1 //===- Metadata.cpp - Implement Metadata classes --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Metadata classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Metadata.h" 14 #include "LLVMContextImpl.h" 15 #include "MetadataImpl.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/IR/Argument.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/ConstantRange.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DebugInfoMetadata.h" 35 #include "llvm/IR/DebugLoc.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GlobalObject.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/TrackingMDRef.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/IR/Value.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/MathExtras.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstddef> 52 #include <cstdint> 53 #include <type_traits> 54 #include <utility> 55 #include <vector> 56 57 using namespace llvm; 58 59 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD) 60 : Value(Ty, MetadataAsValueVal), MD(MD) { 61 track(); 62 } 63 64 MetadataAsValue::~MetadataAsValue() { 65 getType()->getContext().pImpl->MetadataAsValues.erase(MD); 66 untrack(); 67 } 68 69 /// Canonicalize metadata arguments to intrinsics. 70 /// 71 /// To support bitcode upgrades (and assembly semantic sugar) for \a 72 /// MetadataAsValue, we need to canonicalize certain metadata. 73 /// 74 /// - nullptr is replaced by an empty MDNode. 75 /// - An MDNode with a single null operand is replaced by an empty MDNode. 76 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped. 77 /// 78 /// This maintains readability of bitcode from when metadata was a type of 79 /// value, and these bridges were unnecessary. 80 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context, 81 Metadata *MD) { 82 if (!MD) 83 // !{} 84 return MDNode::get(Context, None); 85 86 // Return early if this isn't a single-operand MDNode. 87 auto *N = dyn_cast<MDNode>(MD); 88 if (!N || N->getNumOperands() != 1) 89 return MD; 90 91 if (!N->getOperand(0)) 92 // !{} 93 return MDNode::get(Context, None); 94 95 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0))) 96 // Look through the MDNode. 97 return C; 98 99 return MD; 100 } 101 102 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) { 103 MD = canonicalizeMetadataForValue(Context, MD); 104 auto *&Entry = Context.pImpl->MetadataAsValues[MD]; 105 if (!Entry) 106 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD); 107 return Entry; 108 } 109 110 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context, 111 Metadata *MD) { 112 MD = canonicalizeMetadataForValue(Context, MD); 113 auto &Store = Context.pImpl->MetadataAsValues; 114 return Store.lookup(MD); 115 } 116 117 void MetadataAsValue::handleChangedMetadata(Metadata *MD) { 118 LLVMContext &Context = getContext(); 119 MD = canonicalizeMetadataForValue(Context, MD); 120 auto &Store = Context.pImpl->MetadataAsValues; 121 122 // Stop tracking the old metadata. 123 Store.erase(this->MD); 124 untrack(); 125 this->MD = nullptr; 126 127 // Start tracking MD, or RAUW if necessary. 128 auto *&Entry = Store[MD]; 129 if (Entry) { 130 replaceAllUsesWith(Entry); 131 delete this; 132 return; 133 } 134 135 this->MD = MD; 136 track(); 137 Entry = this; 138 } 139 140 void MetadataAsValue::track() { 141 if (MD) 142 MetadataTracking::track(&MD, *MD, *this); 143 } 144 145 void MetadataAsValue::untrack() { 146 if (MD) 147 MetadataTracking::untrack(MD); 148 } 149 150 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) { 151 assert(Ref && "Expected live reference"); 152 assert((Owner || *static_cast<Metadata **>(Ref) == &MD) && 153 "Reference without owner must be direct"); 154 if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) { 155 R->addRef(Ref, Owner); 156 return true; 157 } 158 if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) { 159 assert(!PH->Use && "Placeholders can only be used once"); 160 assert(!Owner && "Unexpected callback to owner"); 161 PH->Use = static_cast<Metadata **>(Ref); 162 return true; 163 } 164 return false; 165 } 166 167 void MetadataTracking::untrack(void *Ref, Metadata &MD) { 168 assert(Ref && "Expected live reference"); 169 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) 170 R->dropRef(Ref); 171 else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) 172 PH->Use = nullptr; 173 } 174 175 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) { 176 assert(Ref && "Expected live reference"); 177 assert(New && "Expected live reference"); 178 assert(Ref != New && "Expected change"); 179 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) { 180 R->moveRef(Ref, New, MD); 181 return true; 182 } 183 assert(!isa<DistinctMDOperandPlaceholder>(MD) && 184 "Unexpected move of an MDOperand"); 185 assert(!isReplaceable(MD) && 186 "Expected un-replaceable metadata, since we didn't move a reference"); 187 return false; 188 } 189 190 bool MetadataTracking::isReplaceable(const Metadata &MD) { 191 return ReplaceableMetadataImpl::isReplaceable(MD); 192 } 193 194 SmallVector<Metadata *> ReplaceableMetadataImpl::getAllArgListUsers() { 195 SmallVector<std::pair<OwnerTy, uint64_t> *> MDUsersWithID; 196 for (auto Pair : UseMap) { 197 OwnerTy Owner = Pair.second.first; 198 if (!Owner.is<Metadata *>()) 199 continue; 200 Metadata *OwnerMD = Owner.get<Metadata *>(); 201 if (OwnerMD->getMetadataID() == Metadata::DIArgListKind) 202 MDUsersWithID.push_back(&UseMap[Pair.first]); 203 } 204 llvm::sort(MDUsersWithID, [](auto UserA, auto UserB) { 205 return UserA->second < UserB->second; 206 }); 207 SmallVector<Metadata *> MDUsers; 208 for (auto UserWithID : MDUsersWithID) 209 MDUsers.push_back(UserWithID->first.get<Metadata *>()); 210 return MDUsers; 211 } 212 213 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) { 214 bool WasInserted = 215 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex))) 216 .second; 217 (void)WasInserted; 218 assert(WasInserted && "Expected to add a reference"); 219 220 ++NextIndex; 221 assert(NextIndex != 0 && "Unexpected overflow"); 222 } 223 224 void ReplaceableMetadataImpl::dropRef(void *Ref) { 225 bool WasErased = UseMap.erase(Ref); 226 (void)WasErased; 227 assert(WasErased && "Expected to drop a reference"); 228 } 229 230 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New, 231 const Metadata &MD) { 232 auto I = UseMap.find(Ref); 233 assert(I != UseMap.end() && "Expected to move a reference"); 234 auto OwnerAndIndex = I->second; 235 UseMap.erase(I); 236 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second; 237 (void)WasInserted; 238 assert(WasInserted && "Expected to add a reference"); 239 240 // Check that the references are direct if there's no owner. 241 (void)MD; 242 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) && 243 "Reference without owner must be direct"); 244 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) && 245 "Reference without owner must be direct"); 246 } 247 248 void ReplaceableMetadataImpl::SalvageDebugInfo(const Constant &C) { 249 if (!C.isUsedByMetadata()) { 250 return; 251 } 252 253 LLVMContext &Context = C.getType()->getContext(); 254 auto &Store = Context.pImpl->ValuesAsMetadata; 255 auto I = Store.find(&C); 256 ValueAsMetadata *MD = I->second; 257 using UseTy = 258 std::pair<void *, std::pair<MetadataTracking::OwnerTy, uint64_t>>; 259 // Copy out uses and update value of Constant used by debug info metadata with undef below 260 SmallVector<UseTy, 8> Uses(MD->UseMap.begin(), MD->UseMap.end()); 261 262 for (const auto &Pair : Uses) { 263 MetadataTracking::OwnerTy Owner = Pair.second.first; 264 if (!Owner) 265 continue; 266 if (!Owner.is<Metadata *>()) 267 continue; 268 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>()); 269 if (!OwnerMD) 270 continue; 271 if (isa<DINode>(OwnerMD)) { 272 OwnerMD->handleChangedOperand( 273 Pair.first, ValueAsMetadata::get(UndefValue::get(C.getType()))); 274 } 275 } 276 } 277 278 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) { 279 if (UseMap.empty()) 280 return; 281 282 // Copy out uses since UseMap will get touched below. 283 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>; 284 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 285 llvm::sort(Uses, [](const UseTy &L, const UseTy &R) { 286 return L.second.second < R.second.second; 287 }); 288 for (const auto &Pair : Uses) { 289 // Check that this Ref hasn't disappeared after RAUW (when updating a 290 // previous Ref). 291 if (!UseMap.count(Pair.first)) 292 continue; 293 294 OwnerTy Owner = Pair.second.first; 295 if (!Owner) { 296 // Update unowned tracking references directly. 297 Metadata *&Ref = *static_cast<Metadata **>(Pair.first); 298 Ref = MD; 299 if (MD) 300 MetadataTracking::track(Ref); 301 UseMap.erase(Pair.first); 302 continue; 303 } 304 305 // Check for MetadataAsValue. 306 if (Owner.is<MetadataAsValue *>()) { 307 Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD); 308 continue; 309 } 310 311 // There's a Metadata owner -- dispatch. 312 Metadata *OwnerMD = Owner.get<Metadata *>(); 313 switch (OwnerMD->getMetadataID()) { 314 #define HANDLE_METADATA_LEAF(CLASS) \ 315 case Metadata::CLASS##Kind: \ 316 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \ 317 continue; 318 #include "llvm/IR/Metadata.def" 319 default: 320 llvm_unreachable("Invalid metadata subclass"); 321 } 322 } 323 assert(UseMap.empty() && "Expected all uses to be replaced"); 324 } 325 326 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) { 327 if (UseMap.empty()) 328 return; 329 330 if (!ResolveUsers) { 331 UseMap.clear(); 332 return; 333 } 334 335 // Copy out uses since UseMap could get touched below. 336 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>; 337 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 338 llvm::sort(Uses, [](const UseTy &L, const UseTy &R) { 339 return L.second.second < R.second.second; 340 }); 341 UseMap.clear(); 342 for (const auto &Pair : Uses) { 343 auto Owner = Pair.second.first; 344 if (!Owner) 345 continue; 346 if (Owner.is<MetadataAsValue *>()) 347 continue; 348 349 // Resolve MDNodes that point at this. 350 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>()); 351 if (!OwnerMD) 352 continue; 353 if (OwnerMD->isResolved()) 354 continue; 355 OwnerMD->decrementUnresolvedOperandCount(); 356 } 357 } 358 359 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) { 360 if (auto *N = dyn_cast<MDNode>(&MD)) 361 return N->isResolved() ? nullptr : N->Context.getOrCreateReplaceableUses(); 362 return dyn_cast<ValueAsMetadata>(&MD); 363 } 364 365 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) { 366 if (auto *N = dyn_cast<MDNode>(&MD)) 367 return N->isResolved() ? nullptr : N->Context.getReplaceableUses(); 368 return dyn_cast<ValueAsMetadata>(&MD); 369 } 370 371 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) { 372 if (auto *N = dyn_cast<MDNode>(&MD)) 373 return !N->isResolved(); 374 return isa<ValueAsMetadata>(&MD); 375 } 376 377 static DISubprogram *getLocalFunctionMetadata(Value *V) { 378 assert(V && "Expected value"); 379 if (auto *A = dyn_cast<Argument>(V)) { 380 if (auto *Fn = A->getParent()) 381 return Fn->getSubprogram(); 382 return nullptr; 383 } 384 385 if (BasicBlock *BB = cast<Instruction>(V)->getParent()) { 386 if (auto *Fn = BB->getParent()) 387 return Fn->getSubprogram(); 388 return nullptr; 389 } 390 391 return nullptr; 392 } 393 394 ValueAsMetadata *ValueAsMetadata::get(Value *V) { 395 assert(V && "Unexpected null Value"); 396 397 auto &Context = V->getContext(); 398 auto *&Entry = Context.pImpl->ValuesAsMetadata[V]; 399 if (!Entry) { 400 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) && 401 "Expected constant or function-local value"); 402 assert(!V->IsUsedByMD && "Expected this to be the only metadata use"); 403 V->IsUsedByMD = true; 404 if (auto *C = dyn_cast<Constant>(V)) 405 Entry = new ConstantAsMetadata(C); 406 else 407 Entry = new LocalAsMetadata(V); 408 } 409 410 return Entry; 411 } 412 413 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) { 414 assert(V && "Unexpected null Value"); 415 return V->getContext().pImpl->ValuesAsMetadata.lookup(V); 416 } 417 418 void ValueAsMetadata::handleDeletion(Value *V) { 419 assert(V && "Expected valid value"); 420 421 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata; 422 auto I = Store.find(V); 423 if (I == Store.end()) 424 return; 425 426 // Remove old entry from the map. 427 ValueAsMetadata *MD = I->second; 428 assert(MD && "Expected valid metadata"); 429 assert(MD->getValue() == V && "Expected valid mapping"); 430 Store.erase(I); 431 432 // Delete the metadata. 433 MD->replaceAllUsesWith(nullptr); 434 delete MD; 435 } 436 437 void ValueAsMetadata::handleRAUW(Value *From, Value *To) { 438 assert(From && "Expected valid value"); 439 assert(To && "Expected valid value"); 440 assert(From != To && "Expected changed value"); 441 assert(From->getType() == To->getType() && "Unexpected type change"); 442 443 LLVMContext &Context = From->getType()->getContext(); 444 auto &Store = Context.pImpl->ValuesAsMetadata; 445 auto I = Store.find(From); 446 if (I == Store.end()) { 447 assert(!From->IsUsedByMD && "Expected From not to be used by metadata"); 448 return; 449 } 450 451 // Remove old entry from the map. 452 assert(From->IsUsedByMD && "Expected From to be used by metadata"); 453 From->IsUsedByMD = false; 454 ValueAsMetadata *MD = I->second; 455 assert(MD && "Expected valid metadata"); 456 assert(MD->getValue() == From && "Expected valid mapping"); 457 Store.erase(I); 458 459 if (isa<LocalAsMetadata>(MD)) { 460 if (auto *C = dyn_cast<Constant>(To)) { 461 // Local became a constant. 462 MD->replaceAllUsesWith(ConstantAsMetadata::get(C)); 463 delete MD; 464 return; 465 } 466 if (getLocalFunctionMetadata(From) && getLocalFunctionMetadata(To) && 467 getLocalFunctionMetadata(From) != getLocalFunctionMetadata(To)) { 468 // DISubprogram changed. 469 MD->replaceAllUsesWith(nullptr); 470 delete MD; 471 return; 472 } 473 } else if (!isa<Constant>(To)) { 474 // Changed to function-local value. 475 MD->replaceAllUsesWith(nullptr); 476 delete MD; 477 return; 478 } 479 480 auto *&Entry = Store[To]; 481 if (Entry) { 482 // The target already exists. 483 MD->replaceAllUsesWith(Entry); 484 delete MD; 485 return; 486 } 487 488 // Update MD in place (and update the map entry). 489 assert(!To->IsUsedByMD && "Expected this to be the only metadata use"); 490 To->IsUsedByMD = true; 491 MD->V = To; 492 Entry = MD; 493 } 494 495 //===----------------------------------------------------------------------===// 496 // MDString implementation. 497 // 498 499 MDString *MDString::get(LLVMContext &Context, StringRef Str) { 500 auto &Store = Context.pImpl->MDStringCache; 501 auto I = Store.try_emplace(Str); 502 auto &MapEntry = I.first->getValue(); 503 if (!I.second) 504 return &MapEntry; 505 MapEntry.Entry = &*I.first; 506 return &MapEntry; 507 } 508 509 StringRef MDString::getString() const { 510 assert(Entry && "Expected to find string map entry"); 511 return Entry->first(); 512 } 513 514 //===----------------------------------------------------------------------===// 515 // MDNode implementation. 516 // 517 518 // Assert that the MDNode types will not be unaligned by the objects 519 // prepended to them. 520 #define HANDLE_MDNODE_LEAF(CLASS) \ 521 static_assert( \ 522 alignof(uint64_t) >= alignof(CLASS), \ 523 "Alignment is insufficient after objects prepended to " #CLASS); 524 #include "llvm/IR/Metadata.def" 525 526 void *MDNode::operator new(size_t Size, unsigned NumOps, 527 StorageType /* Storage */) { 528 // uint64_t is the most aligned type we need support (ensured by static_assert 529 // above) 530 size_t AllocSize = alignTo(Header::getAllocSize(NumOps), alignof(uint64_t)); 531 char *Mem = reinterpret_cast<char *>(::operator new(AllocSize + Size)); 532 Header *H = new (Mem + AllocSize - sizeof(Header)) Header(NumOps); 533 return reinterpret_cast<void *>(H + 1); 534 } 535 536 void MDNode::operator delete(void *N) { 537 Header *H = reinterpret_cast<Header *>(N) - 1; 538 void *Mem = H->getAllocation(); 539 H->~Header(); 540 ::operator delete(Mem); 541 } 542 543 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage, 544 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2) 545 : Metadata(ID, Storage), Context(Context) { 546 unsigned Op = 0; 547 for (Metadata *MD : Ops1) 548 setOperand(Op++, MD); 549 for (Metadata *MD : Ops2) 550 setOperand(Op++, MD); 551 552 if (!isUniqued()) 553 return; 554 555 // Count the unresolved operands. If there are any, RAUW support will be 556 // added lazily on first reference. 557 countUnresolvedOperands(); 558 } 559 560 TempMDNode MDNode::clone() const { 561 switch (getMetadataID()) { 562 default: 563 llvm_unreachable("Invalid MDNode subclass"); 564 #define HANDLE_MDNODE_LEAF(CLASS) \ 565 case CLASS##Kind: \ 566 return cast<CLASS>(this)->cloneImpl(); 567 #include "llvm/IR/Metadata.def" 568 } 569 } 570 571 MDNode::Header::Header(unsigned NumOps) { 572 NumOperands = NumOps; 573 MDOperand *O = reinterpret_cast<MDOperand *>(this); 574 for (MDOperand *E = O - NumOps; O != E; --O) 575 (void)new (O - 1) MDOperand(); 576 } 577 578 MDNode::Header::~Header() { 579 MDOperand *O = reinterpret_cast<MDOperand *>(this) - NumOperands; 580 for (MDOperand *E = O + NumOperands; O != E; ++O) 581 (void)O->~MDOperand(); 582 } 583 584 static bool isOperandUnresolved(Metadata *Op) { 585 if (auto *N = dyn_cast_or_null<MDNode>(Op)) 586 return !N->isResolved(); 587 return false; 588 } 589 590 void MDNode::countUnresolvedOperands() { 591 assert(getNumUnresolved() == 0 && "Expected unresolved ops to be uncounted"); 592 assert(isUniqued() && "Expected this to be uniqued"); 593 setNumUnresolved(count_if(operands(), isOperandUnresolved)); 594 } 595 596 void MDNode::makeUniqued() { 597 assert(isTemporary() && "Expected this to be temporary"); 598 assert(!isResolved() && "Expected this to be unresolved"); 599 600 // Enable uniquing callbacks. 601 for (auto &Op : mutable_operands()) 602 Op.reset(Op.get(), this); 603 604 // Make this 'uniqued'. 605 Storage = Uniqued; 606 countUnresolvedOperands(); 607 if (!getNumUnresolved()) { 608 dropReplaceableUses(); 609 assert(isResolved() && "Expected this to be resolved"); 610 } 611 612 assert(isUniqued() && "Expected this to be uniqued"); 613 } 614 615 void MDNode::makeDistinct() { 616 assert(isTemporary() && "Expected this to be temporary"); 617 assert(!isResolved() && "Expected this to be unresolved"); 618 619 // Drop RAUW support and store as a distinct node. 620 dropReplaceableUses(); 621 storeDistinctInContext(); 622 623 assert(isDistinct() && "Expected this to be distinct"); 624 assert(isResolved() && "Expected this to be resolved"); 625 } 626 627 void MDNode::resolve() { 628 assert(isUniqued() && "Expected this to be uniqued"); 629 assert(!isResolved() && "Expected this to be unresolved"); 630 631 setNumUnresolved(0); 632 dropReplaceableUses(); 633 634 assert(isResolved() && "Expected this to be resolved"); 635 } 636 637 void MDNode::dropReplaceableUses() { 638 assert(!getNumUnresolved() && "Unexpected unresolved operand"); 639 640 // Drop any RAUW support. 641 if (Context.hasReplaceableUses()) 642 Context.takeReplaceableUses()->resolveAllUses(); 643 } 644 645 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) { 646 assert(isUniqued() && "Expected this to be uniqued"); 647 assert(getNumUnresolved() != 0 && "Expected unresolved operands"); 648 649 // Check if an operand was resolved. 650 if (!isOperandUnresolved(Old)) { 651 if (isOperandUnresolved(New)) 652 // An operand was un-resolved! 653 setNumUnresolved(getNumUnresolved() + 1); 654 } else if (!isOperandUnresolved(New)) 655 decrementUnresolvedOperandCount(); 656 } 657 658 void MDNode::decrementUnresolvedOperandCount() { 659 assert(!isResolved() && "Expected this to be unresolved"); 660 if (isTemporary()) 661 return; 662 663 assert(isUniqued() && "Expected this to be uniqued"); 664 setNumUnresolved(getNumUnresolved() - 1); 665 if (getNumUnresolved()) 666 return; 667 668 // Last unresolved operand has just been resolved. 669 dropReplaceableUses(); 670 assert(isResolved() && "Expected this to become resolved"); 671 } 672 673 void MDNode::resolveCycles() { 674 if (isResolved()) 675 return; 676 677 // Resolve this node immediately. 678 resolve(); 679 680 // Resolve all operands. 681 for (const auto &Op : operands()) { 682 auto *N = dyn_cast_or_null<MDNode>(Op); 683 if (!N) 684 continue; 685 686 assert(!N->isTemporary() && 687 "Expected all forward declarations to be resolved"); 688 if (!N->isResolved()) 689 N->resolveCycles(); 690 } 691 } 692 693 static bool hasSelfReference(MDNode *N) { 694 return llvm::is_contained(N->operands(), N); 695 } 696 697 MDNode *MDNode::replaceWithPermanentImpl() { 698 switch (getMetadataID()) { 699 default: 700 // If this type isn't uniquable, replace with a distinct node. 701 return replaceWithDistinctImpl(); 702 703 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 704 case CLASS##Kind: \ 705 break; 706 #include "llvm/IR/Metadata.def" 707 } 708 709 // Even if this type is uniquable, self-references have to be distinct. 710 if (hasSelfReference(this)) 711 return replaceWithDistinctImpl(); 712 return replaceWithUniquedImpl(); 713 } 714 715 MDNode *MDNode::replaceWithUniquedImpl() { 716 // Try to uniquify in place. 717 MDNode *UniquedNode = uniquify(); 718 719 if (UniquedNode == this) { 720 makeUniqued(); 721 return this; 722 } 723 724 // Collision, so RAUW instead. 725 replaceAllUsesWith(UniquedNode); 726 deleteAsSubclass(); 727 return UniquedNode; 728 } 729 730 MDNode *MDNode::replaceWithDistinctImpl() { 731 makeDistinct(); 732 return this; 733 } 734 735 void MDTuple::recalculateHash() { 736 setHash(MDTupleInfo::KeyTy::calculateHash(this)); 737 } 738 739 void MDNode::dropAllReferences() { 740 for (unsigned I = 0, E = getNumOperands(); I != E; ++I) 741 setOperand(I, nullptr); 742 if (Context.hasReplaceableUses()) { 743 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false); 744 (void)Context.takeReplaceableUses(); 745 } 746 } 747 748 void MDNode::handleChangedOperand(void *Ref, Metadata *New) { 749 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin(); 750 assert(Op < getNumOperands() && "Expected valid operand"); 751 752 if (!isUniqued()) { 753 // This node is not uniqued. Just set the operand and be done with it. 754 setOperand(Op, New); 755 return; 756 } 757 758 // This node is uniqued. 759 eraseFromStore(); 760 761 Metadata *Old = getOperand(Op); 762 setOperand(Op, New); 763 764 // Drop uniquing for self-reference cycles and deleted constants. 765 if (New == this || (!New && Old && isa<ConstantAsMetadata>(Old))) { 766 if (!isResolved()) 767 resolve(); 768 storeDistinctInContext(); 769 return; 770 } 771 772 // Re-unique the node. 773 auto *Uniqued = uniquify(); 774 if (Uniqued == this) { 775 if (!isResolved()) 776 resolveAfterOperandChange(Old, New); 777 return; 778 } 779 780 // Collision. 781 if (!isResolved()) { 782 // Still unresolved, so RAUW. 783 // 784 // First, clear out all operands to prevent any recursion (similar to 785 // dropAllReferences(), but we still need the use-list). 786 for (unsigned O = 0, E = getNumOperands(); O != E; ++O) 787 setOperand(O, nullptr); 788 if (Context.hasReplaceableUses()) 789 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued); 790 deleteAsSubclass(); 791 return; 792 } 793 794 // Store in non-uniqued form if RAUW isn't possible. 795 storeDistinctInContext(); 796 } 797 798 void MDNode::deleteAsSubclass() { 799 switch (getMetadataID()) { 800 default: 801 llvm_unreachable("Invalid subclass of MDNode"); 802 #define HANDLE_MDNODE_LEAF(CLASS) \ 803 case CLASS##Kind: \ 804 delete cast<CLASS>(this); \ 805 break; 806 #include "llvm/IR/Metadata.def" 807 } 808 } 809 810 template <class T, class InfoT> 811 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) { 812 if (T *U = getUniqued(Store, N)) 813 return U; 814 815 Store.insert(N); 816 return N; 817 } 818 819 template <class NodeTy> struct MDNode::HasCachedHash { 820 using Yes = char[1]; 821 using No = char[2]; 822 template <class U, U Val> struct SFINAE {}; 823 824 template <class U> 825 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *); 826 template <class U> static No &check(...); 827 828 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes); 829 }; 830 831 MDNode *MDNode::uniquify() { 832 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node"); 833 834 // Try to insert into uniquing store. 835 switch (getMetadataID()) { 836 default: 837 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 838 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 839 case CLASS##Kind: { \ 840 CLASS *SubclassThis = cast<CLASS>(this); \ 841 std::integral_constant<bool, HasCachedHash<CLASS>::value> \ 842 ShouldRecalculateHash; \ 843 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \ 844 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \ 845 } 846 #include "llvm/IR/Metadata.def" 847 } 848 } 849 850 void MDNode::eraseFromStore() { 851 switch (getMetadataID()) { 852 default: 853 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 854 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 855 case CLASS##Kind: \ 856 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \ 857 break; 858 #include "llvm/IR/Metadata.def" 859 } 860 } 861 862 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs, 863 StorageType Storage, bool ShouldCreate) { 864 unsigned Hash = 0; 865 if (Storage == Uniqued) { 866 MDTupleInfo::KeyTy Key(MDs); 867 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key)) 868 return N; 869 if (!ShouldCreate) 870 return nullptr; 871 Hash = Key.getHash(); 872 } else { 873 assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); 874 } 875 876 return storeImpl(new (MDs.size(), Storage) 877 MDTuple(Context, Storage, Hash, MDs), 878 Storage, Context.pImpl->MDTuples); 879 } 880 881 void MDNode::deleteTemporary(MDNode *N) { 882 assert(N->isTemporary() && "Expected temporary node"); 883 N->replaceAllUsesWith(nullptr); 884 N->deleteAsSubclass(); 885 } 886 887 void MDNode::storeDistinctInContext() { 888 assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses"); 889 assert(!getNumUnresolved() && "Unexpected unresolved nodes"); 890 Storage = Distinct; 891 assert(isResolved() && "Expected this to be resolved"); 892 893 // Reset the hash. 894 switch (getMetadataID()) { 895 default: 896 llvm_unreachable("Invalid subclass of MDNode"); 897 #define HANDLE_MDNODE_LEAF(CLASS) \ 898 case CLASS##Kind: { \ 899 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \ 900 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \ 901 break; \ 902 } 903 #include "llvm/IR/Metadata.def" 904 } 905 906 getContext().pImpl->DistinctMDNodes.push_back(this); 907 } 908 909 void MDNode::replaceOperandWith(unsigned I, Metadata *New) { 910 if (getOperand(I) == New) 911 return; 912 913 if (!isUniqued()) { 914 setOperand(I, New); 915 return; 916 } 917 918 handleChangedOperand(mutable_begin() + I, New); 919 } 920 921 void MDNode::setOperand(unsigned I, Metadata *New) { 922 assert(I < getNumOperands()); 923 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr); 924 } 925 926 /// Get a node or a self-reference that looks like it. 927 /// 928 /// Special handling for finding self-references, for use by \a 929 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from 930 /// when self-referencing nodes were still uniqued. If the first operand has 931 /// the same operands as \c Ops, return the first operand instead. 932 static MDNode *getOrSelfReference(LLVMContext &Context, 933 ArrayRef<Metadata *> Ops) { 934 if (!Ops.empty()) 935 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0])) 936 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) { 937 for (unsigned I = 1, E = Ops.size(); I != E; ++I) 938 if (Ops[I] != N->getOperand(I)) 939 return MDNode::get(Context, Ops); 940 return N; 941 } 942 943 return MDNode::get(Context, Ops); 944 } 945 946 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) { 947 if (!A) 948 return B; 949 if (!B) 950 return A; 951 952 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 953 MDs.insert(B->op_begin(), B->op_end()); 954 955 // FIXME: This preserves long-standing behaviour, but is it really the right 956 // behaviour? Or was that an unintended side-effect of node uniquing? 957 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 958 } 959 960 MDNode *MDNode::intersect(MDNode *A, MDNode *B) { 961 if (!A || !B) 962 return nullptr; 963 964 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 965 SmallPtrSet<Metadata *, 4> BSet(B->op_begin(), B->op_end()); 966 MDs.remove_if([&](Metadata *MD) { return !BSet.count(MD); }); 967 968 // FIXME: This preserves long-standing behaviour, but is it really the right 969 // behaviour? Or was that an unintended side-effect of node uniquing? 970 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 971 } 972 973 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) { 974 if (!A || !B) 975 return nullptr; 976 977 // Take the intersection of domains then union the scopes 978 // within those domains 979 SmallPtrSet<const MDNode *, 16> ADomains; 980 SmallPtrSet<const MDNode *, 16> IntersectDomains; 981 SmallSetVector<Metadata *, 4> MDs; 982 for (const MDOperand &MDOp : A->operands()) 983 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 984 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 985 ADomains.insert(Domain); 986 987 for (const MDOperand &MDOp : B->operands()) 988 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 989 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 990 if (ADomains.contains(Domain)) { 991 IntersectDomains.insert(Domain); 992 MDs.insert(MDOp); 993 } 994 995 for (const MDOperand &MDOp : A->operands()) 996 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 997 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 998 if (IntersectDomains.contains(Domain)) 999 MDs.insert(MDOp); 1000 1001 return MDs.empty() ? nullptr 1002 : getOrSelfReference(A->getContext(), MDs.getArrayRef()); 1003 } 1004 1005 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) { 1006 if (!A || !B) 1007 return nullptr; 1008 1009 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF(); 1010 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF(); 1011 if (AVal < BVal) 1012 return A; 1013 return B; 1014 } 1015 1016 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 1017 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 1018 } 1019 1020 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) { 1021 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B); 1022 } 1023 1024 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints, 1025 ConstantInt *Low, ConstantInt *High) { 1026 ConstantRange NewRange(Low->getValue(), High->getValue()); 1027 unsigned Size = EndPoints.size(); 1028 APInt LB = EndPoints[Size - 2]->getValue(); 1029 APInt LE = EndPoints[Size - 1]->getValue(); 1030 ConstantRange LastRange(LB, LE); 1031 if (canBeMerged(NewRange, LastRange)) { 1032 ConstantRange Union = LastRange.unionWith(NewRange); 1033 Type *Ty = High->getType(); 1034 EndPoints[Size - 2] = 1035 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower())); 1036 EndPoints[Size - 1] = 1037 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper())); 1038 return true; 1039 } 1040 return false; 1041 } 1042 1043 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints, 1044 ConstantInt *Low, ConstantInt *High) { 1045 if (!EndPoints.empty()) 1046 if (tryMergeRange(EndPoints, Low, High)) 1047 return; 1048 1049 EndPoints.push_back(Low); 1050 EndPoints.push_back(High); 1051 } 1052 1053 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) { 1054 // Given two ranges, we want to compute the union of the ranges. This 1055 // is slightly complicated by having to combine the intervals and merge 1056 // the ones that overlap. 1057 1058 if (!A || !B) 1059 return nullptr; 1060 1061 if (A == B) 1062 return A; 1063 1064 // First, walk both lists in order of the lower boundary of each interval. 1065 // At each step, try to merge the new interval to the last one we adedd. 1066 SmallVector<ConstantInt *, 4> EndPoints; 1067 int AI = 0; 1068 int BI = 0; 1069 int AN = A->getNumOperands() / 2; 1070 int BN = B->getNumOperands() / 2; 1071 while (AI < AN && BI < BN) { 1072 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI)); 1073 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI)); 1074 1075 if (ALow->getValue().slt(BLow->getValue())) { 1076 addRange(EndPoints, ALow, 1077 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 1078 ++AI; 1079 } else { 1080 addRange(EndPoints, BLow, 1081 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 1082 ++BI; 1083 } 1084 } 1085 while (AI < AN) { 1086 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)), 1087 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 1088 ++AI; 1089 } 1090 while (BI < BN) { 1091 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)), 1092 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 1093 ++BI; 1094 } 1095 1096 // If we have more than 2 ranges (4 endpoints) we have to try to merge 1097 // the last and first ones. 1098 unsigned Size = EndPoints.size(); 1099 if (Size > 4) { 1100 ConstantInt *FB = EndPoints[0]; 1101 ConstantInt *FE = EndPoints[1]; 1102 if (tryMergeRange(EndPoints, FB, FE)) { 1103 for (unsigned i = 0; i < Size - 2; ++i) { 1104 EndPoints[i] = EndPoints[i + 2]; 1105 } 1106 EndPoints.resize(Size - 2); 1107 } 1108 } 1109 1110 // If in the end we have a single range, it is possible that it is now the 1111 // full range. Just drop the metadata in that case. 1112 if (EndPoints.size() == 2) { 1113 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue()); 1114 if (Range.isFullSet()) 1115 return nullptr; 1116 } 1117 1118 SmallVector<Metadata *, 4> MDs; 1119 MDs.reserve(EndPoints.size()); 1120 for (auto *I : EndPoints) 1121 MDs.push_back(ConstantAsMetadata::get(I)); 1122 return MDNode::get(A->getContext(), MDs); 1123 } 1124 1125 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) { 1126 if (!A || !B) 1127 return nullptr; 1128 1129 ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0)); 1130 ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0)); 1131 if (AVal->getZExtValue() < BVal->getZExtValue()) 1132 return A; 1133 return B; 1134 } 1135 1136 //===----------------------------------------------------------------------===// 1137 // NamedMDNode implementation. 1138 // 1139 1140 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) { 1141 return *(SmallVector<TrackingMDRef, 4> *)Operands; 1142 } 1143 1144 NamedMDNode::NamedMDNode(const Twine &N) 1145 : Name(N.str()), Operands(new SmallVector<TrackingMDRef, 4>()) {} 1146 1147 NamedMDNode::~NamedMDNode() { 1148 dropAllReferences(); 1149 delete &getNMDOps(Operands); 1150 } 1151 1152 unsigned NamedMDNode::getNumOperands() const { 1153 return (unsigned)getNMDOps(Operands).size(); 1154 } 1155 1156 MDNode *NamedMDNode::getOperand(unsigned i) const { 1157 assert(i < getNumOperands() && "Invalid Operand number!"); 1158 auto *N = getNMDOps(Operands)[i].get(); 1159 return cast_or_null<MDNode>(N); 1160 } 1161 1162 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); } 1163 1164 void NamedMDNode::setOperand(unsigned I, MDNode *New) { 1165 assert(I < getNumOperands() && "Invalid operand number"); 1166 getNMDOps(Operands)[I].reset(New); 1167 } 1168 1169 void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); } 1170 1171 void NamedMDNode::clearOperands() { getNMDOps(Operands).clear(); } 1172 1173 StringRef NamedMDNode::getName() const { return StringRef(Name); } 1174 1175 //===----------------------------------------------------------------------===// 1176 // Instruction Metadata method implementations. 1177 // 1178 1179 MDNode *MDAttachments::lookup(unsigned ID) const { 1180 for (const auto &A : Attachments) 1181 if (A.MDKind == ID) 1182 return A.Node; 1183 return nullptr; 1184 } 1185 1186 void MDAttachments::get(unsigned ID, SmallVectorImpl<MDNode *> &Result) const { 1187 for (const auto &A : Attachments) 1188 if (A.MDKind == ID) 1189 Result.push_back(A.Node); 1190 } 1191 1192 void MDAttachments::getAll( 1193 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1194 for (const auto &A : Attachments) 1195 Result.emplace_back(A.MDKind, A.Node); 1196 1197 // Sort the resulting array so it is stable with respect to metadata IDs. We 1198 // need to preserve the original insertion order though. 1199 if (Result.size() > 1) 1200 llvm::stable_sort(Result, less_first()); 1201 } 1202 1203 void MDAttachments::set(unsigned ID, MDNode *MD) { 1204 erase(ID); 1205 if (MD) 1206 insert(ID, *MD); 1207 } 1208 1209 void MDAttachments::insert(unsigned ID, MDNode &MD) { 1210 Attachments.push_back({ID, TrackingMDNodeRef(&MD)}); 1211 } 1212 1213 bool MDAttachments::erase(unsigned ID) { 1214 if (empty()) 1215 return false; 1216 1217 // Common case is one value. 1218 if (Attachments.size() == 1 && Attachments.back().MDKind == ID) { 1219 Attachments.pop_back(); 1220 return true; 1221 } 1222 1223 auto OldSize = Attachments.size(); 1224 llvm::erase_if(Attachments, 1225 [ID](const Attachment &A) { return A.MDKind == ID; }); 1226 return OldSize != Attachments.size(); 1227 } 1228 1229 MDNode *Value::getMetadata(unsigned KindID) const { 1230 if (!hasMetadata()) 1231 return nullptr; 1232 const auto &Info = getContext().pImpl->ValueMetadata[this]; 1233 assert(!Info.empty() && "bit out of sync with hash table"); 1234 return Info.lookup(KindID); 1235 } 1236 1237 MDNode *Value::getMetadata(StringRef Kind) const { 1238 if (!hasMetadata()) 1239 return nullptr; 1240 const auto &Info = getContext().pImpl->ValueMetadata[this]; 1241 assert(!Info.empty() && "bit out of sync with hash table"); 1242 return Info.lookup(getContext().getMDKindID(Kind)); 1243 } 1244 1245 void Value::getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const { 1246 if (hasMetadata()) 1247 getContext().pImpl->ValueMetadata[this].get(KindID, MDs); 1248 } 1249 1250 void Value::getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const { 1251 if (hasMetadata()) 1252 getMetadata(getContext().getMDKindID(Kind), MDs); 1253 } 1254 1255 void Value::getAllMetadata( 1256 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { 1257 if (hasMetadata()) { 1258 assert(getContext().pImpl->ValueMetadata.count(this) && 1259 "bit out of sync with hash table"); 1260 const auto &Info = getContext().pImpl->ValueMetadata.find(this)->second; 1261 assert(!Info.empty() && "Shouldn't have called this"); 1262 Info.getAll(MDs); 1263 } 1264 } 1265 1266 void Value::setMetadata(unsigned KindID, MDNode *Node) { 1267 assert(isa<Instruction>(this) || isa<GlobalObject>(this)); 1268 1269 // Handle the case when we're adding/updating metadata on a value. 1270 if (Node) { 1271 auto &Info = getContext().pImpl->ValueMetadata[this]; 1272 assert(!Info.empty() == HasMetadata && "bit out of sync with hash table"); 1273 if (Info.empty()) 1274 HasMetadata = true; 1275 Info.set(KindID, Node); 1276 return; 1277 } 1278 1279 // Otherwise, we're removing metadata from an instruction. 1280 assert((HasMetadata == (getContext().pImpl->ValueMetadata.count(this) > 0)) && 1281 "bit out of sync with hash table"); 1282 if (!HasMetadata) 1283 return; // Nothing to remove! 1284 auto &Info = getContext().pImpl->ValueMetadata[this]; 1285 1286 // Handle removal of an existing value. 1287 Info.erase(KindID); 1288 if (!Info.empty()) 1289 return; 1290 getContext().pImpl->ValueMetadata.erase(this); 1291 HasMetadata = false; 1292 } 1293 1294 void Value::setMetadata(StringRef Kind, MDNode *Node) { 1295 if (!Node && !HasMetadata) 1296 return; 1297 setMetadata(getContext().getMDKindID(Kind), Node); 1298 } 1299 1300 void Value::addMetadata(unsigned KindID, MDNode &MD) { 1301 assert(isa<Instruction>(this) || isa<GlobalObject>(this)); 1302 if (!HasMetadata) 1303 HasMetadata = true; 1304 getContext().pImpl->ValueMetadata[this].insert(KindID, MD); 1305 } 1306 1307 void Value::addMetadata(StringRef Kind, MDNode &MD) { 1308 addMetadata(getContext().getMDKindID(Kind), MD); 1309 } 1310 1311 bool Value::eraseMetadata(unsigned KindID) { 1312 // Nothing to unset. 1313 if (!HasMetadata) 1314 return false; 1315 1316 auto &Store = getContext().pImpl->ValueMetadata[this]; 1317 bool Changed = Store.erase(KindID); 1318 if (Store.empty()) 1319 clearMetadata(); 1320 return Changed; 1321 } 1322 1323 void Value::clearMetadata() { 1324 if (!HasMetadata) 1325 return; 1326 assert(getContext().pImpl->ValueMetadata.count(this) && 1327 "bit out of sync with hash table"); 1328 getContext().pImpl->ValueMetadata.erase(this); 1329 HasMetadata = false; 1330 } 1331 1332 void Instruction::setMetadata(StringRef Kind, MDNode *Node) { 1333 if (!Node && !hasMetadata()) 1334 return; 1335 setMetadata(getContext().getMDKindID(Kind), Node); 1336 } 1337 1338 MDNode *Instruction::getMetadataImpl(StringRef Kind) const { 1339 return getMetadataImpl(getContext().getMDKindID(Kind)); 1340 } 1341 1342 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) { 1343 if (!Value::hasMetadata()) 1344 return; // Nothing to remove! 1345 1346 if (KnownIDs.empty()) { 1347 // Just drop our entry at the store. 1348 clearMetadata(); 1349 return; 1350 } 1351 1352 SmallSet<unsigned, 4> KnownSet; 1353 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 1354 1355 auto &MetadataStore = getContext().pImpl->ValueMetadata; 1356 auto &Info = MetadataStore[this]; 1357 assert(!Info.empty() && "bit out of sync with hash table"); 1358 Info.remove_if([&KnownSet](const MDAttachments::Attachment &I) { 1359 return !KnownSet.count(I.MDKind); 1360 }); 1361 1362 if (Info.empty()) { 1363 // Drop our entry at the store. 1364 clearMetadata(); 1365 } 1366 } 1367 1368 void Instruction::setMetadata(unsigned KindID, MDNode *Node) { 1369 if (!Node && !hasMetadata()) 1370 return; 1371 1372 // Handle 'dbg' as a special case since it is not stored in the hash table. 1373 if (KindID == LLVMContext::MD_dbg) { 1374 DbgLoc = DebugLoc(Node); 1375 return; 1376 } 1377 1378 Value::setMetadata(KindID, Node); 1379 } 1380 1381 void Instruction::addAnnotationMetadata(StringRef Name) { 1382 MDBuilder MDB(getContext()); 1383 1384 auto *Existing = getMetadata(LLVMContext::MD_annotation); 1385 SmallVector<Metadata *, 4> Names; 1386 bool AppendName = true; 1387 if (Existing) { 1388 auto *Tuple = cast<MDTuple>(Existing); 1389 for (auto &N : Tuple->operands()) { 1390 if (cast<MDString>(N.get())->getString() == Name) 1391 AppendName = false; 1392 Names.push_back(N.get()); 1393 } 1394 } 1395 if (AppendName) 1396 Names.push_back(MDB.createString(Name)); 1397 1398 MDNode *MD = MDTuple::get(getContext(), Names); 1399 setMetadata(LLVMContext::MD_annotation, MD); 1400 } 1401 1402 AAMDNodes Instruction::getAAMetadata() const { 1403 AAMDNodes Result; 1404 Result.TBAA = getMetadata(LLVMContext::MD_tbaa); 1405 Result.TBAAStruct = getMetadata(LLVMContext::MD_tbaa_struct); 1406 Result.Scope = getMetadata(LLVMContext::MD_alias_scope); 1407 Result.NoAlias = getMetadata(LLVMContext::MD_noalias); 1408 return Result; 1409 } 1410 1411 void Instruction::setAAMetadata(const AAMDNodes &N) { 1412 setMetadata(LLVMContext::MD_tbaa, N.TBAA); 1413 setMetadata(LLVMContext::MD_tbaa_struct, N.TBAAStruct); 1414 setMetadata(LLVMContext::MD_alias_scope, N.Scope); 1415 setMetadata(LLVMContext::MD_noalias, N.NoAlias); 1416 } 1417 1418 MDNode *Instruction::getMetadataImpl(unsigned KindID) const { 1419 // Handle 'dbg' as a special case since it is not stored in the hash table. 1420 if (KindID == LLVMContext::MD_dbg) 1421 return DbgLoc.getAsMDNode(); 1422 return Value::getMetadata(KindID); 1423 } 1424 1425 void Instruction::getAllMetadataImpl( 1426 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1427 Result.clear(); 1428 1429 // Handle 'dbg' as a special case since it is not stored in the hash table. 1430 if (DbgLoc) { 1431 Result.push_back( 1432 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode())); 1433 } 1434 Value::getAllMetadata(Result); 1435 } 1436 1437 bool Instruction::extractProfMetadata(uint64_t &TrueVal, 1438 uint64_t &FalseVal) const { 1439 assert( 1440 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select) && 1441 "Looking for branch weights on something besides branch or select"); 1442 1443 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1444 if (!ProfileData || ProfileData->getNumOperands() != 3) 1445 return false; 1446 1447 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1448 if (!ProfDataName || !ProfDataName->getString().equals("branch_weights")) 1449 return false; 1450 1451 auto *CITrue = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 1452 auto *CIFalse = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 1453 if (!CITrue || !CIFalse) 1454 return false; 1455 1456 TrueVal = CITrue->getValue().getZExtValue(); 1457 FalseVal = CIFalse->getValue().getZExtValue(); 1458 1459 return true; 1460 } 1461 1462 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) const { 1463 assert( 1464 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select || 1465 getOpcode() == Instruction::Call || getOpcode() == Instruction::Invoke || 1466 getOpcode() == Instruction::IndirectBr || 1467 getOpcode() == Instruction::Switch) && 1468 "Looking for branch weights on something besides branch"); 1469 1470 TotalVal = 0; 1471 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1472 if (!ProfileData) 1473 return false; 1474 1475 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1476 if (!ProfDataName) 1477 return false; 1478 1479 if (ProfDataName->getString().equals("branch_weights")) { 1480 TotalVal = 0; 1481 for (unsigned i = 1; i < ProfileData->getNumOperands(); i++) { 1482 auto *V = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i)); 1483 if (!V) 1484 return false; 1485 TotalVal += V->getValue().getZExtValue(); 1486 } 1487 return true; 1488 } else if (ProfDataName->getString().equals("VP") && 1489 ProfileData->getNumOperands() > 3) { 1490 TotalVal = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)) 1491 ->getValue() 1492 .getZExtValue(); 1493 return true; 1494 } 1495 return false; 1496 } 1497 1498 void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) { 1499 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 1500 Other->getAllMetadata(MDs); 1501 for (auto &MD : MDs) { 1502 // We need to adjust the type metadata offset. 1503 if (Offset != 0 && MD.first == LLVMContext::MD_type) { 1504 auto *OffsetConst = cast<ConstantInt>( 1505 cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue()); 1506 Metadata *TypeId = MD.second->getOperand(1); 1507 auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get( 1508 OffsetConst->getType(), OffsetConst->getValue() + Offset)); 1509 addMetadata(LLVMContext::MD_type, 1510 *MDNode::get(getContext(), {NewOffsetMD, TypeId})); 1511 continue; 1512 } 1513 // If an offset adjustment was specified we need to modify the DIExpression 1514 // to prepend the adjustment: 1515 // !DIExpression(DW_OP_plus, Offset, [original expr]) 1516 auto *Attachment = MD.second; 1517 if (Offset != 0 && MD.first == LLVMContext::MD_dbg) { 1518 DIGlobalVariable *GV = dyn_cast<DIGlobalVariable>(Attachment); 1519 DIExpression *E = nullptr; 1520 if (!GV) { 1521 auto *GVE = cast<DIGlobalVariableExpression>(Attachment); 1522 GV = GVE->getVariable(); 1523 E = GVE->getExpression(); 1524 } 1525 ArrayRef<uint64_t> OrigElements; 1526 if (E) 1527 OrigElements = E->getElements(); 1528 std::vector<uint64_t> Elements(OrigElements.size() + 2); 1529 Elements[0] = dwarf::DW_OP_plus_uconst; 1530 Elements[1] = Offset; 1531 llvm::copy(OrigElements, Elements.begin() + 2); 1532 E = DIExpression::get(getContext(), Elements); 1533 Attachment = DIGlobalVariableExpression::get(getContext(), GV, E); 1534 } 1535 addMetadata(MD.first, *Attachment); 1536 } 1537 } 1538 1539 void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) { 1540 addMetadata( 1541 LLVMContext::MD_type, 1542 *MDTuple::get(getContext(), 1543 {ConstantAsMetadata::get(ConstantInt::get( 1544 Type::getInt64Ty(getContext()), Offset)), 1545 TypeID})); 1546 } 1547 1548 void GlobalObject::setVCallVisibilityMetadata(VCallVisibility Visibility) { 1549 // Remove any existing vcall visibility metadata first in case we are 1550 // updating. 1551 eraseMetadata(LLVMContext::MD_vcall_visibility); 1552 addMetadata(LLVMContext::MD_vcall_visibility, 1553 *MDNode::get(getContext(), 1554 {ConstantAsMetadata::get(ConstantInt::get( 1555 Type::getInt64Ty(getContext()), Visibility))})); 1556 } 1557 1558 GlobalObject::VCallVisibility GlobalObject::getVCallVisibility() const { 1559 if (MDNode *MD = getMetadata(LLVMContext::MD_vcall_visibility)) { 1560 uint64_t Val = cast<ConstantInt>( 1561 cast<ConstantAsMetadata>(MD->getOperand(0))->getValue()) 1562 ->getZExtValue(); 1563 assert(Val <= 2 && "unknown vcall visibility!"); 1564 return (VCallVisibility)Val; 1565 } 1566 return VCallVisibility::VCallVisibilityPublic; 1567 } 1568 1569 void Function::setSubprogram(DISubprogram *SP) { 1570 setMetadata(LLVMContext::MD_dbg, SP); 1571 } 1572 1573 DISubprogram *Function::getSubprogram() const { 1574 return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg)); 1575 } 1576 1577 bool Function::isDebugInfoForProfiling() const { 1578 if (DISubprogram *SP = getSubprogram()) { 1579 if (DICompileUnit *CU = SP->getUnit()) { 1580 return CU->getDebugInfoForProfiling(); 1581 } 1582 } 1583 return false; 1584 } 1585 1586 void GlobalVariable::addDebugInfo(DIGlobalVariableExpression *GV) { 1587 addMetadata(LLVMContext::MD_dbg, *GV); 1588 } 1589 1590 void GlobalVariable::getDebugInfo( 1591 SmallVectorImpl<DIGlobalVariableExpression *> &GVs) const { 1592 SmallVector<MDNode *, 1> MDs; 1593 getMetadata(LLVMContext::MD_dbg, MDs); 1594 for (MDNode *MD : MDs) 1595 GVs.push_back(cast<DIGlobalVariableExpression>(MD)); 1596 } 1597