1 //===-- LLVMContextImpl.cpp - Implement LLVMContextImpl -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the opaque LLVMContextImpl. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLVMContextImpl.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/IR/Attributes.h" 17 #include "llvm/IR/DiagnosticInfo.h" 18 #include "llvm/IR/Module.h" 19 #include "llvm/IR/OptBisect.h" 20 #include "llvm/Support/ManagedStatic.h" 21 #include <algorithm> 22 using namespace llvm; 23 24 LLVMContextImpl::LLVMContextImpl(LLVMContext &C) 25 : TheTrueVal(nullptr), TheFalseVal(nullptr), 26 VoidTy(C, Type::VoidTyID), 27 LabelTy(C, Type::LabelTyID), 28 HalfTy(C, Type::HalfTyID), 29 FloatTy(C, Type::FloatTyID), 30 DoubleTy(C, Type::DoubleTyID), 31 MetadataTy(C, Type::MetadataTyID), 32 TokenTy(C, Type::TokenTyID), 33 X86_FP80Ty(C, Type::X86_FP80TyID), 34 FP128Ty(C, Type::FP128TyID), 35 PPC_FP128Ty(C, Type::PPC_FP128TyID), 36 X86_MMXTy(C, Type::X86_MMXTyID), 37 Int1Ty(C, 1), 38 Int8Ty(C, 8), 39 Int16Ty(C, 16), 40 Int32Ty(C, 32), 41 Int64Ty(C, 64), 42 Int128Ty(C, 128) { 43 InlineAsmDiagHandler = nullptr; 44 InlineAsmDiagContext = nullptr; 45 DiagnosticHandler = nullptr; 46 DiagnosticContext = nullptr; 47 RespectDiagnosticFilters = false; 48 DiagnosticHotnessRequested = false; 49 YieldCallback = nullptr; 50 YieldOpaqueHandle = nullptr; 51 NamedStructTypesUniqueID = 0; 52 } 53 54 LLVMContextImpl::~LLVMContextImpl() { 55 // NOTE: We need to delete the contents of OwnedModules, but Module's dtor 56 // will call LLVMContextImpl::removeModule, thus invalidating iterators into 57 // the container. Avoid iterators during this operation: 58 while (!OwnedModules.empty()) 59 delete *OwnedModules.begin(); 60 61 // Drop references for MDNodes. Do this before Values get deleted to avoid 62 // unnecessary RAUW when nodes are still unresolved. 63 for (auto *I : DistinctMDNodes) 64 I->dropAllReferences(); 65 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 66 for (auto *I : CLASS##s) \ 67 I->dropAllReferences(); 68 #include "llvm/IR/Metadata.def" 69 70 // Also drop references that come from the Value bridges. 71 for (auto &Pair : ValuesAsMetadata) 72 Pair.second->dropUsers(); 73 for (auto &Pair : MetadataAsValues) 74 Pair.second->dropUse(); 75 76 // Destroy MDNodes. 77 for (MDNode *I : DistinctMDNodes) 78 I->deleteAsSubclass(); 79 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 80 for (CLASS * I : CLASS##s) \ 81 delete I; 82 #include "llvm/IR/Metadata.def" 83 84 // Free the constants. 85 for (auto *I : ExprConstants) 86 I->dropAllReferences(); 87 for (auto *I : ArrayConstants) 88 I->dropAllReferences(); 89 for (auto *I : StructConstants) 90 I->dropAllReferences(); 91 for (auto *I : VectorConstants) 92 I->dropAllReferences(); 93 ExprConstants.freeConstants(); 94 ArrayConstants.freeConstants(); 95 StructConstants.freeConstants(); 96 VectorConstants.freeConstants(); 97 InlineAsms.freeConstants(); 98 99 CAZConstants.clear(); 100 CPNConstants.clear(); 101 UVConstants.clear(); 102 IntConstants.clear(); 103 FPConstants.clear(); 104 105 for (auto &CDSConstant : CDSConstants) 106 delete CDSConstant.second; 107 CDSConstants.clear(); 108 109 // Destroy attributes. 110 for (FoldingSetIterator<AttributeImpl> I = AttrsSet.begin(), 111 E = AttrsSet.end(); I != E; ) { 112 FoldingSetIterator<AttributeImpl> Elem = I++; 113 delete &*Elem; 114 } 115 116 // Destroy attribute lists. 117 for (FoldingSetIterator<AttributeSetImpl> I = AttrsLists.begin(), 118 E = AttrsLists.end(); I != E; ) { 119 FoldingSetIterator<AttributeSetImpl> Elem = I++; 120 delete &*Elem; 121 } 122 123 // Destroy attribute node lists. 124 for (FoldingSetIterator<AttributeSetNode> I = AttrsSetNodes.begin(), 125 E = AttrsSetNodes.end(); I != E; ) { 126 FoldingSetIterator<AttributeSetNode> Elem = I++; 127 delete &*Elem; 128 } 129 130 // Destroy MetadataAsValues. 131 { 132 SmallVector<MetadataAsValue *, 8> MDVs; 133 MDVs.reserve(MetadataAsValues.size()); 134 for (auto &Pair : MetadataAsValues) 135 MDVs.push_back(Pair.second); 136 MetadataAsValues.clear(); 137 for (auto *V : MDVs) 138 delete V; 139 } 140 141 // Destroy ValuesAsMetadata. 142 for (auto &Pair : ValuesAsMetadata) 143 delete Pair.second; 144 } 145 146 void LLVMContextImpl::dropTriviallyDeadConstantArrays() { 147 bool Changed; 148 do { 149 Changed = false; 150 151 for (auto I = ArrayConstants.begin(), E = ArrayConstants.end(); I != E;) { 152 auto *C = *I++; 153 if (C->use_empty()) { 154 Changed = true; 155 C->destroyConstant(); 156 } 157 } 158 159 } while (Changed); 160 } 161 162 void Module::dropTriviallyDeadConstantArrays() { 163 Context.pImpl->dropTriviallyDeadConstantArrays(); 164 } 165 166 namespace llvm { 167 /// \brief Make MDOperand transparent for hashing. 168 /// 169 /// This overload of an implementation detail of the hashing library makes 170 /// MDOperand hash to the same value as a \a Metadata pointer. 171 /// 172 /// Note that overloading \a hash_value() as follows: 173 /// 174 /// \code 175 /// size_t hash_value(const MDOperand &X) { return hash_value(X.get()); } 176 /// \endcode 177 /// 178 /// does not cause MDOperand to be transparent. In particular, a bare pointer 179 /// doesn't get hashed before it's combined, whereas \a MDOperand would. 180 static const Metadata *get_hashable_data(const MDOperand &X) { return X.get(); } 181 } 182 183 unsigned MDNodeOpsKey::calculateHash(MDNode *N, unsigned Offset) { 184 unsigned Hash = hash_combine_range(N->op_begin() + Offset, N->op_end()); 185 #ifndef NDEBUG 186 { 187 SmallVector<Metadata *, 8> MDs(N->op_begin() + Offset, N->op_end()); 188 unsigned RawHash = calculateHash(MDs); 189 assert(Hash == RawHash && 190 "Expected hash of MDOperand to equal hash of Metadata*"); 191 } 192 #endif 193 return Hash; 194 } 195 196 unsigned MDNodeOpsKey::calculateHash(ArrayRef<Metadata *> Ops) { 197 return hash_combine_range(Ops.begin(), Ops.end()); 198 } 199 200 StringMapEntry<uint32_t> *LLVMContextImpl::getOrInsertBundleTag(StringRef Tag) { 201 uint32_t NewIdx = BundleTagCache.size(); 202 return &*(BundleTagCache.insert(std::make_pair(Tag, NewIdx)).first); 203 } 204 205 void LLVMContextImpl::getOperandBundleTags(SmallVectorImpl<StringRef> &Tags) const { 206 Tags.resize(BundleTagCache.size()); 207 for (const auto &T : BundleTagCache) 208 Tags[T.second] = T.first(); 209 } 210 211 uint32_t LLVMContextImpl::getOperandBundleTagID(StringRef Tag) const { 212 auto I = BundleTagCache.find(Tag); 213 assert(I != BundleTagCache.end() && "Unknown tag!"); 214 return I->second; 215 } 216 217 // ConstantsContext anchors 218 void UnaryConstantExpr::anchor() { } 219 220 void BinaryConstantExpr::anchor() { } 221 222 void SelectConstantExpr::anchor() { } 223 224 void ExtractElementConstantExpr::anchor() { } 225 226 void InsertElementConstantExpr::anchor() { } 227 228 void ShuffleVectorConstantExpr::anchor() { } 229 230 void ExtractValueConstantExpr::anchor() { } 231 232 void InsertValueConstantExpr::anchor() { } 233 234 void GetElementPtrConstantExpr::anchor() { } 235 236 void CompareConstantExpr::anchor() { } 237 238 /// Singleton instance of the OptBisect class. 239 /// 240 /// This singleton is accessed via the LLVMContext::getOptBisect() function. It 241 /// provides a mechanism to disable passes and individual optimizations at 242 /// compile time based on a command line option (-opt-bisect-limit) in order to 243 /// perform a bisecting search for optimization-related problems. 244 /// 245 /// Even if multiple LLVMContext objects are created, they will all return the 246 /// same instance of OptBisect in order to provide a single bisect count. Any 247 /// code that uses the OptBisect object should be serialized when bisection is 248 /// enabled in order to enable a consistent bisect count. 249 static ManagedStatic<OptBisect> OptBisector; 250 251 OptBisect &LLVMContextImpl::getOptBisect() { 252 return *OptBisector; 253 } 254