getAllMetadata(MDs); 1446 for (auto &MD : MDs) { 1447 // We need to adjust the type metadata offset. 1448 if (Offset != 0 && MD.first == LLVMContext::MD_type) { 1449 auto *OffsetConst = cast<ConstantInt>( 1450 cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue()); 1451 Metadata *TypeId = MD.second->getOperand(1); 1452 auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get( 1453 OffsetConst->getType(), OffsetConst->getValue() + Offset)); 1454 addMetadata(LLVMContext::MD_type, 1455 *MDNode::get(getContext(), {NewOffsetMD, TypeId})); 1456 continue; 1457 } 1458 // If an offset adjustment was specified we need to modify the DIExpression 1459 // to prepend the adjustment: 1460 // !DIExpression(DW_OP_plus, Offset, [original expr]) 1461 auto *Attachment = MD.second; 1462 if (Offset != 0 && MD.first == LLVMContext::MD_dbg) { 1463 DIGlobalVariable *GV = dyn_cast<DIGlobalVariable>(Attachment); 1464 DIExpression *E = nullptr; 1465 if (!GV) { 1466 auto *GVE = cast<DIGlobalVariableExpression>(Attachment); 1467 GV = GVE->getVariable(); 1468 E = GVE->getExpression(); 1469 } 1470 ArrayRef<uint64_t> OrigElements; 1471 if (E) 1472 OrigElements = E->getElements(); 1473 std::vector<uint64_t> Elements(OrigElements.size() + 2); 1474 Elements[0] = dwarf::DW_OP_plus_uconst; 1475 Elements[1] = Offset; 1476 std::copy(OrigElements.begin(), OrigElements.end(), Elements.begin() + 2); 1477 E = DIExpression::get(getContext(), Elements); 1478 Attachment = DIGlobalVariableExpression::get(getContext(), GV, E); 1479 } 1480 addMetadata(MD.first, *Attachment); 1481 } 1482 } 1483 1484 void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) { 1485 addMetadata( 1486 LLVMContext::MD_type, 1487 *MDTuple::get(getContext(), 1488 {ConstantAsMetadata::get(ConstantInt::get( 1489 Type::getInt64Ty(getContext()), Offset)), 1490 TypeID})); 1491 } 1492 1493 void Function::setSubprogram(DISubprogram *SP) { 1494 setMetadata(LLVMContext::MD_dbg, SP); 1495 } 1496 1497 DISubprogram *Function::getSubprogram() const { 1498 return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg)); 1499 } 1500 1501 bool Function::isDebugInfoForProfiling() const { 1502 if (DISubprogram *SP = getSubprogram()) { 1503 if (DICompileUnit *CU = SP->getUnit()) { 1504 return CU->getDebugInfoForProfiling(); 1505 } 1506 } 1507 return false; 1508 } 1509 1510 void GlobalVariable::addDebugInfo(DIGlobalVariableExpression *GV) { 1511 addMetadata(LLVMContext::MD_dbg, *GV); 1512 } 1513 1514 void GlobalVariable::getDebugInfo( 1515 SmallVectorImpl<DIGlobalVariableExpression *> &GVs) const { 1516 SmallVector<MDNode *, 1> MDs; 1517 getMetadata(LLVMContext::MD_dbg, MDs); 1518 for (MDNode *MD : MDs) 1519 GVs.push_back(cast<DIGlobalVariableExpression>(MD)); 1520 } 1521