1 //===- Metadata.cpp - Implement Metadata classes --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Metadata classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Metadata.h" 14 #include "LLVMContextImpl.h" 15 #include "MetadataImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/APFloat.h" 18 #include "llvm/ADT/APInt.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringMap.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/IR/Argument.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/ConstantRange.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DebugInfoMetadata.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalObject.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/MDBuilder.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/TrackingMDRef.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/IR/ValueHandle.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/MathExtras.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <cstddef> 54 #include <cstdint> 55 #include <iterator> 56 #include <tuple> 57 #include <type_traits> 58 #include <utility> 59 #include <vector> 60 61 using namespace llvm; 62 63 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD) 64 : Value(Ty, MetadataAsValueVal), MD(MD) { 65 track(); 66 } 67 68 MetadataAsValue::~MetadataAsValue() { 69 getType()->getContext().pImpl->MetadataAsValues.erase(MD); 70 untrack(); 71 } 72 73 /// Canonicalize metadata arguments to intrinsics. 74 /// 75 /// To support bitcode upgrades (and assembly semantic sugar) for \a 76 /// MetadataAsValue, we need to canonicalize certain metadata. 77 /// 78 /// - nullptr is replaced by an empty MDNode. 79 /// - An MDNode with a single null operand is replaced by an empty MDNode. 80 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped. 81 /// 82 /// This maintains readability of bitcode from when metadata was a type of 83 /// value, and these bridges were unnecessary. 84 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context, 85 Metadata *MD) { 86 if (!MD) 87 // !{} 88 return MDNode::get(Context, None); 89 90 // Return early if this isn't a single-operand MDNode. 91 auto *N = dyn_cast<MDNode>(MD); 92 if (!N || N->getNumOperands() != 1) 93 return MD; 94 95 if (!N->getOperand(0)) 96 // !{} 97 return MDNode::get(Context, None); 98 99 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0))) 100 // Look through the MDNode. 101 return C; 102 103 return MD; 104 } 105 106 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) { 107 MD = canonicalizeMetadataForValue(Context, MD); 108 auto *&Entry = Context.pImpl->MetadataAsValues[MD]; 109 if (!Entry) 110 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD); 111 return Entry; 112 } 113 114 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context, 115 Metadata *MD) { 116 MD = canonicalizeMetadataForValue(Context, MD); 117 auto &Store = Context.pImpl->MetadataAsValues; 118 return Store.lookup(MD); 119 } 120 121 void MetadataAsValue::handleChangedMetadata(Metadata *MD) { 122 LLVMContext &Context = getContext(); 123 MD = canonicalizeMetadataForValue(Context, MD); 124 auto &Store = Context.pImpl->MetadataAsValues; 125 126 // Stop tracking the old metadata. 127 Store.erase(this->MD); 128 untrack(); 129 this->MD = nullptr; 130 131 // Start tracking MD, or RAUW if necessary. 132 auto *&Entry = Store[MD]; 133 if (Entry) { 134 replaceAllUsesWith(Entry); 135 delete this; 136 return; 137 } 138 139 this->MD = MD; 140 track(); 141 Entry = this; 142 } 143 144 void MetadataAsValue::track() { 145 if (MD) 146 MetadataTracking::track(&MD, *MD, *this); 147 } 148 149 void MetadataAsValue::untrack() { 150 if (MD) 151 MetadataTracking::untrack(MD); 152 } 153 154 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) { 155 assert(Ref && "Expected live reference"); 156 assert((Owner || *static_cast<Metadata **>(Ref) == &MD) && 157 "Reference without owner must be direct"); 158 if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) { 159 R->addRef(Ref, Owner); 160 return true; 161 } 162 if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) { 163 assert(!PH->Use && "Placeholders can only be used once"); 164 assert(!Owner && "Unexpected callback to owner"); 165 PH->Use = static_cast<Metadata **>(Ref); 166 return true; 167 } 168 return false; 169 } 170 171 void MetadataTracking::untrack(void *Ref, Metadata &MD) { 172 assert(Ref && "Expected live reference"); 173 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) 174 R->dropRef(Ref); 175 else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) 176 PH->Use = nullptr; 177 } 178 179 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) { 180 assert(Ref && "Expected live reference"); 181 assert(New && "Expected live reference"); 182 assert(Ref != New && "Expected change"); 183 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) { 184 R->moveRef(Ref, New, MD); 185 return true; 186 } 187 assert(!isa<DistinctMDOperandPlaceholder>(MD) && 188 "Unexpected move of an MDOperand"); 189 assert(!isReplaceable(MD) && 190 "Expected un-replaceable metadata, since we didn't move a reference"); 191 return false; 192 } 193 194 bool MetadataTracking::isReplaceable(const Metadata &MD) { 195 return ReplaceableMetadataImpl::isReplaceable(MD); 196 } 197 198 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) { 199 bool WasInserted = 200 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex))) 201 .second; 202 (void)WasInserted; 203 assert(WasInserted && "Expected to add a reference"); 204 205 ++NextIndex; 206 assert(NextIndex != 0 && "Unexpected overflow"); 207 } 208 209 void ReplaceableMetadataImpl::dropRef(void *Ref) { 210 bool WasErased = UseMap.erase(Ref); 211 (void)WasErased; 212 assert(WasErased && "Expected to drop a reference"); 213 } 214 215 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New, 216 const Metadata &MD) { 217 auto I = UseMap.find(Ref); 218 assert(I != UseMap.end() && "Expected to move a reference"); 219 auto OwnerAndIndex = I->second; 220 UseMap.erase(I); 221 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second; 222 (void)WasInserted; 223 assert(WasInserted && "Expected to add a reference"); 224 225 // Check that the references are direct if there's no owner. 226 (void)MD; 227 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) && 228 "Reference without owner must be direct"); 229 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) && 230 "Reference without owner must be direct"); 231 } 232 233 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) { 234 if (UseMap.empty()) 235 return; 236 237 // Copy out uses since UseMap will get touched below. 238 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>; 239 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 240 llvm::sort(Uses, [](const UseTy &L, const UseTy &R) { 241 return L.second.second < R.second.second; 242 }); 243 for (const auto &Pair : Uses) { 244 // Check that this Ref hasn't disappeared after RAUW (when updating a 245 // previous Ref). 246 if (!UseMap.count(Pair.first)) 247 continue; 248 249 OwnerTy Owner = Pair.second.first; 250 if (!Owner) { 251 // Update unowned tracking references directly. 252 Metadata *&Ref = *static_cast<Metadata **>(Pair.first); 253 Ref = MD; 254 if (MD) 255 MetadataTracking::track(Ref); 256 UseMap.erase(Pair.first); 257 continue; 258 } 259 260 // Check for MetadataAsValue. 261 if (Owner.is<MetadataAsValue *>()) { 262 Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD); 263 continue; 264 } 265 266 // There's a Metadata owner -- dispatch. 267 Metadata *OwnerMD = Owner.get<Metadata *>(); 268 switch (OwnerMD->getMetadataID()) { 269 #define HANDLE_METADATA_LEAF(CLASS) \ 270 case Metadata::CLASS##Kind: \ 271 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \ 272 continue; 273 #include "llvm/IR/Metadata.def" 274 default: 275 llvm_unreachable("Invalid metadata subclass"); 276 } 277 } 278 assert(UseMap.empty() && "Expected all uses to be replaced"); 279 } 280 281 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) { 282 if (UseMap.empty()) 283 return; 284 285 if (!ResolveUsers) { 286 UseMap.clear(); 287 return; 288 } 289 290 // Copy out uses since UseMap could get touched below. 291 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>; 292 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 293 llvm::sort(Uses, [](const UseTy &L, const UseTy &R) { 294 return L.second.second < R.second.second; 295 }); 296 UseMap.clear(); 297 for (const auto &Pair : Uses) { 298 auto Owner = Pair.second.first; 299 if (!Owner) 300 continue; 301 if (Owner.is<MetadataAsValue *>()) 302 continue; 303 304 // Resolve MDNodes that point at this. 305 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>()); 306 if (!OwnerMD) 307 continue; 308 if (OwnerMD->isResolved()) 309 continue; 310 OwnerMD->decrementUnresolvedOperandCount(); 311 } 312 } 313 314 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) { 315 if (auto *N = dyn_cast<MDNode>(&MD)) 316 return N->isResolved() ? nullptr : N->Context.getOrCreateReplaceableUses(); 317 return dyn_cast<ValueAsMetadata>(&MD); 318 } 319 320 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) { 321 if (auto *N = dyn_cast<MDNode>(&MD)) 322 return N->isResolved() ? nullptr : N->Context.getReplaceableUses(); 323 return dyn_cast<ValueAsMetadata>(&MD); 324 } 325 326 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) { 327 if (auto *N = dyn_cast<MDNode>(&MD)) 328 return !N->isResolved(); 329 return dyn_cast<ValueAsMetadata>(&MD); 330 } 331 332 static DISubprogram *getLocalFunctionMetadata(Value *V) { 333 assert(V && "Expected value"); 334 if (auto *A = dyn_cast<Argument>(V)) { 335 if (auto *Fn = A->getParent()) 336 return Fn->getSubprogram(); 337 return nullptr; 338 } 339 340 if (BasicBlock *BB = cast<Instruction>(V)->getParent()) { 341 if (auto *Fn = BB->getParent()) 342 return Fn->getSubprogram(); 343 return nullptr; 344 } 345 346 return nullptr; 347 } 348 349 ValueAsMetadata *ValueAsMetadata::get(Value *V) { 350 assert(V && "Unexpected null Value"); 351 352 auto &Context = V->getContext(); 353 auto *&Entry = Context.pImpl->ValuesAsMetadata[V]; 354 if (!Entry) { 355 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) && 356 "Expected constant or function-local value"); 357 assert(!V->IsUsedByMD && "Expected this to be the only metadata use"); 358 V->IsUsedByMD = true; 359 if (auto *C = dyn_cast<Constant>(V)) 360 Entry = new ConstantAsMetadata(C); 361 else 362 Entry = new LocalAsMetadata(V); 363 } 364 365 return Entry; 366 } 367 368 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) { 369 assert(V && "Unexpected null Value"); 370 return V->getContext().pImpl->ValuesAsMetadata.lookup(V); 371 } 372 373 void ValueAsMetadata::handleDeletion(Value *V) { 374 assert(V && "Expected valid value"); 375 376 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata; 377 auto I = Store.find(V); 378 if (I == Store.end()) 379 return; 380 381 // Remove old entry from the map. 382 ValueAsMetadata *MD = I->second; 383 assert(MD && "Expected valid metadata"); 384 assert(MD->getValue() == V && "Expected valid mapping"); 385 Store.erase(I); 386 387 // Delete the metadata. 388 MD->replaceAllUsesWith(nullptr); 389 delete MD; 390 } 391 392 void ValueAsMetadata::handleRAUW(Value *From, Value *To) { 393 assert(From && "Expected valid value"); 394 assert(To && "Expected valid value"); 395 assert(From != To && "Expected changed value"); 396 assert(From->getType() == To->getType() && "Unexpected type change"); 397 398 LLVMContext &Context = From->getType()->getContext(); 399 auto &Store = Context.pImpl->ValuesAsMetadata; 400 auto I = Store.find(From); 401 if (I == Store.end()) { 402 assert(!From->IsUsedByMD && "Expected From not to be used by metadata"); 403 return; 404 } 405 406 // Remove old entry from the map. 407 assert(From->IsUsedByMD && "Expected From to be used by metadata"); 408 From->IsUsedByMD = false; 409 ValueAsMetadata *MD = I->second; 410 assert(MD && "Expected valid metadata"); 411 assert(MD->getValue() == From && "Expected valid mapping"); 412 Store.erase(I); 413 414 if (isa<LocalAsMetadata>(MD)) { 415 if (auto *C = dyn_cast<Constant>(To)) { 416 // Local became a constant. 417 MD->replaceAllUsesWith(ConstantAsMetadata::get(C)); 418 delete MD; 419 return; 420 } 421 if (getLocalFunctionMetadata(From) && getLocalFunctionMetadata(To) && 422 getLocalFunctionMetadata(From) != getLocalFunctionMetadata(To)) { 423 // DISubprogram changed. 424 MD->replaceAllUsesWith(nullptr); 425 delete MD; 426 return; 427 } 428 } else if (!isa<Constant>(To)) { 429 // Changed to function-local value. 430 MD->replaceAllUsesWith(nullptr); 431 delete MD; 432 return; 433 } 434 435 auto *&Entry = Store[To]; 436 if (Entry) { 437 // The target already exists. 438 MD->replaceAllUsesWith(Entry); 439 delete MD; 440 return; 441 } 442 443 // Update MD in place (and update the map entry). 444 assert(!To->IsUsedByMD && "Expected this to be the only metadata use"); 445 To->IsUsedByMD = true; 446 MD->V = To; 447 Entry = MD; 448 } 449 450 //===----------------------------------------------------------------------===// 451 // MDString implementation. 452 // 453 454 MDString *MDString::get(LLVMContext &Context, StringRef Str) { 455 auto &Store = Context.pImpl->MDStringCache; 456 auto I = Store.try_emplace(Str); 457 auto &MapEntry = I.first->getValue(); 458 if (!I.second) 459 return &MapEntry; 460 MapEntry.Entry = &*I.first; 461 return &MapEntry; 462 } 463 464 StringRef MDString::getString() const { 465 assert(Entry && "Expected to find string map entry"); 466 return Entry->first(); 467 } 468 469 //===----------------------------------------------------------------------===// 470 // MDNode implementation. 471 // 472 473 // Assert that the MDNode types will not be unaligned by the objects 474 // prepended to them. 475 #define HANDLE_MDNODE_LEAF(CLASS) \ 476 static_assert( \ 477 alignof(uint64_t) >= alignof(CLASS), \ 478 "Alignment is insufficient after objects prepended to " #CLASS); 479 #include "llvm/IR/Metadata.def" 480 481 void *MDNode::operator new(size_t Size, unsigned NumOps) { 482 size_t OpSize = NumOps * sizeof(MDOperand); 483 // uint64_t is the most aligned type we need support (ensured by static_assert 484 // above) 485 OpSize = alignTo(OpSize, alignof(uint64_t)); 486 void *Ptr = reinterpret_cast<char *>(::operator new(OpSize + Size)) + OpSize; 487 MDOperand *O = static_cast<MDOperand *>(Ptr); 488 for (MDOperand *E = O - NumOps; O != E; --O) 489 (void)new (O - 1) MDOperand; 490 return Ptr; 491 } 492 493 // Repress memory sanitization, due to use-after-destroy by operator 494 // delete. Bug report 24578 identifies this issue. 495 LLVM_NO_SANITIZE_MEMORY_ATTRIBUTE void MDNode::operator delete(void *Mem) { 496 MDNode *N = static_cast<MDNode *>(Mem); 497 size_t OpSize = N->NumOperands * sizeof(MDOperand); 498 OpSize = alignTo(OpSize, alignof(uint64_t)); 499 500 MDOperand *O = static_cast<MDOperand *>(Mem); 501 for (MDOperand *E = O - N->NumOperands; O != E; --O) 502 (O - 1)->~MDOperand(); 503 ::operator delete(reinterpret_cast<char *>(Mem) - OpSize); 504 } 505 506 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage, 507 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2) 508 : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()), 509 NumUnresolved(0), Context(Context) { 510 unsigned Op = 0; 511 for (Metadata *MD : Ops1) 512 setOperand(Op++, MD); 513 for (Metadata *MD : Ops2) 514 setOperand(Op++, MD); 515 516 if (!isUniqued()) 517 return; 518 519 // Count the unresolved operands. If there are any, RAUW support will be 520 // added lazily on first reference. 521 countUnresolvedOperands(); 522 } 523 524 TempMDNode MDNode::clone() const { 525 switch (getMetadataID()) { 526 default: 527 llvm_unreachable("Invalid MDNode subclass"); 528 #define HANDLE_MDNODE_LEAF(CLASS) \ 529 case CLASS##Kind: \ 530 return cast<CLASS>(this)->cloneImpl(); 531 #include "llvm/IR/Metadata.def" 532 } 533 } 534 535 static bool isOperandUnresolved(Metadata *Op) { 536 if (auto *N = dyn_cast_or_null<MDNode>(Op)) 537 return !N->isResolved(); 538 return false; 539 } 540 541 void MDNode::countUnresolvedOperands() { 542 assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted"); 543 assert(isUniqued() && "Expected this to be uniqued"); 544 NumUnresolved = count_if(operands(), isOperandUnresolved); 545 } 546 547 void MDNode::makeUniqued() { 548 assert(isTemporary() && "Expected this to be temporary"); 549 assert(!isResolved() && "Expected this to be unresolved"); 550 551 // Enable uniquing callbacks. 552 for (auto &Op : mutable_operands()) 553 Op.reset(Op.get(), this); 554 555 // Make this 'uniqued'. 556 Storage = Uniqued; 557 countUnresolvedOperands(); 558 if (!NumUnresolved) { 559 dropReplaceableUses(); 560 assert(isResolved() && "Expected this to be resolved"); 561 } 562 563 assert(isUniqued() && "Expected this to be uniqued"); 564 } 565 566 void MDNode::makeDistinct() { 567 assert(isTemporary() && "Expected this to be temporary"); 568 assert(!isResolved() && "Expected this to be unresolved"); 569 570 // Drop RAUW support and store as a distinct node. 571 dropReplaceableUses(); 572 storeDistinctInContext(); 573 574 assert(isDistinct() && "Expected this to be distinct"); 575 assert(isResolved() && "Expected this to be resolved"); 576 } 577 578 void MDNode::resolve() { 579 assert(isUniqued() && "Expected this to be uniqued"); 580 assert(!isResolved() && "Expected this to be unresolved"); 581 582 NumUnresolved = 0; 583 dropReplaceableUses(); 584 585 assert(isResolved() && "Expected this to be resolved"); 586 } 587 588 void MDNode::dropReplaceableUses() { 589 assert(!NumUnresolved && "Unexpected unresolved operand"); 590 591 // Drop any RAUW support. 592 if (Context.hasReplaceableUses()) 593 Context.takeReplaceableUses()->resolveAllUses(); 594 } 595 596 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) { 597 assert(isUniqued() && "Expected this to be uniqued"); 598 assert(NumUnresolved != 0 && "Expected unresolved operands"); 599 600 // Check if an operand was resolved. 601 if (!isOperandUnresolved(Old)) { 602 if (isOperandUnresolved(New)) 603 // An operand was un-resolved! 604 ++NumUnresolved; 605 } else if (!isOperandUnresolved(New)) 606 decrementUnresolvedOperandCount(); 607 } 608 609 void MDNode::decrementUnresolvedOperandCount() { 610 assert(!isResolved() && "Expected this to be unresolved"); 611 if (isTemporary()) 612 return; 613 614 assert(isUniqued() && "Expected this to be uniqued"); 615 if (--NumUnresolved) 616 return; 617 618 // Last unresolved operand has just been resolved. 619 dropReplaceableUses(); 620 assert(isResolved() && "Expected this to become resolved"); 621 } 622 623 void MDNode::resolveCycles() { 624 if (isResolved()) 625 return; 626 627 // Resolve this node immediately. 628 resolve(); 629 630 // Resolve all operands. 631 for (const auto &Op : operands()) { 632 auto *N = dyn_cast_or_null<MDNode>(Op); 633 if (!N) 634 continue; 635 636 assert(!N->isTemporary() && 637 "Expected all forward declarations to be resolved"); 638 if (!N->isResolved()) 639 N->resolveCycles(); 640 } 641 } 642 643 static bool hasSelfReference(MDNode *N) { 644 for (Metadata *MD : N->operands()) 645 if (MD == N) 646 return true; 647 return false; 648 } 649 650 MDNode *MDNode::replaceWithPermanentImpl() { 651 switch (getMetadataID()) { 652 default: 653 // If this type isn't uniquable, replace with a distinct node. 654 return replaceWithDistinctImpl(); 655 656 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 657 case CLASS##Kind: \ 658 break; 659 #include "llvm/IR/Metadata.def" 660 } 661 662 // Even if this type is uniquable, self-references have to be distinct. 663 if (hasSelfReference(this)) 664 return replaceWithDistinctImpl(); 665 return replaceWithUniquedImpl(); 666 } 667 668 MDNode *MDNode::replaceWithUniquedImpl() { 669 // Try to uniquify in place. 670 MDNode *UniquedNode = uniquify(); 671 672 if (UniquedNode == this) { 673 makeUniqued(); 674 return this; 675 } 676 677 // Collision, so RAUW instead. 678 replaceAllUsesWith(UniquedNode); 679 deleteAsSubclass(); 680 return UniquedNode; 681 } 682 683 MDNode *MDNode::replaceWithDistinctImpl() { 684 makeDistinct(); 685 return this; 686 } 687 688 void MDTuple::recalculateHash() { 689 setHash(MDTupleInfo::KeyTy::calculateHash(this)); 690 } 691 692 void MDNode::dropAllReferences() { 693 for (unsigned I = 0, E = NumOperands; I != E; ++I) 694 setOperand(I, nullptr); 695 if (Context.hasReplaceableUses()) { 696 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false); 697 (void)Context.takeReplaceableUses(); 698 } 699 } 700 701 void MDNode::handleChangedOperand(void *Ref, Metadata *New) { 702 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin(); 703 assert(Op < getNumOperands() && "Expected valid operand"); 704 705 if (!isUniqued()) { 706 // This node is not uniqued. Just set the operand and be done with it. 707 setOperand(Op, New); 708 return; 709 } 710 711 // This node is uniqued. 712 eraseFromStore(); 713 714 Metadata *Old = getOperand(Op); 715 setOperand(Op, New); 716 717 // Drop uniquing for self-reference cycles and deleted constants. 718 if (New == this || (!New && Old && isa<ConstantAsMetadata>(Old))) { 719 if (!isResolved()) 720 resolve(); 721 storeDistinctInContext(); 722 return; 723 } 724 725 // Re-unique the node. 726 auto *Uniqued = uniquify(); 727 if (Uniqued == this) { 728 if (!isResolved()) 729 resolveAfterOperandChange(Old, New); 730 return; 731 } 732 733 // Collision. 734 if (!isResolved()) { 735 // Still unresolved, so RAUW. 736 // 737 // First, clear out all operands to prevent any recursion (similar to 738 // dropAllReferences(), but we still need the use-list). 739 for (unsigned O = 0, E = getNumOperands(); O != E; ++O) 740 setOperand(O, nullptr); 741 if (Context.hasReplaceableUses()) 742 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued); 743 deleteAsSubclass(); 744 return; 745 } 746 747 // Store in non-uniqued form if RAUW isn't possible. 748 storeDistinctInContext(); 749 } 750 751 void MDNode::deleteAsSubclass() { 752 switch (getMetadataID()) { 753 default: 754 llvm_unreachable("Invalid subclass of MDNode"); 755 #define HANDLE_MDNODE_LEAF(CLASS) \ 756 case CLASS##Kind: \ 757 delete cast<CLASS>(this); \ 758 break; 759 #include "llvm/IR/Metadata.def" 760 } 761 } 762 763 template <class T, class InfoT> 764 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) { 765 if (T *U = getUniqued(Store, N)) 766 return U; 767 768 Store.insert(N); 769 return N; 770 } 771 772 template <class NodeTy> struct MDNode::HasCachedHash { 773 using Yes = char[1]; 774 using No = char[2]; 775 template <class U, U Val> struct SFINAE {}; 776 777 template <class U> 778 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *); 779 template <class U> static No &check(...); 780 781 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes); 782 }; 783 784 MDNode *MDNode::uniquify() { 785 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node"); 786 787 // Try to insert into uniquing store. 788 switch (getMetadataID()) { 789 default: 790 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 791 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 792 case CLASS##Kind: { \ 793 CLASS *SubclassThis = cast<CLASS>(this); \ 794 std::integral_constant<bool, HasCachedHash<CLASS>::value> \ 795 ShouldRecalculateHash; \ 796 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \ 797 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \ 798 } 799 #include "llvm/IR/Metadata.def" 800 } 801 } 802 803 void MDNode::eraseFromStore() { 804 switch (getMetadataID()) { 805 default: 806 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 807 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 808 case CLASS##Kind: \ 809 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \ 810 break; 811 #include "llvm/IR/Metadata.def" 812 } 813 } 814 815 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs, 816 StorageType Storage, bool ShouldCreate) { 817 unsigned Hash = 0; 818 if (Storage == Uniqued) { 819 MDTupleInfo::KeyTy Key(MDs); 820 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key)) 821 return N; 822 if (!ShouldCreate) 823 return nullptr; 824 Hash = Key.getHash(); 825 } else { 826 assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); 827 } 828 829 return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs), 830 Storage, Context.pImpl->MDTuples); 831 } 832 833 void MDNode::deleteTemporary(MDNode *N) { 834 assert(N->isTemporary() && "Expected temporary node"); 835 N->replaceAllUsesWith(nullptr); 836 N->deleteAsSubclass(); 837 } 838 839 void MDNode::storeDistinctInContext() { 840 assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses"); 841 assert(!NumUnresolved && "Unexpected unresolved nodes"); 842 Storage = Distinct; 843 assert(isResolved() && "Expected this to be resolved"); 844 845 // Reset the hash. 846 switch (getMetadataID()) { 847 default: 848 llvm_unreachable("Invalid subclass of MDNode"); 849 #define HANDLE_MDNODE_LEAF(CLASS) \ 850 case CLASS##Kind: { \ 851 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \ 852 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \ 853 break; \ 854 } 855 #include "llvm/IR/Metadata.def" 856 } 857 858 getContext().pImpl->DistinctMDNodes.push_back(this); 859 } 860 861 void MDNode::replaceOperandWith(unsigned I, Metadata *New) { 862 if (getOperand(I) == New) 863 return; 864 865 if (!isUniqued()) { 866 setOperand(I, New); 867 return; 868 } 869 870 handleChangedOperand(mutable_begin() + I, New); 871 } 872 873 void MDNode::setOperand(unsigned I, Metadata *New) { 874 assert(I < NumOperands); 875 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr); 876 } 877 878 /// Get a node or a self-reference that looks like it. 879 /// 880 /// Special handling for finding self-references, for use by \a 881 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from 882 /// when self-referencing nodes were still uniqued. If the first operand has 883 /// the same operands as \c Ops, return the first operand instead. 884 static MDNode *getOrSelfReference(LLVMContext &Context, 885 ArrayRef<Metadata *> Ops) { 886 if (!Ops.empty()) 887 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0])) 888 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) { 889 for (unsigned I = 1, E = Ops.size(); I != E; ++I) 890 if (Ops[I] != N->getOperand(I)) 891 return MDNode::get(Context, Ops); 892 return N; 893 } 894 895 return MDNode::get(Context, Ops); 896 } 897 898 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) { 899 if (!A) 900 return B; 901 if (!B) 902 return A; 903 904 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 905 MDs.insert(B->op_begin(), B->op_end()); 906 907 // FIXME: This preserves long-standing behaviour, but is it really the right 908 // behaviour? Or was that an unintended side-effect of node uniquing? 909 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 910 } 911 912 MDNode *MDNode::intersect(MDNode *A, MDNode *B) { 913 if (!A || !B) 914 return nullptr; 915 916 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 917 SmallPtrSet<Metadata *, 4> BSet(B->op_begin(), B->op_end()); 918 MDs.remove_if([&](Metadata *MD) { return !BSet.count(MD); }); 919 920 // FIXME: This preserves long-standing behaviour, but is it really the right 921 // behaviour? Or was that an unintended side-effect of node uniquing? 922 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 923 } 924 925 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) { 926 if (!A || !B) 927 return nullptr; 928 929 // Take the intersection of domains then union the scopes 930 // within those domains 931 SmallPtrSet<const MDNode *, 16> ADomains; 932 SmallPtrSet<const MDNode *, 16> IntersectDomains; 933 SmallSetVector<Metadata *, 4> MDs; 934 for (const MDOperand &MDOp : A->operands()) 935 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 936 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 937 ADomains.insert(Domain); 938 939 for (const MDOperand &MDOp : B->operands()) 940 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 941 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 942 if (ADomains.contains(Domain)) { 943 IntersectDomains.insert(Domain); 944 MDs.insert(MDOp); 945 } 946 947 for (const MDOperand &MDOp : A->operands()) 948 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 949 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 950 if (IntersectDomains.contains(Domain)) 951 MDs.insert(MDOp); 952 953 return MDs.empty() ? nullptr 954 : getOrSelfReference(A->getContext(), MDs.getArrayRef()); 955 } 956 957 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) { 958 if (!A || !B) 959 return nullptr; 960 961 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF(); 962 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF(); 963 if (AVal < BVal) 964 return A; 965 return B; 966 } 967 968 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 969 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 970 } 971 972 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) { 973 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B); 974 } 975 976 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints, 977 ConstantInt *Low, ConstantInt *High) { 978 ConstantRange NewRange(Low->getValue(), High->getValue()); 979 unsigned Size = EndPoints.size(); 980 APInt LB = EndPoints[Size - 2]->getValue(); 981 APInt LE = EndPoints[Size - 1]->getValue(); 982 ConstantRange LastRange(LB, LE); 983 if (canBeMerged(NewRange, LastRange)) { 984 ConstantRange Union = LastRange.unionWith(NewRange); 985 Type *Ty = High->getType(); 986 EndPoints[Size - 2] = 987 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower())); 988 EndPoints[Size - 1] = 989 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper())); 990 return true; 991 } 992 return false; 993 } 994 995 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints, 996 ConstantInt *Low, ConstantInt *High) { 997 if (!EndPoints.empty()) 998 if (tryMergeRange(EndPoints, Low, High)) 999 return; 1000 1001 EndPoints.push_back(Low); 1002 EndPoints.push_back(High); 1003 } 1004 1005 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) { 1006 // Given two ranges, we want to compute the union of the ranges. This 1007 // is slightly complicated by having to combine the intervals and merge 1008 // the ones that overlap. 1009 1010 if (!A || !B) 1011 return nullptr; 1012 1013 if (A == B) 1014 return A; 1015 1016 // First, walk both lists in order of the lower boundary of each interval. 1017 // At each step, try to merge the new interval to the last one we adedd. 1018 SmallVector<ConstantInt *, 4> EndPoints; 1019 int AI = 0; 1020 int BI = 0; 1021 int AN = A->getNumOperands() / 2; 1022 int BN = B->getNumOperands() / 2; 1023 while (AI < AN && BI < BN) { 1024 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI)); 1025 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI)); 1026 1027 if (ALow->getValue().slt(BLow->getValue())) { 1028 addRange(EndPoints, ALow, 1029 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 1030 ++AI; 1031 } else { 1032 addRange(EndPoints, BLow, 1033 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 1034 ++BI; 1035 } 1036 } 1037 while (AI < AN) { 1038 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)), 1039 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 1040 ++AI; 1041 } 1042 while (BI < BN) { 1043 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)), 1044 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 1045 ++BI; 1046 } 1047 1048 // If we have more than 2 ranges (4 endpoints) we have to try to merge 1049 // the last and first ones. 1050 unsigned Size = EndPoints.size(); 1051 if (Size > 4) { 1052 ConstantInt *FB = EndPoints[0]; 1053 ConstantInt *FE = EndPoints[1]; 1054 if (tryMergeRange(EndPoints, FB, FE)) { 1055 for (unsigned i = 0; i < Size - 2; ++i) { 1056 EndPoints[i] = EndPoints[i + 2]; 1057 } 1058 EndPoints.resize(Size - 2); 1059 } 1060 } 1061 1062 // If in the end we have a single range, it is possible that it is now the 1063 // full range. Just drop the metadata in that case. 1064 if (EndPoints.size() == 2) { 1065 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue()); 1066 if (Range.isFullSet()) 1067 return nullptr; 1068 } 1069 1070 SmallVector<Metadata *, 4> MDs; 1071 MDs.reserve(EndPoints.size()); 1072 for (auto *I : EndPoints) 1073 MDs.push_back(ConstantAsMetadata::get(I)); 1074 return MDNode::get(A->getContext(), MDs); 1075 } 1076 1077 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) { 1078 if (!A || !B) 1079 return nullptr; 1080 1081 ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0)); 1082 ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0)); 1083 if (AVal->getZExtValue() < BVal->getZExtValue()) 1084 return A; 1085 return B; 1086 } 1087 1088 //===----------------------------------------------------------------------===// 1089 // NamedMDNode implementation. 1090 // 1091 1092 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) { 1093 return *(SmallVector<TrackingMDRef, 4> *)Operands; 1094 } 1095 1096 NamedMDNode::NamedMDNode(const Twine &N) 1097 : Name(N.str()), Operands(new SmallVector<TrackingMDRef, 4>()) {} 1098 1099 NamedMDNode::~NamedMDNode() { 1100 dropAllReferences(); 1101 delete &getNMDOps(Operands); 1102 } 1103 1104 unsigned NamedMDNode::getNumOperands() const { 1105 return (unsigned)getNMDOps(Operands).size(); 1106 } 1107 1108 MDNode *NamedMDNode::getOperand(unsigned i) const { 1109 assert(i < getNumOperands() && "Invalid Operand number!"); 1110 auto *N = getNMDOps(Operands)[i].get(); 1111 return cast_or_null<MDNode>(N); 1112 } 1113 1114 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); } 1115 1116 void NamedMDNode::setOperand(unsigned I, MDNode *New) { 1117 assert(I < getNumOperands() && "Invalid operand number"); 1118 getNMDOps(Operands)[I].reset(New); 1119 } 1120 1121 void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); } 1122 1123 void NamedMDNode::clearOperands() { getNMDOps(Operands).clear(); } 1124 1125 StringRef NamedMDNode::getName() const { return StringRef(Name); } 1126 1127 //===----------------------------------------------------------------------===// 1128 // Instruction Metadata method implementations. 1129 // 1130 1131 MDNode *MDAttachments::lookup(unsigned ID) const { 1132 for (const auto &A : Attachments) 1133 if (A.MDKind == ID) 1134 return A.Node; 1135 return nullptr; 1136 } 1137 1138 void MDAttachments::get(unsigned ID, SmallVectorImpl<MDNode *> &Result) const { 1139 for (const auto &A : Attachments) 1140 if (A.MDKind == ID) 1141 Result.push_back(A.Node); 1142 } 1143 1144 void MDAttachments::getAll( 1145 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1146 for (const auto &A : Attachments) 1147 Result.emplace_back(A.MDKind, A.Node); 1148 1149 // Sort the resulting array so it is stable with respect to metadata IDs. We 1150 // need to preserve the original insertion order though. 1151 if (Result.size() > 1) 1152 llvm::stable_sort(Result, less_first()); 1153 } 1154 1155 void MDAttachments::set(unsigned ID, MDNode *MD) { 1156 erase(ID); 1157 if (MD) 1158 insert(ID, *MD); 1159 } 1160 1161 void MDAttachments::insert(unsigned ID, MDNode &MD) { 1162 Attachments.push_back({ID, TrackingMDNodeRef(&MD)}); 1163 } 1164 1165 bool MDAttachments::erase(unsigned ID) { 1166 if (empty()) 1167 return false; 1168 1169 // Common case is one value. 1170 if (Attachments.size() == 1 && Attachments.back().MDKind == ID) { 1171 Attachments.pop_back(); 1172 return true; 1173 } 1174 1175 auto I = std::remove_if(Attachments.begin(), Attachments.end(), 1176 [ID](const Attachment &A) { return A.MDKind == ID; }); 1177 bool Changed = I != Attachments.end(); 1178 Attachments.erase(I, Attachments.end()); 1179 return Changed; 1180 } 1181 1182 MDNode *Value::getMetadata(unsigned KindID) const { 1183 if (!hasMetadata()) 1184 return nullptr; 1185 const auto &Info = getContext().pImpl->ValueMetadata[this]; 1186 assert(!Info.empty() && "bit out of sync with hash table"); 1187 return Info.lookup(KindID); 1188 } 1189 1190 MDNode *Value::getMetadata(StringRef Kind) const { 1191 if (!hasMetadata()) 1192 return nullptr; 1193 const auto &Info = getContext().pImpl->ValueMetadata[this]; 1194 assert(!Info.empty() && "bit out of sync with hash table"); 1195 return Info.lookup(getContext().getMDKindID(Kind)); 1196 } 1197 1198 void Value::getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const { 1199 if (hasMetadata()) 1200 getContext().pImpl->ValueMetadata[this].get(KindID, MDs); 1201 } 1202 1203 void Value::getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const { 1204 if (hasMetadata()) 1205 getMetadata(getContext().getMDKindID(Kind), MDs); 1206 } 1207 1208 void Value::getAllMetadata( 1209 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { 1210 if (hasMetadata()) { 1211 assert(getContext().pImpl->ValueMetadata.count(this) && 1212 "bit out of sync with hash table"); 1213 const auto &Info = getContext().pImpl->ValueMetadata.find(this)->second; 1214 assert(!Info.empty() && "Shouldn't have called this"); 1215 Info.getAll(MDs); 1216 } 1217 } 1218 1219 void Value::setMetadata(unsigned KindID, MDNode *Node) { 1220 assert(isa<Instruction>(this) || isa<GlobalObject>(this)); 1221 1222 // Handle the case when we're adding/updating metadata on a value. 1223 if (Node) { 1224 auto &Info = getContext().pImpl->ValueMetadata[this]; 1225 assert(!Info.empty() == HasMetadata && "bit out of sync with hash table"); 1226 if (Info.empty()) 1227 HasMetadata = true; 1228 Info.set(KindID, Node); 1229 return; 1230 } 1231 1232 // Otherwise, we're removing metadata from an instruction. 1233 assert((HasMetadata == (getContext().pImpl->ValueMetadata.count(this) > 0)) && 1234 "bit out of sync with hash table"); 1235 if (!HasMetadata) 1236 return; // Nothing to remove! 1237 auto &Info = getContext().pImpl->ValueMetadata[this]; 1238 1239 // Handle removal of an existing value. 1240 Info.erase(KindID); 1241 if (!Info.empty()) 1242 return; 1243 getContext().pImpl->ValueMetadata.erase(this); 1244 HasMetadata = false; 1245 } 1246 1247 void Value::setMetadata(StringRef Kind, MDNode *Node) { 1248 if (!Node && !HasMetadata) 1249 return; 1250 setMetadata(getContext().getMDKindID(Kind), Node); 1251 } 1252 1253 void Value::addMetadata(unsigned KindID, MDNode &MD) { 1254 assert(isa<Instruction>(this) || isa<GlobalObject>(this)); 1255 if (!HasMetadata) 1256 HasMetadata = true; 1257 getContext().pImpl->ValueMetadata[this].insert(KindID, MD); 1258 } 1259 1260 void Value::addMetadata(StringRef Kind, MDNode &MD) { 1261 addMetadata(getContext().getMDKindID(Kind), MD); 1262 } 1263 1264 bool Value::eraseMetadata(unsigned KindID) { 1265 // Nothing to unset. 1266 if (!HasMetadata) 1267 return false; 1268 1269 auto &Store = getContext().pImpl->ValueMetadata[this]; 1270 bool Changed = Store.erase(KindID); 1271 if (Store.empty()) 1272 clearMetadata(); 1273 return Changed; 1274 } 1275 1276 void Value::clearMetadata() { 1277 if (!HasMetadata) 1278 return; 1279 assert(getContext().pImpl->ValueMetadata.count(this) && 1280 "bit out of sync with hash table"); 1281 getContext().pImpl->ValueMetadata.erase(this); 1282 HasMetadata = false; 1283 } 1284 1285 void Instruction::setMetadata(StringRef Kind, MDNode *Node) { 1286 if (!Node && !hasMetadata()) 1287 return; 1288 setMetadata(getContext().getMDKindID(Kind), Node); 1289 } 1290 1291 MDNode *Instruction::getMetadataImpl(StringRef Kind) const { 1292 return getMetadataImpl(getContext().getMDKindID(Kind)); 1293 } 1294 1295 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) { 1296 if (!Value::hasMetadata()) 1297 return; // Nothing to remove! 1298 1299 if (KnownIDs.empty()) { 1300 // Just drop our entry at the store. 1301 clearMetadata(); 1302 return; 1303 } 1304 1305 SmallSet<unsigned, 4> KnownSet; 1306 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 1307 1308 auto &MetadataStore = getContext().pImpl->ValueMetadata; 1309 auto &Info = MetadataStore[this]; 1310 assert(!Info.empty() && "bit out of sync with hash table"); 1311 Info.remove_if([&KnownSet](const MDAttachments::Attachment &I) { 1312 return !KnownSet.count(I.MDKind); 1313 }); 1314 1315 if (Info.empty()) { 1316 // Drop our entry at the store. 1317 clearMetadata(); 1318 } 1319 } 1320 1321 void Instruction::setMetadata(unsigned KindID, MDNode *Node) { 1322 if (!Node && !hasMetadata()) 1323 return; 1324 1325 // Handle 'dbg' as a special case since it is not stored in the hash table. 1326 if (KindID == LLVMContext::MD_dbg) { 1327 DbgLoc = DebugLoc(Node); 1328 return; 1329 } 1330 1331 Value::setMetadata(KindID, Node); 1332 } 1333 1334 void Instruction::addAnnotationMetadata(StringRef Name) { 1335 MDBuilder MDB(getContext()); 1336 1337 auto *Existing = getMetadata(LLVMContext::MD_annotation); 1338 SmallVector<Metadata *, 4> Names; 1339 bool AppendName = true; 1340 if (Existing) { 1341 auto *Tuple = cast<MDTuple>(Existing); 1342 for (auto &N : Tuple->operands()) { 1343 if (cast<MDString>(N.get())->getString() == Name) 1344 AppendName = false; 1345 Names.push_back(N.get()); 1346 } 1347 } 1348 if (AppendName) 1349 Names.push_back(MDB.createString(Name)); 1350 1351 MDNode *MD = MDTuple::get(getContext(), Names); 1352 setMetadata(LLVMContext::MD_annotation, MD); 1353 } 1354 1355 void Instruction::setAAMetadata(const AAMDNodes &N) { 1356 setMetadata(LLVMContext::MD_tbaa, N.TBAA); 1357 setMetadata(LLVMContext::MD_tbaa_struct, N.TBAAStruct); 1358 setMetadata(LLVMContext::MD_alias_scope, N.Scope); 1359 setMetadata(LLVMContext::MD_noalias, N.NoAlias); 1360 } 1361 1362 MDNode *Instruction::getMetadataImpl(unsigned KindID) const { 1363 // Handle 'dbg' as a special case since it is not stored in the hash table. 1364 if (KindID == LLVMContext::MD_dbg) 1365 return DbgLoc.getAsMDNode(); 1366 return Value::getMetadata(KindID); 1367 } 1368 1369 void Instruction::getAllMetadataImpl( 1370 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1371 Result.clear(); 1372 1373 // Handle 'dbg' as a special case since it is not stored in the hash table. 1374 if (DbgLoc) { 1375 Result.push_back( 1376 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode())); 1377 } 1378 Value::getAllMetadata(Result); 1379 } 1380 1381 bool Instruction::extractProfMetadata(uint64_t &TrueVal, 1382 uint64_t &FalseVal) const { 1383 assert( 1384 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select) && 1385 "Looking for branch weights on something besides branch or select"); 1386 1387 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1388 if (!ProfileData || ProfileData->getNumOperands() != 3) 1389 return false; 1390 1391 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1392 if (!ProfDataName || !ProfDataName->getString().equals("branch_weights")) 1393 return false; 1394 1395 auto *CITrue = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 1396 auto *CIFalse = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 1397 if (!CITrue || !CIFalse) 1398 return false; 1399 1400 TrueVal = CITrue->getValue().getZExtValue(); 1401 FalseVal = CIFalse->getValue().getZExtValue(); 1402 1403 return true; 1404 } 1405 1406 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) const { 1407 assert((getOpcode() == Instruction::Br || 1408 getOpcode() == Instruction::Select || 1409 getOpcode() == Instruction::Call || 1410 getOpcode() == Instruction::Invoke || 1411 getOpcode() == Instruction::Switch) && 1412 "Looking for branch weights on something besides branch"); 1413 1414 TotalVal = 0; 1415 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1416 if (!ProfileData) 1417 return false; 1418 1419 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1420 if (!ProfDataName) 1421 return false; 1422 1423 if (ProfDataName->getString().equals("branch_weights")) { 1424 TotalVal = 0; 1425 for (unsigned i = 1; i < ProfileData->getNumOperands(); i++) { 1426 auto *V = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i)); 1427 if (!V) 1428 return false; 1429 TotalVal += V->getValue().getZExtValue(); 1430 } 1431 return true; 1432 } else if (ProfDataName->getString().equals("VP") && 1433 ProfileData->getNumOperands() > 3) { 1434 TotalVal = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)) 1435 ->getValue() 1436 .getZExtValue(); 1437 return true; 1438 } 1439 return false; 1440 } 1441 1442 void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) { 1443 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 1444 Other->getAllMetadata(MDs); 1445 for (auto &MD : MDs) { 1446 // We need to adjust the type metadata offset. 1447 if (Offset != 0 && MD.first == LLVMContext::MD_type) { 1448 auto *OffsetConst = cast<ConstantInt>( 1449 cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue()); 1450 Metadata *TypeId = MD.second->getOperand(1); 1451 auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get( 1452 OffsetConst->getType(), OffsetConst->getValue() + Offset)); 1453 addMetadata(LLVMContext::MD_type, 1454 *MDNode::get(getContext(), {NewOffsetMD, TypeId})); 1455 continue; 1456 } 1457 // If an offset adjustment was specified we need to modify the DIExpression 1458 // to prepend the adjustment: 1459 // !DIExpression(DW_OP_plus, Offset, [original expr]) 1460 auto *Attachment = MD.second; 1461 if (Offset != 0 && MD.first == LLVMContext::MD_dbg) { 1462 DIGlobalVariable *GV = dyn_cast<DIGlobalVariable>(Attachment); 1463 DIExpression *E = nullptr; 1464 if (!GV) { 1465 auto *GVE = cast<DIGlobalVariableExpression>(Attachment); 1466 GV = GVE->getVariable(); 1467 E = GVE->getExpression(); 1468 } 1469 ArrayRef<uint64_t> OrigElements; 1470 if (E) 1471 OrigElements = E->getElements(); 1472 std::vector<uint64_t> Elements(OrigElements.size() + 2); 1473 Elements[0] = dwarf::DW_OP_plus_uconst; 1474 Elements[1] = Offset; 1475 llvm::copy(OrigElements, Elements.begin() + 2); 1476 E = DIExpression::get(getContext(), Elements); 1477 Attachment = DIGlobalVariableExpression::get(getContext(), GV, E); 1478 } 1479 addMetadata(MD.first, *Attachment); 1480 } 1481 } 1482 1483 void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) { 1484 addMetadata( 1485 LLVMContext::MD_type, 1486 *MDTuple::get(getContext(), 1487 {ConstantAsMetadata::get(ConstantInt::get( 1488 Type::getInt64Ty(getContext()), Offset)), 1489 TypeID})); 1490 } 1491 1492 void GlobalObject::setVCallVisibilityMetadata(VCallVisibility Visibility) { 1493 // Remove any existing vcall visibility metadata first in case we are 1494 // updating. 1495 eraseMetadata(LLVMContext::MD_vcall_visibility); 1496 addMetadata(LLVMContext::MD_vcall_visibility, 1497 *MDNode::get(getContext(), 1498 {ConstantAsMetadata::get(ConstantInt::get( 1499 Type::getInt64Ty(getContext()), Visibility))})); 1500 } 1501 1502 GlobalObject::VCallVisibility GlobalObject::getVCallVisibility() const { 1503 if (MDNode *MD = getMetadata(LLVMContext::MD_vcall_visibility)) { 1504 uint64_t Val = cast<ConstantInt>( 1505 cast<ConstantAsMetadata>(MD->getOperand(0))->getValue()) 1506 ->getZExtValue(); 1507 assert(Val <= 2 && "unknown vcall visibility!"); 1508 return (VCallVisibility)Val; 1509 } 1510 return VCallVisibility::VCallVisibilityPublic; 1511 } 1512 1513 void Function::setSubprogram(DISubprogram *SP) { 1514 setMetadata(LLVMContext::MD_dbg, SP); 1515 } 1516 1517 DISubprogram *Function::getSubprogram() const { 1518 return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg)); 1519 } 1520 1521 bool Function::isDebugInfoForProfiling() const { 1522 if (DISubprogram *SP = getSubprogram()) { 1523 if (DICompileUnit *CU = SP->getUnit()) { 1524 return CU->getDebugInfoForProfiling(); 1525 } 1526 } 1527 return false; 1528 } 1529 1530 void GlobalVariable::addDebugInfo(DIGlobalVariableExpression *GV) { 1531 addMetadata(LLVMContext::MD_dbg, *GV); 1532 } 1533 1534 void GlobalVariable::getDebugInfo( 1535 SmallVectorImpl<DIGlobalVariableExpression *> &GVs) const { 1536 SmallVector<MDNode *, 1> MDs; 1537 getMetadata(LLVMContext::MD_dbg, MDs); 1538 for (MDNode *MD : MDs) 1539 GVs.push_back(cast<DIGlobalVariableExpression>(MD)); 1540 } 1541