1 //===- Metadata.cpp - Implement Metadata classes --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Metadata classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Metadata.h" 15 #include "LLVMContextImpl.h" 16 #include "MetadataImpl.h" 17 #include "SymbolTableListTraitsImpl.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/IR/ConstantRange.h" 24 #include "llvm/IR/DebugInfoMetadata.h" 25 #include "llvm/IR/Instruction.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ValueHandle.h" 29 30 using namespace llvm; 31 32 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD) 33 : Value(Ty, MetadataAsValueVal), MD(MD) { 34 track(); 35 } 36 37 MetadataAsValue::~MetadataAsValue() { 38 getType()->getContext().pImpl->MetadataAsValues.erase(MD); 39 untrack(); 40 } 41 42 /// \brief Canonicalize metadata arguments to intrinsics. 43 /// 44 /// To support bitcode upgrades (and assembly semantic sugar) for \a 45 /// MetadataAsValue, we need to canonicalize certain metadata. 46 /// 47 /// - nullptr is replaced by an empty MDNode. 48 /// - An MDNode with a single null operand is replaced by an empty MDNode. 49 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped. 50 /// 51 /// This maintains readability of bitcode from when metadata was a type of 52 /// value, and these bridges were unnecessary. 53 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context, 54 Metadata *MD) { 55 if (!MD) 56 // !{} 57 return MDNode::get(Context, None); 58 59 // Return early if this isn't a single-operand MDNode. 60 auto *N = dyn_cast<MDNode>(MD); 61 if (!N || N->getNumOperands() != 1) 62 return MD; 63 64 if (!N->getOperand(0)) 65 // !{} 66 return MDNode::get(Context, None); 67 68 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0))) 69 // Look through the MDNode. 70 return C; 71 72 return MD; 73 } 74 75 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) { 76 MD = canonicalizeMetadataForValue(Context, MD); 77 auto *&Entry = Context.pImpl->MetadataAsValues[MD]; 78 if (!Entry) 79 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD); 80 return Entry; 81 } 82 83 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context, 84 Metadata *MD) { 85 MD = canonicalizeMetadataForValue(Context, MD); 86 auto &Store = Context.pImpl->MetadataAsValues; 87 return Store.lookup(MD); 88 } 89 90 void MetadataAsValue::handleChangedMetadata(Metadata *MD) { 91 LLVMContext &Context = getContext(); 92 MD = canonicalizeMetadataForValue(Context, MD); 93 auto &Store = Context.pImpl->MetadataAsValues; 94 95 // Stop tracking the old metadata. 96 Store.erase(this->MD); 97 untrack(); 98 this->MD = nullptr; 99 100 // Start tracking MD, or RAUW if necessary. 101 auto *&Entry = Store[MD]; 102 if (Entry) { 103 replaceAllUsesWith(Entry); 104 delete this; 105 return; 106 } 107 108 this->MD = MD; 109 track(); 110 Entry = this; 111 } 112 113 void MetadataAsValue::track() { 114 if (MD) 115 MetadataTracking::track(&MD, *MD, *this); 116 } 117 118 void MetadataAsValue::untrack() { 119 if (MD) 120 MetadataTracking::untrack(MD); 121 } 122 123 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) { 124 assert(Ref && "Expected live reference"); 125 assert((Owner || *static_cast<Metadata **>(Ref) == &MD) && 126 "Reference without owner must be direct"); 127 if (auto *R = ReplaceableMetadataImpl::get(MD)) { 128 R->addRef(Ref, Owner); 129 return true; 130 } 131 return false; 132 } 133 134 void MetadataTracking::untrack(void *Ref, Metadata &MD) { 135 assert(Ref && "Expected live reference"); 136 if (auto *R = ReplaceableMetadataImpl::get(MD)) 137 R->dropRef(Ref); 138 } 139 140 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) { 141 assert(Ref && "Expected live reference"); 142 assert(New && "Expected live reference"); 143 assert(Ref != New && "Expected change"); 144 if (auto *R = ReplaceableMetadataImpl::get(MD)) { 145 R->moveRef(Ref, New, MD); 146 return true; 147 } 148 return false; 149 } 150 151 bool MetadataTracking::isReplaceable(const Metadata &MD) { 152 return ReplaceableMetadataImpl::get(const_cast<Metadata &>(MD)); 153 } 154 155 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) { 156 bool WasInserted = 157 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex))) 158 .second; 159 (void)WasInserted; 160 assert(WasInserted && "Expected to add a reference"); 161 162 ++NextIndex; 163 assert(NextIndex != 0 && "Unexpected overflow"); 164 } 165 166 void ReplaceableMetadataImpl::dropRef(void *Ref) { 167 bool WasErased = UseMap.erase(Ref); 168 (void)WasErased; 169 assert(WasErased && "Expected to drop a reference"); 170 } 171 172 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New, 173 const Metadata &MD) { 174 auto I = UseMap.find(Ref); 175 assert(I != UseMap.end() && "Expected to move a reference"); 176 auto OwnerAndIndex = I->second; 177 UseMap.erase(I); 178 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second; 179 (void)WasInserted; 180 assert(WasInserted && "Expected to add a reference"); 181 182 // Check that the references are direct if there's no owner. 183 (void)MD; 184 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) && 185 "Reference without owner must be direct"); 186 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) && 187 "Reference without owner must be direct"); 188 } 189 190 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) { 191 assert(CanReplace && 192 "Attempted to replace Metadata marked for no replacement"); 193 194 if (UseMap.empty()) 195 return; 196 197 // Copy out uses since UseMap will get touched below. 198 typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy; 199 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 200 std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) { 201 return L.second.second < R.second.second; 202 }); 203 for (const auto &Pair : Uses) { 204 // Check that this Ref hasn't disappeared after RAUW (when updating a 205 // previous Ref). 206 if (!UseMap.count(Pair.first)) 207 continue; 208 209 OwnerTy Owner = Pair.second.first; 210 if (!Owner) { 211 // Update unowned tracking references directly. 212 Metadata *&Ref = *static_cast<Metadata **>(Pair.first); 213 Ref = MD; 214 if (MD) 215 MetadataTracking::track(Ref); 216 UseMap.erase(Pair.first); 217 continue; 218 } 219 220 // Check for MetadataAsValue. 221 if (Owner.is<MetadataAsValue *>()) { 222 Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD); 223 continue; 224 } 225 226 // There's a Metadata owner -- dispatch. 227 Metadata *OwnerMD = Owner.get<Metadata *>(); 228 switch (OwnerMD->getMetadataID()) { 229 #define HANDLE_METADATA_LEAF(CLASS) \ 230 case Metadata::CLASS##Kind: \ 231 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \ 232 continue; 233 #include "llvm/IR/Metadata.def" 234 default: 235 llvm_unreachable("Invalid metadata subclass"); 236 } 237 } 238 assert(UseMap.empty() && "Expected all uses to be replaced"); 239 } 240 241 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) { 242 if (UseMap.empty()) 243 return; 244 245 if (!ResolveUsers) { 246 UseMap.clear(); 247 return; 248 } 249 250 // Copy out uses since UseMap could get touched below. 251 typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy; 252 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 253 std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) { 254 return L.second.second < R.second.second; 255 }); 256 UseMap.clear(); 257 for (const auto &Pair : Uses) { 258 auto Owner = Pair.second.first; 259 if (!Owner) 260 continue; 261 if (Owner.is<MetadataAsValue *>()) 262 continue; 263 264 // Resolve MDNodes that point at this. 265 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>()); 266 if (!OwnerMD) 267 continue; 268 if (OwnerMD->isResolved()) 269 continue; 270 OwnerMD->decrementUnresolvedOperandCount(); 271 } 272 } 273 274 ReplaceableMetadataImpl *ReplaceableMetadataImpl::get(Metadata &MD) { 275 if (auto *N = dyn_cast<MDNode>(&MD)) 276 return N->Context.getReplaceableUses(); 277 return dyn_cast<ValueAsMetadata>(&MD); 278 } 279 280 static Function *getLocalFunction(Value *V) { 281 assert(V && "Expected value"); 282 if (auto *A = dyn_cast<Argument>(V)) 283 return A->getParent(); 284 if (BasicBlock *BB = cast<Instruction>(V)->getParent()) 285 return BB->getParent(); 286 return nullptr; 287 } 288 289 ValueAsMetadata *ValueAsMetadata::get(Value *V) { 290 assert(V && "Unexpected null Value"); 291 292 auto &Context = V->getContext(); 293 auto *&Entry = Context.pImpl->ValuesAsMetadata[V]; 294 if (!Entry) { 295 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) && 296 "Expected constant or function-local value"); 297 assert(!V->IsUsedByMD && 298 "Expected this to be the only metadata use"); 299 V->IsUsedByMD = true; 300 if (auto *C = dyn_cast<Constant>(V)) 301 Entry = new ConstantAsMetadata(C); 302 else 303 Entry = new LocalAsMetadata(V); 304 } 305 306 return Entry; 307 } 308 309 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) { 310 assert(V && "Unexpected null Value"); 311 return V->getContext().pImpl->ValuesAsMetadata.lookup(V); 312 } 313 314 void ValueAsMetadata::handleDeletion(Value *V) { 315 assert(V && "Expected valid value"); 316 317 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata; 318 auto I = Store.find(V); 319 if (I == Store.end()) 320 return; 321 322 // Remove old entry from the map. 323 ValueAsMetadata *MD = I->second; 324 assert(MD && "Expected valid metadata"); 325 assert(MD->getValue() == V && "Expected valid mapping"); 326 Store.erase(I); 327 328 // Delete the metadata. 329 MD->replaceAllUsesWith(nullptr); 330 delete MD; 331 } 332 333 void ValueAsMetadata::handleRAUW(Value *From, Value *To) { 334 assert(From && "Expected valid value"); 335 assert(To && "Expected valid value"); 336 assert(From != To && "Expected changed value"); 337 assert(From->getType() == To->getType() && "Unexpected type change"); 338 339 LLVMContext &Context = From->getType()->getContext(); 340 auto &Store = Context.pImpl->ValuesAsMetadata; 341 auto I = Store.find(From); 342 if (I == Store.end()) { 343 assert(!From->IsUsedByMD && 344 "Expected From not to be used by metadata"); 345 return; 346 } 347 348 // Remove old entry from the map. 349 assert(From->IsUsedByMD && 350 "Expected From to be used by metadata"); 351 From->IsUsedByMD = false; 352 ValueAsMetadata *MD = I->second; 353 assert(MD && "Expected valid metadata"); 354 assert(MD->getValue() == From && "Expected valid mapping"); 355 Store.erase(I); 356 357 if (isa<LocalAsMetadata>(MD)) { 358 if (auto *C = dyn_cast<Constant>(To)) { 359 // Local became a constant. 360 MD->replaceAllUsesWith(ConstantAsMetadata::get(C)); 361 delete MD; 362 return; 363 } 364 if (getLocalFunction(From) && getLocalFunction(To) && 365 getLocalFunction(From) != getLocalFunction(To)) { 366 // Function changed. 367 MD->replaceAllUsesWith(nullptr); 368 delete MD; 369 return; 370 } 371 } else if (!isa<Constant>(To)) { 372 // Changed to function-local value. 373 MD->replaceAllUsesWith(nullptr); 374 delete MD; 375 return; 376 } 377 378 auto *&Entry = Store[To]; 379 if (Entry) { 380 // The target already exists. 381 MD->replaceAllUsesWith(Entry); 382 delete MD; 383 return; 384 } 385 386 // Update MD in place (and update the map entry). 387 assert(!To->IsUsedByMD && 388 "Expected this to be the only metadata use"); 389 To->IsUsedByMD = true; 390 MD->V = To; 391 Entry = MD; 392 } 393 394 //===----------------------------------------------------------------------===// 395 // MDString implementation. 396 // 397 398 MDString *MDString::get(LLVMContext &Context, StringRef Str) { 399 auto &Store = Context.pImpl->MDStringCache; 400 auto I = Store.find(Str); 401 if (I != Store.end()) 402 return &I->second; 403 404 auto *Entry = 405 StringMapEntry<MDString>::Create(Str, Store.getAllocator(), MDString()); 406 bool WasInserted = Store.insert(Entry); 407 (void)WasInserted; 408 assert(WasInserted && "Expected entry to be inserted"); 409 Entry->second.Entry = Entry; 410 return &Entry->second; 411 } 412 413 StringRef MDString::getString() const { 414 assert(Entry && "Expected to find string map entry"); 415 return Entry->first(); 416 } 417 418 //===----------------------------------------------------------------------===// 419 // MDNode implementation. 420 // 421 422 // Assert that the MDNode types will not be unaligned by the objects 423 // prepended to them. 424 #define HANDLE_MDNODE_LEAF(CLASS) \ 425 static_assert( \ 426 llvm::AlignOf<uint64_t>::Alignment >= llvm::AlignOf<CLASS>::Alignment, \ 427 "Alignment is insufficient after objects prepended to " #CLASS); 428 #include "llvm/IR/Metadata.def" 429 430 void *MDNode::operator new(size_t Size, unsigned NumOps) { 431 size_t OpSize = NumOps * sizeof(MDOperand); 432 // uint64_t is the most aligned type we need support (ensured by static_assert 433 // above) 434 OpSize = alignTo(OpSize, llvm::alignOf<uint64_t>()); 435 void *Ptr = reinterpret_cast<char *>(::operator new(OpSize + Size)) + OpSize; 436 MDOperand *O = static_cast<MDOperand *>(Ptr); 437 for (MDOperand *E = O - NumOps; O != E; --O) 438 (void)new (O - 1) MDOperand; 439 return Ptr; 440 } 441 442 void MDNode::operator delete(void *Mem) { 443 MDNode *N = static_cast<MDNode *>(Mem); 444 size_t OpSize = N->NumOperands * sizeof(MDOperand); 445 OpSize = alignTo(OpSize, llvm::alignOf<uint64_t>()); 446 447 MDOperand *O = static_cast<MDOperand *>(Mem); 448 for (MDOperand *E = O - N->NumOperands; O != E; --O) 449 (O - 1)->~MDOperand(); 450 ::operator delete(reinterpret_cast<char *>(Mem) - OpSize); 451 } 452 453 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage, 454 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2) 455 : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()), 456 NumUnresolved(0), Context(Context) { 457 unsigned Op = 0; 458 for (Metadata *MD : Ops1) 459 setOperand(Op++, MD); 460 for (Metadata *MD : Ops2) 461 setOperand(Op++, MD); 462 463 if (isDistinct()) 464 return; 465 466 if (isUniqued()) 467 // Check whether any operands are unresolved, requiring re-uniquing. If 468 // not, don't support RAUW. 469 if (!countUnresolvedOperands()) 470 return; 471 472 this->Context.makeReplaceable(make_unique<ReplaceableMetadataImpl>(Context)); 473 } 474 475 TempMDNode MDNode::clone() const { 476 switch (getMetadataID()) { 477 default: 478 llvm_unreachable("Invalid MDNode subclass"); 479 #define HANDLE_MDNODE_LEAF(CLASS) \ 480 case CLASS##Kind: \ 481 return cast<CLASS>(this)->cloneImpl(); 482 #include "llvm/IR/Metadata.def" 483 } 484 } 485 486 static bool isOperandUnresolved(Metadata *Op) { 487 if (auto *N = dyn_cast_or_null<MDNode>(Op)) 488 return !N->isResolved(); 489 return false; 490 } 491 492 unsigned MDNode::countUnresolvedOperands() { 493 assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted"); 494 NumUnresolved = std::count_if(op_begin(), op_end(), isOperandUnresolved); 495 return NumUnresolved; 496 } 497 498 void MDNode::makeUniqued() { 499 assert(isTemporary() && "Expected this to be temporary"); 500 assert(!isResolved() && "Expected this to be unresolved"); 501 502 // Enable uniquing callbacks. 503 for (auto &Op : mutable_operands()) 504 Op.reset(Op.get(), this); 505 506 // Make this 'uniqued'. 507 Storage = Uniqued; 508 if (!countUnresolvedOperands()) 509 resolve(); 510 511 assert(isUniqued() && "Expected this to be uniqued"); 512 } 513 514 void MDNode::makeDistinct() { 515 assert(isTemporary() && "Expected this to be temporary"); 516 assert(!isResolved() && "Expected this to be unresolved"); 517 518 // Pretend to be uniqued, resolve the node, and then store in distinct table. 519 Storage = Uniqued; 520 resolve(); 521 storeDistinctInContext(); 522 523 assert(isDistinct() && "Expected this to be distinct"); 524 assert(isResolved() && "Expected this to be resolved"); 525 } 526 527 void MDNode::resolve() { 528 assert(isUniqued() && "Expected this to be uniqued"); 529 assert(!isResolved() && "Expected this to be unresolved"); 530 531 // Move the map, so that this immediately looks resolved. 532 auto Uses = Context.takeReplaceableUses(); 533 NumUnresolved = 0; 534 assert(isResolved() && "Expected this to be resolved"); 535 536 // Drop RAUW support. 537 Uses->resolveAllUses(); 538 } 539 540 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) { 541 assert(NumUnresolved != 0 && "Expected unresolved operands"); 542 543 // Check if an operand was resolved. 544 if (!isOperandUnresolved(Old)) { 545 if (isOperandUnresolved(New)) 546 // An operand was un-resolved! 547 ++NumUnresolved; 548 } else if (!isOperandUnresolved(New)) 549 decrementUnresolvedOperandCount(); 550 } 551 552 void MDNode::decrementUnresolvedOperandCount() { 553 if (!--NumUnresolved) 554 // Last unresolved operand has just been resolved. 555 resolve(); 556 } 557 558 void MDNode::resolveRecursivelyImpl(bool AllowTemps) { 559 if (isResolved()) 560 return; 561 562 // Resolve this node immediately. 563 resolve(); 564 565 // Resolve all operands. 566 for (const auto &Op : operands()) { 567 auto *N = dyn_cast_or_null<MDNode>(Op); 568 if (!N) 569 continue; 570 571 if (N->isTemporary() && AllowTemps) 572 continue; 573 assert(!N->isTemporary() && 574 "Expected all forward declarations to be resolved"); 575 if (!N->isResolved()) 576 N->resolveCycles(); 577 } 578 } 579 580 static bool hasSelfReference(MDNode *N) { 581 for (Metadata *MD : N->operands()) 582 if (MD == N) 583 return true; 584 return false; 585 } 586 587 MDNode *MDNode::replaceWithPermanentImpl() { 588 switch (getMetadataID()) { 589 default: 590 // If this type isn't uniquable, replace with a distinct node. 591 return replaceWithDistinctImpl(); 592 593 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 594 case CLASS##Kind: \ 595 break; 596 #include "llvm/IR/Metadata.def" 597 } 598 599 // Even if this type is uniquable, self-references have to be distinct. 600 if (hasSelfReference(this)) 601 return replaceWithDistinctImpl(); 602 return replaceWithUniquedImpl(); 603 } 604 605 MDNode *MDNode::replaceWithUniquedImpl() { 606 // Try to uniquify in place. 607 MDNode *UniquedNode = uniquify(); 608 609 if (UniquedNode == this) { 610 makeUniqued(); 611 return this; 612 } 613 614 // Collision, so RAUW instead. 615 replaceAllUsesWith(UniquedNode); 616 deleteAsSubclass(); 617 return UniquedNode; 618 } 619 620 MDNode *MDNode::replaceWithDistinctImpl() { 621 makeDistinct(); 622 return this; 623 } 624 625 void MDTuple::recalculateHash() { 626 setHash(MDTupleInfo::KeyTy::calculateHash(this)); 627 } 628 629 void MDNode::dropAllReferences() { 630 for (unsigned I = 0, E = NumOperands; I != E; ++I) 631 setOperand(I, nullptr); 632 if (!isResolved()) { 633 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false); 634 (void)Context.takeReplaceableUses(); 635 } 636 } 637 638 void MDNode::handleChangedOperand(void *Ref, Metadata *New) { 639 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin(); 640 assert(Op < getNumOperands() && "Expected valid operand"); 641 642 if (!isUniqued()) { 643 // This node is not uniqued. Just set the operand and be done with it. 644 setOperand(Op, New); 645 return; 646 } 647 648 // This node is uniqued. 649 eraseFromStore(); 650 651 Metadata *Old = getOperand(Op); 652 setOperand(Op, New); 653 654 // Drop uniquing for self-reference cycles. 655 if (New == this) { 656 if (!isResolved()) 657 resolve(); 658 storeDistinctInContext(); 659 return; 660 } 661 662 // Re-unique the node. 663 auto *Uniqued = uniquify(); 664 if (Uniqued == this) { 665 if (!isResolved()) 666 resolveAfterOperandChange(Old, New); 667 return; 668 } 669 670 // Collision. 671 if (!isResolved()) { 672 // Still unresolved, so RAUW. 673 // 674 // First, clear out all operands to prevent any recursion (similar to 675 // dropAllReferences(), but we still need the use-list). 676 for (unsigned O = 0, E = getNumOperands(); O != E; ++O) 677 setOperand(O, nullptr); 678 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued); 679 deleteAsSubclass(); 680 return; 681 } 682 683 // Store in non-uniqued form if RAUW isn't possible. 684 storeDistinctInContext(); 685 } 686 687 void MDNode::deleteAsSubclass() { 688 switch (getMetadataID()) { 689 default: 690 llvm_unreachable("Invalid subclass of MDNode"); 691 #define HANDLE_MDNODE_LEAF(CLASS) \ 692 case CLASS##Kind: \ 693 delete cast<CLASS>(this); \ 694 break; 695 #include "llvm/IR/Metadata.def" 696 } 697 } 698 699 template <class T, class InfoT> 700 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) { 701 if (T *U = getUniqued(Store, N)) 702 return U; 703 704 Store.insert(N); 705 return N; 706 } 707 708 template <class NodeTy> struct MDNode::HasCachedHash { 709 typedef char Yes[1]; 710 typedef char No[2]; 711 template <class U, U Val> struct SFINAE {}; 712 713 template <class U> 714 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *); 715 template <class U> static No &check(...); 716 717 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes); 718 }; 719 720 MDNode *MDNode::uniquify() { 721 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node"); 722 723 // Try to insert into uniquing store. 724 switch (getMetadataID()) { 725 default: 726 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 727 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 728 case CLASS##Kind: { \ 729 CLASS *SubclassThis = cast<CLASS>(this); \ 730 std::integral_constant<bool, HasCachedHash<CLASS>::value> \ 731 ShouldRecalculateHash; \ 732 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \ 733 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \ 734 } 735 #include "llvm/IR/Metadata.def" 736 } 737 } 738 739 void MDNode::eraseFromStore() { 740 switch (getMetadataID()) { 741 default: 742 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 743 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 744 case CLASS##Kind: \ 745 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \ 746 break; 747 #include "llvm/IR/Metadata.def" 748 } 749 } 750 751 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs, 752 StorageType Storage, bool ShouldCreate) { 753 unsigned Hash = 0; 754 if (Storage == Uniqued) { 755 MDTupleInfo::KeyTy Key(MDs); 756 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key)) 757 return N; 758 if (!ShouldCreate) 759 return nullptr; 760 Hash = Key.getHash(); 761 } else { 762 assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); 763 } 764 765 return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs), 766 Storage, Context.pImpl->MDTuples); 767 } 768 769 void MDNode::deleteTemporary(MDNode *N) { 770 assert(N->isTemporary() && "Expected temporary node"); 771 N->replaceAllUsesWith(nullptr); 772 N->deleteAsSubclass(); 773 } 774 775 void MDNode::storeDistinctInContext() { 776 assert(isResolved() && "Expected resolved nodes"); 777 Storage = Distinct; 778 779 // Reset the hash. 780 switch (getMetadataID()) { 781 default: 782 llvm_unreachable("Invalid subclass of MDNode"); 783 #define HANDLE_MDNODE_LEAF(CLASS) \ 784 case CLASS##Kind: { \ 785 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \ 786 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \ 787 break; \ 788 } 789 #include "llvm/IR/Metadata.def" 790 } 791 792 getContext().pImpl->DistinctMDNodes.insert(this); 793 } 794 795 void MDNode::replaceOperandWith(unsigned I, Metadata *New) { 796 if (getOperand(I) == New) 797 return; 798 799 if (!isUniqued()) { 800 setOperand(I, New); 801 return; 802 } 803 804 handleChangedOperand(mutable_begin() + I, New); 805 } 806 807 void MDNode::setOperand(unsigned I, Metadata *New) { 808 assert(I < NumOperands); 809 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr); 810 } 811 812 /// \brief Get a node, or a self-reference that looks like it. 813 /// 814 /// Special handling for finding self-references, for use by \a 815 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from 816 /// when self-referencing nodes were still uniqued. If the first operand has 817 /// the same operands as \c Ops, return the first operand instead. 818 static MDNode *getOrSelfReference(LLVMContext &Context, 819 ArrayRef<Metadata *> Ops) { 820 if (!Ops.empty()) 821 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0])) 822 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) { 823 for (unsigned I = 1, E = Ops.size(); I != E; ++I) 824 if (Ops[I] != N->getOperand(I)) 825 return MDNode::get(Context, Ops); 826 return N; 827 } 828 829 return MDNode::get(Context, Ops); 830 } 831 832 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) { 833 if (!A) 834 return B; 835 if (!B) 836 return A; 837 838 SmallVector<Metadata *, 4> MDs; 839 MDs.reserve(A->getNumOperands() + B->getNumOperands()); 840 MDs.append(A->op_begin(), A->op_end()); 841 MDs.append(B->op_begin(), B->op_end()); 842 843 // FIXME: This preserves long-standing behaviour, but is it really the right 844 // behaviour? Or was that an unintended side-effect of node uniquing? 845 return getOrSelfReference(A->getContext(), MDs); 846 } 847 848 MDNode *MDNode::intersect(MDNode *A, MDNode *B) { 849 if (!A || !B) 850 return nullptr; 851 852 SmallVector<Metadata *, 4> MDs; 853 for (Metadata *MD : A->operands()) 854 if (std::find(B->op_begin(), B->op_end(), MD) != B->op_end()) 855 MDs.push_back(MD); 856 857 // FIXME: This preserves long-standing behaviour, but is it really the right 858 // behaviour? Or was that an unintended side-effect of node uniquing? 859 return getOrSelfReference(A->getContext(), MDs); 860 } 861 862 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) { 863 if (!A || !B) 864 return nullptr; 865 866 SmallVector<Metadata *, 4> MDs(B->op_begin(), B->op_end()); 867 for (Metadata *MD : A->operands()) 868 if (std::find(B->op_begin(), B->op_end(), MD) == B->op_end()) 869 MDs.push_back(MD); 870 871 // FIXME: This preserves long-standing behaviour, but is it really the right 872 // behaviour? Or was that an unintended side-effect of node uniquing? 873 return getOrSelfReference(A->getContext(), MDs); 874 } 875 876 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) { 877 if (!A || !B) 878 return nullptr; 879 880 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF(); 881 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF(); 882 if (AVal.compare(BVal) == APFloat::cmpLessThan) 883 return A; 884 return B; 885 } 886 887 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 888 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 889 } 890 891 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) { 892 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B); 893 } 894 895 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints, 896 ConstantInt *Low, ConstantInt *High) { 897 ConstantRange NewRange(Low->getValue(), High->getValue()); 898 unsigned Size = EndPoints.size(); 899 APInt LB = EndPoints[Size - 2]->getValue(); 900 APInt LE = EndPoints[Size - 1]->getValue(); 901 ConstantRange LastRange(LB, LE); 902 if (canBeMerged(NewRange, LastRange)) { 903 ConstantRange Union = LastRange.unionWith(NewRange); 904 Type *Ty = High->getType(); 905 EndPoints[Size - 2] = 906 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower())); 907 EndPoints[Size - 1] = 908 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper())); 909 return true; 910 } 911 return false; 912 } 913 914 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints, 915 ConstantInt *Low, ConstantInt *High) { 916 if (!EndPoints.empty()) 917 if (tryMergeRange(EndPoints, Low, High)) 918 return; 919 920 EndPoints.push_back(Low); 921 EndPoints.push_back(High); 922 } 923 924 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) { 925 // Given two ranges, we want to compute the union of the ranges. This 926 // is slightly complitade by having to combine the intervals and merge 927 // the ones that overlap. 928 929 if (!A || !B) 930 return nullptr; 931 932 if (A == B) 933 return A; 934 935 // First, walk both lists in older of the lower boundary of each interval. 936 // At each step, try to merge the new interval to the last one we adedd. 937 SmallVector<ConstantInt *, 4> EndPoints; 938 int AI = 0; 939 int BI = 0; 940 int AN = A->getNumOperands() / 2; 941 int BN = B->getNumOperands() / 2; 942 while (AI < AN && BI < BN) { 943 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI)); 944 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI)); 945 946 if (ALow->getValue().slt(BLow->getValue())) { 947 addRange(EndPoints, ALow, 948 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 949 ++AI; 950 } else { 951 addRange(EndPoints, BLow, 952 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 953 ++BI; 954 } 955 } 956 while (AI < AN) { 957 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)), 958 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 959 ++AI; 960 } 961 while (BI < BN) { 962 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)), 963 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 964 ++BI; 965 } 966 967 // If we have more than 2 ranges (4 endpoints) we have to try to merge 968 // the last and first ones. 969 unsigned Size = EndPoints.size(); 970 if (Size > 4) { 971 ConstantInt *FB = EndPoints[0]; 972 ConstantInt *FE = EndPoints[1]; 973 if (tryMergeRange(EndPoints, FB, FE)) { 974 for (unsigned i = 0; i < Size - 2; ++i) { 975 EndPoints[i] = EndPoints[i + 2]; 976 } 977 EndPoints.resize(Size - 2); 978 } 979 } 980 981 // If in the end we have a single range, it is possible that it is now the 982 // full range. Just drop the metadata in that case. 983 if (EndPoints.size() == 2) { 984 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue()); 985 if (Range.isFullSet()) 986 return nullptr; 987 } 988 989 SmallVector<Metadata *, 4> MDs; 990 MDs.reserve(EndPoints.size()); 991 for (auto *I : EndPoints) 992 MDs.push_back(ConstantAsMetadata::get(I)); 993 return MDNode::get(A->getContext(), MDs); 994 } 995 996 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) { 997 if (!A || !B) 998 return nullptr; 999 1000 ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0)); 1001 ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0)); 1002 if (AVal->getZExtValue() < BVal->getZExtValue()) 1003 return A; 1004 return B; 1005 } 1006 1007 //===----------------------------------------------------------------------===// 1008 // NamedMDNode implementation. 1009 // 1010 1011 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) { 1012 return *(SmallVector<TrackingMDRef, 4> *)Operands; 1013 } 1014 1015 NamedMDNode::NamedMDNode(const Twine &N) 1016 : Name(N.str()), Parent(nullptr), 1017 Operands(new SmallVector<TrackingMDRef, 4>()) {} 1018 1019 NamedMDNode::~NamedMDNode() { 1020 dropAllReferences(); 1021 delete &getNMDOps(Operands); 1022 } 1023 1024 unsigned NamedMDNode::getNumOperands() const { 1025 return (unsigned)getNMDOps(Operands).size(); 1026 } 1027 1028 MDNode *NamedMDNode::getOperand(unsigned i) const { 1029 assert(i < getNumOperands() && "Invalid Operand number!"); 1030 auto *N = getNMDOps(Operands)[i].get(); 1031 return cast_or_null<MDNode>(N); 1032 } 1033 1034 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); } 1035 1036 void NamedMDNode::setOperand(unsigned I, MDNode *New) { 1037 assert(I < getNumOperands() && "Invalid operand number"); 1038 getNMDOps(Operands)[I].reset(New); 1039 } 1040 1041 void NamedMDNode::eraseFromParent() { 1042 getParent()->eraseNamedMetadata(this); 1043 } 1044 1045 void NamedMDNode::dropAllReferences() { 1046 getNMDOps(Operands).clear(); 1047 } 1048 1049 StringRef NamedMDNode::getName() const { 1050 return StringRef(Name); 1051 } 1052 1053 //===----------------------------------------------------------------------===// 1054 // Instruction Metadata method implementations. 1055 // 1056 void MDAttachmentMap::set(unsigned ID, MDNode &MD) { 1057 for (auto &I : Attachments) 1058 if (I.first == ID) { 1059 I.second.reset(&MD); 1060 return; 1061 } 1062 Attachments.emplace_back(std::piecewise_construct, std::make_tuple(ID), 1063 std::make_tuple(&MD)); 1064 } 1065 1066 void MDAttachmentMap::erase(unsigned ID) { 1067 if (empty()) 1068 return; 1069 1070 // Common case is one/last value. 1071 if (Attachments.back().first == ID) { 1072 Attachments.pop_back(); 1073 return; 1074 } 1075 1076 for (auto I = Attachments.begin(), E = std::prev(Attachments.end()); I != E; 1077 ++I) 1078 if (I->first == ID) { 1079 *I = std::move(Attachments.back()); 1080 Attachments.pop_back(); 1081 return; 1082 } 1083 } 1084 1085 MDNode *MDAttachmentMap::lookup(unsigned ID) const { 1086 for (const auto &I : Attachments) 1087 if (I.first == ID) 1088 return I.second; 1089 return nullptr; 1090 } 1091 1092 void MDAttachmentMap::getAll( 1093 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1094 Result.append(Attachments.begin(), Attachments.end()); 1095 1096 // Sort the resulting array so it is stable. 1097 if (Result.size() > 1) 1098 array_pod_sort(Result.begin(), Result.end()); 1099 } 1100 1101 void Instruction::setMetadata(StringRef Kind, MDNode *Node) { 1102 if (!Node && !hasMetadata()) 1103 return; 1104 setMetadata(getContext().getMDKindID(Kind), Node); 1105 } 1106 1107 MDNode *Instruction::getMetadataImpl(StringRef Kind) const { 1108 return getMetadataImpl(getContext().getMDKindID(Kind)); 1109 } 1110 1111 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) { 1112 SmallSet<unsigned, 5> KnownSet; 1113 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 1114 1115 if (!hasMetadataHashEntry()) 1116 return; // Nothing to remove! 1117 1118 auto &InstructionMetadata = getContext().pImpl->InstructionMetadata; 1119 1120 if (KnownSet.empty()) { 1121 // Just drop our entry at the store. 1122 InstructionMetadata.erase(this); 1123 setHasMetadataHashEntry(false); 1124 return; 1125 } 1126 1127 auto &Info = InstructionMetadata[this]; 1128 Info.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) { 1129 return !KnownSet.count(I.first); 1130 }); 1131 1132 if (Info.empty()) { 1133 // Drop our entry at the store. 1134 InstructionMetadata.erase(this); 1135 setHasMetadataHashEntry(false); 1136 } 1137 } 1138 1139 /// setMetadata - Set the metadata of the specified kind to the specified 1140 /// node. This updates/replaces metadata if already present, or removes it if 1141 /// Node is null. 1142 void Instruction::setMetadata(unsigned KindID, MDNode *Node) { 1143 if (!Node && !hasMetadata()) 1144 return; 1145 1146 // Handle 'dbg' as a special case since it is not stored in the hash table. 1147 if (KindID == LLVMContext::MD_dbg) { 1148 DbgLoc = DebugLoc(Node); 1149 return; 1150 } 1151 1152 // Handle the case when we're adding/updating metadata on an instruction. 1153 if (Node) { 1154 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1155 assert(!Info.empty() == hasMetadataHashEntry() && 1156 "HasMetadata bit is wonked"); 1157 if (Info.empty()) 1158 setHasMetadataHashEntry(true); 1159 Info.set(KindID, *Node); 1160 return; 1161 } 1162 1163 // Otherwise, we're removing metadata from an instruction. 1164 assert((hasMetadataHashEntry() == 1165 (getContext().pImpl->InstructionMetadata.count(this) > 0)) && 1166 "HasMetadata bit out of date!"); 1167 if (!hasMetadataHashEntry()) 1168 return; // Nothing to remove! 1169 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1170 1171 // Handle removal of an existing value. 1172 Info.erase(KindID); 1173 1174 if (!Info.empty()) 1175 return; 1176 1177 getContext().pImpl->InstructionMetadata.erase(this); 1178 setHasMetadataHashEntry(false); 1179 } 1180 1181 void Instruction::setAAMetadata(const AAMDNodes &N) { 1182 setMetadata(LLVMContext::MD_tbaa, N.TBAA); 1183 setMetadata(LLVMContext::MD_alias_scope, N.Scope); 1184 setMetadata(LLVMContext::MD_noalias, N.NoAlias); 1185 } 1186 1187 MDNode *Instruction::getMetadataImpl(unsigned KindID) const { 1188 // Handle 'dbg' as a special case since it is not stored in the hash table. 1189 if (KindID == LLVMContext::MD_dbg) 1190 return DbgLoc.getAsMDNode(); 1191 1192 if (!hasMetadataHashEntry()) 1193 return nullptr; 1194 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1195 assert(!Info.empty() && "bit out of sync with hash table"); 1196 1197 return Info.lookup(KindID); 1198 } 1199 1200 void Instruction::getAllMetadataImpl( 1201 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1202 Result.clear(); 1203 1204 // Handle 'dbg' as a special case since it is not stored in the hash table. 1205 if (DbgLoc) { 1206 Result.push_back( 1207 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode())); 1208 if (!hasMetadataHashEntry()) return; 1209 } 1210 1211 assert(hasMetadataHashEntry() && 1212 getContext().pImpl->InstructionMetadata.count(this) && 1213 "Shouldn't have called this"); 1214 const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second; 1215 assert(!Info.empty() && "Shouldn't have called this"); 1216 Info.getAll(Result); 1217 } 1218 1219 void Instruction::getAllMetadataOtherThanDebugLocImpl( 1220 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1221 Result.clear(); 1222 assert(hasMetadataHashEntry() && 1223 getContext().pImpl->InstructionMetadata.count(this) && 1224 "Shouldn't have called this"); 1225 const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second; 1226 assert(!Info.empty() && "Shouldn't have called this"); 1227 Info.getAll(Result); 1228 } 1229 1230 /// clearMetadataHashEntries - Clear all hashtable-based metadata from 1231 /// this instruction. 1232 void Instruction::clearMetadataHashEntries() { 1233 assert(hasMetadataHashEntry() && "Caller should check"); 1234 getContext().pImpl->InstructionMetadata.erase(this); 1235 setHasMetadataHashEntry(false); 1236 } 1237 1238 MDNode *Function::getMetadata(unsigned KindID) const { 1239 if (!hasMetadata()) 1240 return nullptr; 1241 return getContext().pImpl->FunctionMetadata[this].lookup(KindID); 1242 } 1243 1244 MDNode *Function::getMetadata(StringRef Kind) const { 1245 if (!hasMetadata()) 1246 return nullptr; 1247 return getMetadata(getContext().getMDKindID(Kind)); 1248 } 1249 1250 void Function::setMetadata(unsigned KindID, MDNode *MD) { 1251 if (MD) { 1252 if (!hasMetadata()) 1253 setHasMetadataHashEntry(true); 1254 1255 getContext().pImpl->FunctionMetadata[this].set(KindID, *MD); 1256 return; 1257 } 1258 1259 // Nothing to unset. 1260 if (!hasMetadata()) 1261 return; 1262 1263 auto &Store = getContext().pImpl->FunctionMetadata[this]; 1264 Store.erase(KindID); 1265 if (Store.empty()) 1266 clearMetadata(); 1267 } 1268 1269 void Function::setMetadata(StringRef Kind, MDNode *MD) { 1270 if (!MD && !hasMetadata()) 1271 return; 1272 setMetadata(getContext().getMDKindID(Kind), MD); 1273 } 1274 1275 void Function::getAllMetadata( 1276 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { 1277 MDs.clear(); 1278 1279 if (!hasMetadata()) 1280 return; 1281 1282 getContext().pImpl->FunctionMetadata[this].getAll(MDs); 1283 } 1284 1285 void Function::dropUnknownMetadata(ArrayRef<unsigned> KnownIDs) { 1286 if (!hasMetadata()) 1287 return; 1288 if (KnownIDs.empty()) { 1289 clearMetadata(); 1290 return; 1291 } 1292 1293 SmallSet<unsigned, 5> KnownSet; 1294 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 1295 1296 auto &Store = getContext().pImpl->FunctionMetadata[this]; 1297 assert(!Store.empty()); 1298 1299 Store.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) { 1300 return !KnownSet.count(I.first); 1301 }); 1302 1303 if (Store.empty()) 1304 clearMetadata(); 1305 } 1306 1307 void Function::clearMetadata() { 1308 if (!hasMetadata()) 1309 return; 1310 getContext().pImpl->FunctionMetadata.erase(this); 1311 setHasMetadataHashEntry(false); 1312 } 1313 1314 void Function::setSubprogram(DISubprogram *SP) { 1315 setMetadata(LLVMContext::MD_dbg, SP); 1316 } 1317 1318 DISubprogram *Function::getSubprogram() const { 1319 return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg)); 1320 } 1321