1 //===- Metadata.cpp - Implement Metadata classes --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Metadata classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Metadata.h" 14 #include "LLVMContextImpl.h" 15 #include "MetadataImpl.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/IR/Argument.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/ConstantRange.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DebugInfoMetadata.h" 35 #include "llvm/IR/DebugLoc.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GlobalObject.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/TrackingMDRef.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/IR/Value.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/MathExtras.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstddef> 52 #include <cstdint> 53 #include <type_traits> 54 #include <utility> 55 #include <vector> 56 57 using namespace llvm; 58 59 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD) 60 : Value(Ty, MetadataAsValueVal), MD(MD) { 61 track(); 62 } 63 64 MetadataAsValue::~MetadataAsValue() { 65 getType()->getContext().pImpl->MetadataAsValues.erase(MD); 66 untrack(); 67 } 68 69 /// Canonicalize metadata arguments to intrinsics. 70 /// 71 /// To support bitcode upgrades (and assembly semantic sugar) for \a 72 /// MetadataAsValue, we need to canonicalize certain metadata. 73 /// 74 /// - nullptr is replaced by an empty MDNode. 75 /// - An MDNode with a single null operand is replaced by an empty MDNode. 76 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped. 77 /// 78 /// This maintains readability of bitcode from when metadata was a type of 79 /// value, and these bridges were unnecessary. 80 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context, 81 Metadata *MD) { 82 if (!MD) 83 // !{} 84 return MDNode::get(Context, None); 85 86 // Return early if this isn't a single-operand MDNode. 87 auto *N = dyn_cast<MDNode>(MD); 88 if (!N || N->getNumOperands() != 1) 89 return MD; 90 91 if (!N->getOperand(0)) 92 // !{} 93 return MDNode::get(Context, None); 94 95 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0))) 96 // Look through the MDNode. 97 return C; 98 99 return MD; 100 } 101 102 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) { 103 MD = canonicalizeMetadataForValue(Context, MD); 104 auto *&Entry = Context.pImpl->MetadataAsValues[MD]; 105 if (!Entry) 106 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD); 107 return Entry; 108 } 109 110 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context, 111 Metadata *MD) { 112 MD = canonicalizeMetadataForValue(Context, MD); 113 auto &Store = Context.pImpl->MetadataAsValues; 114 return Store.lookup(MD); 115 } 116 117 void MetadataAsValue::handleChangedMetadata(Metadata *MD) { 118 LLVMContext &Context = getContext(); 119 MD = canonicalizeMetadataForValue(Context, MD); 120 auto &Store = Context.pImpl->MetadataAsValues; 121 122 // Stop tracking the old metadata. 123 Store.erase(this->MD); 124 untrack(); 125 this->MD = nullptr; 126 127 // Start tracking MD, or RAUW if necessary. 128 auto *&Entry = Store[MD]; 129 if (Entry) { 130 replaceAllUsesWith(Entry); 131 delete this; 132 return; 133 } 134 135 this->MD = MD; 136 track(); 137 Entry = this; 138 } 139 140 void MetadataAsValue::track() { 141 if (MD) 142 MetadataTracking::track(&MD, *MD, *this); 143 } 144 145 void MetadataAsValue::untrack() { 146 if (MD) 147 MetadataTracking::untrack(MD); 148 } 149 150 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) { 151 assert(Ref && "Expected live reference"); 152 assert((Owner || *static_cast<Metadata **>(Ref) == &MD) && 153 "Reference without owner must be direct"); 154 if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) { 155 R->addRef(Ref, Owner); 156 return true; 157 } 158 if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) { 159 assert(!PH->Use && "Placeholders can only be used once"); 160 assert(!Owner && "Unexpected callback to owner"); 161 PH->Use = static_cast<Metadata **>(Ref); 162 return true; 163 } 164 return false; 165 } 166 167 void MetadataTracking::untrack(void *Ref, Metadata &MD) { 168 assert(Ref && "Expected live reference"); 169 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) 170 R->dropRef(Ref); 171 else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) 172 PH->Use = nullptr; 173 } 174 175 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) { 176 assert(Ref && "Expected live reference"); 177 assert(New && "Expected live reference"); 178 assert(Ref != New && "Expected change"); 179 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) { 180 R->moveRef(Ref, New, MD); 181 return true; 182 } 183 assert(!isa<DistinctMDOperandPlaceholder>(MD) && 184 "Unexpected move of an MDOperand"); 185 assert(!isReplaceable(MD) && 186 "Expected un-replaceable metadata, since we didn't move a reference"); 187 return false; 188 } 189 190 bool MetadataTracking::isReplaceable(const Metadata &MD) { 191 return ReplaceableMetadataImpl::isReplaceable(MD); 192 } 193 194 SmallVector<Metadata *> ReplaceableMetadataImpl::getAllArgListUsers() { 195 SmallVector<std::pair<OwnerTy, uint64_t> *> MDUsersWithID; 196 for (auto Pair : UseMap) { 197 OwnerTy Owner = Pair.second.first; 198 if (!Owner.is<Metadata *>()) 199 continue; 200 Metadata *OwnerMD = Owner.get<Metadata *>(); 201 if (OwnerMD->getMetadataID() == Metadata::DIArgListKind) 202 MDUsersWithID.push_back(&UseMap[Pair.first]); 203 } 204 llvm::sort(MDUsersWithID, [](auto UserA, auto UserB) { 205 return UserA->second < UserB->second; 206 }); 207 SmallVector<Metadata *> MDUsers; 208 for (auto UserWithID : MDUsersWithID) 209 MDUsers.push_back(UserWithID->first.get<Metadata *>()); 210 return MDUsers; 211 } 212 213 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) { 214 bool WasInserted = 215 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex))) 216 .second; 217 (void)WasInserted; 218 assert(WasInserted && "Expected to add a reference"); 219 220 ++NextIndex; 221 assert(NextIndex != 0 && "Unexpected overflow"); 222 } 223 224 void ReplaceableMetadataImpl::dropRef(void *Ref) { 225 bool WasErased = UseMap.erase(Ref); 226 (void)WasErased; 227 assert(WasErased && "Expected to drop a reference"); 228 } 229 230 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New, 231 const Metadata &MD) { 232 auto I = UseMap.find(Ref); 233 assert(I != UseMap.end() && "Expected to move a reference"); 234 auto OwnerAndIndex = I->second; 235 UseMap.erase(I); 236 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second; 237 (void)WasInserted; 238 assert(WasInserted && "Expected to add a reference"); 239 240 // Check that the references are direct if there's no owner. 241 (void)MD; 242 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) && 243 "Reference without owner must be direct"); 244 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) && 245 "Reference without owner must be direct"); 246 } 247 248 void ReplaceableMetadataImpl::SalvageDebugInfo(const Constant &C) { 249 if (!C.isUsedByMetadata()) { 250 return; 251 } 252 253 LLVMContext &Context = C.getType()->getContext(); 254 auto &Store = Context.pImpl->ValuesAsMetadata; 255 auto I = Store.find(&C); 256 ValueAsMetadata *MD = I->second; 257 using UseTy = 258 std::pair<void *, std::pair<MetadataTracking::OwnerTy, uint64_t>>; 259 // Copy out uses and update value of Constant used by debug info metadata with undef below 260 SmallVector<UseTy, 8> Uses(MD->UseMap.begin(), MD->UseMap.end()); 261 262 for (const auto &Pair : Uses) { 263 MetadataTracking::OwnerTy Owner = Pair.second.first; 264 if (!Owner) 265 continue; 266 if (!Owner.is<Metadata *>()) 267 continue; 268 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>()); 269 if (!OwnerMD) 270 continue; 271 if (isa<DINode>(OwnerMD)) { 272 OwnerMD->handleChangedOperand( 273 Pair.first, ValueAsMetadata::get(UndefValue::get(C.getType()))); 274 } 275 } 276 } 277 278 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) { 279 if (UseMap.empty()) 280 return; 281 282 // Copy out uses since UseMap will get touched below. 283 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>; 284 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 285 llvm::sort(Uses, [](const UseTy &L, const UseTy &R) { 286 return L.second.second < R.second.second; 287 }); 288 for (const auto &Pair : Uses) { 289 // Check that this Ref hasn't disappeared after RAUW (when updating a 290 // previous Ref). 291 if (!UseMap.count(Pair.first)) 292 continue; 293 294 OwnerTy Owner = Pair.second.first; 295 if (!Owner) { 296 // Update unowned tracking references directly. 297 Metadata *&Ref = *static_cast<Metadata **>(Pair.first); 298 Ref = MD; 299 if (MD) 300 MetadataTracking::track(Ref); 301 UseMap.erase(Pair.first); 302 continue; 303 } 304 305 // Check for MetadataAsValue. 306 if (Owner.is<MetadataAsValue *>()) { 307 Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD); 308 continue; 309 } 310 311 // There's a Metadata owner -- dispatch. 312 Metadata *OwnerMD = Owner.get<Metadata *>(); 313 switch (OwnerMD->getMetadataID()) { 314 #define HANDLE_METADATA_LEAF(CLASS) \ 315 case Metadata::CLASS##Kind: \ 316 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \ 317 continue; 318 #include "llvm/IR/Metadata.def" 319 default: 320 llvm_unreachable("Invalid metadata subclass"); 321 } 322 } 323 assert(UseMap.empty() && "Expected all uses to be replaced"); 324 } 325 326 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) { 327 if (UseMap.empty()) 328 return; 329 330 if (!ResolveUsers) { 331 UseMap.clear(); 332 return; 333 } 334 335 // Copy out uses since UseMap could get touched below. 336 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>; 337 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 338 llvm::sort(Uses, [](const UseTy &L, const UseTy &R) { 339 return L.second.second < R.second.second; 340 }); 341 UseMap.clear(); 342 for (const auto &Pair : Uses) { 343 auto Owner = Pair.second.first; 344 if (!Owner) 345 continue; 346 if (Owner.is<MetadataAsValue *>()) 347 continue; 348 349 // Resolve MDNodes that point at this. 350 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>()); 351 if (!OwnerMD) 352 continue; 353 if (OwnerMD->isResolved()) 354 continue; 355 OwnerMD->decrementUnresolvedOperandCount(); 356 } 357 } 358 359 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) { 360 if (auto *N = dyn_cast<MDNode>(&MD)) 361 return N->isResolved() ? nullptr : N->Context.getOrCreateReplaceableUses(); 362 return dyn_cast<ValueAsMetadata>(&MD); 363 } 364 365 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) { 366 if (auto *N = dyn_cast<MDNode>(&MD)) 367 return N->isResolved() ? nullptr : N->Context.getReplaceableUses(); 368 return dyn_cast<ValueAsMetadata>(&MD); 369 } 370 371 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) { 372 if (auto *N = dyn_cast<MDNode>(&MD)) 373 return !N->isResolved(); 374 return isa<ValueAsMetadata>(&MD); 375 } 376 377 static DISubprogram *getLocalFunctionMetadata(Value *V) { 378 assert(V && "Expected value"); 379 if (auto *A = dyn_cast<Argument>(V)) { 380 if (auto *Fn = A->getParent()) 381 return Fn->getSubprogram(); 382 return nullptr; 383 } 384 385 if (BasicBlock *BB = cast<Instruction>(V)->getParent()) { 386 if (auto *Fn = BB->getParent()) 387 return Fn->getSubprogram(); 388 return nullptr; 389 } 390 391 return nullptr; 392 } 393 394 ValueAsMetadata *ValueAsMetadata::get(Value *V) { 395 assert(V && "Unexpected null Value"); 396 397 auto &Context = V->getContext(); 398 auto *&Entry = Context.pImpl->ValuesAsMetadata[V]; 399 if (!Entry) { 400 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) && 401 "Expected constant or function-local value"); 402 assert(!V->IsUsedByMD && "Expected this to be the only metadata use"); 403 V->IsUsedByMD = true; 404 if (auto *C = dyn_cast<Constant>(V)) 405 Entry = new ConstantAsMetadata(C); 406 else 407 Entry = new LocalAsMetadata(V); 408 } 409 410 return Entry; 411 } 412 413 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) { 414 assert(V && "Unexpected null Value"); 415 return V->getContext().pImpl->ValuesAsMetadata.lookup(V); 416 } 417 418 void ValueAsMetadata::handleDeletion(Value *V) { 419 assert(V && "Expected valid value"); 420 421 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata; 422 auto I = Store.find(V); 423 if (I == Store.end()) 424 return; 425 426 // Remove old entry from the map. 427 ValueAsMetadata *MD = I->second; 428 assert(MD && "Expected valid metadata"); 429 assert(MD->getValue() == V && "Expected valid mapping"); 430 Store.erase(I); 431 432 // Delete the metadata. 433 MD->replaceAllUsesWith(nullptr); 434 delete MD; 435 } 436 437 void ValueAsMetadata::handleRAUW(Value *From, Value *To) { 438 assert(From && "Expected valid value"); 439 assert(To && "Expected valid value"); 440 assert(From != To && "Expected changed value"); 441 assert(From->getType() == To->getType() && "Unexpected type change"); 442 443 LLVMContext &Context = From->getType()->getContext(); 444 auto &Store = Context.pImpl->ValuesAsMetadata; 445 auto I = Store.find(From); 446 if (I == Store.end()) { 447 assert(!From->IsUsedByMD && "Expected From not to be used by metadata"); 448 return; 449 } 450 451 // Remove old entry from the map. 452 assert(From->IsUsedByMD && "Expected From to be used by metadata"); 453 From->IsUsedByMD = false; 454 ValueAsMetadata *MD = I->second; 455 assert(MD && "Expected valid metadata"); 456 assert(MD->getValue() == From && "Expected valid mapping"); 457 Store.erase(I); 458 459 if (isa<LocalAsMetadata>(MD)) { 460 if (auto *C = dyn_cast<Constant>(To)) { 461 // Local became a constant. 462 MD->replaceAllUsesWith(ConstantAsMetadata::get(C)); 463 delete MD; 464 return; 465 } 466 if (getLocalFunctionMetadata(From) && getLocalFunctionMetadata(To) && 467 getLocalFunctionMetadata(From) != getLocalFunctionMetadata(To)) { 468 // DISubprogram changed. 469 MD->replaceAllUsesWith(nullptr); 470 delete MD; 471 return; 472 } 473 } else if (!isa<Constant>(To)) { 474 // Changed to function-local value. 475 MD->replaceAllUsesWith(nullptr); 476 delete MD; 477 return; 478 } 479 480 auto *&Entry = Store[To]; 481 if (Entry) { 482 // The target already exists. 483 MD->replaceAllUsesWith(Entry); 484 delete MD; 485 return; 486 } 487 488 // Update MD in place (and update the map entry). 489 assert(!To->IsUsedByMD && "Expected this to be the only metadata use"); 490 To->IsUsedByMD = true; 491 MD->V = To; 492 Entry = MD; 493 } 494 495 //===----------------------------------------------------------------------===// 496 // MDString implementation. 497 // 498 499 MDString *MDString::get(LLVMContext &Context, StringRef Str) { 500 auto &Store = Context.pImpl->MDStringCache; 501 auto I = Store.try_emplace(Str); 502 auto &MapEntry = I.first->getValue(); 503 if (!I.second) 504 return &MapEntry; 505 MapEntry.Entry = &*I.first; 506 return &MapEntry; 507 } 508 509 StringRef MDString::getString() const { 510 assert(Entry && "Expected to find string map entry"); 511 return Entry->first(); 512 } 513 514 //===----------------------------------------------------------------------===// 515 // MDNode implementation. 516 // 517 518 // Assert that the MDNode types will not be unaligned by the objects 519 // prepended to them. 520 #define HANDLE_MDNODE_LEAF(CLASS) \ 521 static_assert( \ 522 alignof(uint64_t) >= alignof(CLASS), \ 523 "Alignment is insufficient after objects prepended to " #CLASS); 524 #include "llvm/IR/Metadata.def" 525 526 void *MDNode::operator new(size_t Size, unsigned NumOps) { 527 size_t OpSize = NumOps * sizeof(MDOperand); 528 // uint64_t is the most aligned type we need support (ensured by static_assert 529 // above) 530 OpSize = alignTo(OpSize, alignof(uint64_t)); 531 void *Ptr = reinterpret_cast<char *>(::operator new(OpSize + Size)) + OpSize; 532 MDOperand *O = static_cast<MDOperand *>(Ptr); 533 for (MDOperand *E = O - NumOps; O != E; --O) 534 (void)new (O - 1) MDOperand; 535 return Ptr; 536 } 537 538 // Repress memory sanitization, due to use-after-destroy by operator 539 // delete. Bug report 24578 identifies this issue. 540 LLVM_NO_SANITIZE_MEMORY_ATTRIBUTE void MDNode::operator delete(void *Mem) { 541 MDNode *N = static_cast<MDNode *>(Mem); 542 size_t OpSize = N->NumOperands * sizeof(MDOperand); 543 OpSize = alignTo(OpSize, alignof(uint64_t)); 544 545 MDOperand *O = static_cast<MDOperand *>(Mem); 546 for (MDOperand *E = O - N->NumOperands; O != E; --O) 547 (O - 1)->~MDOperand(); 548 ::operator delete(reinterpret_cast<char *>(Mem) - OpSize); 549 } 550 551 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage, 552 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2) 553 : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()), 554 NumUnresolved(0), Context(Context) { 555 unsigned Op = 0; 556 for (Metadata *MD : Ops1) 557 setOperand(Op++, MD); 558 for (Metadata *MD : Ops2) 559 setOperand(Op++, MD); 560 561 if (!isUniqued()) 562 return; 563 564 // Count the unresolved operands. If there are any, RAUW support will be 565 // added lazily on first reference. 566 countUnresolvedOperands(); 567 } 568 569 TempMDNode MDNode::clone() const { 570 switch (getMetadataID()) { 571 default: 572 llvm_unreachable("Invalid MDNode subclass"); 573 #define HANDLE_MDNODE_LEAF(CLASS) \ 574 case CLASS##Kind: \ 575 return cast<CLASS>(this)->cloneImpl(); 576 #include "llvm/IR/Metadata.def" 577 } 578 } 579 580 static bool isOperandUnresolved(Metadata *Op) { 581 if (auto *N = dyn_cast_or_null<MDNode>(Op)) 582 return !N->isResolved(); 583 return false; 584 } 585 586 void MDNode::countUnresolvedOperands() { 587 assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted"); 588 assert(isUniqued() && "Expected this to be uniqued"); 589 NumUnresolved = count_if(operands(), isOperandUnresolved); 590 } 591 592 void MDNode::makeUniqued() { 593 assert(isTemporary() && "Expected this to be temporary"); 594 assert(!isResolved() && "Expected this to be unresolved"); 595 596 // Enable uniquing callbacks. 597 for (auto &Op : mutable_operands()) 598 Op.reset(Op.get(), this); 599 600 // Make this 'uniqued'. 601 Storage = Uniqued; 602 countUnresolvedOperands(); 603 if (!NumUnresolved) { 604 dropReplaceableUses(); 605 assert(isResolved() && "Expected this to be resolved"); 606 } 607 608 assert(isUniqued() && "Expected this to be uniqued"); 609 } 610 611 void MDNode::makeDistinct() { 612 assert(isTemporary() && "Expected this to be temporary"); 613 assert(!isResolved() && "Expected this to be unresolved"); 614 615 // Drop RAUW support and store as a distinct node. 616 dropReplaceableUses(); 617 storeDistinctInContext(); 618 619 assert(isDistinct() && "Expected this to be distinct"); 620 assert(isResolved() && "Expected this to be resolved"); 621 } 622 623 void MDNode::resolve() { 624 assert(isUniqued() && "Expected this to be uniqued"); 625 assert(!isResolved() && "Expected this to be unresolved"); 626 627 NumUnresolved = 0; 628 dropReplaceableUses(); 629 630 assert(isResolved() && "Expected this to be resolved"); 631 } 632 633 void MDNode::dropReplaceableUses() { 634 assert(!NumUnresolved && "Unexpected unresolved operand"); 635 636 // Drop any RAUW support. 637 if (Context.hasReplaceableUses()) 638 Context.takeReplaceableUses()->resolveAllUses(); 639 } 640 641 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) { 642 assert(isUniqued() && "Expected this to be uniqued"); 643 assert(NumUnresolved != 0 && "Expected unresolved operands"); 644 645 // Check if an operand was resolved. 646 if (!isOperandUnresolved(Old)) { 647 if (isOperandUnresolved(New)) 648 // An operand was un-resolved! 649 ++NumUnresolved; 650 } else if (!isOperandUnresolved(New)) 651 decrementUnresolvedOperandCount(); 652 } 653 654 void MDNode::decrementUnresolvedOperandCount() { 655 assert(!isResolved() && "Expected this to be unresolved"); 656 if (isTemporary()) 657 return; 658 659 assert(isUniqued() && "Expected this to be uniqued"); 660 if (--NumUnresolved) 661 return; 662 663 // Last unresolved operand has just been resolved. 664 dropReplaceableUses(); 665 assert(isResolved() && "Expected this to become resolved"); 666 } 667 668 void MDNode::resolveCycles() { 669 if (isResolved()) 670 return; 671 672 // Resolve this node immediately. 673 resolve(); 674 675 // Resolve all operands. 676 for (const auto &Op : operands()) { 677 auto *N = dyn_cast_or_null<MDNode>(Op); 678 if (!N) 679 continue; 680 681 assert(!N->isTemporary() && 682 "Expected all forward declarations to be resolved"); 683 if (!N->isResolved()) 684 N->resolveCycles(); 685 } 686 } 687 688 static bool hasSelfReference(MDNode *N) { 689 return llvm::is_contained(N->operands(), N); 690 } 691 692 MDNode *MDNode::replaceWithPermanentImpl() { 693 switch (getMetadataID()) { 694 default: 695 // If this type isn't uniquable, replace with a distinct node. 696 return replaceWithDistinctImpl(); 697 698 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 699 case CLASS##Kind: \ 700 break; 701 #include "llvm/IR/Metadata.def" 702 } 703 704 // Even if this type is uniquable, self-references have to be distinct. 705 if (hasSelfReference(this)) 706 return replaceWithDistinctImpl(); 707 return replaceWithUniquedImpl(); 708 } 709 710 MDNode *MDNode::replaceWithUniquedImpl() { 711 // Try to uniquify in place. 712 MDNode *UniquedNode = uniquify(); 713 714 if (UniquedNode == this) { 715 makeUniqued(); 716 return this; 717 } 718 719 // Collision, so RAUW instead. 720 replaceAllUsesWith(UniquedNode); 721 deleteAsSubclass(); 722 return UniquedNode; 723 } 724 725 MDNode *MDNode::replaceWithDistinctImpl() { 726 makeDistinct(); 727 return this; 728 } 729 730 void MDTuple::recalculateHash() { 731 setHash(MDTupleInfo::KeyTy::calculateHash(this)); 732 } 733 734 void MDNode::dropAllReferences() { 735 for (unsigned I = 0, E = NumOperands; I != E; ++I) 736 setOperand(I, nullptr); 737 if (Context.hasReplaceableUses()) { 738 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false); 739 (void)Context.takeReplaceableUses(); 740 } 741 } 742 743 void MDNode::handleChangedOperand(void *Ref, Metadata *New) { 744 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin(); 745 assert(Op < getNumOperands() && "Expected valid operand"); 746 747 if (!isUniqued()) { 748 // This node is not uniqued. Just set the operand and be done with it. 749 setOperand(Op, New); 750 return; 751 } 752 753 // This node is uniqued. 754 eraseFromStore(); 755 756 Metadata *Old = getOperand(Op); 757 setOperand(Op, New); 758 759 // Drop uniquing for self-reference cycles and deleted constants. 760 if (New == this || (!New && Old && isa<ConstantAsMetadata>(Old))) { 761 if (!isResolved()) 762 resolve(); 763 storeDistinctInContext(); 764 return; 765 } 766 767 // Re-unique the node. 768 auto *Uniqued = uniquify(); 769 if (Uniqued == this) { 770 if (!isResolved()) 771 resolveAfterOperandChange(Old, New); 772 return; 773 } 774 775 // Collision. 776 if (!isResolved()) { 777 // Still unresolved, so RAUW. 778 // 779 // First, clear out all operands to prevent any recursion (similar to 780 // dropAllReferences(), but we still need the use-list). 781 for (unsigned O = 0, E = getNumOperands(); O != E; ++O) 782 setOperand(O, nullptr); 783 if (Context.hasReplaceableUses()) 784 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued); 785 deleteAsSubclass(); 786 return; 787 } 788 789 // Store in non-uniqued form if RAUW isn't possible. 790 storeDistinctInContext(); 791 } 792 793 void MDNode::deleteAsSubclass() { 794 switch (getMetadataID()) { 795 default: 796 llvm_unreachable("Invalid subclass of MDNode"); 797 #define HANDLE_MDNODE_LEAF(CLASS) \ 798 case CLASS##Kind: \ 799 delete cast<CLASS>(this); \ 800 break; 801 #include "llvm/IR/Metadata.def" 802 } 803 } 804 805 template <class T, class InfoT> 806 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) { 807 if (T *U = getUniqued(Store, N)) 808 return U; 809 810 Store.insert(N); 811 return N; 812 } 813 814 template <class NodeTy> struct MDNode::HasCachedHash { 815 using Yes = char[1]; 816 using No = char[2]; 817 template <class U, U Val> struct SFINAE {}; 818 819 template <class U> 820 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *); 821 template <class U> static No &check(...); 822 823 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes); 824 }; 825 826 MDNode *MDNode::uniquify() { 827 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node"); 828 829 // Try to insert into uniquing store. 830 switch (getMetadataID()) { 831 default: 832 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 833 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 834 case CLASS##Kind: { \ 835 CLASS *SubclassThis = cast<CLASS>(this); \ 836 std::integral_constant<bool, HasCachedHash<CLASS>::value> \ 837 ShouldRecalculateHash; \ 838 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \ 839 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \ 840 } 841 #include "llvm/IR/Metadata.def" 842 } 843 } 844 845 void MDNode::eraseFromStore() { 846 switch (getMetadataID()) { 847 default: 848 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 849 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 850 case CLASS##Kind: \ 851 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \ 852 break; 853 #include "llvm/IR/Metadata.def" 854 } 855 } 856 857 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs, 858 StorageType Storage, bool ShouldCreate) { 859 unsigned Hash = 0; 860 if (Storage == Uniqued) { 861 MDTupleInfo::KeyTy Key(MDs); 862 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key)) 863 return N; 864 if (!ShouldCreate) 865 return nullptr; 866 Hash = Key.getHash(); 867 } else { 868 assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); 869 } 870 871 return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs), 872 Storage, Context.pImpl->MDTuples); 873 } 874 875 void MDNode::deleteTemporary(MDNode *N) { 876 assert(N->isTemporary() && "Expected temporary node"); 877 N->replaceAllUsesWith(nullptr); 878 N->deleteAsSubclass(); 879 } 880 881 void MDNode::storeDistinctInContext() { 882 assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses"); 883 assert(!NumUnresolved && "Unexpected unresolved nodes"); 884 Storage = Distinct; 885 assert(isResolved() && "Expected this to be resolved"); 886 887 // Reset the hash. 888 switch (getMetadataID()) { 889 default: 890 llvm_unreachable("Invalid subclass of MDNode"); 891 #define HANDLE_MDNODE_LEAF(CLASS) \ 892 case CLASS##Kind: { \ 893 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \ 894 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \ 895 break; \ 896 } 897 #include "llvm/IR/Metadata.def" 898 } 899 900 getContext().pImpl->DistinctMDNodes.push_back(this); 901 } 902 903 void MDNode::replaceOperandWith(unsigned I, Metadata *New) { 904 if (getOperand(I) == New) 905 return; 906 907 if (!isUniqued()) { 908 setOperand(I, New); 909 return; 910 } 911 912 handleChangedOperand(mutable_begin() + I, New); 913 } 914 915 void MDNode::setOperand(unsigned I, Metadata *New) { 916 assert(I < NumOperands); 917 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr); 918 } 919 920 /// Get a node or a self-reference that looks like it. 921 /// 922 /// Special handling for finding self-references, for use by \a 923 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from 924 /// when self-referencing nodes were still uniqued. If the first operand has 925 /// the same operands as \c Ops, return the first operand instead. 926 static MDNode *getOrSelfReference(LLVMContext &Context, 927 ArrayRef<Metadata *> Ops) { 928 if (!Ops.empty()) 929 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0])) 930 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) { 931 for (unsigned I = 1, E = Ops.size(); I != E; ++I) 932 if (Ops[I] != N->getOperand(I)) 933 return MDNode::get(Context, Ops); 934 return N; 935 } 936 937 return MDNode::get(Context, Ops); 938 } 939 940 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) { 941 if (!A) 942 return B; 943 if (!B) 944 return A; 945 946 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 947 MDs.insert(B->op_begin(), B->op_end()); 948 949 // FIXME: This preserves long-standing behaviour, but is it really the right 950 // behaviour? Or was that an unintended side-effect of node uniquing? 951 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 952 } 953 954 MDNode *MDNode::intersect(MDNode *A, MDNode *B) { 955 if (!A || !B) 956 return nullptr; 957 958 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 959 SmallPtrSet<Metadata *, 4> BSet(B->op_begin(), B->op_end()); 960 MDs.remove_if([&](Metadata *MD) { return !BSet.count(MD); }); 961 962 // FIXME: This preserves long-standing behaviour, but is it really the right 963 // behaviour? Or was that an unintended side-effect of node uniquing? 964 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 965 } 966 967 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) { 968 if (!A || !B) 969 return nullptr; 970 971 // Take the intersection of domains then union the scopes 972 // within those domains 973 SmallPtrSet<const MDNode *, 16> ADomains; 974 SmallPtrSet<const MDNode *, 16> IntersectDomains; 975 SmallSetVector<Metadata *, 4> MDs; 976 for (const MDOperand &MDOp : A->operands()) 977 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 978 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 979 ADomains.insert(Domain); 980 981 for (const MDOperand &MDOp : B->operands()) 982 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 983 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 984 if (ADomains.contains(Domain)) { 985 IntersectDomains.insert(Domain); 986 MDs.insert(MDOp); 987 } 988 989 for (const MDOperand &MDOp : A->operands()) 990 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 991 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 992 if (IntersectDomains.contains(Domain)) 993 MDs.insert(MDOp); 994 995 return MDs.empty() ? nullptr 996 : getOrSelfReference(A->getContext(), MDs.getArrayRef()); 997 } 998 999 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) { 1000 if (!A || !B) 1001 return nullptr; 1002 1003 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF(); 1004 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF(); 1005 if (AVal < BVal) 1006 return A; 1007 return B; 1008 } 1009 1010 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 1011 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 1012 } 1013 1014 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) { 1015 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B); 1016 } 1017 1018 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints, 1019 ConstantInt *Low, ConstantInt *High) { 1020 ConstantRange NewRange(Low->getValue(), High->getValue()); 1021 unsigned Size = EndPoints.size(); 1022 APInt LB = EndPoints[Size - 2]->getValue(); 1023 APInt LE = EndPoints[Size - 1]->getValue(); 1024 ConstantRange LastRange(LB, LE); 1025 if (canBeMerged(NewRange, LastRange)) { 1026 ConstantRange Union = LastRange.unionWith(NewRange); 1027 Type *Ty = High->getType(); 1028 EndPoints[Size - 2] = 1029 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower())); 1030 EndPoints[Size - 1] = 1031 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper())); 1032 return true; 1033 } 1034 return false; 1035 } 1036 1037 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints, 1038 ConstantInt *Low, ConstantInt *High) { 1039 if (!EndPoints.empty()) 1040 if (tryMergeRange(EndPoints, Low, High)) 1041 return; 1042 1043 EndPoints.push_back(Low); 1044 EndPoints.push_back(High); 1045 } 1046 1047 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) { 1048 // Given two ranges, we want to compute the union of the ranges. This 1049 // is slightly complicated by having to combine the intervals and merge 1050 // the ones that overlap. 1051 1052 if (!A || !B) 1053 return nullptr; 1054 1055 if (A == B) 1056 return A; 1057 1058 // First, walk both lists in order of the lower boundary of each interval. 1059 // At each step, try to merge the new interval to the last one we adedd. 1060 SmallVector<ConstantInt *, 4> EndPoints; 1061 int AI = 0; 1062 int BI = 0; 1063 int AN = A->getNumOperands() / 2; 1064 int BN = B->getNumOperands() / 2; 1065 while (AI < AN && BI < BN) { 1066 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI)); 1067 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI)); 1068 1069 if (ALow->getValue().slt(BLow->getValue())) { 1070 addRange(EndPoints, ALow, 1071 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 1072 ++AI; 1073 } else { 1074 addRange(EndPoints, BLow, 1075 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 1076 ++BI; 1077 } 1078 } 1079 while (AI < AN) { 1080 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)), 1081 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 1082 ++AI; 1083 } 1084 while (BI < BN) { 1085 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)), 1086 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 1087 ++BI; 1088 } 1089 1090 // If we have more than 2 ranges (4 endpoints) we have to try to merge 1091 // the last and first ones. 1092 unsigned Size = EndPoints.size(); 1093 if (Size > 4) { 1094 ConstantInt *FB = EndPoints[0]; 1095 ConstantInt *FE = EndPoints[1]; 1096 if (tryMergeRange(EndPoints, FB, FE)) { 1097 for (unsigned i = 0; i < Size - 2; ++i) { 1098 EndPoints[i] = EndPoints[i + 2]; 1099 } 1100 EndPoints.resize(Size - 2); 1101 } 1102 } 1103 1104 // If in the end we have a single range, it is possible that it is now the 1105 // full range. Just drop the metadata in that case. 1106 if (EndPoints.size() == 2) { 1107 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue()); 1108 if (Range.isFullSet()) 1109 return nullptr; 1110 } 1111 1112 SmallVector<Metadata *, 4> MDs; 1113 MDs.reserve(EndPoints.size()); 1114 for (auto *I : EndPoints) 1115 MDs.push_back(ConstantAsMetadata::get(I)); 1116 return MDNode::get(A->getContext(), MDs); 1117 } 1118 1119 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) { 1120 if (!A || !B) 1121 return nullptr; 1122 1123 ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0)); 1124 ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0)); 1125 if (AVal->getZExtValue() < BVal->getZExtValue()) 1126 return A; 1127 return B; 1128 } 1129 1130 //===----------------------------------------------------------------------===// 1131 // NamedMDNode implementation. 1132 // 1133 1134 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) { 1135 return *(SmallVector<TrackingMDRef, 4> *)Operands; 1136 } 1137 1138 NamedMDNode::NamedMDNode(const Twine &N) 1139 : Name(N.str()), Operands(new SmallVector<TrackingMDRef, 4>()) {} 1140 1141 NamedMDNode::~NamedMDNode() { 1142 dropAllReferences(); 1143 delete &getNMDOps(Operands); 1144 } 1145 1146 unsigned NamedMDNode::getNumOperands() const { 1147 return (unsigned)getNMDOps(Operands).size(); 1148 } 1149 1150 MDNode *NamedMDNode::getOperand(unsigned i) const { 1151 assert(i < getNumOperands() && "Invalid Operand number!"); 1152 auto *N = getNMDOps(Operands)[i].get(); 1153 return cast_or_null<MDNode>(N); 1154 } 1155 1156 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); } 1157 1158 void NamedMDNode::setOperand(unsigned I, MDNode *New) { 1159 assert(I < getNumOperands() && "Invalid operand number"); 1160 getNMDOps(Operands)[I].reset(New); 1161 } 1162 1163 void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); } 1164 1165 void NamedMDNode::clearOperands() { getNMDOps(Operands).clear(); } 1166 1167 StringRef NamedMDNode::getName() const { return StringRef(Name); } 1168 1169 //===----------------------------------------------------------------------===// 1170 // Instruction Metadata method implementations. 1171 // 1172 1173 MDNode *MDAttachments::lookup(unsigned ID) const { 1174 for (const auto &A : Attachments) 1175 if (A.MDKind == ID) 1176 return A.Node; 1177 return nullptr; 1178 } 1179 1180 void MDAttachments::get(unsigned ID, SmallVectorImpl<MDNode *> &Result) const { 1181 for (const auto &A : Attachments) 1182 if (A.MDKind == ID) 1183 Result.push_back(A.Node); 1184 } 1185 1186 void MDAttachments::getAll( 1187 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1188 for (const auto &A : Attachments) 1189 Result.emplace_back(A.MDKind, A.Node); 1190 1191 // Sort the resulting array so it is stable with respect to metadata IDs. We 1192 // need to preserve the original insertion order though. 1193 if (Result.size() > 1) 1194 llvm::stable_sort(Result, less_first()); 1195 } 1196 1197 void MDAttachments::set(unsigned ID, MDNode *MD) { 1198 erase(ID); 1199 if (MD) 1200 insert(ID, *MD); 1201 } 1202 1203 void MDAttachments::insert(unsigned ID, MDNode &MD) { 1204 Attachments.push_back({ID, TrackingMDNodeRef(&MD)}); 1205 } 1206 1207 bool MDAttachments::erase(unsigned ID) { 1208 if (empty()) 1209 return false; 1210 1211 // Common case is one value. 1212 if (Attachments.size() == 1 && Attachments.back().MDKind == ID) { 1213 Attachments.pop_back(); 1214 return true; 1215 } 1216 1217 auto OldSize = Attachments.size(); 1218 llvm::erase_if(Attachments, 1219 [ID](const Attachment &A) { return A.MDKind == ID; }); 1220 return OldSize != Attachments.size(); 1221 } 1222 1223 MDNode *Value::getMetadata(unsigned KindID) const { 1224 if (!hasMetadata()) 1225 return nullptr; 1226 const auto &Info = getContext().pImpl->ValueMetadata[this]; 1227 assert(!Info.empty() && "bit out of sync with hash table"); 1228 return Info.lookup(KindID); 1229 } 1230 1231 MDNode *Value::getMetadata(StringRef Kind) const { 1232 if (!hasMetadata()) 1233 return nullptr; 1234 const auto &Info = getContext().pImpl->ValueMetadata[this]; 1235 assert(!Info.empty() && "bit out of sync with hash table"); 1236 return Info.lookup(getContext().getMDKindID(Kind)); 1237 } 1238 1239 void Value::getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const { 1240 if (hasMetadata()) 1241 getContext().pImpl->ValueMetadata[this].get(KindID, MDs); 1242 } 1243 1244 void Value::getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const { 1245 if (hasMetadata()) 1246 getMetadata(getContext().getMDKindID(Kind), MDs); 1247 } 1248 1249 void Value::getAllMetadata( 1250 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { 1251 if (hasMetadata()) { 1252 assert(getContext().pImpl->ValueMetadata.count(this) && 1253 "bit out of sync with hash table"); 1254 const auto &Info = getContext().pImpl->ValueMetadata.find(this)->second; 1255 assert(!Info.empty() && "Shouldn't have called this"); 1256 Info.getAll(MDs); 1257 } 1258 } 1259 1260 void Value::setMetadata(unsigned KindID, MDNode *Node) { 1261 assert(isa<Instruction>(this) || isa<GlobalObject>(this)); 1262 1263 // Handle the case when we're adding/updating metadata on a value. 1264 if (Node) { 1265 auto &Info = getContext().pImpl->ValueMetadata[this]; 1266 assert(!Info.empty() == HasMetadata && "bit out of sync with hash table"); 1267 if (Info.empty()) 1268 HasMetadata = true; 1269 Info.set(KindID, Node); 1270 return; 1271 } 1272 1273 // Otherwise, we're removing metadata from an instruction. 1274 assert((HasMetadata == (getContext().pImpl->ValueMetadata.count(this) > 0)) && 1275 "bit out of sync with hash table"); 1276 if (!HasMetadata) 1277 return; // Nothing to remove! 1278 auto &Info = getContext().pImpl->ValueMetadata[this]; 1279 1280 // Handle removal of an existing value. 1281 Info.erase(KindID); 1282 if (!Info.empty()) 1283 return; 1284 getContext().pImpl->ValueMetadata.erase(this); 1285 HasMetadata = false; 1286 } 1287 1288 void Value::setMetadata(StringRef Kind, MDNode *Node) { 1289 if (!Node && !HasMetadata) 1290 return; 1291 setMetadata(getContext().getMDKindID(Kind), Node); 1292 } 1293 1294 void Value::addMetadata(unsigned KindID, MDNode &MD) { 1295 assert(isa<Instruction>(this) || isa<GlobalObject>(this)); 1296 if (!HasMetadata) 1297 HasMetadata = true; 1298 getContext().pImpl->ValueMetadata[this].insert(KindID, MD); 1299 } 1300 1301 void Value::addMetadata(StringRef Kind, MDNode &MD) { 1302 addMetadata(getContext().getMDKindID(Kind), MD); 1303 } 1304 1305 bool Value::eraseMetadata(unsigned KindID) { 1306 // Nothing to unset. 1307 if (!HasMetadata) 1308 return false; 1309 1310 auto &Store = getContext().pImpl->ValueMetadata[this]; 1311 bool Changed = Store.erase(KindID); 1312 if (Store.empty()) 1313 clearMetadata(); 1314 return Changed; 1315 } 1316 1317 void Value::clearMetadata() { 1318 if (!HasMetadata) 1319 return; 1320 assert(getContext().pImpl->ValueMetadata.count(this) && 1321 "bit out of sync with hash table"); 1322 getContext().pImpl->ValueMetadata.erase(this); 1323 HasMetadata = false; 1324 } 1325 1326 void Instruction::setMetadata(StringRef Kind, MDNode *Node) { 1327 if (!Node && !hasMetadata()) 1328 return; 1329 setMetadata(getContext().getMDKindID(Kind), Node); 1330 } 1331 1332 MDNode *Instruction::getMetadataImpl(StringRef Kind) const { 1333 return getMetadataImpl(getContext().getMDKindID(Kind)); 1334 } 1335 1336 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) { 1337 if (!Value::hasMetadata()) 1338 return; // Nothing to remove! 1339 1340 if (KnownIDs.empty()) { 1341 // Just drop our entry at the store. 1342 clearMetadata(); 1343 return; 1344 } 1345 1346 SmallSet<unsigned, 4> KnownSet; 1347 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 1348 1349 auto &MetadataStore = getContext().pImpl->ValueMetadata; 1350 auto &Info = MetadataStore[this]; 1351 assert(!Info.empty() && "bit out of sync with hash table"); 1352 Info.remove_if([&KnownSet](const MDAttachments::Attachment &I) { 1353 return !KnownSet.count(I.MDKind); 1354 }); 1355 1356 if (Info.empty()) { 1357 // Drop our entry at the store. 1358 clearMetadata(); 1359 } 1360 } 1361 1362 void Instruction::setMetadata(unsigned KindID, MDNode *Node) { 1363 if (!Node && !hasMetadata()) 1364 return; 1365 1366 // Handle 'dbg' as a special case since it is not stored in the hash table. 1367 if (KindID == LLVMContext::MD_dbg) { 1368 DbgLoc = DebugLoc(Node); 1369 return; 1370 } 1371 1372 Value::setMetadata(KindID, Node); 1373 } 1374 1375 void Instruction::addAnnotationMetadata(StringRef Name) { 1376 MDBuilder MDB(getContext()); 1377 1378 auto *Existing = getMetadata(LLVMContext::MD_annotation); 1379 SmallVector<Metadata *, 4> Names; 1380 bool AppendName = true; 1381 if (Existing) { 1382 auto *Tuple = cast<MDTuple>(Existing); 1383 for (auto &N : Tuple->operands()) { 1384 if (cast<MDString>(N.get())->getString() == Name) 1385 AppendName = false; 1386 Names.push_back(N.get()); 1387 } 1388 } 1389 if (AppendName) 1390 Names.push_back(MDB.createString(Name)); 1391 1392 MDNode *MD = MDTuple::get(getContext(), Names); 1393 setMetadata(LLVMContext::MD_annotation, MD); 1394 } 1395 1396 AAMDNodes Instruction::getAAMetadata() const { 1397 AAMDNodes Result; 1398 Result.TBAA = getMetadata(LLVMContext::MD_tbaa); 1399 Result.TBAAStruct = getMetadata(LLVMContext::MD_tbaa_struct); 1400 Result.Scope = getMetadata(LLVMContext::MD_alias_scope); 1401 Result.NoAlias = getMetadata(LLVMContext::MD_noalias); 1402 return Result; 1403 } 1404 1405 void Instruction::setAAMetadata(const AAMDNodes &N) { 1406 setMetadata(LLVMContext::MD_tbaa, N.TBAA); 1407 setMetadata(LLVMContext::MD_tbaa_struct, N.TBAAStruct); 1408 setMetadata(LLVMContext::MD_alias_scope, N.Scope); 1409 setMetadata(LLVMContext::MD_noalias, N.NoAlias); 1410 } 1411 1412 MDNode *Instruction::getMetadataImpl(unsigned KindID) const { 1413 // Handle 'dbg' as a special case since it is not stored in the hash table. 1414 if (KindID == LLVMContext::MD_dbg) 1415 return DbgLoc.getAsMDNode(); 1416 return Value::getMetadata(KindID); 1417 } 1418 1419 void Instruction::getAllMetadataImpl( 1420 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1421 Result.clear(); 1422 1423 // Handle 'dbg' as a special case since it is not stored in the hash table. 1424 if (DbgLoc) { 1425 Result.push_back( 1426 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode())); 1427 } 1428 Value::getAllMetadata(Result); 1429 } 1430 1431 bool Instruction::extractProfMetadata(uint64_t &TrueVal, 1432 uint64_t &FalseVal) const { 1433 assert( 1434 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select) && 1435 "Looking for branch weights on something besides branch or select"); 1436 1437 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1438 if (!ProfileData || ProfileData->getNumOperands() != 3) 1439 return false; 1440 1441 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1442 if (!ProfDataName || !ProfDataName->getString().equals("branch_weights")) 1443 return false; 1444 1445 auto *CITrue = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 1446 auto *CIFalse = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 1447 if (!CITrue || !CIFalse) 1448 return false; 1449 1450 TrueVal = CITrue->getValue().getZExtValue(); 1451 FalseVal = CIFalse->getValue().getZExtValue(); 1452 1453 return true; 1454 } 1455 1456 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) const { 1457 assert( 1458 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select || 1459 getOpcode() == Instruction::Call || getOpcode() == Instruction::Invoke || 1460 getOpcode() == Instruction::IndirectBr || 1461 getOpcode() == Instruction::Switch) && 1462 "Looking for branch weights on something besides branch"); 1463 1464 TotalVal = 0; 1465 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1466 if (!ProfileData) 1467 return false; 1468 1469 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1470 if (!ProfDataName) 1471 return false; 1472 1473 if (ProfDataName->getString().equals("branch_weights")) { 1474 TotalVal = 0; 1475 for (unsigned i = 1; i < ProfileData->getNumOperands(); i++) { 1476 auto *V = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i)); 1477 if (!V) 1478 return false; 1479 TotalVal += V->getValue().getZExtValue(); 1480 } 1481 return true; 1482 } else if (ProfDataName->getString().equals("VP") && 1483 ProfileData->getNumOperands() > 3) { 1484 TotalVal = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)) 1485 ->getValue() 1486 .getZExtValue(); 1487 return true; 1488 } 1489 return false; 1490 } 1491 1492 void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) { 1493 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 1494 Other->getAllMetadata(MDs); 1495 for (auto &MD : MDs) { 1496 // We need to adjust the type metadata offset. 1497 if (Offset != 0 && MD.first == LLVMContext::MD_type) { 1498 auto *OffsetConst = cast<ConstantInt>( 1499 cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue()); 1500 Metadata *TypeId = MD.second->getOperand(1); 1501 auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get( 1502 OffsetConst->getType(), OffsetConst->getValue() + Offset)); 1503 addMetadata(LLVMContext::MD_type, 1504 *MDNode::get(getContext(), {NewOffsetMD, TypeId})); 1505 continue; 1506 } 1507 // If an offset adjustment was specified we need to modify the DIExpression 1508 // to prepend the adjustment: 1509 // !DIExpression(DW_OP_plus, Offset, [original expr]) 1510 auto *Attachment = MD.second; 1511 if (Offset != 0 && MD.first == LLVMContext::MD_dbg) { 1512 DIGlobalVariable *GV = dyn_cast<DIGlobalVariable>(Attachment); 1513 DIExpression *E = nullptr; 1514 if (!GV) { 1515 auto *GVE = cast<DIGlobalVariableExpression>(Attachment); 1516 GV = GVE->getVariable(); 1517 E = GVE->getExpression(); 1518 } 1519 ArrayRef<uint64_t> OrigElements; 1520 if (E) 1521 OrigElements = E->getElements(); 1522 std::vector<uint64_t> Elements(OrigElements.size() + 2); 1523 Elements[0] = dwarf::DW_OP_plus_uconst; 1524 Elements[1] = Offset; 1525 llvm::copy(OrigElements, Elements.begin() + 2); 1526 E = DIExpression::get(getContext(), Elements); 1527 Attachment = DIGlobalVariableExpression::get(getContext(), GV, E); 1528 } 1529 addMetadata(MD.first, *Attachment); 1530 } 1531 } 1532 1533 void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) { 1534 addMetadata( 1535 LLVMContext::MD_type, 1536 *MDTuple::get(getContext(), 1537 {ConstantAsMetadata::get(ConstantInt::get( 1538 Type::getInt64Ty(getContext()), Offset)), 1539 TypeID})); 1540 } 1541 1542 void GlobalObject::setVCallVisibilityMetadata(VCallVisibility Visibility) { 1543 // Remove any existing vcall visibility metadata first in case we are 1544 // updating. 1545 eraseMetadata(LLVMContext::MD_vcall_visibility); 1546 addMetadata(LLVMContext::MD_vcall_visibility, 1547 *MDNode::get(getContext(), 1548 {ConstantAsMetadata::get(ConstantInt::get( 1549 Type::getInt64Ty(getContext()), Visibility))})); 1550 } 1551 1552 GlobalObject::VCallVisibility GlobalObject::getVCallVisibility() const { 1553 if (MDNode *MD = getMetadata(LLVMContext::MD_vcall_visibility)) { 1554 uint64_t Val = cast<ConstantInt>( 1555 cast<ConstantAsMetadata>(MD->getOperand(0))->getValue()) 1556 ->getZExtValue(); 1557 assert(Val <= 2 && "unknown vcall visibility!"); 1558 return (VCallVisibility)Val; 1559 } 1560 return VCallVisibility::VCallVisibilityPublic; 1561 } 1562 1563 void Function::setSubprogram(DISubprogram *SP) { 1564 setMetadata(LLVMContext::MD_dbg, SP); 1565 } 1566 1567 DISubprogram *Function::getSubprogram() const { 1568 return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg)); 1569 } 1570 1571 bool Function::isDebugInfoForProfiling() const { 1572 if (DISubprogram *SP = getSubprogram()) { 1573 if (DICompileUnit *CU = SP->getUnit()) { 1574 return CU->getDebugInfoForProfiling(); 1575 } 1576 } 1577 return false; 1578 } 1579 1580 void GlobalVariable::addDebugInfo(DIGlobalVariableExpression *GV) { 1581 addMetadata(LLVMContext::MD_dbg, *GV); 1582 } 1583 1584 void GlobalVariable::getDebugInfo( 1585 SmallVectorImpl<DIGlobalVariableExpression *> &GVs) const { 1586 SmallVector<MDNode *, 1> MDs; 1587 getMetadata(LLVMContext::MD_dbg, MDs); 1588 for (MDNode *MD : MDs) 1589 GVs.push_back(cast<DIGlobalVariableExpression>(MD)); 1590 } 1591