1 //===- Metadata.cpp - Implement Metadata classes --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Metadata classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Metadata.h" 15 #include "LLVMContextImpl.h" 16 #include "MetadataImpl.h" 17 #include "SymbolTableListTraitsImpl.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringMap.h" 22 #include "llvm/IR/ConstantRange.h" 23 #include "llvm/IR/DebugInfoMetadata.h" 24 #include "llvm/IR/Instruction.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/ValueHandle.h" 28 29 using namespace llvm; 30 31 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD) 32 : Value(Ty, MetadataAsValueVal), MD(MD) { 33 track(); 34 } 35 36 MetadataAsValue::~MetadataAsValue() { 37 getType()->getContext().pImpl->MetadataAsValues.erase(MD); 38 untrack(); 39 } 40 41 /// Canonicalize metadata arguments to intrinsics. 42 /// 43 /// To support bitcode upgrades (and assembly semantic sugar) for \a 44 /// MetadataAsValue, we need to canonicalize certain metadata. 45 /// 46 /// - nullptr is replaced by an empty MDNode. 47 /// - An MDNode with a single null operand is replaced by an empty MDNode. 48 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped. 49 /// 50 /// This maintains readability of bitcode from when metadata was a type of 51 /// value, and these bridges were unnecessary. 52 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context, 53 Metadata *MD) { 54 if (!MD) 55 // !{} 56 return MDNode::get(Context, None); 57 58 // Return early if this isn't a single-operand MDNode. 59 auto *N = dyn_cast<MDNode>(MD); 60 if (!N || N->getNumOperands() != 1) 61 return MD; 62 63 if (!N->getOperand(0)) 64 // !{} 65 return MDNode::get(Context, None); 66 67 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0))) 68 // Look through the MDNode. 69 return C; 70 71 return MD; 72 } 73 74 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) { 75 MD = canonicalizeMetadataForValue(Context, MD); 76 auto *&Entry = Context.pImpl->MetadataAsValues[MD]; 77 if (!Entry) 78 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD); 79 return Entry; 80 } 81 82 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context, 83 Metadata *MD) { 84 MD = canonicalizeMetadataForValue(Context, MD); 85 auto &Store = Context.pImpl->MetadataAsValues; 86 return Store.lookup(MD); 87 } 88 89 void MetadataAsValue::handleChangedMetadata(Metadata *MD) { 90 LLVMContext &Context = getContext(); 91 MD = canonicalizeMetadataForValue(Context, MD); 92 auto &Store = Context.pImpl->MetadataAsValues; 93 94 // Stop tracking the old metadata. 95 Store.erase(this->MD); 96 untrack(); 97 this->MD = nullptr; 98 99 // Start tracking MD, or RAUW if necessary. 100 auto *&Entry = Store[MD]; 101 if (Entry) { 102 replaceAllUsesWith(Entry); 103 delete this; 104 return; 105 } 106 107 this->MD = MD; 108 track(); 109 Entry = this; 110 } 111 112 void MetadataAsValue::track() { 113 if (MD) 114 MetadataTracking::track(&MD, *MD, *this); 115 } 116 117 void MetadataAsValue::untrack() { 118 if (MD) 119 MetadataTracking::untrack(MD); 120 } 121 122 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) { 123 assert(Ref && "Expected live reference"); 124 assert((Owner || *static_cast<Metadata **>(Ref) == &MD) && 125 "Reference without owner must be direct"); 126 if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) { 127 R->addRef(Ref, Owner); 128 return true; 129 } 130 if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) { 131 assert(!PH->Use && "Placeholders can only be used once"); 132 assert(!Owner && "Unexpected callback to owner"); 133 PH->Use = static_cast<Metadata **>(Ref); 134 return true; 135 } 136 return false; 137 } 138 139 void MetadataTracking::untrack(void *Ref, Metadata &MD) { 140 assert(Ref && "Expected live reference"); 141 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) 142 R->dropRef(Ref); 143 else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) 144 PH->Use = nullptr; 145 } 146 147 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) { 148 assert(Ref && "Expected live reference"); 149 assert(New && "Expected live reference"); 150 assert(Ref != New && "Expected change"); 151 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) { 152 R->moveRef(Ref, New, MD); 153 return true; 154 } 155 assert(!isa<DistinctMDOperandPlaceholder>(MD) && 156 "Unexpected move of an MDOperand"); 157 assert(!isReplaceable(MD) && 158 "Expected un-replaceable metadata, since we didn't move a reference"); 159 return false; 160 } 161 162 bool MetadataTracking::isReplaceable(const Metadata &MD) { 163 return ReplaceableMetadataImpl::isReplaceable(MD); 164 } 165 166 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) { 167 bool WasInserted = 168 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex))) 169 .second; 170 (void)WasInserted; 171 assert(WasInserted && "Expected to add a reference"); 172 173 ++NextIndex; 174 assert(NextIndex != 0 && "Unexpected overflow"); 175 } 176 177 void ReplaceableMetadataImpl::dropRef(void *Ref) { 178 bool WasErased = UseMap.erase(Ref); 179 (void)WasErased; 180 assert(WasErased && "Expected to drop a reference"); 181 } 182 183 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New, 184 const Metadata &MD) { 185 auto I = UseMap.find(Ref); 186 assert(I != UseMap.end() && "Expected to move a reference"); 187 auto OwnerAndIndex = I->second; 188 UseMap.erase(I); 189 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second; 190 (void)WasInserted; 191 assert(WasInserted && "Expected to add a reference"); 192 193 // Check that the references are direct if there's no owner. 194 (void)MD; 195 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) && 196 "Reference without owner must be direct"); 197 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) && 198 "Reference without owner must be direct"); 199 } 200 201 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) { 202 if (UseMap.empty()) 203 return; 204 205 // Copy out uses since UseMap will get touched below. 206 typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy; 207 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 208 std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) { 209 return L.second.second < R.second.second; 210 }); 211 for (const auto &Pair : Uses) { 212 // Check that this Ref hasn't disappeared after RAUW (when updating a 213 // previous Ref). 214 if (!UseMap.count(Pair.first)) 215 continue; 216 217 OwnerTy Owner = Pair.second.first; 218 if (!Owner) { 219 // Update unowned tracking references directly. 220 Metadata *&Ref = *static_cast<Metadata **>(Pair.first); 221 Ref = MD; 222 if (MD) 223 MetadataTracking::track(Ref); 224 UseMap.erase(Pair.first); 225 continue; 226 } 227 228 // Check for MetadataAsValue. 229 if (Owner.is<MetadataAsValue *>()) { 230 Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD); 231 continue; 232 } 233 234 // There's a Metadata owner -- dispatch. 235 Metadata *OwnerMD = Owner.get<Metadata *>(); 236 switch (OwnerMD->getMetadataID()) { 237 #define HANDLE_METADATA_LEAF(CLASS) \ 238 case Metadata::CLASS##Kind: \ 239 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \ 240 continue; 241 #include "llvm/IR/Metadata.def" 242 default: 243 llvm_unreachable("Invalid metadata subclass"); 244 } 245 } 246 assert(UseMap.empty() && "Expected all uses to be replaced"); 247 } 248 249 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) { 250 if (UseMap.empty()) 251 return; 252 253 if (!ResolveUsers) { 254 UseMap.clear(); 255 return; 256 } 257 258 // Copy out uses since UseMap could get touched below. 259 typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy; 260 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 261 std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) { 262 return L.second.second < R.second.second; 263 }); 264 UseMap.clear(); 265 for (const auto &Pair : Uses) { 266 auto Owner = Pair.second.first; 267 if (!Owner) 268 continue; 269 if (Owner.is<MetadataAsValue *>()) 270 continue; 271 272 // Resolve MDNodes that point at this. 273 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>()); 274 if (!OwnerMD) 275 continue; 276 if (OwnerMD->isResolved()) 277 continue; 278 OwnerMD->decrementUnresolvedOperandCount(); 279 } 280 } 281 282 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) { 283 if (auto *N = dyn_cast<MDNode>(&MD)) 284 return N->isResolved() ? nullptr : N->Context.getOrCreateReplaceableUses(); 285 return dyn_cast<ValueAsMetadata>(&MD); 286 } 287 288 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) { 289 if (auto *N = dyn_cast<MDNode>(&MD)) 290 return N->isResolved() ? nullptr : N->Context.getReplaceableUses(); 291 return dyn_cast<ValueAsMetadata>(&MD); 292 } 293 294 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) { 295 if (auto *N = dyn_cast<MDNode>(&MD)) 296 return !N->isResolved(); 297 return dyn_cast<ValueAsMetadata>(&MD); 298 } 299 300 static Function *getLocalFunction(Value *V) { 301 assert(V && "Expected value"); 302 if (auto *A = dyn_cast<Argument>(V)) 303 return A->getParent(); 304 if (BasicBlock *BB = cast<Instruction>(V)->getParent()) 305 return BB->getParent(); 306 return nullptr; 307 } 308 309 ValueAsMetadata *ValueAsMetadata::get(Value *V) { 310 assert(V && "Unexpected null Value"); 311 312 auto &Context = V->getContext(); 313 auto *&Entry = Context.pImpl->ValuesAsMetadata[V]; 314 if (!Entry) { 315 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) && 316 "Expected constant or function-local value"); 317 assert(!V->IsUsedByMD && "Expected this to be the only metadata use"); 318 V->IsUsedByMD = true; 319 if (auto *C = dyn_cast<Constant>(V)) 320 Entry = new ConstantAsMetadata(C); 321 else 322 Entry = new LocalAsMetadata(V); 323 } 324 325 return Entry; 326 } 327 328 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) { 329 assert(V && "Unexpected null Value"); 330 return V->getContext().pImpl->ValuesAsMetadata.lookup(V); 331 } 332 333 void ValueAsMetadata::handleDeletion(Value *V) { 334 assert(V && "Expected valid value"); 335 336 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata; 337 auto I = Store.find(V); 338 if (I == Store.end()) 339 return; 340 341 // Remove old entry from the map. 342 ValueAsMetadata *MD = I->second; 343 assert(MD && "Expected valid metadata"); 344 assert(MD->getValue() == V && "Expected valid mapping"); 345 Store.erase(I); 346 347 // Delete the metadata. 348 MD->replaceAllUsesWith(nullptr); 349 delete MD; 350 } 351 352 void ValueAsMetadata::handleRAUW(Value *From, Value *To) { 353 assert(From && "Expected valid value"); 354 assert(To && "Expected valid value"); 355 assert(From != To && "Expected changed value"); 356 assert(From->getType() == To->getType() && "Unexpected type change"); 357 358 LLVMContext &Context = From->getType()->getContext(); 359 auto &Store = Context.pImpl->ValuesAsMetadata; 360 auto I = Store.find(From); 361 if (I == Store.end()) { 362 assert(!From->IsUsedByMD && "Expected From not to be used by metadata"); 363 return; 364 } 365 366 // Remove old entry from the map. 367 assert(From->IsUsedByMD && "Expected From to be used by metadata"); 368 From->IsUsedByMD = false; 369 ValueAsMetadata *MD = I->second; 370 assert(MD && "Expected valid metadata"); 371 assert(MD->getValue() == From && "Expected valid mapping"); 372 Store.erase(I); 373 374 if (isa<LocalAsMetadata>(MD)) { 375 if (auto *C = dyn_cast<Constant>(To)) { 376 // Local became a constant. 377 MD->replaceAllUsesWith(ConstantAsMetadata::get(C)); 378 delete MD; 379 return; 380 } 381 if (getLocalFunction(From) && getLocalFunction(To) && 382 getLocalFunction(From) != getLocalFunction(To)) { 383 // Function changed. 384 MD->replaceAllUsesWith(nullptr); 385 delete MD; 386 return; 387 } 388 } else if (!isa<Constant>(To)) { 389 // Changed to function-local value. 390 MD->replaceAllUsesWith(nullptr); 391 delete MD; 392 return; 393 } 394 395 auto *&Entry = Store[To]; 396 if (Entry) { 397 // The target already exists. 398 MD->replaceAllUsesWith(Entry); 399 delete MD; 400 return; 401 } 402 403 // Update MD in place (and update the map entry). 404 assert(!To->IsUsedByMD && "Expected this to be the only metadata use"); 405 To->IsUsedByMD = true; 406 MD->V = To; 407 Entry = MD; 408 } 409 410 //===----------------------------------------------------------------------===// 411 // MDString implementation. 412 // 413 414 MDString *MDString::get(LLVMContext &Context, StringRef Str) { 415 auto &Store = Context.pImpl->MDStringCache; 416 auto I = Store.try_emplace(Str); 417 auto &MapEntry = I.first->getValue(); 418 if (!I.second) 419 return &MapEntry; 420 MapEntry.Entry = &*I.first; 421 return &MapEntry; 422 } 423 424 StringRef MDString::getString() const { 425 assert(Entry && "Expected to find string map entry"); 426 return Entry->first(); 427 } 428 429 //===----------------------------------------------------------------------===// 430 // MDNode implementation. 431 // 432 433 // Assert that the MDNode types will not be unaligned by the objects 434 // prepended to them. 435 #define HANDLE_MDNODE_LEAF(CLASS) \ 436 static_assert( \ 437 llvm::AlignOf<uint64_t>::Alignment >= llvm::AlignOf<CLASS>::Alignment, \ 438 "Alignment is insufficient after objects prepended to " #CLASS); 439 #include "llvm/IR/Metadata.def" 440 441 void *MDNode::operator new(size_t Size, unsigned NumOps) { 442 size_t OpSize = NumOps * sizeof(MDOperand); 443 // uint64_t is the most aligned type we need support (ensured by static_assert 444 // above) 445 OpSize = alignTo(OpSize, llvm::alignOf<uint64_t>()); 446 void *Ptr = reinterpret_cast<char *>(::operator new(OpSize + Size)) + OpSize; 447 MDOperand *O = static_cast<MDOperand *>(Ptr); 448 for (MDOperand *E = O - NumOps; O != E; --O) 449 (void)new (O - 1) MDOperand; 450 return Ptr; 451 } 452 453 void MDNode::operator delete(void *Mem) { 454 MDNode *N = static_cast<MDNode *>(Mem); 455 size_t OpSize = N->NumOperands * sizeof(MDOperand); 456 OpSize = alignTo(OpSize, llvm::alignOf<uint64_t>()); 457 458 MDOperand *O = static_cast<MDOperand *>(Mem); 459 for (MDOperand *E = O - N->NumOperands; O != E; --O) 460 (O - 1)->~MDOperand(); 461 ::operator delete(reinterpret_cast<char *>(Mem) - OpSize); 462 } 463 464 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage, 465 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2) 466 : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()), 467 NumUnresolved(0), Context(Context) { 468 unsigned Op = 0; 469 for (Metadata *MD : Ops1) 470 setOperand(Op++, MD); 471 for (Metadata *MD : Ops2) 472 setOperand(Op++, MD); 473 474 if (!isUniqued()) 475 return; 476 477 // Count the unresolved operands. If there are any, RAUW support will be 478 // added lazily on first reference. 479 countUnresolvedOperands(); 480 } 481 482 TempMDNode MDNode::clone() const { 483 switch (getMetadataID()) { 484 default: 485 llvm_unreachable("Invalid MDNode subclass"); 486 #define HANDLE_MDNODE_LEAF(CLASS) \ 487 case CLASS##Kind: \ 488 return cast<CLASS>(this)->cloneImpl(); 489 #include "llvm/IR/Metadata.def" 490 } 491 } 492 493 static bool isOperandUnresolved(Metadata *Op) { 494 if (auto *N = dyn_cast_or_null<MDNode>(Op)) 495 return !N->isResolved(); 496 return false; 497 } 498 499 void MDNode::countUnresolvedOperands() { 500 assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted"); 501 assert(isUniqued() && "Expected this to be uniqued"); 502 NumUnresolved = count_if(operands(), isOperandUnresolved); 503 } 504 505 void MDNode::makeUniqued() { 506 assert(isTemporary() && "Expected this to be temporary"); 507 assert(!isResolved() && "Expected this to be unresolved"); 508 509 // Enable uniquing callbacks. 510 for (auto &Op : mutable_operands()) 511 Op.reset(Op.get(), this); 512 513 // Make this 'uniqued'. 514 Storage = Uniqued; 515 countUnresolvedOperands(); 516 if (!NumUnresolved) { 517 dropReplaceableUses(); 518 assert(isResolved() && "Expected this to be resolved"); 519 } 520 521 assert(isUniqued() && "Expected this to be uniqued"); 522 } 523 524 void MDNode::makeDistinct() { 525 assert(isTemporary() && "Expected this to be temporary"); 526 assert(!isResolved() && "Expected this to be unresolved"); 527 528 // Drop RAUW support and store as a distinct node. 529 dropReplaceableUses(); 530 storeDistinctInContext(); 531 532 assert(isDistinct() && "Expected this to be distinct"); 533 assert(isResolved() && "Expected this to be resolved"); 534 } 535 536 void MDNode::resolve() { 537 assert(isUniqued() && "Expected this to be uniqued"); 538 assert(!isResolved() && "Expected this to be unresolved"); 539 540 NumUnresolved = 0; 541 dropReplaceableUses(); 542 543 assert(isResolved() && "Expected this to be resolved"); 544 } 545 546 void MDNode::dropReplaceableUses() { 547 assert(!NumUnresolved && "Unexpected unresolved operand"); 548 549 // Drop any RAUW support. 550 if (Context.hasReplaceableUses()) 551 Context.takeReplaceableUses()->resolveAllUses(); 552 } 553 554 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) { 555 assert(isUniqued() && "Expected this to be uniqued"); 556 assert(NumUnresolved != 0 && "Expected unresolved operands"); 557 558 // Check if an operand was resolved. 559 if (!isOperandUnresolved(Old)) { 560 if (isOperandUnresolved(New)) 561 // An operand was un-resolved! 562 ++NumUnresolved; 563 } else if (!isOperandUnresolved(New)) 564 decrementUnresolvedOperandCount(); 565 } 566 567 void MDNode::decrementUnresolvedOperandCount() { 568 assert(!isResolved() && "Expected this to be unresolved"); 569 if (isTemporary()) 570 return; 571 572 assert(isUniqued() && "Expected this to be uniqued"); 573 if (--NumUnresolved) 574 return; 575 576 // Last unresolved operand has just been resolved. 577 dropReplaceableUses(); 578 assert(isResolved() && "Expected this to become resolved"); 579 } 580 581 void MDNode::resolveCycles() { 582 if (isResolved()) 583 return; 584 585 // Resolve this node immediately. 586 resolve(); 587 588 // Resolve all operands. 589 for (const auto &Op : operands()) { 590 auto *N = dyn_cast_or_null<MDNode>(Op); 591 if (!N) 592 continue; 593 594 assert(!N->isTemporary() && 595 "Expected all forward declarations to be resolved"); 596 if (!N->isResolved()) 597 N->resolveCycles(); 598 } 599 } 600 601 static bool hasSelfReference(MDNode *N) { 602 for (Metadata *MD : N->operands()) 603 if (MD == N) 604 return true; 605 return false; 606 } 607 608 MDNode *MDNode::replaceWithPermanentImpl() { 609 switch (getMetadataID()) { 610 default: 611 // If this type isn't uniquable, replace with a distinct node. 612 return replaceWithDistinctImpl(); 613 614 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 615 case CLASS##Kind: \ 616 break; 617 #include "llvm/IR/Metadata.def" 618 } 619 620 // Even if this type is uniquable, self-references have to be distinct. 621 if (hasSelfReference(this)) 622 return replaceWithDistinctImpl(); 623 return replaceWithUniquedImpl(); 624 } 625 626 MDNode *MDNode::replaceWithUniquedImpl() { 627 // Try to uniquify in place. 628 MDNode *UniquedNode = uniquify(); 629 630 if (UniquedNode == this) { 631 makeUniqued(); 632 return this; 633 } 634 635 // Collision, so RAUW instead. 636 replaceAllUsesWith(UniquedNode); 637 deleteAsSubclass(); 638 return UniquedNode; 639 } 640 641 MDNode *MDNode::replaceWithDistinctImpl() { 642 makeDistinct(); 643 return this; 644 } 645 646 void MDTuple::recalculateHash() { 647 setHash(MDTupleInfo::KeyTy::calculateHash(this)); 648 } 649 650 void MDNode::dropAllReferences() { 651 for (unsigned I = 0, E = NumOperands; I != E; ++I) 652 setOperand(I, nullptr); 653 if (Context.hasReplaceableUses()) { 654 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false); 655 (void)Context.takeReplaceableUses(); 656 } 657 } 658 659 void MDNode::handleChangedOperand(void *Ref, Metadata *New) { 660 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin(); 661 assert(Op < getNumOperands() && "Expected valid operand"); 662 663 if (!isUniqued()) { 664 // This node is not uniqued. Just set the operand and be done with it. 665 setOperand(Op, New); 666 return; 667 } 668 669 // This node is uniqued. 670 eraseFromStore(); 671 672 Metadata *Old = getOperand(Op); 673 setOperand(Op, New); 674 675 // Drop uniquing for self-reference cycles and deleted constants. 676 if (New == this || (!New && Old && isa<ConstantAsMetadata>(Old))) { 677 if (!isResolved()) 678 resolve(); 679 storeDistinctInContext(); 680 return; 681 } 682 683 // Re-unique the node. 684 auto *Uniqued = uniquify(); 685 if (Uniqued == this) { 686 if (!isResolved()) 687 resolveAfterOperandChange(Old, New); 688 return; 689 } 690 691 // Collision. 692 if (!isResolved()) { 693 // Still unresolved, so RAUW. 694 // 695 // First, clear out all operands to prevent any recursion (similar to 696 // dropAllReferences(), but we still need the use-list). 697 for (unsigned O = 0, E = getNumOperands(); O != E; ++O) 698 setOperand(O, nullptr); 699 if (Context.hasReplaceableUses()) 700 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued); 701 deleteAsSubclass(); 702 return; 703 } 704 705 // Store in non-uniqued form if RAUW isn't possible. 706 storeDistinctInContext(); 707 } 708 709 void MDNode::deleteAsSubclass() { 710 switch (getMetadataID()) { 711 default: 712 llvm_unreachable("Invalid subclass of MDNode"); 713 #define HANDLE_MDNODE_LEAF(CLASS) \ 714 case CLASS##Kind: \ 715 delete cast<CLASS>(this); \ 716 break; 717 #include "llvm/IR/Metadata.def" 718 } 719 } 720 721 template <class T, class InfoT> 722 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) { 723 if (T *U = getUniqued(Store, N)) 724 return U; 725 726 Store.insert(N); 727 return N; 728 } 729 730 template <class NodeTy> struct MDNode::HasCachedHash { 731 typedef char Yes[1]; 732 typedef char No[2]; 733 template <class U, U Val> struct SFINAE {}; 734 735 template <class U> 736 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *); 737 template <class U> static No &check(...); 738 739 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes); 740 }; 741 742 MDNode *MDNode::uniquify() { 743 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node"); 744 745 // Try to insert into uniquing store. 746 switch (getMetadataID()) { 747 default: 748 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 749 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 750 case CLASS##Kind: { \ 751 CLASS *SubclassThis = cast<CLASS>(this); \ 752 std::integral_constant<bool, HasCachedHash<CLASS>::value> \ 753 ShouldRecalculateHash; \ 754 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \ 755 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \ 756 } 757 #include "llvm/IR/Metadata.def" 758 } 759 } 760 761 void MDNode::eraseFromStore() { 762 switch (getMetadataID()) { 763 default: 764 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 765 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 766 case CLASS##Kind: \ 767 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \ 768 break; 769 #include "llvm/IR/Metadata.def" 770 } 771 } 772 773 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs, 774 StorageType Storage, bool ShouldCreate) { 775 unsigned Hash = 0; 776 if (Storage == Uniqued) { 777 MDTupleInfo::KeyTy Key(MDs); 778 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key)) 779 return N; 780 if (!ShouldCreate) 781 return nullptr; 782 Hash = Key.getHash(); 783 } else { 784 assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); 785 } 786 787 return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs), 788 Storage, Context.pImpl->MDTuples); 789 } 790 791 void MDNode::deleteTemporary(MDNode *N) { 792 assert(N->isTemporary() && "Expected temporary node"); 793 N->replaceAllUsesWith(nullptr); 794 N->deleteAsSubclass(); 795 } 796 797 void MDNode::storeDistinctInContext() { 798 assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses"); 799 assert(!NumUnresolved && "Unexpected unresolved nodes"); 800 Storage = Distinct; 801 assert(isResolved() && "Expected this to be resolved"); 802 803 // Reset the hash. 804 switch (getMetadataID()) { 805 default: 806 llvm_unreachable("Invalid subclass of MDNode"); 807 #define HANDLE_MDNODE_LEAF(CLASS) \ 808 case CLASS##Kind: { \ 809 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \ 810 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \ 811 break; \ 812 } 813 #include "llvm/IR/Metadata.def" 814 } 815 816 getContext().pImpl->DistinctMDNodes.push_back(this); 817 } 818 819 void MDNode::replaceOperandWith(unsigned I, Metadata *New) { 820 if (getOperand(I) == New) 821 return; 822 823 if (!isUniqued()) { 824 setOperand(I, New); 825 return; 826 } 827 828 handleChangedOperand(mutable_begin() + I, New); 829 } 830 831 void MDNode::setOperand(unsigned I, Metadata *New) { 832 assert(I < NumOperands); 833 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr); 834 } 835 836 /// Get a node or a self-reference that looks like it. 837 /// 838 /// Special handling for finding self-references, for use by \a 839 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from 840 /// when self-referencing nodes were still uniqued. If the first operand has 841 /// the same operands as \c Ops, return the first operand instead. 842 static MDNode *getOrSelfReference(LLVMContext &Context, 843 ArrayRef<Metadata *> Ops) { 844 if (!Ops.empty()) 845 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0])) 846 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) { 847 for (unsigned I = 1, E = Ops.size(); I != E; ++I) 848 if (Ops[I] != N->getOperand(I)) 849 return MDNode::get(Context, Ops); 850 return N; 851 } 852 853 return MDNode::get(Context, Ops); 854 } 855 856 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) { 857 if (!A) 858 return B; 859 if (!B) 860 return A; 861 862 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 863 MDs.insert(B->op_begin(), B->op_end()); 864 865 // FIXME: This preserves long-standing behaviour, but is it really the right 866 // behaviour? Or was that an unintended side-effect of node uniquing? 867 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 868 } 869 870 MDNode *MDNode::intersect(MDNode *A, MDNode *B) { 871 if (!A || !B) 872 return nullptr; 873 874 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 875 SmallPtrSet<Metadata *, 4> BSet(B->op_begin(), B->op_end()); 876 MDs.remove_if([&](Metadata *MD) { return !is_contained(BSet, MD); }); 877 878 // FIXME: This preserves long-standing behaviour, but is it really the right 879 // behaviour? Or was that an unintended side-effect of node uniquing? 880 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 881 } 882 883 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) { 884 if (!A || !B) 885 return nullptr; 886 887 return concatenate(A, B); 888 } 889 890 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) { 891 if (!A || !B) 892 return nullptr; 893 894 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF(); 895 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF(); 896 if (AVal.compare(BVal) == APFloat::cmpLessThan) 897 return A; 898 return B; 899 } 900 901 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 902 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 903 } 904 905 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) { 906 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B); 907 } 908 909 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints, 910 ConstantInt *Low, ConstantInt *High) { 911 ConstantRange NewRange(Low->getValue(), High->getValue()); 912 unsigned Size = EndPoints.size(); 913 APInt LB = EndPoints[Size - 2]->getValue(); 914 APInt LE = EndPoints[Size - 1]->getValue(); 915 ConstantRange LastRange(LB, LE); 916 if (canBeMerged(NewRange, LastRange)) { 917 ConstantRange Union = LastRange.unionWith(NewRange); 918 Type *Ty = High->getType(); 919 EndPoints[Size - 2] = 920 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower())); 921 EndPoints[Size - 1] = 922 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper())); 923 return true; 924 } 925 return false; 926 } 927 928 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints, 929 ConstantInt *Low, ConstantInt *High) { 930 if (!EndPoints.empty()) 931 if (tryMergeRange(EndPoints, Low, High)) 932 return; 933 934 EndPoints.push_back(Low); 935 EndPoints.push_back(High); 936 } 937 938 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) { 939 // Given two ranges, we want to compute the union of the ranges. This 940 // is slightly complitade by having to combine the intervals and merge 941 // the ones that overlap. 942 943 if (!A || !B) 944 return nullptr; 945 946 if (A == B) 947 return A; 948 949 // First, walk both lists in older of the lower boundary of each interval. 950 // At each step, try to merge the new interval to the last one we adedd. 951 SmallVector<ConstantInt *, 4> EndPoints; 952 int AI = 0; 953 int BI = 0; 954 int AN = A->getNumOperands() / 2; 955 int BN = B->getNumOperands() / 2; 956 while (AI < AN && BI < BN) { 957 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI)); 958 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI)); 959 960 if (ALow->getValue().slt(BLow->getValue())) { 961 addRange(EndPoints, ALow, 962 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 963 ++AI; 964 } else { 965 addRange(EndPoints, BLow, 966 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 967 ++BI; 968 } 969 } 970 while (AI < AN) { 971 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)), 972 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 973 ++AI; 974 } 975 while (BI < BN) { 976 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)), 977 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 978 ++BI; 979 } 980 981 // If we have more than 2 ranges (4 endpoints) we have to try to merge 982 // the last and first ones. 983 unsigned Size = EndPoints.size(); 984 if (Size > 4) { 985 ConstantInt *FB = EndPoints[0]; 986 ConstantInt *FE = EndPoints[1]; 987 if (tryMergeRange(EndPoints, FB, FE)) { 988 for (unsigned i = 0; i < Size - 2; ++i) { 989 EndPoints[i] = EndPoints[i + 2]; 990 } 991 EndPoints.resize(Size - 2); 992 } 993 } 994 995 // If in the end we have a single range, it is possible that it is now the 996 // full range. Just drop the metadata in that case. 997 if (EndPoints.size() == 2) { 998 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue()); 999 if (Range.isFullSet()) 1000 return nullptr; 1001 } 1002 1003 SmallVector<Metadata *, 4> MDs; 1004 MDs.reserve(EndPoints.size()); 1005 for (auto *I : EndPoints) 1006 MDs.push_back(ConstantAsMetadata::get(I)); 1007 return MDNode::get(A->getContext(), MDs); 1008 } 1009 1010 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) { 1011 if (!A || !B) 1012 return nullptr; 1013 1014 ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0)); 1015 ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0)); 1016 if (AVal->getZExtValue() < BVal->getZExtValue()) 1017 return A; 1018 return B; 1019 } 1020 1021 //===----------------------------------------------------------------------===// 1022 // NamedMDNode implementation. 1023 // 1024 1025 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) { 1026 return *(SmallVector<TrackingMDRef, 4> *)Operands; 1027 } 1028 1029 NamedMDNode::NamedMDNode(const Twine &N) 1030 : Name(N.str()), Parent(nullptr), 1031 Operands(new SmallVector<TrackingMDRef, 4>()) {} 1032 1033 NamedMDNode::~NamedMDNode() { 1034 dropAllReferences(); 1035 delete &getNMDOps(Operands); 1036 } 1037 1038 unsigned NamedMDNode::getNumOperands() const { 1039 return (unsigned)getNMDOps(Operands).size(); 1040 } 1041 1042 MDNode *NamedMDNode::getOperand(unsigned i) const { 1043 assert(i < getNumOperands() && "Invalid Operand number!"); 1044 auto *N = getNMDOps(Operands)[i].get(); 1045 return cast_or_null<MDNode>(N); 1046 } 1047 1048 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); } 1049 1050 void NamedMDNode::setOperand(unsigned I, MDNode *New) { 1051 assert(I < getNumOperands() && "Invalid operand number"); 1052 getNMDOps(Operands)[I].reset(New); 1053 } 1054 1055 void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); } 1056 1057 void NamedMDNode::dropAllReferences() { getNMDOps(Operands).clear(); } 1058 1059 StringRef NamedMDNode::getName() const { return StringRef(Name); } 1060 1061 //===----------------------------------------------------------------------===// 1062 // Instruction Metadata method implementations. 1063 // 1064 void MDAttachmentMap::set(unsigned ID, MDNode &MD) { 1065 for (auto &I : Attachments) 1066 if (I.first == ID) { 1067 I.second.reset(&MD); 1068 return; 1069 } 1070 Attachments.emplace_back(std::piecewise_construct, std::make_tuple(ID), 1071 std::make_tuple(&MD)); 1072 } 1073 1074 void MDAttachmentMap::erase(unsigned ID) { 1075 if (empty()) 1076 return; 1077 1078 // Common case is one/last value. 1079 if (Attachments.back().first == ID) { 1080 Attachments.pop_back(); 1081 return; 1082 } 1083 1084 for (auto I = Attachments.begin(), E = std::prev(Attachments.end()); I != E; 1085 ++I) 1086 if (I->first == ID) { 1087 *I = std::move(Attachments.back()); 1088 Attachments.pop_back(); 1089 return; 1090 } 1091 } 1092 1093 MDNode *MDAttachmentMap::lookup(unsigned ID) const { 1094 for (const auto &I : Attachments) 1095 if (I.first == ID) 1096 return I.second; 1097 return nullptr; 1098 } 1099 1100 void MDAttachmentMap::getAll( 1101 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1102 Result.append(Attachments.begin(), Attachments.end()); 1103 1104 // Sort the resulting array so it is stable. 1105 if (Result.size() > 1) 1106 array_pod_sort(Result.begin(), Result.end()); 1107 } 1108 1109 void MDGlobalAttachmentMap::insert(unsigned ID, MDNode &MD) { 1110 Attachments.push_back({ID, TrackingMDNodeRef(&MD)}); 1111 } 1112 1113 void MDGlobalAttachmentMap::get(unsigned ID, 1114 SmallVectorImpl<MDNode *> &Result) { 1115 for (auto A : Attachments) 1116 if (A.MDKind == ID) 1117 Result.push_back(A.Node); 1118 } 1119 1120 void MDGlobalAttachmentMap::erase(unsigned ID) { 1121 auto Follower = Attachments.begin(); 1122 for (auto Leader = Attachments.begin(), E = Attachments.end(); Leader != E; 1123 ++Leader) { 1124 if (Leader->MDKind != ID) { 1125 if (Follower != Leader) 1126 *Follower = std::move(*Leader); 1127 ++Follower; 1128 } 1129 } 1130 Attachments.resize(Follower - Attachments.begin()); 1131 } 1132 1133 void MDGlobalAttachmentMap::getAll( 1134 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1135 for (auto &A : Attachments) 1136 Result.emplace_back(A.MDKind, A.Node); 1137 1138 // Sort the resulting array so it is stable with respect to metadata IDs. We 1139 // need to preserve the original insertion order though. 1140 std::stable_sort( 1141 Result.begin(), Result.end(), 1142 [](const std::pair<unsigned, MDNode *> &A, 1143 const std::pair<unsigned, MDNode *> &B) { return A.first < B.first; }); 1144 } 1145 1146 void Instruction::setMetadata(StringRef Kind, MDNode *Node) { 1147 if (!Node && !hasMetadata()) 1148 return; 1149 setMetadata(getContext().getMDKindID(Kind), Node); 1150 } 1151 1152 MDNode *Instruction::getMetadataImpl(StringRef Kind) const { 1153 return getMetadataImpl(getContext().getMDKindID(Kind)); 1154 } 1155 1156 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) { 1157 if (!hasMetadataHashEntry()) 1158 return; // Nothing to remove! 1159 1160 auto &InstructionMetadata = getContext().pImpl->InstructionMetadata; 1161 1162 SmallSet<unsigned, 4> KnownSet; 1163 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 1164 if (KnownSet.empty()) { 1165 // Just drop our entry at the store. 1166 InstructionMetadata.erase(this); 1167 setHasMetadataHashEntry(false); 1168 return; 1169 } 1170 1171 auto &Info = InstructionMetadata[this]; 1172 Info.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) { 1173 return !KnownSet.count(I.first); 1174 }); 1175 1176 if (Info.empty()) { 1177 // Drop our entry at the store. 1178 InstructionMetadata.erase(this); 1179 setHasMetadataHashEntry(false); 1180 } 1181 } 1182 1183 void Instruction::setMetadata(unsigned KindID, MDNode *Node) { 1184 if (!Node && !hasMetadata()) 1185 return; 1186 1187 // Handle 'dbg' as a special case since it is not stored in the hash table. 1188 if (KindID == LLVMContext::MD_dbg) { 1189 DbgLoc = DebugLoc(Node); 1190 return; 1191 } 1192 1193 // Handle the case when we're adding/updating metadata on an instruction. 1194 if (Node) { 1195 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1196 assert(!Info.empty() == hasMetadataHashEntry() && 1197 "HasMetadata bit is wonked"); 1198 if (Info.empty()) 1199 setHasMetadataHashEntry(true); 1200 Info.set(KindID, *Node); 1201 return; 1202 } 1203 1204 // Otherwise, we're removing metadata from an instruction. 1205 assert((hasMetadataHashEntry() == 1206 (getContext().pImpl->InstructionMetadata.count(this) > 0)) && 1207 "HasMetadata bit out of date!"); 1208 if (!hasMetadataHashEntry()) 1209 return; // Nothing to remove! 1210 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1211 1212 // Handle removal of an existing value. 1213 Info.erase(KindID); 1214 1215 if (!Info.empty()) 1216 return; 1217 1218 getContext().pImpl->InstructionMetadata.erase(this); 1219 setHasMetadataHashEntry(false); 1220 } 1221 1222 void Instruction::setAAMetadata(const AAMDNodes &N) { 1223 setMetadata(LLVMContext::MD_tbaa, N.TBAA); 1224 setMetadata(LLVMContext::MD_alias_scope, N.Scope); 1225 setMetadata(LLVMContext::MD_noalias, N.NoAlias); 1226 } 1227 1228 MDNode *Instruction::getMetadataImpl(unsigned KindID) const { 1229 // Handle 'dbg' as a special case since it is not stored in the hash table. 1230 if (KindID == LLVMContext::MD_dbg) 1231 return DbgLoc.getAsMDNode(); 1232 1233 if (!hasMetadataHashEntry()) 1234 return nullptr; 1235 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1236 assert(!Info.empty() && "bit out of sync with hash table"); 1237 1238 return Info.lookup(KindID); 1239 } 1240 1241 void Instruction::getAllMetadataImpl( 1242 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1243 Result.clear(); 1244 1245 // Handle 'dbg' as a special case since it is not stored in the hash table. 1246 if (DbgLoc) { 1247 Result.push_back( 1248 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode())); 1249 if (!hasMetadataHashEntry()) 1250 return; 1251 } 1252 1253 assert(hasMetadataHashEntry() && 1254 getContext().pImpl->InstructionMetadata.count(this) && 1255 "Shouldn't have called this"); 1256 const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second; 1257 assert(!Info.empty() && "Shouldn't have called this"); 1258 Info.getAll(Result); 1259 } 1260 1261 void Instruction::getAllMetadataOtherThanDebugLocImpl( 1262 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1263 Result.clear(); 1264 assert(hasMetadataHashEntry() && 1265 getContext().pImpl->InstructionMetadata.count(this) && 1266 "Shouldn't have called this"); 1267 const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second; 1268 assert(!Info.empty() && "Shouldn't have called this"); 1269 Info.getAll(Result); 1270 } 1271 1272 bool Instruction::extractProfMetadata(uint64_t &TrueVal, 1273 uint64_t &FalseVal) const { 1274 assert( 1275 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select) && 1276 "Looking for branch weights on something besides branch or select"); 1277 1278 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1279 if (!ProfileData || ProfileData->getNumOperands() != 3) 1280 return false; 1281 1282 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1283 if (!ProfDataName || !ProfDataName->getString().equals("branch_weights")) 1284 return false; 1285 1286 auto *CITrue = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 1287 auto *CIFalse = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 1288 if (!CITrue || !CIFalse) 1289 return false; 1290 1291 TrueVal = CITrue->getValue().getZExtValue(); 1292 FalseVal = CIFalse->getValue().getZExtValue(); 1293 1294 return true; 1295 } 1296 1297 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) const { 1298 assert((getOpcode() == Instruction::Br || 1299 getOpcode() == Instruction::Select || 1300 getOpcode() == Instruction::Call || 1301 getOpcode() == Instruction::Invoke || 1302 getOpcode() == Instruction::Switch) && 1303 "Looking for branch weights on something besides branch"); 1304 1305 TotalVal = 0; 1306 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1307 if (!ProfileData) 1308 return false; 1309 1310 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1311 if (!ProfDataName || !ProfDataName->getString().equals("branch_weights")) 1312 return false; 1313 1314 TotalVal = 0; 1315 for (unsigned i = 1; i < ProfileData->getNumOperands(); i++) { 1316 auto *V = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i)); 1317 if (!V) 1318 return false; 1319 TotalVal += V->getValue().getZExtValue(); 1320 } 1321 return true; 1322 } 1323 1324 void Instruction::clearMetadataHashEntries() { 1325 assert(hasMetadataHashEntry() && "Caller should check"); 1326 getContext().pImpl->InstructionMetadata.erase(this); 1327 setHasMetadataHashEntry(false); 1328 } 1329 1330 void GlobalObject::getMetadata(unsigned KindID, 1331 SmallVectorImpl<MDNode *> &MDs) const { 1332 if (hasMetadata()) 1333 getContext().pImpl->GlobalObjectMetadata[this].get(KindID, MDs); 1334 } 1335 1336 void GlobalObject::getMetadata(StringRef Kind, 1337 SmallVectorImpl<MDNode *> &MDs) const { 1338 if (hasMetadata()) 1339 getMetadata(getContext().getMDKindID(Kind), MDs); 1340 } 1341 1342 void GlobalObject::addMetadata(unsigned KindID, MDNode &MD) { 1343 if (!hasMetadata()) 1344 setHasMetadataHashEntry(true); 1345 1346 getContext().pImpl->GlobalObjectMetadata[this].insert(KindID, MD); 1347 } 1348 1349 void GlobalObject::addMetadata(StringRef Kind, MDNode &MD) { 1350 addMetadata(getContext().getMDKindID(Kind), MD); 1351 } 1352 1353 void GlobalObject::eraseMetadata(unsigned KindID) { 1354 // Nothing to unset. 1355 if (!hasMetadata()) 1356 return; 1357 1358 auto &Store = getContext().pImpl->GlobalObjectMetadata[this]; 1359 Store.erase(KindID); 1360 if (Store.empty()) 1361 clearMetadata(); 1362 } 1363 1364 void GlobalObject::getAllMetadata( 1365 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { 1366 MDs.clear(); 1367 1368 if (!hasMetadata()) 1369 return; 1370 1371 getContext().pImpl->GlobalObjectMetadata[this].getAll(MDs); 1372 } 1373 1374 void GlobalObject::clearMetadata() { 1375 if (!hasMetadata()) 1376 return; 1377 getContext().pImpl->GlobalObjectMetadata.erase(this); 1378 setHasMetadataHashEntry(false); 1379 } 1380 1381 void GlobalObject::setMetadata(unsigned KindID, MDNode *N) { 1382 eraseMetadata(KindID); 1383 if (N) 1384 addMetadata(KindID, *N); 1385 } 1386 1387 void GlobalObject::setMetadata(StringRef Kind, MDNode *N) { 1388 setMetadata(getContext().getMDKindID(Kind), N); 1389 } 1390 1391 MDNode *GlobalObject::getMetadata(unsigned KindID) const { 1392 SmallVector<MDNode *, 1> MDs; 1393 getMetadata(KindID, MDs); 1394 assert(MDs.size() <= 1 && "Expected at most one metadata attachment"); 1395 if (MDs.empty()) 1396 return nullptr; 1397 return MDs[0]; 1398 } 1399 1400 MDNode *GlobalObject::getMetadata(StringRef Kind) const { 1401 return getMetadata(getContext().getMDKindID(Kind)); 1402 } 1403 1404 void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) { 1405 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 1406 Other->getAllMetadata(MDs); 1407 for (auto &MD : MDs) { 1408 // We need to adjust the type metadata offset. 1409 if (Offset != 0 && MD.first == LLVMContext::MD_type) { 1410 auto *OffsetConst = cast<ConstantInt>( 1411 cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue()); 1412 Metadata *TypeId = MD.second->getOperand(1); 1413 auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get( 1414 OffsetConst->getType(), OffsetConst->getValue() + Offset)); 1415 addMetadata(LLVMContext::MD_type, 1416 *MDNode::get(getContext(), {NewOffsetMD, TypeId})); 1417 continue; 1418 } 1419 // If an offset adjustment was specified we need to modify the DIExpression 1420 // to prepend the adjustment: 1421 // !DIExpression(DW_OP_plus, Offset, [original expr]) 1422 if (Offset != 0 && MD.first == LLVMContext::MD_dbg) { 1423 DIGlobalVariable *GV = cast<DIGlobalVariable>(MD.second); 1424 DIExpression *E = GV->getExpr(); 1425 ArrayRef<uint64_t> OrigElements; 1426 if (E) 1427 OrigElements = E->getElements(); 1428 std::vector<uint64_t> Elements(OrigElements.size() + 2); 1429 Elements[0] = dwarf::DW_OP_plus; 1430 Elements[1] = Offset; 1431 std::copy(OrigElements.begin(), OrigElements.end(), Elements.begin() + 2); 1432 GV->replaceExpr(DIExpression::get(getContext(), Elements)); 1433 } 1434 addMetadata(MD.first, *MD.second); 1435 } 1436 } 1437 1438 void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) { 1439 addMetadata( 1440 LLVMContext::MD_type, 1441 *MDTuple::get(getContext(), 1442 {llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1443 Type::getInt64Ty(getContext()), Offset)), 1444 TypeID})); 1445 } 1446 1447 void Function::setSubprogram(DISubprogram *SP) { 1448 setMetadata(LLVMContext::MD_dbg, SP); 1449 } 1450 1451 DISubprogram *Function::getSubprogram() const { 1452 return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg)); 1453 } 1454 1455 void GlobalVariable::addDebugInfo(DIGlobalVariable *GV) { 1456 addMetadata(LLVMContext::MD_dbg, *GV); 1457 } 1458 1459 void GlobalVariable::getDebugInfo( 1460 SmallVectorImpl<DIGlobalVariable *> &GVs) const { 1461 SmallVector<MDNode *, 1> MDs; 1462 getMetadata(LLVMContext::MD_dbg, MDs); 1463 for (MDNode *MD : MDs) 1464 GVs.push_back(cast<DIGlobalVariable>(MD)); 1465 } 1466