1 //===- Metadata.cpp - Implement Metadata classes --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Metadata classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Metadata.h" 15 #include "LLVMContextImpl.h" 16 #include "MetadataImpl.h" 17 #include "SymbolTableListTraitsImpl.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/None.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringMap.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/IR/Argument.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/ConstantRange.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DebugInfoMetadata.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalObject.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/TrackingMDRef.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/IR/Value.h" 46 #include "llvm/IR/ValueHandle.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/MathExtras.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstddef> 53 #include <cstdint> 54 #include <iterator> 55 #include <tuple> 56 #include <utility> 57 #include <vector> 58 59 using namespace llvm; 60 61 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD) 62 : Value(Ty, MetadataAsValueVal), MD(MD) { 63 track(); 64 } 65 66 MetadataAsValue::~MetadataAsValue() { 67 getType()->getContext().pImpl->MetadataAsValues.erase(MD); 68 untrack(); 69 } 70 71 /// Canonicalize metadata arguments to intrinsics. 72 /// 73 /// To support bitcode upgrades (and assembly semantic sugar) for \a 74 /// MetadataAsValue, we need to canonicalize certain metadata. 75 /// 76 /// - nullptr is replaced by an empty MDNode. 77 /// - An MDNode with a single null operand is replaced by an empty MDNode. 78 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped. 79 /// 80 /// This maintains readability of bitcode from when metadata was a type of 81 /// value, and these bridges were unnecessary. 82 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context, 83 Metadata *MD) { 84 if (!MD) 85 // !{} 86 return MDNode::get(Context, None); 87 88 // Return early if this isn't a single-operand MDNode. 89 auto *N = dyn_cast<MDNode>(MD); 90 if (!N || N->getNumOperands() != 1) 91 return MD; 92 93 if (!N->getOperand(0)) 94 // !{} 95 return MDNode::get(Context, None); 96 97 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0))) 98 // Look through the MDNode. 99 return C; 100 101 return MD; 102 } 103 104 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) { 105 MD = canonicalizeMetadataForValue(Context, MD); 106 auto *&Entry = Context.pImpl->MetadataAsValues[MD]; 107 if (!Entry) 108 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD); 109 return Entry; 110 } 111 112 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context, 113 Metadata *MD) { 114 MD = canonicalizeMetadataForValue(Context, MD); 115 auto &Store = Context.pImpl->MetadataAsValues; 116 return Store.lookup(MD); 117 } 118 119 void MetadataAsValue::handleChangedMetadata(Metadata *MD) { 120 LLVMContext &Context = getContext(); 121 MD = canonicalizeMetadataForValue(Context, MD); 122 auto &Store = Context.pImpl->MetadataAsValues; 123 124 // Stop tracking the old metadata. 125 Store.erase(this->MD); 126 untrack(); 127 this->MD = nullptr; 128 129 // Start tracking MD, or RAUW if necessary. 130 auto *&Entry = Store[MD]; 131 if (Entry) { 132 replaceAllUsesWith(Entry); 133 delete this; 134 return; 135 } 136 137 this->MD = MD; 138 track(); 139 Entry = this; 140 } 141 142 void MetadataAsValue::track() { 143 if (MD) 144 MetadataTracking::track(&MD, *MD, *this); 145 } 146 147 void MetadataAsValue::untrack() { 148 if (MD) 149 MetadataTracking::untrack(MD); 150 } 151 152 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) { 153 assert(Ref && "Expected live reference"); 154 assert((Owner || *static_cast<Metadata **>(Ref) == &MD) && 155 "Reference without owner must be direct"); 156 if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) { 157 R->addRef(Ref, Owner); 158 return true; 159 } 160 if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) { 161 assert(!PH->Use && "Placeholders can only be used once"); 162 assert(!Owner && "Unexpected callback to owner"); 163 PH->Use = static_cast<Metadata **>(Ref); 164 return true; 165 } 166 return false; 167 } 168 169 void MetadataTracking::untrack(void *Ref, Metadata &MD) { 170 assert(Ref && "Expected live reference"); 171 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) 172 R->dropRef(Ref); 173 else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) 174 PH->Use = nullptr; 175 } 176 177 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) { 178 assert(Ref && "Expected live reference"); 179 assert(New && "Expected live reference"); 180 assert(Ref != New && "Expected change"); 181 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) { 182 R->moveRef(Ref, New, MD); 183 return true; 184 } 185 assert(!isa<DistinctMDOperandPlaceholder>(MD) && 186 "Unexpected move of an MDOperand"); 187 assert(!isReplaceable(MD) && 188 "Expected un-replaceable metadata, since we didn't move a reference"); 189 return false; 190 } 191 192 bool MetadataTracking::isReplaceable(const Metadata &MD) { 193 return ReplaceableMetadataImpl::isReplaceable(MD); 194 } 195 196 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) { 197 bool WasInserted = 198 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex))) 199 .second; 200 (void)WasInserted; 201 assert(WasInserted && "Expected to add a reference"); 202 203 ++NextIndex; 204 assert(NextIndex != 0 && "Unexpected overflow"); 205 } 206 207 void ReplaceableMetadataImpl::dropRef(void *Ref) { 208 bool WasErased = UseMap.erase(Ref); 209 (void)WasErased; 210 assert(WasErased && "Expected to drop a reference"); 211 } 212 213 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New, 214 const Metadata &MD) { 215 auto I = UseMap.find(Ref); 216 assert(I != UseMap.end() && "Expected to move a reference"); 217 auto OwnerAndIndex = I->second; 218 UseMap.erase(I); 219 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second; 220 (void)WasInserted; 221 assert(WasInserted && "Expected to add a reference"); 222 223 // Check that the references are direct if there's no owner. 224 (void)MD; 225 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) && 226 "Reference without owner must be direct"); 227 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) && 228 "Reference without owner must be direct"); 229 } 230 231 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) { 232 if (UseMap.empty()) 233 return; 234 235 // Copy out uses since UseMap will get touched below. 236 typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy; 237 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 238 std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) { 239 return L.second.second < R.second.second; 240 }); 241 for (const auto &Pair : Uses) { 242 // Check that this Ref hasn't disappeared after RAUW (when updating a 243 // previous Ref). 244 if (!UseMap.count(Pair.first)) 245 continue; 246 247 OwnerTy Owner = Pair.second.first; 248 if (!Owner) { 249 // Update unowned tracking references directly. 250 Metadata *&Ref = *static_cast<Metadata **>(Pair.first); 251 Ref = MD; 252 if (MD) 253 MetadataTracking::track(Ref); 254 UseMap.erase(Pair.first); 255 continue; 256 } 257 258 // Check for MetadataAsValue. 259 if (Owner.is<MetadataAsValue *>()) { 260 Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD); 261 continue; 262 } 263 264 // There's a Metadata owner -- dispatch. 265 Metadata *OwnerMD = Owner.get<Metadata *>(); 266 switch (OwnerMD->getMetadataID()) { 267 #define HANDLE_METADATA_LEAF(CLASS) \ 268 case Metadata::CLASS##Kind: \ 269 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \ 270 continue; 271 #include "llvm/IR/Metadata.def" 272 default: 273 llvm_unreachable("Invalid metadata subclass"); 274 } 275 } 276 assert(UseMap.empty() && "Expected all uses to be replaced"); 277 } 278 279 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) { 280 if (UseMap.empty()) 281 return; 282 283 if (!ResolveUsers) { 284 UseMap.clear(); 285 return; 286 } 287 288 // Copy out uses since UseMap could get touched below. 289 typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy; 290 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 291 std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) { 292 return L.second.second < R.second.second; 293 }); 294 UseMap.clear(); 295 for (const auto &Pair : Uses) { 296 auto Owner = Pair.second.first; 297 if (!Owner) 298 continue; 299 if (Owner.is<MetadataAsValue *>()) 300 continue; 301 302 // Resolve MDNodes that point at this. 303 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>()); 304 if (!OwnerMD) 305 continue; 306 if (OwnerMD->isResolved()) 307 continue; 308 OwnerMD->decrementUnresolvedOperandCount(); 309 } 310 } 311 312 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) { 313 if (auto *N = dyn_cast<MDNode>(&MD)) 314 return N->isResolved() ? nullptr : N->Context.getOrCreateReplaceableUses(); 315 return dyn_cast<ValueAsMetadata>(&MD); 316 } 317 318 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) { 319 if (auto *N = dyn_cast<MDNode>(&MD)) 320 return N->isResolved() ? nullptr : N->Context.getReplaceableUses(); 321 return dyn_cast<ValueAsMetadata>(&MD); 322 } 323 324 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) { 325 if (auto *N = dyn_cast<MDNode>(&MD)) 326 return !N->isResolved(); 327 return dyn_cast<ValueAsMetadata>(&MD); 328 } 329 330 static Function *getLocalFunction(Value *V) { 331 assert(V && "Expected value"); 332 if (auto *A = dyn_cast<Argument>(V)) 333 return A->getParent(); 334 if (BasicBlock *BB = cast<Instruction>(V)->getParent()) 335 return BB->getParent(); 336 return nullptr; 337 } 338 339 ValueAsMetadata *ValueAsMetadata::get(Value *V) { 340 assert(V && "Unexpected null Value"); 341 342 auto &Context = V->getContext(); 343 auto *&Entry = Context.pImpl->ValuesAsMetadata[V]; 344 if (!Entry) { 345 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) && 346 "Expected constant or function-local value"); 347 assert(!V->IsUsedByMD && "Expected this to be the only metadata use"); 348 V->IsUsedByMD = true; 349 if (auto *C = dyn_cast<Constant>(V)) 350 Entry = new ConstantAsMetadata(C); 351 else 352 Entry = new LocalAsMetadata(V); 353 } 354 355 return Entry; 356 } 357 358 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) { 359 assert(V && "Unexpected null Value"); 360 return V->getContext().pImpl->ValuesAsMetadata.lookup(V); 361 } 362 363 void ValueAsMetadata::handleDeletion(Value *V) { 364 assert(V && "Expected valid value"); 365 366 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata; 367 auto I = Store.find(V); 368 if (I == Store.end()) 369 return; 370 371 // Remove old entry from the map. 372 ValueAsMetadata *MD = I->second; 373 assert(MD && "Expected valid metadata"); 374 assert(MD->getValue() == V && "Expected valid mapping"); 375 Store.erase(I); 376 377 // Delete the metadata. 378 MD->replaceAllUsesWith(nullptr); 379 delete MD; 380 } 381 382 void ValueAsMetadata::handleRAUW(Value *From, Value *To) { 383 assert(From && "Expected valid value"); 384 assert(To && "Expected valid value"); 385 assert(From != To && "Expected changed value"); 386 assert(From->getType() == To->getType() && "Unexpected type change"); 387 388 LLVMContext &Context = From->getType()->getContext(); 389 auto &Store = Context.pImpl->ValuesAsMetadata; 390 auto I = Store.find(From); 391 if (I == Store.end()) { 392 assert(!From->IsUsedByMD && "Expected From not to be used by metadata"); 393 return; 394 } 395 396 // Remove old entry from the map. 397 assert(From->IsUsedByMD && "Expected From to be used by metadata"); 398 From->IsUsedByMD = false; 399 ValueAsMetadata *MD = I->second; 400 assert(MD && "Expected valid metadata"); 401 assert(MD->getValue() == From && "Expected valid mapping"); 402 Store.erase(I); 403 404 if (isa<LocalAsMetadata>(MD)) { 405 if (auto *C = dyn_cast<Constant>(To)) { 406 // Local became a constant. 407 MD->replaceAllUsesWith(ConstantAsMetadata::get(C)); 408 delete MD; 409 return; 410 } 411 if (getLocalFunction(From) && getLocalFunction(To) && 412 getLocalFunction(From) != getLocalFunction(To)) { 413 // Function changed. 414 MD->replaceAllUsesWith(nullptr); 415 delete MD; 416 return; 417 } 418 } else if (!isa<Constant>(To)) { 419 // Changed to function-local value. 420 MD->replaceAllUsesWith(nullptr); 421 delete MD; 422 return; 423 } 424 425 auto *&Entry = Store[To]; 426 if (Entry) { 427 // The target already exists. 428 MD->replaceAllUsesWith(Entry); 429 delete MD; 430 return; 431 } 432 433 // Update MD in place (and update the map entry). 434 assert(!To->IsUsedByMD && "Expected this to be the only metadata use"); 435 To->IsUsedByMD = true; 436 MD->V = To; 437 Entry = MD; 438 } 439 440 //===----------------------------------------------------------------------===// 441 // MDString implementation. 442 // 443 444 MDString *MDString::get(LLVMContext &Context, StringRef Str) { 445 auto &Store = Context.pImpl->MDStringCache; 446 auto I = Store.try_emplace(Str); 447 auto &MapEntry = I.first->getValue(); 448 if (!I.second) 449 return &MapEntry; 450 MapEntry.Entry = &*I.first; 451 return &MapEntry; 452 } 453 454 StringRef MDString::getString() const { 455 assert(Entry && "Expected to find string map entry"); 456 return Entry->first(); 457 } 458 459 //===----------------------------------------------------------------------===// 460 // MDNode implementation. 461 // 462 463 // Assert that the MDNode types will not be unaligned by the objects 464 // prepended to them. 465 #define HANDLE_MDNODE_LEAF(CLASS) \ 466 static_assert( \ 467 alignof(uint64_t) >= alignof(CLASS), \ 468 "Alignment is insufficient after objects prepended to " #CLASS); 469 #include "llvm/IR/Metadata.def" 470 471 void *MDNode::operator new(size_t Size, unsigned NumOps) { 472 size_t OpSize = NumOps * sizeof(MDOperand); 473 // uint64_t is the most aligned type we need support (ensured by static_assert 474 // above) 475 OpSize = alignTo(OpSize, alignof(uint64_t)); 476 void *Ptr = reinterpret_cast<char *>(::operator new(OpSize + Size)) + OpSize; 477 MDOperand *O = static_cast<MDOperand *>(Ptr); 478 for (MDOperand *E = O - NumOps; O != E; --O) 479 (void)new (O - 1) MDOperand; 480 return Ptr; 481 } 482 483 void MDNode::operator delete(void *Mem) { 484 MDNode *N = static_cast<MDNode *>(Mem); 485 size_t OpSize = N->NumOperands * sizeof(MDOperand); 486 OpSize = alignTo(OpSize, alignof(uint64_t)); 487 488 MDOperand *O = static_cast<MDOperand *>(Mem); 489 for (MDOperand *E = O - N->NumOperands; O != E; --O) 490 (O - 1)->~MDOperand(); 491 ::operator delete(reinterpret_cast<char *>(Mem) - OpSize); 492 } 493 494 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage, 495 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2) 496 : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()), 497 NumUnresolved(0), Context(Context) { 498 unsigned Op = 0; 499 for (Metadata *MD : Ops1) 500 setOperand(Op++, MD); 501 for (Metadata *MD : Ops2) 502 setOperand(Op++, MD); 503 504 if (!isUniqued()) 505 return; 506 507 // Count the unresolved operands. If there are any, RAUW support will be 508 // added lazily on first reference. 509 countUnresolvedOperands(); 510 } 511 512 TempMDNode MDNode::clone() const { 513 switch (getMetadataID()) { 514 default: 515 llvm_unreachable("Invalid MDNode subclass"); 516 #define HANDLE_MDNODE_LEAF(CLASS) \ 517 case CLASS##Kind: \ 518 return cast<CLASS>(this)->cloneImpl(); 519 #include "llvm/IR/Metadata.def" 520 } 521 } 522 523 static bool isOperandUnresolved(Metadata *Op) { 524 if (auto *N = dyn_cast_or_null<MDNode>(Op)) 525 return !N->isResolved(); 526 return false; 527 } 528 529 void MDNode::countUnresolvedOperands() { 530 assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted"); 531 assert(isUniqued() && "Expected this to be uniqued"); 532 NumUnresolved = count_if(operands(), isOperandUnresolved); 533 } 534 535 void MDNode::makeUniqued() { 536 assert(isTemporary() && "Expected this to be temporary"); 537 assert(!isResolved() && "Expected this to be unresolved"); 538 539 // Enable uniquing callbacks. 540 for (auto &Op : mutable_operands()) 541 Op.reset(Op.get(), this); 542 543 // Make this 'uniqued'. 544 Storage = Uniqued; 545 countUnresolvedOperands(); 546 if (!NumUnresolved) { 547 dropReplaceableUses(); 548 assert(isResolved() && "Expected this to be resolved"); 549 } 550 551 assert(isUniqued() && "Expected this to be uniqued"); 552 } 553 554 void MDNode::makeDistinct() { 555 assert(isTemporary() && "Expected this to be temporary"); 556 assert(!isResolved() && "Expected this to be unresolved"); 557 558 // Drop RAUW support and store as a distinct node. 559 dropReplaceableUses(); 560 storeDistinctInContext(); 561 562 assert(isDistinct() && "Expected this to be distinct"); 563 assert(isResolved() && "Expected this to be resolved"); 564 } 565 566 void MDNode::resolve() { 567 assert(isUniqued() && "Expected this to be uniqued"); 568 assert(!isResolved() && "Expected this to be unresolved"); 569 570 NumUnresolved = 0; 571 dropReplaceableUses(); 572 573 assert(isResolved() && "Expected this to be resolved"); 574 } 575 576 void MDNode::dropReplaceableUses() { 577 assert(!NumUnresolved && "Unexpected unresolved operand"); 578 579 // Drop any RAUW support. 580 if (Context.hasReplaceableUses()) 581 Context.takeReplaceableUses()->resolveAllUses(); 582 } 583 584 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) { 585 assert(isUniqued() && "Expected this to be uniqued"); 586 assert(NumUnresolved != 0 && "Expected unresolved operands"); 587 588 // Check if an operand was resolved. 589 if (!isOperandUnresolved(Old)) { 590 if (isOperandUnresolved(New)) 591 // An operand was un-resolved! 592 ++NumUnresolved; 593 } else if (!isOperandUnresolved(New)) 594 decrementUnresolvedOperandCount(); 595 } 596 597 void MDNode::decrementUnresolvedOperandCount() { 598 assert(!isResolved() && "Expected this to be unresolved"); 599 if (isTemporary()) 600 return; 601 602 assert(isUniqued() && "Expected this to be uniqued"); 603 if (--NumUnresolved) 604 return; 605 606 // Last unresolved operand has just been resolved. 607 dropReplaceableUses(); 608 assert(isResolved() && "Expected this to become resolved"); 609 } 610 611 void MDNode::resolveCycles() { 612 if (isResolved()) 613 return; 614 615 // Resolve this node immediately. 616 resolve(); 617 618 // Resolve all operands. 619 for (const auto &Op : operands()) { 620 auto *N = dyn_cast_or_null<MDNode>(Op); 621 if (!N) 622 continue; 623 624 assert(!N->isTemporary() && 625 "Expected all forward declarations to be resolved"); 626 if (!N->isResolved()) 627 N->resolveCycles(); 628 } 629 } 630 631 static bool hasSelfReference(MDNode *N) { 632 for (Metadata *MD : N->operands()) 633 if (MD == N) 634 return true; 635 return false; 636 } 637 638 MDNode *MDNode::replaceWithPermanentImpl() { 639 switch (getMetadataID()) { 640 default: 641 // If this type isn't uniquable, replace with a distinct node. 642 return replaceWithDistinctImpl(); 643 644 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 645 case CLASS##Kind: \ 646 break; 647 #include "llvm/IR/Metadata.def" 648 } 649 650 // Even if this type is uniquable, self-references have to be distinct. 651 if (hasSelfReference(this)) 652 return replaceWithDistinctImpl(); 653 return replaceWithUniquedImpl(); 654 } 655 656 MDNode *MDNode::replaceWithUniquedImpl() { 657 // Try to uniquify in place. 658 MDNode *UniquedNode = uniquify(); 659 660 if (UniquedNode == this) { 661 makeUniqued(); 662 return this; 663 } 664 665 // Collision, so RAUW instead. 666 replaceAllUsesWith(UniquedNode); 667 deleteAsSubclass(); 668 return UniquedNode; 669 } 670 671 MDNode *MDNode::replaceWithDistinctImpl() { 672 makeDistinct(); 673 return this; 674 } 675 676 void MDTuple::recalculateHash() { 677 setHash(MDTupleInfo::KeyTy::calculateHash(this)); 678 } 679 680 void MDNode::dropAllReferences() { 681 for (unsigned I = 0, E = NumOperands; I != E; ++I) 682 setOperand(I, nullptr); 683 if (Context.hasReplaceableUses()) { 684 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false); 685 (void)Context.takeReplaceableUses(); 686 } 687 } 688 689 void MDNode::handleChangedOperand(void *Ref, Metadata *New) { 690 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin(); 691 assert(Op < getNumOperands() && "Expected valid operand"); 692 693 if (!isUniqued()) { 694 // This node is not uniqued. Just set the operand and be done with it. 695 setOperand(Op, New); 696 return; 697 } 698 699 // This node is uniqued. 700 eraseFromStore(); 701 702 Metadata *Old = getOperand(Op); 703 setOperand(Op, New); 704 705 // Drop uniquing for self-reference cycles and deleted constants. 706 if (New == this || (!New && Old && isa<ConstantAsMetadata>(Old))) { 707 if (!isResolved()) 708 resolve(); 709 storeDistinctInContext(); 710 return; 711 } 712 713 // Re-unique the node. 714 auto *Uniqued = uniquify(); 715 if (Uniqued == this) { 716 if (!isResolved()) 717 resolveAfterOperandChange(Old, New); 718 return; 719 } 720 721 // Collision. 722 if (!isResolved()) { 723 // Still unresolved, so RAUW. 724 // 725 // First, clear out all operands to prevent any recursion (similar to 726 // dropAllReferences(), but we still need the use-list). 727 for (unsigned O = 0, E = getNumOperands(); O != E; ++O) 728 setOperand(O, nullptr); 729 if (Context.hasReplaceableUses()) 730 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued); 731 deleteAsSubclass(); 732 return; 733 } 734 735 // Store in non-uniqued form if RAUW isn't possible. 736 storeDistinctInContext(); 737 } 738 739 void MDNode::deleteAsSubclass() { 740 switch (getMetadataID()) { 741 default: 742 llvm_unreachable("Invalid subclass of MDNode"); 743 #define HANDLE_MDNODE_LEAF(CLASS) \ 744 case CLASS##Kind: \ 745 delete cast<CLASS>(this); \ 746 break; 747 #include "llvm/IR/Metadata.def" 748 } 749 } 750 751 template <class T, class InfoT> 752 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) { 753 if (T *U = getUniqued(Store, N)) 754 return U; 755 756 Store.insert(N); 757 return N; 758 } 759 760 template <class NodeTy> struct MDNode::HasCachedHash { 761 typedef char Yes[1]; 762 typedef char No[2]; 763 template <class U, U Val> struct SFINAE {}; 764 765 template <class U> 766 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *); 767 template <class U> static No &check(...); 768 769 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes); 770 }; 771 772 MDNode *MDNode::uniquify() { 773 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node"); 774 775 // Try to insert into uniquing store. 776 switch (getMetadataID()) { 777 default: 778 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 779 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 780 case CLASS##Kind: { \ 781 CLASS *SubclassThis = cast<CLASS>(this); \ 782 std::integral_constant<bool, HasCachedHash<CLASS>::value> \ 783 ShouldRecalculateHash; \ 784 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \ 785 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \ 786 } 787 #include "llvm/IR/Metadata.def" 788 } 789 } 790 791 void MDNode::eraseFromStore() { 792 switch (getMetadataID()) { 793 default: 794 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 795 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 796 case CLASS##Kind: \ 797 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \ 798 break; 799 #include "llvm/IR/Metadata.def" 800 } 801 } 802 803 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs, 804 StorageType Storage, bool ShouldCreate) { 805 unsigned Hash = 0; 806 if (Storage == Uniqued) { 807 MDTupleInfo::KeyTy Key(MDs); 808 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key)) 809 return N; 810 if (!ShouldCreate) 811 return nullptr; 812 Hash = Key.getHash(); 813 } else { 814 assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); 815 } 816 817 return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs), 818 Storage, Context.pImpl->MDTuples); 819 } 820 821 void MDNode::deleteTemporary(MDNode *N) { 822 assert(N->isTemporary() && "Expected temporary node"); 823 N->replaceAllUsesWith(nullptr); 824 N->deleteAsSubclass(); 825 } 826 827 void MDNode::storeDistinctInContext() { 828 assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses"); 829 assert(!NumUnresolved && "Unexpected unresolved nodes"); 830 Storage = Distinct; 831 assert(isResolved() && "Expected this to be resolved"); 832 833 // Reset the hash. 834 switch (getMetadataID()) { 835 default: 836 llvm_unreachable("Invalid subclass of MDNode"); 837 #define HANDLE_MDNODE_LEAF(CLASS) \ 838 case CLASS##Kind: { \ 839 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \ 840 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \ 841 break; \ 842 } 843 #include "llvm/IR/Metadata.def" 844 } 845 846 getContext().pImpl->DistinctMDNodes.push_back(this); 847 } 848 849 void MDNode::replaceOperandWith(unsigned I, Metadata *New) { 850 if (getOperand(I) == New) 851 return; 852 853 if (!isUniqued()) { 854 setOperand(I, New); 855 return; 856 } 857 858 handleChangedOperand(mutable_begin() + I, New); 859 } 860 861 void MDNode::setOperand(unsigned I, Metadata *New) { 862 assert(I < NumOperands); 863 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr); 864 } 865 866 /// Get a node or a self-reference that looks like it. 867 /// 868 /// Special handling for finding self-references, for use by \a 869 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from 870 /// when self-referencing nodes were still uniqued. If the first operand has 871 /// the same operands as \c Ops, return the first operand instead. 872 static MDNode *getOrSelfReference(LLVMContext &Context, 873 ArrayRef<Metadata *> Ops) { 874 if (!Ops.empty()) 875 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0])) 876 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) { 877 for (unsigned I = 1, E = Ops.size(); I != E; ++I) 878 if (Ops[I] != N->getOperand(I)) 879 return MDNode::get(Context, Ops); 880 return N; 881 } 882 883 return MDNode::get(Context, Ops); 884 } 885 886 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) { 887 if (!A) 888 return B; 889 if (!B) 890 return A; 891 892 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 893 MDs.insert(B->op_begin(), B->op_end()); 894 895 // FIXME: This preserves long-standing behaviour, but is it really the right 896 // behaviour? Or was that an unintended side-effect of node uniquing? 897 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 898 } 899 900 MDNode *MDNode::intersect(MDNode *A, MDNode *B) { 901 if (!A || !B) 902 return nullptr; 903 904 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 905 SmallPtrSet<Metadata *, 4> BSet(B->op_begin(), B->op_end()); 906 MDs.remove_if([&](Metadata *MD) { return !is_contained(BSet, MD); }); 907 908 // FIXME: This preserves long-standing behaviour, but is it really the right 909 // behaviour? Or was that an unintended side-effect of node uniquing? 910 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 911 } 912 913 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) { 914 if (!A || !B) 915 return nullptr; 916 917 return concatenate(A, B); 918 } 919 920 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) { 921 if (!A || !B) 922 return nullptr; 923 924 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF(); 925 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF(); 926 if (AVal.compare(BVal) == APFloat::cmpLessThan) 927 return A; 928 return B; 929 } 930 931 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 932 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 933 } 934 935 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) { 936 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B); 937 } 938 939 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints, 940 ConstantInt *Low, ConstantInt *High) { 941 ConstantRange NewRange(Low->getValue(), High->getValue()); 942 unsigned Size = EndPoints.size(); 943 APInt LB = EndPoints[Size - 2]->getValue(); 944 APInt LE = EndPoints[Size - 1]->getValue(); 945 ConstantRange LastRange(LB, LE); 946 if (canBeMerged(NewRange, LastRange)) { 947 ConstantRange Union = LastRange.unionWith(NewRange); 948 Type *Ty = High->getType(); 949 EndPoints[Size - 2] = 950 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower())); 951 EndPoints[Size - 1] = 952 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper())); 953 return true; 954 } 955 return false; 956 } 957 958 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints, 959 ConstantInt *Low, ConstantInt *High) { 960 if (!EndPoints.empty()) 961 if (tryMergeRange(EndPoints, Low, High)) 962 return; 963 964 EndPoints.push_back(Low); 965 EndPoints.push_back(High); 966 } 967 968 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) { 969 // Given two ranges, we want to compute the union of the ranges. This 970 // is slightly complicated by having to combine the intervals and merge 971 // the ones that overlap. 972 973 if (!A || !B) 974 return nullptr; 975 976 if (A == B) 977 return A; 978 979 // First, walk both lists in order of the lower boundary of each interval. 980 // At each step, try to merge the new interval to the last one we adedd. 981 SmallVector<ConstantInt *, 4> EndPoints; 982 int AI = 0; 983 int BI = 0; 984 int AN = A->getNumOperands() / 2; 985 int BN = B->getNumOperands() / 2; 986 while (AI < AN && BI < BN) { 987 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI)); 988 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI)); 989 990 if (ALow->getValue().slt(BLow->getValue())) { 991 addRange(EndPoints, ALow, 992 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 993 ++AI; 994 } else { 995 addRange(EndPoints, BLow, 996 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 997 ++BI; 998 } 999 } 1000 while (AI < AN) { 1001 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)), 1002 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 1003 ++AI; 1004 } 1005 while (BI < BN) { 1006 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)), 1007 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 1008 ++BI; 1009 } 1010 1011 // If we have more than 2 ranges (4 endpoints) we have to try to merge 1012 // the last and first ones. 1013 unsigned Size = EndPoints.size(); 1014 if (Size > 4) { 1015 ConstantInt *FB = EndPoints[0]; 1016 ConstantInt *FE = EndPoints[1]; 1017 if (tryMergeRange(EndPoints, FB, FE)) { 1018 for (unsigned i = 0; i < Size - 2; ++i) { 1019 EndPoints[i] = EndPoints[i + 2]; 1020 } 1021 EndPoints.resize(Size - 2); 1022 } 1023 } 1024 1025 // If in the end we have a single range, it is possible that it is now the 1026 // full range. Just drop the metadata in that case. 1027 if (EndPoints.size() == 2) { 1028 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue()); 1029 if (Range.isFullSet()) 1030 return nullptr; 1031 } 1032 1033 SmallVector<Metadata *, 4> MDs; 1034 MDs.reserve(EndPoints.size()); 1035 for (auto *I : EndPoints) 1036 MDs.push_back(ConstantAsMetadata::get(I)); 1037 return MDNode::get(A->getContext(), MDs); 1038 } 1039 1040 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) { 1041 if (!A || !B) 1042 return nullptr; 1043 1044 ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0)); 1045 ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0)); 1046 if (AVal->getZExtValue() < BVal->getZExtValue()) 1047 return A; 1048 return B; 1049 } 1050 1051 //===----------------------------------------------------------------------===// 1052 // NamedMDNode implementation. 1053 // 1054 1055 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) { 1056 return *(SmallVector<TrackingMDRef, 4> *)Operands; 1057 } 1058 1059 NamedMDNode::NamedMDNode(const Twine &N) 1060 : Name(N.str()), Operands(new SmallVector<TrackingMDRef, 4>()) {} 1061 1062 NamedMDNode::~NamedMDNode() { 1063 dropAllReferences(); 1064 delete &getNMDOps(Operands); 1065 } 1066 1067 unsigned NamedMDNode::getNumOperands() const { 1068 return (unsigned)getNMDOps(Operands).size(); 1069 } 1070 1071 MDNode *NamedMDNode::getOperand(unsigned i) const { 1072 assert(i < getNumOperands() && "Invalid Operand number!"); 1073 auto *N = getNMDOps(Operands)[i].get(); 1074 return cast_or_null<MDNode>(N); 1075 } 1076 1077 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); } 1078 1079 void NamedMDNode::setOperand(unsigned I, MDNode *New) { 1080 assert(I < getNumOperands() && "Invalid operand number"); 1081 getNMDOps(Operands)[I].reset(New); 1082 } 1083 1084 void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); } 1085 1086 void NamedMDNode::clearOperands() { getNMDOps(Operands).clear(); } 1087 1088 StringRef NamedMDNode::getName() const { return StringRef(Name); } 1089 1090 //===----------------------------------------------------------------------===// 1091 // Instruction Metadata method implementations. 1092 // 1093 void MDAttachmentMap::set(unsigned ID, MDNode &MD) { 1094 for (auto &I : Attachments) 1095 if (I.first == ID) { 1096 I.second.reset(&MD); 1097 return; 1098 } 1099 Attachments.emplace_back(std::piecewise_construct, std::make_tuple(ID), 1100 std::make_tuple(&MD)); 1101 } 1102 1103 void MDAttachmentMap::erase(unsigned ID) { 1104 if (empty()) 1105 return; 1106 1107 // Common case is one/last value. 1108 if (Attachments.back().first == ID) { 1109 Attachments.pop_back(); 1110 return; 1111 } 1112 1113 for (auto I = Attachments.begin(), E = std::prev(Attachments.end()); I != E; 1114 ++I) 1115 if (I->first == ID) { 1116 *I = std::move(Attachments.back()); 1117 Attachments.pop_back(); 1118 return; 1119 } 1120 } 1121 1122 MDNode *MDAttachmentMap::lookup(unsigned ID) const { 1123 for (const auto &I : Attachments) 1124 if (I.first == ID) 1125 return I.second; 1126 return nullptr; 1127 } 1128 1129 void MDAttachmentMap::getAll( 1130 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1131 Result.append(Attachments.begin(), Attachments.end()); 1132 1133 // Sort the resulting array so it is stable. 1134 if (Result.size() > 1) 1135 array_pod_sort(Result.begin(), Result.end()); 1136 } 1137 1138 void MDGlobalAttachmentMap::insert(unsigned ID, MDNode &MD) { 1139 Attachments.push_back({ID, TrackingMDNodeRef(&MD)}); 1140 } 1141 1142 void MDGlobalAttachmentMap::get(unsigned ID, 1143 SmallVectorImpl<MDNode *> &Result) { 1144 for (auto A : Attachments) 1145 if (A.MDKind == ID) 1146 Result.push_back(A.Node); 1147 } 1148 1149 void MDGlobalAttachmentMap::erase(unsigned ID) { 1150 auto Follower = Attachments.begin(); 1151 for (auto Leader = Attachments.begin(), E = Attachments.end(); Leader != E; 1152 ++Leader) { 1153 if (Leader->MDKind != ID) { 1154 if (Follower != Leader) 1155 *Follower = std::move(*Leader); 1156 ++Follower; 1157 } 1158 } 1159 Attachments.resize(Follower - Attachments.begin()); 1160 } 1161 1162 void MDGlobalAttachmentMap::getAll( 1163 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1164 for (auto &A : Attachments) 1165 Result.emplace_back(A.MDKind, A.Node); 1166 1167 // Sort the resulting array so it is stable with respect to metadata IDs. We 1168 // need to preserve the original insertion order though. 1169 std::stable_sort( 1170 Result.begin(), Result.end(), 1171 [](const std::pair<unsigned, MDNode *> &A, 1172 const std::pair<unsigned, MDNode *> &B) { return A.first < B.first; }); 1173 } 1174 1175 void Instruction::setMetadata(StringRef Kind, MDNode *Node) { 1176 if (!Node && !hasMetadata()) 1177 return; 1178 setMetadata(getContext().getMDKindID(Kind), Node); 1179 } 1180 1181 MDNode *Instruction::getMetadataImpl(StringRef Kind) const { 1182 return getMetadataImpl(getContext().getMDKindID(Kind)); 1183 } 1184 1185 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) { 1186 if (!hasMetadataHashEntry()) 1187 return; // Nothing to remove! 1188 1189 auto &InstructionMetadata = getContext().pImpl->InstructionMetadata; 1190 1191 SmallSet<unsigned, 4> KnownSet; 1192 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 1193 if (KnownSet.empty()) { 1194 // Just drop our entry at the store. 1195 InstructionMetadata.erase(this); 1196 setHasMetadataHashEntry(false); 1197 return; 1198 } 1199 1200 auto &Info = InstructionMetadata[this]; 1201 Info.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) { 1202 return !KnownSet.count(I.first); 1203 }); 1204 1205 if (Info.empty()) { 1206 // Drop our entry at the store. 1207 InstructionMetadata.erase(this); 1208 setHasMetadataHashEntry(false); 1209 } 1210 } 1211 1212 void Instruction::setMetadata(unsigned KindID, MDNode *Node) { 1213 if (!Node && !hasMetadata()) 1214 return; 1215 1216 // Handle 'dbg' as a special case since it is not stored in the hash table. 1217 if (KindID == LLVMContext::MD_dbg) { 1218 DbgLoc = DebugLoc(Node); 1219 return; 1220 } 1221 1222 // Handle the case when we're adding/updating metadata on an instruction. 1223 if (Node) { 1224 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1225 assert(!Info.empty() == hasMetadataHashEntry() && 1226 "HasMetadata bit is wonked"); 1227 if (Info.empty()) 1228 setHasMetadataHashEntry(true); 1229 Info.set(KindID, *Node); 1230 return; 1231 } 1232 1233 // Otherwise, we're removing metadata from an instruction. 1234 assert((hasMetadataHashEntry() == 1235 (getContext().pImpl->InstructionMetadata.count(this) > 0)) && 1236 "HasMetadata bit out of date!"); 1237 if (!hasMetadataHashEntry()) 1238 return; // Nothing to remove! 1239 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1240 1241 // Handle removal of an existing value. 1242 Info.erase(KindID); 1243 1244 if (!Info.empty()) 1245 return; 1246 1247 getContext().pImpl->InstructionMetadata.erase(this); 1248 setHasMetadataHashEntry(false); 1249 } 1250 1251 void Instruction::setAAMetadata(const AAMDNodes &N) { 1252 setMetadata(LLVMContext::MD_tbaa, N.TBAA); 1253 setMetadata(LLVMContext::MD_alias_scope, N.Scope); 1254 setMetadata(LLVMContext::MD_noalias, N.NoAlias); 1255 } 1256 1257 MDNode *Instruction::getMetadataImpl(unsigned KindID) const { 1258 // Handle 'dbg' as a special case since it is not stored in the hash table. 1259 if (KindID == LLVMContext::MD_dbg) 1260 return DbgLoc.getAsMDNode(); 1261 1262 if (!hasMetadataHashEntry()) 1263 return nullptr; 1264 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1265 assert(!Info.empty() && "bit out of sync with hash table"); 1266 1267 return Info.lookup(KindID); 1268 } 1269 1270 void Instruction::getAllMetadataImpl( 1271 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1272 Result.clear(); 1273 1274 // Handle 'dbg' as a special case since it is not stored in the hash table. 1275 if (DbgLoc) { 1276 Result.push_back( 1277 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode())); 1278 if (!hasMetadataHashEntry()) 1279 return; 1280 } 1281 1282 assert(hasMetadataHashEntry() && 1283 getContext().pImpl->InstructionMetadata.count(this) && 1284 "Shouldn't have called this"); 1285 const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second; 1286 assert(!Info.empty() && "Shouldn't have called this"); 1287 Info.getAll(Result); 1288 } 1289 1290 void Instruction::getAllMetadataOtherThanDebugLocImpl( 1291 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1292 Result.clear(); 1293 assert(hasMetadataHashEntry() && 1294 getContext().pImpl->InstructionMetadata.count(this) && 1295 "Shouldn't have called this"); 1296 const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second; 1297 assert(!Info.empty() && "Shouldn't have called this"); 1298 Info.getAll(Result); 1299 } 1300 1301 bool Instruction::extractProfMetadata(uint64_t &TrueVal, 1302 uint64_t &FalseVal) const { 1303 assert( 1304 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select) && 1305 "Looking for branch weights on something besides branch or select"); 1306 1307 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1308 if (!ProfileData || ProfileData->getNumOperands() != 3) 1309 return false; 1310 1311 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1312 if (!ProfDataName || !ProfDataName->getString().equals("branch_weights")) 1313 return false; 1314 1315 auto *CITrue = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 1316 auto *CIFalse = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 1317 if (!CITrue || !CIFalse) 1318 return false; 1319 1320 TrueVal = CITrue->getValue().getZExtValue(); 1321 FalseVal = CIFalse->getValue().getZExtValue(); 1322 1323 return true; 1324 } 1325 1326 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) const { 1327 assert((getOpcode() == Instruction::Br || 1328 getOpcode() == Instruction::Select || 1329 getOpcode() == Instruction::Call || 1330 getOpcode() == Instruction::Invoke || 1331 getOpcode() == Instruction::Switch) && 1332 "Looking for branch weights on something besides branch"); 1333 1334 TotalVal = 0; 1335 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1336 if (!ProfileData) 1337 return false; 1338 1339 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1340 if (!ProfDataName) 1341 return false; 1342 1343 if (ProfDataName->getString().equals("branch_weights")) { 1344 TotalVal = 0; 1345 for (unsigned i = 1; i < ProfileData->getNumOperands(); i++) { 1346 auto *V = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i)); 1347 if (!V) 1348 return false; 1349 TotalVal += V->getValue().getZExtValue(); 1350 } 1351 return true; 1352 } else if (ProfDataName->getString().equals("VP") && 1353 ProfileData->getNumOperands() > 3) { 1354 TotalVal = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)) 1355 ->getValue() 1356 .getZExtValue(); 1357 return true; 1358 } 1359 return false; 1360 } 1361 1362 void Instruction::clearMetadataHashEntries() { 1363 assert(hasMetadataHashEntry() && "Caller should check"); 1364 getContext().pImpl->InstructionMetadata.erase(this); 1365 setHasMetadataHashEntry(false); 1366 } 1367 1368 void GlobalObject::getMetadata(unsigned KindID, 1369 SmallVectorImpl<MDNode *> &MDs) const { 1370 if (hasMetadata()) 1371 getContext().pImpl->GlobalObjectMetadata[this].get(KindID, MDs); 1372 } 1373 1374 void GlobalObject::getMetadata(StringRef Kind, 1375 SmallVectorImpl<MDNode *> &MDs) const { 1376 if (hasMetadata()) 1377 getMetadata(getContext().getMDKindID(Kind), MDs); 1378 } 1379 1380 void GlobalObject::addMetadata(unsigned KindID, MDNode &MD) { 1381 if (!hasMetadata()) 1382 setHasMetadataHashEntry(true); 1383 1384 getContext().pImpl->GlobalObjectMetadata[this].insert(KindID, MD); 1385 } 1386 1387 void GlobalObject::addMetadata(StringRef Kind, MDNode &MD) { 1388 addMetadata(getContext().getMDKindID(Kind), MD); 1389 } 1390 1391 void GlobalObject::eraseMetadata(unsigned KindID) { 1392 // Nothing to unset. 1393 if (!hasMetadata()) 1394 return; 1395 1396 auto &Store = getContext().pImpl->GlobalObjectMetadata[this]; 1397 Store.erase(KindID); 1398 if (Store.empty()) 1399 clearMetadata(); 1400 } 1401 1402 void GlobalObject::getAllMetadata( 1403 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { 1404 MDs.clear(); 1405 1406 if (!hasMetadata()) 1407 return; 1408 1409 getContext().pImpl->GlobalObjectMetadata[this].getAll(MDs); 1410 } 1411 1412 void GlobalObject::clearMetadata() { 1413 if (!hasMetadata()) 1414 return; 1415 getContext().pImpl->GlobalObjectMetadata.erase(this); 1416 setHasMetadataHashEntry(false); 1417 } 1418 1419 void GlobalObject::setMetadata(unsigned KindID, MDNode *N) { 1420 eraseMetadata(KindID); 1421 if (N) 1422 addMetadata(KindID, *N); 1423 } 1424 1425 void GlobalObject::setMetadata(StringRef Kind, MDNode *N) { 1426 setMetadata(getContext().getMDKindID(Kind), N); 1427 } 1428 1429 MDNode *GlobalObject::getMetadata(unsigned KindID) const { 1430 SmallVector<MDNode *, 1> MDs; 1431 getMetadata(KindID, MDs); 1432 assert(MDs.size() <= 1 && "Expected at most one metadata attachment"); 1433 if (MDs.empty()) 1434 return nullptr; 1435 return MDs[0]; 1436 } 1437 1438 MDNode *GlobalObject::getMetadata(StringRef Kind) const { 1439 return getMetadata(getContext().getMDKindID(Kind)); 1440 } 1441 1442 void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) { 1443 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 1444 Other->getAllMetadata(MDs); 1445 for (auto &MD : MDs) { 1446 // We need to adjust the type metadata offset. 1447 if (Offset != 0 && MD.first == LLVMContext::MD_type) { 1448 auto *OffsetConst = cast<ConstantInt>( 1449 cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue()); 1450 Metadata *TypeId = MD.second->getOperand(1); 1451 auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get( 1452 OffsetConst->getType(), OffsetConst->getValue() + Offset)); 1453 addMetadata(LLVMContext::MD_type, 1454 *MDNode::get(getContext(), {NewOffsetMD, TypeId})); 1455 continue; 1456 } 1457 // If an offset adjustment was specified we need to modify the DIExpression 1458 // to prepend the adjustment: 1459 // !DIExpression(DW_OP_plus, Offset, [original expr]) 1460 auto *Attachment = MD.second; 1461 if (Offset != 0 && MD.first == LLVMContext::MD_dbg) { 1462 DIGlobalVariable *GV = dyn_cast<DIGlobalVariable>(Attachment); 1463 DIExpression *E = nullptr; 1464 if (!GV) { 1465 auto *GVE = cast<DIGlobalVariableExpression>(Attachment); 1466 GV = GVE->getVariable(); 1467 E = GVE->getExpression(); 1468 } 1469 ArrayRef<uint64_t> OrigElements; 1470 if (E) 1471 OrigElements = E->getElements(); 1472 std::vector<uint64_t> Elements(OrigElements.size() + 2); 1473 Elements[0] = dwarf::DW_OP_plus; 1474 Elements[1] = Offset; 1475 std::copy(OrigElements.begin(), OrigElements.end(), Elements.begin() + 2); 1476 E = DIExpression::get(getContext(), Elements); 1477 Attachment = DIGlobalVariableExpression::get(getContext(), GV, E); 1478 } 1479 addMetadata(MD.first, *Attachment); 1480 } 1481 } 1482 1483 void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) { 1484 addMetadata( 1485 LLVMContext::MD_type, 1486 *MDTuple::get(getContext(), 1487 {ConstantAsMetadata::get(llvm::ConstantInt::get( 1488 Type::getInt64Ty(getContext()), Offset)), 1489 TypeID})); 1490 } 1491 1492 void Function::setSubprogram(DISubprogram *SP) { 1493 setMetadata(LLVMContext::MD_dbg, SP); 1494 } 1495 1496 DISubprogram *Function::getSubprogram() const { 1497 return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg)); 1498 } 1499 1500 bool Function::isDebugInfoForProfiling() const { 1501 if (DISubprogram *SP = getSubprogram()) { 1502 if (DICompileUnit *CU = SP->getUnit()) { 1503 return CU->getDebugInfoForProfiling(); 1504 } 1505 } 1506 return false; 1507 } 1508 1509 void GlobalVariable::addDebugInfo(DIGlobalVariableExpression *GV) { 1510 addMetadata(LLVMContext::MD_dbg, *GV); 1511 } 1512 1513 void GlobalVariable::getDebugInfo( 1514 SmallVectorImpl<DIGlobalVariableExpression *> &GVs) const { 1515 SmallVector<MDNode *, 1> MDs; 1516 getMetadata(LLVMContext::MD_dbg, MDs); 1517 for (MDNode *MD : MDs) 1518 GVs.push_back(cast<DIGlobalVariableExpression>(MD)); 1519 } 1520