1 //===- Metadata.cpp - Implement Metadata classes --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Metadata classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Metadata.h" 14 #include "LLVMContextImpl.h" 15 #include "MetadataImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/APFloat.h" 18 #include "llvm/ADT/APInt.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringMap.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/IR/Argument.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/ConstantRange.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DebugInfoMetadata.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalObject.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/MDBuilder.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/TrackingMDRef.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/IR/ValueHandle.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/MathExtras.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <cstddef> 54 #include <cstdint> 55 #include <iterator> 56 #include <tuple> 57 #include <type_traits> 58 #include <utility> 59 #include <vector> 60 61 using namespace llvm; 62 63 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD) 64 : Value(Ty, MetadataAsValueVal), MD(MD) { 65 track(); 66 } 67 68 MetadataAsValue::~MetadataAsValue() { 69 getType()->getContext().pImpl->MetadataAsValues.erase(MD); 70 untrack(); 71 } 72 73 /// Canonicalize metadata arguments to intrinsics. 74 /// 75 /// To support bitcode upgrades (and assembly semantic sugar) for \a 76 /// MetadataAsValue, we need to canonicalize certain metadata. 77 /// 78 /// - nullptr is replaced by an empty MDNode. 79 /// - An MDNode with a single null operand is replaced by an empty MDNode. 80 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped. 81 /// 82 /// This maintains readability of bitcode from when metadata was a type of 83 /// value, and these bridges were unnecessary. 84 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context, 85 Metadata *MD) { 86 if (!MD) 87 // !{} 88 return MDNode::get(Context, None); 89 90 // Return early if this isn't a single-operand MDNode. 91 auto *N = dyn_cast<MDNode>(MD); 92 if (!N || N->getNumOperands() != 1) 93 return MD; 94 95 if (!N->getOperand(0)) 96 // !{} 97 return MDNode::get(Context, None); 98 99 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0))) 100 // Look through the MDNode. 101 return C; 102 103 return MD; 104 } 105 106 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) { 107 MD = canonicalizeMetadataForValue(Context, MD); 108 auto *&Entry = Context.pImpl->MetadataAsValues[MD]; 109 if (!Entry) 110 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD); 111 return Entry; 112 } 113 114 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context, 115 Metadata *MD) { 116 MD = canonicalizeMetadataForValue(Context, MD); 117 auto &Store = Context.pImpl->MetadataAsValues; 118 return Store.lookup(MD); 119 } 120 121 void MetadataAsValue::handleChangedMetadata(Metadata *MD) { 122 LLVMContext &Context = getContext(); 123 MD = canonicalizeMetadataForValue(Context, MD); 124 auto &Store = Context.pImpl->MetadataAsValues; 125 126 // Stop tracking the old metadata. 127 Store.erase(this->MD); 128 untrack(); 129 this->MD = nullptr; 130 131 // Start tracking MD, or RAUW if necessary. 132 auto *&Entry = Store[MD]; 133 if (Entry) { 134 replaceAllUsesWith(Entry); 135 delete this; 136 return; 137 } 138 139 this->MD = MD; 140 track(); 141 Entry = this; 142 } 143 144 void MetadataAsValue::track() { 145 if (MD) 146 MetadataTracking::track(&MD, *MD, *this); 147 } 148 149 void MetadataAsValue::untrack() { 150 if (MD) 151 MetadataTracking::untrack(MD); 152 } 153 154 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) { 155 assert(Ref && "Expected live reference"); 156 assert((Owner || *static_cast<Metadata **>(Ref) == &MD) && 157 "Reference without owner must be direct"); 158 if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) { 159 R->addRef(Ref, Owner); 160 return true; 161 } 162 if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) { 163 assert(!PH->Use && "Placeholders can only be used once"); 164 assert(!Owner && "Unexpected callback to owner"); 165 PH->Use = static_cast<Metadata **>(Ref); 166 return true; 167 } 168 return false; 169 } 170 171 void MetadataTracking::untrack(void *Ref, Metadata &MD) { 172 assert(Ref && "Expected live reference"); 173 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) 174 R->dropRef(Ref); 175 else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) 176 PH->Use = nullptr; 177 } 178 179 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) { 180 assert(Ref && "Expected live reference"); 181 assert(New && "Expected live reference"); 182 assert(Ref != New && "Expected change"); 183 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) { 184 R->moveRef(Ref, New, MD); 185 return true; 186 } 187 assert(!isa<DistinctMDOperandPlaceholder>(MD) && 188 "Unexpected move of an MDOperand"); 189 assert(!isReplaceable(MD) && 190 "Expected un-replaceable metadata, since we didn't move a reference"); 191 return false; 192 } 193 194 bool MetadataTracking::isReplaceable(const Metadata &MD) { 195 return ReplaceableMetadataImpl::isReplaceable(MD); 196 } 197 198 SmallVector<Metadata *> ReplaceableMetadataImpl::getAllArgListUsers() { 199 SmallVector<std::pair<OwnerTy, uint64_t> *> MDUsersWithID; 200 for (auto Pair : UseMap) { 201 OwnerTy Owner = Pair.second.first; 202 if (!Owner.is<Metadata *>()) 203 continue; 204 Metadata *OwnerMD = Owner.get<Metadata *>(); 205 if (OwnerMD->getMetadataID() == Metadata::DIArgListKind) 206 MDUsersWithID.push_back(&UseMap[Pair.first]); 207 } 208 llvm::sort(MDUsersWithID, [](auto UserA, auto UserB) { 209 return UserA->second < UserB->second; 210 }); 211 SmallVector<Metadata *> MDUsers; 212 for (auto UserWithID : MDUsersWithID) 213 MDUsers.push_back(UserWithID->first.get<Metadata *>()); 214 return MDUsers; 215 } 216 217 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) { 218 bool WasInserted = 219 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex))) 220 .second; 221 (void)WasInserted; 222 assert(WasInserted && "Expected to add a reference"); 223 224 ++NextIndex; 225 assert(NextIndex != 0 && "Unexpected overflow"); 226 } 227 228 void ReplaceableMetadataImpl::dropRef(void *Ref) { 229 bool WasErased = UseMap.erase(Ref); 230 (void)WasErased; 231 assert(WasErased && "Expected to drop a reference"); 232 } 233 234 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New, 235 const Metadata &MD) { 236 auto I = UseMap.find(Ref); 237 assert(I != UseMap.end() && "Expected to move a reference"); 238 auto OwnerAndIndex = I->second; 239 UseMap.erase(I); 240 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second; 241 (void)WasInserted; 242 assert(WasInserted && "Expected to add a reference"); 243 244 // Check that the references are direct if there's no owner. 245 (void)MD; 246 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) && 247 "Reference without owner must be direct"); 248 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) && 249 "Reference without owner must be direct"); 250 } 251 252 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) { 253 if (UseMap.empty()) 254 return; 255 256 // Copy out uses since UseMap will get touched below. 257 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>; 258 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 259 llvm::sort(Uses, [](const UseTy &L, const UseTy &R) { 260 return L.second.second < R.second.second; 261 }); 262 for (const auto &Pair : Uses) { 263 // Check that this Ref hasn't disappeared after RAUW (when updating a 264 // previous Ref). 265 if (!UseMap.count(Pair.first)) 266 continue; 267 268 OwnerTy Owner = Pair.second.first; 269 if (!Owner) { 270 // Update unowned tracking references directly. 271 Metadata *&Ref = *static_cast<Metadata **>(Pair.first); 272 Ref = MD; 273 if (MD) 274 MetadataTracking::track(Ref); 275 UseMap.erase(Pair.first); 276 continue; 277 } 278 279 // Check for MetadataAsValue. 280 if (Owner.is<MetadataAsValue *>()) { 281 Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD); 282 continue; 283 } 284 285 // There's a Metadata owner -- dispatch. 286 Metadata *OwnerMD = Owner.get<Metadata *>(); 287 switch (OwnerMD->getMetadataID()) { 288 #define HANDLE_METADATA_LEAF(CLASS) \ 289 case Metadata::CLASS##Kind: \ 290 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \ 291 continue; 292 #include "llvm/IR/Metadata.def" 293 default: 294 llvm_unreachable("Invalid metadata subclass"); 295 } 296 } 297 assert(UseMap.empty() && "Expected all uses to be replaced"); 298 } 299 300 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) { 301 if (UseMap.empty()) 302 return; 303 304 if (!ResolveUsers) { 305 UseMap.clear(); 306 return; 307 } 308 309 // Copy out uses since UseMap could get touched below. 310 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>; 311 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 312 llvm::sort(Uses, [](const UseTy &L, const UseTy &R) { 313 return L.second.second < R.second.second; 314 }); 315 UseMap.clear(); 316 for (const auto &Pair : Uses) { 317 auto Owner = Pair.second.first; 318 if (!Owner) 319 continue; 320 if (Owner.is<MetadataAsValue *>()) 321 continue; 322 323 // Resolve MDNodes that point at this. 324 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>()); 325 if (!OwnerMD) 326 continue; 327 if (OwnerMD->isResolved()) 328 continue; 329 OwnerMD->decrementUnresolvedOperandCount(); 330 } 331 } 332 333 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) { 334 if (auto *N = dyn_cast<MDNode>(&MD)) 335 return N->isResolved() ? nullptr : N->Context.getOrCreateReplaceableUses(); 336 return dyn_cast<ValueAsMetadata>(&MD); 337 } 338 339 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) { 340 if (auto *N = dyn_cast<MDNode>(&MD)) 341 return N->isResolved() ? nullptr : N->Context.getReplaceableUses(); 342 return dyn_cast<ValueAsMetadata>(&MD); 343 } 344 345 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) { 346 if (auto *N = dyn_cast<MDNode>(&MD)) 347 return !N->isResolved(); 348 return dyn_cast<ValueAsMetadata>(&MD); 349 } 350 351 static DISubprogram *getLocalFunctionMetadata(Value *V) { 352 assert(V && "Expected value"); 353 if (auto *A = dyn_cast<Argument>(V)) { 354 if (auto *Fn = A->getParent()) 355 return Fn->getSubprogram(); 356 return nullptr; 357 } 358 359 if (BasicBlock *BB = cast<Instruction>(V)->getParent()) { 360 if (auto *Fn = BB->getParent()) 361 return Fn->getSubprogram(); 362 return nullptr; 363 } 364 365 return nullptr; 366 } 367 368 ValueAsMetadata *ValueAsMetadata::get(Value *V) { 369 assert(V && "Unexpected null Value"); 370 371 auto &Context = V->getContext(); 372 auto *&Entry = Context.pImpl->ValuesAsMetadata[V]; 373 if (!Entry) { 374 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) && 375 "Expected constant or function-local value"); 376 assert(!V->IsUsedByMD && "Expected this to be the only metadata use"); 377 V->IsUsedByMD = true; 378 if (auto *C = dyn_cast<Constant>(V)) 379 Entry = new ConstantAsMetadata(C); 380 else 381 Entry = new LocalAsMetadata(V); 382 } 383 384 return Entry; 385 } 386 387 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) { 388 assert(V && "Unexpected null Value"); 389 return V->getContext().pImpl->ValuesAsMetadata.lookup(V); 390 } 391 392 void ValueAsMetadata::handleDeletion(Value *V) { 393 assert(V && "Expected valid value"); 394 395 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata; 396 auto I = Store.find(V); 397 if (I == Store.end()) 398 return; 399 400 // Remove old entry from the map. 401 ValueAsMetadata *MD = I->second; 402 assert(MD && "Expected valid metadata"); 403 assert(MD->getValue() == V && "Expected valid mapping"); 404 Store.erase(I); 405 406 // Delete the metadata. 407 MD->replaceAllUsesWith(nullptr); 408 delete MD; 409 } 410 411 void ValueAsMetadata::handleRAUW(Value *From, Value *To) { 412 assert(From && "Expected valid value"); 413 assert(To && "Expected valid value"); 414 assert(From != To && "Expected changed value"); 415 assert(From->getType() == To->getType() && "Unexpected type change"); 416 417 LLVMContext &Context = From->getType()->getContext(); 418 auto &Store = Context.pImpl->ValuesAsMetadata; 419 auto I = Store.find(From); 420 if (I == Store.end()) { 421 assert(!From->IsUsedByMD && "Expected From not to be used by metadata"); 422 return; 423 } 424 425 // Remove old entry from the map. 426 assert(From->IsUsedByMD && "Expected From to be used by metadata"); 427 From->IsUsedByMD = false; 428 ValueAsMetadata *MD = I->second; 429 assert(MD && "Expected valid metadata"); 430 assert(MD->getValue() == From && "Expected valid mapping"); 431 Store.erase(I); 432 433 if (isa<LocalAsMetadata>(MD)) { 434 if (auto *C = dyn_cast<Constant>(To)) { 435 // Local became a constant. 436 MD->replaceAllUsesWith(ConstantAsMetadata::get(C)); 437 delete MD; 438 return; 439 } 440 if (getLocalFunctionMetadata(From) && getLocalFunctionMetadata(To) && 441 getLocalFunctionMetadata(From) != getLocalFunctionMetadata(To)) { 442 // DISubprogram changed. 443 MD->replaceAllUsesWith(nullptr); 444 delete MD; 445 return; 446 } 447 } else if (!isa<Constant>(To)) { 448 // Changed to function-local value. 449 MD->replaceAllUsesWith(nullptr); 450 delete MD; 451 return; 452 } 453 454 auto *&Entry = Store[To]; 455 if (Entry) { 456 // The target already exists. 457 MD->replaceAllUsesWith(Entry); 458 delete MD; 459 return; 460 } 461 462 // Update MD in place (and update the map entry). 463 assert(!To->IsUsedByMD && "Expected this to be the only metadata use"); 464 To->IsUsedByMD = true; 465 MD->V = To; 466 Entry = MD; 467 } 468 469 //===----------------------------------------------------------------------===// 470 // MDString implementation. 471 // 472 473 MDString *MDString::get(LLVMContext &Context, StringRef Str) { 474 auto &Store = Context.pImpl->MDStringCache; 475 auto I = Store.try_emplace(Str); 476 auto &MapEntry = I.first->getValue(); 477 if (!I.second) 478 return &MapEntry; 479 MapEntry.Entry = &*I.first; 480 return &MapEntry; 481 } 482 483 StringRef MDString::getString() const { 484 assert(Entry && "Expected to find string map entry"); 485 return Entry->first(); 486 } 487 488 //===----------------------------------------------------------------------===// 489 // MDNode implementation. 490 // 491 492 // Assert that the MDNode types will not be unaligned by the objects 493 // prepended to them. 494 #define HANDLE_MDNODE_LEAF(CLASS) \ 495 static_assert( \ 496 alignof(uint64_t) >= alignof(CLASS), \ 497 "Alignment is insufficient after objects prepended to " #CLASS); 498 #include "llvm/IR/Metadata.def" 499 500 void *MDNode::operator new(size_t Size, unsigned NumOps) { 501 size_t OpSize = NumOps * sizeof(MDOperand); 502 // uint64_t is the most aligned type we need support (ensured by static_assert 503 // above) 504 OpSize = alignTo(OpSize, alignof(uint64_t)); 505 void *Ptr = reinterpret_cast<char *>(::operator new(OpSize + Size)) + OpSize; 506 MDOperand *O = static_cast<MDOperand *>(Ptr); 507 for (MDOperand *E = O - NumOps; O != E; --O) 508 (void)new (O - 1) MDOperand; 509 return Ptr; 510 } 511 512 // Repress memory sanitization, due to use-after-destroy by operator 513 // delete. Bug report 24578 identifies this issue. 514 LLVM_NO_SANITIZE_MEMORY_ATTRIBUTE void MDNode::operator delete(void *Mem) { 515 MDNode *N = static_cast<MDNode *>(Mem); 516 size_t OpSize = N->NumOperands * sizeof(MDOperand); 517 OpSize = alignTo(OpSize, alignof(uint64_t)); 518 519 MDOperand *O = static_cast<MDOperand *>(Mem); 520 for (MDOperand *E = O - N->NumOperands; O != E; --O) 521 (O - 1)->~MDOperand(); 522 ::operator delete(reinterpret_cast<char *>(Mem) - OpSize); 523 } 524 525 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage, 526 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2) 527 : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()), 528 NumUnresolved(0), Context(Context) { 529 unsigned Op = 0; 530 for (Metadata *MD : Ops1) 531 setOperand(Op++, MD); 532 for (Metadata *MD : Ops2) 533 setOperand(Op++, MD); 534 535 if (!isUniqued()) 536 return; 537 538 // Count the unresolved operands. If there are any, RAUW support will be 539 // added lazily on first reference. 540 countUnresolvedOperands(); 541 } 542 543 TempMDNode MDNode::clone() const { 544 switch (getMetadataID()) { 545 default: 546 llvm_unreachable("Invalid MDNode subclass"); 547 #define HANDLE_MDNODE_LEAF(CLASS) \ 548 case CLASS##Kind: \ 549 return cast<CLASS>(this)->cloneImpl(); 550 #include "llvm/IR/Metadata.def" 551 } 552 } 553 554 static bool isOperandUnresolved(Metadata *Op) { 555 if (auto *N = dyn_cast_or_null<MDNode>(Op)) 556 return !N->isResolved(); 557 return false; 558 } 559 560 void MDNode::countUnresolvedOperands() { 561 assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted"); 562 assert(isUniqued() && "Expected this to be uniqued"); 563 NumUnresolved = count_if(operands(), isOperandUnresolved); 564 } 565 566 void MDNode::makeUniqued() { 567 assert(isTemporary() && "Expected this to be temporary"); 568 assert(!isResolved() && "Expected this to be unresolved"); 569 570 // Enable uniquing callbacks. 571 for (auto &Op : mutable_operands()) 572 Op.reset(Op.get(), this); 573 574 // Make this 'uniqued'. 575 Storage = Uniqued; 576 countUnresolvedOperands(); 577 if (!NumUnresolved) { 578 dropReplaceableUses(); 579 assert(isResolved() && "Expected this to be resolved"); 580 } 581 582 assert(isUniqued() && "Expected this to be uniqued"); 583 } 584 585 void MDNode::makeDistinct() { 586 assert(isTemporary() && "Expected this to be temporary"); 587 assert(!isResolved() && "Expected this to be unresolved"); 588 589 // Drop RAUW support and store as a distinct node. 590 dropReplaceableUses(); 591 storeDistinctInContext(); 592 593 assert(isDistinct() && "Expected this to be distinct"); 594 assert(isResolved() && "Expected this to be resolved"); 595 } 596 597 void MDNode::resolve() { 598 assert(isUniqued() && "Expected this to be uniqued"); 599 assert(!isResolved() && "Expected this to be unresolved"); 600 601 NumUnresolved = 0; 602 dropReplaceableUses(); 603 604 assert(isResolved() && "Expected this to be resolved"); 605 } 606 607 void MDNode::dropReplaceableUses() { 608 assert(!NumUnresolved && "Unexpected unresolved operand"); 609 610 // Drop any RAUW support. 611 if (Context.hasReplaceableUses()) 612 Context.takeReplaceableUses()->resolveAllUses(); 613 } 614 615 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) { 616 assert(isUniqued() && "Expected this to be uniqued"); 617 assert(NumUnresolved != 0 && "Expected unresolved operands"); 618 619 // Check if an operand was resolved. 620 if (!isOperandUnresolved(Old)) { 621 if (isOperandUnresolved(New)) 622 // An operand was un-resolved! 623 ++NumUnresolved; 624 } else if (!isOperandUnresolved(New)) 625 decrementUnresolvedOperandCount(); 626 } 627 628 void MDNode::decrementUnresolvedOperandCount() { 629 assert(!isResolved() && "Expected this to be unresolved"); 630 if (isTemporary()) 631 return; 632 633 assert(isUniqued() && "Expected this to be uniqued"); 634 if (--NumUnresolved) 635 return; 636 637 // Last unresolved operand has just been resolved. 638 dropReplaceableUses(); 639 assert(isResolved() && "Expected this to become resolved"); 640 } 641 642 void MDNode::resolveCycles() { 643 if (isResolved()) 644 return; 645 646 // Resolve this node immediately. 647 resolve(); 648 649 // Resolve all operands. 650 for (const auto &Op : operands()) { 651 auto *N = dyn_cast_or_null<MDNode>(Op); 652 if (!N) 653 continue; 654 655 assert(!N->isTemporary() && 656 "Expected all forward declarations to be resolved"); 657 if (!N->isResolved()) 658 N->resolveCycles(); 659 } 660 } 661 662 static bool hasSelfReference(MDNode *N) { 663 return llvm::is_contained(N->operands(), N); 664 } 665 666 MDNode *MDNode::replaceWithPermanentImpl() { 667 switch (getMetadataID()) { 668 default: 669 // If this type isn't uniquable, replace with a distinct node. 670 return replaceWithDistinctImpl(); 671 672 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 673 case CLASS##Kind: \ 674 break; 675 #define HANDLE_MDNODE_LEAF_UNIQUED(CLASS) HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) 676 #include "llvm/IR/Metadata.def" 677 } 678 679 // Even if this type is uniquable, self-references have to be distinct. 680 if (hasSelfReference(this)) 681 return replaceWithDistinctImpl(); 682 return replaceWithUniquedImpl(); 683 } 684 685 MDNode *MDNode::replaceWithUniquedImpl() { 686 // Try to uniquify in place. 687 MDNode *UniquedNode = uniquify(); 688 689 if (UniquedNode == this) { 690 makeUniqued(); 691 return this; 692 } 693 694 // Collision, so RAUW instead. 695 replaceAllUsesWith(UniquedNode); 696 deleteAsSubclass(); 697 return UniquedNode; 698 } 699 700 MDNode *MDNode::replaceWithDistinctImpl() { 701 makeDistinct(); 702 return this; 703 } 704 705 void MDTuple::recalculateHash() { 706 setHash(MDTupleInfo::KeyTy::calculateHash(this)); 707 } 708 709 void MDNode::dropAllReferences() { 710 for (unsigned I = 0, E = NumOperands; I != E; ++I) 711 setOperand(I, nullptr); 712 if (Context.hasReplaceableUses()) { 713 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false); 714 (void)Context.takeReplaceableUses(); 715 } 716 } 717 718 void MDNode::handleChangedOperand(void *Ref, Metadata *New) { 719 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin(); 720 assert(Op < getNumOperands() && "Expected valid operand"); 721 722 if (!isUniqued()) { 723 // This node is not uniqued. Just set the operand and be done with it. 724 setOperand(Op, New); 725 return; 726 } 727 728 // This node is uniqued. 729 eraseFromStore(); 730 731 Metadata *Old = getOperand(Op); 732 setOperand(Op, New); 733 734 // Drop uniquing for self-reference cycles and deleted constants. 735 if (New == this || (!New && Old && isa<ConstantAsMetadata>(Old))) { 736 if (!isResolved()) 737 resolve(); 738 storeDistinctInContext(); 739 return; 740 } 741 742 // Re-unique the node. 743 auto *Uniqued = uniquify(); 744 if (Uniqued == this) { 745 if (!isResolved()) 746 resolveAfterOperandChange(Old, New); 747 return; 748 } 749 750 // Collision. 751 if (!isResolved()) { 752 // Still unresolved, so RAUW. 753 // 754 // First, clear out all operands to prevent any recursion (similar to 755 // dropAllReferences(), but we still need the use-list). 756 for (unsigned O = 0, E = getNumOperands(); O != E; ++O) 757 setOperand(O, nullptr); 758 if (Context.hasReplaceableUses()) 759 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued); 760 deleteAsSubclass(); 761 return; 762 } 763 764 // Store in non-uniqued form if RAUW isn't possible. 765 storeDistinctInContext(); 766 } 767 768 void MDNode::deleteAsSubclass() { 769 switch (getMetadataID()) { 770 default: 771 llvm_unreachable("Invalid subclass of MDNode"); 772 #define HANDLE_MDNODE_LEAF(CLASS) \ 773 case CLASS##Kind: \ 774 delete cast<CLASS>(this); \ 775 break; 776 #include "llvm/IR/Metadata.def" 777 } 778 } 779 780 template <class T, class InfoT> 781 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) { 782 if (T *U = getUniqued(Store, N)) 783 return U; 784 785 Store.insert(N); 786 return N; 787 } 788 789 template <class NodeTy> struct MDNode::HasCachedHash { 790 using Yes = char[1]; 791 using No = char[2]; 792 template <class U, U Val> struct SFINAE {}; 793 794 template <class U> 795 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *); 796 template <class U> static No &check(...); 797 798 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes); 799 }; 800 801 MDNode *MDNode::uniquify() { 802 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node"); 803 804 // Try to insert into uniquing store. 805 switch (getMetadataID()) { 806 default: 807 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 808 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 809 case CLASS##Kind: { \ 810 CLASS *SubclassThis = cast<CLASS>(this); \ 811 std::integral_constant<bool, HasCachedHash<CLASS>::value> \ 812 ShouldRecalculateHash; \ 813 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \ 814 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \ 815 } 816 #define HANDLE_MDNODE_LEAF_UNIQUED(CLASS) HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) 817 #include "llvm/IR/Metadata.def" 818 } 819 } 820 821 void MDNode::eraseFromStore() { 822 switch (getMetadataID()) { 823 default: 824 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 825 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 826 case CLASS##Kind: \ 827 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \ 828 break; 829 #define HANDLE_MDNODE_LEAF_UNIQUED(CLASS) HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) 830 #include "llvm/IR/Metadata.def" 831 } 832 } 833 834 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs, 835 StorageType Storage, bool ShouldCreate) { 836 unsigned Hash = 0; 837 if (Storage == Uniqued) { 838 MDTupleInfo::KeyTy Key(MDs); 839 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key)) 840 return N; 841 if (!ShouldCreate) 842 return nullptr; 843 Hash = Key.getHash(); 844 } else { 845 assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); 846 } 847 848 return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs), 849 Storage, Context.pImpl->MDTuples); 850 } 851 852 void MDNode::deleteTemporary(MDNode *N) { 853 assert(N->isTemporary() && "Expected temporary node"); 854 N->replaceAllUsesWith(nullptr); 855 N->deleteAsSubclass(); 856 } 857 858 void MDNode::storeDistinctInContext() { 859 assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses"); 860 assert(!NumUnresolved && "Unexpected unresolved nodes"); 861 Storage = Distinct; 862 assert(isResolved() && "Expected this to be resolved"); 863 864 // Reset the hash. 865 switch (getMetadataID()) { 866 default: 867 llvm_unreachable("Invalid subclass of MDNode"); 868 #define HANDLE_MDNODE_LEAF(CLASS) \ 869 case CLASS##Kind: { \ 870 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \ 871 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \ 872 break; \ 873 } 874 #include "llvm/IR/Metadata.def" 875 } 876 877 getContext().pImpl->DistinctMDNodes.push_back(this); 878 } 879 880 void MDNode::replaceOperandWith(unsigned I, Metadata *New) { 881 if (getOperand(I) == New) 882 return; 883 884 if (!isUniqued()) { 885 setOperand(I, New); 886 return; 887 } 888 889 handleChangedOperand(mutable_begin() + I, New); 890 } 891 892 void MDNode::setOperand(unsigned I, Metadata *New) { 893 assert(I < NumOperands); 894 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr); 895 } 896 897 /// Get a node or a self-reference that looks like it. 898 /// 899 /// Special handling for finding self-references, for use by \a 900 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from 901 /// when self-referencing nodes were still uniqued. If the first operand has 902 /// the same operands as \c Ops, return the first operand instead. 903 static MDNode *getOrSelfReference(LLVMContext &Context, 904 ArrayRef<Metadata *> Ops) { 905 if (!Ops.empty()) 906 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0])) 907 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) { 908 for (unsigned I = 1, E = Ops.size(); I != E; ++I) 909 if (Ops[I] != N->getOperand(I)) 910 return MDNode::get(Context, Ops); 911 return N; 912 } 913 914 return MDNode::get(Context, Ops); 915 } 916 917 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) { 918 if (!A) 919 return B; 920 if (!B) 921 return A; 922 923 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 924 MDs.insert(B->op_begin(), B->op_end()); 925 926 // FIXME: This preserves long-standing behaviour, but is it really the right 927 // behaviour? Or was that an unintended side-effect of node uniquing? 928 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 929 } 930 931 MDNode *MDNode::intersect(MDNode *A, MDNode *B) { 932 if (!A || !B) 933 return nullptr; 934 935 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 936 SmallPtrSet<Metadata *, 4> BSet(B->op_begin(), B->op_end()); 937 MDs.remove_if([&](Metadata *MD) { return !BSet.count(MD); }); 938 939 // FIXME: This preserves long-standing behaviour, but is it really the right 940 // behaviour? Or was that an unintended side-effect of node uniquing? 941 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 942 } 943 944 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) { 945 if (!A || !B) 946 return nullptr; 947 948 // Take the intersection of domains then union the scopes 949 // within those domains 950 SmallPtrSet<const MDNode *, 16> ADomains; 951 SmallPtrSet<const MDNode *, 16> IntersectDomains; 952 SmallSetVector<Metadata *, 4> MDs; 953 for (const MDOperand &MDOp : A->operands()) 954 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 955 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 956 ADomains.insert(Domain); 957 958 for (const MDOperand &MDOp : B->operands()) 959 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 960 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 961 if (ADomains.contains(Domain)) { 962 IntersectDomains.insert(Domain); 963 MDs.insert(MDOp); 964 } 965 966 for (const MDOperand &MDOp : A->operands()) 967 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 968 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 969 if (IntersectDomains.contains(Domain)) 970 MDs.insert(MDOp); 971 972 return MDs.empty() ? nullptr 973 : getOrSelfReference(A->getContext(), MDs.getArrayRef()); 974 } 975 976 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) { 977 if (!A || !B) 978 return nullptr; 979 980 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF(); 981 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF(); 982 if (AVal < BVal) 983 return A; 984 return B; 985 } 986 987 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 988 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 989 } 990 991 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) { 992 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B); 993 } 994 995 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints, 996 ConstantInt *Low, ConstantInt *High) { 997 ConstantRange NewRange(Low->getValue(), High->getValue()); 998 unsigned Size = EndPoints.size(); 999 APInt LB = EndPoints[Size - 2]->getValue(); 1000 APInt LE = EndPoints[Size - 1]->getValue(); 1001 ConstantRange LastRange(LB, LE); 1002 if (canBeMerged(NewRange, LastRange)) { 1003 ConstantRange Union = LastRange.unionWith(NewRange); 1004 Type *Ty = High->getType(); 1005 EndPoints[Size - 2] = 1006 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower())); 1007 EndPoints[Size - 1] = 1008 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper())); 1009 return true; 1010 } 1011 return false; 1012 } 1013 1014 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints, 1015 ConstantInt *Low, ConstantInt *High) { 1016 if (!EndPoints.empty()) 1017 if (tryMergeRange(EndPoints, Low, High)) 1018 return; 1019 1020 EndPoints.push_back(Low); 1021 EndPoints.push_back(High); 1022 } 1023 1024 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) { 1025 // Given two ranges, we want to compute the union of the ranges. This 1026 // is slightly complicated by having to combine the intervals and merge 1027 // the ones that overlap. 1028 1029 if (!A || !B) 1030 return nullptr; 1031 1032 if (A == B) 1033 return A; 1034 1035 // First, walk both lists in order of the lower boundary of each interval. 1036 // At each step, try to merge the new interval to the last one we adedd. 1037 SmallVector<ConstantInt *, 4> EndPoints; 1038 int AI = 0; 1039 int BI = 0; 1040 int AN = A->getNumOperands() / 2; 1041 int BN = B->getNumOperands() / 2; 1042 while (AI < AN && BI < BN) { 1043 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI)); 1044 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI)); 1045 1046 if (ALow->getValue().slt(BLow->getValue())) { 1047 addRange(EndPoints, ALow, 1048 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 1049 ++AI; 1050 } else { 1051 addRange(EndPoints, BLow, 1052 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 1053 ++BI; 1054 } 1055 } 1056 while (AI < AN) { 1057 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)), 1058 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 1059 ++AI; 1060 } 1061 while (BI < BN) { 1062 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)), 1063 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 1064 ++BI; 1065 } 1066 1067 // If we have more than 2 ranges (4 endpoints) we have to try to merge 1068 // the last and first ones. 1069 unsigned Size = EndPoints.size(); 1070 if (Size > 4) { 1071 ConstantInt *FB = EndPoints[0]; 1072 ConstantInt *FE = EndPoints[1]; 1073 if (tryMergeRange(EndPoints, FB, FE)) { 1074 for (unsigned i = 0; i < Size - 2; ++i) { 1075 EndPoints[i] = EndPoints[i + 2]; 1076 } 1077 EndPoints.resize(Size - 2); 1078 } 1079 } 1080 1081 // If in the end we have a single range, it is possible that it is now the 1082 // full range. Just drop the metadata in that case. 1083 if (EndPoints.size() == 2) { 1084 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue()); 1085 if (Range.isFullSet()) 1086 return nullptr; 1087 } 1088 1089 SmallVector<Metadata *, 4> MDs; 1090 MDs.reserve(EndPoints.size()); 1091 for (auto *I : EndPoints) 1092 MDs.push_back(ConstantAsMetadata::get(I)); 1093 return MDNode::get(A->getContext(), MDs); 1094 } 1095 1096 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) { 1097 if (!A || !B) 1098 return nullptr; 1099 1100 ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0)); 1101 ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0)); 1102 if (AVal->getZExtValue() < BVal->getZExtValue()) 1103 return A; 1104 return B; 1105 } 1106 1107 //===----------------------------------------------------------------------===// 1108 // NamedMDNode implementation. 1109 // 1110 1111 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) { 1112 return *(SmallVector<TrackingMDRef, 4> *)Operands; 1113 } 1114 1115 NamedMDNode::NamedMDNode(const Twine &N) 1116 : Name(N.str()), Operands(new SmallVector<TrackingMDRef, 4>()) {} 1117 1118 NamedMDNode::~NamedMDNode() { 1119 dropAllReferences(); 1120 delete &getNMDOps(Operands); 1121 } 1122 1123 unsigned NamedMDNode::getNumOperands() const { 1124 return (unsigned)getNMDOps(Operands).size(); 1125 } 1126 1127 MDNode *NamedMDNode::getOperand(unsigned i) const { 1128 assert(i < getNumOperands() && "Invalid Operand number!"); 1129 auto *N = getNMDOps(Operands)[i].get(); 1130 return cast_or_null<MDNode>(N); 1131 } 1132 1133 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); } 1134 1135 void NamedMDNode::setOperand(unsigned I, MDNode *New) { 1136 assert(I < getNumOperands() && "Invalid operand number"); 1137 getNMDOps(Operands)[I].reset(New); 1138 } 1139 1140 void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); } 1141 1142 void NamedMDNode::clearOperands() { getNMDOps(Operands).clear(); } 1143 1144 StringRef NamedMDNode::getName() const { return StringRef(Name); } 1145 1146 //===----------------------------------------------------------------------===// 1147 // Instruction Metadata method implementations. 1148 // 1149 1150 MDNode *MDAttachments::lookup(unsigned ID) const { 1151 for (const auto &A : Attachments) 1152 if (A.MDKind == ID) 1153 return A.Node; 1154 return nullptr; 1155 } 1156 1157 void MDAttachments::get(unsigned ID, SmallVectorImpl<MDNode *> &Result) const { 1158 for (const auto &A : Attachments) 1159 if (A.MDKind == ID) 1160 Result.push_back(A.Node); 1161 } 1162 1163 void MDAttachments::getAll( 1164 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1165 for (const auto &A : Attachments) 1166 Result.emplace_back(A.MDKind, A.Node); 1167 1168 // Sort the resulting array so it is stable with respect to metadata IDs. We 1169 // need to preserve the original insertion order though. 1170 if (Result.size() > 1) 1171 llvm::stable_sort(Result, less_first()); 1172 } 1173 1174 void MDAttachments::set(unsigned ID, MDNode *MD) { 1175 erase(ID); 1176 if (MD) 1177 insert(ID, *MD); 1178 } 1179 1180 void MDAttachments::insert(unsigned ID, MDNode &MD) { 1181 Attachments.push_back({ID, TrackingMDNodeRef(&MD)}); 1182 } 1183 1184 bool MDAttachments::erase(unsigned ID) { 1185 if (empty()) 1186 return false; 1187 1188 // Common case is one value. 1189 if (Attachments.size() == 1 && Attachments.back().MDKind == ID) { 1190 Attachments.pop_back(); 1191 return true; 1192 } 1193 1194 auto OldSize = Attachments.size(); 1195 llvm::erase_if(Attachments, 1196 [ID](const Attachment &A) { return A.MDKind == ID; }); 1197 return OldSize != Attachments.size(); 1198 } 1199 1200 MDNode *Value::getMetadata(unsigned KindID) const { 1201 if (!hasMetadata()) 1202 return nullptr; 1203 const auto &Info = getContext().pImpl->ValueMetadata[this]; 1204 assert(!Info.empty() && "bit out of sync with hash table"); 1205 return Info.lookup(KindID); 1206 } 1207 1208 MDNode *Value::getMetadata(StringRef Kind) const { 1209 if (!hasMetadata()) 1210 return nullptr; 1211 const auto &Info = getContext().pImpl->ValueMetadata[this]; 1212 assert(!Info.empty() && "bit out of sync with hash table"); 1213 return Info.lookup(getContext().getMDKindID(Kind)); 1214 } 1215 1216 void Value::getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const { 1217 if (hasMetadata()) 1218 getContext().pImpl->ValueMetadata[this].get(KindID, MDs); 1219 } 1220 1221 void Value::getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const { 1222 if (hasMetadata()) 1223 getMetadata(getContext().getMDKindID(Kind), MDs); 1224 } 1225 1226 void Value::getAllMetadata( 1227 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { 1228 if (hasMetadata()) { 1229 assert(getContext().pImpl->ValueMetadata.count(this) && 1230 "bit out of sync with hash table"); 1231 const auto &Info = getContext().pImpl->ValueMetadata.find(this)->second; 1232 assert(!Info.empty() && "Shouldn't have called this"); 1233 Info.getAll(MDs); 1234 } 1235 } 1236 1237 void Value::setMetadata(unsigned KindID, MDNode *Node) { 1238 assert(isa<Instruction>(this) || isa<GlobalObject>(this)); 1239 1240 // Handle the case when we're adding/updating metadata on a value. 1241 if (Node) { 1242 auto &Info = getContext().pImpl->ValueMetadata[this]; 1243 assert(!Info.empty() == HasMetadata && "bit out of sync with hash table"); 1244 if (Info.empty()) 1245 HasMetadata = true; 1246 Info.set(KindID, Node); 1247 return; 1248 } 1249 1250 // Otherwise, we're removing metadata from an instruction. 1251 assert((HasMetadata == (getContext().pImpl->ValueMetadata.count(this) > 0)) && 1252 "bit out of sync with hash table"); 1253 if (!HasMetadata) 1254 return; // Nothing to remove! 1255 auto &Info = getContext().pImpl->ValueMetadata[this]; 1256 1257 // Handle removal of an existing value. 1258 Info.erase(KindID); 1259 if (!Info.empty()) 1260 return; 1261 getContext().pImpl->ValueMetadata.erase(this); 1262 HasMetadata = false; 1263 } 1264 1265 void Value::setMetadata(StringRef Kind, MDNode *Node) { 1266 if (!Node && !HasMetadata) 1267 return; 1268 setMetadata(getContext().getMDKindID(Kind), Node); 1269 } 1270 1271 void Value::addMetadata(unsigned KindID, MDNode &MD) { 1272 assert(isa<Instruction>(this) || isa<GlobalObject>(this)); 1273 if (!HasMetadata) 1274 HasMetadata = true; 1275 getContext().pImpl->ValueMetadata[this].insert(KindID, MD); 1276 } 1277 1278 void Value::addMetadata(StringRef Kind, MDNode &MD) { 1279 addMetadata(getContext().getMDKindID(Kind), MD); 1280 } 1281 1282 bool Value::eraseMetadata(unsigned KindID) { 1283 // Nothing to unset. 1284 if (!HasMetadata) 1285 return false; 1286 1287 auto &Store = getContext().pImpl->ValueMetadata[this]; 1288 bool Changed = Store.erase(KindID); 1289 if (Store.empty()) 1290 clearMetadata(); 1291 return Changed; 1292 } 1293 1294 void Value::clearMetadata() { 1295 if (!HasMetadata) 1296 return; 1297 assert(getContext().pImpl->ValueMetadata.count(this) && 1298 "bit out of sync with hash table"); 1299 getContext().pImpl->ValueMetadata.erase(this); 1300 HasMetadata = false; 1301 } 1302 1303 void Instruction::setMetadata(StringRef Kind, MDNode *Node) { 1304 if (!Node && !hasMetadata()) 1305 return; 1306 setMetadata(getContext().getMDKindID(Kind), Node); 1307 } 1308 1309 MDNode *Instruction::getMetadataImpl(StringRef Kind) const { 1310 return getMetadataImpl(getContext().getMDKindID(Kind)); 1311 } 1312 1313 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) { 1314 if (!Value::hasMetadata()) 1315 return; // Nothing to remove! 1316 1317 if (KnownIDs.empty()) { 1318 // Just drop our entry at the store. 1319 clearMetadata(); 1320 return; 1321 } 1322 1323 SmallSet<unsigned, 4> KnownSet; 1324 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 1325 1326 auto &MetadataStore = getContext().pImpl->ValueMetadata; 1327 auto &Info = MetadataStore[this]; 1328 assert(!Info.empty() && "bit out of sync with hash table"); 1329 Info.remove_if([&KnownSet](const MDAttachments::Attachment &I) { 1330 return !KnownSet.count(I.MDKind); 1331 }); 1332 1333 if (Info.empty()) { 1334 // Drop our entry at the store. 1335 clearMetadata(); 1336 } 1337 } 1338 1339 void Instruction::setMetadata(unsigned KindID, MDNode *Node) { 1340 if (!Node && !hasMetadata()) 1341 return; 1342 1343 // Handle 'dbg' as a special case since it is not stored in the hash table. 1344 if (KindID == LLVMContext::MD_dbg) { 1345 DbgLoc = DebugLoc(Node); 1346 return; 1347 } 1348 1349 Value::setMetadata(KindID, Node); 1350 } 1351 1352 void Instruction::addAnnotationMetadata(StringRef Name) { 1353 MDBuilder MDB(getContext()); 1354 1355 auto *Existing = getMetadata(LLVMContext::MD_annotation); 1356 SmallVector<Metadata *, 4> Names; 1357 bool AppendName = true; 1358 if (Existing) { 1359 auto *Tuple = cast<MDTuple>(Existing); 1360 for (auto &N : Tuple->operands()) { 1361 if (cast<MDString>(N.get())->getString() == Name) 1362 AppendName = false; 1363 Names.push_back(N.get()); 1364 } 1365 } 1366 if (AppendName) 1367 Names.push_back(MDB.createString(Name)); 1368 1369 MDNode *MD = MDTuple::get(getContext(), Names); 1370 setMetadata(LLVMContext::MD_annotation, MD); 1371 } 1372 1373 void Instruction::setAAMetadata(const AAMDNodes &N) { 1374 setMetadata(LLVMContext::MD_tbaa, N.TBAA); 1375 setMetadata(LLVMContext::MD_tbaa_struct, N.TBAAStruct); 1376 setMetadata(LLVMContext::MD_alias_scope, N.Scope); 1377 setMetadata(LLVMContext::MD_noalias, N.NoAlias); 1378 } 1379 1380 MDNode *Instruction::getMetadataImpl(unsigned KindID) const { 1381 // Handle 'dbg' as a special case since it is not stored in the hash table. 1382 if (KindID == LLVMContext::MD_dbg) 1383 return DbgLoc.getAsMDNode(); 1384 return Value::getMetadata(KindID); 1385 } 1386 1387 void Instruction::getAllMetadataImpl( 1388 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1389 Result.clear(); 1390 1391 // Handle 'dbg' as a special case since it is not stored in the hash table. 1392 if (DbgLoc) { 1393 Result.push_back( 1394 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode())); 1395 } 1396 Value::getAllMetadata(Result); 1397 } 1398 1399 bool Instruction::extractProfMetadata(uint64_t &TrueVal, 1400 uint64_t &FalseVal) const { 1401 assert( 1402 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select) && 1403 "Looking for branch weights on something besides branch or select"); 1404 1405 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1406 if (!ProfileData || ProfileData->getNumOperands() != 3) 1407 return false; 1408 1409 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1410 if (!ProfDataName || !ProfDataName->getString().equals("branch_weights")) 1411 return false; 1412 1413 auto *CITrue = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 1414 auto *CIFalse = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 1415 if (!CITrue || !CIFalse) 1416 return false; 1417 1418 TrueVal = CITrue->getValue().getZExtValue(); 1419 FalseVal = CIFalse->getValue().getZExtValue(); 1420 1421 return true; 1422 } 1423 1424 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) const { 1425 assert( 1426 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select || 1427 getOpcode() == Instruction::Call || getOpcode() == Instruction::Invoke || 1428 getOpcode() == Instruction::IndirectBr || 1429 getOpcode() == Instruction::Switch) && 1430 "Looking for branch weights on something besides branch"); 1431 1432 TotalVal = 0; 1433 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1434 if (!ProfileData) 1435 return false; 1436 1437 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1438 if (!ProfDataName) 1439 return false; 1440 1441 if (ProfDataName->getString().equals("branch_weights")) { 1442 TotalVal = 0; 1443 for (unsigned i = 1; i < ProfileData->getNumOperands(); i++) { 1444 auto *V = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i)); 1445 if (!V) 1446 return false; 1447 TotalVal += V->getValue().getZExtValue(); 1448 } 1449 return true; 1450 } else if (ProfDataName->getString().equals("VP") && 1451 ProfileData->getNumOperands() > 3) { 1452 TotalVal = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)) 1453 ->getValue() 1454 .getZExtValue(); 1455 return true; 1456 } 1457 return false; 1458 } 1459 1460 void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) { 1461 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 1462 Other->getAllMetadata(MDs); 1463 for (auto &MD : MDs) { 1464 // We need to adjust the type metadata offset. 1465 if (Offset != 0 && MD.first == LLVMContext::MD_type) { 1466 auto *OffsetConst = cast<ConstantInt>( 1467 cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue()); 1468 Metadata *TypeId = MD.second->getOperand(1); 1469 auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get( 1470 OffsetConst->getType(), OffsetConst->getValue() + Offset)); 1471 addMetadata(LLVMContext::MD_type, 1472 *MDNode::get(getContext(), {NewOffsetMD, TypeId})); 1473 continue; 1474 } 1475 // If an offset adjustment was specified we need to modify the DIExpression 1476 // to prepend the adjustment: 1477 // !DIExpression(DW_OP_plus, Offset, [original expr]) 1478 auto *Attachment = MD.second; 1479 if (Offset != 0 && MD.first == LLVMContext::MD_dbg) { 1480 DIGlobalVariable *GV = dyn_cast<DIGlobalVariable>(Attachment); 1481 DIExpression *E = nullptr; 1482 if (!GV) { 1483 auto *GVE = cast<DIGlobalVariableExpression>(Attachment); 1484 GV = GVE->getVariable(); 1485 E = GVE->getExpression(); 1486 } 1487 ArrayRef<uint64_t> OrigElements; 1488 if (E) 1489 OrigElements = E->getElements(); 1490 std::vector<uint64_t> Elements(OrigElements.size() + 2); 1491 Elements[0] = dwarf::DW_OP_plus_uconst; 1492 Elements[1] = Offset; 1493 llvm::copy(OrigElements, Elements.begin() + 2); 1494 E = DIExpression::get(getContext(), Elements); 1495 Attachment = DIGlobalVariableExpression::get(getContext(), GV, E); 1496 } 1497 addMetadata(MD.first, *Attachment); 1498 } 1499 } 1500 1501 void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) { 1502 addMetadata( 1503 LLVMContext::MD_type, 1504 *MDTuple::get(getContext(), 1505 {ConstantAsMetadata::get(ConstantInt::get( 1506 Type::getInt64Ty(getContext()), Offset)), 1507 TypeID})); 1508 } 1509 1510 void GlobalObject::setVCallVisibilityMetadata(VCallVisibility Visibility) { 1511 // Remove any existing vcall visibility metadata first in case we are 1512 // updating. 1513 eraseMetadata(LLVMContext::MD_vcall_visibility); 1514 addMetadata(LLVMContext::MD_vcall_visibility, 1515 *MDNode::get(getContext(), 1516 {ConstantAsMetadata::get(ConstantInt::get( 1517 Type::getInt64Ty(getContext()), Visibility))})); 1518 } 1519 1520 GlobalObject::VCallVisibility GlobalObject::getVCallVisibility() const { 1521 if (MDNode *MD = getMetadata(LLVMContext::MD_vcall_visibility)) { 1522 uint64_t Val = cast<ConstantInt>( 1523 cast<ConstantAsMetadata>(MD->getOperand(0))->getValue()) 1524 ->getZExtValue(); 1525 assert(Val <= 2 && "unknown vcall visibility!"); 1526 return (VCallVisibility)Val; 1527 } 1528 return VCallVisibility::VCallVisibilityPublic; 1529 } 1530 1531 void Function::setSubprogram(DISubprogram *SP) { 1532 setMetadata(LLVMContext::MD_dbg, SP); 1533 } 1534 1535 DISubprogram *Function::getSubprogram() const { 1536 return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg)); 1537 } 1538 1539 bool Function::isDebugInfoForProfiling() const { 1540 if (DISubprogram *SP = getSubprogram()) { 1541 if (DICompileUnit *CU = SP->getUnit()) { 1542 return CU->getDebugInfoForProfiling(); 1543 } 1544 } 1545 return false; 1546 } 1547 1548 void GlobalVariable::addDebugInfo(DIGlobalVariableExpression *GV) { 1549 addMetadata(LLVMContext::MD_dbg, *GV); 1550 } 1551 1552 void GlobalVariable::getDebugInfo( 1553 SmallVectorImpl<DIGlobalVariableExpression *> &GVs) const { 1554 SmallVector<MDNode *, 1> MDs; 1555 getMetadata(LLVMContext::MD_dbg, MDs); 1556 for (MDNode *MD : MDs) 1557 GVs.push_back(cast<DIGlobalVariableExpression>(MD)); 1558 } 1559