1 //===- Metadata.cpp - Implement Metadata classes --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Metadata classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Metadata.h" 15 #include "LLVMContextImpl.h" 16 #include "MetadataImpl.h" 17 #include "SymbolTableListTraitsImpl.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/IR/ConstantRange.h" 24 #include "llvm/IR/DebugInfoMetadata.h" 25 #include "llvm/IR/Instruction.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ValueHandle.h" 29 30 using namespace llvm; 31 32 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD) 33 : Value(Ty, MetadataAsValueVal), MD(MD) { 34 track(); 35 } 36 37 MetadataAsValue::~MetadataAsValue() { 38 getType()->getContext().pImpl->MetadataAsValues.erase(MD); 39 untrack(); 40 } 41 42 /// \brief Canonicalize metadata arguments to intrinsics. 43 /// 44 /// To support bitcode upgrades (and assembly semantic sugar) for \a 45 /// MetadataAsValue, we need to canonicalize certain metadata. 46 /// 47 /// - nullptr is replaced by an empty MDNode. 48 /// - An MDNode with a single null operand is replaced by an empty MDNode. 49 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped. 50 /// 51 /// This maintains readability of bitcode from when metadata was a type of 52 /// value, and these bridges were unnecessary. 53 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context, 54 Metadata *MD) { 55 if (!MD) 56 // !{} 57 return MDNode::get(Context, None); 58 59 // Return early if this isn't a single-operand MDNode. 60 auto *N = dyn_cast<MDNode>(MD); 61 if (!N || N->getNumOperands() != 1) 62 return MD; 63 64 if (!N->getOperand(0)) 65 // !{} 66 return MDNode::get(Context, None); 67 68 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0))) 69 // Look through the MDNode. 70 return C; 71 72 return MD; 73 } 74 75 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) { 76 MD = canonicalizeMetadataForValue(Context, MD); 77 auto *&Entry = Context.pImpl->MetadataAsValues[MD]; 78 if (!Entry) 79 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD); 80 return Entry; 81 } 82 83 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context, 84 Metadata *MD) { 85 MD = canonicalizeMetadataForValue(Context, MD); 86 auto &Store = Context.pImpl->MetadataAsValues; 87 return Store.lookup(MD); 88 } 89 90 void MetadataAsValue::handleChangedMetadata(Metadata *MD) { 91 LLVMContext &Context = getContext(); 92 MD = canonicalizeMetadataForValue(Context, MD); 93 auto &Store = Context.pImpl->MetadataAsValues; 94 95 // Stop tracking the old metadata. 96 Store.erase(this->MD); 97 untrack(); 98 this->MD = nullptr; 99 100 // Start tracking MD, or RAUW if necessary. 101 auto *&Entry = Store[MD]; 102 if (Entry) { 103 replaceAllUsesWith(Entry); 104 delete this; 105 return; 106 } 107 108 this->MD = MD; 109 track(); 110 Entry = this; 111 } 112 113 void MetadataAsValue::track() { 114 if (MD) 115 MetadataTracking::track(&MD, *MD, *this); 116 } 117 118 void MetadataAsValue::untrack() { 119 if (MD) 120 MetadataTracking::untrack(MD); 121 } 122 123 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) { 124 assert(Ref && "Expected live reference"); 125 assert((Owner || *static_cast<Metadata **>(Ref) == &MD) && 126 "Reference without owner must be direct"); 127 if (auto *R = ReplaceableMetadataImpl::get(MD)) { 128 R->addRef(Ref, Owner); 129 return true; 130 } 131 return false; 132 } 133 134 void MetadataTracking::untrack(void *Ref, Metadata &MD) { 135 assert(Ref && "Expected live reference"); 136 if (auto *R = ReplaceableMetadataImpl::get(MD)) 137 R->dropRef(Ref); 138 } 139 140 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) { 141 assert(Ref && "Expected live reference"); 142 assert(New && "Expected live reference"); 143 assert(Ref != New && "Expected change"); 144 if (auto *R = ReplaceableMetadataImpl::get(MD)) { 145 R->moveRef(Ref, New, MD); 146 return true; 147 } 148 return false; 149 } 150 151 bool MetadataTracking::isReplaceable(const Metadata &MD) { 152 return ReplaceableMetadataImpl::get(const_cast<Metadata &>(MD)); 153 } 154 155 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) { 156 bool WasInserted = 157 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex))) 158 .second; 159 (void)WasInserted; 160 assert(WasInserted && "Expected to add a reference"); 161 162 ++NextIndex; 163 assert(NextIndex != 0 && "Unexpected overflow"); 164 } 165 166 void ReplaceableMetadataImpl::dropRef(void *Ref) { 167 bool WasErased = UseMap.erase(Ref); 168 (void)WasErased; 169 assert(WasErased && "Expected to drop a reference"); 170 } 171 172 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New, 173 const Metadata &MD) { 174 auto I = UseMap.find(Ref); 175 assert(I != UseMap.end() && "Expected to move a reference"); 176 auto OwnerAndIndex = I->second; 177 UseMap.erase(I); 178 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second; 179 (void)WasInserted; 180 assert(WasInserted && "Expected to add a reference"); 181 182 // Check that the references are direct if there's no owner. 183 (void)MD; 184 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) && 185 "Reference without owner must be direct"); 186 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) && 187 "Reference without owner must be direct"); 188 } 189 190 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) { 191 assert(!(MD && isa<MDNode>(MD) && cast<MDNode>(MD)->isTemporary()) && 192 "Expected non-temp node"); 193 assert(CanReplace && 194 "Attempted to replace Metadata marked for no replacement"); 195 196 if (UseMap.empty()) 197 return; 198 199 // Copy out uses since UseMap will get touched below. 200 typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy; 201 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 202 std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) { 203 return L.second.second < R.second.second; 204 }); 205 for (const auto &Pair : Uses) { 206 // Check that this Ref hasn't disappeared after RAUW (when updating a 207 // previous Ref). 208 if (!UseMap.count(Pair.first)) 209 continue; 210 211 OwnerTy Owner = Pair.second.first; 212 if (!Owner) { 213 // Update unowned tracking references directly. 214 Metadata *&Ref = *static_cast<Metadata **>(Pair.first); 215 Ref = MD; 216 if (MD) 217 MetadataTracking::track(Ref); 218 UseMap.erase(Pair.first); 219 continue; 220 } 221 222 // Check for MetadataAsValue. 223 if (Owner.is<MetadataAsValue *>()) { 224 Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD); 225 continue; 226 } 227 228 // There's a Metadata owner -- dispatch. 229 Metadata *OwnerMD = Owner.get<Metadata *>(); 230 switch (OwnerMD->getMetadataID()) { 231 #define HANDLE_METADATA_LEAF(CLASS) \ 232 case Metadata::CLASS##Kind: \ 233 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \ 234 continue; 235 #include "llvm/IR/Metadata.def" 236 default: 237 llvm_unreachable("Invalid metadata subclass"); 238 } 239 } 240 assert(UseMap.empty() && "Expected all uses to be replaced"); 241 } 242 243 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) { 244 if (UseMap.empty()) 245 return; 246 247 if (!ResolveUsers) { 248 UseMap.clear(); 249 return; 250 } 251 252 // Copy out uses since UseMap could get touched below. 253 typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy; 254 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 255 std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) { 256 return L.second.second < R.second.second; 257 }); 258 UseMap.clear(); 259 for (const auto &Pair : Uses) { 260 auto Owner = Pair.second.first; 261 if (!Owner) 262 continue; 263 if (Owner.is<MetadataAsValue *>()) 264 continue; 265 266 // Resolve MDNodes that point at this. 267 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>()); 268 if (!OwnerMD) 269 continue; 270 if (OwnerMD->isResolved()) 271 continue; 272 OwnerMD->decrementUnresolvedOperandCount(); 273 } 274 } 275 276 ReplaceableMetadataImpl *ReplaceableMetadataImpl::get(Metadata &MD) { 277 if (auto *N = dyn_cast<MDNode>(&MD)) 278 return N->Context.getReplaceableUses(); 279 return dyn_cast<ValueAsMetadata>(&MD); 280 } 281 282 static Function *getLocalFunction(Value *V) { 283 assert(V && "Expected value"); 284 if (auto *A = dyn_cast<Argument>(V)) 285 return A->getParent(); 286 if (BasicBlock *BB = cast<Instruction>(V)->getParent()) 287 return BB->getParent(); 288 return nullptr; 289 } 290 291 ValueAsMetadata *ValueAsMetadata::get(Value *V) { 292 assert(V && "Unexpected null Value"); 293 294 auto &Context = V->getContext(); 295 auto *&Entry = Context.pImpl->ValuesAsMetadata[V]; 296 if (!Entry) { 297 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) && 298 "Expected constant or function-local value"); 299 assert(!V->IsUsedByMD && 300 "Expected this to be the only metadata use"); 301 V->IsUsedByMD = true; 302 if (auto *C = dyn_cast<Constant>(V)) 303 Entry = new ConstantAsMetadata(C); 304 else 305 Entry = new LocalAsMetadata(V); 306 } 307 308 return Entry; 309 } 310 311 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) { 312 assert(V && "Unexpected null Value"); 313 return V->getContext().pImpl->ValuesAsMetadata.lookup(V); 314 } 315 316 void ValueAsMetadata::handleDeletion(Value *V) { 317 assert(V && "Expected valid value"); 318 319 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata; 320 auto I = Store.find(V); 321 if (I == Store.end()) 322 return; 323 324 // Remove old entry from the map. 325 ValueAsMetadata *MD = I->second; 326 assert(MD && "Expected valid metadata"); 327 assert(MD->getValue() == V && "Expected valid mapping"); 328 Store.erase(I); 329 330 // Delete the metadata. 331 MD->replaceAllUsesWith(nullptr); 332 delete MD; 333 } 334 335 void ValueAsMetadata::handleRAUW(Value *From, Value *To) { 336 assert(From && "Expected valid value"); 337 assert(To && "Expected valid value"); 338 assert(From != To && "Expected changed value"); 339 assert(From->getType() == To->getType() && "Unexpected type change"); 340 341 LLVMContext &Context = From->getType()->getContext(); 342 auto &Store = Context.pImpl->ValuesAsMetadata; 343 auto I = Store.find(From); 344 if (I == Store.end()) { 345 assert(!From->IsUsedByMD && 346 "Expected From not to be used by metadata"); 347 return; 348 } 349 350 // Remove old entry from the map. 351 assert(From->IsUsedByMD && 352 "Expected From to be used by metadata"); 353 From->IsUsedByMD = false; 354 ValueAsMetadata *MD = I->second; 355 assert(MD && "Expected valid metadata"); 356 assert(MD->getValue() == From && "Expected valid mapping"); 357 Store.erase(I); 358 359 if (isa<LocalAsMetadata>(MD)) { 360 if (auto *C = dyn_cast<Constant>(To)) { 361 // Local became a constant. 362 MD->replaceAllUsesWith(ConstantAsMetadata::get(C)); 363 delete MD; 364 return; 365 } 366 if (getLocalFunction(From) && getLocalFunction(To) && 367 getLocalFunction(From) != getLocalFunction(To)) { 368 // Function changed. 369 MD->replaceAllUsesWith(nullptr); 370 delete MD; 371 return; 372 } 373 } else if (!isa<Constant>(To)) { 374 // Changed to function-local value. 375 MD->replaceAllUsesWith(nullptr); 376 delete MD; 377 return; 378 } 379 380 auto *&Entry = Store[To]; 381 if (Entry) { 382 // The target already exists. 383 MD->replaceAllUsesWith(Entry); 384 delete MD; 385 return; 386 } 387 388 // Update MD in place (and update the map entry). 389 assert(!To->IsUsedByMD && 390 "Expected this to be the only metadata use"); 391 To->IsUsedByMD = true; 392 MD->V = To; 393 Entry = MD; 394 } 395 396 //===----------------------------------------------------------------------===// 397 // MDString implementation. 398 // 399 400 MDString *MDString::get(LLVMContext &Context, StringRef Str) { 401 auto &Store = Context.pImpl->MDStringCache; 402 auto I = Store.find(Str); 403 if (I != Store.end()) 404 return &I->second; 405 406 auto *Entry = 407 StringMapEntry<MDString>::Create(Str, Store.getAllocator(), MDString()); 408 bool WasInserted = Store.insert(Entry); 409 (void)WasInserted; 410 assert(WasInserted && "Expected entry to be inserted"); 411 Entry->second.Entry = Entry; 412 return &Entry->second; 413 } 414 415 StringRef MDString::getString() const { 416 assert(Entry && "Expected to find string map entry"); 417 return Entry->first(); 418 } 419 420 //===----------------------------------------------------------------------===// 421 // MDNode implementation. 422 // 423 424 // Assert that the MDNode types will not be unaligned by the objects 425 // prepended to them. 426 #define HANDLE_MDNODE_LEAF(CLASS) \ 427 static_assert( \ 428 llvm::AlignOf<uint64_t>::Alignment >= llvm::AlignOf<CLASS>::Alignment, \ 429 "Alignment is insufficient after objects prepended to " #CLASS); 430 #include "llvm/IR/Metadata.def" 431 432 void *MDNode::operator new(size_t Size, unsigned NumOps) { 433 size_t OpSize = NumOps * sizeof(MDOperand); 434 // uint64_t is the most aligned type we need support (ensured by static_assert 435 // above) 436 OpSize = alignTo(OpSize, llvm::alignOf<uint64_t>()); 437 void *Ptr = reinterpret_cast<char *>(::operator new(OpSize + Size)) + OpSize; 438 MDOperand *O = static_cast<MDOperand *>(Ptr); 439 for (MDOperand *E = O - NumOps; O != E; --O) 440 (void)new (O - 1) MDOperand; 441 return Ptr; 442 } 443 444 void MDNode::operator delete(void *Mem) { 445 MDNode *N = static_cast<MDNode *>(Mem); 446 size_t OpSize = N->NumOperands * sizeof(MDOperand); 447 OpSize = alignTo(OpSize, llvm::alignOf<uint64_t>()); 448 449 MDOperand *O = static_cast<MDOperand *>(Mem); 450 for (MDOperand *E = O - N->NumOperands; O != E; --O) 451 (O - 1)->~MDOperand(); 452 ::operator delete(reinterpret_cast<char *>(Mem) - OpSize); 453 } 454 455 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage, 456 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2) 457 : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()), 458 NumUnresolved(0), Context(Context) { 459 unsigned Op = 0; 460 for (Metadata *MD : Ops1) 461 setOperand(Op++, MD); 462 for (Metadata *MD : Ops2) 463 setOperand(Op++, MD); 464 465 if (isDistinct()) 466 return; 467 468 if (isUniqued()) 469 // Check whether any operands are unresolved, requiring re-uniquing. If 470 // not, don't support RAUW. 471 if (!countUnresolvedOperands()) 472 return; 473 474 this->Context.makeReplaceable(make_unique<ReplaceableMetadataImpl>(Context)); 475 } 476 477 TempMDNode MDNode::clone() const { 478 switch (getMetadataID()) { 479 default: 480 llvm_unreachable("Invalid MDNode subclass"); 481 #define HANDLE_MDNODE_LEAF(CLASS) \ 482 case CLASS##Kind: \ 483 return cast<CLASS>(this)->cloneImpl(); 484 #include "llvm/IR/Metadata.def" 485 } 486 } 487 488 static bool isOperandUnresolved(Metadata *Op) { 489 if (auto *N = dyn_cast_or_null<MDNode>(Op)) 490 return !N->isResolved(); 491 return false; 492 } 493 494 unsigned MDNode::countUnresolvedOperands() { 495 assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted"); 496 NumUnresolved = std::count_if(op_begin(), op_end(), isOperandUnresolved); 497 return NumUnresolved; 498 } 499 500 void MDNode::makeUniqued() { 501 assert(isTemporary() && "Expected this to be temporary"); 502 assert(!isResolved() && "Expected this to be unresolved"); 503 504 // Enable uniquing callbacks. 505 for (auto &Op : mutable_operands()) 506 Op.reset(Op.get(), this); 507 508 // Make this 'uniqued'. 509 Storage = Uniqued; 510 if (!countUnresolvedOperands()) 511 resolve(); 512 513 assert(isUniqued() && "Expected this to be uniqued"); 514 } 515 516 void MDNode::makeDistinct() { 517 assert(isTemporary() && "Expected this to be temporary"); 518 assert(!isResolved() && "Expected this to be unresolved"); 519 520 // Pretend to be uniqued, resolve the node, and then store in distinct table. 521 Storage = Uniqued; 522 resolve(); 523 storeDistinctInContext(); 524 525 assert(isDistinct() && "Expected this to be distinct"); 526 assert(isResolved() && "Expected this to be resolved"); 527 } 528 529 void MDNode::resolve() { 530 assert(isUniqued() && "Expected this to be uniqued"); 531 assert(!isResolved() && "Expected this to be unresolved"); 532 533 // Move the map, so that this immediately looks resolved. 534 auto Uses = Context.takeReplaceableUses(); 535 NumUnresolved = 0; 536 assert(isResolved() && "Expected this to be resolved"); 537 538 // Drop RAUW support. 539 Uses->resolveAllUses(); 540 } 541 542 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) { 543 assert(NumUnresolved != 0 && "Expected unresolved operands"); 544 545 // Check if an operand was resolved. 546 if (!isOperandUnresolved(Old)) { 547 if (isOperandUnresolved(New)) 548 // An operand was un-resolved! 549 ++NumUnresolved; 550 } else if (!isOperandUnresolved(New)) 551 decrementUnresolvedOperandCount(); 552 } 553 554 void MDNode::decrementUnresolvedOperandCount() { 555 if (!--NumUnresolved) 556 // Last unresolved operand has just been resolved. 557 resolve(); 558 } 559 560 void MDNode::resolveRecursivelyImpl(bool AllowTemps) { 561 if (isResolved()) 562 return; 563 564 // Resolve this node immediately. 565 resolve(); 566 567 // Resolve all operands. 568 for (const auto &Op : operands()) { 569 auto *N = dyn_cast_or_null<MDNode>(Op); 570 if (!N) 571 continue; 572 573 if (N->isTemporary() && AllowTemps) 574 continue; 575 assert(!N->isTemporary() && 576 "Expected all forward declarations to be resolved"); 577 if (!N->isResolved()) 578 N->resolveCycles(); 579 } 580 } 581 582 static bool hasSelfReference(MDNode *N) { 583 for (Metadata *MD : N->operands()) 584 if (MD == N) 585 return true; 586 return false; 587 } 588 589 MDNode *MDNode::replaceWithPermanentImpl() { 590 switch (getMetadataID()) { 591 default: 592 // If this type isn't uniquable, replace with a distinct node. 593 return replaceWithDistinctImpl(); 594 595 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 596 case CLASS##Kind: \ 597 break; 598 #include "llvm/IR/Metadata.def" 599 } 600 601 // Even if this type is uniquable, self-references have to be distinct. 602 if (hasSelfReference(this)) 603 return replaceWithDistinctImpl(); 604 return replaceWithUniquedImpl(); 605 } 606 607 MDNode *MDNode::replaceWithUniquedImpl() { 608 // Try to uniquify in place. 609 MDNode *UniquedNode = uniquify(); 610 611 if (UniquedNode == this) { 612 makeUniqued(); 613 return this; 614 } 615 616 // Collision, so RAUW instead. 617 replaceAllUsesWith(UniquedNode); 618 deleteAsSubclass(); 619 return UniquedNode; 620 } 621 622 MDNode *MDNode::replaceWithDistinctImpl() { 623 makeDistinct(); 624 return this; 625 } 626 627 void MDTuple::recalculateHash() { 628 setHash(MDTupleInfo::KeyTy::calculateHash(this)); 629 } 630 631 void MDNode::dropAllReferences() { 632 for (unsigned I = 0, E = NumOperands; I != E; ++I) 633 setOperand(I, nullptr); 634 if (!isResolved()) { 635 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false); 636 (void)Context.takeReplaceableUses(); 637 } 638 } 639 640 void MDNode::handleChangedOperand(void *Ref, Metadata *New) { 641 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin(); 642 assert(Op < getNumOperands() && "Expected valid operand"); 643 644 if (!isUniqued()) { 645 // This node is not uniqued. Just set the operand and be done with it. 646 setOperand(Op, New); 647 return; 648 } 649 650 // This node is uniqued. 651 eraseFromStore(); 652 653 Metadata *Old = getOperand(Op); 654 setOperand(Op, New); 655 656 // Drop uniquing for self-reference cycles. 657 if (New == this) { 658 if (!isResolved()) 659 resolve(); 660 storeDistinctInContext(); 661 return; 662 } 663 664 // Re-unique the node. 665 auto *Uniqued = uniquify(); 666 if (Uniqued == this) { 667 if (!isResolved()) 668 resolveAfterOperandChange(Old, New); 669 return; 670 } 671 672 // Collision. 673 if (!isResolved()) { 674 // Still unresolved, so RAUW. 675 // 676 // First, clear out all operands to prevent any recursion (similar to 677 // dropAllReferences(), but we still need the use-list). 678 for (unsigned O = 0, E = getNumOperands(); O != E; ++O) 679 setOperand(O, nullptr); 680 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued); 681 deleteAsSubclass(); 682 return; 683 } 684 685 // Store in non-uniqued form if RAUW isn't possible. 686 storeDistinctInContext(); 687 } 688 689 void MDNode::deleteAsSubclass() { 690 switch (getMetadataID()) { 691 default: 692 llvm_unreachable("Invalid subclass of MDNode"); 693 #define HANDLE_MDNODE_LEAF(CLASS) \ 694 case CLASS##Kind: \ 695 delete cast<CLASS>(this); \ 696 break; 697 #include "llvm/IR/Metadata.def" 698 } 699 } 700 701 template <class T, class InfoT> 702 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) { 703 if (T *U = getUniqued(Store, N)) 704 return U; 705 706 Store.insert(N); 707 return N; 708 } 709 710 template <class NodeTy> struct MDNode::HasCachedHash { 711 typedef char Yes[1]; 712 typedef char No[2]; 713 template <class U, U Val> struct SFINAE {}; 714 715 template <class U> 716 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *); 717 template <class U> static No &check(...); 718 719 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes); 720 }; 721 722 MDNode *MDNode::uniquify() { 723 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node"); 724 725 // Try to insert into uniquing store. 726 switch (getMetadataID()) { 727 default: 728 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 729 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 730 case CLASS##Kind: { \ 731 CLASS *SubclassThis = cast<CLASS>(this); \ 732 std::integral_constant<bool, HasCachedHash<CLASS>::value> \ 733 ShouldRecalculateHash; \ 734 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \ 735 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \ 736 } 737 #include "llvm/IR/Metadata.def" 738 } 739 } 740 741 void MDNode::eraseFromStore() { 742 switch (getMetadataID()) { 743 default: 744 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 745 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 746 case CLASS##Kind: \ 747 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \ 748 break; 749 #include "llvm/IR/Metadata.def" 750 } 751 } 752 753 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs, 754 StorageType Storage, bool ShouldCreate) { 755 unsigned Hash = 0; 756 if (Storage == Uniqued) { 757 MDTupleInfo::KeyTy Key(MDs); 758 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key)) 759 return N; 760 if (!ShouldCreate) 761 return nullptr; 762 Hash = Key.getHash(); 763 } else { 764 assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); 765 } 766 767 return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs), 768 Storage, Context.pImpl->MDTuples); 769 } 770 771 void MDNode::deleteTemporary(MDNode *N) { 772 assert(N->isTemporary() && "Expected temporary node"); 773 N->replaceAllUsesWith(nullptr); 774 N->deleteAsSubclass(); 775 } 776 777 void MDNode::storeDistinctInContext() { 778 assert(isResolved() && "Expected resolved nodes"); 779 Storage = Distinct; 780 781 // Reset the hash. 782 switch (getMetadataID()) { 783 default: 784 llvm_unreachable("Invalid subclass of MDNode"); 785 #define HANDLE_MDNODE_LEAF(CLASS) \ 786 case CLASS##Kind: { \ 787 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \ 788 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \ 789 break; \ 790 } 791 #include "llvm/IR/Metadata.def" 792 } 793 794 getContext().pImpl->DistinctMDNodes.insert(this); 795 } 796 797 void MDNode::replaceOperandWith(unsigned I, Metadata *New) { 798 if (getOperand(I) == New) 799 return; 800 801 if (!isUniqued()) { 802 setOperand(I, New); 803 return; 804 } 805 806 handleChangedOperand(mutable_begin() + I, New); 807 } 808 809 void MDNode::setOperand(unsigned I, Metadata *New) { 810 assert(I < NumOperands); 811 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr); 812 } 813 814 /// \brief Get a node, or a self-reference that looks like it. 815 /// 816 /// Special handling for finding self-references, for use by \a 817 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from 818 /// when self-referencing nodes were still uniqued. If the first operand has 819 /// the same operands as \c Ops, return the first operand instead. 820 static MDNode *getOrSelfReference(LLVMContext &Context, 821 ArrayRef<Metadata *> Ops) { 822 if (!Ops.empty()) 823 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0])) 824 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) { 825 for (unsigned I = 1, E = Ops.size(); I != E; ++I) 826 if (Ops[I] != N->getOperand(I)) 827 return MDNode::get(Context, Ops); 828 return N; 829 } 830 831 return MDNode::get(Context, Ops); 832 } 833 834 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) { 835 if (!A) 836 return B; 837 if (!B) 838 return A; 839 840 SmallVector<Metadata *, 4> MDs; 841 MDs.reserve(A->getNumOperands() + B->getNumOperands()); 842 MDs.append(A->op_begin(), A->op_end()); 843 MDs.append(B->op_begin(), B->op_end()); 844 845 // FIXME: This preserves long-standing behaviour, but is it really the right 846 // behaviour? Or was that an unintended side-effect of node uniquing? 847 return getOrSelfReference(A->getContext(), MDs); 848 } 849 850 MDNode *MDNode::intersect(MDNode *A, MDNode *B) { 851 if (!A || !B) 852 return nullptr; 853 854 SmallVector<Metadata *, 4> MDs; 855 for (Metadata *MD : A->operands()) 856 if (std::find(B->op_begin(), B->op_end(), MD) != B->op_end()) 857 MDs.push_back(MD); 858 859 // FIXME: This preserves long-standing behaviour, but is it really the right 860 // behaviour? Or was that an unintended side-effect of node uniquing? 861 return getOrSelfReference(A->getContext(), MDs); 862 } 863 864 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) { 865 if (!A || !B) 866 return nullptr; 867 868 SmallVector<Metadata *, 4> MDs(B->op_begin(), B->op_end()); 869 for (Metadata *MD : A->operands()) 870 if (std::find(B->op_begin(), B->op_end(), MD) == B->op_end()) 871 MDs.push_back(MD); 872 873 // FIXME: This preserves long-standing behaviour, but is it really the right 874 // behaviour? Or was that an unintended side-effect of node uniquing? 875 return getOrSelfReference(A->getContext(), MDs); 876 } 877 878 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) { 879 if (!A || !B) 880 return nullptr; 881 882 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF(); 883 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF(); 884 if (AVal.compare(BVal) == APFloat::cmpLessThan) 885 return A; 886 return B; 887 } 888 889 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 890 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 891 } 892 893 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) { 894 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B); 895 } 896 897 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints, 898 ConstantInt *Low, ConstantInt *High) { 899 ConstantRange NewRange(Low->getValue(), High->getValue()); 900 unsigned Size = EndPoints.size(); 901 APInt LB = EndPoints[Size - 2]->getValue(); 902 APInt LE = EndPoints[Size - 1]->getValue(); 903 ConstantRange LastRange(LB, LE); 904 if (canBeMerged(NewRange, LastRange)) { 905 ConstantRange Union = LastRange.unionWith(NewRange); 906 Type *Ty = High->getType(); 907 EndPoints[Size - 2] = 908 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower())); 909 EndPoints[Size - 1] = 910 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper())); 911 return true; 912 } 913 return false; 914 } 915 916 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints, 917 ConstantInt *Low, ConstantInt *High) { 918 if (!EndPoints.empty()) 919 if (tryMergeRange(EndPoints, Low, High)) 920 return; 921 922 EndPoints.push_back(Low); 923 EndPoints.push_back(High); 924 } 925 926 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) { 927 // Given two ranges, we want to compute the union of the ranges. This 928 // is slightly complitade by having to combine the intervals and merge 929 // the ones that overlap. 930 931 if (!A || !B) 932 return nullptr; 933 934 if (A == B) 935 return A; 936 937 // First, walk both lists in older of the lower boundary of each interval. 938 // At each step, try to merge the new interval to the last one we adedd. 939 SmallVector<ConstantInt *, 4> EndPoints; 940 int AI = 0; 941 int BI = 0; 942 int AN = A->getNumOperands() / 2; 943 int BN = B->getNumOperands() / 2; 944 while (AI < AN && BI < BN) { 945 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI)); 946 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI)); 947 948 if (ALow->getValue().slt(BLow->getValue())) { 949 addRange(EndPoints, ALow, 950 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 951 ++AI; 952 } else { 953 addRange(EndPoints, BLow, 954 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 955 ++BI; 956 } 957 } 958 while (AI < AN) { 959 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)), 960 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 961 ++AI; 962 } 963 while (BI < BN) { 964 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)), 965 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 966 ++BI; 967 } 968 969 // If we have more than 2 ranges (4 endpoints) we have to try to merge 970 // the last and first ones. 971 unsigned Size = EndPoints.size(); 972 if (Size > 4) { 973 ConstantInt *FB = EndPoints[0]; 974 ConstantInt *FE = EndPoints[1]; 975 if (tryMergeRange(EndPoints, FB, FE)) { 976 for (unsigned i = 0; i < Size - 2; ++i) { 977 EndPoints[i] = EndPoints[i + 2]; 978 } 979 EndPoints.resize(Size - 2); 980 } 981 } 982 983 // If in the end we have a single range, it is possible that it is now the 984 // full range. Just drop the metadata in that case. 985 if (EndPoints.size() == 2) { 986 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue()); 987 if (Range.isFullSet()) 988 return nullptr; 989 } 990 991 SmallVector<Metadata *, 4> MDs; 992 MDs.reserve(EndPoints.size()); 993 for (auto *I : EndPoints) 994 MDs.push_back(ConstantAsMetadata::get(I)); 995 return MDNode::get(A->getContext(), MDs); 996 } 997 998 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) { 999 if (!A || !B) 1000 return nullptr; 1001 1002 ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0)); 1003 ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0)); 1004 if (AVal->getZExtValue() < BVal->getZExtValue()) 1005 return A; 1006 return B; 1007 } 1008 1009 //===----------------------------------------------------------------------===// 1010 // NamedMDNode implementation. 1011 // 1012 1013 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) { 1014 return *(SmallVector<TrackingMDRef, 4> *)Operands; 1015 } 1016 1017 NamedMDNode::NamedMDNode(const Twine &N) 1018 : Name(N.str()), Parent(nullptr), 1019 Operands(new SmallVector<TrackingMDRef, 4>()) {} 1020 1021 NamedMDNode::~NamedMDNode() { 1022 dropAllReferences(); 1023 delete &getNMDOps(Operands); 1024 } 1025 1026 unsigned NamedMDNode::getNumOperands() const { 1027 return (unsigned)getNMDOps(Operands).size(); 1028 } 1029 1030 MDNode *NamedMDNode::getOperand(unsigned i) const { 1031 assert(i < getNumOperands() && "Invalid Operand number!"); 1032 auto *N = getNMDOps(Operands)[i].get(); 1033 return cast_or_null<MDNode>(N); 1034 } 1035 1036 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); } 1037 1038 void NamedMDNode::setOperand(unsigned I, MDNode *New) { 1039 assert(I < getNumOperands() && "Invalid operand number"); 1040 getNMDOps(Operands)[I].reset(New); 1041 } 1042 1043 void NamedMDNode::eraseFromParent() { 1044 getParent()->eraseNamedMetadata(this); 1045 } 1046 1047 void NamedMDNode::dropAllReferences() { 1048 getNMDOps(Operands).clear(); 1049 } 1050 1051 StringRef NamedMDNode::getName() const { 1052 return StringRef(Name); 1053 } 1054 1055 //===----------------------------------------------------------------------===// 1056 // Instruction Metadata method implementations. 1057 // 1058 void MDAttachmentMap::set(unsigned ID, MDNode &MD) { 1059 for (auto &I : Attachments) 1060 if (I.first == ID) { 1061 I.second.reset(&MD); 1062 return; 1063 } 1064 Attachments.emplace_back(std::piecewise_construct, std::make_tuple(ID), 1065 std::make_tuple(&MD)); 1066 } 1067 1068 void MDAttachmentMap::erase(unsigned ID) { 1069 if (empty()) 1070 return; 1071 1072 // Common case is one/last value. 1073 if (Attachments.back().first == ID) { 1074 Attachments.pop_back(); 1075 return; 1076 } 1077 1078 for (auto I = Attachments.begin(), E = std::prev(Attachments.end()); I != E; 1079 ++I) 1080 if (I->first == ID) { 1081 *I = std::move(Attachments.back()); 1082 Attachments.pop_back(); 1083 return; 1084 } 1085 } 1086 1087 MDNode *MDAttachmentMap::lookup(unsigned ID) const { 1088 for (const auto &I : Attachments) 1089 if (I.first == ID) 1090 return I.second; 1091 return nullptr; 1092 } 1093 1094 void MDAttachmentMap::getAll( 1095 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1096 Result.append(Attachments.begin(), Attachments.end()); 1097 1098 // Sort the resulting array so it is stable. 1099 if (Result.size() > 1) 1100 array_pod_sort(Result.begin(), Result.end()); 1101 } 1102 1103 void Instruction::setMetadata(StringRef Kind, MDNode *Node) { 1104 if (!Node && !hasMetadata()) 1105 return; 1106 setMetadata(getContext().getMDKindID(Kind), Node); 1107 } 1108 1109 MDNode *Instruction::getMetadataImpl(StringRef Kind) const { 1110 return getMetadataImpl(getContext().getMDKindID(Kind)); 1111 } 1112 1113 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) { 1114 SmallSet<unsigned, 5> KnownSet; 1115 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 1116 1117 if (!hasMetadataHashEntry()) 1118 return; // Nothing to remove! 1119 1120 auto &InstructionMetadata = getContext().pImpl->InstructionMetadata; 1121 1122 if (KnownSet.empty()) { 1123 // Just drop our entry at the store. 1124 InstructionMetadata.erase(this); 1125 setHasMetadataHashEntry(false); 1126 return; 1127 } 1128 1129 auto &Info = InstructionMetadata[this]; 1130 Info.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) { 1131 return !KnownSet.count(I.first); 1132 }); 1133 1134 if (Info.empty()) { 1135 // Drop our entry at the store. 1136 InstructionMetadata.erase(this); 1137 setHasMetadataHashEntry(false); 1138 } 1139 } 1140 1141 /// setMetadata - Set the metadata of the specified kind to the specified 1142 /// node. This updates/replaces metadata if already present, or removes it if 1143 /// Node is null. 1144 void Instruction::setMetadata(unsigned KindID, MDNode *Node) { 1145 if (!Node && !hasMetadata()) 1146 return; 1147 1148 // Handle 'dbg' as a special case since it is not stored in the hash table. 1149 if (KindID == LLVMContext::MD_dbg) { 1150 DbgLoc = DebugLoc(Node); 1151 return; 1152 } 1153 1154 // Handle the case when we're adding/updating metadata on an instruction. 1155 if (Node) { 1156 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1157 assert(!Info.empty() == hasMetadataHashEntry() && 1158 "HasMetadata bit is wonked"); 1159 if (Info.empty()) 1160 setHasMetadataHashEntry(true); 1161 Info.set(KindID, *Node); 1162 return; 1163 } 1164 1165 // Otherwise, we're removing metadata from an instruction. 1166 assert((hasMetadataHashEntry() == 1167 (getContext().pImpl->InstructionMetadata.count(this) > 0)) && 1168 "HasMetadata bit out of date!"); 1169 if (!hasMetadataHashEntry()) 1170 return; // Nothing to remove! 1171 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1172 1173 // Handle removal of an existing value. 1174 Info.erase(KindID); 1175 1176 if (!Info.empty()) 1177 return; 1178 1179 getContext().pImpl->InstructionMetadata.erase(this); 1180 setHasMetadataHashEntry(false); 1181 } 1182 1183 void Instruction::setAAMetadata(const AAMDNodes &N) { 1184 setMetadata(LLVMContext::MD_tbaa, N.TBAA); 1185 setMetadata(LLVMContext::MD_alias_scope, N.Scope); 1186 setMetadata(LLVMContext::MD_noalias, N.NoAlias); 1187 } 1188 1189 MDNode *Instruction::getMetadataImpl(unsigned KindID) const { 1190 // Handle 'dbg' as a special case since it is not stored in the hash table. 1191 if (KindID == LLVMContext::MD_dbg) 1192 return DbgLoc.getAsMDNode(); 1193 1194 if (!hasMetadataHashEntry()) 1195 return nullptr; 1196 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1197 assert(!Info.empty() && "bit out of sync with hash table"); 1198 1199 return Info.lookup(KindID); 1200 } 1201 1202 void Instruction::getAllMetadataImpl( 1203 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1204 Result.clear(); 1205 1206 // Handle 'dbg' as a special case since it is not stored in the hash table. 1207 if (DbgLoc) { 1208 Result.push_back( 1209 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode())); 1210 if (!hasMetadataHashEntry()) return; 1211 } 1212 1213 assert(hasMetadataHashEntry() && 1214 getContext().pImpl->InstructionMetadata.count(this) && 1215 "Shouldn't have called this"); 1216 const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second; 1217 assert(!Info.empty() && "Shouldn't have called this"); 1218 Info.getAll(Result); 1219 } 1220 1221 void Instruction::getAllMetadataOtherThanDebugLocImpl( 1222 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1223 Result.clear(); 1224 assert(hasMetadataHashEntry() && 1225 getContext().pImpl->InstructionMetadata.count(this) && 1226 "Shouldn't have called this"); 1227 const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second; 1228 assert(!Info.empty() && "Shouldn't have called this"); 1229 Info.getAll(Result); 1230 } 1231 1232 /// clearMetadataHashEntries - Clear all hashtable-based metadata from 1233 /// this instruction. 1234 void Instruction::clearMetadataHashEntries() { 1235 assert(hasMetadataHashEntry() && "Caller should check"); 1236 getContext().pImpl->InstructionMetadata.erase(this); 1237 setHasMetadataHashEntry(false); 1238 } 1239 1240 MDNode *Function::getMetadata(unsigned KindID) const { 1241 if (!hasMetadata()) 1242 return nullptr; 1243 return getContext().pImpl->FunctionMetadata[this].lookup(KindID); 1244 } 1245 1246 MDNode *Function::getMetadata(StringRef Kind) const { 1247 if (!hasMetadata()) 1248 return nullptr; 1249 return getMetadata(getContext().getMDKindID(Kind)); 1250 } 1251 1252 void Function::setMetadata(unsigned KindID, MDNode *MD) { 1253 if (MD) { 1254 if (!hasMetadata()) 1255 setHasMetadataHashEntry(true); 1256 1257 getContext().pImpl->FunctionMetadata[this].set(KindID, *MD); 1258 return; 1259 } 1260 1261 // Nothing to unset. 1262 if (!hasMetadata()) 1263 return; 1264 1265 auto &Store = getContext().pImpl->FunctionMetadata[this]; 1266 Store.erase(KindID); 1267 if (Store.empty()) 1268 clearMetadata(); 1269 } 1270 1271 void Function::setMetadata(StringRef Kind, MDNode *MD) { 1272 if (!MD && !hasMetadata()) 1273 return; 1274 setMetadata(getContext().getMDKindID(Kind), MD); 1275 } 1276 1277 void Function::getAllMetadata( 1278 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { 1279 MDs.clear(); 1280 1281 if (!hasMetadata()) 1282 return; 1283 1284 getContext().pImpl->FunctionMetadata[this].getAll(MDs); 1285 } 1286 1287 void Function::dropUnknownMetadata(ArrayRef<unsigned> KnownIDs) { 1288 if (!hasMetadata()) 1289 return; 1290 if (KnownIDs.empty()) { 1291 clearMetadata(); 1292 return; 1293 } 1294 1295 SmallSet<unsigned, 5> KnownSet; 1296 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 1297 1298 auto &Store = getContext().pImpl->FunctionMetadata[this]; 1299 assert(!Store.empty()); 1300 1301 Store.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) { 1302 return !KnownSet.count(I.first); 1303 }); 1304 1305 if (Store.empty()) 1306 clearMetadata(); 1307 } 1308 1309 void Function::clearMetadata() { 1310 if (!hasMetadata()) 1311 return; 1312 getContext().pImpl->FunctionMetadata.erase(this); 1313 setHasMetadataHashEntry(false); 1314 } 1315 1316 void Function::setSubprogram(DISubprogram *SP) { 1317 setMetadata(LLVMContext::MD_dbg, SP); 1318 } 1319 1320 DISubprogram *Function::getSubprogram() const { 1321 return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg)); 1322 } 1323