1 //===- Metadata.cpp - Implement Metadata classes --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Metadata classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Metadata.h" 15 #include "LLVMContextImpl.h" 16 #include "MetadataImpl.h" 17 #include "SymbolTableListTraitsImpl.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/IR/ConstantRange.h" 24 #include "llvm/IR/DebugInfoMetadata.h" 25 #include "llvm/IR/Instruction.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ValueHandle.h" 29 30 using namespace llvm; 31 32 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD) 33 : Value(Ty, MetadataAsValueVal), MD(MD) { 34 track(); 35 } 36 37 MetadataAsValue::~MetadataAsValue() { 38 getType()->getContext().pImpl->MetadataAsValues.erase(MD); 39 untrack(); 40 } 41 42 /// \brief Canonicalize metadata arguments to intrinsics. 43 /// 44 /// To support bitcode upgrades (and assembly semantic sugar) for \a 45 /// MetadataAsValue, we need to canonicalize certain metadata. 46 /// 47 /// - nullptr is replaced by an empty MDNode. 48 /// - An MDNode with a single null operand is replaced by an empty MDNode. 49 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped. 50 /// 51 /// This maintains readability of bitcode from when metadata was a type of 52 /// value, and these bridges were unnecessary. 53 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context, 54 Metadata *MD) { 55 if (!MD) 56 // !{} 57 return MDNode::get(Context, None); 58 59 // Return early if this isn't a single-operand MDNode. 60 auto *N = dyn_cast<MDNode>(MD); 61 if (!N || N->getNumOperands() != 1) 62 return MD; 63 64 if (!N->getOperand(0)) 65 // !{} 66 return MDNode::get(Context, None); 67 68 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0))) 69 // Look through the MDNode. 70 return C; 71 72 return MD; 73 } 74 75 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) { 76 MD = canonicalizeMetadataForValue(Context, MD); 77 auto *&Entry = Context.pImpl->MetadataAsValues[MD]; 78 if (!Entry) 79 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD); 80 return Entry; 81 } 82 83 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context, 84 Metadata *MD) { 85 MD = canonicalizeMetadataForValue(Context, MD); 86 auto &Store = Context.pImpl->MetadataAsValues; 87 return Store.lookup(MD); 88 } 89 90 void MetadataAsValue::handleChangedMetadata(Metadata *MD) { 91 LLVMContext &Context = getContext(); 92 MD = canonicalizeMetadataForValue(Context, MD); 93 auto &Store = Context.pImpl->MetadataAsValues; 94 95 // Stop tracking the old metadata. 96 Store.erase(this->MD); 97 untrack(); 98 this->MD = nullptr; 99 100 // Start tracking MD, or RAUW if necessary. 101 auto *&Entry = Store[MD]; 102 if (Entry) { 103 replaceAllUsesWith(Entry); 104 delete this; 105 return; 106 } 107 108 this->MD = MD; 109 track(); 110 Entry = this; 111 } 112 113 void MetadataAsValue::track() { 114 if (MD) 115 MetadataTracking::track(&MD, *MD, *this); 116 } 117 118 void MetadataAsValue::untrack() { 119 if (MD) 120 MetadataTracking::untrack(MD); 121 } 122 123 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) { 124 bool WasInserted = 125 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex))) 126 .second; 127 (void)WasInserted; 128 assert(WasInserted && "Expected to add a reference"); 129 130 ++NextIndex; 131 assert(NextIndex != 0 && "Unexpected overflow"); 132 } 133 134 void ReplaceableMetadataImpl::dropRef(void *Ref) { 135 bool WasErased = UseMap.erase(Ref); 136 (void)WasErased; 137 assert(WasErased && "Expected to drop a reference"); 138 } 139 140 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New, 141 const Metadata &MD) { 142 auto I = UseMap.find(Ref); 143 assert(I != UseMap.end() && "Expected to move a reference"); 144 auto OwnerAndIndex = I->second; 145 UseMap.erase(I); 146 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second; 147 (void)WasInserted; 148 assert(WasInserted && "Expected to add a reference"); 149 150 // Check that the references are direct if there's no owner. 151 (void)MD; 152 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) && 153 "Reference without owner must be direct"); 154 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) && 155 "Reference without owner must be direct"); 156 } 157 158 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) { 159 assert(!(MD && isa<MDNode>(MD) && cast<MDNode>(MD)->isTemporary()) && 160 "Expected non-temp node"); 161 162 if (UseMap.empty()) 163 return; 164 165 // Copy out uses since UseMap will get touched below. 166 typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy; 167 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 168 std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) { 169 return L.second.second < R.second.second; 170 }); 171 for (const auto &Pair : Uses) { 172 // Check that this Ref hasn't disappeared after RAUW (when updating a 173 // previous Ref). 174 if (!UseMap.count(Pair.first)) 175 continue; 176 177 OwnerTy Owner = Pair.second.first; 178 if (!Owner) { 179 // Update unowned tracking references directly. 180 Metadata *&Ref = *static_cast<Metadata **>(Pair.first); 181 Ref = MD; 182 if (MD) 183 MetadataTracking::track(Ref); 184 UseMap.erase(Pair.first); 185 continue; 186 } 187 188 // Check for MetadataAsValue. 189 if (Owner.is<MetadataAsValue *>()) { 190 Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD); 191 continue; 192 } 193 194 // There's a Metadata owner -- dispatch. 195 Metadata *OwnerMD = Owner.get<Metadata *>(); 196 switch (OwnerMD->getMetadataID()) { 197 #define HANDLE_METADATA_LEAF(CLASS) \ 198 case Metadata::CLASS##Kind: \ 199 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \ 200 continue; 201 #include "llvm/IR/Metadata.def" 202 default: 203 llvm_unreachable("Invalid metadata subclass"); 204 } 205 } 206 assert(UseMap.empty() && "Expected all uses to be replaced"); 207 } 208 209 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) { 210 if (UseMap.empty()) 211 return; 212 213 if (!ResolveUsers) { 214 UseMap.clear(); 215 return; 216 } 217 218 // Copy out uses since UseMap could get touched below. 219 typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy; 220 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 221 std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) { 222 return L.second.second < R.second.second; 223 }); 224 UseMap.clear(); 225 for (const auto &Pair : Uses) { 226 auto Owner = Pair.second.first; 227 if (!Owner) 228 continue; 229 if (Owner.is<MetadataAsValue *>()) 230 continue; 231 232 // Resolve MDNodes that point at this. 233 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>()); 234 if (!OwnerMD) 235 continue; 236 if (OwnerMD->isResolved()) 237 continue; 238 OwnerMD->decrementUnresolvedOperandCount(); 239 } 240 } 241 242 static Function *getLocalFunction(Value *V) { 243 assert(V && "Expected value"); 244 if (auto *A = dyn_cast<Argument>(V)) 245 return A->getParent(); 246 if (BasicBlock *BB = cast<Instruction>(V)->getParent()) 247 return BB->getParent(); 248 return nullptr; 249 } 250 251 ValueAsMetadata *ValueAsMetadata::get(Value *V) { 252 assert(V && "Unexpected null Value"); 253 254 auto &Context = V->getContext(); 255 auto *&Entry = Context.pImpl->ValuesAsMetadata[V]; 256 if (!Entry) { 257 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) && 258 "Expected constant or function-local value"); 259 assert(!V->IsUsedByMD && 260 "Expected this to be the only metadata use"); 261 V->IsUsedByMD = true; 262 if (auto *C = dyn_cast<Constant>(V)) 263 Entry = new ConstantAsMetadata(C); 264 else 265 Entry = new LocalAsMetadata(V); 266 } 267 268 return Entry; 269 } 270 271 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) { 272 assert(V && "Unexpected null Value"); 273 return V->getContext().pImpl->ValuesAsMetadata.lookup(V); 274 } 275 276 void ValueAsMetadata::handleDeletion(Value *V) { 277 assert(V && "Expected valid value"); 278 279 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata; 280 auto I = Store.find(V); 281 if (I == Store.end()) 282 return; 283 284 // Remove old entry from the map. 285 ValueAsMetadata *MD = I->second; 286 assert(MD && "Expected valid metadata"); 287 assert(MD->getValue() == V && "Expected valid mapping"); 288 Store.erase(I); 289 290 // Delete the metadata. 291 MD->replaceAllUsesWith(nullptr); 292 delete MD; 293 } 294 295 void ValueAsMetadata::handleRAUW(Value *From, Value *To) { 296 assert(From && "Expected valid value"); 297 assert(To && "Expected valid value"); 298 assert(From != To && "Expected changed value"); 299 assert(From->getType() == To->getType() && "Unexpected type change"); 300 301 LLVMContext &Context = From->getType()->getContext(); 302 auto &Store = Context.pImpl->ValuesAsMetadata; 303 auto I = Store.find(From); 304 if (I == Store.end()) { 305 assert(!From->IsUsedByMD && 306 "Expected From not to be used by metadata"); 307 return; 308 } 309 310 // Remove old entry from the map. 311 assert(From->IsUsedByMD && 312 "Expected From to be used by metadata"); 313 From->IsUsedByMD = false; 314 ValueAsMetadata *MD = I->second; 315 assert(MD && "Expected valid metadata"); 316 assert(MD->getValue() == From && "Expected valid mapping"); 317 Store.erase(I); 318 319 if (isa<LocalAsMetadata>(MD)) { 320 if (auto *C = dyn_cast<Constant>(To)) { 321 // Local became a constant. 322 MD->replaceAllUsesWith(ConstantAsMetadata::get(C)); 323 delete MD; 324 return; 325 } 326 if (getLocalFunction(From) && getLocalFunction(To) && 327 getLocalFunction(From) != getLocalFunction(To)) { 328 // Function changed. 329 MD->replaceAllUsesWith(nullptr); 330 delete MD; 331 return; 332 } 333 } else if (!isa<Constant>(To)) { 334 // Changed to function-local value. 335 MD->replaceAllUsesWith(nullptr); 336 delete MD; 337 return; 338 } 339 340 auto *&Entry = Store[To]; 341 if (Entry) { 342 // The target already exists. 343 MD->replaceAllUsesWith(Entry); 344 delete MD; 345 return; 346 } 347 348 // Update MD in place (and update the map entry). 349 assert(!To->IsUsedByMD && 350 "Expected this to be the only metadata use"); 351 To->IsUsedByMD = true; 352 MD->V = To; 353 Entry = MD; 354 } 355 356 //===----------------------------------------------------------------------===// 357 // MDString implementation. 358 // 359 360 MDString *MDString::get(LLVMContext &Context, StringRef Str) { 361 auto &Store = Context.pImpl->MDStringCache; 362 auto I = Store.find(Str); 363 if (I != Store.end()) 364 return &I->second; 365 366 auto *Entry = 367 StringMapEntry<MDString>::Create(Str, Store.getAllocator(), MDString()); 368 bool WasInserted = Store.insert(Entry); 369 (void)WasInserted; 370 assert(WasInserted && "Expected entry to be inserted"); 371 Entry->second.Entry = Entry; 372 return &Entry->second; 373 } 374 375 StringRef MDString::getString() const { 376 assert(Entry && "Expected to find string map entry"); 377 return Entry->first(); 378 } 379 380 //===----------------------------------------------------------------------===// 381 // MDNode implementation. 382 // 383 384 // Assert that the MDNode types will not be unaligned by the objects 385 // prepended to them. 386 #define HANDLE_MDNODE_LEAF(CLASS) \ 387 static_assert( \ 388 llvm::AlignOf<uint64_t>::Alignment >= llvm::AlignOf<CLASS>::Alignment, \ 389 "Alignment is insufficient after objects prepended to " #CLASS); 390 #include "llvm/IR/Metadata.def" 391 392 void *MDNode::operator new(size_t Size, unsigned NumOps) { 393 size_t OpSize = NumOps * sizeof(MDOperand); 394 // uint64_t is the most aligned type we need support (ensured by static_assert 395 // above) 396 OpSize = RoundUpToAlignment(OpSize, llvm::alignOf<uint64_t>()); 397 void *Ptr = reinterpret_cast<char *>(::operator new(OpSize + Size)) + OpSize; 398 MDOperand *O = static_cast<MDOperand *>(Ptr); 399 for (MDOperand *E = O - NumOps; O != E; --O) 400 (void)new (O - 1) MDOperand; 401 return Ptr; 402 } 403 404 void MDNode::operator delete(void *Mem) { 405 MDNode *N = static_cast<MDNode *>(Mem); 406 size_t OpSize = N->NumOperands * sizeof(MDOperand); 407 OpSize = RoundUpToAlignment(OpSize, llvm::alignOf<uint64_t>()); 408 409 MDOperand *O = static_cast<MDOperand *>(Mem); 410 for (MDOperand *E = O - N->NumOperands; O != E; --O) 411 (O - 1)->~MDOperand(); 412 ::operator delete(reinterpret_cast<char *>(Mem) - OpSize); 413 } 414 415 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage, 416 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2) 417 : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()), 418 NumUnresolved(0), Context(Context) { 419 unsigned Op = 0; 420 for (Metadata *MD : Ops1) 421 setOperand(Op++, MD); 422 for (Metadata *MD : Ops2) 423 setOperand(Op++, MD); 424 425 if (isDistinct()) 426 return; 427 428 if (isUniqued()) 429 // Check whether any operands are unresolved, requiring re-uniquing. If 430 // not, don't support RAUW. 431 if (!countUnresolvedOperands()) 432 return; 433 434 this->Context.makeReplaceable(make_unique<ReplaceableMetadataImpl>(Context)); 435 } 436 437 TempMDNode MDNode::clone() const { 438 switch (getMetadataID()) { 439 default: 440 llvm_unreachable("Invalid MDNode subclass"); 441 #define HANDLE_MDNODE_LEAF(CLASS) \ 442 case CLASS##Kind: \ 443 return cast<CLASS>(this)->cloneImpl(); 444 #include "llvm/IR/Metadata.def" 445 } 446 } 447 448 static bool isOperandUnresolved(Metadata *Op) { 449 if (auto *N = dyn_cast_or_null<MDNode>(Op)) 450 return !N->isResolved(); 451 return false; 452 } 453 454 unsigned MDNode::countUnresolvedOperands() { 455 assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted"); 456 NumUnresolved = std::count_if(op_begin(), op_end(), isOperandUnresolved); 457 return NumUnresolved; 458 } 459 460 void MDNode::makeUniqued() { 461 assert(isTemporary() && "Expected this to be temporary"); 462 assert(!isResolved() && "Expected this to be unresolved"); 463 464 // Enable uniquing callbacks. 465 for (auto &Op : mutable_operands()) 466 Op.reset(Op.get(), this); 467 468 // Make this 'uniqued'. 469 Storage = Uniqued; 470 if (!countUnresolvedOperands()) 471 resolve(); 472 473 assert(isUniqued() && "Expected this to be uniqued"); 474 } 475 476 void MDNode::makeDistinct() { 477 assert(isTemporary() && "Expected this to be temporary"); 478 assert(!isResolved() && "Expected this to be unresolved"); 479 480 // Pretend to be uniqued, resolve the node, and then store in distinct table. 481 Storage = Uniqued; 482 resolve(); 483 storeDistinctInContext(); 484 485 assert(isDistinct() && "Expected this to be distinct"); 486 assert(isResolved() && "Expected this to be resolved"); 487 } 488 489 void MDNode::resolve() { 490 assert(isUniqued() && "Expected this to be uniqued"); 491 assert(!isResolved() && "Expected this to be unresolved"); 492 493 // Move the map, so that this immediately looks resolved. 494 auto Uses = Context.takeReplaceableUses(); 495 NumUnresolved = 0; 496 assert(isResolved() && "Expected this to be resolved"); 497 498 // Drop RAUW support. 499 Uses->resolveAllUses(); 500 } 501 502 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) { 503 assert(NumUnresolved != 0 && "Expected unresolved operands"); 504 505 // Check if an operand was resolved. 506 if (!isOperandUnresolved(Old)) { 507 if (isOperandUnresolved(New)) 508 // An operand was un-resolved! 509 ++NumUnresolved; 510 } else if (!isOperandUnresolved(New)) 511 decrementUnresolvedOperandCount(); 512 } 513 514 void MDNode::decrementUnresolvedOperandCount() { 515 if (!--NumUnresolved) 516 // Last unresolved operand has just been resolved. 517 resolve(); 518 } 519 520 void MDNode::resolveCycles() { 521 if (isResolved()) 522 return; 523 524 // Resolve this node immediately. 525 resolve(); 526 527 // Resolve all operands. 528 for (const auto &Op : operands()) { 529 auto *N = dyn_cast_or_null<MDNode>(Op); 530 if (!N) 531 continue; 532 533 assert(!N->isTemporary() && 534 "Expected all forward declarations to be resolved"); 535 if (!N->isResolved()) 536 N->resolveCycles(); 537 } 538 } 539 540 static bool hasSelfReference(MDNode *N) { 541 for (Metadata *MD : N->operands()) 542 if (MD == N) 543 return true; 544 return false; 545 } 546 547 MDNode *MDNode::replaceWithPermanentImpl() { 548 if (hasSelfReference(this)) 549 return replaceWithDistinctImpl(); 550 return replaceWithUniquedImpl(); 551 } 552 553 MDNode *MDNode::replaceWithUniquedImpl() { 554 // Try to uniquify in place. 555 MDNode *UniquedNode = uniquify(); 556 557 if (UniquedNode == this) { 558 makeUniqued(); 559 return this; 560 } 561 562 // Collision, so RAUW instead. 563 replaceAllUsesWith(UniquedNode); 564 deleteAsSubclass(); 565 return UniquedNode; 566 } 567 568 MDNode *MDNode::replaceWithDistinctImpl() { 569 makeDistinct(); 570 return this; 571 } 572 573 void MDTuple::recalculateHash() { 574 setHash(MDTupleInfo::KeyTy::calculateHash(this)); 575 } 576 577 void MDNode::dropAllReferences() { 578 for (unsigned I = 0, E = NumOperands; I != E; ++I) 579 setOperand(I, nullptr); 580 if (!isResolved()) { 581 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false); 582 (void)Context.takeReplaceableUses(); 583 } 584 } 585 586 void MDNode::handleChangedOperand(void *Ref, Metadata *New) { 587 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin(); 588 assert(Op < getNumOperands() && "Expected valid operand"); 589 590 if (!isUniqued()) { 591 // This node is not uniqued. Just set the operand and be done with it. 592 setOperand(Op, New); 593 return; 594 } 595 596 // This node is uniqued. 597 eraseFromStore(); 598 599 Metadata *Old = getOperand(Op); 600 setOperand(Op, New); 601 602 // Drop uniquing for self-reference cycles. 603 if (New == this) { 604 if (!isResolved()) 605 resolve(); 606 storeDistinctInContext(); 607 return; 608 } 609 610 // Re-unique the node. 611 auto *Uniqued = uniquify(); 612 if (Uniqued == this) { 613 if (!isResolved()) 614 resolveAfterOperandChange(Old, New); 615 return; 616 } 617 618 // Collision. 619 if (!isResolved()) { 620 // Still unresolved, so RAUW. 621 // 622 // First, clear out all operands to prevent any recursion (similar to 623 // dropAllReferences(), but we still need the use-list). 624 for (unsigned O = 0, E = getNumOperands(); O != E; ++O) 625 setOperand(O, nullptr); 626 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued); 627 deleteAsSubclass(); 628 return; 629 } 630 631 // Store in non-uniqued form if RAUW isn't possible. 632 storeDistinctInContext(); 633 } 634 635 void MDNode::deleteAsSubclass() { 636 switch (getMetadataID()) { 637 default: 638 llvm_unreachable("Invalid subclass of MDNode"); 639 #define HANDLE_MDNODE_LEAF(CLASS) \ 640 case CLASS##Kind: \ 641 delete cast<CLASS>(this); \ 642 break; 643 #include "llvm/IR/Metadata.def" 644 } 645 } 646 647 template <class T, class InfoT> 648 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) { 649 if (T *U = getUniqued(Store, N)) 650 return U; 651 652 Store.insert(N); 653 return N; 654 } 655 656 template <class NodeTy> struct MDNode::HasCachedHash { 657 typedef char Yes[1]; 658 typedef char No[2]; 659 template <class U, U Val> struct SFINAE {}; 660 661 template <class U> 662 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *); 663 template <class U> static No &check(...); 664 665 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes); 666 }; 667 668 MDNode *MDNode::uniquify() { 669 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node"); 670 671 // Try to insert into uniquing store. 672 switch (getMetadataID()) { 673 default: 674 llvm_unreachable("Invalid subclass of MDNode"); 675 #define HANDLE_MDNODE_LEAF(CLASS) \ 676 case CLASS##Kind: { \ 677 CLASS *SubclassThis = cast<CLASS>(this); \ 678 std::integral_constant<bool, HasCachedHash<CLASS>::value> \ 679 ShouldRecalculateHash; \ 680 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \ 681 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \ 682 } 683 #include "llvm/IR/Metadata.def" 684 } 685 } 686 687 void MDNode::eraseFromStore() { 688 switch (getMetadataID()) { 689 default: 690 llvm_unreachable("Invalid subclass of MDNode"); 691 #define HANDLE_MDNODE_LEAF(CLASS) \ 692 case CLASS##Kind: \ 693 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \ 694 break; 695 #include "llvm/IR/Metadata.def" 696 } 697 } 698 699 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs, 700 StorageType Storage, bool ShouldCreate) { 701 unsigned Hash = 0; 702 if (Storage == Uniqued) { 703 MDTupleInfo::KeyTy Key(MDs); 704 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key)) 705 return N; 706 if (!ShouldCreate) 707 return nullptr; 708 Hash = Key.getHash(); 709 } else { 710 assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); 711 } 712 713 return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs), 714 Storage, Context.pImpl->MDTuples); 715 } 716 717 void MDNode::deleteTemporary(MDNode *N) { 718 assert(N->isTemporary() && "Expected temporary node"); 719 N->replaceAllUsesWith(nullptr); 720 N->deleteAsSubclass(); 721 } 722 723 void MDNode::storeDistinctInContext() { 724 assert(isResolved() && "Expected resolved nodes"); 725 Storage = Distinct; 726 727 // Reset the hash. 728 switch (getMetadataID()) { 729 default: 730 llvm_unreachable("Invalid subclass of MDNode"); 731 #define HANDLE_MDNODE_LEAF(CLASS) \ 732 case CLASS##Kind: { \ 733 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \ 734 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \ 735 break; \ 736 } 737 #include "llvm/IR/Metadata.def" 738 } 739 740 getContext().pImpl->DistinctMDNodes.insert(this); 741 } 742 743 void MDNode::replaceOperandWith(unsigned I, Metadata *New) { 744 if (getOperand(I) == New) 745 return; 746 747 if (!isUniqued()) { 748 setOperand(I, New); 749 return; 750 } 751 752 handleChangedOperand(mutable_begin() + I, New); 753 } 754 755 void MDNode::setOperand(unsigned I, Metadata *New) { 756 assert(I < NumOperands); 757 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr); 758 } 759 760 /// \brief Get a node, or a self-reference that looks like it. 761 /// 762 /// Special handling for finding self-references, for use by \a 763 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from 764 /// when self-referencing nodes were still uniqued. If the first operand has 765 /// the same operands as \c Ops, return the first operand instead. 766 static MDNode *getOrSelfReference(LLVMContext &Context, 767 ArrayRef<Metadata *> Ops) { 768 if (!Ops.empty()) 769 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0])) 770 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) { 771 for (unsigned I = 1, E = Ops.size(); I != E; ++I) 772 if (Ops[I] != N->getOperand(I)) 773 return MDNode::get(Context, Ops); 774 return N; 775 } 776 777 return MDNode::get(Context, Ops); 778 } 779 780 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) { 781 if (!A) 782 return B; 783 if (!B) 784 return A; 785 786 SmallVector<Metadata *, 4> MDs; 787 MDs.reserve(A->getNumOperands() + B->getNumOperands()); 788 MDs.append(A->op_begin(), A->op_end()); 789 MDs.append(B->op_begin(), B->op_end()); 790 791 // FIXME: This preserves long-standing behaviour, but is it really the right 792 // behaviour? Or was that an unintended side-effect of node uniquing? 793 return getOrSelfReference(A->getContext(), MDs); 794 } 795 796 MDNode *MDNode::intersect(MDNode *A, MDNode *B) { 797 if (!A || !B) 798 return nullptr; 799 800 SmallVector<Metadata *, 4> MDs; 801 for (Metadata *MD : A->operands()) 802 if (std::find(B->op_begin(), B->op_end(), MD) != B->op_end()) 803 MDs.push_back(MD); 804 805 // FIXME: This preserves long-standing behaviour, but is it really the right 806 // behaviour? Or was that an unintended side-effect of node uniquing? 807 return getOrSelfReference(A->getContext(), MDs); 808 } 809 810 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) { 811 if (!A || !B) 812 return nullptr; 813 814 SmallVector<Metadata *, 4> MDs(B->op_begin(), B->op_end()); 815 for (Metadata *MD : A->operands()) 816 if (std::find(B->op_begin(), B->op_end(), MD) == B->op_end()) 817 MDs.push_back(MD); 818 819 // FIXME: This preserves long-standing behaviour, but is it really the right 820 // behaviour? Or was that an unintended side-effect of node uniquing? 821 return getOrSelfReference(A->getContext(), MDs); 822 } 823 824 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) { 825 if (!A || !B) 826 return nullptr; 827 828 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF(); 829 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF(); 830 if (AVal.compare(BVal) == APFloat::cmpLessThan) 831 return A; 832 return B; 833 } 834 835 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 836 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 837 } 838 839 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) { 840 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B); 841 } 842 843 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints, 844 ConstantInt *Low, ConstantInt *High) { 845 ConstantRange NewRange(Low->getValue(), High->getValue()); 846 unsigned Size = EndPoints.size(); 847 APInt LB = EndPoints[Size - 2]->getValue(); 848 APInt LE = EndPoints[Size - 1]->getValue(); 849 ConstantRange LastRange(LB, LE); 850 if (canBeMerged(NewRange, LastRange)) { 851 ConstantRange Union = LastRange.unionWith(NewRange); 852 Type *Ty = High->getType(); 853 EndPoints[Size - 2] = 854 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower())); 855 EndPoints[Size - 1] = 856 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper())); 857 return true; 858 } 859 return false; 860 } 861 862 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints, 863 ConstantInt *Low, ConstantInt *High) { 864 if (!EndPoints.empty()) 865 if (tryMergeRange(EndPoints, Low, High)) 866 return; 867 868 EndPoints.push_back(Low); 869 EndPoints.push_back(High); 870 } 871 872 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) { 873 // Given two ranges, we want to compute the union of the ranges. This 874 // is slightly complitade by having to combine the intervals and merge 875 // the ones that overlap. 876 877 if (!A || !B) 878 return nullptr; 879 880 if (A == B) 881 return A; 882 883 // First, walk both lists in older of the lower boundary of each interval. 884 // At each step, try to merge the new interval to the last one we adedd. 885 SmallVector<ConstantInt *, 4> EndPoints; 886 int AI = 0; 887 int BI = 0; 888 int AN = A->getNumOperands() / 2; 889 int BN = B->getNumOperands() / 2; 890 while (AI < AN && BI < BN) { 891 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI)); 892 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI)); 893 894 if (ALow->getValue().slt(BLow->getValue())) { 895 addRange(EndPoints, ALow, 896 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 897 ++AI; 898 } else { 899 addRange(EndPoints, BLow, 900 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 901 ++BI; 902 } 903 } 904 while (AI < AN) { 905 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)), 906 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 907 ++AI; 908 } 909 while (BI < BN) { 910 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)), 911 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 912 ++BI; 913 } 914 915 // If we have more than 2 ranges (4 endpoints) we have to try to merge 916 // the last and first ones. 917 unsigned Size = EndPoints.size(); 918 if (Size > 4) { 919 ConstantInt *FB = EndPoints[0]; 920 ConstantInt *FE = EndPoints[1]; 921 if (tryMergeRange(EndPoints, FB, FE)) { 922 for (unsigned i = 0; i < Size - 2; ++i) { 923 EndPoints[i] = EndPoints[i + 2]; 924 } 925 EndPoints.resize(Size - 2); 926 } 927 } 928 929 // If in the end we have a single range, it is possible that it is now the 930 // full range. Just drop the metadata in that case. 931 if (EndPoints.size() == 2) { 932 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue()); 933 if (Range.isFullSet()) 934 return nullptr; 935 } 936 937 SmallVector<Metadata *, 4> MDs; 938 MDs.reserve(EndPoints.size()); 939 for (auto *I : EndPoints) 940 MDs.push_back(ConstantAsMetadata::get(I)); 941 return MDNode::get(A->getContext(), MDs); 942 } 943 944 //===----------------------------------------------------------------------===// 945 // NamedMDNode implementation. 946 // 947 948 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) { 949 return *(SmallVector<TrackingMDRef, 4> *)Operands; 950 } 951 952 NamedMDNode::NamedMDNode(const Twine &N) 953 : Name(N.str()), Parent(nullptr), 954 Operands(new SmallVector<TrackingMDRef, 4>()) {} 955 956 NamedMDNode::~NamedMDNode() { 957 dropAllReferences(); 958 delete &getNMDOps(Operands); 959 } 960 961 unsigned NamedMDNode::getNumOperands() const { 962 return (unsigned)getNMDOps(Operands).size(); 963 } 964 965 MDNode *NamedMDNode::getOperand(unsigned i) const { 966 assert(i < getNumOperands() && "Invalid Operand number!"); 967 auto *N = getNMDOps(Operands)[i].get(); 968 return cast_or_null<MDNode>(N); 969 } 970 971 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); } 972 973 void NamedMDNode::setOperand(unsigned I, MDNode *New) { 974 assert(I < getNumOperands() && "Invalid operand number"); 975 getNMDOps(Operands)[I].reset(New); 976 } 977 978 void NamedMDNode::eraseFromParent() { 979 getParent()->eraseNamedMetadata(this); 980 } 981 982 void NamedMDNode::dropAllReferences() { 983 getNMDOps(Operands).clear(); 984 } 985 986 StringRef NamedMDNode::getName() const { 987 return StringRef(Name); 988 } 989 990 //===----------------------------------------------------------------------===// 991 // Instruction Metadata method implementations. 992 // 993 void MDAttachmentMap::set(unsigned ID, MDNode &MD) { 994 for (auto &I : Attachments) 995 if (I.first == ID) { 996 I.second.reset(&MD); 997 return; 998 } 999 Attachments.emplace_back(std::piecewise_construct, std::make_tuple(ID), 1000 std::make_tuple(&MD)); 1001 } 1002 1003 void MDAttachmentMap::erase(unsigned ID) { 1004 if (empty()) 1005 return; 1006 1007 // Common case is one/last value. 1008 if (Attachments.back().first == ID) { 1009 Attachments.pop_back(); 1010 return; 1011 } 1012 1013 for (auto I = Attachments.begin(), E = std::prev(Attachments.end()); I != E; 1014 ++I) 1015 if (I->first == ID) { 1016 *I = std::move(Attachments.back()); 1017 Attachments.pop_back(); 1018 return; 1019 } 1020 } 1021 1022 MDNode *MDAttachmentMap::lookup(unsigned ID) const { 1023 for (const auto &I : Attachments) 1024 if (I.first == ID) 1025 return I.second; 1026 return nullptr; 1027 } 1028 1029 void MDAttachmentMap::getAll( 1030 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1031 Result.append(Attachments.begin(), Attachments.end()); 1032 1033 // Sort the resulting array so it is stable. 1034 if (Result.size() > 1) 1035 array_pod_sort(Result.begin(), Result.end()); 1036 } 1037 1038 void Instruction::setMetadata(StringRef Kind, MDNode *Node) { 1039 if (!Node && !hasMetadata()) 1040 return; 1041 setMetadata(getContext().getMDKindID(Kind), Node); 1042 } 1043 1044 MDNode *Instruction::getMetadataImpl(StringRef Kind) const { 1045 return getMetadataImpl(getContext().getMDKindID(Kind)); 1046 } 1047 1048 void Instruction::dropUnknownMetadata(ArrayRef<unsigned> KnownIDs) { 1049 SmallSet<unsigned, 5> KnownSet; 1050 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 1051 1052 // Drop debug if needed 1053 if (KnownSet.erase(LLVMContext::MD_dbg)) 1054 DbgLoc = DebugLoc(); 1055 1056 if (!hasMetadataHashEntry()) 1057 return; // Nothing to remove! 1058 1059 auto &InstructionMetadata = getContext().pImpl->InstructionMetadata; 1060 1061 if (KnownSet.empty()) { 1062 // Just drop our entry at the store. 1063 InstructionMetadata.erase(this); 1064 setHasMetadataHashEntry(false); 1065 return; 1066 } 1067 1068 auto &Info = InstructionMetadata[this]; 1069 Info.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) { 1070 return !KnownSet.count(I.first); 1071 }); 1072 1073 if (Info.empty()) { 1074 // Drop our entry at the store. 1075 InstructionMetadata.erase(this); 1076 setHasMetadataHashEntry(false); 1077 } 1078 } 1079 1080 /// setMetadata - Set the metadata of of the specified kind to the specified 1081 /// node. This updates/replaces metadata if already present, or removes it if 1082 /// Node is null. 1083 void Instruction::setMetadata(unsigned KindID, MDNode *Node) { 1084 if (!Node && !hasMetadata()) 1085 return; 1086 1087 // Handle 'dbg' as a special case since it is not stored in the hash table. 1088 if (KindID == LLVMContext::MD_dbg) { 1089 DbgLoc = DebugLoc(Node); 1090 return; 1091 } 1092 1093 // Handle the case when we're adding/updating metadata on an instruction. 1094 if (Node) { 1095 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1096 assert(!Info.empty() == hasMetadataHashEntry() && 1097 "HasMetadata bit is wonked"); 1098 if (Info.empty()) 1099 setHasMetadataHashEntry(true); 1100 Info.set(KindID, *Node); 1101 return; 1102 } 1103 1104 // Otherwise, we're removing metadata from an instruction. 1105 assert((hasMetadataHashEntry() == 1106 (getContext().pImpl->InstructionMetadata.count(this) > 0)) && 1107 "HasMetadata bit out of date!"); 1108 if (!hasMetadataHashEntry()) 1109 return; // Nothing to remove! 1110 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1111 1112 // Handle removal of an existing value. 1113 Info.erase(KindID); 1114 1115 if (!Info.empty()) 1116 return; 1117 1118 getContext().pImpl->InstructionMetadata.erase(this); 1119 setHasMetadataHashEntry(false); 1120 } 1121 1122 void Instruction::setAAMetadata(const AAMDNodes &N) { 1123 setMetadata(LLVMContext::MD_tbaa, N.TBAA); 1124 setMetadata(LLVMContext::MD_alias_scope, N.Scope); 1125 setMetadata(LLVMContext::MD_noalias, N.NoAlias); 1126 } 1127 1128 MDNode *Instruction::getMetadataImpl(unsigned KindID) const { 1129 // Handle 'dbg' as a special case since it is not stored in the hash table. 1130 if (KindID == LLVMContext::MD_dbg) 1131 return DbgLoc.getAsMDNode(); 1132 1133 if (!hasMetadataHashEntry()) 1134 return nullptr; 1135 auto &Info = getContext().pImpl->InstructionMetadata[this]; 1136 assert(!Info.empty() && "bit out of sync with hash table"); 1137 1138 return Info.lookup(KindID); 1139 } 1140 1141 void Instruction::getAllMetadataImpl( 1142 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1143 Result.clear(); 1144 1145 // Handle 'dbg' as a special case since it is not stored in the hash table. 1146 if (DbgLoc) { 1147 Result.push_back( 1148 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode())); 1149 if (!hasMetadataHashEntry()) return; 1150 } 1151 1152 assert(hasMetadataHashEntry() && 1153 getContext().pImpl->InstructionMetadata.count(this) && 1154 "Shouldn't have called this"); 1155 const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second; 1156 assert(!Info.empty() && "Shouldn't have called this"); 1157 Info.getAll(Result); 1158 } 1159 1160 void Instruction::getAllMetadataOtherThanDebugLocImpl( 1161 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1162 Result.clear(); 1163 assert(hasMetadataHashEntry() && 1164 getContext().pImpl->InstructionMetadata.count(this) && 1165 "Shouldn't have called this"); 1166 const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second; 1167 assert(!Info.empty() && "Shouldn't have called this"); 1168 Info.getAll(Result); 1169 } 1170 1171 /// clearMetadataHashEntries - Clear all hashtable-based metadata from 1172 /// this instruction. 1173 void Instruction::clearMetadataHashEntries() { 1174 assert(hasMetadataHashEntry() && "Caller should check"); 1175 getContext().pImpl->InstructionMetadata.erase(this); 1176 setHasMetadataHashEntry(false); 1177 } 1178 1179 MDNode *Function::getMetadata(unsigned KindID) const { 1180 if (!hasMetadata()) 1181 return nullptr; 1182 return getContext().pImpl->FunctionMetadata[this].lookup(KindID); 1183 } 1184 1185 MDNode *Function::getMetadata(StringRef Kind) const { 1186 if (!hasMetadata()) 1187 return nullptr; 1188 return getMetadata(getContext().getMDKindID(Kind)); 1189 } 1190 1191 void Function::setMetadata(unsigned KindID, MDNode *MD) { 1192 if (MD) { 1193 if (!hasMetadata()) 1194 setHasMetadataHashEntry(true); 1195 1196 getContext().pImpl->FunctionMetadata[this].set(KindID, *MD); 1197 return; 1198 } 1199 1200 // Nothing to unset. 1201 if (!hasMetadata()) 1202 return; 1203 1204 auto &Store = getContext().pImpl->FunctionMetadata[this]; 1205 Store.erase(KindID); 1206 if (Store.empty()) 1207 clearMetadata(); 1208 } 1209 1210 void Function::setMetadata(StringRef Kind, MDNode *MD) { 1211 if (!MD && !hasMetadata()) 1212 return; 1213 setMetadata(getContext().getMDKindID(Kind), MD); 1214 } 1215 1216 void Function::getAllMetadata( 1217 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { 1218 MDs.clear(); 1219 1220 if (!hasMetadata()) 1221 return; 1222 1223 getContext().pImpl->FunctionMetadata[this].getAll(MDs); 1224 } 1225 1226 void Function::dropUnknownMetadata(ArrayRef<unsigned> KnownIDs) { 1227 if (!hasMetadata()) 1228 return; 1229 if (KnownIDs.empty()) { 1230 clearMetadata(); 1231 return; 1232 } 1233 1234 SmallSet<unsigned, 5> KnownSet; 1235 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 1236 1237 auto &Store = getContext().pImpl->FunctionMetadata[this]; 1238 assert(!Store.empty()); 1239 1240 Store.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) { 1241 return !KnownSet.count(I.first); 1242 }); 1243 1244 if (Store.empty()) 1245 clearMetadata(); 1246 } 1247 1248 void Function::clearMetadata() { 1249 if (!hasMetadata()) 1250 return; 1251 getContext().pImpl->FunctionMetadata.erase(this); 1252 setHasMetadataHashEntry(false); 1253 } 1254