1 //===- Metadata.cpp - Implement Metadata classes --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Metadata classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Metadata.h" 15 #include "LLVMContextImpl.h" 16 #include "MetadataImpl.h" 17 #include "SymbolTableListTraitsImpl.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/IR/ConstantRange.h" 24 #include "llvm/IR/DebugInfoMetadata.h" 25 #include "llvm/IR/Instruction.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ValueHandle.h" 29 30 using namespace llvm; 31 32 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD) 33 : Value(Ty, MetadataAsValueVal), MD(MD) { 34 track(); 35 } 36 37 MetadataAsValue::~MetadataAsValue() { 38 getType()->getContext().pImpl->MetadataAsValues.erase(MD); 39 untrack(); 40 } 41 42 /// \brief Canonicalize metadata arguments to intrinsics. 43 /// 44 /// To support bitcode upgrades (and assembly semantic sugar) for \a 45 /// MetadataAsValue, we need to canonicalize certain metadata. 46 /// 47 /// - nullptr is replaced by an empty MDNode. 48 /// - An MDNode with a single null operand is replaced by an empty MDNode. 49 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped. 50 /// 51 /// This maintains readability of bitcode from when metadata was a type of 52 /// value, and these bridges were unnecessary. 53 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context, 54 Metadata *MD) { 55 if (!MD) 56 // !{} 57 return MDNode::get(Context, None); 58 59 // Return early if this isn't a single-operand MDNode. 60 auto *N = dyn_cast<MDNode>(MD); 61 if (!N || N->getNumOperands() != 1) 62 return MD; 63 64 if (!N->getOperand(0)) 65 // !{} 66 return MDNode::get(Context, None); 67 68 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0))) 69 // Look through the MDNode. 70 return C; 71 72 return MD; 73 } 74 75 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) { 76 MD = canonicalizeMetadataForValue(Context, MD); 77 auto *&Entry = Context.pImpl->MetadataAsValues[MD]; 78 if (!Entry) 79 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD); 80 return Entry; 81 } 82 83 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context, 84 Metadata *MD) { 85 MD = canonicalizeMetadataForValue(Context, MD); 86 auto &Store = Context.pImpl->MetadataAsValues; 87 return Store.lookup(MD); 88 } 89 90 void MetadataAsValue::handleChangedMetadata(Metadata *MD) { 91 LLVMContext &Context = getContext(); 92 MD = canonicalizeMetadataForValue(Context, MD); 93 auto &Store = Context.pImpl->MetadataAsValues; 94 95 // Stop tracking the old metadata. 96 Store.erase(this->MD); 97 untrack(); 98 this->MD = nullptr; 99 100 // Start tracking MD, or RAUW if necessary. 101 auto *&Entry = Store[MD]; 102 if (Entry) { 103 replaceAllUsesWith(Entry); 104 delete this; 105 return; 106 } 107 108 this->MD = MD; 109 track(); 110 Entry = this; 111 } 112 113 void MetadataAsValue::track() { 114 if (MD) 115 MetadataTracking::track(&MD, *MD, *this); 116 } 117 118 void MetadataAsValue::untrack() { 119 if (MD) 120 MetadataTracking::untrack(MD); 121 } 122 123 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) { 124 bool WasInserted = 125 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex))) 126 .second; 127 (void)WasInserted; 128 assert(WasInserted && "Expected to add a reference"); 129 130 ++NextIndex; 131 assert(NextIndex != 0 && "Unexpected overflow"); 132 } 133 134 void ReplaceableMetadataImpl::dropRef(void *Ref) { 135 bool WasErased = UseMap.erase(Ref); 136 (void)WasErased; 137 assert(WasErased && "Expected to drop a reference"); 138 } 139 140 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New, 141 const Metadata &MD) { 142 auto I = UseMap.find(Ref); 143 assert(I != UseMap.end() && "Expected to move a reference"); 144 auto OwnerAndIndex = I->second; 145 UseMap.erase(I); 146 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second; 147 (void)WasInserted; 148 assert(WasInserted && "Expected to add a reference"); 149 150 // Check that the references are direct if there's no owner. 151 (void)MD; 152 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) && 153 "Reference without owner must be direct"); 154 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) && 155 "Reference without owner must be direct"); 156 } 157 158 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) { 159 assert(!(MD && isa<MDNode>(MD) && cast<MDNode>(MD)->isTemporary()) && 160 "Expected non-temp node"); 161 162 if (UseMap.empty()) 163 return; 164 165 // Copy out uses since UseMap will get touched below. 166 typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy; 167 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 168 std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) { 169 return L.second.second < R.second.second; 170 }); 171 for (const auto &Pair : Uses) { 172 // Check that this Ref hasn't disappeared after RAUW (when updating a 173 // previous Ref). 174 if (!UseMap.count(Pair.first)) 175 continue; 176 177 OwnerTy Owner = Pair.second.first; 178 if (!Owner) { 179 // Update unowned tracking references directly. 180 Metadata *&Ref = *static_cast<Metadata **>(Pair.first); 181 Ref = MD; 182 if (MD) 183 MetadataTracking::track(Ref); 184 UseMap.erase(Pair.first); 185 continue; 186 } 187 188 // Check for MetadataAsValue. 189 if (Owner.is<MetadataAsValue *>()) { 190 Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD); 191 continue; 192 } 193 194 // There's a Metadata owner -- dispatch. 195 Metadata *OwnerMD = Owner.get<Metadata *>(); 196 switch (OwnerMD->getMetadataID()) { 197 #define HANDLE_METADATA_LEAF(CLASS) \ 198 case Metadata::CLASS##Kind: \ 199 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \ 200 continue; 201 #include "llvm/IR/Metadata.def" 202 default: 203 llvm_unreachable("Invalid metadata subclass"); 204 } 205 } 206 assert(UseMap.empty() && "Expected all uses to be replaced"); 207 } 208 209 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) { 210 if (UseMap.empty()) 211 return; 212 213 if (!ResolveUsers) { 214 UseMap.clear(); 215 return; 216 } 217 218 // Copy out uses since UseMap could get touched below. 219 typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy; 220 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 221 std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) { 222 return L.second.second < R.second.second; 223 }); 224 UseMap.clear(); 225 for (const auto &Pair : Uses) { 226 auto Owner = Pair.second.first; 227 if (!Owner) 228 continue; 229 if (Owner.is<MetadataAsValue *>()) 230 continue; 231 232 // Resolve MDNodes that point at this. 233 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>()); 234 if (!OwnerMD) 235 continue; 236 if (OwnerMD->isResolved()) 237 continue; 238 OwnerMD->decrementUnresolvedOperandCount(); 239 } 240 } 241 242 static Function *getLocalFunction(Value *V) { 243 assert(V && "Expected value"); 244 if (auto *A = dyn_cast<Argument>(V)) 245 return A->getParent(); 246 if (BasicBlock *BB = cast<Instruction>(V)->getParent()) 247 return BB->getParent(); 248 return nullptr; 249 } 250 251 ValueAsMetadata *ValueAsMetadata::get(Value *V) { 252 assert(V && "Unexpected null Value"); 253 254 auto &Context = V->getContext(); 255 auto *&Entry = Context.pImpl->ValuesAsMetadata[V]; 256 if (!Entry) { 257 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) && 258 "Expected constant or function-local value"); 259 assert(!V->IsUsedByMD && 260 "Expected this to be the only metadata use"); 261 V->IsUsedByMD = true; 262 if (auto *C = dyn_cast<Constant>(V)) 263 Entry = new ConstantAsMetadata(C); 264 else 265 Entry = new LocalAsMetadata(V); 266 } 267 268 return Entry; 269 } 270 271 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) { 272 assert(V && "Unexpected null Value"); 273 return V->getContext().pImpl->ValuesAsMetadata.lookup(V); 274 } 275 276 void ValueAsMetadata::handleDeletion(Value *V) { 277 assert(V && "Expected valid value"); 278 279 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata; 280 auto I = Store.find(V); 281 if (I == Store.end()) 282 return; 283 284 // Remove old entry from the map. 285 ValueAsMetadata *MD = I->second; 286 assert(MD && "Expected valid metadata"); 287 assert(MD->getValue() == V && "Expected valid mapping"); 288 Store.erase(I); 289 290 // Delete the metadata. 291 MD->replaceAllUsesWith(nullptr); 292 delete MD; 293 } 294 295 void ValueAsMetadata::handleRAUW(Value *From, Value *To) { 296 assert(From && "Expected valid value"); 297 assert(To && "Expected valid value"); 298 assert(From != To && "Expected changed value"); 299 assert(From->getType() == To->getType() && "Unexpected type change"); 300 301 LLVMContext &Context = From->getType()->getContext(); 302 auto &Store = Context.pImpl->ValuesAsMetadata; 303 auto I = Store.find(From); 304 if (I == Store.end()) { 305 assert(!From->IsUsedByMD && 306 "Expected From not to be used by metadata"); 307 return; 308 } 309 310 // Remove old entry from the map. 311 assert(From->IsUsedByMD && 312 "Expected From to be used by metadata"); 313 From->IsUsedByMD = false; 314 ValueAsMetadata *MD = I->second; 315 assert(MD && "Expected valid metadata"); 316 assert(MD->getValue() == From && "Expected valid mapping"); 317 Store.erase(I); 318 319 if (isa<LocalAsMetadata>(MD)) { 320 if (auto *C = dyn_cast<Constant>(To)) { 321 // Local became a constant. 322 MD->replaceAllUsesWith(ConstantAsMetadata::get(C)); 323 delete MD; 324 return; 325 } 326 if (getLocalFunction(From) && getLocalFunction(To) && 327 getLocalFunction(From) != getLocalFunction(To)) { 328 // Function changed. 329 MD->replaceAllUsesWith(nullptr); 330 delete MD; 331 return; 332 } 333 } else if (!isa<Constant>(To)) { 334 // Changed to function-local value. 335 MD->replaceAllUsesWith(nullptr); 336 delete MD; 337 return; 338 } 339 340 auto *&Entry = Store[To]; 341 if (Entry) { 342 // The target already exists. 343 MD->replaceAllUsesWith(Entry); 344 delete MD; 345 return; 346 } 347 348 // Update MD in place (and update the map entry). 349 assert(!To->IsUsedByMD && 350 "Expected this to be the only metadata use"); 351 To->IsUsedByMD = true; 352 MD->V = To; 353 Entry = MD; 354 } 355 356 //===----------------------------------------------------------------------===// 357 // MDString implementation. 358 // 359 360 MDString *MDString::get(LLVMContext &Context, StringRef Str) { 361 auto &Store = Context.pImpl->MDStringCache; 362 auto I = Store.find(Str); 363 if (I != Store.end()) 364 return &I->second; 365 366 auto *Entry = 367 StringMapEntry<MDString>::Create(Str, Store.getAllocator(), MDString()); 368 bool WasInserted = Store.insert(Entry); 369 (void)WasInserted; 370 assert(WasInserted && "Expected entry to be inserted"); 371 Entry->second.Entry = Entry; 372 return &Entry->second; 373 } 374 375 StringRef MDString::getString() const { 376 assert(Entry && "Expected to find string map entry"); 377 return Entry->first(); 378 } 379 380 //===----------------------------------------------------------------------===// 381 // MDNode implementation. 382 // 383 384 // Assert that the MDNode types will not be unaligned by the objects 385 // prepended to them. 386 #define HANDLE_MDNODE_LEAF(CLASS) \ 387 static_assert( \ 388 llvm::AlignOf<uint64_t>::Alignment >= llvm::AlignOf<CLASS>::Alignment, \ 389 "Alignment is insufficient after objects prepended to " #CLASS); 390 #include "llvm/IR/Metadata.def" 391 392 void *MDNode::operator new(size_t Size, unsigned NumOps) { 393 size_t OpSize = NumOps * sizeof(MDOperand); 394 // uint64_t is the most aligned type we need support (ensured by static_assert 395 // above) 396 OpSize = RoundUpToAlignment(OpSize, llvm::alignOf<uint64_t>()); 397 void *Ptr = reinterpret_cast<char *>(::operator new(OpSize + Size)) + OpSize; 398 MDOperand *O = static_cast<MDOperand *>(Ptr); 399 for (MDOperand *E = O - NumOps; O != E; --O) 400 (void)new (O - 1) MDOperand; 401 return Ptr; 402 } 403 404 void MDNode::operator delete(void *Mem) { 405 MDNode *N = static_cast<MDNode *>(Mem); 406 size_t OpSize = N->NumOperands * sizeof(MDOperand); 407 OpSize = RoundUpToAlignment(OpSize, llvm::alignOf<uint64_t>()); 408 409 MDOperand *O = static_cast<MDOperand *>(Mem); 410 for (MDOperand *E = O - N->NumOperands; O != E; --O) 411 (O - 1)->~MDOperand(); 412 ::operator delete(reinterpret_cast<char *>(Mem) - OpSize); 413 } 414 415 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage, 416 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2) 417 : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()), 418 NumUnresolved(0), Context(Context) { 419 unsigned Op = 0; 420 for (Metadata *MD : Ops1) 421 setOperand(Op++, MD); 422 for (Metadata *MD : Ops2) 423 setOperand(Op++, MD); 424 425 if (isDistinct()) 426 return; 427 428 if (isUniqued()) 429 // Check whether any operands are unresolved, requiring re-uniquing. If 430 // not, don't support RAUW. 431 if (!countUnresolvedOperands()) 432 return; 433 434 this->Context.makeReplaceable(make_unique<ReplaceableMetadataImpl>(Context)); 435 } 436 437 TempMDNode MDNode::clone() const { 438 switch (getMetadataID()) { 439 default: 440 llvm_unreachable("Invalid MDNode subclass"); 441 #define HANDLE_MDNODE_LEAF(CLASS) \ 442 case CLASS##Kind: \ 443 return cast<CLASS>(this)->cloneImpl(); 444 #include "llvm/IR/Metadata.def" 445 } 446 } 447 448 static bool isOperandUnresolved(Metadata *Op) { 449 if (auto *N = dyn_cast_or_null<MDNode>(Op)) 450 return !N->isResolved(); 451 return false; 452 } 453 454 unsigned MDNode::countUnresolvedOperands() { 455 assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted"); 456 NumUnresolved = std::count_if(op_begin(), op_end(), isOperandUnresolved); 457 return NumUnresolved; 458 } 459 460 void MDNode::makeUniqued() { 461 assert(isTemporary() && "Expected this to be temporary"); 462 assert(!isResolved() && "Expected this to be unresolved"); 463 464 // Enable uniquing callbacks. 465 for (auto &Op : mutable_operands()) 466 Op.reset(Op.get(), this); 467 468 // Make this 'uniqued'. 469 Storage = Uniqued; 470 if (!countUnresolvedOperands()) 471 resolve(); 472 473 assert(isUniqued() && "Expected this to be uniqued"); 474 } 475 476 void MDNode::makeDistinct() { 477 assert(isTemporary() && "Expected this to be temporary"); 478 assert(!isResolved() && "Expected this to be unresolved"); 479 480 // Pretend to be uniqued, resolve the node, and then store in distinct table. 481 Storage = Uniqued; 482 resolve(); 483 storeDistinctInContext(); 484 485 assert(isDistinct() && "Expected this to be distinct"); 486 assert(isResolved() && "Expected this to be resolved"); 487 } 488 489 void MDNode::resolve() { 490 assert(isUniqued() && "Expected this to be uniqued"); 491 assert(!isResolved() && "Expected this to be unresolved"); 492 493 // Move the map, so that this immediately looks resolved. 494 auto Uses = Context.takeReplaceableUses(); 495 NumUnresolved = 0; 496 assert(isResolved() && "Expected this to be resolved"); 497 498 // Drop RAUW support. 499 Uses->resolveAllUses(); 500 } 501 502 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) { 503 assert(NumUnresolved != 0 && "Expected unresolved operands"); 504 505 // Check if an operand was resolved. 506 if (!isOperandUnresolved(Old)) { 507 if (isOperandUnresolved(New)) 508 // An operand was un-resolved! 509 ++NumUnresolved; 510 } else if (!isOperandUnresolved(New)) 511 decrementUnresolvedOperandCount(); 512 } 513 514 void MDNode::decrementUnresolvedOperandCount() { 515 if (!--NumUnresolved) 516 // Last unresolved operand has just been resolved. 517 resolve(); 518 } 519 520 void MDNode::resolveCycles() { 521 if (isResolved()) 522 return; 523 524 // Resolve this node immediately. 525 resolve(); 526 527 // Resolve all operands. 528 for (const auto &Op : operands()) { 529 auto *N = dyn_cast_or_null<MDNode>(Op); 530 if (!N) 531 continue; 532 533 assert(!N->isTemporary() && 534 "Expected all forward declarations to be resolved"); 535 if (!N->isResolved()) 536 N->resolveCycles(); 537 } 538 } 539 540 static bool hasSelfReference(MDNode *N) { 541 for (Metadata *MD : N->operands()) 542 if (MD == N) 543 return true; 544 return false; 545 } 546 547 MDNode *MDNode::replaceWithPermanentImpl() { 548 switch (getMetadataID()) { 549 default: 550 // If this type isn't uniquable, replace with a distinct node. 551 return replaceWithDistinctImpl(); 552 553 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 554 case CLASS##Kind: \ 555 break; 556 #include "llvm/IR/Metadata.def" 557 } 558 559 // Even if this type is uniquable, self-references have to be distinct. 560 if (hasSelfReference(this)) 561 return replaceWithDistinctImpl(); 562 return replaceWithUniquedImpl(); 563 } 564 565 MDNode *MDNode::replaceWithUniquedImpl() { 566 // Try to uniquify in place. 567 MDNode *UniquedNode = uniquify(); 568 569 if (UniquedNode == this) { 570 makeUniqued(); 571 return this; 572 } 573 574 // Collision, so RAUW instead. 575 replaceAllUsesWith(UniquedNode); 576 deleteAsSubclass(); 577 return UniquedNode; 578 } 579 580 MDNode *MDNode::replaceWithDistinctImpl() { 581 makeDistinct(); 582 return this; 583 } 584 585 void MDTuple::recalculateHash() { 586 setHash(MDTupleInfo::KeyTy::calculateHash(this)); 587 } 588 589 void MDNode::dropAllReferences() { 590 for (unsigned I = 0, E = NumOperands; I != E; ++I) 591 setOperand(I, nullptr); 592 if (!isResolved()) { 593 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false); 594 (void)Context.takeReplaceableUses(); 595 } 596 } 597 598 void MDNode::handleChangedOperand(void *Ref, Metadata *New) { 599 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin(); 600 assert(Op < getNumOperands() && "Expected valid operand"); 601 602 if (!isUniqued()) { 603 // This node is not uniqued. Just set the operand and be done with it. 604 setOperand(Op, New); 605 return; 606 } 607 608 // This node is uniqued. 609 eraseFromStore(); 610 611 Metadata *Old = getOperand(Op); 612 setOperand(Op, New); 613 614 // Drop uniquing for self-reference cycles. 615 if (New == this) { 616 if (!isResolved()) 617 resolve(); 618 storeDistinctInContext(); 619 return; 620 } 621 622 // Re-unique the node. 623 auto *Uniqued = uniquify(); 624 if (Uniqued == this) { 625 if (!isResolved()) 626 resolveAfterOperandChange(Old, New); 627 return; 628 } 629 630 // Collision. 631 if (!isResolved()) { 632 // Still unresolved, so RAUW. 633 // 634 // First, clear out all operands to prevent any recursion (similar to 635 // dropAllReferences(), but we still need the use-list). 636 for (unsigned O = 0, E = getNumOperands(); O != E; ++O) 637 setOperand(O, nullptr); 638 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued); 639 deleteAsSubclass(); 640 return; 641 } 642 643 // Store in non-uniqued form if RAUW isn't possible. 644 storeDistinctInContext(); 645 } 646 647 void MDNode::deleteAsSubclass() { 648 switch (getMetadataID()) { 649 default: 650 llvm_unreachable("Invalid subclass of MDNode"); 651 #define HANDLE_MDNODE_LEAF(CLASS) \ 652 case CLASS##Kind: \ 653 delete cast<CLASS>(this); \ 654 break; 655 #include "llvm/IR/Metadata.def" 656 } 657 } 658 659 template <class T, class InfoT> 660 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) { 661 if (T *U = getUniqued(Store, N)) 662 return U; 663 664 Store.insert(N); 665 return N; 666 } 667 668 template <class NodeTy> struct MDNode::HasCachedHash { 669 typedef char Yes[1]; 670 typedef char No[2]; 671 template <class U, U Val> struct SFINAE {}; 672 673 template <class U> 674 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *); 675 template <class U> static No &check(...); 676 677 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes); 678 }; 679 680 MDNode *MDNode::uniquify() { 681 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node"); 682 683 // Try to insert into uniquing store. 684 switch (getMetadataID()) { 685 default: 686 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 687 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 688 case CLASS##Kind: { \ 689 CLASS *SubclassThis = cast<CLASS>(this); \ 690 std::integral_constant<bool, HasCachedHash<CLASS>::value> \ 691 ShouldRecalculateHash; \ 692 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \ 693 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \ 694 } 695 #include "llvm/IR/Metadata.def" 696 } 697 } 698 699 void MDNode::eraseFromStore() { 700 switch (getMetadataID()) { 701 default: 702 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 703 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 704 case CLASS##Kind: \ 705 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \ 706 break; 707 #include "llvm/IR/Metadata.def" 708 } 709 } 710 711 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs, 712 StorageType Storage, bool ShouldCreate) { 713 unsigned Hash = 0; 714 if (Storage == Uniqued) { 715 MDTupleInfo::KeyTy Key(MDs); 716 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key)) 717 return N; 718 if (!ShouldCreate) 719 return nullptr; 720 Hash = Key.getHash(); 721 } else { 722 assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); 723 } 724 725 return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs), 726 Storage, Context.pImpl->MDTuples); 727 } 728 729 void MDNode::deleteTemporary(MDNode *N) { 730 assert(N->isTemporary() && "Expected temporary node"); 731 N->replaceAllUsesWith(nullptr); 732 N->deleteAsSubclass(); 733 } 734 735 void MDNode::storeDistinctInContext() { 736 assert(isResolved() && "Expected resolved nodes"); 737 Storage = Distinct; 738 739 // Reset the hash. 740 switch (getMetadataID()) { 741 default: 742 llvm_unreachable("Invalid subclass of MDNode"); 743 #define HANDLE_MDNODE_LEAF(CLASS) \ 744 case CLASS##Kind: { \ 745 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \ 746 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \ 747 break; \ 748 } 749 #include "llvm/IR/Metadata.def" 750 } 751 752 getContext().pImpl->DistinctMDNodes.insert(this); 753 } 754 755 void MDNode::replaceOperandWith(unsigned I, Metadata *New) { 756 if (getOperand(I) == New) 757 return; 758 759 if (!isUniqued()) { 760 setOperand(I, New); 761 return; 762 } 763 764 handleChangedOperand(mutable_begin() + I, New); 765 } 766 767 void MDNode::setOperand(unsigned I, Metadata *New) { 768 assert(I < NumOperands); 769 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr); 770 } 771 772 /// \brief Get a node, or a self-reference that looks like it. 773 /// 774 /// Special handling for finding self-references, for use by \a 775 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from 776 /// when self-referencing nodes were still uniqued. If the first operand has 777 /// the same operands as \c Ops, return the first operand instead. 778 static MDNode *getOrSelfReference(LLVMContext &Context, 779 ArrayRef<Metadata *> Ops) { 780 if (!Ops.empty()) 781 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0])) 782 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) { 783 for (unsigned I = 1, E = Ops.size(); I != E; ++I) 784 if (Ops[I] != N->getOperand(I)) 785 return MDNode::get(Context, Ops); 786 return N; 787 } 788 789 return MDNode::get(Context, Ops); 790 } 791 792 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) { 793 if (!A) 794 return B; 795 if (!B) 796 return A; 797 798 SmallVector<Metadata *, 4> MDs; 799 MDs.reserve(A->getNumOperands() + B->getNumOperands()); 800 MDs.append(A->op_begin(), A->op_end()); 801 MDs.append(B->op_begin(), B->op_end()); 802 803 // FIXME: This preserves long-standing behaviour, but is it really the right 804 // behaviour? Or was that an unintended side-effect of node uniquing? 805 return getOrSelfReference(A->getContext(), MDs); 806 } 807 808 MDNode *MDNode::intersect(MDNode *A, MDNode *B) { 809 if (!A || !B) 810 return nullptr; 811 812 SmallVector<Metadata *, 4> MDs; 813 for (Metadata *MD : A->operands()) 814 if (std::find(B->op_begin(), B->op_end(), MD) != B->op_end()) 815 MDs.push_back(MD); 816 817 // FIXME: This preserves long-standing behaviour, but is it really the right 818 // behaviour? Or was that an unintended side-effect of node uniquing? 819 return getOrSelfReference(A->getContext(), MDs); 820 } 821 822 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) { 823 if (!A || !B) 824 return nullptr; 825 826 SmallVector<Metadata *, 4> MDs(B->op_begin(), B->op_end()); 827 for (Metadata *MD : A->operands()) 828 if (std::find(B->op_begin(), B->op_end(), MD) == B->op_end()) 829 MDs.push_back(MD); 830 831 // FIXME: This preserves long-standing behaviour, but is it really the right 832 // behaviour? Or was that an unintended side-effect of node uniquing? 833 return getOrSelfReference(A->getContext(), MDs); 834 } 835 836 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) { 837 if (!A || !B) 838 return nullptr; 839 840 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF(); 841 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF(); 842 if (AVal.compare(BVal) == APFloat::cmpLessThan) 843 return A; 844 return B; 845 } 846 847 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 848 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 849 } 850 851 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) { 852 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B); 853 } 854 855 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints, 856 ConstantInt *Low, ConstantInt *High) { 857 ConstantRange NewRange(Low->getValue(), High->getValue()); 858 unsigned Size = EndPoints.size(); 859 APInt LB = EndPoints[Size - 2]->getValue(); 860 APInt LE = EndPoints[Size - 1]->getValue(); 861 ConstantRange LastRange(LB, LE); 862 if (canBeMerged(NewRange, LastRange)) { 863 ConstantRange Union = LastRange.unionWith(NewRange); 864 Type *Ty = High->getType(); 865 EndPoints[Size - 2] = 866 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower())); 867 EndPoints[Size - 1] = 868 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper())); 869 return true; 870 } 871 return false; 872 } 873 874 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints, 875 ConstantInt *Low, ConstantInt *High) { 876 if (!EndPoints.empty()) 877 if (tryMergeRange(EndPoints, Low, High)) 878 return; 879 880 EndPoints.push_back(Low); 881 EndPoints.push_back(High); 882 } 883 884 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) { 885 // Given two ranges, we want to compute the union of the ranges. This 886 // is slightly complitade by having to combine the intervals and merge 887 // the ones that overlap. 888 889 if (!A || !B) 890 return nullptr; 891 892 if (A == B) 893 return A; 894 895 // First, walk both lists in older of the lower boundary of each interval. 896 // At each step, try to merge the new interval to the last one we adedd. 897 SmallVector<ConstantInt *, 4> EndPoints; 898 int AI = 0; 899 int BI = 0; 900 int AN = A->getNumOperands() / 2; 901 int BN = B->getNumOperands() / 2; 902 while (AI < AN && BI < BN) { 903 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI)); 904 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI)); 905 906 if (ALow->getValue().slt(BLow->getValue())) { 907 addRange(EndPoints, ALow, 908 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 909 ++AI; 910 } else { 911 addRange(EndPoints, BLow, 912 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 913 ++BI; 914 } 915 } 916 while (AI < AN) { 917 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)), 918 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 919 ++AI; 920 } 921 while (BI < BN) { 922 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)), 923 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 924 ++BI; 925 } 926 927 // If we have more than 2 ranges (4 endpoints) we have to try to merge 928 // the last and first ones. 929 unsigned Size = EndPoints.size(); 930 if (Size > 4) { 931 ConstantInt *FB = EndPoints[0]; 932 ConstantInt *FE = EndPoints[1]; 933 if (tryMergeRange(EndPoints, FB, FE)) { 934 for (unsigned i = 0; i < Size - 2; ++i) { 935 EndPoints[i] = EndPoints[i + 2]; 936 } 937 EndPoints.resize(Size - 2); 938 } 939 } 940 941 // If in the end we have a single range, it is possible that it is now the 942 // full range. Just drop the metadata in that case. 943 if (EndPoints.size() == 2) { 944 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue()); 945 if (Range.isFullSet()) 946 return nullptr; 947 } 948 949 SmallVector<Metadata *, 4> MDs; 950 MDs.reserve(EndPoints.size()); 951 for (auto *I : EndPoints) 952 MDs.push_back(ConstantAsMetadata::get(I)); 953 return MDNode::get(A->getContext(), MDs); 954 } 955 956 //===----------------------------------------------------------------------===// 957 // NamedMDNode implementation. 958 // 959 960 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) { 961 return *(SmallVector<TrackingMDRef, 4> *)Operands; 962 } 963 964 NamedMDNode::NamedMDNode(const Twine &N) 965 : Name(N.str()), Parent(nullptr), 966 Operands(new SmallVector<TrackingMDRef, 4>()) {} 967 968 NamedMDNode::~NamedMDNode() { 969 dropAllReferences(); 970 delete &getNMDOps(Operands); 971 } 972 973 unsigned NamedMDNode::getNumOperands() const { 974 return (unsigned)getNMDOps(Operands).size(); 975 } 976 977 MDNode *NamedMDNode::getOperand(unsigned i) const { 978 assert(i < getNumOperands() && "Invalid Operand number!"); 979 auto *N = getNMDOps(Operands)[i].get(); 980 return cast_or_null<MDNode>(N); 981 } 982 983 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); } 984 985 void NamedMDNode::setOperand(unsigned I, MDNode *New) { 986 assert(I < getNumOperands() && "Invalid operand number"); 987 getNMDOps(Operands)[I].reset(New); 988 } 989 990 void NamedMDNode::eraseFromParent() { 991 getParent()->eraseNamedMetadata(this); 992 } 993 994 void NamedMDNode::dropAllReferences() { 995 getNMDOps(Operands).clear(); 996 } 997 998 StringRef NamedMDNode::getName() const { 999 return StringRef(Name); 1000 } 1001 1002 //===----------------------------------------------------------------------===// 1003 // Instruction Metadata method implementations. 1004 // 1005 void MDAttachmentMap::set(unsigned ID, MDNode &MD) { 1006 for (auto &I : Attachments) 1007 if (I.first == ID) { 1008 I.second.reset(&MD); 1009 return; 1010 } 1011 Attachments.emplace_back(std::piecewise_construct, std::make_tuple(ID), 1012 std::make_tuple(&MD)); 1013 } 1014 1015 void MDAttachmentMap::erase(unsigned ID) { 1016 if (empty()) 1017 return; 1018 1019 // Common case is one/last value. 1020 if (Attachments.back().first == ID) { 1021 Attachments.pop_back(); 1022 return; 1023 } 1024 1025 for (auto I = Attachments.begin(), E = std::prev(Attachments.end()); I != E; 1026 ++I) 1027 if (I->first == ID) { 1028 *I = std::move(Attachments.back()); 1029 Attachments.pop_back(); 1030 return; 1031 } 1032 } 1033 1034 MDNode *MDAttachmentMap::lookup(unsigned ID) const { 1035 for (const auto &I : Attachments) 1036 if (I.first == ID) 1037 return I.second; 1038 return nullptr; 1039 } 1040 1041 void MDAttachmentMap::getAll( 1042 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1043 Result.append(Attachments.begin(), Attachments.end()); 1044 1045 // Sort the resulting array so it is stable. 1046 if (Result.size() > 1) 1047 array_pod_sort(Result.begin(), Result.end()); 1048 } 1049 1050 void Instruction::setMetadata(StringRef Kind, MDNode *Node) { 1051 if (!Node && !hasMetadata()) 1052 return; 1053 setMetadata(getContext().getMDKindID(Kind), Node); 1054 } 1055 1056 MDNode *Instruction::getMetadataImpl(StringRef Kind) const { 1057 return getMetadataImpl(getContext().getMDKindID(Kind)); 1058 } 1059 1060 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) { 1061 SmallSet<unsigned, 5> KnownSet; 1062 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 1063 1064 if (!hasMetadataHashEntry()) 1065 return; // Nothing to remove! 1066 1067 auto &InstructionMetadata = getContext().pImpl->InstructionMetadata; 1068 1069 if (KnownSet.empty()) { 1070 // Just drop our entry at the store. 1071 InstructionMetadata.erase(this); 1072 setHasMetadataHashEntry(false); 1073 return; 1074 } 1075 1076 auto &Info = InstructionMetadata[this]; 1077 Info.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) { 1078 return !KnownSet.count(I.first); 1079 }); 1080 1081 if (Info.empty()) { 1082 // Drop our entry at the store. 1083 InstructionMetadata.erase(this); 1084 setHasMetadataHashEntry(false); 1085 } 1086 } 1087 1088 /// setMetadata - Set the metadata of the specified kind to the specified 1089 /// node. This updates/replaces metadata if already present, or removes it if 1090 /// Node is null. 1091 void Instruction::setMetadata(unsigned KindID, MDNode *Node) { 1092 if (!Node && !hasMetadata()) 1093 return; 1094 1095 // Handle 'dbg' as a special case since it is not stored in the hash table. 1096 if (KindID == LLVMContext::MD_dbg) { 1097 DbgLoc = DebugLoc(Node); 1098 return; 1099 } 1100 1101 // Handle the case when we're adding/updating metadata on an instruction. 1102 if (Node) { 1103 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1104 assert(!Info.empty() == hasMetadataHashEntry() && 1105 "HasMetadata bit is wonked"); 1106 if (Info.empty()) 1107 setHasMetadataHashEntry(true); 1108 Info.set(KindID, *Node); 1109 return; 1110 } 1111 1112 // Otherwise, we're removing metadata from an instruction. 1113 assert((hasMetadataHashEntry() == 1114 (getContext().pImpl->InstructionMetadata.count(this) > 0)) && 1115 "HasMetadata bit out of date!"); 1116 if (!hasMetadataHashEntry()) 1117 return; // Nothing to remove! 1118 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1119 1120 // Handle removal of an existing value. 1121 Info.erase(KindID); 1122 1123 if (!Info.empty()) 1124 return; 1125 1126 getContext().pImpl->InstructionMetadata.erase(this); 1127 setHasMetadataHashEntry(false); 1128 } 1129 1130 void Instruction::setAAMetadata(const AAMDNodes &N) { 1131 setMetadata(LLVMContext::MD_tbaa, N.TBAA); 1132 setMetadata(LLVMContext::MD_alias_scope, N.Scope); 1133 setMetadata(LLVMContext::MD_noalias, N.NoAlias); 1134 } 1135 1136 MDNode *Instruction::getMetadataImpl(unsigned KindID) const { 1137 // Handle 'dbg' as a special case since it is not stored in the hash table. 1138 if (KindID == LLVMContext::MD_dbg) 1139 return DbgLoc.getAsMDNode(); 1140 1141 if (!hasMetadataHashEntry()) 1142 return nullptr; 1143 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1144 assert(!Info.empty() && "bit out of sync with hash table"); 1145 1146 return Info.lookup(KindID); 1147 } 1148 1149 void Instruction::getAllMetadataImpl( 1150 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1151 Result.clear(); 1152 1153 // Handle 'dbg' as a special case since it is not stored in the hash table. 1154 if (DbgLoc) { 1155 Result.push_back( 1156 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode())); 1157 if (!hasMetadataHashEntry()) return; 1158 } 1159 1160 assert(hasMetadataHashEntry() && 1161 getContext().pImpl->InstructionMetadata.count(this) && 1162 "Shouldn't have called this"); 1163 const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second; 1164 assert(!Info.empty() && "Shouldn't have called this"); 1165 Info.getAll(Result); 1166 } 1167 1168 void Instruction::getAllMetadataOtherThanDebugLocImpl( 1169 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1170 Result.clear(); 1171 assert(hasMetadataHashEntry() && 1172 getContext().pImpl->InstructionMetadata.count(this) && 1173 "Shouldn't have called this"); 1174 const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second; 1175 assert(!Info.empty() && "Shouldn't have called this"); 1176 Info.getAll(Result); 1177 } 1178 1179 /// clearMetadataHashEntries - Clear all hashtable-based metadata from 1180 /// this instruction. 1181 void Instruction::clearMetadataHashEntries() { 1182 assert(hasMetadataHashEntry() && "Caller should check"); 1183 getContext().pImpl->InstructionMetadata.erase(this); 1184 setHasMetadataHashEntry(false); 1185 } 1186 1187 MDNode *Function::getMetadata(unsigned KindID) const { 1188 if (!hasMetadata()) 1189 return nullptr; 1190 return getContext().pImpl->FunctionMetadata[this].lookup(KindID); 1191 } 1192 1193 MDNode *Function::getMetadata(StringRef Kind) const { 1194 if (!hasMetadata()) 1195 return nullptr; 1196 return getMetadata(getContext().getMDKindID(Kind)); 1197 } 1198 1199 void Function::setMetadata(unsigned KindID, MDNode *MD) { 1200 if (MD) { 1201 if (!hasMetadata()) 1202 setHasMetadataHashEntry(true); 1203 1204 getContext().pImpl->FunctionMetadata[this].set(KindID, *MD); 1205 return; 1206 } 1207 1208 // Nothing to unset. 1209 if (!hasMetadata()) 1210 return; 1211 1212 auto &Store = getContext().pImpl->FunctionMetadata[this]; 1213 Store.erase(KindID); 1214 if (Store.empty()) 1215 clearMetadata(); 1216 } 1217 1218 void Function::setMetadata(StringRef Kind, MDNode *MD) { 1219 if (!MD && !hasMetadata()) 1220 return; 1221 setMetadata(getContext().getMDKindID(Kind), MD); 1222 } 1223 1224 void Function::getAllMetadata( 1225 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { 1226 MDs.clear(); 1227 1228 if (!hasMetadata()) 1229 return; 1230 1231 getContext().pImpl->FunctionMetadata[this].getAll(MDs); 1232 } 1233 1234 void Function::dropUnknownMetadata(ArrayRef<unsigned> KnownIDs) { 1235 if (!hasMetadata()) 1236 return; 1237 if (KnownIDs.empty()) { 1238 clearMetadata(); 1239 return; 1240 } 1241 1242 SmallSet<unsigned, 5> KnownSet; 1243 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 1244 1245 auto &Store = getContext().pImpl->FunctionMetadata[this]; 1246 assert(!Store.empty()); 1247 1248 Store.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) { 1249 return !KnownSet.count(I.first); 1250 }); 1251 1252 if (Store.empty()) 1253 clearMetadata(); 1254 } 1255 1256 void Function::clearMetadata() { 1257 if (!hasMetadata()) 1258 return; 1259 getContext().pImpl->FunctionMetadata.erase(this); 1260 setHasMetadataHashEntry(false); 1261 } 1262 1263 void Function::setSubprogram(DISubprogram *SP) { 1264 setMetadata(LLVMContext::MD_dbg, SP); 1265 } 1266 1267 DISubprogram *Function::getSubprogram() const { 1268 return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg)); 1269 } 1270