1 //===- Metadata.cpp - Implement Metadata classes --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Metadata classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Metadata.h" 14 #include "LLVMContextImpl.h" 15 #include "MetadataImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/APFloat.h" 18 #include "llvm/ADT/APInt.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringMap.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/IR/Argument.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/ConstantRange.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DebugInfoMetadata.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalObject.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/MDBuilder.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/TrackingMDRef.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/IR/ValueHandle.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/MathExtras.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <cstddef> 54 #include <cstdint> 55 #include <iterator> 56 #include <tuple> 57 #include <type_traits> 58 #include <utility> 59 #include <vector> 60 61 using namespace llvm; 62 63 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD) 64 : Value(Ty, MetadataAsValueVal), MD(MD) { 65 track(); 66 } 67 68 MetadataAsValue::~MetadataAsValue() { 69 getType()->getContext().pImpl->MetadataAsValues.erase(MD); 70 untrack(); 71 } 72 73 /// Canonicalize metadata arguments to intrinsics. 74 /// 75 /// To support bitcode upgrades (and assembly semantic sugar) for \a 76 /// MetadataAsValue, we need to canonicalize certain metadata. 77 /// 78 /// - nullptr is replaced by an empty MDNode. 79 /// - An MDNode with a single null operand is replaced by an empty MDNode. 80 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped. 81 /// 82 /// This maintains readability of bitcode from when metadata was a type of 83 /// value, and these bridges were unnecessary. 84 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context, 85 Metadata *MD) { 86 if (!MD) 87 // !{} 88 return MDNode::get(Context, None); 89 90 // Return early if this isn't a single-operand MDNode. 91 auto *N = dyn_cast<MDNode>(MD); 92 if (!N || N->getNumOperands() != 1) 93 return MD; 94 95 if (!N->getOperand(0)) 96 // !{} 97 return MDNode::get(Context, None); 98 99 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0))) 100 // Look through the MDNode. 101 return C; 102 103 return MD; 104 } 105 106 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) { 107 MD = canonicalizeMetadataForValue(Context, MD); 108 auto *&Entry = Context.pImpl->MetadataAsValues[MD]; 109 if (!Entry) 110 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD); 111 return Entry; 112 } 113 114 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context, 115 Metadata *MD) { 116 MD = canonicalizeMetadataForValue(Context, MD); 117 auto &Store = Context.pImpl->MetadataAsValues; 118 return Store.lookup(MD); 119 } 120 121 void MetadataAsValue::handleChangedMetadata(Metadata *MD) { 122 LLVMContext &Context = getContext(); 123 MD = canonicalizeMetadataForValue(Context, MD); 124 auto &Store = Context.pImpl->MetadataAsValues; 125 126 // Stop tracking the old metadata. 127 Store.erase(this->MD); 128 untrack(); 129 this->MD = nullptr; 130 131 // Start tracking MD, or RAUW if necessary. 132 auto *&Entry = Store[MD]; 133 if (Entry) { 134 replaceAllUsesWith(Entry); 135 delete this; 136 return; 137 } 138 139 this->MD = MD; 140 track(); 141 Entry = this; 142 } 143 144 void MetadataAsValue::track() { 145 if (MD) 146 MetadataTracking::track(&MD, *MD, *this); 147 } 148 149 void MetadataAsValue::untrack() { 150 if (MD) 151 MetadataTracking::untrack(MD); 152 } 153 154 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) { 155 assert(Ref && "Expected live reference"); 156 assert((Owner || *static_cast<Metadata **>(Ref) == &MD) && 157 "Reference without owner must be direct"); 158 if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) { 159 R->addRef(Ref, Owner); 160 return true; 161 } 162 if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) { 163 assert(!PH->Use && "Placeholders can only be used once"); 164 assert(!Owner && "Unexpected callback to owner"); 165 PH->Use = static_cast<Metadata **>(Ref); 166 return true; 167 } 168 return false; 169 } 170 171 void MetadataTracking::untrack(void *Ref, Metadata &MD) { 172 assert(Ref && "Expected live reference"); 173 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) 174 R->dropRef(Ref); 175 else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) 176 PH->Use = nullptr; 177 } 178 179 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) { 180 assert(Ref && "Expected live reference"); 181 assert(New && "Expected live reference"); 182 assert(Ref != New && "Expected change"); 183 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) { 184 R->moveRef(Ref, New, MD); 185 return true; 186 } 187 assert(!isa<DistinctMDOperandPlaceholder>(MD) && 188 "Unexpected move of an MDOperand"); 189 assert(!isReplaceable(MD) && 190 "Expected un-replaceable metadata, since we didn't move a reference"); 191 return false; 192 } 193 194 bool MetadataTracking::isReplaceable(const Metadata &MD) { 195 return ReplaceableMetadataImpl::isReplaceable(MD); 196 } 197 198 SmallVector<Metadata *, 4> ReplaceableMetadataImpl::getAllArgListUsers() { 199 SmallVector<Metadata *, 4> MDUsers; 200 for (auto Pair : UseMap) { 201 OwnerTy Owner = Pair.second.first; 202 if (!Owner.is<Metadata *>()) 203 continue; 204 Metadata *OwnerMD = Owner.get<Metadata *>(); 205 if (OwnerMD->getMetadataID() == Metadata::DIArgListKind) 206 MDUsers.push_back(OwnerMD); 207 } 208 return MDUsers; 209 } 210 211 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) { 212 bool WasInserted = 213 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex))) 214 .second; 215 (void)WasInserted; 216 assert(WasInserted && "Expected to add a reference"); 217 218 ++NextIndex; 219 assert(NextIndex != 0 && "Unexpected overflow"); 220 } 221 222 void ReplaceableMetadataImpl::dropRef(void *Ref) { 223 bool WasErased = UseMap.erase(Ref); 224 (void)WasErased; 225 assert(WasErased && "Expected to drop a reference"); 226 } 227 228 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New, 229 const Metadata &MD) { 230 auto I = UseMap.find(Ref); 231 assert(I != UseMap.end() && "Expected to move a reference"); 232 auto OwnerAndIndex = I->second; 233 UseMap.erase(I); 234 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second; 235 (void)WasInserted; 236 assert(WasInserted && "Expected to add a reference"); 237 238 // Check that the references are direct if there's no owner. 239 (void)MD; 240 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) && 241 "Reference without owner must be direct"); 242 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) && 243 "Reference without owner must be direct"); 244 } 245 246 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) { 247 if (UseMap.empty()) 248 return; 249 250 // Copy out uses since UseMap will get touched below. 251 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>; 252 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 253 llvm::sort(Uses, [](const UseTy &L, const UseTy &R) { 254 return L.second.second < R.second.second; 255 }); 256 for (const auto &Pair : Uses) { 257 // Check that this Ref hasn't disappeared after RAUW (when updating a 258 // previous Ref). 259 if (!UseMap.count(Pair.first)) 260 continue; 261 262 OwnerTy Owner = Pair.second.first; 263 if (!Owner) { 264 // Update unowned tracking references directly. 265 Metadata *&Ref = *static_cast<Metadata **>(Pair.first); 266 Ref = MD; 267 if (MD) 268 MetadataTracking::track(Ref); 269 UseMap.erase(Pair.first); 270 continue; 271 } 272 273 // Check for MetadataAsValue. 274 if (Owner.is<MetadataAsValue *>()) { 275 Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD); 276 continue; 277 } 278 279 // There's a Metadata owner -- dispatch. 280 Metadata *OwnerMD = Owner.get<Metadata *>(); 281 switch (OwnerMD->getMetadataID()) { 282 #define HANDLE_METADATA_LEAF(CLASS) \ 283 case Metadata::CLASS##Kind: \ 284 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \ 285 continue; 286 #include "llvm/IR/Metadata.def" 287 default: 288 llvm_unreachable("Invalid metadata subclass"); 289 } 290 } 291 assert(UseMap.empty() && "Expected all uses to be replaced"); 292 } 293 294 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) { 295 if (UseMap.empty()) 296 return; 297 298 if (!ResolveUsers) { 299 UseMap.clear(); 300 return; 301 } 302 303 // Copy out uses since UseMap could get touched below. 304 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>; 305 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 306 llvm::sort(Uses, [](const UseTy &L, const UseTy &R) { 307 return L.second.second < R.second.second; 308 }); 309 UseMap.clear(); 310 for (const auto &Pair : Uses) { 311 auto Owner = Pair.second.first; 312 if (!Owner) 313 continue; 314 if (Owner.is<MetadataAsValue *>()) 315 continue; 316 317 // Resolve MDNodes that point at this. 318 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>()); 319 if (!OwnerMD) 320 continue; 321 if (OwnerMD->isResolved()) 322 continue; 323 OwnerMD->decrementUnresolvedOperandCount(); 324 } 325 } 326 327 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) { 328 if (auto *N = dyn_cast<MDNode>(&MD)) 329 return N->isResolved() ? nullptr : N->Context.getOrCreateReplaceableUses(); 330 return dyn_cast<ValueAsMetadata>(&MD); 331 } 332 333 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) { 334 if (auto *N = dyn_cast<MDNode>(&MD)) 335 return N->isResolved() ? nullptr : N->Context.getReplaceableUses(); 336 return dyn_cast<ValueAsMetadata>(&MD); 337 } 338 339 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) { 340 if (auto *N = dyn_cast<MDNode>(&MD)) 341 return !N->isResolved(); 342 return dyn_cast<ValueAsMetadata>(&MD); 343 } 344 345 static DISubprogram *getLocalFunctionMetadata(Value *V) { 346 assert(V && "Expected value"); 347 if (auto *A = dyn_cast<Argument>(V)) { 348 if (auto *Fn = A->getParent()) 349 return Fn->getSubprogram(); 350 return nullptr; 351 } 352 353 if (BasicBlock *BB = cast<Instruction>(V)->getParent()) { 354 if (auto *Fn = BB->getParent()) 355 return Fn->getSubprogram(); 356 return nullptr; 357 } 358 359 return nullptr; 360 } 361 362 ValueAsMetadata *ValueAsMetadata::get(Value *V) { 363 assert(V && "Unexpected null Value"); 364 365 auto &Context = V->getContext(); 366 auto *&Entry = Context.pImpl->ValuesAsMetadata[V]; 367 if (!Entry) { 368 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) && 369 "Expected constant or function-local value"); 370 assert(!V->IsUsedByMD && "Expected this to be the only metadata use"); 371 V->IsUsedByMD = true; 372 if (auto *C = dyn_cast<Constant>(V)) 373 Entry = new ConstantAsMetadata(C); 374 else 375 Entry = new LocalAsMetadata(V); 376 } 377 378 return Entry; 379 } 380 381 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) { 382 assert(V && "Unexpected null Value"); 383 return V->getContext().pImpl->ValuesAsMetadata.lookup(V); 384 } 385 386 void ValueAsMetadata::handleDeletion(Value *V) { 387 assert(V && "Expected valid value"); 388 389 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata; 390 auto I = Store.find(V); 391 if (I == Store.end()) 392 return; 393 394 // Remove old entry from the map. 395 ValueAsMetadata *MD = I->second; 396 assert(MD && "Expected valid metadata"); 397 assert(MD->getValue() == V && "Expected valid mapping"); 398 Store.erase(I); 399 400 // Delete the metadata. 401 MD->replaceAllUsesWith(nullptr); 402 delete MD; 403 } 404 405 void ValueAsMetadata::handleRAUW(Value *From, Value *To) { 406 assert(From && "Expected valid value"); 407 assert(To && "Expected valid value"); 408 assert(From != To && "Expected changed value"); 409 assert(From->getType() == To->getType() && "Unexpected type change"); 410 411 LLVMContext &Context = From->getType()->getContext(); 412 auto &Store = Context.pImpl->ValuesAsMetadata; 413 auto I = Store.find(From); 414 if (I == Store.end()) { 415 assert(!From->IsUsedByMD && "Expected From not to be used by metadata"); 416 return; 417 } 418 419 // Remove old entry from the map. 420 assert(From->IsUsedByMD && "Expected From to be used by metadata"); 421 From->IsUsedByMD = false; 422 ValueAsMetadata *MD = I->second; 423 assert(MD && "Expected valid metadata"); 424 assert(MD->getValue() == From && "Expected valid mapping"); 425 Store.erase(I); 426 427 if (isa<LocalAsMetadata>(MD)) { 428 if (auto *C = dyn_cast<Constant>(To)) { 429 // Local became a constant. 430 MD->replaceAllUsesWith(ConstantAsMetadata::get(C)); 431 delete MD; 432 return; 433 } 434 if (getLocalFunctionMetadata(From) && getLocalFunctionMetadata(To) && 435 getLocalFunctionMetadata(From) != getLocalFunctionMetadata(To)) { 436 // DISubprogram changed. 437 MD->replaceAllUsesWith(nullptr); 438 delete MD; 439 return; 440 } 441 } else if (!isa<Constant>(To)) { 442 // Changed to function-local value. 443 MD->replaceAllUsesWith(nullptr); 444 delete MD; 445 return; 446 } 447 448 auto *&Entry = Store[To]; 449 if (Entry) { 450 // The target already exists. 451 MD->replaceAllUsesWith(Entry); 452 delete MD; 453 return; 454 } 455 456 // Update MD in place (and update the map entry). 457 assert(!To->IsUsedByMD && "Expected this to be the only metadata use"); 458 To->IsUsedByMD = true; 459 MD->V = To; 460 Entry = MD; 461 } 462 463 //===----------------------------------------------------------------------===// 464 // MDString implementation. 465 // 466 467 MDString *MDString::get(LLVMContext &Context, StringRef Str) { 468 auto &Store = Context.pImpl->MDStringCache; 469 auto I = Store.try_emplace(Str); 470 auto &MapEntry = I.first->getValue(); 471 if (!I.second) 472 return &MapEntry; 473 MapEntry.Entry = &*I.first; 474 return &MapEntry; 475 } 476 477 StringRef MDString::getString() const { 478 assert(Entry && "Expected to find string map entry"); 479 return Entry->first(); 480 } 481 482 //===----------------------------------------------------------------------===// 483 // MDNode implementation. 484 // 485 486 // Assert that the MDNode types will not be unaligned by the objects 487 // prepended to them. 488 #define HANDLE_MDNODE_LEAF(CLASS) \ 489 static_assert( \ 490 alignof(uint64_t) >= alignof(CLASS), \ 491 "Alignment is insufficient after objects prepended to " #CLASS); 492 #include "llvm/IR/Metadata.def" 493 494 void *MDNode::operator new(size_t Size, unsigned NumOps) { 495 size_t OpSize = NumOps * sizeof(MDOperand); 496 // uint64_t is the most aligned type we need support (ensured by static_assert 497 // above) 498 OpSize = alignTo(OpSize, alignof(uint64_t)); 499 void *Ptr = reinterpret_cast<char *>(::operator new(OpSize + Size)) + OpSize; 500 MDOperand *O = static_cast<MDOperand *>(Ptr); 501 for (MDOperand *E = O - NumOps; O != E; --O) 502 (void)new (O - 1) MDOperand; 503 return Ptr; 504 } 505 506 // Repress memory sanitization, due to use-after-destroy by operator 507 // delete. Bug report 24578 identifies this issue. 508 LLVM_NO_SANITIZE_MEMORY_ATTRIBUTE void MDNode::operator delete(void *Mem) { 509 MDNode *N = static_cast<MDNode *>(Mem); 510 size_t OpSize = N->NumOperands * sizeof(MDOperand); 511 OpSize = alignTo(OpSize, alignof(uint64_t)); 512 513 MDOperand *O = static_cast<MDOperand *>(Mem); 514 for (MDOperand *E = O - N->NumOperands; O != E; --O) 515 (O - 1)->~MDOperand(); 516 ::operator delete(reinterpret_cast<char *>(Mem) - OpSize); 517 } 518 519 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage, 520 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2) 521 : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()), 522 NumUnresolved(0), Context(Context) { 523 unsigned Op = 0; 524 for (Metadata *MD : Ops1) 525 setOperand(Op++, MD); 526 for (Metadata *MD : Ops2) 527 setOperand(Op++, MD); 528 529 if (!isUniqued()) 530 return; 531 532 // Count the unresolved operands. If there are any, RAUW support will be 533 // added lazily on first reference. 534 countUnresolvedOperands(); 535 } 536 537 TempMDNode MDNode::clone() const { 538 switch (getMetadataID()) { 539 default: 540 llvm_unreachable("Invalid MDNode subclass"); 541 #define HANDLE_MDNODE_LEAF(CLASS) \ 542 case CLASS##Kind: \ 543 return cast<CLASS>(this)->cloneImpl(); 544 #include "llvm/IR/Metadata.def" 545 } 546 } 547 548 static bool isOperandUnresolved(Metadata *Op) { 549 if (auto *N = dyn_cast_or_null<MDNode>(Op)) 550 return !N->isResolved(); 551 return false; 552 } 553 554 void MDNode::countUnresolvedOperands() { 555 assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted"); 556 assert(isUniqued() && "Expected this to be uniqued"); 557 NumUnresolved = count_if(operands(), isOperandUnresolved); 558 } 559 560 void MDNode::makeUniqued() { 561 assert(isTemporary() && "Expected this to be temporary"); 562 assert(!isResolved() && "Expected this to be unresolved"); 563 564 // Enable uniquing callbacks. 565 for (auto &Op : mutable_operands()) 566 Op.reset(Op.get(), this); 567 568 // Make this 'uniqued'. 569 Storage = Uniqued; 570 countUnresolvedOperands(); 571 if (!NumUnresolved) { 572 dropReplaceableUses(); 573 assert(isResolved() && "Expected this to be resolved"); 574 } 575 576 assert(isUniqued() && "Expected this to be uniqued"); 577 } 578 579 void MDNode::makeDistinct() { 580 assert(isTemporary() && "Expected this to be temporary"); 581 assert(!isResolved() && "Expected this to be unresolved"); 582 583 // Drop RAUW support and store as a distinct node. 584 dropReplaceableUses(); 585 storeDistinctInContext(); 586 587 assert(isDistinct() && "Expected this to be distinct"); 588 assert(isResolved() && "Expected this to be resolved"); 589 } 590 591 void MDNode::resolve() { 592 assert(isUniqued() && "Expected this to be uniqued"); 593 assert(!isResolved() && "Expected this to be unresolved"); 594 595 NumUnresolved = 0; 596 dropReplaceableUses(); 597 598 assert(isResolved() && "Expected this to be resolved"); 599 } 600 601 void MDNode::dropReplaceableUses() { 602 assert(!NumUnresolved && "Unexpected unresolved operand"); 603 604 // Drop any RAUW support. 605 if (Context.hasReplaceableUses()) 606 Context.takeReplaceableUses()->resolveAllUses(); 607 } 608 609 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) { 610 assert(isUniqued() && "Expected this to be uniqued"); 611 assert(NumUnresolved != 0 && "Expected unresolved operands"); 612 613 // Check if an operand was resolved. 614 if (!isOperandUnresolved(Old)) { 615 if (isOperandUnresolved(New)) 616 // An operand was un-resolved! 617 ++NumUnresolved; 618 } else if (!isOperandUnresolved(New)) 619 decrementUnresolvedOperandCount(); 620 } 621 622 void MDNode::decrementUnresolvedOperandCount() { 623 assert(!isResolved() && "Expected this to be unresolved"); 624 if (isTemporary()) 625 return; 626 627 assert(isUniqued() && "Expected this to be uniqued"); 628 if (--NumUnresolved) 629 return; 630 631 // Last unresolved operand has just been resolved. 632 dropReplaceableUses(); 633 assert(isResolved() && "Expected this to become resolved"); 634 } 635 636 void MDNode::resolveCycles() { 637 if (isResolved()) 638 return; 639 640 // Resolve this node immediately. 641 resolve(); 642 643 // Resolve all operands. 644 for (const auto &Op : operands()) { 645 auto *N = dyn_cast_or_null<MDNode>(Op); 646 if (!N) 647 continue; 648 649 assert(!N->isTemporary() && 650 "Expected all forward declarations to be resolved"); 651 if (!N->isResolved()) 652 N->resolveCycles(); 653 } 654 } 655 656 static bool hasSelfReference(MDNode *N) { 657 return llvm::is_contained(N->operands(), N); 658 } 659 660 MDNode *MDNode::replaceWithPermanentImpl() { 661 switch (getMetadataID()) { 662 default: 663 // If this type isn't uniquable, replace with a distinct node. 664 return replaceWithDistinctImpl(); 665 666 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 667 case CLASS##Kind: \ 668 break; 669 #include "llvm/IR/Metadata.def" 670 } 671 672 // Even if this type is uniquable, self-references have to be distinct. 673 if (hasSelfReference(this)) 674 return replaceWithDistinctImpl(); 675 return replaceWithUniquedImpl(); 676 } 677 678 MDNode *MDNode::replaceWithUniquedImpl() { 679 // Try to uniquify in place. 680 MDNode *UniquedNode = uniquify(); 681 682 if (UniquedNode == this) { 683 makeUniqued(); 684 return this; 685 } 686 687 // Collision, so RAUW instead. 688 replaceAllUsesWith(UniquedNode); 689 deleteAsSubclass(); 690 return UniquedNode; 691 } 692 693 MDNode *MDNode::replaceWithDistinctImpl() { 694 makeDistinct(); 695 return this; 696 } 697 698 void MDTuple::recalculateHash() { 699 setHash(MDTupleInfo::KeyTy::calculateHash(this)); 700 } 701 702 void MDNode::dropAllReferences() { 703 for (unsigned I = 0, E = NumOperands; I != E; ++I) 704 setOperand(I, nullptr); 705 if (Context.hasReplaceableUses()) { 706 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false); 707 (void)Context.takeReplaceableUses(); 708 } 709 } 710 711 void MDNode::handleChangedOperand(void *Ref, Metadata *New) { 712 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin(); 713 assert(Op < getNumOperands() && "Expected valid operand"); 714 715 if (!isUniqued()) { 716 // This node is not uniqued. Just set the operand and be done with it. 717 setOperand(Op, New); 718 return; 719 } 720 721 // This node is uniqued. 722 eraseFromStore(); 723 724 Metadata *Old = getOperand(Op); 725 setOperand(Op, New); 726 727 // Drop uniquing for self-reference cycles and deleted constants. 728 if (New == this || (!New && Old && isa<ConstantAsMetadata>(Old))) { 729 if (!isResolved()) 730 resolve(); 731 storeDistinctInContext(); 732 return; 733 } 734 735 // Re-unique the node. 736 auto *Uniqued = uniquify(); 737 if (Uniqued == this) { 738 if (!isResolved()) 739 resolveAfterOperandChange(Old, New); 740 return; 741 } 742 743 // Collision. 744 if (!isResolved()) { 745 // Still unresolved, so RAUW. 746 // 747 // First, clear out all operands to prevent any recursion (similar to 748 // dropAllReferences(), but we still need the use-list). 749 for (unsigned O = 0, E = getNumOperands(); O != E; ++O) 750 setOperand(O, nullptr); 751 if (Context.hasReplaceableUses()) 752 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued); 753 deleteAsSubclass(); 754 return; 755 } 756 757 // Store in non-uniqued form if RAUW isn't possible. 758 storeDistinctInContext(); 759 } 760 761 void MDNode::deleteAsSubclass() { 762 switch (getMetadataID()) { 763 default: 764 llvm_unreachable("Invalid subclass of MDNode"); 765 #define HANDLE_MDNODE_LEAF(CLASS) \ 766 case CLASS##Kind: \ 767 delete cast<CLASS>(this); \ 768 break; 769 #include "llvm/IR/Metadata.def" 770 } 771 } 772 773 template <class T, class InfoT> 774 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) { 775 if (T *U = getUniqued(Store, N)) 776 return U; 777 778 Store.insert(N); 779 return N; 780 } 781 782 template <class NodeTy> struct MDNode::HasCachedHash { 783 using Yes = char[1]; 784 using No = char[2]; 785 template <class U, U Val> struct SFINAE {}; 786 787 template <class U> 788 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *); 789 template <class U> static No &check(...); 790 791 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes); 792 }; 793 794 MDNode *MDNode::uniquify() { 795 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node"); 796 797 // Try to insert into uniquing store. 798 switch (getMetadataID()) { 799 default: 800 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 801 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 802 case CLASS##Kind: { \ 803 CLASS *SubclassThis = cast<CLASS>(this); \ 804 std::integral_constant<bool, HasCachedHash<CLASS>::value> \ 805 ShouldRecalculateHash; \ 806 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \ 807 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \ 808 } 809 #include "llvm/IR/Metadata.def" 810 } 811 } 812 813 void MDNode::eraseFromStore() { 814 switch (getMetadataID()) { 815 default: 816 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 817 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 818 case CLASS##Kind: \ 819 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \ 820 break; 821 #include "llvm/IR/Metadata.def" 822 } 823 } 824 825 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs, 826 StorageType Storage, bool ShouldCreate) { 827 unsigned Hash = 0; 828 if (Storage == Uniqued) { 829 MDTupleInfo::KeyTy Key(MDs); 830 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key)) 831 return N; 832 if (!ShouldCreate) 833 return nullptr; 834 Hash = Key.getHash(); 835 } else { 836 assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); 837 } 838 839 return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs), 840 Storage, Context.pImpl->MDTuples); 841 } 842 843 void MDNode::deleteTemporary(MDNode *N) { 844 assert(N->isTemporary() && "Expected temporary node"); 845 N->replaceAllUsesWith(nullptr); 846 N->deleteAsSubclass(); 847 } 848 849 void MDNode::storeDistinctInContext() { 850 assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses"); 851 assert(!NumUnresolved && "Unexpected unresolved nodes"); 852 Storage = Distinct; 853 assert(isResolved() && "Expected this to be resolved"); 854 855 // Reset the hash. 856 switch (getMetadataID()) { 857 default: 858 llvm_unreachable("Invalid subclass of MDNode"); 859 #define HANDLE_MDNODE_LEAF(CLASS) \ 860 case CLASS##Kind: { \ 861 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \ 862 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \ 863 break; \ 864 } 865 #include "llvm/IR/Metadata.def" 866 } 867 868 getContext().pImpl->DistinctMDNodes.push_back(this); 869 } 870 871 void MDNode::replaceOperandWith(unsigned I, Metadata *New) { 872 if (getOperand(I) == New) 873 return; 874 875 if (!isUniqued()) { 876 setOperand(I, New); 877 return; 878 } 879 880 handleChangedOperand(mutable_begin() + I, New); 881 } 882 883 void MDNode::setOperand(unsigned I, Metadata *New) { 884 assert(I < NumOperands); 885 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr); 886 } 887 888 /// Get a node or a self-reference that looks like it. 889 /// 890 /// Special handling for finding self-references, for use by \a 891 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from 892 /// when self-referencing nodes were still uniqued. If the first operand has 893 /// the same operands as \c Ops, return the first operand instead. 894 static MDNode *getOrSelfReference(LLVMContext &Context, 895 ArrayRef<Metadata *> Ops) { 896 if (!Ops.empty()) 897 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0])) 898 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) { 899 for (unsigned I = 1, E = Ops.size(); I != E; ++I) 900 if (Ops[I] != N->getOperand(I)) 901 return MDNode::get(Context, Ops); 902 return N; 903 } 904 905 return MDNode::get(Context, Ops); 906 } 907 908 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) { 909 if (!A) 910 return B; 911 if (!B) 912 return A; 913 914 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 915 MDs.insert(B->op_begin(), B->op_end()); 916 917 // FIXME: This preserves long-standing behaviour, but is it really the right 918 // behaviour? Or was that an unintended side-effect of node uniquing? 919 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 920 } 921 922 MDNode *MDNode::intersect(MDNode *A, MDNode *B) { 923 if (!A || !B) 924 return nullptr; 925 926 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 927 SmallPtrSet<Metadata *, 4> BSet(B->op_begin(), B->op_end()); 928 MDs.remove_if([&](Metadata *MD) { return !BSet.count(MD); }); 929 930 // FIXME: This preserves long-standing behaviour, but is it really the right 931 // behaviour? Or was that an unintended side-effect of node uniquing? 932 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 933 } 934 935 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) { 936 if (!A || !B) 937 return nullptr; 938 939 // Take the intersection of domains then union the scopes 940 // within those domains 941 SmallPtrSet<const MDNode *, 16> ADomains; 942 SmallPtrSet<const MDNode *, 16> IntersectDomains; 943 SmallSetVector<Metadata *, 4> MDs; 944 for (const MDOperand &MDOp : A->operands()) 945 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 946 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 947 ADomains.insert(Domain); 948 949 for (const MDOperand &MDOp : B->operands()) 950 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 951 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 952 if (ADomains.contains(Domain)) { 953 IntersectDomains.insert(Domain); 954 MDs.insert(MDOp); 955 } 956 957 for (const MDOperand &MDOp : A->operands()) 958 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 959 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 960 if (IntersectDomains.contains(Domain)) 961 MDs.insert(MDOp); 962 963 return MDs.empty() ? nullptr 964 : getOrSelfReference(A->getContext(), MDs.getArrayRef()); 965 } 966 967 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) { 968 if (!A || !B) 969 return nullptr; 970 971 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF(); 972 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF(); 973 if (AVal < BVal) 974 return A; 975 return B; 976 } 977 978 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 979 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 980 } 981 982 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) { 983 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B); 984 } 985 986 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints, 987 ConstantInt *Low, ConstantInt *High) { 988 ConstantRange NewRange(Low->getValue(), High->getValue()); 989 unsigned Size = EndPoints.size(); 990 APInt LB = EndPoints[Size - 2]->getValue(); 991 APInt LE = EndPoints[Size - 1]->getValue(); 992 ConstantRange LastRange(LB, LE); 993 if (canBeMerged(NewRange, LastRange)) { 994 ConstantRange Union = LastRange.unionWith(NewRange); 995 Type *Ty = High->getType(); 996 EndPoints[Size - 2] = 997 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower())); 998 EndPoints[Size - 1] = 999 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper())); 1000 return true; 1001 } 1002 return false; 1003 } 1004 1005 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints, 1006 ConstantInt *Low, ConstantInt *High) { 1007 if (!EndPoints.empty()) 1008 if (tryMergeRange(EndPoints, Low, High)) 1009 return; 1010 1011 EndPoints.push_back(Low); 1012 EndPoints.push_back(High); 1013 } 1014 1015 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) { 1016 // Given two ranges, we want to compute the union of the ranges. This 1017 // is slightly complicated by having to combine the intervals and merge 1018 // the ones that overlap. 1019 1020 if (!A || !B) 1021 return nullptr; 1022 1023 if (A == B) 1024 return A; 1025 1026 // First, walk both lists in order of the lower boundary of each interval. 1027 // At each step, try to merge the new interval to the last one we adedd. 1028 SmallVector<ConstantInt *, 4> EndPoints; 1029 int AI = 0; 1030 int BI = 0; 1031 int AN = A->getNumOperands() / 2; 1032 int BN = B->getNumOperands() / 2; 1033 while (AI < AN && BI < BN) { 1034 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI)); 1035 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI)); 1036 1037 if (ALow->getValue().slt(BLow->getValue())) { 1038 addRange(EndPoints, ALow, 1039 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 1040 ++AI; 1041 } else { 1042 addRange(EndPoints, BLow, 1043 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 1044 ++BI; 1045 } 1046 } 1047 while (AI < AN) { 1048 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)), 1049 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 1050 ++AI; 1051 } 1052 while (BI < BN) { 1053 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)), 1054 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 1055 ++BI; 1056 } 1057 1058 // If we have more than 2 ranges (4 endpoints) we have to try to merge 1059 // the last and first ones. 1060 unsigned Size = EndPoints.size(); 1061 if (Size > 4) { 1062 ConstantInt *FB = EndPoints[0]; 1063 ConstantInt *FE = EndPoints[1]; 1064 if (tryMergeRange(EndPoints, FB, FE)) { 1065 for (unsigned i = 0; i < Size - 2; ++i) { 1066 EndPoints[i] = EndPoints[i + 2]; 1067 } 1068 EndPoints.resize(Size - 2); 1069 } 1070 } 1071 1072 // If in the end we have a single range, it is possible that it is now the 1073 // full range. Just drop the metadata in that case. 1074 if (EndPoints.size() == 2) { 1075 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue()); 1076 if (Range.isFullSet()) 1077 return nullptr; 1078 } 1079 1080 SmallVector<Metadata *, 4> MDs; 1081 MDs.reserve(EndPoints.size()); 1082 for (auto *I : EndPoints) 1083 MDs.push_back(ConstantAsMetadata::get(I)); 1084 return MDNode::get(A->getContext(), MDs); 1085 } 1086 1087 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) { 1088 if (!A || !B) 1089 return nullptr; 1090 1091 ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0)); 1092 ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0)); 1093 if (AVal->getZExtValue() < BVal->getZExtValue()) 1094 return A; 1095 return B; 1096 } 1097 1098 //===----------------------------------------------------------------------===// 1099 // NamedMDNode implementation. 1100 // 1101 1102 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) { 1103 return *(SmallVector<TrackingMDRef, 4> *)Operands; 1104 } 1105 1106 NamedMDNode::NamedMDNode(const Twine &N) 1107 : Name(N.str()), Operands(new SmallVector<TrackingMDRef, 4>()) {} 1108 1109 NamedMDNode::~NamedMDNode() { 1110 dropAllReferences(); 1111 delete &getNMDOps(Operands); 1112 } 1113 1114 unsigned NamedMDNode::getNumOperands() const { 1115 return (unsigned)getNMDOps(Operands).size(); 1116 } 1117 1118 MDNode *NamedMDNode::getOperand(unsigned i) const { 1119 assert(i < getNumOperands() && "Invalid Operand number!"); 1120 auto *N = getNMDOps(Operands)[i].get(); 1121 return cast_or_null<MDNode>(N); 1122 } 1123 1124 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); } 1125 1126 void NamedMDNode::setOperand(unsigned I, MDNode *New) { 1127 assert(I < getNumOperands() && "Invalid operand number"); 1128 getNMDOps(Operands)[I].reset(New); 1129 } 1130 1131 void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); } 1132 1133 void NamedMDNode::clearOperands() { getNMDOps(Operands).clear(); } 1134 1135 StringRef NamedMDNode::getName() const { return StringRef(Name); } 1136 1137 //===----------------------------------------------------------------------===// 1138 // Instruction Metadata method implementations. 1139 // 1140 1141 MDNode *MDAttachments::lookup(unsigned ID) const { 1142 for (const auto &A : Attachments) 1143 if (A.MDKind == ID) 1144 return A.Node; 1145 return nullptr; 1146 } 1147 1148 void MDAttachments::get(unsigned ID, SmallVectorImpl<MDNode *> &Result) const { 1149 for (const auto &A : Attachments) 1150 if (A.MDKind == ID) 1151 Result.push_back(A.Node); 1152 } 1153 1154 void MDAttachments::getAll( 1155 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1156 for (const auto &A : Attachments) 1157 Result.emplace_back(A.MDKind, A.Node); 1158 1159 // Sort the resulting array so it is stable with respect to metadata IDs. We 1160 // need to preserve the original insertion order though. 1161 if (Result.size() > 1) 1162 llvm::stable_sort(Result, less_first()); 1163 } 1164 1165 void MDAttachments::set(unsigned ID, MDNode *MD) { 1166 erase(ID); 1167 if (MD) 1168 insert(ID, *MD); 1169 } 1170 1171 void MDAttachments::insert(unsigned ID, MDNode &MD) { 1172 Attachments.push_back({ID, TrackingMDNodeRef(&MD)}); 1173 } 1174 1175 bool MDAttachments::erase(unsigned ID) { 1176 if (empty()) 1177 return false; 1178 1179 // Common case is one value. 1180 if (Attachments.size() == 1 && Attachments.back().MDKind == ID) { 1181 Attachments.pop_back(); 1182 return true; 1183 } 1184 1185 auto OldSize = Attachments.size(); 1186 llvm::erase_if(Attachments, 1187 [ID](const Attachment &A) { return A.MDKind == ID; }); 1188 return OldSize != Attachments.size(); 1189 } 1190 1191 MDNode *Value::getMetadata(unsigned KindID) const { 1192 if (!hasMetadata()) 1193 return nullptr; 1194 const auto &Info = getContext().pImpl->ValueMetadata[this]; 1195 assert(!Info.empty() && "bit out of sync with hash table"); 1196 return Info.lookup(KindID); 1197 } 1198 1199 MDNode *Value::getMetadata(StringRef Kind) const { 1200 if (!hasMetadata()) 1201 return nullptr; 1202 const auto &Info = getContext().pImpl->ValueMetadata[this]; 1203 assert(!Info.empty() && "bit out of sync with hash table"); 1204 return Info.lookup(getContext().getMDKindID(Kind)); 1205 } 1206 1207 void Value::getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const { 1208 if (hasMetadata()) 1209 getContext().pImpl->ValueMetadata[this].get(KindID, MDs); 1210 } 1211 1212 void Value::getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const { 1213 if (hasMetadata()) 1214 getMetadata(getContext().getMDKindID(Kind), MDs); 1215 } 1216 1217 void Value::getAllMetadata( 1218 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { 1219 if (hasMetadata()) { 1220 assert(getContext().pImpl->ValueMetadata.count(this) && 1221 "bit out of sync with hash table"); 1222 const auto &Info = getContext().pImpl->ValueMetadata.find(this)->second; 1223 assert(!Info.empty() && "Shouldn't have called this"); 1224 Info.getAll(MDs); 1225 } 1226 } 1227 1228 void Value::setMetadata(unsigned KindID, MDNode *Node) { 1229 assert(isa<Instruction>(this) || isa<GlobalObject>(this)); 1230 1231 // Handle the case when we're adding/updating metadata on a value. 1232 if (Node) { 1233 auto &Info = getContext().pImpl->ValueMetadata[this]; 1234 assert(!Info.empty() == HasMetadata && "bit out of sync with hash table"); 1235 if (Info.empty()) 1236 HasMetadata = true; 1237 Info.set(KindID, Node); 1238 return; 1239 } 1240 1241 // Otherwise, we're removing metadata from an instruction. 1242 assert((HasMetadata == (getContext().pImpl->ValueMetadata.count(this) > 0)) && 1243 "bit out of sync with hash table"); 1244 if (!HasMetadata) 1245 return; // Nothing to remove! 1246 auto &Info = getContext().pImpl->ValueMetadata[this]; 1247 1248 // Handle removal of an existing value. 1249 Info.erase(KindID); 1250 if (!Info.empty()) 1251 return; 1252 getContext().pImpl->ValueMetadata.erase(this); 1253 HasMetadata = false; 1254 } 1255 1256 void Value::setMetadata(StringRef Kind, MDNode *Node) { 1257 if (!Node && !HasMetadata) 1258 return; 1259 setMetadata(getContext().getMDKindID(Kind), Node); 1260 } 1261 1262 void Value::addMetadata(unsigned KindID, MDNode &MD) { 1263 assert(isa<Instruction>(this) || isa<GlobalObject>(this)); 1264 if (!HasMetadata) 1265 HasMetadata = true; 1266 getContext().pImpl->ValueMetadata[this].insert(KindID, MD); 1267 } 1268 1269 void Value::addMetadata(StringRef Kind, MDNode &MD) { 1270 addMetadata(getContext().getMDKindID(Kind), MD); 1271 } 1272 1273 bool Value::eraseMetadata(unsigned KindID) { 1274 // Nothing to unset. 1275 if (!HasMetadata) 1276 return false; 1277 1278 auto &Store = getContext().pImpl->ValueMetadata[this]; 1279 bool Changed = Store.erase(KindID); 1280 if (Store.empty()) 1281 clearMetadata(); 1282 return Changed; 1283 } 1284 1285 void Value::clearMetadata() { 1286 if (!HasMetadata) 1287 return; 1288 assert(getContext().pImpl->ValueMetadata.count(this) && 1289 "bit out of sync with hash table"); 1290 getContext().pImpl->ValueMetadata.erase(this); 1291 HasMetadata = false; 1292 } 1293 1294 void Instruction::setMetadata(StringRef Kind, MDNode *Node) { 1295 if (!Node && !hasMetadata()) 1296 return; 1297 setMetadata(getContext().getMDKindID(Kind), Node); 1298 } 1299 1300 MDNode *Instruction::getMetadataImpl(StringRef Kind) const { 1301 return getMetadataImpl(getContext().getMDKindID(Kind)); 1302 } 1303 1304 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) { 1305 if (!Value::hasMetadata()) 1306 return; // Nothing to remove! 1307 1308 if (KnownIDs.empty()) { 1309 // Just drop our entry at the store. 1310 clearMetadata(); 1311 return; 1312 } 1313 1314 SmallSet<unsigned, 4> KnownSet; 1315 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 1316 1317 auto &MetadataStore = getContext().pImpl->ValueMetadata; 1318 auto &Info = MetadataStore[this]; 1319 assert(!Info.empty() && "bit out of sync with hash table"); 1320 Info.remove_if([&KnownSet](const MDAttachments::Attachment &I) { 1321 return !KnownSet.count(I.MDKind); 1322 }); 1323 1324 if (Info.empty()) { 1325 // Drop our entry at the store. 1326 clearMetadata(); 1327 } 1328 } 1329 1330 void Instruction::setMetadata(unsigned KindID, MDNode *Node) { 1331 if (!Node && !hasMetadata()) 1332 return; 1333 1334 // Handle 'dbg' as a special case since it is not stored in the hash table. 1335 if (KindID == LLVMContext::MD_dbg) { 1336 DbgLoc = DebugLoc(Node); 1337 return; 1338 } 1339 1340 Value::setMetadata(KindID, Node); 1341 } 1342 1343 void Instruction::addAnnotationMetadata(StringRef Name) { 1344 MDBuilder MDB(getContext()); 1345 1346 auto *Existing = getMetadata(LLVMContext::MD_annotation); 1347 SmallVector<Metadata *, 4> Names; 1348 bool AppendName = true; 1349 if (Existing) { 1350 auto *Tuple = cast<MDTuple>(Existing); 1351 for (auto &N : Tuple->operands()) { 1352 if (cast<MDString>(N.get())->getString() == Name) 1353 AppendName = false; 1354 Names.push_back(N.get()); 1355 } 1356 } 1357 if (AppendName) 1358 Names.push_back(MDB.createString(Name)); 1359 1360 MDNode *MD = MDTuple::get(getContext(), Names); 1361 setMetadata(LLVMContext::MD_annotation, MD); 1362 } 1363 1364 void Instruction::setAAMetadata(const AAMDNodes &N) { 1365 setMetadata(LLVMContext::MD_tbaa, N.TBAA); 1366 setMetadata(LLVMContext::MD_tbaa_struct, N.TBAAStruct); 1367 setMetadata(LLVMContext::MD_alias_scope, N.Scope); 1368 setMetadata(LLVMContext::MD_noalias, N.NoAlias); 1369 } 1370 1371 MDNode *Instruction::getMetadataImpl(unsigned KindID) const { 1372 // Handle 'dbg' as a special case since it is not stored in the hash table. 1373 if (KindID == LLVMContext::MD_dbg) 1374 return DbgLoc.getAsMDNode(); 1375 return Value::getMetadata(KindID); 1376 } 1377 1378 void Instruction::getAllMetadataImpl( 1379 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1380 Result.clear(); 1381 1382 // Handle 'dbg' as a special case since it is not stored in the hash table. 1383 if (DbgLoc) { 1384 Result.push_back( 1385 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode())); 1386 } 1387 Value::getAllMetadata(Result); 1388 } 1389 1390 bool Instruction::extractProfMetadata(uint64_t &TrueVal, 1391 uint64_t &FalseVal) const { 1392 assert( 1393 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select) && 1394 "Looking for branch weights on something besides branch or select"); 1395 1396 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1397 if (!ProfileData || ProfileData->getNumOperands() != 3) 1398 return false; 1399 1400 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1401 if (!ProfDataName || !ProfDataName->getString().equals("branch_weights")) 1402 return false; 1403 1404 auto *CITrue = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 1405 auto *CIFalse = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 1406 if (!CITrue || !CIFalse) 1407 return false; 1408 1409 TrueVal = CITrue->getValue().getZExtValue(); 1410 FalseVal = CIFalse->getValue().getZExtValue(); 1411 1412 return true; 1413 } 1414 1415 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) const { 1416 assert( 1417 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select || 1418 getOpcode() == Instruction::Call || getOpcode() == Instruction::Invoke || 1419 getOpcode() == Instruction::IndirectBr || 1420 getOpcode() == Instruction::Switch) && 1421 "Looking for branch weights on something besides branch"); 1422 1423 TotalVal = 0; 1424 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1425 if (!ProfileData) 1426 return false; 1427 1428 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1429 if (!ProfDataName) 1430 return false; 1431 1432 if (ProfDataName->getString().equals("branch_weights")) { 1433 TotalVal = 0; 1434 for (unsigned i = 1; i < ProfileData->getNumOperands(); i++) { 1435 auto *V = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i)); 1436 if (!V) 1437 return false; 1438 TotalVal += V->getValue().getZExtValue(); 1439 } 1440 return true; 1441 } else if (ProfDataName->getString().equals("VP") && 1442 ProfileData->getNumOperands() > 3) { 1443 TotalVal = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)) 1444 ->getValue() 1445 .getZExtValue(); 1446 return true; 1447 } 1448 return false; 1449 } 1450 1451 void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) { 1452 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 1453 Other->getAllMetadata(MDs); 1454 for (auto &MD : MDs) { 1455 // We need to adjust the type metadata offset. 1456 if (Offset != 0 && MD.first == LLVMContext::MD_type) { 1457 auto *OffsetConst = cast<ConstantInt>( 1458 cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue()); 1459 Metadata *TypeId = MD.second->getOperand(1); 1460 auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get( 1461 OffsetConst->getType(), OffsetConst->getValue() + Offset)); 1462 addMetadata(LLVMContext::MD_type, 1463 *MDNode::get(getContext(), {NewOffsetMD, TypeId})); 1464 continue; 1465 } 1466 // If an offset adjustment was specified we need to modify the DIExpression 1467 // to prepend the adjustment: 1468 // !DIExpression(DW_OP_plus, Offset, [original expr]) 1469 auto *Attachment = MD.second; 1470 if (Offset != 0 && MD.first == LLVMContext::MD_dbg) { 1471 DIGlobalVariable *GV = dyn_cast<DIGlobalVariable>(Attachment); 1472 DIExpression *E = nullptr; 1473 if (!GV) { 1474 auto *GVE = cast<DIGlobalVariableExpression>(Attachment); 1475 GV = GVE->getVariable(); 1476 E = GVE->getExpression(); 1477 } 1478 ArrayRef<uint64_t> OrigElements; 1479 if (E) 1480 OrigElements = E->getElements(); 1481 std::vector<uint64_t> Elements(OrigElements.size() + 2); 1482 Elements[0] = dwarf::DW_OP_plus_uconst; 1483 Elements[1] = Offset; 1484 llvm::copy(OrigElements, Elements.begin() + 2); 1485 E = DIExpression::get(getContext(), Elements); 1486 Attachment = DIGlobalVariableExpression::get(getContext(), GV, E); 1487 } 1488 addMetadata(MD.first, *Attachment); 1489 } 1490 } 1491 1492 void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) { 1493 addMetadata( 1494 LLVMContext::MD_type, 1495 *MDTuple::get(getContext(), 1496 {ConstantAsMetadata::get(ConstantInt::get( 1497 Type::getInt64Ty(getContext()), Offset)), 1498 TypeID})); 1499 } 1500 1501 void GlobalObject::setVCallVisibilityMetadata(VCallVisibility Visibility) { 1502 // Remove any existing vcall visibility metadata first in case we are 1503 // updating. 1504 eraseMetadata(LLVMContext::MD_vcall_visibility); 1505 addMetadata(LLVMContext::MD_vcall_visibility, 1506 *MDNode::get(getContext(), 1507 {ConstantAsMetadata::get(ConstantInt::get( 1508 Type::getInt64Ty(getContext()), Visibility))})); 1509 } 1510 1511 GlobalObject::VCallVisibility GlobalObject::getVCallVisibility() const { 1512 if (MDNode *MD = getMetadata(LLVMContext::MD_vcall_visibility)) { 1513 uint64_t Val = cast<ConstantInt>( 1514 cast<ConstantAsMetadata>(MD->getOperand(0))->getValue()) 1515 ->getZExtValue(); 1516 assert(Val <= 2 && "unknown vcall visibility!"); 1517 return (VCallVisibility)Val; 1518 } 1519 return VCallVisibility::VCallVisibilityPublic; 1520 } 1521 1522 void Function::setSubprogram(DISubprogram *SP) { 1523 setMetadata(LLVMContext::MD_dbg, SP); 1524 } 1525 1526 DISubprogram *Function::getSubprogram() const { 1527 return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg)); 1528 } 1529 1530 bool Function::isDebugInfoForProfiling() const { 1531 if (DISubprogram *SP = getSubprogram()) { 1532 if (DICompileUnit *CU = SP->getUnit()) { 1533 return CU->getDebugInfoForProfiling(); 1534 } 1535 } 1536 return false; 1537 } 1538 1539 void GlobalVariable::addDebugInfo(DIGlobalVariableExpression *GV) { 1540 addMetadata(LLVMContext::MD_dbg, *GV); 1541 } 1542 1543 void GlobalVariable::getDebugInfo( 1544 SmallVectorImpl<DIGlobalVariableExpression *> &GVs) const { 1545 SmallVector<MDNode *, 1> MDs; 1546 getMetadata(LLVMContext::MD_dbg, MDs); 1547 for (MDNode *MD : MDs) 1548 GVs.push_back(cast<DIGlobalVariableExpression>(MD)); 1549 } 1550