1 //===- Metadata.cpp - Implement Metadata classes --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Metadata classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Metadata.h" 14 #include "LLVMContextImpl.h" 15 #include "MetadataImpl.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/IR/Argument.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/ConstantRange.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DebugInfoMetadata.h" 35 #include "llvm/IR/DebugLoc.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GlobalObject.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/TrackingMDRef.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/IR/Value.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/MathExtras.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstddef> 52 #include <cstdint> 53 #include <type_traits> 54 #include <utility> 55 #include <vector> 56 57 using namespace llvm; 58 59 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD) 60 : Value(Ty, MetadataAsValueVal), MD(MD) { 61 track(); 62 } 63 64 MetadataAsValue::~MetadataAsValue() { 65 getType()->getContext().pImpl->MetadataAsValues.erase(MD); 66 untrack(); 67 } 68 69 /// Canonicalize metadata arguments to intrinsics. 70 /// 71 /// To support bitcode upgrades (and assembly semantic sugar) for \a 72 /// MetadataAsValue, we need to canonicalize certain metadata. 73 /// 74 /// - nullptr is replaced by an empty MDNode. 75 /// - An MDNode with a single null operand is replaced by an empty MDNode. 76 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped. 77 /// 78 /// This maintains readability of bitcode from when metadata was a type of 79 /// value, and these bridges were unnecessary. 80 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context, 81 Metadata *MD) { 82 if (!MD) 83 // !{} 84 return MDNode::get(Context, None); 85 86 // Return early if this isn't a single-operand MDNode. 87 auto *N = dyn_cast<MDNode>(MD); 88 if (!N || N->getNumOperands() != 1) 89 return MD; 90 91 if (!N->getOperand(0)) 92 // !{} 93 return MDNode::get(Context, None); 94 95 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0))) 96 // Look through the MDNode. 97 return C; 98 99 return MD; 100 } 101 102 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) { 103 MD = canonicalizeMetadataForValue(Context, MD); 104 auto *&Entry = Context.pImpl->MetadataAsValues[MD]; 105 if (!Entry) 106 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD); 107 return Entry; 108 } 109 110 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context, 111 Metadata *MD) { 112 MD = canonicalizeMetadataForValue(Context, MD); 113 auto &Store = Context.pImpl->MetadataAsValues; 114 return Store.lookup(MD); 115 } 116 117 void MetadataAsValue::handleChangedMetadata(Metadata *MD) { 118 LLVMContext &Context = getContext(); 119 MD = canonicalizeMetadataForValue(Context, MD); 120 auto &Store = Context.pImpl->MetadataAsValues; 121 122 // Stop tracking the old metadata. 123 Store.erase(this->MD); 124 untrack(); 125 this->MD = nullptr; 126 127 // Start tracking MD, or RAUW if necessary. 128 auto *&Entry = Store[MD]; 129 if (Entry) { 130 replaceAllUsesWith(Entry); 131 delete this; 132 return; 133 } 134 135 this->MD = MD; 136 track(); 137 Entry = this; 138 } 139 140 void MetadataAsValue::track() { 141 if (MD) 142 MetadataTracking::track(&MD, *MD, *this); 143 } 144 145 void MetadataAsValue::untrack() { 146 if (MD) 147 MetadataTracking::untrack(MD); 148 } 149 150 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) { 151 assert(Ref && "Expected live reference"); 152 assert((Owner || *static_cast<Metadata **>(Ref) == &MD) && 153 "Reference without owner must be direct"); 154 if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) { 155 R->addRef(Ref, Owner); 156 return true; 157 } 158 if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) { 159 assert(!PH->Use && "Placeholders can only be used once"); 160 assert(!Owner && "Unexpected callback to owner"); 161 PH->Use = static_cast<Metadata **>(Ref); 162 return true; 163 } 164 return false; 165 } 166 167 void MetadataTracking::untrack(void *Ref, Metadata &MD) { 168 assert(Ref && "Expected live reference"); 169 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) 170 R->dropRef(Ref); 171 else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) 172 PH->Use = nullptr; 173 } 174 175 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) { 176 assert(Ref && "Expected live reference"); 177 assert(New && "Expected live reference"); 178 assert(Ref != New && "Expected change"); 179 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) { 180 R->moveRef(Ref, New, MD); 181 return true; 182 } 183 assert(!isa<DistinctMDOperandPlaceholder>(MD) && 184 "Unexpected move of an MDOperand"); 185 assert(!isReplaceable(MD) && 186 "Expected un-replaceable metadata, since we didn't move a reference"); 187 return false; 188 } 189 190 bool MetadataTracking::isReplaceable(const Metadata &MD) { 191 return ReplaceableMetadataImpl::isReplaceable(MD); 192 } 193 194 SmallVector<Metadata *> ReplaceableMetadataImpl::getAllArgListUsers() { 195 SmallVector<std::pair<OwnerTy, uint64_t> *> MDUsersWithID; 196 for (auto Pair : UseMap) { 197 OwnerTy Owner = Pair.second.first; 198 if (!Owner.is<Metadata *>()) 199 continue; 200 Metadata *OwnerMD = Owner.get<Metadata *>(); 201 if (OwnerMD->getMetadataID() == Metadata::DIArgListKind) 202 MDUsersWithID.push_back(&UseMap[Pair.first]); 203 } 204 llvm::sort(MDUsersWithID, [](auto UserA, auto UserB) { 205 return UserA->second < UserB->second; 206 }); 207 SmallVector<Metadata *> MDUsers; 208 for (auto UserWithID : MDUsersWithID) 209 MDUsers.push_back(UserWithID->first.get<Metadata *>()); 210 return MDUsers; 211 } 212 213 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) { 214 bool WasInserted = 215 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex))) 216 .second; 217 (void)WasInserted; 218 assert(WasInserted && "Expected to add a reference"); 219 220 ++NextIndex; 221 assert(NextIndex != 0 && "Unexpected overflow"); 222 } 223 224 void ReplaceableMetadataImpl::dropRef(void *Ref) { 225 bool WasErased = UseMap.erase(Ref); 226 (void)WasErased; 227 assert(WasErased && "Expected to drop a reference"); 228 } 229 230 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New, 231 const Metadata &MD) { 232 auto I = UseMap.find(Ref); 233 assert(I != UseMap.end() && "Expected to move a reference"); 234 auto OwnerAndIndex = I->second; 235 UseMap.erase(I); 236 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second; 237 (void)WasInserted; 238 assert(WasInserted && "Expected to add a reference"); 239 240 // Check that the references are direct if there's no owner. 241 (void)MD; 242 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) && 243 "Reference without owner must be direct"); 244 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) && 245 "Reference without owner must be direct"); 246 } 247 248 void ReplaceableMetadataImpl::SalvageDebugInfo(const Constant &C) { 249 if (!C.isUsedByMetadata()) { 250 return; 251 } 252 253 LLVMContext &Context = C.getType()->getContext(); 254 auto &Store = Context.pImpl->ValuesAsMetadata; 255 auto I = Store.find(&C); 256 ValueAsMetadata *MD = I->second; 257 using UseTy = 258 std::pair<void *, std::pair<MetadataTracking::OwnerTy, uint64_t>>; 259 // Copy out uses and update value of Constant used by debug info metadata with undef below 260 SmallVector<UseTy, 8> Uses(MD->UseMap.begin(), MD->UseMap.end()); 261 262 for (const auto &Pair : Uses) { 263 MetadataTracking::OwnerTy Owner = Pair.second.first; 264 if (!Owner) 265 continue; 266 if (!Owner.is<Metadata *>()) 267 continue; 268 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>()); 269 if (!OwnerMD) 270 continue; 271 if (isa<DINode>(OwnerMD)) { 272 OwnerMD->handleChangedOperand( 273 Pair.first, ValueAsMetadata::get(UndefValue::get(C.getType()))); 274 } 275 } 276 } 277 278 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) { 279 if (UseMap.empty()) 280 return; 281 282 // Copy out uses since UseMap will get touched below. 283 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>; 284 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 285 llvm::sort(Uses, llvm::less_second()); 286 for (const auto &Pair : Uses) { 287 // Check that this Ref hasn't disappeared after RAUW (when updating a 288 // previous Ref). 289 if (!UseMap.count(Pair.first)) 290 continue; 291 292 OwnerTy Owner = Pair.second.first; 293 if (!Owner) { 294 // Update unowned tracking references directly. 295 Metadata *&Ref = *static_cast<Metadata **>(Pair.first); 296 Ref = MD; 297 if (MD) 298 MetadataTracking::track(Ref); 299 UseMap.erase(Pair.first); 300 continue; 301 } 302 303 // Check for MetadataAsValue. 304 if (Owner.is<MetadataAsValue *>()) { 305 Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD); 306 continue; 307 } 308 309 // There's a Metadata owner -- dispatch. 310 Metadata *OwnerMD = Owner.get<Metadata *>(); 311 switch (OwnerMD->getMetadataID()) { 312 #define HANDLE_METADATA_LEAF(CLASS) \ 313 case Metadata::CLASS##Kind: \ 314 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \ 315 continue; 316 #include "llvm/IR/Metadata.def" 317 default: 318 llvm_unreachable("Invalid metadata subclass"); 319 } 320 } 321 assert(UseMap.empty() && "Expected all uses to be replaced"); 322 } 323 324 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) { 325 if (UseMap.empty()) 326 return; 327 328 if (!ResolveUsers) { 329 UseMap.clear(); 330 return; 331 } 332 333 // Copy out uses since UseMap could get touched below. 334 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>; 335 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 336 llvm::sort(Uses, [](const UseTy &L, const UseTy &R) { 337 return L.second.second < R.second.second; 338 }); 339 UseMap.clear(); 340 for (const auto &Pair : Uses) { 341 auto Owner = Pair.second.first; 342 if (!Owner) 343 continue; 344 if (Owner.is<MetadataAsValue *>()) 345 continue; 346 347 // Resolve MDNodes that point at this. 348 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>()); 349 if (!OwnerMD) 350 continue; 351 if (OwnerMD->isResolved()) 352 continue; 353 OwnerMD->decrementUnresolvedOperandCount(); 354 } 355 } 356 357 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) { 358 if (auto *N = dyn_cast<MDNode>(&MD)) 359 return N->isResolved() ? nullptr : N->Context.getOrCreateReplaceableUses(); 360 return dyn_cast<ValueAsMetadata>(&MD); 361 } 362 363 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) { 364 if (auto *N = dyn_cast<MDNode>(&MD)) 365 return N->isResolved() ? nullptr : N->Context.getReplaceableUses(); 366 return dyn_cast<ValueAsMetadata>(&MD); 367 } 368 369 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) { 370 if (auto *N = dyn_cast<MDNode>(&MD)) 371 return !N->isResolved(); 372 return isa<ValueAsMetadata>(&MD); 373 } 374 375 static DISubprogram *getLocalFunctionMetadata(Value *V) { 376 assert(V && "Expected value"); 377 if (auto *A = dyn_cast<Argument>(V)) { 378 if (auto *Fn = A->getParent()) 379 return Fn->getSubprogram(); 380 return nullptr; 381 } 382 383 if (BasicBlock *BB = cast<Instruction>(V)->getParent()) { 384 if (auto *Fn = BB->getParent()) 385 return Fn->getSubprogram(); 386 return nullptr; 387 } 388 389 return nullptr; 390 } 391 392 ValueAsMetadata *ValueAsMetadata::get(Value *V) { 393 assert(V && "Unexpected null Value"); 394 395 auto &Context = V->getContext(); 396 auto *&Entry = Context.pImpl->ValuesAsMetadata[V]; 397 if (!Entry) { 398 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) && 399 "Expected constant or function-local value"); 400 assert(!V->IsUsedByMD && "Expected this to be the only metadata use"); 401 V->IsUsedByMD = true; 402 if (auto *C = dyn_cast<Constant>(V)) 403 Entry = new ConstantAsMetadata(C); 404 else 405 Entry = new LocalAsMetadata(V); 406 } 407 408 return Entry; 409 } 410 411 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) { 412 assert(V && "Unexpected null Value"); 413 return V->getContext().pImpl->ValuesAsMetadata.lookup(V); 414 } 415 416 void ValueAsMetadata::handleDeletion(Value *V) { 417 assert(V && "Expected valid value"); 418 419 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata; 420 auto I = Store.find(V); 421 if (I == Store.end()) 422 return; 423 424 // Remove old entry from the map. 425 ValueAsMetadata *MD = I->second; 426 assert(MD && "Expected valid metadata"); 427 assert(MD->getValue() == V && "Expected valid mapping"); 428 Store.erase(I); 429 430 // Delete the metadata. 431 MD->replaceAllUsesWith(nullptr); 432 delete MD; 433 } 434 435 void ValueAsMetadata::handleRAUW(Value *From, Value *To) { 436 assert(From && "Expected valid value"); 437 assert(To && "Expected valid value"); 438 assert(From != To && "Expected changed value"); 439 assert(From->getType() == To->getType() && "Unexpected type change"); 440 441 LLVMContext &Context = From->getType()->getContext(); 442 auto &Store = Context.pImpl->ValuesAsMetadata; 443 auto I = Store.find(From); 444 if (I == Store.end()) { 445 assert(!From->IsUsedByMD && "Expected From not to be used by metadata"); 446 return; 447 } 448 449 // Remove old entry from the map. 450 assert(From->IsUsedByMD && "Expected From to be used by metadata"); 451 From->IsUsedByMD = false; 452 ValueAsMetadata *MD = I->second; 453 assert(MD && "Expected valid metadata"); 454 assert(MD->getValue() == From && "Expected valid mapping"); 455 Store.erase(I); 456 457 if (isa<LocalAsMetadata>(MD)) { 458 if (auto *C = dyn_cast<Constant>(To)) { 459 // Local became a constant. 460 MD->replaceAllUsesWith(ConstantAsMetadata::get(C)); 461 delete MD; 462 return; 463 } 464 if (getLocalFunctionMetadata(From) && getLocalFunctionMetadata(To) && 465 getLocalFunctionMetadata(From) != getLocalFunctionMetadata(To)) { 466 // DISubprogram changed. 467 MD->replaceAllUsesWith(nullptr); 468 delete MD; 469 return; 470 } 471 } else if (!isa<Constant>(To)) { 472 // Changed to function-local value. 473 MD->replaceAllUsesWith(nullptr); 474 delete MD; 475 return; 476 } 477 478 auto *&Entry = Store[To]; 479 if (Entry) { 480 // The target already exists. 481 MD->replaceAllUsesWith(Entry); 482 delete MD; 483 return; 484 } 485 486 // Update MD in place (and update the map entry). 487 assert(!To->IsUsedByMD && "Expected this to be the only metadata use"); 488 To->IsUsedByMD = true; 489 MD->V = To; 490 Entry = MD; 491 } 492 493 //===----------------------------------------------------------------------===// 494 // MDString implementation. 495 // 496 497 MDString *MDString::get(LLVMContext &Context, StringRef Str) { 498 auto &Store = Context.pImpl->MDStringCache; 499 auto I = Store.try_emplace(Str); 500 auto &MapEntry = I.first->getValue(); 501 if (!I.second) 502 return &MapEntry; 503 MapEntry.Entry = &*I.first; 504 return &MapEntry; 505 } 506 507 StringRef MDString::getString() const { 508 assert(Entry && "Expected to find string map entry"); 509 return Entry->first(); 510 } 511 512 //===----------------------------------------------------------------------===// 513 // MDNode implementation. 514 // 515 516 // Assert that the MDNode types will not be unaligned by the objects 517 // prepended to them. 518 #define HANDLE_MDNODE_LEAF(CLASS) \ 519 static_assert( \ 520 alignof(uint64_t) >= alignof(CLASS), \ 521 "Alignment is insufficient after objects prepended to " #CLASS); 522 #include "llvm/IR/Metadata.def" 523 524 void *MDNode::operator new(size_t Size, size_t NumOps, StorageType Storage) { 525 // uint64_t is the most aligned type we need support (ensured by static_assert 526 // above) 527 size_t AllocSize = 528 alignTo(Header::getAllocSize(Storage, NumOps), alignof(uint64_t)); 529 char *Mem = reinterpret_cast<char *>(::operator new(AllocSize + Size)); 530 Header *H = new (Mem + AllocSize - sizeof(Header)) Header(NumOps, Storage); 531 return reinterpret_cast<void *>(H + 1); 532 } 533 534 void MDNode::operator delete(void *N) { 535 Header *H = reinterpret_cast<Header *>(N) - 1; 536 void *Mem = H->getAllocation(); 537 H->~Header(); 538 ::operator delete(Mem); 539 } 540 541 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage, 542 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2) 543 : Metadata(ID, Storage), Context(Context) { 544 unsigned Op = 0; 545 for (Metadata *MD : Ops1) 546 setOperand(Op++, MD); 547 for (Metadata *MD : Ops2) 548 setOperand(Op++, MD); 549 550 if (!isUniqued()) 551 return; 552 553 // Count the unresolved operands. If there are any, RAUW support will be 554 // added lazily on first reference. 555 countUnresolvedOperands(); 556 } 557 558 TempMDNode MDNode::clone() const { 559 switch (getMetadataID()) { 560 default: 561 llvm_unreachable("Invalid MDNode subclass"); 562 #define HANDLE_MDNODE_LEAF(CLASS) \ 563 case CLASS##Kind: \ 564 return cast<CLASS>(this)->cloneImpl(); 565 #include "llvm/IR/Metadata.def" 566 } 567 } 568 569 MDNode::Header::Header(size_t NumOps, StorageType Storage) { 570 IsLarge = isLarge(NumOps); 571 IsResizable = isResizable(Storage); 572 SmallSize = getSmallSize(NumOps, IsResizable, IsLarge); 573 if (IsLarge) { 574 SmallNumOps = 0; 575 new (getLargePtr()) LargeStorageVector(); 576 getLarge().resize(NumOps); 577 return; 578 } 579 SmallNumOps = NumOps; 580 MDOperand *O = reinterpret_cast<MDOperand *>(this) - SmallSize; 581 for (MDOperand *E = O + SmallSize; O != E;) 582 (void)new (O++) MDOperand(); 583 } 584 585 MDNode::Header::~Header() { 586 if (IsLarge) { 587 getLarge().~LargeStorageVector(); 588 return; 589 } 590 MDOperand *O = reinterpret_cast<MDOperand *>(this); 591 for (MDOperand *E = O - SmallSize; O != E; --O) 592 (void)(O - 1)->~MDOperand(); 593 } 594 595 void *MDNode::Header::getLargePtr() const { 596 static_assert(alignof(LargeStorageVector) <= alignof(Header), 597 "LargeStorageVector too strongly aligned"); 598 return reinterpret_cast<char *>(const_cast<Header *>(this)) - 599 sizeof(LargeStorageVector); 600 } 601 602 void *MDNode::Header::getSmallPtr() { 603 static_assert(alignof(MDOperand) <= alignof(Header), 604 "MDOperand too strongly aligned"); 605 return reinterpret_cast<char *>(const_cast<Header *>(this)) - 606 sizeof(MDOperand) * SmallSize; 607 } 608 609 void MDNode::Header::resize(size_t NumOps) { 610 assert(IsResizable && "Node is not resizable"); 611 if (operands().size() == NumOps) 612 return; 613 614 if (IsLarge) 615 getLarge().resize(NumOps); 616 else if (NumOps <= SmallSize) 617 resizeSmall(NumOps); 618 else 619 resizeSmallToLarge(NumOps); 620 } 621 622 void MDNode::Header::resizeSmall(size_t NumOps) { 623 assert(!IsLarge && "Expected a small MDNode"); 624 assert(NumOps <= SmallSize && "NumOps too large for small resize"); 625 626 MutableArrayRef<MDOperand> ExistingOps = operands(); 627 assert(NumOps != ExistingOps.size() && "Expected a different size"); 628 629 int NumNew = (int)NumOps - (int)ExistingOps.size(); 630 MDOperand *O = ExistingOps.end(); 631 for (int I = 0, E = NumNew; I < E; ++I) 632 (O++)->reset(); 633 for (int I = 0, E = NumNew; I > E; --I) 634 (--O)->reset(); 635 SmallNumOps = NumOps; 636 assert(O == operands().end() && "Operands not (un)initialized until the end"); 637 } 638 639 void MDNode::Header::resizeSmallToLarge(size_t NumOps) { 640 assert(!IsLarge && "Expected a small MDNode"); 641 assert(NumOps > SmallSize && "Expected NumOps to be larger than allocation"); 642 LargeStorageVector NewOps; 643 NewOps.resize(NumOps); 644 llvm::move(operands(), NewOps.begin()); 645 resizeSmall(0); 646 new (getLargePtr()) LargeStorageVector(std::move(NewOps)); 647 IsLarge = true; 648 } 649 650 static bool isOperandUnresolved(Metadata *Op) { 651 if (auto *N = dyn_cast_or_null<MDNode>(Op)) 652 return !N->isResolved(); 653 return false; 654 } 655 656 void MDNode::countUnresolvedOperands() { 657 assert(getNumUnresolved() == 0 && "Expected unresolved ops to be uncounted"); 658 assert(isUniqued() && "Expected this to be uniqued"); 659 setNumUnresolved(count_if(operands(), isOperandUnresolved)); 660 } 661 662 void MDNode::makeUniqued() { 663 assert(isTemporary() && "Expected this to be temporary"); 664 assert(!isResolved() && "Expected this to be unresolved"); 665 666 // Enable uniquing callbacks. 667 for (auto &Op : mutable_operands()) 668 Op.reset(Op.get(), this); 669 670 // Make this 'uniqued'. 671 Storage = Uniqued; 672 countUnresolvedOperands(); 673 if (!getNumUnresolved()) { 674 dropReplaceableUses(); 675 assert(isResolved() && "Expected this to be resolved"); 676 } 677 678 assert(isUniqued() && "Expected this to be uniqued"); 679 } 680 681 void MDNode::makeDistinct() { 682 assert(isTemporary() && "Expected this to be temporary"); 683 assert(!isResolved() && "Expected this to be unresolved"); 684 685 // Drop RAUW support and store as a distinct node. 686 dropReplaceableUses(); 687 storeDistinctInContext(); 688 689 assert(isDistinct() && "Expected this to be distinct"); 690 assert(isResolved() && "Expected this to be resolved"); 691 } 692 693 void MDNode::resolve() { 694 assert(isUniqued() && "Expected this to be uniqued"); 695 assert(!isResolved() && "Expected this to be unresolved"); 696 697 setNumUnresolved(0); 698 dropReplaceableUses(); 699 700 assert(isResolved() && "Expected this to be resolved"); 701 } 702 703 void MDNode::dropReplaceableUses() { 704 assert(!getNumUnresolved() && "Unexpected unresolved operand"); 705 706 // Drop any RAUW support. 707 if (Context.hasReplaceableUses()) 708 Context.takeReplaceableUses()->resolveAllUses(); 709 } 710 711 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) { 712 assert(isUniqued() && "Expected this to be uniqued"); 713 assert(getNumUnresolved() != 0 && "Expected unresolved operands"); 714 715 // Check if an operand was resolved. 716 if (!isOperandUnresolved(Old)) { 717 if (isOperandUnresolved(New)) 718 // An operand was un-resolved! 719 setNumUnresolved(getNumUnresolved() + 1); 720 } else if (!isOperandUnresolved(New)) 721 decrementUnresolvedOperandCount(); 722 } 723 724 void MDNode::decrementUnresolvedOperandCount() { 725 assert(!isResolved() && "Expected this to be unresolved"); 726 if (isTemporary()) 727 return; 728 729 assert(isUniqued() && "Expected this to be uniqued"); 730 setNumUnresolved(getNumUnresolved() - 1); 731 if (getNumUnresolved()) 732 return; 733 734 // Last unresolved operand has just been resolved. 735 dropReplaceableUses(); 736 assert(isResolved() && "Expected this to become resolved"); 737 } 738 739 void MDNode::resolveCycles() { 740 if (isResolved()) 741 return; 742 743 // Resolve this node immediately. 744 resolve(); 745 746 // Resolve all operands. 747 for (const auto &Op : operands()) { 748 auto *N = dyn_cast_or_null<MDNode>(Op); 749 if (!N) 750 continue; 751 752 assert(!N->isTemporary() && 753 "Expected all forward declarations to be resolved"); 754 if (!N->isResolved()) 755 N->resolveCycles(); 756 } 757 } 758 759 static bool hasSelfReference(MDNode *N) { 760 return llvm::is_contained(N->operands(), N); 761 } 762 763 MDNode *MDNode::replaceWithPermanentImpl() { 764 switch (getMetadataID()) { 765 default: 766 // If this type isn't uniquable, replace with a distinct node. 767 return replaceWithDistinctImpl(); 768 769 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 770 case CLASS##Kind: \ 771 break; 772 #include "llvm/IR/Metadata.def" 773 } 774 775 // Even if this type is uniquable, self-references have to be distinct. 776 if (hasSelfReference(this)) 777 return replaceWithDistinctImpl(); 778 return replaceWithUniquedImpl(); 779 } 780 781 MDNode *MDNode::replaceWithUniquedImpl() { 782 // Try to uniquify in place. 783 MDNode *UniquedNode = uniquify(); 784 785 if (UniquedNode == this) { 786 makeUniqued(); 787 return this; 788 } 789 790 // Collision, so RAUW instead. 791 replaceAllUsesWith(UniquedNode); 792 deleteAsSubclass(); 793 return UniquedNode; 794 } 795 796 MDNode *MDNode::replaceWithDistinctImpl() { 797 makeDistinct(); 798 return this; 799 } 800 801 void MDTuple::recalculateHash() { 802 setHash(MDTupleInfo::KeyTy::calculateHash(this)); 803 } 804 805 void MDNode::dropAllReferences() { 806 for (unsigned I = 0, E = getNumOperands(); I != E; ++I) 807 setOperand(I, nullptr); 808 if (Context.hasReplaceableUses()) { 809 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false); 810 (void)Context.takeReplaceableUses(); 811 } 812 } 813 814 void MDNode::handleChangedOperand(void *Ref, Metadata *New) { 815 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin(); 816 assert(Op < getNumOperands() && "Expected valid operand"); 817 818 if (!isUniqued()) { 819 // This node is not uniqued. Just set the operand and be done with it. 820 setOperand(Op, New); 821 return; 822 } 823 824 // This node is uniqued. 825 eraseFromStore(); 826 827 Metadata *Old = getOperand(Op); 828 setOperand(Op, New); 829 830 // Drop uniquing for self-reference cycles and deleted constants. 831 if (New == this || (!New && Old && isa<ConstantAsMetadata>(Old))) { 832 if (!isResolved()) 833 resolve(); 834 storeDistinctInContext(); 835 return; 836 } 837 838 // Re-unique the node. 839 auto *Uniqued = uniquify(); 840 if (Uniqued == this) { 841 if (!isResolved()) 842 resolveAfterOperandChange(Old, New); 843 return; 844 } 845 846 // Collision. 847 if (!isResolved()) { 848 // Still unresolved, so RAUW. 849 // 850 // First, clear out all operands to prevent any recursion (similar to 851 // dropAllReferences(), but we still need the use-list). 852 for (unsigned O = 0, E = getNumOperands(); O != E; ++O) 853 setOperand(O, nullptr); 854 if (Context.hasReplaceableUses()) 855 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued); 856 deleteAsSubclass(); 857 return; 858 } 859 860 // Store in non-uniqued form if RAUW isn't possible. 861 storeDistinctInContext(); 862 } 863 864 void MDNode::deleteAsSubclass() { 865 switch (getMetadataID()) { 866 default: 867 llvm_unreachable("Invalid subclass of MDNode"); 868 #define HANDLE_MDNODE_LEAF(CLASS) \ 869 case CLASS##Kind: \ 870 delete cast<CLASS>(this); \ 871 break; 872 #include "llvm/IR/Metadata.def" 873 } 874 } 875 876 template <class T, class InfoT> 877 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) { 878 if (T *U = getUniqued(Store, N)) 879 return U; 880 881 Store.insert(N); 882 return N; 883 } 884 885 template <class NodeTy> struct MDNode::HasCachedHash { 886 using Yes = char[1]; 887 using No = char[2]; 888 template <class U, U Val> struct SFINAE {}; 889 890 template <class U> 891 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *); 892 template <class U> static No &check(...); 893 894 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes); 895 }; 896 897 MDNode *MDNode::uniquify() { 898 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node"); 899 900 // Try to insert into uniquing store. 901 switch (getMetadataID()) { 902 default: 903 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 904 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 905 case CLASS##Kind: { \ 906 CLASS *SubclassThis = cast<CLASS>(this); \ 907 std::integral_constant<bool, HasCachedHash<CLASS>::value> \ 908 ShouldRecalculateHash; \ 909 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \ 910 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \ 911 } 912 #include "llvm/IR/Metadata.def" 913 } 914 } 915 916 void MDNode::eraseFromStore() { 917 switch (getMetadataID()) { 918 default: 919 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 920 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 921 case CLASS##Kind: \ 922 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \ 923 break; 924 #include "llvm/IR/Metadata.def" 925 } 926 } 927 928 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs, 929 StorageType Storage, bool ShouldCreate) { 930 unsigned Hash = 0; 931 if (Storage == Uniqued) { 932 MDTupleInfo::KeyTy Key(MDs); 933 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key)) 934 return N; 935 if (!ShouldCreate) 936 return nullptr; 937 Hash = Key.getHash(); 938 } else { 939 assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); 940 } 941 942 return storeImpl(new (MDs.size(), Storage) 943 MDTuple(Context, Storage, Hash, MDs), 944 Storage, Context.pImpl->MDTuples); 945 } 946 947 void MDNode::deleteTemporary(MDNode *N) { 948 assert(N->isTemporary() && "Expected temporary node"); 949 N->replaceAllUsesWith(nullptr); 950 N->deleteAsSubclass(); 951 } 952 953 void MDNode::storeDistinctInContext() { 954 assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses"); 955 assert(!getNumUnresolved() && "Unexpected unresolved nodes"); 956 Storage = Distinct; 957 assert(isResolved() && "Expected this to be resolved"); 958 959 // Reset the hash. 960 switch (getMetadataID()) { 961 default: 962 llvm_unreachable("Invalid subclass of MDNode"); 963 #define HANDLE_MDNODE_LEAF(CLASS) \ 964 case CLASS##Kind: { \ 965 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \ 966 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \ 967 break; \ 968 } 969 #include "llvm/IR/Metadata.def" 970 } 971 972 getContext().pImpl->DistinctMDNodes.push_back(this); 973 } 974 975 void MDNode::replaceOperandWith(unsigned I, Metadata *New) { 976 if (getOperand(I) == New) 977 return; 978 979 if (!isUniqued()) { 980 setOperand(I, New); 981 return; 982 } 983 984 handleChangedOperand(mutable_begin() + I, New); 985 } 986 987 void MDNode::setOperand(unsigned I, Metadata *New) { 988 assert(I < getNumOperands()); 989 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr); 990 } 991 992 /// Get a node or a self-reference that looks like it. 993 /// 994 /// Special handling for finding self-references, for use by \a 995 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from 996 /// when self-referencing nodes were still uniqued. If the first operand has 997 /// the same operands as \c Ops, return the first operand instead. 998 static MDNode *getOrSelfReference(LLVMContext &Context, 999 ArrayRef<Metadata *> Ops) { 1000 if (!Ops.empty()) 1001 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0])) 1002 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) { 1003 for (unsigned I = 1, E = Ops.size(); I != E; ++I) 1004 if (Ops[I] != N->getOperand(I)) 1005 return MDNode::get(Context, Ops); 1006 return N; 1007 } 1008 1009 return MDNode::get(Context, Ops); 1010 } 1011 1012 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) { 1013 if (!A) 1014 return B; 1015 if (!B) 1016 return A; 1017 1018 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 1019 MDs.insert(B->op_begin(), B->op_end()); 1020 1021 // FIXME: This preserves long-standing behaviour, but is it really the right 1022 // behaviour? Or was that an unintended side-effect of node uniquing? 1023 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 1024 } 1025 1026 MDNode *MDNode::intersect(MDNode *A, MDNode *B) { 1027 if (!A || !B) 1028 return nullptr; 1029 1030 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 1031 SmallPtrSet<Metadata *, 4> BSet(B->op_begin(), B->op_end()); 1032 MDs.remove_if([&](Metadata *MD) { return !BSet.count(MD); }); 1033 1034 // FIXME: This preserves long-standing behaviour, but is it really the right 1035 // behaviour? Or was that an unintended side-effect of node uniquing? 1036 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 1037 } 1038 1039 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) { 1040 if (!A || !B) 1041 return nullptr; 1042 1043 // Take the intersection of domains then union the scopes 1044 // within those domains 1045 SmallPtrSet<const MDNode *, 16> ADomains; 1046 SmallPtrSet<const MDNode *, 16> IntersectDomains; 1047 SmallSetVector<Metadata *, 4> MDs; 1048 for (const MDOperand &MDOp : A->operands()) 1049 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 1050 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 1051 ADomains.insert(Domain); 1052 1053 for (const MDOperand &MDOp : B->operands()) 1054 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 1055 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 1056 if (ADomains.contains(Domain)) { 1057 IntersectDomains.insert(Domain); 1058 MDs.insert(MDOp); 1059 } 1060 1061 for (const MDOperand &MDOp : A->operands()) 1062 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 1063 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 1064 if (IntersectDomains.contains(Domain)) 1065 MDs.insert(MDOp); 1066 1067 return MDs.empty() ? nullptr 1068 : getOrSelfReference(A->getContext(), MDs.getArrayRef()); 1069 } 1070 1071 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) { 1072 if (!A || !B) 1073 return nullptr; 1074 1075 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF(); 1076 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF(); 1077 if (AVal < BVal) 1078 return A; 1079 return B; 1080 } 1081 1082 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 1083 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 1084 } 1085 1086 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) { 1087 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B); 1088 } 1089 1090 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints, 1091 ConstantInt *Low, ConstantInt *High) { 1092 ConstantRange NewRange(Low->getValue(), High->getValue()); 1093 unsigned Size = EndPoints.size(); 1094 APInt LB = EndPoints[Size - 2]->getValue(); 1095 APInt LE = EndPoints[Size - 1]->getValue(); 1096 ConstantRange LastRange(LB, LE); 1097 if (canBeMerged(NewRange, LastRange)) { 1098 ConstantRange Union = LastRange.unionWith(NewRange); 1099 Type *Ty = High->getType(); 1100 EndPoints[Size - 2] = 1101 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower())); 1102 EndPoints[Size - 1] = 1103 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper())); 1104 return true; 1105 } 1106 return false; 1107 } 1108 1109 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints, 1110 ConstantInt *Low, ConstantInt *High) { 1111 if (!EndPoints.empty()) 1112 if (tryMergeRange(EndPoints, Low, High)) 1113 return; 1114 1115 EndPoints.push_back(Low); 1116 EndPoints.push_back(High); 1117 } 1118 1119 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) { 1120 // Given two ranges, we want to compute the union of the ranges. This 1121 // is slightly complicated by having to combine the intervals and merge 1122 // the ones that overlap. 1123 1124 if (!A || !B) 1125 return nullptr; 1126 1127 if (A == B) 1128 return A; 1129 1130 // First, walk both lists in order of the lower boundary of each interval. 1131 // At each step, try to merge the new interval to the last one we adedd. 1132 SmallVector<ConstantInt *, 4> EndPoints; 1133 int AI = 0; 1134 int BI = 0; 1135 int AN = A->getNumOperands() / 2; 1136 int BN = B->getNumOperands() / 2; 1137 while (AI < AN && BI < BN) { 1138 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI)); 1139 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI)); 1140 1141 if (ALow->getValue().slt(BLow->getValue())) { 1142 addRange(EndPoints, ALow, 1143 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 1144 ++AI; 1145 } else { 1146 addRange(EndPoints, BLow, 1147 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 1148 ++BI; 1149 } 1150 } 1151 while (AI < AN) { 1152 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)), 1153 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 1154 ++AI; 1155 } 1156 while (BI < BN) { 1157 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)), 1158 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 1159 ++BI; 1160 } 1161 1162 // If we have more than 2 ranges (4 endpoints) we have to try to merge 1163 // the last and first ones. 1164 unsigned Size = EndPoints.size(); 1165 if (Size > 4) { 1166 ConstantInt *FB = EndPoints[0]; 1167 ConstantInt *FE = EndPoints[1]; 1168 if (tryMergeRange(EndPoints, FB, FE)) { 1169 for (unsigned i = 0; i < Size - 2; ++i) { 1170 EndPoints[i] = EndPoints[i + 2]; 1171 } 1172 EndPoints.resize(Size - 2); 1173 } 1174 } 1175 1176 // If in the end we have a single range, it is possible that it is now the 1177 // full range. Just drop the metadata in that case. 1178 if (EndPoints.size() == 2) { 1179 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue()); 1180 if (Range.isFullSet()) 1181 return nullptr; 1182 } 1183 1184 SmallVector<Metadata *, 4> MDs; 1185 MDs.reserve(EndPoints.size()); 1186 for (auto *I : EndPoints) 1187 MDs.push_back(ConstantAsMetadata::get(I)); 1188 return MDNode::get(A->getContext(), MDs); 1189 } 1190 1191 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) { 1192 if (!A || !B) 1193 return nullptr; 1194 1195 ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0)); 1196 ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0)); 1197 if (AVal->getZExtValue() < BVal->getZExtValue()) 1198 return A; 1199 return B; 1200 } 1201 1202 //===----------------------------------------------------------------------===// 1203 // NamedMDNode implementation. 1204 // 1205 1206 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) { 1207 return *(SmallVector<TrackingMDRef, 4> *)Operands; 1208 } 1209 1210 NamedMDNode::NamedMDNode(const Twine &N) 1211 : Name(N.str()), Operands(new SmallVector<TrackingMDRef, 4>()) {} 1212 1213 NamedMDNode::~NamedMDNode() { 1214 dropAllReferences(); 1215 delete &getNMDOps(Operands); 1216 } 1217 1218 unsigned NamedMDNode::getNumOperands() const { 1219 return (unsigned)getNMDOps(Operands).size(); 1220 } 1221 1222 MDNode *NamedMDNode::getOperand(unsigned i) const { 1223 assert(i < getNumOperands() && "Invalid Operand number!"); 1224 auto *N = getNMDOps(Operands)[i].get(); 1225 return cast_or_null<MDNode>(N); 1226 } 1227 1228 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); } 1229 1230 void NamedMDNode::setOperand(unsigned I, MDNode *New) { 1231 assert(I < getNumOperands() && "Invalid operand number"); 1232 getNMDOps(Operands)[I].reset(New); 1233 } 1234 1235 void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); } 1236 1237 void NamedMDNode::clearOperands() { getNMDOps(Operands).clear(); } 1238 1239 StringRef NamedMDNode::getName() const { return StringRef(Name); } 1240 1241 //===----------------------------------------------------------------------===// 1242 // Instruction Metadata method implementations. 1243 // 1244 1245 MDNode *MDAttachments::lookup(unsigned ID) const { 1246 for (const auto &A : Attachments) 1247 if (A.MDKind == ID) 1248 return A.Node; 1249 return nullptr; 1250 } 1251 1252 void MDAttachments::get(unsigned ID, SmallVectorImpl<MDNode *> &Result) const { 1253 for (const auto &A : Attachments) 1254 if (A.MDKind == ID) 1255 Result.push_back(A.Node); 1256 } 1257 1258 void MDAttachments::getAll( 1259 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1260 for (const auto &A : Attachments) 1261 Result.emplace_back(A.MDKind, A.Node); 1262 1263 // Sort the resulting array so it is stable with respect to metadata IDs. We 1264 // need to preserve the original insertion order though. 1265 if (Result.size() > 1) 1266 llvm::stable_sort(Result, less_first()); 1267 } 1268 1269 void MDAttachments::set(unsigned ID, MDNode *MD) { 1270 erase(ID); 1271 if (MD) 1272 insert(ID, *MD); 1273 } 1274 1275 void MDAttachments::insert(unsigned ID, MDNode &MD) { 1276 Attachments.push_back({ID, TrackingMDNodeRef(&MD)}); 1277 } 1278 1279 bool MDAttachments::erase(unsigned ID) { 1280 if (empty()) 1281 return false; 1282 1283 // Common case is one value. 1284 if (Attachments.size() == 1 && Attachments.back().MDKind == ID) { 1285 Attachments.pop_back(); 1286 return true; 1287 } 1288 1289 auto OldSize = Attachments.size(); 1290 llvm::erase_if(Attachments, 1291 [ID](const Attachment &A) { return A.MDKind == ID; }); 1292 return OldSize != Attachments.size(); 1293 } 1294 1295 MDNode *Value::getMetadata(unsigned KindID) const { 1296 if (!hasMetadata()) 1297 return nullptr; 1298 const auto &Info = getContext().pImpl->ValueMetadata[this]; 1299 assert(!Info.empty() && "bit out of sync with hash table"); 1300 return Info.lookup(KindID); 1301 } 1302 1303 MDNode *Value::getMetadata(StringRef Kind) const { 1304 if (!hasMetadata()) 1305 return nullptr; 1306 const auto &Info = getContext().pImpl->ValueMetadata[this]; 1307 assert(!Info.empty() && "bit out of sync with hash table"); 1308 return Info.lookup(getContext().getMDKindID(Kind)); 1309 } 1310 1311 void Value::getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const { 1312 if (hasMetadata()) 1313 getContext().pImpl->ValueMetadata[this].get(KindID, MDs); 1314 } 1315 1316 void Value::getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const { 1317 if (hasMetadata()) 1318 getMetadata(getContext().getMDKindID(Kind), MDs); 1319 } 1320 1321 void Value::getAllMetadata( 1322 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { 1323 if (hasMetadata()) { 1324 assert(getContext().pImpl->ValueMetadata.count(this) && 1325 "bit out of sync with hash table"); 1326 const auto &Info = getContext().pImpl->ValueMetadata.find(this)->second; 1327 assert(!Info.empty() && "Shouldn't have called this"); 1328 Info.getAll(MDs); 1329 } 1330 } 1331 1332 void Value::setMetadata(unsigned KindID, MDNode *Node) { 1333 assert(isa<Instruction>(this) || isa<GlobalObject>(this)); 1334 1335 // Handle the case when we're adding/updating metadata on a value. 1336 if (Node) { 1337 auto &Info = getContext().pImpl->ValueMetadata[this]; 1338 assert(!Info.empty() == HasMetadata && "bit out of sync with hash table"); 1339 if (Info.empty()) 1340 HasMetadata = true; 1341 Info.set(KindID, Node); 1342 return; 1343 } 1344 1345 // Otherwise, we're removing metadata from an instruction. 1346 assert((HasMetadata == (getContext().pImpl->ValueMetadata.count(this) > 0)) && 1347 "bit out of sync with hash table"); 1348 if (!HasMetadata) 1349 return; // Nothing to remove! 1350 auto &Info = getContext().pImpl->ValueMetadata[this]; 1351 1352 // Handle removal of an existing value. 1353 Info.erase(KindID); 1354 if (!Info.empty()) 1355 return; 1356 getContext().pImpl->ValueMetadata.erase(this); 1357 HasMetadata = false; 1358 } 1359 1360 void Value::setMetadata(StringRef Kind, MDNode *Node) { 1361 if (!Node && !HasMetadata) 1362 return; 1363 setMetadata(getContext().getMDKindID(Kind), Node); 1364 } 1365 1366 void Value::addMetadata(unsigned KindID, MDNode &MD) { 1367 assert(isa<Instruction>(this) || isa<GlobalObject>(this)); 1368 if (!HasMetadata) 1369 HasMetadata = true; 1370 getContext().pImpl->ValueMetadata[this].insert(KindID, MD); 1371 } 1372 1373 void Value::addMetadata(StringRef Kind, MDNode &MD) { 1374 addMetadata(getContext().getMDKindID(Kind), MD); 1375 } 1376 1377 bool Value::eraseMetadata(unsigned KindID) { 1378 // Nothing to unset. 1379 if (!HasMetadata) 1380 return false; 1381 1382 auto &Store = getContext().pImpl->ValueMetadata[this]; 1383 bool Changed = Store.erase(KindID); 1384 if (Store.empty()) 1385 clearMetadata(); 1386 return Changed; 1387 } 1388 1389 void Value::clearMetadata() { 1390 if (!HasMetadata) 1391 return; 1392 assert(getContext().pImpl->ValueMetadata.count(this) && 1393 "bit out of sync with hash table"); 1394 getContext().pImpl->ValueMetadata.erase(this); 1395 HasMetadata = false; 1396 } 1397 1398 void Instruction::setMetadata(StringRef Kind, MDNode *Node) { 1399 if (!Node && !hasMetadata()) 1400 return; 1401 setMetadata(getContext().getMDKindID(Kind), Node); 1402 } 1403 1404 MDNode *Instruction::getMetadataImpl(StringRef Kind) const { 1405 return getMetadataImpl(getContext().getMDKindID(Kind)); 1406 } 1407 1408 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) { 1409 if (!Value::hasMetadata()) 1410 return; // Nothing to remove! 1411 1412 if (KnownIDs.empty()) { 1413 // Just drop our entry at the store. 1414 clearMetadata(); 1415 return; 1416 } 1417 1418 SmallSet<unsigned, 4> KnownSet; 1419 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 1420 1421 auto &MetadataStore = getContext().pImpl->ValueMetadata; 1422 auto &Info = MetadataStore[this]; 1423 assert(!Info.empty() && "bit out of sync with hash table"); 1424 Info.remove_if([&KnownSet](const MDAttachments::Attachment &I) { 1425 return !KnownSet.count(I.MDKind); 1426 }); 1427 1428 if (Info.empty()) { 1429 // Drop our entry at the store. 1430 clearMetadata(); 1431 } 1432 } 1433 1434 void Instruction::setMetadata(unsigned KindID, MDNode *Node) { 1435 if (!Node && !hasMetadata()) 1436 return; 1437 1438 // Handle 'dbg' as a special case since it is not stored in the hash table. 1439 if (KindID == LLVMContext::MD_dbg) { 1440 DbgLoc = DebugLoc(Node); 1441 return; 1442 } 1443 1444 Value::setMetadata(KindID, Node); 1445 } 1446 1447 void Instruction::addAnnotationMetadata(StringRef Name) { 1448 MDBuilder MDB(getContext()); 1449 1450 auto *Existing = getMetadata(LLVMContext::MD_annotation); 1451 SmallVector<Metadata *, 4> Names; 1452 bool AppendName = true; 1453 if (Existing) { 1454 auto *Tuple = cast<MDTuple>(Existing); 1455 for (auto &N : Tuple->operands()) { 1456 if (cast<MDString>(N.get())->getString() == Name) 1457 AppendName = false; 1458 Names.push_back(N.get()); 1459 } 1460 } 1461 if (AppendName) 1462 Names.push_back(MDB.createString(Name)); 1463 1464 MDNode *MD = MDTuple::get(getContext(), Names); 1465 setMetadata(LLVMContext::MD_annotation, MD); 1466 } 1467 1468 AAMDNodes Instruction::getAAMetadata() const { 1469 AAMDNodes Result; 1470 Result.TBAA = getMetadata(LLVMContext::MD_tbaa); 1471 Result.TBAAStruct = getMetadata(LLVMContext::MD_tbaa_struct); 1472 Result.Scope = getMetadata(LLVMContext::MD_alias_scope); 1473 Result.NoAlias = getMetadata(LLVMContext::MD_noalias); 1474 return Result; 1475 } 1476 1477 void Instruction::setAAMetadata(const AAMDNodes &N) { 1478 setMetadata(LLVMContext::MD_tbaa, N.TBAA); 1479 setMetadata(LLVMContext::MD_tbaa_struct, N.TBAAStruct); 1480 setMetadata(LLVMContext::MD_alias_scope, N.Scope); 1481 setMetadata(LLVMContext::MD_noalias, N.NoAlias); 1482 } 1483 1484 MDNode *Instruction::getMetadataImpl(unsigned KindID) const { 1485 // Handle 'dbg' as a special case since it is not stored in the hash table. 1486 if (KindID == LLVMContext::MD_dbg) 1487 return DbgLoc.getAsMDNode(); 1488 return Value::getMetadata(KindID); 1489 } 1490 1491 void Instruction::getAllMetadataImpl( 1492 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1493 Result.clear(); 1494 1495 // Handle 'dbg' as a special case since it is not stored in the hash table. 1496 if (DbgLoc) { 1497 Result.push_back( 1498 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode())); 1499 } 1500 Value::getAllMetadata(Result); 1501 } 1502 1503 bool Instruction::extractProfMetadata(uint64_t &TrueVal, 1504 uint64_t &FalseVal) const { 1505 assert( 1506 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select) && 1507 "Looking for branch weights on something besides branch or select"); 1508 1509 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1510 if (!ProfileData || ProfileData->getNumOperands() != 3) 1511 return false; 1512 1513 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1514 if (!ProfDataName || !ProfDataName->getString().equals("branch_weights")) 1515 return false; 1516 1517 auto *CITrue = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 1518 auto *CIFalse = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 1519 if (!CITrue || !CIFalse) 1520 return false; 1521 1522 TrueVal = CITrue->getValue().getZExtValue(); 1523 FalseVal = CIFalse->getValue().getZExtValue(); 1524 1525 return true; 1526 } 1527 1528 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) const { 1529 assert( 1530 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select || 1531 getOpcode() == Instruction::Call || getOpcode() == Instruction::Invoke || 1532 getOpcode() == Instruction::IndirectBr || 1533 getOpcode() == Instruction::Switch) && 1534 "Looking for branch weights on something besides branch"); 1535 1536 TotalVal = 0; 1537 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1538 if (!ProfileData) 1539 return false; 1540 1541 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1542 if (!ProfDataName) 1543 return false; 1544 1545 if (ProfDataName->getString().equals("branch_weights")) { 1546 TotalVal = 0; 1547 for (unsigned i = 1; i < ProfileData->getNumOperands(); i++) { 1548 auto *V = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i)); 1549 if (!V) 1550 return false; 1551 TotalVal += V->getValue().getZExtValue(); 1552 } 1553 return true; 1554 } else if (ProfDataName->getString().equals("VP") && 1555 ProfileData->getNumOperands() > 3) { 1556 TotalVal = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)) 1557 ->getValue() 1558 .getZExtValue(); 1559 return true; 1560 } 1561 return false; 1562 } 1563 1564 void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) { 1565 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 1566 Other->getAllMetadata(MDs); 1567 for (auto &MD : MDs) { 1568 // We need to adjust the type metadata offset. 1569 if (Offset != 0 && MD.first == LLVMContext::MD_type) { 1570 auto *OffsetConst = cast<ConstantInt>( 1571 cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue()); 1572 Metadata *TypeId = MD.second->getOperand(1); 1573 auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get( 1574 OffsetConst->getType(), OffsetConst->getValue() + Offset)); 1575 addMetadata(LLVMContext::MD_type, 1576 *MDNode::get(getContext(), {NewOffsetMD, TypeId})); 1577 continue; 1578 } 1579 // If an offset adjustment was specified we need to modify the DIExpression 1580 // to prepend the adjustment: 1581 // !DIExpression(DW_OP_plus, Offset, [original expr]) 1582 auto *Attachment = MD.second; 1583 if (Offset != 0 && MD.first == LLVMContext::MD_dbg) { 1584 DIGlobalVariable *GV = dyn_cast<DIGlobalVariable>(Attachment); 1585 DIExpression *E = nullptr; 1586 if (!GV) { 1587 auto *GVE = cast<DIGlobalVariableExpression>(Attachment); 1588 GV = GVE->getVariable(); 1589 E = GVE->getExpression(); 1590 } 1591 ArrayRef<uint64_t> OrigElements; 1592 if (E) 1593 OrigElements = E->getElements(); 1594 std::vector<uint64_t> Elements(OrigElements.size() + 2); 1595 Elements[0] = dwarf::DW_OP_plus_uconst; 1596 Elements[1] = Offset; 1597 llvm::copy(OrigElements, Elements.begin() + 2); 1598 E = DIExpression::get(getContext(), Elements); 1599 Attachment = DIGlobalVariableExpression::get(getContext(), GV, E); 1600 } 1601 addMetadata(MD.first, *Attachment); 1602 } 1603 } 1604 1605 void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) { 1606 addMetadata( 1607 LLVMContext::MD_type, 1608 *MDTuple::get(getContext(), 1609 {ConstantAsMetadata::get(ConstantInt::get( 1610 Type::getInt64Ty(getContext()), Offset)), 1611 TypeID})); 1612 } 1613 1614 void GlobalObject::setVCallVisibilityMetadata(VCallVisibility Visibility) { 1615 // Remove any existing vcall visibility metadata first in case we are 1616 // updating. 1617 eraseMetadata(LLVMContext::MD_vcall_visibility); 1618 addMetadata(LLVMContext::MD_vcall_visibility, 1619 *MDNode::get(getContext(), 1620 {ConstantAsMetadata::get(ConstantInt::get( 1621 Type::getInt64Ty(getContext()), Visibility))})); 1622 } 1623 1624 GlobalObject::VCallVisibility GlobalObject::getVCallVisibility() const { 1625 if (MDNode *MD = getMetadata(LLVMContext::MD_vcall_visibility)) { 1626 uint64_t Val = cast<ConstantInt>( 1627 cast<ConstantAsMetadata>(MD->getOperand(0))->getValue()) 1628 ->getZExtValue(); 1629 assert(Val <= 2 && "unknown vcall visibility!"); 1630 return (VCallVisibility)Val; 1631 } 1632 return VCallVisibility::VCallVisibilityPublic; 1633 } 1634 1635 void Function::setSubprogram(DISubprogram *SP) { 1636 setMetadata(LLVMContext::MD_dbg, SP); 1637 } 1638 1639 DISubprogram *Function::getSubprogram() const { 1640 return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg)); 1641 } 1642 1643 bool Function::isDebugInfoForProfiling() const { 1644 if (DISubprogram *SP = getSubprogram()) { 1645 if (DICompileUnit *CU = SP->getUnit()) { 1646 return CU->getDebugInfoForProfiling(); 1647 } 1648 } 1649 return false; 1650 } 1651 1652 void GlobalVariable::addDebugInfo(DIGlobalVariableExpression *GV) { 1653 addMetadata(LLVMContext::MD_dbg, *GV); 1654 } 1655 1656 void GlobalVariable::getDebugInfo( 1657 SmallVectorImpl<DIGlobalVariableExpression *> &GVs) const { 1658 SmallVector<MDNode *, 1> MDs; 1659 getMetadata(LLVMContext::MD_dbg, MDs); 1660 for (MDNode *MD : MDs) 1661 GVs.push_back(cast<DIGlobalVariableExpression>(MD)); 1662 } 1663