1 //===- Metadata.cpp - Implement Metadata classes --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Metadata classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Metadata.h"
15 #include "LLVMContextImpl.h"
16 #include "MetadataImpl.h"
17 #include "SymbolTableListTraitsImpl.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/StringMap.h"
21 #include "llvm/IR/ConstantRange.h"
22 #include "llvm/IR/DebugInfoMetadata.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/ValueHandle.h"
27 
28 using namespace llvm;
29 
30 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD)
31     : Value(Ty, MetadataAsValueVal), MD(MD) {
32   track();
33 }
34 
35 MetadataAsValue::~MetadataAsValue() {
36   getType()->getContext().pImpl->MetadataAsValues.erase(MD);
37   untrack();
38 }
39 
40 /// Canonicalize metadata arguments to intrinsics.
41 ///
42 /// To support bitcode upgrades (and assembly semantic sugar) for \a
43 /// MetadataAsValue, we need to canonicalize certain metadata.
44 ///
45 ///   - nullptr is replaced by an empty MDNode.
46 ///   - An MDNode with a single null operand is replaced by an empty MDNode.
47 ///   - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped.
48 ///
49 /// This maintains readability of bitcode from when metadata was a type of
50 /// value, and these bridges were unnecessary.
51 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context,
52                                               Metadata *MD) {
53   if (!MD)
54     // !{}
55     return MDNode::get(Context, None);
56 
57   // Return early if this isn't a single-operand MDNode.
58   auto *N = dyn_cast<MDNode>(MD);
59   if (!N || N->getNumOperands() != 1)
60     return MD;
61 
62   if (!N->getOperand(0))
63     // !{}
64     return MDNode::get(Context, None);
65 
66   if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0)))
67     // Look through the MDNode.
68     return C;
69 
70   return MD;
71 }
72 
73 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) {
74   MD = canonicalizeMetadataForValue(Context, MD);
75   auto *&Entry = Context.pImpl->MetadataAsValues[MD];
76   if (!Entry)
77     Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD);
78   return Entry;
79 }
80 
81 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context,
82                                               Metadata *MD) {
83   MD = canonicalizeMetadataForValue(Context, MD);
84   auto &Store = Context.pImpl->MetadataAsValues;
85   return Store.lookup(MD);
86 }
87 
88 void MetadataAsValue::handleChangedMetadata(Metadata *MD) {
89   LLVMContext &Context = getContext();
90   MD = canonicalizeMetadataForValue(Context, MD);
91   auto &Store = Context.pImpl->MetadataAsValues;
92 
93   // Stop tracking the old metadata.
94   Store.erase(this->MD);
95   untrack();
96   this->MD = nullptr;
97 
98   // Start tracking MD, or RAUW if necessary.
99   auto *&Entry = Store[MD];
100   if (Entry) {
101     replaceAllUsesWith(Entry);
102     delete this;
103     return;
104   }
105 
106   this->MD = MD;
107   track();
108   Entry = this;
109 }
110 
111 void MetadataAsValue::track() {
112   if (MD)
113     MetadataTracking::track(&MD, *MD, *this);
114 }
115 
116 void MetadataAsValue::untrack() {
117   if (MD)
118     MetadataTracking::untrack(MD);
119 }
120 
121 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) {
122   assert(Ref && "Expected live reference");
123   assert((Owner || *static_cast<Metadata **>(Ref) == &MD) &&
124          "Reference without owner must be direct");
125   if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) {
126     R->addRef(Ref, Owner);
127     return true;
128   }
129   return false;
130 }
131 
132 void MetadataTracking::untrack(void *Ref, Metadata &MD) {
133   assert(Ref && "Expected live reference");
134   if (auto *R = ReplaceableMetadataImpl::getIfExists(MD))
135     R->dropRef(Ref);
136 }
137 
138 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) {
139   assert(Ref && "Expected live reference");
140   assert(New && "Expected live reference");
141   assert(Ref != New && "Expected change");
142   if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) {
143     R->moveRef(Ref, New, MD);
144     return true;
145   }
146   assert(!isReplaceable(MD) &&
147          "Expected un-replaceable metadata, since we didn't move a reference");
148   return false;
149 }
150 
151 bool MetadataTracking::isReplaceable(const Metadata &MD) {
152   return ReplaceableMetadataImpl::isReplaceable(MD);
153 }
154 
155 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) {
156   bool WasInserted =
157       UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex)))
158           .second;
159   (void)WasInserted;
160   assert(WasInserted && "Expected to add a reference");
161 
162   ++NextIndex;
163   assert(NextIndex != 0 && "Unexpected overflow");
164 }
165 
166 void ReplaceableMetadataImpl::dropRef(void *Ref) {
167   bool WasErased = UseMap.erase(Ref);
168   (void)WasErased;
169   assert(WasErased && "Expected to drop a reference");
170 }
171 
172 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New,
173                                       const Metadata &MD) {
174   auto I = UseMap.find(Ref);
175   assert(I != UseMap.end() && "Expected to move a reference");
176   auto OwnerAndIndex = I->second;
177   UseMap.erase(I);
178   bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second;
179   (void)WasInserted;
180   assert(WasInserted && "Expected to add a reference");
181 
182   // Check that the references are direct if there's no owner.
183   (void)MD;
184   assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) &&
185          "Reference without owner must be direct");
186   assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) &&
187          "Reference without owner must be direct");
188 }
189 
190 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) {
191   if (UseMap.empty())
192     return;
193 
194   // Copy out uses since UseMap will get touched below.
195   typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy;
196   SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
197   std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) {
198     return L.second.second < R.second.second;
199   });
200   for (const auto &Pair : Uses) {
201     // Check that this Ref hasn't disappeared after RAUW (when updating a
202     // previous Ref).
203     if (!UseMap.count(Pair.first))
204       continue;
205 
206     OwnerTy Owner = Pair.second.first;
207     if (!Owner) {
208       // Update unowned tracking references directly.
209       Metadata *&Ref = *static_cast<Metadata **>(Pair.first);
210       Ref = MD;
211       if (MD)
212         MetadataTracking::track(Ref);
213       UseMap.erase(Pair.first);
214       continue;
215     }
216 
217     // Check for MetadataAsValue.
218     if (Owner.is<MetadataAsValue *>()) {
219       Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD);
220       continue;
221     }
222 
223     // There's a Metadata owner -- dispatch.
224     Metadata *OwnerMD = Owner.get<Metadata *>();
225     switch (OwnerMD->getMetadataID()) {
226 #define HANDLE_METADATA_LEAF(CLASS)                                            \
227   case Metadata::CLASS##Kind:                                                  \
228     cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD);                \
229     continue;
230 #include "llvm/IR/Metadata.def"
231     default:
232       llvm_unreachable("Invalid metadata subclass");
233     }
234   }
235   assert(UseMap.empty() && "Expected all uses to be replaced");
236 }
237 
238 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) {
239   if (UseMap.empty())
240     return;
241 
242   if (!ResolveUsers) {
243     UseMap.clear();
244     return;
245   }
246 
247   // Copy out uses since UseMap could get touched below.
248   typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy;
249   SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
250   std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) {
251     return L.second.second < R.second.second;
252   });
253   UseMap.clear();
254   for (const auto &Pair : Uses) {
255     auto Owner = Pair.second.first;
256     if (!Owner)
257       continue;
258     if (Owner.is<MetadataAsValue *>())
259       continue;
260 
261     // Resolve MDNodes that point at this.
262     auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>());
263     if (!OwnerMD)
264       continue;
265     if (OwnerMD->isResolved())
266       continue;
267     OwnerMD->decrementUnresolvedOperandCount();
268   }
269 }
270 
271 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) {
272   if (auto *N = dyn_cast<MDNode>(&MD))
273     return N->isResolved() ? nullptr : N->Context.getOrCreateReplaceableUses();
274   return dyn_cast<ValueAsMetadata>(&MD);
275 }
276 
277 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) {
278   if (auto *N = dyn_cast<MDNode>(&MD))
279     return N->isResolved() ? nullptr : N->Context.getReplaceableUses();
280   return dyn_cast<ValueAsMetadata>(&MD);
281 }
282 
283 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) {
284   if (auto *N = dyn_cast<MDNode>(&MD))
285     return !N->isResolved();
286   return dyn_cast<ValueAsMetadata>(&MD);
287 }
288 
289 static Function *getLocalFunction(Value *V) {
290   assert(V && "Expected value");
291   if (auto *A = dyn_cast<Argument>(V))
292     return A->getParent();
293   if (BasicBlock *BB = cast<Instruction>(V)->getParent())
294     return BB->getParent();
295   return nullptr;
296 }
297 
298 ValueAsMetadata *ValueAsMetadata::get(Value *V) {
299   assert(V && "Unexpected null Value");
300 
301   auto &Context = V->getContext();
302   auto *&Entry = Context.pImpl->ValuesAsMetadata[V];
303   if (!Entry) {
304     assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
305            "Expected constant or function-local value");
306     assert(!V->IsUsedByMD &&
307            "Expected this to be the only metadata use");
308     V->IsUsedByMD = true;
309     if (auto *C = dyn_cast<Constant>(V))
310       Entry = new ConstantAsMetadata(C);
311     else
312       Entry = new LocalAsMetadata(V);
313   }
314 
315   return Entry;
316 }
317 
318 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) {
319   assert(V && "Unexpected null Value");
320   return V->getContext().pImpl->ValuesAsMetadata.lookup(V);
321 }
322 
323 void ValueAsMetadata::handleDeletion(Value *V) {
324   assert(V && "Expected valid value");
325 
326   auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata;
327   auto I = Store.find(V);
328   if (I == Store.end())
329     return;
330 
331   // Remove old entry from the map.
332   ValueAsMetadata *MD = I->second;
333   assert(MD && "Expected valid metadata");
334   assert(MD->getValue() == V && "Expected valid mapping");
335   Store.erase(I);
336 
337   // Delete the metadata.
338   MD->replaceAllUsesWith(nullptr);
339   delete MD;
340 }
341 
342 void ValueAsMetadata::handleRAUW(Value *From, Value *To) {
343   assert(From && "Expected valid value");
344   assert(To && "Expected valid value");
345   assert(From != To && "Expected changed value");
346   assert(From->getType() == To->getType() && "Unexpected type change");
347 
348   LLVMContext &Context = From->getType()->getContext();
349   auto &Store = Context.pImpl->ValuesAsMetadata;
350   auto I = Store.find(From);
351   if (I == Store.end()) {
352     assert(!From->IsUsedByMD &&
353            "Expected From not to be used by metadata");
354     return;
355   }
356 
357   // Remove old entry from the map.
358   assert(From->IsUsedByMD &&
359          "Expected From to be used by metadata");
360   From->IsUsedByMD = false;
361   ValueAsMetadata *MD = I->second;
362   assert(MD && "Expected valid metadata");
363   assert(MD->getValue() == From && "Expected valid mapping");
364   Store.erase(I);
365 
366   if (isa<LocalAsMetadata>(MD)) {
367     if (auto *C = dyn_cast<Constant>(To)) {
368       // Local became a constant.
369       MD->replaceAllUsesWith(ConstantAsMetadata::get(C));
370       delete MD;
371       return;
372     }
373     if (getLocalFunction(From) && getLocalFunction(To) &&
374         getLocalFunction(From) != getLocalFunction(To)) {
375       // Function changed.
376       MD->replaceAllUsesWith(nullptr);
377       delete MD;
378       return;
379     }
380   } else if (!isa<Constant>(To)) {
381     // Changed to function-local value.
382     MD->replaceAllUsesWith(nullptr);
383     delete MD;
384     return;
385   }
386 
387   auto *&Entry = Store[To];
388   if (Entry) {
389     // The target already exists.
390     MD->replaceAllUsesWith(Entry);
391     delete MD;
392     return;
393   }
394 
395   // Update MD in place (and update the map entry).
396   assert(!To->IsUsedByMD &&
397          "Expected this to be the only metadata use");
398   To->IsUsedByMD = true;
399   MD->V = To;
400   Entry = MD;
401 }
402 
403 //===----------------------------------------------------------------------===//
404 // MDString implementation.
405 //
406 
407 MDString *MDString::get(LLVMContext &Context, StringRef Str) {
408   auto &Store = Context.pImpl->MDStringCache;
409   auto I = Store.emplace_second(Str);
410   auto &MapEntry = I.first->getValue();
411   if (!I.second)
412     return &MapEntry;
413   MapEntry.Entry = &*I.first;
414   return &MapEntry;
415 }
416 
417 StringRef MDString::getString() const {
418   assert(Entry && "Expected to find string map entry");
419   return Entry->first();
420 }
421 
422 //===----------------------------------------------------------------------===//
423 // MDNode implementation.
424 //
425 
426 // Assert that the MDNode types will not be unaligned by the objects
427 // prepended to them.
428 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
429   static_assert(                                                               \
430       llvm::AlignOf<uint64_t>::Alignment >= llvm::AlignOf<CLASS>::Alignment,   \
431       "Alignment is insufficient after objects prepended to " #CLASS);
432 #include "llvm/IR/Metadata.def"
433 
434 void *MDNode::operator new(size_t Size, unsigned NumOps) {
435   size_t OpSize = NumOps * sizeof(MDOperand);
436   // uint64_t is the most aligned type we need support (ensured by static_assert
437   // above)
438   OpSize = alignTo(OpSize, llvm::alignOf<uint64_t>());
439   void *Ptr = reinterpret_cast<char *>(::operator new(OpSize + Size)) + OpSize;
440   MDOperand *O = static_cast<MDOperand *>(Ptr);
441   for (MDOperand *E = O - NumOps; O != E; --O)
442     (void)new (O - 1) MDOperand;
443   return Ptr;
444 }
445 
446 void MDNode::operator delete(void *Mem) {
447   MDNode *N = static_cast<MDNode *>(Mem);
448   size_t OpSize = N->NumOperands * sizeof(MDOperand);
449   OpSize = alignTo(OpSize, llvm::alignOf<uint64_t>());
450 
451   MDOperand *O = static_cast<MDOperand *>(Mem);
452   for (MDOperand *E = O - N->NumOperands; O != E; --O)
453     (O - 1)->~MDOperand();
454   ::operator delete(reinterpret_cast<char *>(Mem) - OpSize);
455 }
456 
457 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
458                ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2)
459     : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()),
460       NumUnresolved(0), Context(Context) {
461   unsigned Op = 0;
462   for (Metadata *MD : Ops1)
463     setOperand(Op++, MD);
464   for (Metadata *MD : Ops2)
465     setOperand(Op++, MD);
466 
467   if (!isUniqued())
468     return;
469 
470   // Count the unresolved operands.  If there are any, RAUW support will be
471   // added lazily on first reference.
472   countUnresolvedOperands();
473 }
474 
475 TempMDNode MDNode::clone() const {
476   switch (getMetadataID()) {
477   default:
478     llvm_unreachable("Invalid MDNode subclass");
479 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
480   case CLASS##Kind:                                                            \
481     return cast<CLASS>(this)->cloneImpl();
482 #include "llvm/IR/Metadata.def"
483   }
484 }
485 
486 static bool isOperandUnresolved(Metadata *Op) {
487   if (auto *N = dyn_cast_or_null<MDNode>(Op))
488     return !N->isResolved();
489   return false;
490 }
491 
492 void MDNode::countUnresolvedOperands() {
493   assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted");
494   assert(isUniqued() && "Expected this to be uniqued");
495   NumUnresolved = std::count_if(op_begin(), op_end(), isOperandUnresolved);
496 }
497 
498 void MDNode::makeUniqued() {
499   assert(isTemporary() && "Expected this to be temporary");
500   assert(!isResolved() && "Expected this to be unresolved");
501 
502   // Enable uniquing callbacks.
503   for (auto &Op : mutable_operands())
504     Op.reset(Op.get(), this);
505 
506   // Make this 'uniqued'.
507   Storage = Uniqued;
508   countUnresolvedOperands();
509   if (!NumUnresolved) {
510     dropReplaceableUses();
511     assert(isResolved() && "Expected this to be resolved");
512   }
513 
514   assert(isUniqued() && "Expected this to be uniqued");
515 }
516 
517 void MDNode::makeDistinct() {
518   assert(isTemporary() && "Expected this to be temporary");
519   assert(!isResolved() && "Expected this to be unresolved");
520 
521   // Drop RAUW support and store as a distinct node.
522   dropReplaceableUses();
523   storeDistinctInContext();
524 
525   assert(isDistinct() && "Expected this to be distinct");
526   assert(isResolved() && "Expected this to be resolved");
527 }
528 
529 void MDNode::resolve() {
530   assert(isUniqued() && "Expected this to be uniqued");
531   assert(!isResolved() && "Expected this to be unresolved");
532 
533   NumUnresolved = 0;
534   dropReplaceableUses();
535 
536   assert(isResolved() && "Expected this to be resolved");
537 }
538 
539 void MDNode::dropReplaceableUses() {
540   assert(!NumUnresolved && "Unexpected unresolved operand");
541 
542   // Drop any RAUW support.
543   if (Context.hasReplaceableUses())
544     Context.takeReplaceableUses()->resolveAllUses();
545 }
546 
547 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) {
548   assert(isUniqued() && "Expected this to be uniqued");
549   assert(NumUnresolved != 0 && "Expected unresolved operands");
550 
551   // Check if an operand was resolved.
552   if (!isOperandUnresolved(Old)) {
553     if (isOperandUnresolved(New))
554       // An operand was un-resolved!
555       ++NumUnresolved;
556   } else if (!isOperandUnresolved(New))
557     decrementUnresolvedOperandCount();
558 }
559 
560 void MDNode::decrementUnresolvedOperandCount() {
561   assert(!isResolved() && "Expected this to be unresolved");
562   if (isTemporary())
563     return;
564 
565   assert(isUniqued() && "Expected this to be uniqued");
566   if (--NumUnresolved)
567     return;
568 
569   // Last unresolved operand has just been resolved.
570   dropReplaceableUses();
571   assert(isResolved() && "Expected this to become resolved");
572 }
573 
574 void MDNode::resolveCycles() {
575   if (isResolved())
576     return;
577 
578   // Resolve this node immediately.
579   resolve();
580 
581   // Resolve all operands.
582   for (const auto &Op : operands()) {
583     auto *N = dyn_cast_or_null<MDNode>(Op);
584     if (!N)
585       continue;
586 
587     assert(!N->isTemporary() &&
588            "Expected all forward declarations to be resolved");
589     if (!N->isResolved())
590       N->resolveCycles();
591   }
592 }
593 
594 static bool hasSelfReference(MDNode *N) {
595   for (Metadata *MD : N->operands())
596     if (MD == N)
597       return true;
598   return false;
599 }
600 
601 MDNode *MDNode::replaceWithPermanentImpl() {
602   switch (getMetadataID()) {
603   default:
604     // If this type isn't uniquable, replace with a distinct node.
605     return replaceWithDistinctImpl();
606 
607 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS)                                    \
608   case CLASS##Kind:                                                            \
609     break;
610 #include "llvm/IR/Metadata.def"
611   }
612 
613   // Even if this type is uniquable, self-references have to be distinct.
614   if (hasSelfReference(this))
615     return replaceWithDistinctImpl();
616   return replaceWithUniquedImpl();
617 }
618 
619 MDNode *MDNode::replaceWithUniquedImpl() {
620   // Try to uniquify in place.
621   MDNode *UniquedNode = uniquify();
622 
623   if (UniquedNode == this) {
624     makeUniqued();
625     return this;
626   }
627 
628   // Collision, so RAUW instead.
629   replaceAllUsesWith(UniquedNode);
630   deleteAsSubclass();
631   return UniquedNode;
632 }
633 
634 MDNode *MDNode::replaceWithDistinctImpl() {
635   makeDistinct();
636   return this;
637 }
638 
639 void MDTuple::recalculateHash() {
640   setHash(MDTupleInfo::KeyTy::calculateHash(this));
641 }
642 
643 void MDNode::dropAllReferences() {
644   for (unsigned I = 0, E = NumOperands; I != E; ++I)
645     setOperand(I, nullptr);
646   if (Context.hasReplaceableUses()) {
647     Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false);
648     (void)Context.takeReplaceableUses();
649   }
650 }
651 
652 void MDNode::handleChangedOperand(void *Ref, Metadata *New) {
653   unsigned Op = static_cast<MDOperand *>(Ref) - op_begin();
654   assert(Op < getNumOperands() && "Expected valid operand");
655 
656   if (!isUniqued()) {
657     // This node is not uniqued.  Just set the operand and be done with it.
658     setOperand(Op, New);
659     return;
660   }
661 
662   // This node is uniqued.
663   eraseFromStore();
664 
665   Metadata *Old = getOperand(Op);
666   setOperand(Op, New);
667 
668   // Drop uniquing for self-reference cycles.
669   if (New == this) {
670     if (!isResolved())
671       resolve();
672     storeDistinctInContext();
673     return;
674   }
675 
676   // Re-unique the node.
677   auto *Uniqued = uniquify();
678   if (Uniqued == this) {
679     if (!isResolved())
680       resolveAfterOperandChange(Old, New);
681     return;
682   }
683 
684   // Collision.
685   if (!isResolved()) {
686     // Still unresolved, so RAUW.
687     //
688     // First, clear out all operands to prevent any recursion (similar to
689     // dropAllReferences(), but we still need the use-list).
690     for (unsigned O = 0, E = getNumOperands(); O != E; ++O)
691       setOperand(O, nullptr);
692     if (Context.hasReplaceableUses())
693       Context.getReplaceableUses()->replaceAllUsesWith(Uniqued);
694     deleteAsSubclass();
695     return;
696   }
697 
698   // Store in non-uniqued form if RAUW isn't possible.
699   storeDistinctInContext();
700 }
701 
702 void MDNode::deleteAsSubclass() {
703   switch (getMetadataID()) {
704   default:
705     llvm_unreachable("Invalid subclass of MDNode");
706 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
707   case CLASS##Kind:                                                            \
708     delete cast<CLASS>(this);                                                  \
709     break;
710 #include "llvm/IR/Metadata.def"
711   }
712 }
713 
714 template <class T, class InfoT>
715 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) {
716   if (T *U = getUniqued(Store, N))
717     return U;
718 
719   Store.insert(N);
720   return N;
721 }
722 
723 template <class NodeTy> struct MDNode::HasCachedHash {
724   typedef char Yes[1];
725   typedef char No[2];
726   template <class U, U Val> struct SFINAE {};
727 
728   template <class U>
729   static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *);
730   template <class U> static No &check(...);
731 
732   static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes);
733 };
734 
735 MDNode *MDNode::uniquify() {
736   assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node");
737 
738   // Try to insert into uniquing store.
739   switch (getMetadataID()) {
740   default:
741     llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
742 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS)                                    \
743   case CLASS##Kind: {                                                          \
744     CLASS *SubclassThis = cast<CLASS>(this);                                   \
745     std::integral_constant<bool, HasCachedHash<CLASS>::value>                  \
746         ShouldRecalculateHash;                                                 \
747     dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash);              \
748     return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s);           \
749   }
750 #include "llvm/IR/Metadata.def"
751   }
752 }
753 
754 void MDNode::eraseFromStore() {
755   switch (getMetadataID()) {
756   default:
757     llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
758 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS)                                    \
759   case CLASS##Kind:                                                            \
760     getContext().pImpl->CLASS##s.erase(cast<CLASS>(this));                     \
761     break;
762 #include "llvm/IR/Metadata.def"
763   }
764 }
765 
766 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
767                           StorageType Storage, bool ShouldCreate) {
768   unsigned Hash = 0;
769   if (Storage == Uniqued) {
770     MDTupleInfo::KeyTy Key(MDs);
771     if (auto *N = getUniqued(Context.pImpl->MDTuples, Key))
772       return N;
773     if (!ShouldCreate)
774       return nullptr;
775     Hash = Key.getHash();
776   } else {
777     assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
778   }
779 
780   return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs),
781                    Storage, Context.pImpl->MDTuples);
782 }
783 
784 void MDNode::deleteTemporary(MDNode *N) {
785   assert(N->isTemporary() && "Expected temporary node");
786   N->replaceAllUsesWith(nullptr);
787   N->deleteAsSubclass();
788 }
789 
790 void MDNode::storeDistinctInContext() {
791   assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses");
792   assert(!NumUnresolved && "Unexpected unresolved nodes");
793   Storage = Distinct;
794   assert(isResolved() && "Expected this to be resolved");
795 
796   // Reset the hash.
797   switch (getMetadataID()) {
798   default:
799     llvm_unreachable("Invalid subclass of MDNode");
800 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
801   case CLASS##Kind: {                                                          \
802     std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \
803     dispatchResetHash(cast<CLASS>(this), ShouldResetHash);                     \
804     break;                                                                     \
805   }
806 #include "llvm/IR/Metadata.def"
807   }
808 
809   getContext().pImpl->DistinctMDNodes.insert(this);
810 }
811 
812 void MDNode::replaceOperandWith(unsigned I, Metadata *New) {
813   if (getOperand(I) == New)
814     return;
815 
816   if (!isUniqued()) {
817     setOperand(I, New);
818     return;
819   }
820 
821   handleChangedOperand(mutable_begin() + I, New);
822 }
823 
824 void MDNode::setOperand(unsigned I, Metadata *New) {
825   assert(I < NumOperands);
826   mutable_begin()[I].reset(New, isUniqued() ? this : nullptr);
827 }
828 
829 /// Get a node or a self-reference that looks like it.
830 ///
831 /// Special handling for finding self-references, for use by \a
832 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from
833 /// when self-referencing nodes were still uniqued.  If the first operand has
834 /// the same operands as \c Ops, return the first operand instead.
835 static MDNode *getOrSelfReference(LLVMContext &Context,
836                                   ArrayRef<Metadata *> Ops) {
837   if (!Ops.empty())
838     if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0]))
839       if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) {
840         for (unsigned I = 1, E = Ops.size(); I != E; ++I)
841           if (Ops[I] != N->getOperand(I))
842             return MDNode::get(Context, Ops);
843         return N;
844       }
845 
846   return MDNode::get(Context, Ops);
847 }
848 
849 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) {
850   if (!A)
851     return B;
852   if (!B)
853     return A;
854 
855   SmallVector<Metadata *, 4> MDs;
856   MDs.reserve(A->getNumOperands() + B->getNumOperands());
857   MDs.append(A->op_begin(), A->op_end());
858   MDs.append(B->op_begin(), B->op_end());
859 
860   // FIXME: This preserves long-standing behaviour, but is it really the right
861   // behaviour?  Or was that an unintended side-effect of node uniquing?
862   return getOrSelfReference(A->getContext(), MDs);
863 }
864 
865 MDNode *MDNode::intersect(MDNode *A, MDNode *B) {
866   if (!A || !B)
867     return nullptr;
868 
869   SmallVector<Metadata *, 4> MDs;
870   for (Metadata *MD : A->operands())
871     if (std::find(B->op_begin(), B->op_end(), MD) != B->op_end())
872       MDs.push_back(MD);
873 
874   // FIXME: This preserves long-standing behaviour, but is it really the right
875   // behaviour?  Or was that an unintended side-effect of node uniquing?
876   return getOrSelfReference(A->getContext(), MDs);
877 }
878 
879 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) {
880   if (!A || !B)
881     return nullptr;
882 
883   SmallVector<Metadata *, 4> MDs(B->op_begin(), B->op_end());
884   for (Metadata *MD : A->operands())
885     if (std::find(B->op_begin(), B->op_end(), MD) == B->op_end())
886       MDs.push_back(MD);
887 
888   // FIXME: This preserves long-standing behaviour, but is it really the right
889   // behaviour?  Or was that an unintended side-effect of node uniquing?
890   return getOrSelfReference(A->getContext(), MDs);
891 }
892 
893 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) {
894   if (!A || !B)
895     return nullptr;
896 
897   APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF();
898   APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF();
899   if (AVal.compare(BVal) == APFloat::cmpLessThan)
900     return A;
901   return B;
902 }
903 
904 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
905   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
906 }
907 
908 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) {
909   return !A.intersectWith(B).isEmptySet() || isContiguous(A, B);
910 }
911 
912 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints,
913                           ConstantInt *Low, ConstantInt *High) {
914   ConstantRange NewRange(Low->getValue(), High->getValue());
915   unsigned Size = EndPoints.size();
916   APInt LB = EndPoints[Size - 2]->getValue();
917   APInt LE = EndPoints[Size - 1]->getValue();
918   ConstantRange LastRange(LB, LE);
919   if (canBeMerged(NewRange, LastRange)) {
920     ConstantRange Union = LastRange.unionWith(NewRange);
921     Type *Ty = High->getType();
922     EndPoints[Size - 2] =
923         cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower()));
924     EndPoints[Size - 1] =
925         cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper()));
926     return true;
927   }
928   return false;
929 }
930 
931 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints,
932                      ConstantInt *Low, ConstantInt *High) {
933   if (!EndPoints.empty())
934     if (tryMergeRange(EndPoints, Low, High))
935       return;
936 
937   EndPoints.push_back(Low);
938   EndPoints.push_back(High);
939 }
940 
941 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) {
942   // Given two ranges, we want to compute the union of the ranges. This
943   // is slightly complitade by having to combine the intervals and merge
944   // the ones that overlap.
945 
946   if (!A || !B)
947     return nullptr;
948 
949   if (A == B)
950     return A;
951 
952   // First, walk both lists in older of the lower boundary of each interval.
953   // At each step, try to merge the new interval to the last one we adedd.
954   SmallVector<ConstantInt *, 4> EndPoints;
955   int AI = 0;
956   int BI = 0;
957   int AN = A->getNumOperands() / 2;
958   int BN = B->getNumOperands() / 2;
959   while (AI < AN && BI < BN) {
960     ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI));
961     ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI));
962 
963     if (ALow->getValue().slt(BLow->getValue())) {
964       addRange(EndPoints, ALow,
965                mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
966       ++AI;
967     } else {
968       addRange(EndPoints, BLow,
969                mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
970       ++BI;
971     }
972   }
973   while (AI < AN) {
974     addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)),
975              mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
976     ++AI;
977   }
978   while (BI < BN) {
979     addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)),
980              mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
981     ++BI;
982   }
983 
984   // If we have more than 2 ranges (4 endpoints) we have to try to merge
985   // the last and first ones.
986   unsigned Size = EndPoints.size();
987   if (Size > 4) {
988     ConstantInt *FB = EndPoints[0];
989     ConstantInt *FE = EndPoints[1];
990     if (tryMergeRange(EndPoints, FB, FE)) {
991       for (unsigned i = 0; i < Size - 2; ++i) {
992         EndPoints[i] = EndPoints[i + 2];
993       }
994       EndPoints.resize(Size - 2);
995     }
996   }
997 
998   // If in the end we have a single range, it is possible that it is now the
999   // full range. Just drop the metadata in that case.
1000   if (EndPoints.size() == 2) {
1001     ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue());
1002     if (Range.isFullSet())
1003       return nullptr;
1004   }
1005 
1006   SmallVector<Metadata *, 4> MDs;
1007   MDs.reserve(EndPoints.size());
1008   for (auto *I : EndPoints)
1009     MDs.push_back(ConstantAsMetadata::get(I));
1010   return MDNode::get(A->getContext(), MDs);
1011 }
1012 
1013 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) {
1014   if (!A || !B)
1015     return nullptr;
1016 
1017   ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0));
1018   ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0));
1019   if (AVal->getZExtValue() < BVal->getZExtValue())
1020     return A;
1021   return B;
1022 }
1023 
1024 //===----------------------------------------------------------------------===//
1025 // NamedMDNode implementation.
1026 //
1027 
1028 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) {
1029   return *(SmallVector<TrackingMDRef, 4> *)Operands;
1030 }
1031 
1032 NamedMDNode::NamedMDNode(const Twine &N)
1033     : Name(N.str()), Parent(nullptr),
1034       Operands(new SmallVector<TrackingMDRef, 4>()) {}
1035 
1036 NamedMDNode::~NamedMDNode() {
1037   dropAllReferences();
1038   delete &getNMDOps(Operands);
1039 }
1040 
1041 unsigned NamedMDNode::getNumOperands() const {
1042   return (unsigned)getNMDOps(Operands).size();
1043 }
1044 
1045 MDNode *NamedMDNode::getOperand(unsigned i) const {
1046   assert(i < getNumOperands() && "Invalid Operand number!");
1047   auto *N = getNMDOps(Operands)[i].get();
1048   return cast_or_null<MDNode>(N);
1049 }
1050 
1051 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); }
1052 
1053 void NamedMDNode::setOperand(unsigned I, MDNode *New) {
1054   assert(I < getNumOperands() && "Invalid operand number");
1055   getNMDOps(Operands)[I].reset(New);
1056 }
1057 
1058 void NamedMDNode::eraseFromParent() {
1059   getParent()->eraseNamedMetadata(this);
1060 }
1061 
1062 void NamedMDNode::dropAllReferences() {
1063   getNMDOps(Operands).clear();
1064 }
1065 
1066 StringRef NamedMDNode::getName() const {
1067   return StringRef(Name);
1068 }
1069 
1070 //===----------------------------------------------------------------------===//
1071 // Instruction Metadata method implementations.
1072 //
1073 void MDAttachmentMap::set(unsigned ID, MDNode &MD) {
1074   for (auto &I : Attachments)
1075     if (I.first == ID) {
1076       I.second.reset(&MD);
1077       return;
1078     }
1079   Attachments.emplace_back(std::piecewise_construct, std::make_tuple(ID),
1080                            std::make_tuple(&MD));
1081 }
1082 
1083 void MDAttachmentMap::erase(unsigned ID) {
1084   if (empty())
1085     return;
1086 
1087   // Common case is one/last value.
1088   if (Attachments.back().first == ID) {
1089     Attachments.pop_back();
1090     return;
1091   }
1092 
1093   for (auto I = Attachments.begin(), E = std::prev(Attachments.end()); I != E;
1094        ++I)
1095     if (I->first == ID) {
1096       *I = std::move(Attachments.back());
1097       Attachments.pop_back();
1098       return;
1099     }
1100 }
1101 
1102 MDNode *MDAttachmentMap::lookup(unsigned ID) const {
1103   for (const auto &I : Attachments)
1104     if (I.first == ID)
1105       return I.second;
1106   return nullptr;
1107 }
1108 
1109 void MDAttachmentMap::getAll(
1110     SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1111   Result.append(Attachments.begin(), Attachments.end());
1112 
1113   // Sort the resulting array so it is stable.
1114   if (Result.size() > 1)
1115     array_pod_sort(Result.begin(), Result.end());
1116 }
1117 
1118 void Instruction::setMetadata(StringRef Kind, MDNode *Node) {
1119   if (!Node && !hasMetadata())
1120     return;
1121   setMetadata(getContext().getMDKindID(Kind), Node);
1122 }
1123 
1124 MDNode *Instruction::getMetadataImpl(StringRef Kind) const {
1125   return getMetadataImpl(getContext().getMDKindID(Kind));
1126 }
1127 
1128 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) {
1129   SmallSet<unsigned, 5> KnownSet;
1130   KnownSet.insert(KnownIDs.begin(), KnownIDs.end());
1131 
1132   if (!hasMetadataHashEntry())
1133     return; // Nothing to remove!
1134 
1135   auto &InstructionMetadata = getContext().pImpl->InstructionMetadata;
1136 
1137   if (KnownSet.empty()) {
1138     // Just drop our entry at the store.
1139     InstructionMetadata.erase(this);
1140     setHasMetadataHashEntry(false);
1141     return;
1142   }
1143 
1144   auto &Info = InstructionMetadata[this];
1145   Info.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) {
1146     return !KnownSet.count(I.first);
1147   });
1148 
1149   if (Info.empty()) {
1150     // Drop our entry at the store.
1151     InstructionMetadata.erase(this);
1152     setHasMetadataHashEntry(false);
1153   }
1154 }
1155 
1156 void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
1157   if (!Node && !hasMetadata())
1158     return;
1159 
1160   // Handle 'dbg' as a special case since it is not stored in the hash table.
1161   if (KindID == LLVMContext::MD_dbg) {
1162     DbgLoc = DebugLoc(Node);
1163     return;
1164   }
1165 
1166   // Handle the case when we're adding/updating metadata on an instruction.
1167   if (Node) {
1168     auto &Info = getContext().pImpl->InstructionMetadata[this];
1169     assert(!Info.empty() == hasMetadataHashEntry() &&
1170            "HasMetadata bit is wonked");
1171     if (Info.empty())
1172       setHasMetadataHashEntry(true);
1173     Info.set(KindID, *Node);
1174     return;
1175   }
1176 
1177   // Otherwise, we're removing metadata from an instruction.
1178   assert((hasMetadataHashEntry() ==
1179           (getContext().pImpl->InstructionMetadata.count(this) > 0)) &&
1180          "HasMetadata bit out of date!");
1181   if (!hasMetadataHashEntry())
1182     return;  // Nothing to remove!
1183   auto &Info = getContext().pImpl->InstructionMetadata[this];
1184 
1185   // Handle removal of an existing value.
1186   Info.erase(KindID);
1187 
1188   if (!Info.empty())
1189     return;
1190 
1191   getContext().pImpl->InstructionMetadata.erase(this);
1192   setHasMetadataHashEntry(false);
1193 }
1194 
1195 void Instruction::setAAMetadata(const AAMDNodes &N) {
1196   setMetadata(LLVMContext::MD_tbaa, N.TBAA);
1197   setMetadata(LLVMContext::MD_alias_scope, N.Scope);
1198   setMetadata(LLVMContext::MD_noalias, N.NoAlias);
1199 }
1200 
1201 MDNode *Instruction::getMetadataImpl(unsigned KindID) const {
1202   // Handle 'dbg' as a special case since it is not stored in the hash table.
1203   if (KindID == LLVMContext::MD_dbg)
1204     return DbgLoc.getAsMDNode();
1205 
1206   if (!hasMetadataHashEntry())
1207     return nullptr;
1208   auto &Info = getContext().pImpl->InstructionMetadata[this];
1209   assert(!Info.empty() && "bit out of sync with hash table");
1210 
1211   return Info.lookup(KindID);
1212 }
1213 
1214 void Instruction::getAllMetadataImpl(
1215     SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1216   Result.clear();
1217 
1218   // Handle 'dbg' as a special case since it is not stored in the hash table.
1219   if (DbgLoc) {
1220     Result.push_back(
1221         std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode()));
1222     if (!hasMetadataHashEntry()) return;
1223   }
1224 
1225   assert(hasMetadataHashEntry() &&
1226          getContext().pImpl->InstructionMetadata.count(this) &&
1227          "Shouldn't have called this");
1228   const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second;
1229   assert(!Info.empty() && "Shouldn't have called this");
1230   Info.getAll(Result);
1231 }
1232 
1233 void Instruction::getAllMetadataOtherThanDebugLocImpl(
1234     SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1235   Result.clear();
1236   assert(hasMetadataHashEntry() &&
1237          getContext().pImpl->InstructionMetadata.count(this) &&
1238          "Shouldn't have called this");
1239   const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second;
1240   assert(!Info.empty() && "Shouldn't have called this");
1241   Info.getAll(Result);
1242 }
1243 
1244 void Instruction::clearMetadataHashEntries() {
1245   assert(hasMetadataHashEntry() && "Caller should check");
1246   getContext().pImpl->InstructionMetadata.erase(this);
1247   setHasMetadataHashEntry(false);
1248 }
1249 
1250 MDNode *Function::getMetadata(unsigned KindID) const {
1251   if (!hasMetadata())
1252     return nullptr;
1253   return getContext().pImpl->FunctionMetadata[this].lookup(KindID);
1254 }
1255 
1256 MDNode *Function::getMetadata(StringRef Kind) const {
1257   if (!hasMetadata())
1258     return nullptr;
1259   return getMetadata(getContext().getMDKindID(Kind));
1260 }
1261 
1262 void Function::setMetadata(unsigned KindID, MDNode *MD) {
1263   if (MD) {
1264     if (!hasMetadata())
1265       setHasMetadataHashEntry(true);
1266 
1267     getContext().pImpl->FunctionMetadata[this].set(KindID, *MD);
1268     return;
1269   }
1270 
1271   // Nothing to unset.
1272   if (!hasMetadata())
1273     return;
1274 
1275   auto &Store = getContext().pImpl->FunctionMetadata[this];
1276   Store.erase(KindID);
1277   if (Store.empty())
1278     clearMetadata();
1279 }
1280 
1281 void Function::setMetadata(StringRef Kind, MDNode *MD) {
1282   if (!MD && !hasMetadata())
1283     return;
1284   setMetadata(getContext().getMDKindID(Kind), MD);
1285 }
1286 
1287 void Function::getAllMetadata(
1288     SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
1289   MDs.clear();
1290 
1291   if (!hasMetadata())
1292     return;
1293 
1294   getContext().pImpl->FunctionMetadata[this].getAll(MDs);
1295 }
1296 
1297 void Function::dropUnknownMetadata(ArrayRef<unsigned> KnownIDs) {
1298   if (!hasMetadata())
1299     return;
1300   if (KnownIDs.empty()) {
1301     clearMetadata();
1302     return;
1303   }
1304 
1305   SmallSet<unsigned, 5> KnownSet;
1306   KnownSet.insert(KnownIDs.begin(), KnownIDs.end());
1307 
1308   auto &Store = getContext().pImpl->FunctionMetadata[this];
1309   assert(!Store.empty());
1310 
1311   Store.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) {
1312     return !KnownSet.count(I.first);
1313   });
1314 
1315   if (Store.empty())
1316     clearMetadata();
1317 }
1318 
1319 void Function::clearMetadata() {
1320   if (!hasMetadata())
1321     return;
1322   getContext().pImpl->FunctionMetadata.erase(this);
1323   setHasMetadataHashEntry(false);
1324 }
1325 
1326 void Function::setSubprogram(DISubprogram *SP) {
1327   setMetadata(LLVMContext::MD_dbg, SP);
1328 }
1329 
1330 DISubprogram *Function::getSubprogram() const {
1331   return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg));
1332 }
1333