1 //===- LLVMContextImpl.cpp - Implement LLVMContextImpl --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the opaque LLVMContextImpl. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LLVMContextImpl.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/IR/Module.h" 16 #include "llvm/IR/OptBisect.h" 17 #include "llvm/IR/Type.h" 18 #include "llvm/Support/ManagedStatic.h" 19 #include <cassert> 20 #include <utility> 21 22 using namespace llvm; 23 24 LLVMContextImpl::LLVMContextImpl(LLVMContext &C) 25 : DiagHandler(std::make_unique<DiagnosticHandler>()), 26 VoidTy(C, Type::VoidTyID), 27 LabelTy(C, Type::LabelTyID), 28 HalfTy(C, Type::HalfTyID), 29 FloatTy(C, Type::FloatTyID), 30 DoubleTy(C, Type::DoubleTyID), 31 MetadataTy(C, Type::MetadataTyID), 32 TokenTy(C, Type::TokenTyID), 33 X86_FP80Ty(C, Type::X86_FP80TyID), 34 FP128Ty(C, Type::FP128TyID), 35 PPC_FP128Ty(C, Type::PPC_FP128TyID), 36 X86_MMXTy(C, Type::X86_MMXTyID), 37 Int1Ty(C, 1), 38 Int8Ty(C, 8), 39 Int16Ty(C, 16), 40 Int32Ty(C, 32), 41 Int64Ty(C, 64), 42 Int128Ty(C, 128) {} 43 44 LLVMContextImpl::~LLVMContextImpl() { 45 // NOTE: We need to delete the contents of OwnedModules, but Module's dtor 46 // will call LLVMContextImpl::removeModule, thus invalidating iterators into 47 // the container. Avoid iterators during this operation: 48 while (!OwnedModules.empty()) 49 delete *OwnedModules.begin(); 50 51 #ifndef NDEBUG 52 // Check for metadata references from leaked Instructions. 53 for (auto &Pair : InstructionMetadata) 54 Pair.first->dump(); 55 assert(InstructionMetadata.empty() && 56 "Instructions with metadata have been leaked"); 57 #endif 58 59 // Drop references for MDNodes. Do this before Values get deleted to avoid 60 // unnecessary RAUW when nodes are still unresolved. 61 for (auto *I : DistinctMDNodes) 62 I->dropAllReferences(); 63 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 64 for (auto *I : CLASS##s) \ 65 I->dropAllReferences(); 66 #include "llvm/IR/Metadata.def" 67 68 // Also drop references that come from the Value bridges. 69 for (auto &Pair : ValuesAsMetadata) 70 Pair.second->dropUsers(); 71 for (auto &Pair : MetadataAsValues) 72 Pair.second->dropUse(); 73 74 // Destroy MDNodes. 75 for (MDNode *I : DistinctMDNodes) 76 I->deleteAsSubclass(); 77 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 78 for (CLASS * I : CLASS##s) \ 79 delete I; 80 #include "llvm/IR/Metadata.def" 81 82 // Free the constants. 83 for (auto *I : ExprConstants) 84 I->dropAllReferences(); 85 for (auto *I : ArrayConstants) 86 I->dropAllReferences(); 87 for (auto *I : StructConstants) 88 I->dropAllReferences(); 89 for (auto *I : VectorConstants) 90 I->dropAllReferences(); 91 ExprConstants.freeConstants(); 92 ArrayConstants.freeConstants(); 93 StructConstants.freeConstants(); 94 VectorConstants.freeConstants(); 95 InlineAsms.freeConstants(); 96 97 CAZConstants.clear(); 98 CPNConstants.clear(); 99 UVConstants.clear(); 100 IntConstants.clear(); 101 FPConstants.clear(); 102 103 for (auto &CDSConstant : CDSConstants) 104 delete CDSConstant.second; 105 CDSConstants.clear(); 106 107 // Destroy attribute node lists. 108 for (FoldingSetIterator<AttributeSetNode> I = AttrsSetNodes.begin(), 109 E = AttrsSetNodes.end(); I != E; ) { 110 FoldingSetIterator<AttributeSetNode> Elem = I++; 111 delete &*Elem; 112 } 113 114 // Destroy MetadataAsValues. 115 { 116 SmallVector<MetadataAsValue *, 8> MDVs; 117 MDVs.reserve(MetadataAsValues.size()); 118 for (auto &Pair : MetadataAsValues) 119 MDVs.push_back(Pair.second); 120 MetadataAsValues.clear(); 121 for (auto *V : MDVs) 122 delete V; 123 } 124 125 // Destroy ValuesAsMetadata. 126 for (auto &Pair : ValuesAsMetadata) 127 delete Pair.second; 128 } 129 130 void LLVMContextImpl::dropTriviallyDeadConstantArrays() { 131 SmallSetVector<ConstantArray *, 4> WorkList(ArrayConstants.begin(), 132 ArrayConstants.end()); 133 134 while (!WorkList.empty()) { 135 ConstantArray *C = WorkList.pop_back_val(); 136 if (C->use_empty()) { 137 for (const Use &Op : C->operands()) { 138 if (auto *COp = dyn_cast<ConstantArray>(Op)) 139 WorkList.insert(COp); 140 } 141 C->destroyConstant(); 142 } 143 } 144 } 145 146 void Module::dropTriviallyDeadConstantArrays() { 147 Context.pImpl->dropTriviallyDeadConstantArrays(); 148 } 149 150 namespace llvm { 151 152 /// Make MDOperand transparent for hashing. 153 /// 154 /// This overload of an implementation detail of the hashing library makes 155 /// MDOperand hash to the same value as a \a Metadata pointer. 156 /// 157 /// Note that overloading \a hash_value() as follows: 158 /// 159 /// \code 160 /// size_t hash_value(const MDOperand &X) { return hash_value(X.get()); } 161 /// \endcode 162 /// 163 /// does not cause MDOperand to be transparent. In particular, a bare pointer 164 /// doesn't get hashed before it's combined, whereas \a MDOperand would. 165 static const Metadata *get_hashable_data(const MDOperand &X) { return X.get(); } 166 167 } // end namespace llvm 168 169 unsigned MDNodeOpsKey::calculateHash(MDNode *N, unsigned Offset) { 170 unsigned Hash = hash_combine_range(N->op_begin() + Offset, N->op_end()); 171 #ifndef NDEBUG 172 { 173 SmallVector<Metadata *, 8> MDs(N->op_begin() + Offset, N->op_end()); 174 unsigned RawHash = calculateHash(MDs); 175 assert(Hash == RawHash && 176 "Expected hash of MDOperand to equal hash of Metadata*"); 177 } 178 #endif 179 return Hash; 180 } 181 182 unsigned MDNodeOpsKey::calculateHash(ArrayRef<Metadata *> Ops) { 183 return hash_combine_range(Ops.begin(), Ops.end()); 184 } 185 186 StringMapEntry<uint32_t> *LLVMContextImpl::getOrInsertBundleTag(StringRef Tag) { 187 uint32_t NewIdx = BundleTagCache.size(); 188 return &*(BundleTagCache.insert(std::make_pair(Tag, NewIdx)).first); 189 } 190 191 void LLVMContextImpl::getOperandBundleTags(SmallVectorImpl<StringRef> &Tags) const { 192 Tags.resize(BundleTagCache.size()); 193 for (const auto &T : BundleTagCache) 194 Tags[T.second] = T.first(); 195 } 196 197 uint32_t LLVMContextImpl::getOperandBundleTagID(StringRef Tag) const { 198 auto I = BundleTagCache.find(Tag); 199 assert(I != BundleTagCache.end() && "Unknown tag!"); 200 return I->second; 201 } 202 203 SyncScope::ID LLVMContextImpl::getOrInsertSyncScopeID(StringRef SSN) { 204 auto NewSSID = SSC.size(); 205 assert(NewSSID < std::numeric_limits<SyncScope::ID>::max() && 206 "Hit the maximum number of synchronization scopes allowed!"); 207 return SSC.insert(std::make_pair(SSN, SyncScope::ID(NewSSID))).first->second; 208 } 209 210 void LLVMContextImpl::getSyncScopeNames( 211 SmallVectorImpl<StringRef> &SSNs) const { 212 SSNs.resize(SSC.size()); 213 for (const auto &SSE : SSC) 214 SSNs[SSE.second] = SSE.first(); 215 } 216 217 /// Singleton instance of the OptBisect class. 218 /// 219 /// This singleton is accessed via the LLVMContext::getOptPassGate() function. 220 /// It provides a mechanism to disable passes and individual optimizations at 221 /// compile time based on a command line option (-opt-bisect-limit) in order to 222 /// perform a bisecting search for optimization-related problems. 223 /// 224 /// Even if multiple LLVMContext objects are created, they will all return the 225 /// same instance of OptBisect in order to provide a single bisect count. Any 226 /// code that uses the OptBisect object should be serialized when bisection is 227 /// enabled in order to enable a consistent bisect count. 228 static ManagedStatic<OptBisect> OptBisector; 229 230 OptPassGate &LLVMContextImpl::getOptPassGate() const { 231 if (!OPG) 232 OPG = &(*OptBisector); 233 return *OPG; 234 } 235 236 void LLVMContextImpl::setOptPassGate(OptPassGate& OPG) { 237 this->OPG = &OPG; 238 } 239