1 //===- Metadata.cpp - Implement Metadata classes --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Metadata classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Metadata.h" 15 #include "LLVMContextImpl.h" 16 #include "MetadataImpl.h" 17 #include "SymbolTableListTraitsImpl.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/IR/ConstantRange.h" 24 #include "llvm/IR/DebugInfoMetadata.h" 25 #include "llvm/IR/Instruction.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ValueHandle.h" 29 30 using namespace llvm; 31 32 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD) 33 : Value(Ty, MetadataAsValueVal), MD(MD) { 34 track(); 35 } 36 37 MetadataAsValue::~MetadataAsValue() { 38 getType()->getContext().pImpl->MetadataAsValues.erase(MD); 39 untrack(); 40 } 41 42 /// Canonicalize metadata arguments to intrinsics. 43 /// 44 /// To support bitcode upgrades (and assembly semantic sugar) for \a 45 /// MetadataAsValue, we need to canonicalize certain metadata. 46 /// 47 /// - nullptr is replaced by an empty MDNode. 48 /// - An MDNode with a single null operand is replaced by an empty MDNode. 49 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped. 50 /// 51 /// This maintains readability of bitcode from when metadata was a type of 52 /// value, and these bridges were unnecessary. 53 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context, 54 Metadata *MD) { 55 if (!MD) 56 // !{} 57 return MDNode::get(Context, None); 58 59 // Return early if this isn't a single-operand MDNode. 60 auto *N = dyn_cast<MDNode>(MD); 61 if (!N || N->getNumOperands() != 1) 62 return MD; 63 64 if (!N->getOperand(0)) 65 // !{} 66 return MDNode::get(Context, None); 67 68 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0))) 69 // Look through the MDNode. 70 return C; 71 72 return MD; 73 } 74 75 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) { 76 MD = canonicalizeMetadataForValue(Context, MD); 77 auto *&Entry = Context.pImpl->MetadataAsValues[MD]; 78 if (!Entry) 79 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD); 80 return Entry; 81 } 82 83 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context, 84 Metadata *MD) { 85 MD = canonicalizeMetadataForValue(Context, MD); 86 auto &Store = Context.pImpl->MetadataAsValues; 87 return Store.lookup(MD); 88 } 89 90 void MetadataAsValue::handleChangedMetadata(Metadata *MD) { 91 LLVMContext &Context = getContext(); 92 MD = canonicalizeMetadataForValue(Context, MD); 93 auto &Store = Context.pImpl->MetadataAsValues; 94 95 // Stop tracking the old metadata. 96 Store.erase(this->MD); 97 untrack(); 98 this->MD = nullptr; 99 100 // Start tracking MD, or RAUW if necessary. 101 auto *&Entry = Store[MD]; 102 if (Entry) { 103 replaceAllUsesWith(Entry); 104 delete this; 105 return; 106 } 107 108 this->MD = MD; 109 track(); 110 Entry = this; 111 } 112 113 void MetadataAsValue::track() { 114 if (MD) 115 MetadataTracking::track(&MD, *MD, *this); 116 } 117 118 void MetadataAsValue::untrack() { 119 if (MD) 120 MetadataTracking::untrack(MD); 121 } 122 123 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) { 124 assert(Ref && "Expected live reference"); 125 assert((Owner || *static_cast<Metadata **>(Ref) == &MD) && 126 "Reference without owner must be direct"); 127 if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) { 128 R->addRef(Ref, Owner); 129 return true; 130 } 131 return false; 132 } 133 134 void MetadataTracking::untrack(void *Ref, Metadata &MD) { 135 assert(Ref && "Expected live reference"); 136 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) 137 R->dropRef(Ref); 138 } 139 140 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) { 141 assert(Ref && "Expected live reference"); 142 assert(New && "Expected live reference"); 143 assert(Ref != New && "Expected change"); 144 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) { 145 R->moveRef(Ref, New, MD); 146 return true; 147 } 148 assert(!isReplaceable(MD) && 149 "Expected un-replaceable metadata, since we didn't move a reference"); 150 return false; 151 } 152 153 bool MetadataTracking::isReplaceable(const Metadata &MD) { 154 return ReplaceableMetadataImpl::isReplaceable(MD); 155 } 156 157 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) { 158 bool WasInserted = 159 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex))) 160 .second; 161 (void)WasInserted; 162 assert(WasInserted && "Expected to add a reference"); 163 164 ++NextIndex; 165 assert(NextIndex != 0 && "Unexpected overflow"); 166 } 167 168 void ReplaceableMetadataImpl::dropRef(void *Ref) { 169 bool WasErased = UseMap.erase(Ref); 170 (void)WasErased; 171 assert(WasErased && "Expected to drop a reference"); 172 } 173 174 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New, 175 const Metadata &MD) { 176 auto I = UseMap.find(Ref); 177 assert(I != UseMap.end() && "Expected to move a reference"); 178 auto OwnerAndIndex = I->second; 179 UseMap.erase(I); 180 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second; 181 (void)WasInserted; 182 assert(WasInserted && "Expected to add a reference"); 183 184 // Check that the references are direct if there's no owner. 185 (void)MD; 186 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) && 187 "Reference without owner must be direct"); 188 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) && 189 "Reference without owner must be direct"); 190 } 191 192 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) { 193 if (UseMap.empty()) 194 return; 195 196 // Copy out uses since UseMap will get touched below. 197 typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy; 198 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 199 std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) { 200 return L.second.second < R.second.second; 201 }); 202 for (const auto &Pair : Uses) { 203 // Check that this Ref hasn't disappeared after RAUW (when updating a 204 // previous Ref). 205 if (!UseMap.count(Pair.first)) 206 continue; 207 208 OwnerTy Owner = Pair.second.first; 209 if (!Owner) { 210 // Update unowned tracking references directly. 211 Metadata *&Ref = *static_cast<Metadata **>(Pair.first); 212 Ref = MD; 213 if (MD) 214 MetadataTracking::track(Ref); 215 UseMap.erase(Pair.first); 216 continue; 217 } 218 219 // Check for MetadataAsValue. 220 if (Owner.is<MetadataAsValue *>()) { 221 Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD); 222 continue; 223 } 224 225 // There's a Metadata owner -- dispatch. 226 Metadata *OwnerMD = Owner.get<Metadata *>(); 227 switch (OwnerMD->getMetadataID()) { 228 #define HANDLE_METADATA_LEAF(CLASS) \ 229 case Metadata::CLASS##Kind: \ 230 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \ 231 continue; 232 #include "llvm/IR/Metadata.def" 233 default: 234 llvm_unreachable("Invalid metadata subclass"); 235 } 236 } 237 assert(UseMap.empty() && "Expected all uses to be replaced"); 238 } 239 240 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) { 241 if (UseMap.empty()) 242 return; 243 244 if (!ResolveUsers) { 245 UseMap.clear(); 246 return; 247 } 248 249 // Copy out uses since UseMap could get touched below. 250 typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy; 251 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 252 std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) { 253 return L.second.second < R.second.second; 254 }); 255 UseMap.clear(); 256 for (const auto &Pair : Uses) { 257 auto Owner = Pair.second.first; 258 if (!Owner) 259 continue; 260 if (Owner.is<MetadataAsValue *>()) 261 continue; 262 263 // Resolve MDNodes that point at this. 264 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>()); 265 if (!OwnerMD) 266 continue; 267 if (OwnerMD->isResolved()) 268 continue; 269 OwnerMD->decrementUnresolvedOperandCount(); 270 } 271 } 272 273 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) { 274 if (auto *N = dyn_cast<MDNode>(&MD)) 275 return N->isResolved() ? nullptr : N->Context.getOrCreateReplaceableUses(); 276 return dyn_cast<ValueAsMetadata>(&MD); 277 } 278 279 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) { 280 if (auto *N = dyn_cast<MDNode>(&MD)) 281 return N->isResolved() ? nullptr : N->Context.getReplaceableUses(); 282 return dyn_cast<ValueAsMetadata>(&MD); 283 } 284 285 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) { 286 if (auto *N = dyn_cast<MDNode>(&MD)) 287 return !N->isResolved(); 288 return dyn_cast<ValueAsMetadata>(&MD); 289 } 290 291 static Function *getLocalFunction(Value *V) { 292 assert(V && "Expected value"); 293 if (auto *A = dyn_cast<Argument>(V)) 294 return A->getParent(); 295 if (BasicBlock *BB = cast<Instruction>(V)->getParent()) 296 return BB->getParent(); 297 return nullptr; 298 } 299 300 ValueAsMetadata *ValueAsMetadata::get(Value *V) { 301 assert(V && "Unexpected null Value"); 302 303 auto &Context = V->getContext(); 304 auto *&Entry = Context.pImpl->ValuesAsMetadata[V]; 305 if (!Entry) { 306 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) && 307 "Expected constant or function-local value"); 308 assert(!V->IsUsedByMD && 309 "Expected this to be the only metadata use"); 310 V->IsUsedByMD = true; 311 if (auto *C = dyn_cast<Constant>(V)) 312 Entry = new ConstantAsMetadata(C); 313 else 314 Entry = new LocalAsMetadata(V); 315 } 316 317 return Entry; 318 } 319 320 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) { 321 assert(V && "Unexpected null Value"); 322 return V->getContext().pImpl->ValuesAsMetadata.lookup(V); 323 } 324 325 void ValueAsMetadata::handleDeletion(Value *V) { 326 assert(V && "Expected valid value"); 327 328 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata; 329 auto I = Store.find(V); 330 if (I == Store.end()) 331 return; 332 333 // Remove old entry from the map. 334 ValueAsMetadata *MD = I->second; 335 assert(MD && "Expected valid metadata"); 336 assert(MD->getValue() == V && "Expected valid mapping"); 337 Store.erase(I); 338 339 // Delete the metadata. 340 MD->replaceAllUsesWith(nullptr); 341 delete MD; 342 } 343 344 void ValueAsMetadata::handleRAUW(Value *From, Value *To) { 345 assert(From && "Expected valid value"); 346 assert(To && "Expected valid value"); 347 assert(From != To && "Expected changed value"); 348 assert(From->getType() == To->getType() && "Unexpected type change"); 349 350 LLVMContext &Context = From->getType()->getContext(); 351 auto &Store = Context.pImpl->ValuesAsMetadata; 352 auto I = Store.find(From); 353 if (I == Store.end()) { 354 assert(!From->IsUsedByMD && 355 "Expected From not to be used by metadata"); 356 return; 357 } 358 359 // Remove old entry from the map. 360 assert(From->IsUsedByMD && 361 "Expected From to be used by metadata"); 362 From->IsUsedByMD = false; 363 ValueAsMetadata *MD = I->second; 364 assert(MD && "Expected valid metadata"); 365 assert(MD->getValue() == From && "Expected valid mapping"); 366 Store.erase(I); 367 368 if (isa<LocalAsMetadata>(MD)) { 369 if (auto *C = dyn_cast<Constant>(To)) { 370 // Local became a constant. 371 MD->replaceAllUsesWith(ConstantAsMetadata::get(C)); 372 delete MD; 373 return; 374 } 375 if (getLocalFunction(From) && getLocalFunction(To) && 376 getLocalFunction(From) != getLocalFunction(To)) { 377 // Function changed. 378 MD->replaceAllUsesWith(nullptr); 379 delete MD; 380 return; 381 } 382 } else if (!isa<Constant>(To)) { 383 // Changed to function-local value. 384 MD->replaceAllUsesWith(nullptr); 385 delete MD; 386 return; 387 } 388 389 auto *&Entry = Store[To]; 390 if (Entry) { 391 // The target already exists. 392 MD->replaceAllUsesWith(Entry); 393 delete MD; 394 return; 395 } 396 397 // Update MD in place (and update the map entry). 398 assert(!To->IsUsedByMD && 399 "Expected this to be the only metadata use"); 400 To->IsUsedByMD = true; 401 MD->V = To; 402 Entry = MD; 403 } 404 405 //===----------------------------------------------------------------------===// 406 // MDString implementation. 407 // 408 409 MDString *MDString::get(LLVMContext &Context, StringRef Str) { 410 auto &Store = Context.pImpl->MDStringCache; 411 auto I = Store.emplace_second(Str); 412 auto &MapEntry = I.first->getValue(); 413 if (!I.second) 414 return &MapEntry; 415 MapEntry.Entry = &*I.first; 416 return &MapEntry; 417 } 418 419 StringRef MDString::getString() const { 420 assert(Entry && "Expected to find string map entry"); 421 return Entry->first(); 422 } 423 424 //===----------------------------------------------------------------------===// 425 // MDNode implementation. 426 // 427 428 // Assert that the MDNode types will not be unaligned by the objects 429 // prepended to them. 430 #define HANDLE_MDNODE_LEAF(CLASS) \ 431 static_assert( \ 432 llvm::AlignOf<uint64_t>::Alignment >= llvm::AlignOf<CLASS>::Alignment, \ 433 "Alignment is insufficient after objects prepended to " #CLASS); 434 #include "llvm/IR/Metadata.def" 435 436 void *MDNode::operator new(size_t Size, unsigned NumOps) { 437 size_t OpSize = NumOps * sizeof(MDOperand); 438 // uint64_t is the most aligned type we need support (ensured by static_assert 439 // above) 440 OpSize = alignTo(OpSize, llvm::alignOf<uint64_t>()); 441 void *Ptr = reinterpret_cast<char *>(::operator new(OpSize + Size)) + OpSize; 442 MDOperand *O = static_cast<MDOperand *>(Ptr); 443 for (MDOperand *E = O - NumOps; O != E; --O) 444 (void)new (O - 1) MDOperand; 445 return Ptr; 446 } 447 448 void MDNode::operator delete(void *Mem) { 449 MDNode *N = static_cast<MDNode *>(Mem); 450 size_t OpSize = N->NumOperands * sizeof(MDOperand); 451 OpSize = alignTo(OpSize, llvm::alignOf<uint64_t>()); 452 453 MDOperand *O = static_cast<MDOperand *>(Mem); 454 for (MDOperand *E = O - N->NumOperands; O != E; --O) 455 (O - 1)->~MDOperand(); 456 ::operator delete(reinterpret_cast<char *>(Mem) - OpSize); 457 } 458 459 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage, 460 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2) 461 : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()), 462 NumUnresolved(0), Context(Context) { 463 unsigned Op = 0; 464 for (Metadata *MD : Ops1) 465 setOperand(Op++, MD); 466 for (Metadata *MD : Ops2) 467 setOperand(Op++, MD); 468 469 if (!isUniqued()) 470 return; 471 472 // Count the unresolved operands. If there are any, RAUW support will be 473 // added lazily on first reference. 474 countUnresolvedOperands(); 475 } 476 477 TempMDNode MDNode::clone() const { 478 switch (getMetadataID()) { 479 default: 480 llvm_unreachable("Invalid MDNode subclass"); 481 #define HANDLE_MDNODE_LEAF(CLASS) \ 482 case CLASS##Kind: \ 483 return cast<CLASS>(this)->cloneImpl(); 484 #include "llvm/IR/Metadata.def" 485 } 486 } 487 488 static bool isOperandUnresolved(Metadata *Op) { 489 if (auto *N = dyn_cast_or_null<MDNode>(Op)) 490 return !N->isResolved(); 491 return false; 492 } 493 494 void MDNode::countUnresolvedOperands() { 495 assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted"); 496 assert(isUniqued() && "Expected this to be uniqued"); 497 NumUnresolved = std::count_if(op_begin(), op_end(), isOperandUnresolved); 498 } 499 500 void MDNode::makeUniqued() { 501 assert(isTemporary() && "Expected this to be temporary"); 502 assert(!isResolved() && "Expected this to be unresolved"); 503 504 // Enable uniquing callbacks. 505 for (auto &Op : mutable_operands()) 506 Op.reset(Op.get(), this); 507 508 // Make this 'uniqued'. 509 Storage = Uniqued; 510 countUnresolvedOperands(); 511 if (!NumUnresolved) { 512 dropReplaceableUses(); 513 assert(isResolved() && "Expected this to be resolved"); 514 } 515 516 assert(isUniqued() && "Expected this to be uniqued"); 517 } 518 519 void MDNode::makeDistinct() { 520 assert(isTemporary() && "Expected this to be temporary"); 521 assert(!isResolved() && "Expected this to be unresolved"); 522 523 // Drop RAUW support and store as a distinct node. 524 dropReplaceableUses(); 525 storeDistinctInContext(); 526 527 assert(isDistinct() && "Expected this to be distinct"); 528 assert(isResolved() && "Expected this to be resolved"); 529 } 530 531 void MDNode::resolve() { 532 assert(isUniqued() && "Expected this to be uniqued"); 533 assert(!isResolved() && "Expected this to be unresolved"); 534 535 NumUnresolved = 0; 536 dropReplaceableUses(); 537 538 assert(isResolved() && "Expected this to be resolved"); 539 } 540 541 void MDNode::dropReplaceableUses() { 542 assert(!NumUnresolved && "Unexpected unresolved operand"); 543 544 // Drop any RAUW support. 545 if (Context.hasReplaceableUses()) 546 Context.takeReplaceableUses()->resolveAllUses(); 547 } 548 549 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) { 550 assert(isUniqued() && "Expected this to be uniqued"); 551 assert(NumUnresolved != 0 && "Expected unresolved operands"); 552 553 // Check if an operand was resolved. 554 if (!isOperandUnresolved(Old)) { 555 if (isOperandUnresolved(New)) 556 // An operand was un-resolved! 557 ++NumUnresolved; 558 } else if (!isOperandUnresolved(New)) 559 decrementUnresolvedOperandCount(); 560 } 561 562 void MDNode::decrementUnresolvedOperandCount() { 563 assert(!isResolved() && "Expected this to be unresolved"); 564 if (isTemporary()) 565 return; 566 567 assert(isUniqued() && "Expected this to be uniqued"); 568 if (--NumUnresolved) 569 return; 570 571 // Last unresolved operand has just been resolved. 572 dropReplaceableUses(); 573 assert(isResolved() && "Expected this to become resolved"); 574 } 575 576 void MDNode::resolveCycles() { 577 if (isResolved()) 578 return; 579 580 // Resolve this node immediately. 581 resolve(); 582 583 // Resolve all operands. 584 for (const auto &Op : operands()) { 585 auto *N = dyn_cast_or_null<MDNode>(Op); 586 if (!N) 587 continue; 588 589 assert(!N->isTemporary() && 590 "Expected all forward declarations to be resolved"); 591 if (!N->isResolved()) 592 N->resolveCycles(); 593 } 594 } 595 596 static bool hasSelfReference(MDNode *N) { 597 for (Metadata *MD : N->operands()) 598 if (MD == N) 599 return true; 600 return false; 601 } 602 603 MDNode *MDNode::replaceWithPermanentImpl() { 604 switch (getMetadataID()) { 605 default: 606 // If this type isn't uniquable, replace with a distinct node. 607 return replaceWithDistinctImpl(); 608 609 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 610 case CLASS##Kind: \ 611 break; 612 #include "llvm/IR/Metadata.def" 613 } 614 615 // Even if this type is uniquable, self-references have to be distinct. 616 if (hasSelfReference(this)) 617 return replaceWithDistinctImpl(); 618 return replaceWithUniquedImpl(); 619 } 620 621 MDNode *MDNode::replaceWithUniquedImpl() { 622 // Try to uniquify in place. 623 MDNode *UniquedNode = uniquify(); 624 625 if (UniquedNode == this) { 626 makeUniqued(); 627 return this; 628 } 629 630 // Collision, so RAUW instead. 631 replaceAllUsesWith(UniquedNode); 632 deleteAsSubclass(); 633 return UniquedNode; 634 } 635 636 MDNode *MDNode::replaceWithDistinctImpl() { 637 makeDistinct(); 638 return this; 639 } 640 641 void MDTuple::recalculateHash() { 642 setHash(MDTupleInfo::KeyTy::calculateHash(this)); 643 } 644 645 void MDNode::dropAllReferences() { 646 for (unsigned I = 0, E = NumOperands; I != E; ++I) 647 setOperand(I, nullptr); 648 if (Context.hasReplaceableUses()) { 649 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false); 650 (void)Context.takeReplaceableUses(); 651 } 652 } 653 654 void MDNode::handleChangedOperand(void *Ref, Metadata *New) { 655 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin(); 656 assert(Op < getNumOperands() && "Expected valid operand"); 657 658 if (!isUniqued()) { 659 // This node is not uniqued. Just set the operand and be done with it. 660 setOperand(Op, New); 661 return; 662 } 663 664 // This node is uniqued. 665 eraseFromStore(); 666 667 Metadata *Old = getOperand(Op); 668 setOperand(Op, New); 669 670 // Drop uniquing for self-reference cycles. 671 if (New == this) { 672 if (!isResolved()) 673 resolve(); 674 storeDistinctInContext(); 675 return; 676 } 677 678 // Re-unique the node. 679 auto *Uniqued = uniquify(); 680 if (Uniqued == this) { 681 if (!isResolved()) 682 resolveAfterOperandChange(Old, New); 683 return; 684 } 685 686 // Collision. 687 if (!isResolved()) { 688 // Still unresolved, so RAUW. 689 // 690 // First, clear out all operands to prevent any recursion (similar to 691 // dropAllReferences(), but we still need the use-list). 692 for (unsigned O = 0, E = getNumOperands(); O != E; ++O) 693 setOperand(O, nullptr); 694 if (Context.hasReplaceableUses()) 695 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued); 696 deleteAsSubclass(); 697 return; 698 } 699 700 // Store in non-uniqued form if RAUW isn't possible. 701 storeDistinctInContext(); 702 } 703 704 void MDNode::deleteAsSubclass() { 705 switch (getMetadataID()) { 706 default: 707 llvm_unreachable("Invalid subclass of MDNode"); 708 #define HANDLE_MDNODE_LEAF(CLASS) \ 709 case CLASS##Kind: \ 710 delete cast<CLASS>(this); \ 711 break; 712 #include "llvm/IR/Metadata.def" 713 } 714 } 715 716 template <class T, class InfoT> 717 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) { 718 if (T *U = getUniqued(Store, N)) 719 return U; 720 721 Store.insert(N); 722 return N; 723 } 724 725 template <class NodeTy> struct MDNode::HasCachedHash { 726 typedef char Yes[1]; 727 typedef char No[2]; 728 template <class U, U Val> struct SFINAE {}; 729 730 template <class U> 731 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *); 732 template <class U> static No &check(...); 733 734 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes); 735 }; 736 737 MDNode *MDNode::uniquify() { 738 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node"); 739 740 // Try to insert into uniquing store. 741 switch (getMetadataID()) { 742 default: 743 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 744 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 745 case CLASS##Kind: { \ 746 CLASS *SubclassThis = cast<CLASS>(this); \ 747 std::integral_constant<bool, HasCachedHash<CLASS>::value> \ 748 ShouldRecalculateHash; \ 749 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \ 750 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \ 751 } 752 #include "llvm/IR/Metadata.def" 753 } 754 } 755 756 void MDNode::eraseFromStore() { 757 switch (getMetadataID()) { 758 default: 759 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 760 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 761 case CLASS##Kind: \ 762 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \ 763 break; 764 #include "llvm/IR/Metadata.def" 765 } 766 } 767 768 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs, 769 StorageType Storage, bool ShouldCreate) { 770 unsigned Hash = 0; 771 if (Storage == Uniqued) { 772 MDTupleInfo::KeyTy Key(MDs); 773 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key)) 774 return N; 775 if (!ShouldCreate) 776 return nullptr; 777 Hash = Key.getHash(); 778 } else { 779 assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); 780 } 781 782 return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs), 783 Storage, Context.pImpl->MDTuples); 784 } 785 786 void MDNode::deleteTemporary(MDNode *N) { 787 assert(N->isTemporary() && "Expected temporary node"); 788 N->replaceAllUsesWith(nullptr); 789 N->deleteAsSubclass(); 790 } 791 792 void MDNode::storeDistinctInContext() { 793 assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses"); 794 assert(!NumUnresolved && "Unexpected unresolved nodes"); 795 Storage = Distinct; 796 assert(isResolved() && "Expected this to be resolved"); 797 798 // Reset the hash. 799 switch (getMetadataID()) { 800 default: 801 llvm_unreachable("Invalid subclass of MDNode"); 802 #define HANDLE_MDNODE_LEAF(CLASS) \ 803 case CLASS##Kind: { \ 804 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \ 805 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \ 806 break; \ 807 } 808 #include "llvm/IR/Metadata.def" 809 } 810 811 getContext().pImpl->DistinctMDNodes.insert(this); 812 } 813 814 void MDNode::replaceOperandWith(unsigned I, Metadata *New) { 815 if (getOperand(I) == New) 816 return; 817 818 if (!isUniqued()) { 819 setOperand(I, New); 820 return; 821 } 822 823 handleChangedOperand(mutable_begin() + I, New); 824 } 825 826 void MDNode::setOperand(unsigned I, Metadata *New) { 827 assert(I < NumOperands); 828 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr); 829 } 830 831 /// Get a node or a self-reference that looks like it. 832 /// 833 /// Special handling for finding self-references, for use by \a 834 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from 835 /// when self-referencing nodes were still uniqued. If the first operand has 836 /// the same operands as \c Ops, return the first operand instead. 837 static MDNode *getOrSelfReference(LLVMContext &Context, 838 ArrayRef<Metadata *> Ops) { 839 if (!Ops.empty()) 840 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0])) 841 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) { 842 for (unsigned I = 1, E = Ops.size(); I != E; ++I) 843 if (Ops[I] != N->getOperand(I)) 844 return MDNode::get(Context, Ops); 845 return N; 846 } 847 848 return MDNode::get(Context, Ops); 849 } 850 851 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) { 852 if (!A) 853 return B; 854 if (!B) 855 return A; 856 857 SmallVector<Metadata *, 4> MDs; 858 MDs.reserve(A->getNumOperands() + B->getNumOperands()); 859 MDs.append(A->op_begin(), A->op_end()); 860 MDs.append(B->op_begin(), B->op_end()); 861 862 // FIXME: This preserves long-standing behaviour, but is it really the right 863 // behaviour? Or was that an unintended side-effect of node uniquing? 864 return getOrSelfReference(A->getContext(), MDs); 865 } 866 867 MDNode *MDNode::intersect(MDNode *A, MDNode *B) { 868 if (!A || !B) 869 return nullptr; 870 871 SmallVector<Metadata *, 4> MDs; 872 for (Metadata *MD : A->operands()) 873 if (std::find(B->op_begin(), B->op_end(), MD) != B->op_end()) 874 MDs.push_back(MD); 875 876 // FIXME: This preserves long-standing behaviour, but is it really the right 877 // behaviour? Or was that an unintended side-effect of node uniquing? 878 return getOrSelfReference(A->getContext(), MDs); 879 } 880 881 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) { 882 if (!A || !B) 883 return nullptr; 884 885 SmallVector<Metadata *, 4> MDs(B->op_begin(), B->op_end()); 886 for (Metadata *MD : A->operands()) 887 if (std::find(B->op_begin(), B->op_end(), MD) == B->op_end()) 888 MDs.push_back(MD); 889 890 // FIXME: This preserves long-standing behaviour, but is it really the right 891 // behaviour? Or was that an unintended side-effect of node uniquing? 892 return getOrSelfReference(A->getContext(), MDs); 893 } 894 895 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) { 896 if (!A || !B) 897 return nullptr; 898 899 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF(); 900 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF(); 901 if (AVal.compare(BVal) == APFloat::cmpLessThan) 902 return A; 903 return B; 904 } 905 906 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 907 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 908 } 909 910 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) { 911 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B); 912 } 913 914 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints, 915 ConstantInt *Low, ConstantInt *High) { 916 ConstantRange NewRange(Low->getValue(), High->getValue()); 917 unsigned Size = EndPoints.size(); 918 APInt LB = EndPoints[Size - 2]->getValue(); 919 APInt LE = EndPoints[Size - 1]->getValue(); 920 ConstantRange LastRange(LB, LE); 921 if (canBeMerged(NewRange, LastRange)) { 922 ConstantRange Union = LastRange.unionWith(NewRange); 923 Type *Ty = High->getType(); 924 EndPoints[Size - 2] = 925 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower())); 926 EndPoints[Size - 1] = 927 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper())); 928 return true; 929 } 930 return false; 931 } 932 933 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints, 934 ConstantInt *Low, ConstantInt *High) { 935 if (!EndPoints.empty()) 936 if (tryMergeRange(EndPoints, Low, High)) 937 return; 938 939 EndPoints.push_back(Low); 940 EndPoints.push_back(High); 941 } 942 943 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) { 944 // Given two ranges, we want to compute the union of the ranges. This 945 // is slightly complitade by having to combine the intervals and merge 946 // the ones that overlap. 947 948 if (!A || !B) 949 return nullptr; 950 951 if (A == B) 952 return A; 953 954 // First, walk both lists in older of the lower boundary of each interval. 955 // At each step, try to merge the new interval to the last one we adedd. 956 SmallVector<ConstantInt *, 4> EndPoints; 957 int AI = 0; 958 int BI = 0; 959 int AN = A->getNumOperands() / 2; 960 int BN = B->getNumOperands() / 2; 961 while (AI < AN && BI < BN) { 962 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI)); 963 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI)); 964 965 if (ALow->getValue().slt(BLow->getValue())) { 966 addRange(EndPoints, ALow, 967 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 968 ++AI; 969 } else { 970 addRange(EndPoints, BLow, 971 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 972 ++BI; 973 } 974 } 975 while (AI < AN) { 976 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)), 977 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 978 ++AI; 979 } 980 while (BI < BN) { 981 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)), 982 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 983 ++BI; 984 } 985 986 // If we have more than 2 ranges (4 endpoints) we have to try to merge 987 // the last and first ones. 988 unsigned Size = EndPoints.size(); 989 if (Size > 4) { 990 ConstantInt *FB = EndPoints[0]; 991 ConstantInt *FE = EndPoints[1]; 992 if (tryMergeRange(EndPoints, FB, FE)) { 993 for (unsigned i = 0; i < Size - 2; ++i) { 994 EndPoints[i] = EndPoints[i + 2]; 995 } 996 EndPoints.resize(Size - 2); 997 } 998 } 999 1000 // If in the end we have a single range, it is possible that it is now the 1001 // full range. Just drop the metadata in that case. 1002 if (EndPoints.size() == 2) { 1003 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue()); 1004 if (Range.isFullSet()) 1005 return nullptr; 1006 } 1007 1008 SmallVector<Metadata *, 4> MDs; 1009 MDs.reserve(EndPoints.size()); 1010 for (auto *I : EndPoints) 1011 MDs.push_back(ConstantAsMetadata::get(I)); 1012 return MDNode::get(A->getContext(), MDs); 1013 } 1014 1015 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) { 1016 if (!A || !B) 1017 return nullptr; 1018 1019 ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0)); 1020 ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0)); 1021 if (AVal->getZExtValue() < BVal->getZExtValue()) 1022 return A; 1023 return B; 1024 } 1025 1026 //===----------------------------------------------------------------------===// 1027 // NamedMDNode implementation. 1028 // 1029 1030 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) { 1031 return *(SmallVector<TrackingMDRef, 4> *)Operands; 1032 } 1033 1034 NamedMDNode::NamedMDNode(const Twine &N) 1035 : Name(N.str()), Parent(nullptr), 1036 Operands(new SmallVector<TrackingMDRef, 4>()) {} 1037 1038 NamedMDNode::~NamedMDNode() { 1039 dropAllReferences(); 1040 delete &getNMDOps(Operands); 1041 } 1042 1043 unsigned NamedMDNode::getNumOperands() const { 1044 return (unsigned)getNMDOps(Operands).size(); 1045 } 1046 1047 MDNode *NamedMDNode::getOperand(unsigned i) const { 1048 assert(i < getNumOperands() && "Invalid Operand number!"); 1049 auto *N = getNMDOps(Operands)[i].get(); 1050 return cast_or_null<MDNode>(N); 1051 } 1052 1053 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); } 1054 1055 void NamedMDNode::setOperand(unsigned I, MDNode *New) { 1056 assert(I < getNumOperands() && "Invalid operand number"); 1057 getNMDOps(Operands)[I].reset(New); 1058 } 1059 1060 void NamedMDNode::eraseFromParent() { 1061 getParent()->eraseNamedMetadata(this); 1062 } 1063 1064 void NamedMDNode::dropAllReferences() { 1065 getNMDOps(Operands).clear(); 1066 } 1067 1068 StringRef NamedMDNode::getName() const { 1069 return StringRef(Name); 1070 } 1071 1072 //===----------------------------------------------------------------------===// 1073 // Instruction Metadata method implementations. 1074 // 1075 void MDAttachmentMap::set(unsigned ID, MDNode &MD) { 1076 for (auto &I : Attachments) 1077 if (I.first == ID) { 1078 I.second.reset(&MD); 1079 return; 1080 } 1081 Attachments.emplace_back(std::piecewise_construct, std::make_tuple(ID), 1082 std::make_tuple(&MD)); 1083 } 1084 1085 void MDAttachmentMap::erase(unsigned ID) { 1086 if (empty()) 1087 return; 1088 1089 // Common case is one/last value. 1090 if (Attachments.back().first == ID) { 1091 Attachments.pop_back(); 1092 return; 1093 } 1094 1095 for (auto I = Attachments.begin(), E = std::prev(Attachments.end()); I != E; 1096 ++I) 1097 if (I->first == ID) { 1098 *I = std::move(Attachments.back()); 1099 Attachments.pop_back(); 1100 return; 1101 } 1102 } 1103 1104 MDNode *MDAttachmentMap::lookup(unsigned ID) const { 1105 for (const auto &I : Attachments) 1106 if (I.first == ID) 1107 return I.second; 1108 return nullptr; 1109 } 1110 1111 void MDAttachmentMap::getAll( 1112 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1113 Result.append(Attachments.begin(), Attachments.end()); 1114 1115 // Sort the resulting array so it is stable. 1116 if (Result.size() > 1) 1117 array_pod_sort(Result.begin(), Result.end()); 1118 } 1119 1120 void Instruction::setMetadata(StringRef Kind, MDNode *Node) { 1121 if (!Node && !hasMetadata()) 1122 return; 1123 setMetadata(getContext().getMDKindID(Kind), Node); 1124 } 1125 1126 MDNode *Instruction::getMetadataImpl(StringRef Kind) const { 1127 return getMetadataImpl(getContext().getMDKindID(Kind)); 1128 } 1129 1130 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) { 1131 SmallSet<unsigned, 5> KnownSet; 1132 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 1133 1134 if (!hasMetadataHashEntry()) 1135 return; // Nothing to remove! 1136 1137 auto &InstructionMetadata = getContext().pImpl->InstructionMetadata; 1138 1139 if (KnownSet.empty()) { 1140 // Just drop our entry at the store. 1141 InstructionMetadata.erase(this); 1142 setHasMetadataHashEntry(false); 1143 return; 1144 } 1145 1146 auto &Info = InstructionMetadata[this]; 1147 Info.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) { 1148 return !KnownSet.count(I.first); 1149 }); 1150 1151 if (Info.empty()) { 1152 // Drop our entry at the store. 1153 InstructionMetadata.erase(this); 1154 setHasMetadataHashEntry(false); 1155 } 1156 } 1157 1158 void Instruction::setMetadata(unsigned KindID, MDNode *Node) { 1159 if (!Node && !hasMetadata()) 1160 return; 1161 1162 // Handle 'dbg' as a special case since it is not stored in the hash table. 1163 if (KindID == LLVMContext::MD_dbg) { 1164 DbgLoc = DebugLoc(Node); 1165 return; 1166 } 1167 1168 // Handle the case when we're adding/updating metadata on an instruction. 1169 if (Node) { 1170 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1171 assert(!Info.empty() == hasMetadataHashEntry() && 1172 "HasMetadata bit is wonked"); 1173 if (Info.empty()) 1174 setHasMetadataHashEntry(true); 1175 Info.set(KindID, *Node); 1176 return; 1177 } 1178 1179 // Otherwise, we're removing metadata from an instruction. 1180 assert((hasMetadataHashEntry() == 1181 (getContext().pImpl->InstructionMetadata.count(this) > 0)) && 1182 "HasMetadata bit out of date!"); 1183 if (!hasMetadataHashEntry()) 1184 return; // Nothing to remove! 1185 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1186 1187 // Handle removal of an existing value. 1188 Info.erase(KindID); 1189 1190 if (!Info.empty()) 1191 return; 1192 1193 getContext().pImpl->InstructionMetadata.erase(this); 1194 setHasMetadataHashEntry(false); 1195 } 1196 1197 void Instruction::setAAMetadata(const AAMDNodes &N) { 1198 setMetadata(LLVMContext::MD_tbaa, N.TBAA); 1199 setMetadata(LLVMContext::MD_alias_scope, N.Scope); 1200 setMetadata(LLVMContext::MD_noalias, N.NoAlias); 1201 } 1202 1203 MDNode *Instruction::getMetadataImpl(unsigned KindID) const { 1204 // Handle 'dbg' as a special case since it is not stored in the hash table. 1205 if (KindID == LLVMContext::MD_dbg) 1206 return DbgLoc.getAsMDNode(); 1207 1208 if (!hasMetadataHashEntry()) 1209 return nullptr; 1210 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1211 assert(!Info.empty() && "bit out of sync with hash table"); 1212 1213 return Info.lookup(KindID); 1214 } 1215 1216 void Instruction::getAllMetadataImpl( 1217 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1218 Result.clear(); 1219 1220 // Handle 'dbg' as a special case since it is not stored in the hash table. 1221 if (DbgLoc) { 1222 Result.push_back( 1223 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode())); 1224 if (!hasMetadataHashEntry()) return; 1225 } 1226 1227 assert(hasMetadataHashEntry() && 1228 getContext().pImpl->InstructionMetadata.count(this) && 1229 "Shouldn't have called this"); 1230 const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second; 1231 assert(!Info.empty() && "Shouldn't have called this"); 1232 Info.getAll(Result); 1233 } 1234 1235 void Instruction::getAllMetadataOtherThanDebugLocImpl( 1236 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1237 Result.clear(); 1238 assert(hasMetadataHashEntry() && 1239 getContext().pImpl->InstructionMetadata.count(this) && 1240 "Shouldn't have called this"); 1241 const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second; 1242 assert(!Info.empty() && "Shouldn't have called this"); 1243 Info.getAll(Result); 1244 } 1245 1246 void Instruction::clearMetadataHashEntries() { 1247 assert(hasMetadataHashEntry() && "Caller should check"); 1248 getContext().pImpl->InstructionMetadata.erase(this); 1249 setHasMetadataHashEntry(false); 1250 } 1251 1252 MDNode *Function::getMetadata(unsigned KindID) const { 1253 if (!hasMetadata()) 1254 return nullptr; 1255 return getContext().pImpl->FunctionMetadata[this].lookup(KindID); 1256 } 1257 1258 MDNode *Function::getMetadata(StringRef Kind) const { 1259 if (!hasMetadata()) 1260 return nullptr; 1261 return getMetadata(getContext().getMDKindID(Kind)); 1262 } 1263 1264 void Function::setMetadata(unsigned KindID, MDNode *MD) { 1265 if (MD) { 1266 if (!hasMetadata()) 1267 setHasMetadataHashEntry(true); 1268 1269 getContext().pImpl->FunctionMetadata[this].set(KindID, *MD); 1270 return; 1271 } 1272 1273 // Nothing to unset. 1274 if (!hasMetadata()) 1275 return; 1276 1277 auto &Store = getContext().pImpl->FunctionMetadata[this]; 1278 Store.erase(KindID); 1279 if (Store.empty()) 1280 clearMetadata(); 1281 } 1282 1283 void Function::setMetadata(StringRef Kind, MDNode *MD) { 1284 if (!MD && !hasMetadata()) 1285 return; 1286 setMetadata(getContext().getMDKindID(Kind), MD); 1287 } 1288 1289 void Function::getAllMetadata( 1290 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { 1291 MDs.clear(); 1292 1293 if (!hasMetadata()) 1294 return; 1295 1296 getContext().pImpl->FunctionMetadata[this].getAll(MDs); 1297 } 1298 1299 void Function::dropUnknownMetadata(ArrayRef<unsigned> KnownIDs) { 1300 if (!hasMetadata()) 1301 return; 1302 if (KnownIDs.empty()) { 1303 clearMetadata(); 1304 return; 1305 } 1306 1307 SmallSet<unsigned, 5> KnownSet; 1308 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 1309 1310 auto &Store = getContext().pImpl->FunctionMetadata[this]; 1311 assert(!Store.empty()); 1312 1313 Store.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) { 1314 return !KnownSet.count(I.first); 1315 }); 1316 1317 if (Store.empty()) 1318 clearMetadata(); 1319 } 1320 1321 void Function::clearMetadata() { 1322 if (!hasMetadata()) 1323 return; 1324 getContext().pImpl->FunctionMetadata.erase(this); 1325 setHasMetadataHashEntry(false); 1326 } 1327 1328 void Function::setSubprogram(DISubprogram *SP) { 1329 setMetadata(LLVMContext::MD_dbg, SP); 1330 } 1331 1332 DISubprogram *Function::getSubprogram() const { 1333 return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg)); 1334 } 1335